WO2012077416A1 - 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム - Google Patents

回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム Download PDF

Info

Publication number
WO2012077416A1
WO2012077416A1 PCT/JP2011/074192 JP2011074192W WO2012077416A1 WO 2012077416 A1 WO2012077416 A1 WO 2012077416A1 JP 2011074192 W JP2011074192 W JP 2011074192W WO 2012077416 A1 WO2012077416 A1 WO 2012077416A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
engine
threshold value
battery
regenerative
Prior art date
Application number
PCT/JP2011/074192
Other languages
English (en)
French (fr)
Inventor
惇也 古今
Original Assignee
日野自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日野自動車株式会社 filed Critical 日野自動車株式会社
Priority to CN201180040638.2A priority Critical patent/CN103079926B/zh
Priority to AU2011339772A priority patent/AU2011339772A1/en
Priority to US13/819,013 priority patent/US9139196B2/en
Priority to EP11847092.1A priority patent/EP2650185A1/en
Publication of WO2012077416A1 publication Critical patent/WO2012077416A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18136Engine braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/30Engine braking emulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking

Definitions

  • the present invention relates to a regeneration control device, a hybrid vehicle, a regeneration control method, and a program.
  • the hybrid vehicle has an engine and an electric motor, and can be driven by the engine or the electric motor, or can be driven in cooperation with the engine and the electric motor, and regenerative power generation can be performed by the electric motor during deceleration.
  • regenerative power generation When regenerative power generation is performed, regenerative torque is generated in the electric motor. This regenerative torque becomes friction in the running of the hybrid vehicle and becomes a braking force in the same manner as the engine brake (see, for example, Patent Document 1).
  • the regenerative torque of the electric motor is proportional to the regenerative electric power of the electric motor. In other words, the greater the regenerative power of the motor, the greater the regenerative torque of the motor.
  • the regenerative torque of the electric motor in the hybrid vehicle becomes a braking force in the same manner as the engine brake.
  • the upper limit value of the regenerative power of the motor is appropriately adjusted according to the state of charge of the battery (hereinafter referred to as SOC (State of Charge)). For example, if the SOC is low, a large amount of electric power is required for charging the battery, so that the upper limit value of the regenerative electric power of the motor can be increased. Thus, when the upper limit value of the regenerative power is high, the electric motor can generate a large regenerative torque.
  • the upper limit value of the regenerative power needs to be set lower than when the SOC is low.
  • the electric motor cannot generate a large regenerative torque. Therefore, when the regenerative torque of the electric motor is used as the braking force of the hybrid vehicle, the braking force may be insufficient when the battery SOC is high compared to when the SOC is low. As a result, the braking force requested by the driver may not be satisfied, and the driver may feel that the braking force is insufficient, leading to a deterioration in drivability.
  • the present invention was made under such a background, a regenerative control device, a hybrid vehicle, and a regenerative control method capable of improving the drivability when using the regenerative torque of the electric motor as a braking force,
  • the purpose is to provide a program.
  • the regenerative control device of the present invention includes an engine, an electric motor, and a battery that supplies electric power to the electric motor, and can be driven by the engine or the electric motor, or can be driven in cooperation with the engine and the electric motor, and at least decelerates.
  • a value that represents the state of charge of the battery In a regenerative control device for a hybrid vehicle that is capable of regenerative power generation using an electric motor and that can use the regenerative torque generated by the regenerative power generation of the electric motor as a braking force during traveling by only the electric motor, a value that represents the state of charge of the battery
  • first, second and third threshold values are provided, the second threshold value is greater than the first threshold value, the third threshold value is greater than or equal to the second threshold value, and the battery charge
  • the traveling mode is based on the electric motor alone, the regenerative torque of the electric motor is used as the braking force, and the state of charge of the battery is the first.
  • the driving mode is such that the engine and the electric motor cooperate with each other, and both the engine brake of the engine and the regenerative torque of the electric motor are used as the braking force, and the state of charge of the battery is less than or less than the first threshold value.
  • the driving mode is a mode in which only the electric motor is used, and when the regenerative torque of the motor is used as a braking force, the driving mode in which the engine and the motor cooperate when the state of charge of the battery exceeds or exceeds the second threshold value.
  • the battery is charged.
  • Condition is when the third threshold above or beyond are those which have a control means for starting the restriction of the regenerative power generation.
  • Another aspect of the present invention is a viewpoint as a hybrid vehicle.
  • the hybrid vehicle of the present invention has the regeneration control device of the present invention.
  • Still another aspect of the present invention is a viewpoint as a regeneration control method.
  • the regenerative control method of the present invention includes an engine, an electric motor, and a battery that supplies electric power to the electric motor, and can be driven by the engine or the electric motor, or can be driven in cooperation with the engine and the electric motor, and is at least decelerated.
  • the value represents the state of charge of the battery.
  • first, second and third threshold values are provided, the second threshold value is greater than the first threshold value, the third threshold value is greater than or equal to the second threshold value, and the battery charge
  • the traveling mode is based on the electric motor alone, the regenerative torque of the electric motor is used as the braking force, and the state of charge of the battery is the first.
  • the driving mode is such that the engine and the electric motor work together, the engine brake of the engine and the regenerative torque of the electric motor are both used as braking force, and the state of charge of the battery is less than the first threshold value.
  • the driving mode is based only on the electric motor and the regenerative torque of the electric motor is used as the braking force
  • the engine and the electric motor cooperate when the state of charge of the battery exceeds or exceeds the second threshold value.
  • the driving mode is a step of using both the engine brake of the engine and the regenerative torque of the electric motor as braking force, and when the state of charge of the battery exceeds or exceeds the first or second threshold, and the engine and the electric motor cooperate. It is a traveling mode that works, and both the engine brake of the engine and the regenerative torque of the motor are used as the braking force.
  • the state of charge of the battery exceeds or third threshold value or more are those having the steps of starting the restriction of the regenerative power generation.
  • Still another aspect of the present invention is a viewpoint as a program.
  • the program of the present invention causes the information processing apparatus to realize the function of the regeneration control device of the present invention.
  • drivability when using the regenerative torque of the electric motor as a braking force can be improved.
  • FIG. 1 is a block diagram showing an example of the configuration of the hybrid vehicle 1.
  • the hybrid vehicle 1 is an example of a vehicle.
  • the hybrid vehicle 1 is driven by an engine (internal combustion engine) 10 and / or an electric motor 13 via a transmission of a semi-automatic transmission, and generates a braking force such as an engine brake of the engine 10 by regenerative torque of the electric motor 13 during deceleration. be able to.
  • the semi-automatic transmission is a transmission that can automatically perform a shifting operation while having the same configuration as a manual transmission.
  • the hybrid vehicle 1 includes an engine 10 and an engine ECU (Electronic Control Unit) 11, clutch 12, electric motor 13, inverter 14, battery 15, transmission 16, electric motor ECU 17, hybrid ECU 18, wheels 19, key switch 20, and shift unit 21.
  • the transmission 16 has the above-described semi-automatic transmission and is operated by a shift unit 21 having a drive range (hereinafter referred to as a D (Drive) range).
  • D Drive
  • the shift unit 21 is in the D range, the shifting operation of the semi-automatic transmission is automated.
  • the engine 10 is an example of an internal combustion engine, and is controlled by an engine ECU 11 to be gasoline, light oil, CNG (Compressed Natural Gas), LPG (Liquefied). Petroleum Gas) or alternative fuel or the like is combusted inside to generate power for rotating the shaft, and the generated power is transmitted to the clutch 12.
  • ECU 11 gasoline, light oil, CNG (Compressed Natural Gas), LPG (Liquefied). Petroleum Gas) or alternative fuel or the like is combusted inside to generate power for rotating the shaft, and the generated power is transmitted to the clutch 12.
  • the engine ECU 11 is a computer that operates in cooperation with the electric motor ECU 17 by following instructions from the hybrid ECU 18 and controls the engine 10 such as the fuel injection amount and valve timing.
  • the engine ECU 11 includes a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), microprocessor (microcomputer), DSP (Digital (Signal Processor) and the like, and has an arithmetic unit, a memory, an I / O (Input / Output) port, and the like.
  • the clutch 12 is controlled by the hybrid ECU 18 and transmits the shaft output from the engine 10 to the wheels 19 via the electric motor 13 and the transmission 16. That is, the clutch 12 mechanically connects the rotating shaft of the engine 10 and the rotating shaft of the electric motor 13 under the control of the hybrid ECU 18 to transmit the shaft output of the engine 10 to the electric motor 13, or By disconnecting the mechanical connection between the rotating shaft of the motor 10 and the rotating shaft of the electric motor 13, the shaft of the engine 10 and the rotating shaft of the electric motor 13 can be rotated at different rotational speeds.
  • the clutch 12 causes the hybrid vehicle 1 to travel by the power of the engine 10, thereby causing the electric motor 13 to generate electric power, when the engine 10 is assisted by the driving force of the electric motor 13, and to start the engine 10 by the electric motor 13.
  • the rotating shaft of the engine 10 and the rotating shaft of the electric motor 13 are mechanically connected.
  • the clutch 12 is in a state where the engine 10 is stopped or idling and the hybrid vehicle 1 is running by the driving force of the electric motor 13 and when the engine 10 is stopped or idling and the hybrid vehicle 1 is decelerated.
  • the electric motor 13 is generating electric power (regenerating electric power)
  • the mechanical connection between the rotating shaft of the engine 10 and the rotating shaft of the electric motor 13 is disconnected.
  • the clutch 12 is different from the clutch that is operated by the driver operating the clutch pedal, and operates under the control of the hybrid ECU 18.
  • the electric motor 13 is a so-called motor generator.
  • the electric power supplied from the inverter 14 generates motive power for rotating the shaft, and supplies the shaft output to the transmission 16 or the shaft supplied from the transmission 16. Electric power is generated by the rotating power, and the electric power is supplied to the inverter 14.
  • the electric motor 13 When the hybrid vehicle 1 is accelerating or traveling at a constant speed, the electric motor 13 generates power for rotating the shaft, and supplies the shaft output to the transmission 16.
  • the hybrid vehicle 1 is driven in cooperation. Further, for example, when the electric motor 13 is driven by the engine 10, or when the hybrid vehicle 1 is decelerating or traveling downhill, the electric motor 13 operates as a generator.
  • the state in which the electric motor 13 is generating power is a state in which the hybrid vehicle 1 is performing “regeneration to the battery 15”, and the electric motor 13 generates a regenerative torque corresponding to the regenerative power. To do.
  • the inverter 14 is controlled by the electric motor ECU 17 and converts the DC voltage from the battery 15 into an AC voltage, or converts the AC voltage from the electric motor 13 into a DC voltage.
  • the inverter 14 converts the DC voltage of the battery 15 into an AC voltage and supplies electric power to the electric motor 13.
  • the inverter 14 converts the AC voltage from the electric motor 13 into a DC voltage. That is, in this case, the inverter 14 serves as a rectifier and a voltage regulator for supplying a DC voltage to the battery 15.
  • the battery 15 is a chargeable / dischargeable secondary battery.
  • the electric power is supplied to the electric motor 13 via the inverter 14 or when the electric motor 13 is generating electric power, It is charged by the power it generates.
  • An appropriate SOC range is determined for the battery 15, and the SOC is managed so that the SOC does not fall outside the range.
  • the transmission 16 has a semi-automatic transmission (not shown) that selects one of a plurality of gear ratios (speed ratios) in accordance with a speed change instruction signal from the hybrid ECU 18.
  • the power and / or power of the electric motor 13 is transmitted to the wheel 19. Further, the transmission 16 transmits the power from the wheels 19 to the electric motor 13 when decelerating or traveling downhill.
  • the driver can manually change the gear position to an arbitrary gear stage by operating the shift unit 21.
  • the electric motor ECU 17 is a computer that operates in cooperation with the engine ECU 11 by following instructions from the hybrid ECU 18, and controls the electric motor 13 by controlling the inverter 14.
  • the electric motor ECU 17 is configured by a CPU, an ASIC, a microprocessor (microcomputer), a DSP, and the like, and has an arithmetic unit, a memory, an I / O port, and the like.
  • the hybrid ECU 18 is an example of a computer, and acquires accelerator opening information, brake operation information, vehicle speed information, gear position information acquired from the transmission 16, and engine rotation speed information acquired from the engine ECU 11 for hybrid traveling. With reference to this, the clutch 12 is controlled, and the transmission 16 is controlled by supplying a shift instruction signal. Further, the hybrid ECU 18 gives a control instruction for the electric motor 13 and the inverter 14 to the electric motor ECU 17 based on the obtained SOC information of the battery 15 and other information for hybrid driving, and gives a control instruction for the engine 10 to the engine ECU 11. give. These control instructions include a regenerative control instruction to be described later.
  • the hybrid ECU 18 includes a CPU, an ASIC, a microprocessor (microcomputer), a DSP, and the like, and has an arithmetic unit, a memory, an I / O port, and the like.
  • the program executed by the hybrid ECU 18 can be installed in advance in the hybrid ECU 18 that is a computer by storing the program in a nonvolatile memory inside the hybrid ECU 18 in advance.
  • Engine ECU 11 electric motor ECU 17, and hybrid ECU 18 are CAN (Control Are connected to each other by a bus conforming to a standard such as Area Network.
  • Wheel 19 is a driving wheel that transmits driving force to the road surface. Although only one wheel 19 is shown in FIG. 1, the hybrid vehicle 1 actually has a plurality of wheels 19.
  • the key switch 20 is a switch that is turned on / off by a user, for example, when a key is started. When the key switch 20 is turned on, each part of the hybrid vehicle 1 is activated and the key switch 20 is turned off. Each part of the hybrid vehicle 1 is stopped by entering the state.
  • the shift unit 21 gives an instruction from the driver to the semi-automatic transmission of the transmission 16, and when the shift unit 21 is in the D range, the shifting operation of the semi-automatic transmission is automated.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration realized in the hybrid ECU 18 that executes the program. That is, when the hybrid ECU 18 executes the program, the function of the regeneration control unit 30 is realized.
  • the regenerative control unit 30 is a function that gives a regenerative control instruction (regenerative control instruction and illustration) to the engine ECU 11, the clutch 12, the inverter 14, and the electric motor ECU 17 based on the SOC information of the battery 15.
  • step S1 the key switch 20 is in the ON state, the hybrid ECU 18 executes the program, and the function of the regenerative control unit 30 is realized in the hybrid ECU 18, and the procedure proceeds to step S1.
  • step S1 the regeneration control unit 30 determines whether or not the SOC value of the battery 15 is less than the threshold value A. If it is determined in step S1 that it is less than the threshold A, the procedure proceeds to step S2. On the other hand, if it is determined in step S1 that the threshold value A is greater than or equal to the threshold value A, the procedure proceeds to step S4.
  • step 2 the regeneration control unit 30 performs regeneration with the clutch 12 disengaged, and the procedure proceeds to step S3.
  • step S3 the regeneration control unit 30 determines whether or not the SOC value of the battery 15 is equal to or greater than the threshold value B. If it is determined in step S3 that the threshold value B is equal to or greater than the threshold value B, the procedure proceeds to step S4. On the other hand, if it is determined in step S3 that it is less than the threshold value B, the procedure returns to step S2.
  • step 4 the regeneration control unit 30 performs regeneration with the clutch 12 in the engaged state, and the procedure proceeds to step S5.
  • step S5 the regeneration control unit 30 determines whether or not the SOC value of the battery 15 is greater than or equal to the threshold value C. If it is determined in step S5 that the threshold value C is not less than the threshold value C, the procedure proceeds to step S6. On the other hand, if it is determined in step S5 that it is less than the threshold value C, the procedure returns to step S1.
  • step 6 the regeneration control unit 30 performs power limitation on the regenerative power of the motor 13 and ends the process for one cycle (END).
  • FIG. 4 shows the relationship between the regenerative torque (regenerative electric power) and the SOC with threshold values A (first threshold value in the claims), B (second threshold value in the claims), and C (third value in the claims). It is a figure shown with (threshold), time is taken on a horizontal axis
  • FIG. 5 is a diagram showing a process flow in the case of Yes in step S1 in the process of FIG.
  • FIG. 6 is a diagram showing a process flow in the case of No in step S1 in the process of FIG.
  • the threshold value A is 65% as the SOC value
  • the threshold value B is 70% as the SOC value
  • the threshold value C is 70% as the SOC value.
  • the values of A, B, and C are not limited to these values, and various values can be set as long as the relationship of threshold A ⁇ threshold B ⁇ threshold C is satisfied.
  • the regeneration control unit 30 first determines whether or not the SOC value is less than the threshold value A (step S1).
  • the SOC is less than 65% (Yes in step S ⁇ b> 1), the battery 15 needs to be charged, and there is no need to limit the regenerative power. Since electric power can be increased and a large regenerative torque can be generated, regenerative operation is performed with the clutch 12 disengaged (step S2). Thereafter, the determination is based on the threshold B (step S3).
  • step S3 when the SOC becomes 70% (threshold value B) or more (Yes in step S3), the charging of the battery 15 is almost completed, and the regeneration control unit 30 eventually narrows the regenerative power of the motor 13 and restricts the regenerative torque. Since there is a possibility that necessity arises, clutch regenerative regeneration is performed (step S4).
  • threshold value B threshold value C
  • regeneration control unit 30 performs clutch engagement regeneration in step S4 and simultaneously performs power limitation (Yes in step S5, step S6).
  • step S4 the regeneration control unit 30 performs clutch contact regeneration.
  • the SOC when the SOC is 65% (threshold A) or more and less than 70% (threshold C), clutch regenerative regeneration is performed without power limitation.
  • the regeneration control unit 30 performs clutch engagement regeneration while limiting the power (step S6).
  • FIG. 7 is a diagram showing the relationship among the SOC (upper stage), the clutch engagement / disengagement state (middle stage), and the deceleration (lower stage) in the regeneration control of the regeneration control unit 30 over time.
  • the state before the start of power limitation is indicated by a solid line
  • the state after the start of power limitation is indicated by a broken line.
  • FIG. 8 is a flowchart illustrating the regeneration control process of the comparative example.
  • FIG. 9 is a diagram illustrating the relationship among the SOC (upper stage), the clutch engagement / disengagement state (middle stage), and the deceleration (lower stage) in the regeneration control process of the comparative example as time elapses.
  • the regeneration control unit 30 performs power limit on the regenerative power of the motor 13, so that the increase in SOC is almost stopped. To do.
  • the regenerative control unit 30 engages the clutch 12 as the power limitation on the regenerative power of the electric motor 13 is performed.
  • the braking force due to the regenerative torque of the electric motor 13 and the braking force due to the engine brake of the engine 10 work together, so that the necessary braking force can be ensured.
  • FIG. 8 is a flowchart illustrating the regeneration control process of the comparative example.
  • FIG. 9 is a diagram illustrating the relationship among the SOC, the clutch engagement / disengagement state, and the deceleration in the regenerative control of the comparative example over time.
  • step S10 in the regeneration control of the comparative example, once it is determined that the clutch 12 is disengaged and the regeneration is performed (step S10), after that, if it is not less than the threshold (step S11). If yes, regeneration is performed in which power limitation is performed on the regenerative power of the motor 13 (step S12). If the power is less than the threshold (No in step S11), normal regeneration is performed (step S13).
  • the SOC continues to rise, albeit more slowly, even after exceeding the power limit threshold. This is because regenerative torque is generated while the power is limited, and even a slight braking force is generated. Such control is not preferable because it may cause overcharging of the battery 15.
  • the clutch remains disengaged, and as shown in the lower part of FIG. 9, the braking force that depends only on the regenerative torque of the motor 13 must be reduced.
  • the engagement / disengagement of the clutch is determined at the threshold A.
  • the threshold A For example, if the SOC is less than the threshold value A, the clutch is disengaged, and if it exceeds the threshold value B, the clutch shifts to the clutch engagement regeneration.
  • threshold A ⁇ threshold B it is possible to prevent transition from clutch disengagement to clutch engagement regeneration in a short time. That is, a transition to clutch engagement regeneration during clutch disengagement may give a deceleration shock to the hybrid vehicle 1 and affect drivability.
  • the threshold value B it is preferable to provide a certain margin as the threshold value B.
  • the threshold value A which is the determination criterion for clutch engagement / disengagement
  • the threshold value A ⁇ threshold value B is set in order to continue the clutch regeneration.
  • the protection of the battery 15 is prioritized over the drivability and the clutch transition regeneration is performed.
  • the threshold value C is satisfied. At this time, even if the regeneration is throttled, the deceleration force is maintained because the clutch is regenerative.
  • the determination boundary value may be variously changed such that “above” is “exceeding” and “below” is “less than”.
  • threshold A ⁇ threshold B threshold C
  • threshold C threshold C
  • the threshold A may be 60%
  • the threshold B may be 65%
  • the threshold C may be 70%.
  • the SOC that shifts from clutch disengagement to clutch engagement regeneration is lower than in the above-described embodiment.
  • the threshold A may be 65%
  • the threshold B may be 70%
  • the threshold C may be 80%.
  • the engine 10 has been described as an internal combustion engine, it may be a heat engine including an external combustion engine.
  • the program executed by the hybrid ECU 18 has been described as being installed in the hybrid ECU 18 in advance.
  • a removable medium in which the program is recorded (a program is stored) is attached to a drive or the like (not shown), and the removable medium is removed.
  • the program read from the medium is stored in a non-volatile memory inside the hybrid ECU 18 or the program transmitted via a wired or wireless transmission medium is received by a communication unit (not shown), and the hybrid ECU 18 Can be installed in the hybrid ECU 18 as a computer.
  • each ECU may be realized by an ECU in which these are combined into one, or an ECU that further subdivides the functions of each ECU may be provided.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 電動機の回生トルクを制動力として利用する際のドライバビリティを向上させること。 SOCの値に対し、閾値A<B≦Cを設け、SOCの値が閾値A未満であるときには、電動機の回生トルクを制動力として利用し、SOCの値が閾値A以上であるときには、エンジンのエンジンブレーキと電動機の回生トルクとを共に制動力として利用し、SOCの値が閾値A未満であり、電動機の回生トルクを制動力として利用しているときに、SOCの値が閾値B以上となったときには、エンジンのエンジンブレーキと電動機の回生トルクとを共に制動力として利用し、SOCの値が閾値A以上、または閾値B以上であり、エンジンのエンジンブレーキと電動機の回生トルクとを共に制動力として利用しているときに、SOCの値が閾値C以上となったときには、回生発電の電力の制限を開始する制御を行うハイブリッド自動車を構成する。

Description

回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
 本発明は、回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラムに関する。
 ハイブリッド自動車は、エンジンと電動機とを有し、エンジンもしくは電動機により走行可能であり、またはエンジンと電動機とが協働して走行可能であり、減速中は、電動機により回生発電が可能である。回生発電を行う際には、電動機に回生トルクが発生する。この回生トルクは、ハイブリッド自動車の走行におけるフリクションとなりエンジンブレーキと同様に制動力になる(たとえば特許文献1参照)。なお、電動機の回生トルクは、電動機の回生電力に比例する。すなわち電動機の回生電力が多いほど電動機の回生トルクも大きい。
特開2007-223421号公報
 上述したように、ハイブリッド自動車における電動機の回生トルクは、エンジンブレーキと同様に、制動力になる。一方、バッテリの充電状態(以下では、SOC(State of Charge)と称する)に応じて電動機の回生電力の上限値は適切に調整される。たとえばSOCが低ければ、バッテリの充電のために、大きな電力を要するので、電動機の回生電力の上限値は高くすることができる。このように回生電力の上限値が高い場合に電動機は大きな回生トルクを発生することができる。これに対し、SOCが高い状態では、バッテリの過充電を避けるために、回生電力の上限値は、SOCが低い場合と比較して低く設定する必要がある。この場合、電動機は大きな回生トルクを発生できない。したがって、電動機の回生トルクをハイブリッド自動車の制動力として利用する場合、バッテリのSOCが高いときにはSOCが低いときと比べて制動力が不足することがある。これにより、運転者が要求する制動力を満足させられない場合があり、運転者は、制動力不足を感じ、ドライバビリティの悪化を招く場合がある。
 本発明は、このような背景の下に行われたものであって、電動機の回生トルクを制動力として利用する際のドライバビリティを向上させることができる回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラムを提供することを目的とする。
 本発明の1つの観点は、回生制御装置としての観点である。本発明の回生制御装置は、エンジンと電動機と電動機に電力を供給するバッテリとを有し、エンジンもしくは電動機により走行可能であり、またはエンジンと電動機とが協働して走行可能であり、少なくとも減速中に、電動機により回生発電が可能であると共に、電動機のみによる走行中に電動機の回生発電により生じる回生トルクを制動力として利用可能なハイブリッド自動車の回生制御装置において、バッテリの充電状態を表す値に対し、第一、第二、第三の閾値が設けられ、第二の閾値は第一の閾値よりも大きい値であり、第三の閾値は第二の閾値以上の値であり、バッテリの充電状態が第一の閾値未満または以下であるときには、電動機のみによる走行形態とし、電動機の回生トルクを制動力として利用し、バッテリの充電状態が第一の閾値以上または超えたときには、エンジンと電動機とが協働する走行形態とし、エンジンのエンジンブレーキと電動機の回生トルクとを共に制動力として利用し、バッテリの充電状態が第一の閾値未満または以下であり、電動機のみによる走行形態とし、電動機の回生トルクを制動力として利用しているときに、バッテリの充電状態が第二の閾値以上または超えたときには、エンジンと電動機とが協働する走行形態とし、エンジンのエンジンブレーキと電動機の回生トルクとを共に制動力として利用し、バッテリの充電状態が第一または第二の閾値以上または超えたときであり、エンジンと電動機とが協働する走行形態とし、エンジンのエンジンブレーキと電動機の回生トルクとを共に制動力として利用しているときに、バッテリの充電状態が第三の閾値以上または超えたときには、回生発電の電力の制限を開始する制御手段を有するものである。
 本発明の他の観点は、ハイブリッド自動車としての観点である。本発明のハイブリッド自動車は、本発明の回生制御装置を有するものである。
 本発明のさらに他の観点は、回生制御方法としての観点である。本発明の回生制御方法は、エンジンと電動機と電動機に電力を供給するバッテリとを有し、エンジンもしくは電動機により走行可能であり、またはエンジンと電動機とが協働して走行可能であり、少なくとも減速中に、電動機により回生発電が可能であると共に、電動機のみによる走行中に電動機の回生発電により生じる回生トルクを制動力として利用可能なハイブリッド自動車の回生制御方法において、バッテリの充電状態を表す値に対し、第一、第二、第三の閾値が設けられ、第二の閾値は第一の閾値よりも大きい値であり、第三の閾値は第二の閾値以上の値であり、バッテリの充電状態が第一の閾値未満または以下であるときには、電動機のみによる走行形態とし、電動機の回生トルクを制動力として利用し、バッテリの充電状態が第一の閾値以上または超えたときには、エンジンと電動機とが協働する走行形態とし、エンジンのエンジンブレーキと電動機の回生トルクとを共に制動力として利用するステップと、バッテリの充電状態が第一の閾値未満または以下であり、電動機のみによる走行形態とし、電動機の回生トルクを制動力として利用しているときに、バッテリの充電状態が第二の閾値以上または超えたときには、エンジンと電動機とが協働する走行形態とし、エンジンのエンジンブレーキと電動機の回生トルクとを共に制動力として利用するステップと、バッテリの充電状態が第一または第二の閾値以上または超えたときであり、エンジンと電動機とが協働する走行形態とし、エンジンのエンジンブレーキと電動機の回生トルクとを共に制動力として利用しているときに、バッテリの充電状態が第三の閾値以上または超えたときには、回生発電の電力の制限を開始するステップと、を有するものである。
 本発明のさらに他の観点は、プログラムとしての観点である。本発明のプログラムは、情報処理装置に、本発明の回生制御装置の機能を実現させるものである。
 本発明によれば、電動機の回生トルクを制動力として利用する際のドライバビリティを向上させることができる。
本発明の実施の形態のハイブリッド自動車の構成の例を示すブロック図である。 図1のハイブリッドECUにおいて実現される機能の構成の例を示すブロック図である。 図2の回生制御部の処理を示すフローチャートである。 回生トルク(回生電力)とSOCとの関係を閾値A、B、Cと共に示す図である。 図3の処理におけるステップS1でYesの場合の処理の流れを示す図である。 図3の処理のおけるステップS1でNoの場合の処理の流れを示す図である。 図2の回生制御部の回生制御におけるSOC、クラッチの断接状態、および減速度の関係を時間の経過と共に示す図である。 比較例の回生制御の処理を示すフローチャートである。 比較例の回生制御におけるSOC、クラッチの断接状態、および減速度の関係を時間の経過と共に示す図である。
 以下、本発明の実施の形態のハイブリッド自動車について、図1~図9を参照しながら説明する。
 図1は、ハイブリッド自動車1の構成の例を示すブロック図である。ハイブリッド自動車1は、車両の一例である。ハイブリッド自動車1は、半自動トランスミッションの変速機を介したエンジン(内燃機関)10および/または電動機13によって駆動され、減速時には、電動機13の回生トルクによってエンジン10のエンジンブレーキのような制動力を発生させることができる。なお、半自動トランスミッションとは、マニュアルトランスミッションと同じ構成を有しながら変速操作を自動的に行うことができるトランスミッションである。
 ハイブリッド自動車1は、エンジン10、エンジンECU(Electronic
Control Unit)11、クラッチ12、電動機13、インバータ14、バッテリ15、トランスミッション16、電動機ECU17、ハイブリッドECU18、車輪19、キースイッチ20、およびシフト部21を有して構成される。なお、トランスミッション16は、上述した半自動トランスミッションを有し、ドライブレンジ(以下では、D(Drive)レンジと記す)を有するシフト部21により操作される。シフト部21がDレンジにあるときには、半自動トランスミッションの変速操作が自動化される。
 エンジン10は、内燃機関の一例であり、エンジンECU11によって制御され、ガソリン、軽油、CNG(Compressed Natural Gas)、LPG(Liquefied
Petroleum Gas)、または代替燃料等を内部で燃焼させて、軸を回転させる動力を発生させ、発生した動力をクラッチ12に伝達する。
 エンジンECU11は、ハイブリッドECU18からの指示に従うことにより、電動機ECU17と連携動作するコンピュータであり、燃料噴射量やバルブタイミングなど、エンジン10を制御する。たとえば、エンジンECU11は、CPU(Central Processing Unit)、ASIC(Application
Specific Integrated Circuit)、マイクロプロセッサ(マイクロコンピュータ)、DSP(Digital
Signal Processor)などにより構成され、内部に、演算部、メモリ、およびI/O(Input/Output)ポートなどを有する。
 クラッチ12は、ハイブリッドECU18によって制御され、エンジン10からの軸出力を、電動機13およびトランスミッション16を介して車輪19に伝達する。すなわち、クラッチ12は、ハイブリッドECU18の制御によって、エンジン10の回転軸と電動機13の回転軸とを機械的に接続することにより、エンジン10の軸出力を電動機13に伝達させたり、または、エンジン10の回転軸と電動機13の回転軸との機械的な接続を切断することにより、エンジン10の軸と、電動機13の回転軸とが互いに異なる回転速度で回転できるようにする。
 たとえば、クラッチ12は、エンジン10の動力によってハイブリッド自動車1が走行し、これにより電動機13に発電させる場合、電動機13の駆動力によってエンジン10がアシストされる場合、および電動機13によってエンジン10を始動させる場合などに、エンジン10の回転軸と電動機13の回転軸とを機械的に接続する。
 また、たとえば、クラッチ12は、エンジン10が停止またはアイドリング状態にあり、電動機13の駆動力によってハイブリッド自動車1が走行している場合、およびエンジン10が停止またはアイドリング状態にあり、ハイブリッド自動車1が減速中または下り坂を走行中であり、電動機13が発電している(電力回生している)場合、エンジン10の回転軸と電動機13の回転軸との機械的な接続を切断する。
 なお、クラッチ12は、運転者がクラッチペダルを操作して動作しているクラッチとは異なるものであり、ハイブリッドECU18の制御によって動作する。
 電動機13は、いわゆる、モータジェネレータであり、インバータ14から供給された電力により、軸を回転させる動力を発生させて、その軸出力をトランスミッション16に供給するか、またはトランスミッション16から供給された軸を回転させる動力によって発電し、その電力をインバータ14に供給する。たとえば、ハイブリッド自動車1が加速しているとき、または定速で走行しているときにおいて、電動機13は、軸を回転させる動力を発生させて、その軸出力をトランスミッション16に供給し、エンジン10と協働してハイブリッド自動車1を走行させる。また、たとえば、電動機13がエンジン10によって駆動されているとき、またはハイブリッド自動車1が減速しているとき、もしくは下り坂を走行しているときなどにおいて、電動機13は、発電機として動作し、この場合、トランスミッション16から供給された軸を回転させる動力によって発電して、電力をインバータ14に供給し、バッテリ15が充電される。前述したように、電動機13が発電している状態は、ハイブリッド自動車1が「バッテリ15への回生」を行っている状態であり、電動機13は、回生電力に応じた大きさの回生トルクを発生する。
 インバータ14は、電動機ECU17によって制御され、バッテリ15からの直流電圧を交流電圧に変換するか、または電動機13からの交流電圧を直流電圧に変換する。電動機13が動力を発生させる場合、インバータ14は、バッテリ15の直流電圧を交流電圧に変換して、電動機13に電力を供給する。電動機13が発電する場合、インバータ14は、電動機13からの交流電圧を直流電圧に変換する。すなわち、この場合、インバータ14は、バッテリ15に直流電圧を供給するための整流器および電圧調整装置としての役割を果たす。
 バッテリ15は、充放電可能な二次電池であり、電動機13が動力を発生させるとき、電動機13にインバータ14を介して電力を供給するか、または電動機13が発電しているとき、電動機13が発電する電力によって充電される。バッテリ15には、適切なSOCの範囲が決められており、SOCがその範囲を外れないように管理されている。
 トランスミッション16は、ハイブリッドECU18からの変速指示信号に従って、複数のギア比(変速比)のいずれかを選択する半自動トランスミッション(図示せず)を有し、変速比を切り換えて、変速されたエンジン10の動力および/または電動機13の動力を車輪19に伝達する。また、減速しているとき、もしくは下り坂を走行しているときなど、トランスミッション16は、車輪19からの動力を電動機13に伝達する。なお、半自動トランスミッションは、運転者がシフト部21を操作して手動で任意のギア段にギア位置を変更することもできる。
 電動機ECU17は、ハイブリッドECU18からの指示に従うことにより、エンジンECU11と連携動作するコンピュータであり、インバータ14を制御することによって電動機13を制御する。たとえば、電動機ECU17は、CPU、ASIC、マイクロプロセッサ(マイクロコンピュータ)、DSPなどにより構成され、内部に、演算部、メモリ、およびI/Oポートなどを有する。
 ハイブリッドECU18は、コンピュータの一例であり、ハイブリッド走行のために、アクセル開度情報、ブレーキ操作情報、車速情報、およびトランスミッション16から取得したギア位置情報、エンジンECU11から取得したエンジン回転速度情報を取得して、これを参照して、クラッチ12を制御すると共に、変速指示信号を供給することでトランスミッション16を制御する。また、ハイブリッドECU18は、ハイブリッド走行のために、取得したバッテリ15のSOC情報その他の情報に基づき電動機ECU17に対して電動機13およびインバータ14の制御指示を与え、エンジンECU11に対してエンジン10の制御指示を与える。これらの制御指示には、後述する回生制御の指示も含まれる。たとえば、ハイブリッドECU18は、CPU、ASIC、マイクロプロセッサ(マイクロコンピュータ)、DSPなどにより構成され、内部に、演算部、メモリ、およびI/Oポートなどを有する。
 なお、ハイブリッドECU18によって実行されるプログラムは、ハイブリッドECU18の内部の不揮発性のメモリにあらかじめ記憶しておくことで、コンピュータであるハイブリッドECU18にあらかじめインストールしておくことができる。
 エンジンECU11、電動機ECU17、およびハイブリッドECU18は、CAN(Control
Area Network)などの規格に準拠したバスなどにより相互に接続されている。
 車輪19は、路面に駆動力を伝達する駆動輪である。なお、図1において、1つの車輪19のみが図示されているが、実際には、ハイブリッド自動車1は、複数の車輪19を有する。
 キースイッチ20は、運転を開始するときにユーザにより、たとえばキーが差し込まれてON/OFFされるスイッチであり、これがON状態になることによってハイブリッド自動車1の各部は起動し、キースイッチ20がOFF状態になることによってハイブリッド自動車1の各部は停止する。
 シフト部21は、既に説明したように、トランスミッション16の半自動トランスミッションに運転者からの指示を与えるものであり、シフト部21がDレンジにあるときには、半自動トランスミッションの変速操作が自動化される。
 図2は、プログラムを実行するハイブリッドECU18において実現される機能の構成の例を示すブロック図である。すなわち、ハイブリッドECU18がプログラムを実行すると、回生制御部30の機能が実現される。
 回生制御部30は、バッテリ15のSOC情報に基づき、エンジンECU11、クラッチ12、インバータ14、および電動機ECU17に対して回生制御の指示(回生制御指示と図示)を与える機能である。
 次に、図3のフローチャートを参照して、プログラムを実行するハイブリッドECU18において行われる、回生制御の処理を説明する。なお、図3のステップS1~S6までのフローは1周期分の処理であり、キースイッチ20がON状態である限り処理は繰り返し実行されるものとする。なお、ここでは、その手順を簡単に示し、その意味については図4、図5、および図6を参照して後述する。
 図3の「START」では、キースイッチ20がON状態であり、ハイブリッドECU18がプログラムを実行し、ハイブリッドECU18に回生制御部30の機能が実現されている状態であり、手続きはステップS1に進む。
 ステップS1において、回生制御部30は、バッテリ15のSOCの値が閾値A未満であるか否かを判定する。ステップS1において、閾値A未満であると判定されると、手続きはステップS2に進む。一方、ステップS1において、閾値A以上であると判定されると、手続きはステップS4に進む。
 ステップ2において、回生制御部30は、クラッチ12を断状態として回生を実施し、手続きはステップS3に進む。
 ステップS3において、回生制御部30は、バッテリ15のSOCの値が閾値B以上であるか否かを判定する。ステップS3において、閾値B以上であると判定されると、手続きはステップS4に進む。一方、ステップS3において、閾値B未満であると判定されると、手続きはステップS2に戻る。
 ステップ4において、回生制御部30は、クラッチ12を接状態として回生を実施し、手続きはステップS5に進む。
 ステップS5において、回生制御部30は、バッテリ15のSOCの値が閾値C以上であるか否かを判定する。ステップS5において、閾値C以上であると判定されると、手続きはステップS6に進む。一方、ステップS5において、閾値C未満であると判定されると、手続きはステップS1に戻る。
 ステップ6において、回生制御部30は、電動機13の回生電力に対し、電力制限を実施して1周期分の処理を終了する(END)。
 次に、図3のフローチャートで説明した回生制御部30の処理を図4、図5、および図6を参照して具体的に説明する。図4は、回生トルク(回生電力)とSOCとの関係を閾値A(請求項でいう第一の閾値)、B(請求項でいう第二の閾値)、C(請求項でいう第三の閾値)と共に示す図であり、横軸に、時間をとり、縦軸に、回生トルク(回生電力)をとる。図5は、図3の処理におけるステップS1でYesの場合の処理の流れを示す図である。図6は、図3の処理のおけるステップS1でNoの場合の処理の流れを示す図である。なお、説明を分かり易くするために、閾値Aは、SOCの値で65%とし、閾値Bは、SOCの値で70%とし、閾値Cは、SOCの値で70%とするが、各閾値A、B、Cの値をこの値に限定するものではなく、閾値A<閾値B≦閾値Cの関係を満足すれば様々に設定可能である。
 回生制御部30は、図3のフローが開始(START)されると、最初にSOCの値が閾値A未満であるか否かを判定する(ステップS1)。ここで、図5に示すように、たとえばSOCが65%未満であれば(ステップS1でYes)、バッテリ15は、充電を必要としており、回生電力の制限を行う必要は無く、電動機13の回生電力を多くし、大きな回生トルクを発生させられるので、クラッチ12を断状態として回生を実施する(ステップS2)。以降は閾値Bによる判定(ステップS3)になる。ここで、SOCが70%(閾値B)以上になると(ステップS3でYes)、バッテリ15の充電完了が間近であり、回生制御部30は、やがて電動機13の回生電力を絞り、回生トルクを絞る必要が生じる可能性があるので、クラッチ接回生を実施する(ステップS4)。ここでは、閾値B=閾値Cとしたので、回生制御部30は、ステップS4でクラッチ接回生を実施すると同時に電力制限も併せて実施する(ステップS5でYes、ステップS6)。
 また、図6に示すように、たとえばSOCが65%(閾値A)以上であれば(ステップS1でNo)、やがて電動機13の回生電力を絞り、回生トルクを絞る必要が生じる可能性があるので、回生制御部30は、クラッチ接回生を実施する(ステップS4)。図6の例では、SOCが65%(閾値A)以上であり70%(閾値C)未満の間では、電力制限無しでクラッチ接回生が実施される。ここで、SOCが70%(閾値C)以上になると(ステップS5でYes)、回生制御部30は、クラッチ接回生を、電力制限をしながら実施する(ステップS6)。
(効果について)
 本実施の形態の効果を図7~図9を参照して説明する。図7は、回生制御部30の回生制御におけるSOC(上段)、クラッチの断接状態(中段)、および減速度(下段)の関係を時間の経過と共に示す図である。なお、図7は、電力制限開始以前の状態を実線で示し、電力制限開始以降の状態を破線で示す。図8は、比較例の回生制御の処理を示すフローチャートである。図9は、比較例の回生制御の処理におけるSOC(上段)、クラッチの断接状態(中段)、および減速度(下段)の関係を時間の経過と共に示す図である。
 図7の上段に示すように、SOCが電力制限閾値(閾値Cに相当)以上に達すると、回生制御部30は、電動機13の回生電力に対する電力制限を実施するので、SOCの上昇はほぼ停止する。このとき、図7の中段に示すように、回生制御部30は、電動機13の回生電力に対する電力制限を実施するのに伴って、クラッチ12を接合する。これにより、図7の下段に示すように、電動機13の回生トルクによる制動力とエンジン10のエンジンブレーキによる制動力とが共に働くため、必要な制動力を確保することができる。
 ここで比較例を図8および図9を参照して説明する。図8は、比較例の回生制御の処理を示すフローチャートである。図9は、比較例の回生制御におけるSOC、クラッチの断接状態、および減速度の関係を時間の経過と共に示す図である。
 図8に示すように、比較例の回生制御では、いったんクラッチ12を断状態として回生を実施することが決定されると(ステップS10)、その後は、単に、閾値以上であれば(ステップS11でYes)、電動機13の回生電力に対する電力制限を実施した回生を行い(ステップS12)、閾値未満であれば(ステップS11でNo)、通常回生を実施する(ステップS13)。
 これにより、図9の上段に示すように、SOCは、電力制限閾値を超えてからもさらにゆっくりではあるが上昇を続けている。これは電力制限を行いつつも回生トルクを発生し、僅かでも制動力を発生しようとしているためである。このような制御は、バッテリ15の過充電を招く可能性があり好ましくない。また、このとき、図9の中断に示すように、クラッチは切断されたままであり、図9の下段に示すように、電動機13の回生トルクのみに依存する制動力は低下せざるを得ない。
 図7と図9とを比較してわかるように、本実施の形態によれば、電動機13の回生電力に対する電力制限を実施した回生を行いながら必要な制動力を確保することができる。これにより、電動機13の回生トルクを制動力として利用する際のドライバビリティを向上させることができる。また、SOCが電力制限閾値を超えた場合には、回生電力をほぼ無くすことができるため、バッテリ15が過充電になる可能性を無くすことができる。 
 なお、上述の実施の形態では、閾値A,B,Cの一例としてA<B=Cを説明した。これによれば、回生モード(すなわちクラッチ断回生またはクラッチ接回生)確定後、閾値Aにてクラッチの断接を判定する。このときたとえばSOCが閾値A未満であれば、クラッチ断回生となり、閾値Bを超えるとクラッチ接回生に移行する。ここで、閾値A<閾値Bとすることにより、短時間でクラッチ断回生からクラッチ接回生に遷移しないようにできる。すなわち、クラッチ断回生中のクラッチ接回生への遷移は、ハイブリッド自動車1に減速のショックを与えることがあり、ドライバビリティに影響するため、ある程度のマージンを閾値Bとして設けることが好ましい。このようにクラッチ断接の判定基準である閾値Aを超えても、ある程度、クラッチ断回生を継続するために閾値A<閾値Bとする。さらに、最終的に閾値Bを超えるとドライバビリティよりもバッテリ15の保護を優先してクラッチ接回生に遷移し、同時に閾値Cを満たすため、回生が絞られる。このとき回生が絞られてもクラッチ接回生であるため減速力が保たれることになる。
(その他の実施の形態)
 図3のフローチャートの説明において、「以上」は、「超える」とし、「以下」は、「未満」とするなど、判定の境界値については様々に変更してもよい。
 また、閾値A<閾値B=閾値Cとして説明したが閾値A<閾値B≦閾値Cとし、閾値A,B,Cの値を様々に変更してもよい。たとえば閾値Aを60%とし、閾値Bを65%とし、閾値Cを70%としてもよい。この場合、クラッチ断回生からクラッチ接回生に移行するSOCが上述の実施の形態よりも低くなる。また、バッテリ15のタイプとしてSOCが高くても問題が少ないタイプであれば、たとえば閾値Aを65%とし、閾値Bを70%とし、閾値Cを80%としてもよい。
 エンジン10は、内燃機関であると説明したが、外燃機関を含む熱機関であってもよい。
 また、ハイブリッドECU18によって実行されるプログラムは、ハイブリッドECU18にあらかじめインストールされると説明したが、プログラムが記録されている(プログラムを記憶している)リムーバブルメディアを図示せぬドライブなどに装着し、リムーバブルメディアから読み出したプログラムをハイブリッドECU18の内部の不揮発性のメモリに記憶することにより、または、有線または無線の伝送媒体を介して送信されてきたプログラムを、図示せぬ通信部で受信し、ハイブリッドECU18の内部の不揮発性のメモリに記憶することで、コンピュータであるハイブリッドECU18にインストールすることができる。
 また、各ECUは、これらを1つにまとめたECUにより実現してもよいし、あるいは、各ECUの機能をさらに細分化したECUを新たに設けてもよい。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであってもよいし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであってもよい。
 また、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
 1…ハイブリッド自動車、10…エンジン、11…エンジンECU、12…クラッチ、13…電動機、14…インバータ、15…バッテリ、16…トランスミッション、17…電動機ECU、18…ハイブリッドECU、19…車輪、20…キースイッチ、30…回生制御部(制御手段)

Claims (4)

  1.  エンジンと電動機と前記電動機に電力を供給するバッテリとを有し、前記エンジンもしくは前記電動機により走行可能であり、または前記エンジンと前記電動機とが協働して走行可能であり、少なくとも減速中に、前記電動機により回生発電が可能であると共に、前記電動機のみによる走行中に前記電動機の回生発電により生じる回生トルクを制動力として利用可能なハイブリッド自動車の回生制御装置において、
     前記バッテリの充電状態を表す値に対し、第一、第二、第三の閾値が設けられ、前記第二の閾値は前記第一の閾値よりも大きい値であり、前記第三の閾値は前記第二の閾値以上の値であり、
     前記バッテリの充電状態が前記第一の閾値未満または以下であるときには、前記電動機のみによる走行形態とし、前記電動機の回生トルクを制動力として利用し、前記バッテリの充電状態が前記第一の閾値以上または超えたときには、前記エンジンと前記電動機とが協働する走行形態とし、前記エンジンのエンジンブレーキと前記電動機の回生トルクとを共に制動力として利用し、
     前記バッテリの充電状態が前記第一の閾値未満または以下であり、前記電動機のみによる走行形態とし、前記電動機の回生トルクを制動力として利用しているときに、前記バッテリの充電状態が前記第二の閾値以上または超えたときには、前記エンジンと前記電動機とが協働する走行形態とし、前記エンジンのエンジンブレーキと前記電動機の回生トルクとを共に制動力として利用し、
     前記バッテリの充電状態が前記第一または前記第二の閾値以上または超えたときであり、前記エンジンと前記電動機とが協働する走行形態とし、前記エンジンのエンジンブレーキと前記電動機の回生トルクとを共に制動力として利用しているときに、前記バッテリの充電状態が前記第三の閾値以上または超えたときには、前記回生発電の電力の制限を開始する制御手段を有する、
     ことを特徴とする回生制御装置。
  2.  請求項1記載の回生制御装置を有することを特徴とするハイブリッド自動車。
  3.  エンジンと電動機と前記電動機に電力を供給するバッテリとを有し、前記エンジンもしくは前記電動機により走行可能であり、または前記エンジンと前記電動機とが協働して走行可能であり、少なくとも減速中に、前記電動機により回生発電が可能であると共に、前記電動機のみによる走行中に前記電動機の回生発電により生じる回生トルクを制動力として利用可能なハイブリッド自動車の回生制御方法において、
     前記バッテリの充電状態を表す値に対し、第一、第二、第三の閾値が設けられ、前記第二の閾値は前記第一の閾値よりも大きい値であり、前記第三の閾値は前記第二の閾値以上の値であり、
     前記バッテリの充電状態が前記第一の閾値未満または以下であるときには、前記電動機のみによる走行形態とし、前記電動機の回生トルクを制動力として利用し、前記バッテリの充電状態が前記第一の閾値以上または超えたときには、前記エンジンと前記電動機とが協働する走行形態とし、前記エンジンのエンジンブレーキと前記電動機の回生トルクとを共に制動力として利用するステップと、
     前記バッテリの充電状態が前記第一の閾値未満または以下であり、前記電動機のみによる走行形態とし、前記電動機の回生トルクを制動力として利用しているときに、前記バッテリの充電状態が前記第二の閾値以上または超えたときには、前記エンジンと前記電動機とが協働する走行形態とし、前記エンジンのエンジンブレーキと前記電動機の回生トルクとを共に制動力として利用するステップと、
     前記バッテリの充電状態が前記第一または前記第二の閾値以上または超えたときであり、前記エンジンと前記電動機とが協働する走行形態とし、前記エンジンのエンジンブレーキと前記電動機の回生トルクとを共に制動力として利用しているときに、前記バッテリの充電状態が前記第三の閾値以上または超えたときには、前記回生発電の電力の制限を開始するステップと、
     を有する、
     ことを特徴とする回生制御方法。
  4.  情報処理装置に、請求項1記載の回生制御装置の機能を実現させることを特徴とするプログラム。
PCT/JP2011/074192 2010-12-06 2011-10-20 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム WO2012077416A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180040638.2A CN103079926B (zh) 2010-12-06 2011-10-20 再生控制装置、混合动力汽车及再生控制方法
AU2011339772A AU2011339772A1 (en) 2010-12-06 2011-10-20 Regenerative control device, hybrid vehicle, regenerative control method, and program
US13/819,013 US9139196B2 (en) 2010-12-06 2011-10-20 Regenerative control device, hybrid vehicle, regenerative control method, and computer program
EP11847092.1A EP2650185A1 (en) 2010-12-06 2011-10-20 Regenerative control device, hybrid vehicle, regenerative control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010271864A JP5079864B2 (ja) 2010-12-06 2010-12-06 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP2010-271864 2010-12-06

Publications (1)

Publication Number Publication Date
WO2012077416A1 true WO2012077416A1 (ja) 2012-06-14

Family

ID=46206919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074192 WO2012077416A1 (ja) 2010-12-06 2011-10-20 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム

Country Status (6)

Country Link
US (1) US9139196B2 (ja)
EP (1) EP2650185A1 (ja)
JP (1) JP5079864B2 (ja)
CN (1) CN103079926B (ja)
AU (1) AU2011339772A1 (ja)
WO (1) WO2012077416A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379424A (zh) * 2012-06-27 2015-02-25 雷诺股份公司 混合动力车辆的能量管理方法
CN104773085A (zh) * 2014-01-10 2015-07-15 丰田自动车株式会社 电动车辆和电动车辆的控制方法
US11440434B2 (en) * 2019-07-17 2022-09-13 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle
CN115214611A (zh) * 2021-03-30 2022-10-21 本田技研工业株式会社 混合动力车辆的控制装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282256A (zh) * 2010-12-27 2013-09-04 丰田自动车株式会社 混合动力车辆及其控制方法
US8818578B2 (en) * 2011-01-25 2014-08-26 Hino Motors, Ltd. Control device, hybrid vehicle, control method, and computer program
JP5826402B2 (ja) * 2012-09-11 2015-12-02 本田技研工業株式会社 ハイブリッド車両
JP6056627B2 (ja) * 2013-04-15 2017-01-11 トヨタ自動車株式会社 ハイブリッド車両の走行制御装置
GB2519054A (en) * 2013-07-26 2015-04-15 Equipmake Ltd Energy saving in vehicles
CN105408161B (zh) * 2013-07-29 2018-04-06 日产自动车株式会社 车辆的再生制动控制装置
CN104417347B (zh) 2013-09-09 2017-08-04 比亚迪股份有限公司 混合动力汽车的控制***和控制方法
CN104417554B (zh) 2013-09-09 2018-03-13 比亚迪股份有限公司 混合动力汽车及其的巡航控制方法
CN104417543B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制***和控制方法
CN104417544B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制***和控制方法
CN104417344B (zh) 2013-09-09 2017-03-15 比亚迪股份有限公司 混合动力汽车及其的驱动控制方法
CN104417557B (zh) * 2013-09-09 2017-07-04 比亚迪股份有限公司 一种车辆的滑行回馈控制***及其控制方法
CN104417346B (zh) 2013-09-09 2017-04-12 比亚迪股份有限公司 混合动力汽车的控制***和控制方法
US10703219B2 (en) * 2013-10-04 2020-07-07 Ford Global Technologies, Llc Vehicle battery charge setpoint control
CN104670230A (zh) * 2013-12-03 2015-06-03 北汽福田汽车股份有限公司 用于混合动力车辆的巡航工况速度控制方法及控制***
DE102015006454A1 (de) * 2015-05-19 2016-11-24 Man Truck & Bus Ag Verfahren und Steuervorrichtung zur Rekuperation von Energie in einem Hybridfahrzeug
KR101673797B1 (ko) * 2015-07-30 2016-11-07 현대자동차주식회사 하이브리드 자동차의 직렬 모드 제어 방법
JP2017140867A (ja) * 2016-02-08 2017-08-17 株式会社デンソー ハイブリッド車制御装置
JP6531130B2 (ja) 2017-03-17 2019-06-12 本田技研工業株式会社 ハイブリッド車両の制御装置
MX2020006133A (es) * 2017-12-15 2020-08-17 Nissan Motor Metodo de control para vehiculo hibrido y aparato de control para vehiculo hibrido.
JP7172836B2 (ja) * 2019-04-26 2022-11-16 トヨタ自動車株式会社 制動力制御装置
US11390283B2 (en) * 2019-07-25 2022-07-19 Ford Global Technologies, Llc System and method for controlling vehicle during coast
CN110667394B (zh) * 2019-09-29 2022-06-21 奇瑞新能源汽车股份有限公司 一种电池soc的制动回收***、方法及电动汽车
JP7238750B2 (ja) * 2019-12-11 2023-03-14 トヨタ自動車株式会社 走行制御装置、方法、プログラムおよび車両
FR3106317A1 (fr) * 2020-01-19 2021-07-23 Psa Automobiles Sa Methode de limitation de la vitesse de progression d'un vehicule automobile, par application d'au moins un critere de securisation du vehicule.
US20240157805A1 (en) * 2021-03-16 2024-05-16 Volvo Truck Corporation An electrically powered trailer with an endurance braking function
EP4347329A1 (en) * 2021-06-04 2024-04-10 Volvo Truck Corporation An energy management system, a fuel cell system, a vehicle and a method of controlling an energy management system
JP2023110657A (ja) * 2022-01-28 2023-08-09 株式会社クボタ 電動作業車
JP7416188B1 (ja) * 2022-12-21 2024-01-17 トヨタ自動車株式会社 電気自動車

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223421A (ja) 2006-02-22 2007-09-06 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2009166611A (ja) * 2008-01-15 2009-07-30 Toyota Motor Corp ハイブリッド車両

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379797B2 (en) * 2001-01-31 2008-05-27 Oshkosh Truck Corporation System and method for braking in an electric vehicle
JP4029592B2 (ja) * 2001-09-05 2008-01-09 株式会社日立製作所 補助駆動装置およびこれを搭載した自動車
US7061131B2 (en) 2003-06-13 2006-06-13 General Electric Company Method and system for optimizing energy storage in hybrid off-highway vehicle systems and trolley connected OHV systems
JP2008184077A (ja) 2007-01-31 2008-08-14 Hitachi Ltd ハイブリッド走行制御システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223421A (ja) 2006-02-22 2007-09-06 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2009166611A (ja) * 2008-01-15 2009-07-30 Toyota Motor Corp ハイブリッド車両

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379424A (zh) * 2012-06-27 2015-02-25 雷诺股份公司 混合动力车辆的能量管理方法
CN104773085A (zh) * 2014-01-10 2015-07-15 丰田自动车株式会社 电动车辆和电动车辆的控制方法
US11440434B2 (en) * 2019-07-17 2022-09-13 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle
CN115214611A (zh) * 2021-03-30 2022-10-21 本田技研工业株式会社 混合动力车辆的控制装置

Also Published As

Publication number Publication date
US9139196B2 (en) 2015-09-22
AU2011339772A1 (en) 2013-05-02
CN103079926A (zh) 2013-05-01
JP5079864B2 (ja) 2012-11-21
CN103079926B (zh) 2016-05-04
JP2012121381A (ja) 2012-06-28
EP2650185A1 (en) 2013-10-16
US20130173107A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5079864B2 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP4988046B1 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP5362107B2 (ja) 発進制御方法、発進制御装置およびハイブリッド自動車、並びにプログラム
JP5373201B2 (ja) 走行モード切替制御装置、ハイブリッド自動車および走行モード切替制御方法、並びにプログラム
JP5001475B1 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
WO2012053607A1 (ja) 車両および制御方法、並びにプログラム
JP5073875B2 (ja) 車両および制御方法、並びにプログラム
JP5059246B2 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP5059247B2 (ja) 変速制御装置、ハイブリッド自動車、および変速制御方法、並びにプログラム
WO2012101878A1 (ja) 制御装置、ハイブリッド自動車および制御方法、並びにプログラム
WO2012053596A1 (ja) 車両および制御方法、並びにプログラム
JP5059248B2 (ja) 車両および制御方法、並びにプログラム
JP5063829B2 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP6958329B2 (ja) ハイブリッド車両
WO2012053603A1 (ja) 再生制御装置、ハイブリッド自動車および再生制御方法、並びにプログラム
WO2012053608A1 (ja) 車両および制御方法、並びにプログラム
JP2007236109A (ja) 電気自動車の制御装置
JP6582928B2 (ja) ハイブリッド車両の変速制御装置
JP2013014239A (ja) ハイブリッド自動車の制御装置、ハイブリッド自動車およびハイブリッド自動車の制御方法、並びにプログラム
JP2013001158A (ja) ハイブリッド自動車の制御装置、ハイブリッド自動車およびハイブリッド自動車の制御方法、並びにプログラム
JP2012236566A (ja) 制御装置、ハイブリッド自動車および制御方法、並びにプログラム
JP2012148702A (ja) 制御装置、ハイブリッド自動車および制御方法、並びにプログラム
JP2012236564A (ja) ハイブリッド自動車の制御装置、ハイブリッド自動車およびハイブリッド自動車の制御方法、並びにプログラム
JP2013220663A (ja) ハイブリッド自動車の制御装置、ハイブリッド自動車、およびハイブリッド自動車の制御方法、並びにプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040638.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847092

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011847092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011847092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13819013

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011339772

Country of ref document: AU

Date of ref document: 20111020

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE