WO2012077348A1 - 直接変換回路及びマトリックスコンバータ制御装置 - Google Patents

直接変換回路及びマトリックスコンバータ制御装置 Download PDF

Info

Publication number
WO2012077348A1
WO2012077348A1 PCT/JP2011/006875 JP2011006875W WO2012077348A1 WO 2012077348 A1 WO2012077348 A1 WO 2012077348A1 JP 2011006875 W JP2011006875 W JP 2011006875W WO 2012077348 A1 WO2012077348 A1 WO 2012077348A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
signal
phase
matrix converter
pwm
Prior art date
Application number
PCT/JP2011/006875
Other languages
English (en)
French (fr)
Inventor
修二 玉岡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012547718A priority Critical patent/JPWO2012077348A1/ja
Publication of WO2012077348A1 publication Critical patent/WO2012077348A1/ja
Priority to US13/910,419 priority patent/US8767426B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency
    • H02M5/271Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency from a three phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency

Definitions

  • the present invention relates to a direct conversion circuit and a matrix converter control device, and more particularly to a direct conversion circuit for converting a three-phase AC signal into a one-phase AC signal using pulse width modulation, and a matrix converter control device using the same.
  • a direct conversion circuit for converting a three-phase AC signal into a one-phase AC signal using pulse width modulation and a matrix converter control device using the same.
  • FIG. 21 is a diagram of a conventional direct conversion circuit used for a direct conversion method (or AC direct method) matrix converter or the like cited in many documents such as Patent Document 1.
  • AC switches S1 to S9 having withstand voltages for both positive and negative voltage polarities are arranged and configured as shown in FIG.
  • This AC switch (S1 to S9) has a configuration in which two circuits in which a diode and an IGBT (Insulated Gate Bipolar Transistor) are connected in parallel in opposite directions are connected in series as shown in FIG.
  • this AC switch has a configuration in which two IGBTs having reverse withstand voltage capability are connected in parallel in the reverse direction as shown in FIG.
  • IGBT is characterized by high withstand voltage and low conduction loss among devices driven by large current. Therefore, in a conventional direct conversion type (AC direct type) matrix converter, an IGBT is used as a switching element used in an AC switch. However, since the IGBT can only carry a current in one direction and the reverse breakdown voltage is weak, a circuit in which a diode and an IGBT are connected in parallel in opposite directions as shown in FIG. A configuration in which two are connected in series is common. In addition, an IGBT having a reverse breakdown voltage has been developed. Accordingly, as shown in FIG. 21B, reverse blocking IGBTs (reverse blocking IGBTs) in which IGBT chips are connected in antiparallel to each other are also used as AC switches.
  • reverse blocking IGBTs reverse blocking IGBTs
  • FIG. 22A is a diagram showing the IV characteristics of the IGBT.
  • FIG. 22B is a diagram illustrating IV characteristics of the diode.
  • IGBT In IGBT, there is a PN junction between collector and emitter. As a result, as shown in FIG. 22A, when the current flows through the IGBT, an offset voltage due to the PN junction is generated between the collector and the emitter regardless of the magnitude of the current. Also, as shown in FIG. 22B, similarly, the diode generates an offset voltage in the VF voltage regardless of the magnitude of the current.
  • the switching loss at the time of turn-off deteriorates.
  • the switching loss during the turn-on operation of the IGBT deteriorates due to the recovery current due to the minority carrier accumulation effect in the diode.
  • the AC switch shown in FIGS. 21A and 21B has a lower limit of switching loss. When the direct conversion circuit of the matrix converter is configured using these AC switches, this switching loss adversely affects the power consumption and efficiency of the matrix converter.
  • Patent Document 2 only discloses a technique using a nitride semiconductor for an inverter, and the Patent Document 2 does not relate to a matrix converter.
  • an object of the present invention is to provide a direct conversion circuit and a matrix converter control device that can reduce loss and improve efficiency.
  • a direct conversion circuit is a direct conversion circuit for converting a three-phase AC signal into a one-phase AC signal using pulse width modulation.
  • Each of the first and second switching elements includes a first terminal, a second terminal, and a gate terminal, the first and second switching elements being connected to each other, and the voltage of the first terminal is used as a reference.
  • the voltage of the gate terminal When the first voltage is higher than a threshold voltage, the first terminal to the second terminal or the second terminal to the second terminal according to the polarity of the voltage applied between the first terminal and the second terminal.
  • a current is passed to one terminal and the first voltage is less than or equal to the threshold voltage, the current from the second terminal to the first terminal is interrupted, and the first voltage is less than or equal to the threshold voltage and the second terminal.
  • the direct conversion circuit further includes each of the six gate signals, Corresponding to a set of each of the six switching elements included in the three AC switches, and according to the corresponding set of gate signals, the first terminal and the gate terminal of the corresponding set of switching elements Supply voltage between 6 Of and a pre-drive circuit.
  • the switching element used for the AC switch causes the IGBT to have the first voltage when a current flows between the first terminal and the second terminal.
  • Such an offset voltage due to the PN junction does not occur.
  • the conduction loss of the switching element can be reduced.
  • the AC switch does not need to have a diode, an offset voltage due to the diode does not occur.
  • the AC switch can reduce conduction loss.
  • the direct conversion circuit according to one embodiment of the present invention can reduce loss and improve efficiency.
  • the second terminals of the first and second switching elements are connected to each other, the first terminal of the first switching element is connected to the output terminal, and the second switching element The first terminal may be connected to the AC input terminal.
  • the first terminals of the first and second switching elements are connected to each other, the second terminal of the first switching element is connected to the output terminal, and the first terminals of the second switching elements are The two terminals may be connected to the AC input terminal.
  • each of the first and second switching elements is formed on the semiconductor stack, which is made of a nitride semiconductor formed on a semiconductor substrate, and spaced from each other on the semiconductor stack.
  • the direct conversion circuit can reduce the effect of minority carriers of the switching element. Thereby, in the switching element, tail current at the time of turn-off existing in the IGBT hardly occurs. Therefore, the direct conversion circuit can further reduce the switching loss. Further, the AC switch can eliminate the influence of switching loss due to the diode recovery current.
  • the AC switch is formed on the semiconductor stacked body formed of a nitride semiconductor formed on a semiconductor substrate and on the semiconductor stacked body with a space therebetween, and the first and second switches A first electrode and a second electrode functioning as the first terminal of each of the switching elements, and a gate of each of the first and second switching elements, formed between the first electrode and the second electrode. Two gate electrodes functioning as terminals may be provided.
  • the AC switch in the direct conversion circuit according to one embodiment of the present invention, can be formed with one semiconductor chip, and thus the size of the AC switch can be reduced. As a result, the direct conversion circuit can be further downsized.
  • the switching element may be a MOSFET.
  • a matrix converter is a matrix converter control device that converts a three-phase AC signal into a one-phase AC signal using pulse width modulation, the matrix converter including the direct conversion circuit, And a PWM control unit that generates a PWM control signal that is a source of the six gate signals and supplies the generated PWM control signal to the matrix converter.
  • the matrix converter control device can realize a matrix converter operation of a three-phase AC input and a one-phase PWM output that appropriately drives the direct conversion circuit.
  • the matrix converter control device further includes an input voltage detection circuit that detects a voltage value of each phase of the three-phase AC input signal, and the matrix converter further uses the PWM control signal to detect the six A drive control unit that controls the direct conversion circuit by generating a gate signal, the drive control unit using the detection result of the input voltage detection circuit for each predetermined period, A first phase signal that is a phase signal having the highest absolute value of voltage, a second phase signal other than the first phase signal of the three-phase AC signal, and the first of the three-phase AC signals.
  • the first phase AC signal may be generated from the first phase signal and the second phase signal.
  • the drive control unit may switch a signal that is determined to be the second phase signal, out of two phase signals other than the first phase signal, every predetermined period.
  • the input voltage detection circuit further generates a PWM output correction signal indicating an absolute value of a difference between the first phase signal and the second phase signal
  • the matrix converter control device further includes the PWM output.
  • the PWM control signal is corrected so that the one-phase AC signal generated by the direct conversion circuit approaches the one-phase AC signal generated when the absolute value of the difference is constant.
  • a PWM gain correction circuit that generates a PWM gain correction signal may be provided, and the PWM control unit may correct the duty of the PWM control signal in accordance with the PWM gain correction signal.
  • the matrix converter control device can extract AC power having an arbitrary frequency from the three-phase AC power supply with higher accuracy.
  • the matrix converter control device is a matrix converter control device that converts a three-phase AC signal into a two-phase AC signal using pulse width modulation, each including the direct conversion circuit.
  • First and second matrix converters, and a PWM controller wherein the PWM controller generates a first PWM control signal that is a source of the six gate signals of the direct conversion circuit included in the first matrix converter.
  • supplying the generated first PWM control signal to the first matrix converter to generate and generate a second PWM control signal that is a source of the six gate signals of the direct conversion circuit included in the second matrix converter.
  • the second PWM control signal may be supplied to the second matrix converter.
  • the matrix converter control device can realize a matrix converter operation of a three-phase AC input and two-phase PWM output that appropriately drives the direct conversion circuit.
  • a matrix converter control device is a matrix converter control device that converts a three-phase AC signal into a three-phase AC signal using pulse width modulation, each including the direct conversion circuit.
  • First to third matrix converters and a PWM control unit wherein the PWM control unit generates a first PWM control signal that is a source of the six gate signals of the direct conversion circuit included in the first matrix converter. And supplying the generated first PWM control signal to the first matrix converter to generate and generate a second PWM control signal that is a source of the six gate signals of the direct conversion circuit included in the second matrix converter.
  • the second PWM control signal is supplied to the second matrix converter, and the third matrix converter is supplied.
  • the generated the first 3PWM control signal may be supplied to the third matrix converter.
  • the matrix converter control device can realize a matrix converter operation of a three-phase AC input and a three-phase PWM output that appropriately drives the direct conversion circuit.
  • the present invention can be realized not only as such a direct conversion circuit and a matrix converter control device, but also as a direct conversion circuit driving method or a control of a matrix converter using the characteristic means included in the matrix converter control device as a step. It can also be realized as a method or as a program for causing a computer to execute such characteristic steps. Needless to say, such a program can be distributed via a non-transitory computer-readable recording medium such as a CD-ROM and a transmission medium such as the Internet.
  • the present invention can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such a direct conversion circuit or matrix converter control device.
  • LSI semiconductor integrated circuit
  • the present invention can provide a direct conversion circuit and a matrix converter control device that can reduce loss and improve efficiency.
  • FIG. 1 is a diagram showing a configuration of a direct conversion circuit according to the first embodiment of the present invention.
  • FIG. 2A is a diagram showing current-voltage characteristics of the switching element according to the first embodiment of the present invention.
  • FIG. 2B is a diagram showing current-voltage characteristics of the switching element according to the first embodiment of the present invention.
  • FIG. 2C is a diagram showing current-voltage characteristics of the switching element according to the first embodiment of the present invention.
  • FIG. 3A is a diagram showing a configuration of an AC switch according to the first embodiment of the present invention.
  • FIG. 3B is a diagram illustrating an operation state of the AC switch according to the first embodiment of the present invention.
  • FIG. 4A is a diagram illustrating an operation state of the direct conversion circuit according to the first embodiment of the present invention.
  • FIG. 4B is a diagram illustrating an operation state of the direct conversion circuit according to the first embodiment of the present invention.
  • FIG. 4C is a diagram illustrating an operation state of the direct conversion circuit according to the first embodiment of the present invention.
  • FIG. 4D is a diagram illustrating an operation state of the direct conversion circuit according to the first embodiment of the present invention.
  • FIG. 4E is a diagram illustrating an operation state of the direct conversion circuit according to the first embodiment of the present invention.
  • FIG. 4F is a diagram illustrating an operation state of the direct conversion circuit according to the first embodiment of the present invention.
  • FIG. 4G is a diagram illustrating an operation state of the direct conversion circuit according to the first embodiment of the present invention.
  • FIG. 4H is a diagram illustrating an operation state of the direct conversion circuit according to the first embodiment of the present invention.
  • FIG. 5A is a diagram showing a configuration of a modification of the AC switch according to the first embodiment of the present invention.
  • FIG. 5B is a diagram illustrating an operation state of a modification of the AC switch according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a switching element according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of an AC switch according to the third embodiment of the present invention.
  • FIG. 8 is a block diagram of a matrix converter control device according to the fourth embodiment of the present invention.
  • FIG. 9 is a diagram showing timing waveforms during operation of the matrix converter control device according to the fourth embodiment of the present invention.
  • FIG. 10 is a circuit diagram of a gate control circuit and the like according to the fourth embodiment of the present invention.
  • FIG. 11 is a block diagram of a general half-bridge PWM output inverter control device.
  • FIG. 12A is a diagram illustrating an operation state of the switching element according to the fourth embodiment of the present invention.
  • FIG. 12B is a diagram illustrating an operation state of the switching element according to the fourth embodiment of the present invention.
  • FIG. 12C is a diagram illustrating an operation state of the switching element according to the fourth embodiment of the present invention.
  • FIG. 12D is a diagram illustrating an operation state of the switching element according to the fourth embodiment of the present invention.
  • FIG. 12A is a diagram illustrating an operation state of the switching element according to the fourth embodiment of the present invention.
  • FIG. 12B is a diagram illustrating an operation state of the switching element according to the fourth embodiment
  • FIG. 13 is a block diagram of a matrix converter control apparatus according to the fifth embodiment of the present invention.
  • FIG. 14 is a block diagram of a matrix converter control apparatus according to the sixth embodiment of the present invention.
  • FIG. 15 is a block diagram of a general H-bridge / PWM output inverter control device.
  • FIG. 16 is a block diagram of a matrix converter control apparatus according to the seventh embodiment of the present invention.
  • FIG. 17 is a block diagram of a matrix converter control apparatus according to the eighth embodiment of the present invention.
  • FIG. 18A is a diagram illustrating a transient analysis simulation result of the matrix converter control device according to the eighth embodiment of the present invention.
  • FIG. 18B is a diagram illustrating a transient analysis simulation result of the matrix converter control device according to the eighth embodiment of the present invention.
  • FIG. 18A is a diagram illustrating a transient analysis simulation result of the matrix converter control device according to the eighth embodiment of the present invention.
  • FIG. 18B is a diagram illustrating a trans
  • FIG. 19 is a block diagram of a general three-phase PWM inverter control device.
  • FIG. 20 is a block diagram of a matrix converter control device according to the ninth embodiment of the present invention.
  • FIG. 21 is a diagram showing a configuration of a conventional direct conversion circuit.
  • FIG. 22A is a diagram showing current-voltage characteristics of the IGBT.
  • FIG. 22B is a diagram illustrating a current-voltage characteristic of the diode.
  • this invention is not limited to the specific structure described in the following embodiment, It is comprised based on the technical idea similar to the technical idea demonstrated in embodiment, and the technical common sense in this technical field. Is included.
  • the numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention.
  • the present invention is limited only by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention. It will be described as constituting a preferred form.
  • FIG. 1 is a diagram showing a configuration of a direct conversion circuit according to a first embodiment of a direct conversion circuit according to the present invention.
  • the configuration of the direct conversion circuit according to the first embodiment of the present invention will be described with reference to FIG.
  • the direct conversion circuit 100 shown in FIG. 1 is a direct conversion circuit for one phase used in a matrix converter or the like.
  • the direct conversion circuit 100 has three AC input terminals 101R, 101S, and 101T to which a three-phase AC signal is supplied, one output terminal 102, and a gate signal input terminal 103 to which six gate signals are supplied. .
  • the three AC input terminals 101R, 101S, and 101T are referred to as AC input terminals 101 unless otherwise distinguished.
  • the direct conversion circuit 100 is controlled by the gate signal supplied to the gate signal input terminal 103.
  • the direct conversion circuit 100 converts the three-phase AC signal supplied to the AC input terminal 101 into a one-phase AC signal using pulse width modulation, and outputs the converted one-phase AC signal to the output terminal 102. .
  • the direct conversion circuit 100 converts a three-phase AC signal into a one-phase AC signal having an arbitrary frequency.
  • the direct conversion circuit 100 includes three AC switches 104R, 104S, and 104T, six pre-drive circuits 106, and a level shift circuit 107.
  • the three AC switches 104R, 104S, and 104T will be referred to as AC switches 104 unless otherwise distinguished.
  • the three AC switches 104 are connected between the three-phase AC input terminal 101 and the output terminal 102.
  • the AC switch 104R is connected between the AC input terminal 101R and the output terminal 102.
  • the AC switch 104S is connected between the AC input terminal 101S and the output terminal 102.
  • the AC switch 104T is connected between the AC input terminal 101T and the output terminal 102.
  • Each AC switch 104 has two control terminals (gate terminals) capable of bidirectional current control.
  • the AC switch 104 is a bidirectional switching element having two gate terminals, and is equivalent to a combination of two bidirectional switching elements 105 having one gate terminal having the following features.
  • the bidirectional switching element 105 having one gate terminal has a gate terminal for current control and a first terminal and a second terminal for flowing in and out of this current.
  • one of the first terminals is referred to as a source terminal, and the other is referred to as a drain terminal.
  • the switching element 105 has the current-voltage characteristics shown in FIGS. 2A, 2B, and 2C. These characteristic diagrams will be described below.
  • FIGS. 2A and 2B show the voltage VDS between the drain terminal and the source terminal when the gate / source voltage Vgs, which is the voltage of the gate terminal voltage based on the source terminal voltage, is higher than the threshold voltage Vth, and the drain It is a figure which shows the relationship with the electric current IDS which flows from a terminal to a source terminal or from a source terminal to a drain terminal.
  • the switching element 105 when the voltage Vgs is higher than the threshold voltage Vth, the switching element 105 causes the current IDS to flow from the source terminal to the drain terminal or from the drain to the source depending on the polarity and value of the voltage VDS. be able to.
  • the switching element 105 does not have an offset voltage due to a PN junction like the current-voltage characteristics of the IGBT shown in FIG. 22A.
  • FIG. 2C is a diagram illustrating a relationship between the voltage VDS and the current IDS when the voltage Vgs is equal to or lower than the threshold voltage Vth.
  • the current from the drain terminal to the source terminal is cut off.
  • the gate terminal voltage with respect to the drain terminal voltage becomes equal to or higher than the threshold voltage, a current can flow from the source terminal to the drain terminal. This characteristic is called a reverse conduction characteristic.
  • the switching element 105 is a bidirectional switching element that can flow a current in both directions and does not have an offset voltage in the current-voltage characteristics such as an IGBT.
  • the AC switch 104 includes two switching elements 105A and 105B. Note that the two switching elements 105A and 105B will be referred to as switching elements 105 unless otherwise distinguished.
  • the drain terminals of the two switching elements 105A and 105B are connected to each other.
  • the source terminal of the switching element 105B is connected to the output terminal 102, and the source terminal of the switching element 105A is connected to the AC input terminal 101. That is, the two switching elements 105A and 105B are connected in series.
  • the gate signal input terminal 103 is supplied with six gate signals from the outside.
  • the level shift circuit 107 transmits the six gate signals input to the gate signal input terminal 103 to the six pre-drive circuits 106.
  • the level shift circuit 107 may change the voltage levels of the six gate signals input to the gate signal input terminal 103 and transmit the six gate signals with the changed voltage levels to the six predrive circuits 106. .
  • Each of the six pre-drive circuits 106 is provided corresponding to each of the six gate signals transmitted by the level shift circuit 107 and each of the six switching elements 105.
  • Each pre-drive circuit 106 supplies the voltage between the source terminal and the gate terminal of the corresponding switching element 105 according to the corresponding gate signal transmitted from the level shift circuit 107, thereby causing the switching element 105 to operate. To drive.
  • the operation of the direct conversion circuit 100 will be described below. Before that, the operation of one AC switch 104 will be described, and then the direct conversion for one phase constituted by the three AC switches 104 will be described. How the circuit 100 generates one alternating current from the three-phase alternating current power supply by the switching operation will be described.
  • FIG. 3A is a diagram showing one AC switch 104 and its drive circuit.
  • the two predrive circuits 106 corresponding to the AC switch 104 are indicated as predrive circuits 106A and 106B, respectively.
  • the pre-drive circuit 106A supplies a gate voltage Vgs1 between the gate terminal and the source terminal of the switching element 105A.
  • the pre-drive circuit 106B supplies a gate voltage Vgs2 between the gate terminal and the source terminal of the switching element 105B.
  • the pre-drive circuits 106A and 106B supply 0V or a voltage Vg equal to or higher than the threshold voltage Vth of the switching element 105 as the gate voltage Vgs1 or Vgs2.
  • FIG. 3B is a diagram illustrating an operation mode of the AC switch 104.
  • the AC switch 104 has four operation modes shown in FIGS. 3B (a) to 3 (d).
  • the upper diagram of each figure is a diagram showing an operating state (setting state) of the AC switch 104, and the lower diagram is a diagram showing an equivalent operating state of the AC switch 104.
  • FIG. 3B (a) is a diagram illustrating an operation state when the voltage Vg is supplied to the switching elements 105A and 105B as the voltages Vgs1 and Vgs2.
  • the switching elements 105A and 105B operate with the current-voltage characteristics shown in FIGS. 2A and 2B. That is, the switching elements 105A and 105B operate in a so-called triode region in a MOSFET or the like.
  • the AC switch 104 is equivalent to two resistors having a resistance value Ron connected in series. This equivalent operation state is called an energization mode.
  • FIG. 3B (b) is a diagram showing an operation state when the switching element 105A is supplied with the voltage Vg as the voltage Vgs1 and the switching element 105B is supplied with 0V as the voltage Vgs2.
  • the switching element 105A to which the voltage Vg is supplied is equivalent to a resistor having a resistance value Ron.
  • the switching element 105B to which 0V is supplied is equivalent to a diode having a gate terminal and a source terminal as an anode and a drain terminal as a cathode, as can be seen from FIG. 2C.
  • This diode expression means that the switching element 105 to which 0 V is applied between the gate terminal and the source terminal flows current only from the source terminal toward the drain terminal.
  • the state in which current flows from the output terminal 102 to the AC input terminal 101 as shown in FIG. 3B (b) is referred to as reverse conduction mode 1 or source off mode.
  • the reason why the source is off is that the state in which current is discharged from the AC input terminal 101 to the output terminal 102 is stopped.
  • a state in which current flows from the AC input terminal 101 to the output terminal 102 as shown in FIG. 3B (c) is referred to as reverse conduction mode 2 or sink off mode.
  • the reason that the sink is off is that the state of drawing current from the output terminal 102 to the AC input terminal 101 is stopped.
  • FIG. 3B (d) is a diagram illustrating an operation state in which 0V is supplied to the switching elements 105A and 105B as the voltages Vgs1 and Vgs2.
  • the switching elements 105A and 105B are equivalent to a circuit in which two diodes are connected in the opposite direction between the AC input terminal 101 and the output terminal 102.
  • this equivalent operation state there is no conduction characteristic between the AC input terminal 101 and the output terminal 102. This state is called an off mode.
  • the three AC switches 104 are replaced with the equivalent operation state of the AC switch 104 shown in the lower side of FIG. 3B, and the output terminal 102 is output from the three-phase AC power source input to the three AC input terminals 101.
  • a three-phase AC signal is applied to each AC input terminal 101 of the direct conversion circuit 100. Further, +50 V is applied to both the AC input terminal 101R (hereinafter also referred to as R terminal) and the AC input terminal 101S (hereinafter also referred to as S terminal) during a certain period, and the AC input terminal 101T (hereinafter referred to as T terminal). -100V is applied to the above. Further, as a state where the matrix converter drives the load, the output terminal 102 of the direct conversion circuit 100 is in a state where a load current is drawn. Further, it is assumed that the load current is drawn into the output terminal 102 continuously in time because the load is an inductive load.
  • the matrix converter controller draws the load current from the AC power supply of ⁇ 100V at the T terminal to the direct conversion circuit 100 as a drive current, and changes to each of the AC power supplies of + 50V at the R terminal and the S terminal.
  • Drive control to draw the load current as a return current. The reason why such drive control is performed will be described in another embodiment described later.
  • the drive current and the return current are technical terms used in explanation of operation when an inverter driven by PWM (Pulse Width Modulation) drives an inductive load.
  • PWM Pulse Width Modulation
  • the load is inserted between the two power sources through the connection between the load and the switching element group of the inverter for a certain period of the PWM drive switching period. At this time, the load current flowing through the load increases.
  • the load current at this time is called a drive current.
  • both ends of the load are connected between the two power sources through another connection between the load and the switching element group of the inverter in the remaining time of the switching period of the PWM drive. It is necessary to reduce the load current by shorting to any one power source.
  • the load current flowing through the load in this state is referred to as reflux current.
  • the load current is controlled by PWM control of the duty ratio between the period in which the load current is the drive current and the period in which the return current is the return current.
  • the matrix converter can perform PWM control to control the current value of the load current with time.
  • the T terminal and the output terminal 102 are connected, and the drive current is supplied to the AC power supply ( ⁇ 100 V) of the T terminal.
  • the load current is changed from the drive current state to the return current state by switching the flow of the load current from the AC power supply ( ⁇ 100 V) of the T terminal to the AC power supply (+50 V) of the S terminal.
  • the load current value is controlled.
  • the operation of the direct conversion circuit 100 illustrated in FIGS. 4A to 4H satisfies the above-described required switching operation. That is, it will be described that the direct conversion circuit 100 operates sufficiently as a direct conversion circuit of a matrix converter.
  • FIG. 4B and FIG. 4C are diagrams showing a state when the load current is made to flow into the AC power supply (+50 V) of the R terminal as a return current.
  • the AC switch 104R is in the energization mode, and the T terminal and the output terminal 102 are connected with a low resistance.
  • the load current flows into the AC power supply (+50 V) of the R terminal as a reflux current.
  • This state is called a synchronous rectification state by the AC switch 104R.
  • FIG. 4B shows an intermediate state when the connection destination of the output terminal 102 connected to the inductive load is switched from the T terminal to the R terminal.
  • the AC power supply (+50 V) at the R terminal and the AC power supply ( ⁇ 100 V) at the T terminal are connected by two diodes in reverse conduction mode.
  • the cathode is connected to the + 50V AC power supply side of the R terminal. Therefore, if the reverse breakdown voltage of the diode is sufficient with respect to the voltage difference between the AC power supplies, the R terminal and the T terminal are in an insulated state.
  • the S terminal is also insulated from the output terminal 102, the R terminal, and the T terminal by the direction of the illustrated diode.
  • the upper arm switching element and the lower arm switching element that drive the same output terminal in the inverter are simultaneously turned on to avoid a state in which a large current flows from the (+) power source to the ( ⁇ ) power source of the inverter. Therefore, a method of simultaneously turning off the upper arm and the lower arm switching elements is used.
  • the period during which the upper and lower arm switching elements are simultaneously turned off is called a dead time period.
  • the state shown in FIG. 4B is the same as this dead time period. Therefore, the reflux current in FIG. 4B is referred to as a reflux current during dead time (DT time).
  • the load current value has decreased due to the load current being in the return current state.
  • the load current is again set to the drive current state.
  • An operation to increase the current value is required. Therefore, the output terminal 102 connected to the R terminal via the AC switch 104R is again connected to the T terminal via the AC switch 104T.
  • the load current of the inductive load is absorbed as a drive current from the output terminal 102 to the AC power supply ( ⁇ 100 V) of the T terminal.
  • FIG. 4E shows the state.
  • the AC switch 104T is in the energization mode, and the output terminal 102 and the T terminal are connected in a low resistance state via the AC switch 104T. In this way, the driving state returns to the above-described AC switch 104T.
  • FIG. 4D is a diagram showing a state during the state transition from FIG. 4C to FIG. 4E. That is, the state of FIG. 4D shows an intermediate state when the connection destination of the output terminal 102 connected to the inductive load is switched from the R terminal to the T terminal. This state is the same as FIG. 4B, and the R terminal and the T terminal are insulative. The S terminal is also insulated from other terminals.
  • the switching element 105B of the AC switch 104R is turned off and the reverse conduction mode 1 is set. Further, since the load current flows through the inductive load, the load current becomes a continuous current.
  • the load current value increased due to the load current being in the drive current state.
  • the load current value is set again to the return current state. Decreasing action is required.
  • the output terminal 102 connected to the T terminal via the AC switch 104T is connected to the S terminal via the AC switch 104S.
  • the load current of the inductive load is sucked as the return current from the output terminal 102 to the AC power supply (+50 V) of the S terminal.
  • FIG. 4G is a diagram showing the state.
  • the AC switch 104S is in the energization mode, and the output terminal 102 and the T terminal are connected in a low resistance state via the AC switch 104S. This state is called a synchronous rectification state by the AC switch 104S.
  • FIG. 4F is a diagram showing a state during the state transition from FIG. 4E to FIG. 4G. That is, the state of FIG. 4G shows an intermediate state when the connection destination of the output terminal 102 connected to the inductive load is switched from the T terminal to the S terminal. Since this state is similar to FIG. 4B or 4D, detailed description is omitted and only the result will be described. In this state, the T terminal and the S terminal are in an insulated state, and the R terminal is insulated from the other terminals. Further, the switching element 105B of the AC switch 104S between the output terminal 102 and the S terminal is turned off, and the reverse conduction mode 1 is set. Further, since the load current flows through the inductive load, the load current becomes a continuous current.
  • FIG. 4H is a diagram showing a state during the state transition from FIG. 4G to FIG. 4A. That is, the state of FIG. 4H shows an intermediate state when the connection destination of the output terminal 102 connected to the inductive load is switched from the S terminal to the T terminal. This state is the same as FIG. 4F, and the S terminal and the T terminal are insulative. The R terminal is insulated from other terminals.
  • the switching element 105B of the AC switch 104S between the output terminal 102 and the S terminal is turned off, and the reverse conduction mode 1 is set. Further, since the load current flows through the inductive load, the load current becomes a continuous current.
  • the load current is sucked from the output terminal 102 to the AC power supply (+50 V) of the S terminal as a return current during dead time (DT).
  • the load current can be switched from the return current to the drive current without short-circuiting the AC power supply (+50 V) of the S terminal and the AC power supply ( ⁇ 100 V) of the T terminal.
  • the external condition imposed on the direct conversion circuit 100 described above relates to the AC power supply, and this condition changes with time. Therefore, in a certain period, + 50V is applied to both the R terminal and the S terminal, and ⁇ 100V is applied to the T terminal.
  • the load current in FIG. 4G does not return from the return current state to the driving state by the AC switch 104T in FIG. 4A, but changes to another driving state according to the state change. Therefore, when the external condition of the direct conversion circuit 100 changes, the switching operation after FIG. 4G in FIGS. 4A to 4H is changed from FIG. 4H to FIG. 4G through FIG. 4A according to the control method of the matrix converter. To another switching operation state corresponding to.
  • the switching operation of the direct conversion circuit 100 is basically the same as that described with reference to FIGS. 4A to 4H, except that the order of the switching operation of the AC switch 104 is changed. Therefore, it can be explained that the direct conversion circuit 100 according to the first embodiment of the present invention is sufficiently practical as a direct conversion circuit of a matrix converter.
  • the switching element 105 used as the AC switch 104 has an offset voltage due to a PN junction such as an IGBT in the drain-source voltage when a current is passed between the drain terminal and the source terminal. No. Thereby, the switching element 105 can reduce conduction loss as compared with the IGBT. Therefore, the direct conversion circuit 100 configured with the AC switch 104 can reduce conduction loss as compared with the direct conversion circuit configured with IGBT. Further, the AC switch 104 does not have a diode due to the reverse conduction characteristic described in FIG. 2C of the switching element 105. Accordingly, the direct conversion circuit 100 constituted by the AC switch 104 has no offset voltage due to a PN junction by a diode, and can eliminate conduction loss due to this. In addition, the direct conversion circuit 100 can eliminate the influence of switching loss due to the recovery current of the diode, and can reduce the number of parts, reduce the cost, and reduce the size by reducing the number of diodes.
  • the configuration illustrated in FIG. 5A may be used as the AC switch 104 according to the first embodiment of the present invention.
  • the source terminals of the switching elements 105A and 105B are connected to each other, one of the two drain terminals is used as the output terminal 102, and the other drain terminal is used as the AC input terminal 101. It is connected to the.
  • FIG. 5B is a diagram showing an operation mode of the AC switch 104 shown in FIG. 5A. As shown in FIG. 5B, the AC switch 104 shown in FIG. 5A can function similarly to the AC switch 104 shown in FIG. 3A.
  • the buffer layer 202 is formed on the silicon substrate 201.
  • the buffer layer 202 is a layer in which aluminum nitride and gallium nitride are alternately stacked.
  • the semiconductor stacked body 203 is formed on the buffer layer 202.
  • the semiconductor stacked body 203 includes an undoped gallium nitride layer 204 and an n-type aluminum gallium nitride layer 205.
  • the n-type aluminum gallium nitride layer 205 is formed on the undoped gallium nitride layer 204.
  • Two-dimensional electron gas is generated near the heterointerface between the two layers. Thereby, the carrier concentration near the heterointerface increases. This region is called the channel region of the FET.
  • the distance from the drain electrode 206b to the gate electrode 208 is longer than the distance from the source electrode 206a to the gate electrode 208. This is because the breakdown voltage between the drain terminal and the gate terminal is made larger than the breakdown voltage between the source terminal and the gate terminal.
  • the direct conversion circuit 100 configured by the AC switch 104 using the switching element 105 can significantly reduce the conduction loss compared to the direct conversion circuit configured by the conventional IGBT. Since there is no diode, the influence of switching loss due to the recovery current of the diode can be eliminated. Further, since the number of diodes is reduced, the direct conversion circuit 100 can reduce the number of parts, reduce the cost, and reduce the size. Furthermore, since the direct conversion circuit 100 has almost no tail current at the time of turn-off existing in the IGBT, this effect can further reduce the switching loss and perform the switching operation at a higher speed than the direct conversion circuit configured by the IGBT.
  • An AC switch 104 includes a semiconductor stacked body formed of a nitride semiconductor formed on a semiconductor substrate and a first semiconductor stack formed on the semiconductor stacked body at a distance from each other. A first output terminal, a second output terminal, and a first gate terminal and a second gate terminal formed between the first output terminal and the second output terminal; The AC switch 104 will be described with reference to FIG.
  • the AC switch 104 includes a silicon substrate 211 (semiconductor substrate), a buffer layer 212, a semiconductor stacked body 213, ohmic electrodes 216a and 216b, a protective film 217, gate electrodes 218a and 218b, and control layers 219a and 219b. And a wiring 220.
  • the buffer layer 212 is formed on the silicon substrate 211.
  • the buffer layer 212 is a layer in which aluminum nitride and gallium nitride are alternately stacked.
  • the ohmic electrodes 216a and 216b are formed on the semiconductor stacked body 213.
  • the ohmic electrode 216a is an ohmic electrode for a first source terminal that is a first output terminal.
  • the ohmic electrode 216b is an ohmic electrode for a second source terminal that is a second output terminal.
  • the ohmic electrodes 216a and 216b are in ohmic contact with the channel region.
  • Each ohmic electrode 216 a and 216 b is connected to the wiring 220.
  • the ohmic electrodes 216a and 216b correspond to the first electrode and the second electrode of the present invention, and function as the source terminals of the switching elements 105A and 105B.
  • the control layers 219a and 219b are formed on the region between the ohmic electrode 216a and the ohmic electrode 216b and on the n-type aluminum gallium nitride layer 215.
  • the control layers 219a and 219b are p-type semiconductor layers that control FET characteristics.
  • the distance from the gate electrode 218a to the gate electrode 218b is longer than the distance from the gate electrode 218a to the ohmic electrode 216a and the distance from the gate electrode 218b to the ohmic electrode 216b.
  • the region between the gate electrode 218a and the gate electrode 218b is a shared drain region when two heterojunction FETs are connected in series as described above. That is, as described in the second embodiment, the breakdown voltage between the drain terminal and the gate terminal is required to be larger than the breakdown voltage between the source terminal and the gate terminal.
  • FIG. 8 is a block diagram of a matrix converter control device 300 according to the fourth embodiment of the present invention.
  • the matrix converter control device 300 includes an input voltage detection circuit 310, a PWM control unit 320, and a matrix converter 330 with a three-phase AC input and one-phase PWM output.
  • the matrix converter 330 includes a direct conversion circuit 100 and a drive control unit 360.
  • the input voltage detection circuit 310, the PWM control unit 320, and the drive control unit 360 correspond to the matrix converter control unit described in the first embodiment.
  • the drive control unit 360 uses the detection result of the input voltage detection circuit 310 for each predetermined period, and outputs the first phase signal that is the phase signal having the highest voltage absolute value among the three-phase AC signals. A signal, a second phase signal other than the first phase signal among the three-phase AC signals, and a third phase signal other than the first phase signal and the second phase signal among the three-phase AC signals are discriminated. And the drive control part 360 makes the 3rd alternating current switch which is the alternating current switch 104 to which a 3rd phase signal is supplied via the alternating current input terminal 101 into a cutoff state.
  • the drive control unit 360 includes a first AC switch that is the AC switch 104 to which the first phase signal is supplied via the AC input terminal 101, and an AC that is supplied with the second phase signal via the AC input terminal 101.
  • a first AC switch that is the AC switch 104 to which the first phase signal is supplied via the AC input terminal 101
  • an AC that is supplied with the second phase signal via the AC input terminal 101.
  • the drive control unit 360 switches a signal to be determined as the second phase signal among the signals of the two phases other than the first phase signal every predetermined period.
  • the drive control unit 360 includes a gate control circuit 332 and a PWM drive signal generation circuit 331.
  • the PWM control unit 320 generates a PWM control signal “PWM” and a PWM drive timing signal “CK12”.
  • the PWM control signal is a signal that is a source of the six gate signals supplied to the direct conversion circuit 100.
  • the PWM control unit 320 includes a triangular wave circuit 321 that generates a triangular wave and a comparator 322.
  • the comparator 322 generates a PWM control signal by comparing the triangular wave generated by the triangular wave circuit 321 with the sine wave profile.
  • PWM drive signal generation circuit 331 generates PWM drive signals “LG” and “UG” using the PWM control signal.
  • the gate control circuit 332 generates six gate signals according to the PWM drive signals “LG” and “UG”, the PWM drive timing signal “CK12”, and the gate control signal.
  • the gate control circuit 332 includes a lower gate control circuit 335 and an upper gate control circuit 336.
  • the lower gate control circuit 335 generates three gate signals to be supplied to the three switching elements 105A according to the PWM drive signal “LG”, the PWM drive timing signal “CK12”, and the gate control signal.
  • the upper gate control circuit 336 generates three gate signals to be supplied to the three switching elements 105B according to the PWM drive signal “UG”, the PWM drive timing signal “CK12”, and the gate control signal.
  • FIG. 9 is a diagram showing timing waveforms during operation of the matrix converter control device 300 shown in FIG. The operation of the matrix converter control device 300 will be described using this figure.
  • the names of the signals in FIG. 9 correspond to the signal names shown in FIG.
  • the three sine wave waveforms on the upper side of FIG. 9 are voltage waveforms of a three-phase AC power source input to the R terminal, the S terminal, and the T terminal.
  • each AC power supply voltage changes in a sine wave range from ⁇ 100 V to +100 V, and the phase of each AC power supply is shifted by 120 degrees.
  • a waveform shown by a broken line near 150 V above the three-phase AC input terminal voltage is a waveform used for explanation of the matrix converter control method thereafter. This waveform will be described there.
  • “Sine wave profile” is a signal for outputting the average value of the PWM output voltage of the output terminal 102 of the matrix converter 330 in a sine wave shape in actual use.
  • a PWM signal “PWM” is generated from this signal and “triangular wave” using a comparator 322.
  • PWM is a PWM signal having a sine wave shape having the same duty as the “sine wave profile”.
  • the “sine wave profile” is a DC value so that the duty of “PWM” is a fixed value.
  • the “sine wave profile” signal and the “triangular wave” signal are introduced into the PWM control unit 320.
  • the PWM signal “PWM” may be generated by digital signal processing.
  • CK12 is a PWM drive timing signal generated by the PWM control unit 320 shown in FIG. This PWM drive timing signal “CK12” is used to control the gate signal generated by the gate control circuit 332.
  • the PWM drive timing signal “CK12” is output in synchronization with the PWM signal “PWM”. As will be described later, the PWM output output from the output terminal 102 of the matrix converter control device 300 is controlled by regarding the output of two PWM operations as one PWM output.
  • CK12 is a signal used to switch between the two PWM operations.
  • UG and “LG” are PWM drive signals output from the PWM drive signal generation circuit 331 shown in FIG. 8, and are signals obtained by waveform shaping of the PWM signal “PWM”.
  • UG and “LG” are PWM signals also used in the normal half-bridge inverter circuit shown in FIG. This half-bridge inverter circuit will be described later.
  • UG is a drive signal for the switching element of the upper arm of the inverter
  • LG is a drive signal for the switching element of the lower arm of the inverter.
  • RG2”, “RG1”, “SG2”, “SG1”, “TG2”, “TG1” are the gate voltage signals (gate-source voltages) of the six switching elements 105 shown in FIG. .
  • RG2”, “SG2” and “TG2” are referred to as lower gate voltage signals
  • RG1”, “SG1” and “TG1” are referred to as upper gate voltage signals.
  • RG2”, “SG2”, and “TG2” are waveform-shaped by the gate control circuit 332 using the above “CK12” and “LG” and the gate control signal generated by the input voltage detection circuit 310. Signal.
  • the “RG2”, “SG2”, and “TG2” are waveform-shaped and output at the falling edge timing of the “LG” signal.
  • the PWM output voltage has a waveform like the “output terminal voltage” shown in FIG.
  • the load current is set to be sucked from the output terminal 102 as shown in FIGS. 4A to 4H.
  • the input voltage detection circuit 310 includes zero cross detection units 311R, 311S, and 311T for each of the AC power supply voltages R, S, and T that are input to the R terminal, the S terminal, and the T terminal, which are the AC input terminals 101. Note that the zero-cross detectors 311R, 311S, and 311T will be referred to as zero-cross detectors 311 unless otherwise distinguished.
  • the zero cross detector 311 outputs an H level if the input voltage is 0 V or higher, and outputs an L level if the input voltage is 0 V or lower.
  • the input voltage detection circuit 310 detects the zero cross of each AC power supply voltage of the three-phase AC power supply using the three zero cross detection units 311, and outputs the gate control signals RD, SD, and TD corresponding to each phase to the gate control circuit. Output to 332.
  • UG and “LG” are the same as the PWM drive signals used in the normal half-bridge inverter circuit shown in FIG. “UG” is a drive signal for the switching element of the upper arm of the inverter, and “LG” is a drive signal for the switching element of the lower arm of the inverter.
  • “UG” and “LG” are used to generate a gate voltage signal for driving the AC switch 104 of the direct conversion circuit 100.
  • the three lower gate control units 337 have the same circuit configuration.
  • the three upper gate control units 338 have the same circuit configuration.
  • the three lower gate control units 337 include lower gate signals “RG2a”, “SG2a”, and “TG2a” that are the basis of the lower gate voltage signals “RG2”, “SG2”, and “TG2” of the direct conversion circuit 100 described above. Is generated.
  • the three upper gate control units 338 include upper gate signals “RG1a”, “SG1a”, and “TG1a” that are the basis of the upper gate voltage signals “RG1”, “SG1”, and “TG1” of the direct conversion circuit 100 described above. Is generated.
  • each upper gate control unit 338 includes gate control signals RD, SD, and TD supplied from the input voltage detection circuit 310, a PWM drive timing signal CK12 supplied from the PWM control unit 320, and a PWM drive signal generation circuit.
  • the PWM signal “UG” supplied from 331 is signal-processed by the circuit shown in FIG. 10 to generate upper gate signals RG1a, SG1a, and TG1a.
  • the upper gate signals RG1a, SG1a, and TG1a are signals that change at the same timing as the lower gate voltage signals RG1, SG1, and TG1 shown in FIG.
  • FIG. 11 is a block diagram of a conventional half-bridge / PWM output inverter control device 500.
  • This inverter control device 500 includes a half-bridge inverter circuit 510, a PWM control unit 520, and a PWM drive signal generation circuit 531.
  • the PWM drive signal generation circuit 531 is the same as the PWM drive signal generation circuit 331 shown in FIG.
  • the PWM signal “UG” generated by the PWM drive signal generation circuit 531 drives the gate of the switching element of the upper arm via the level shift circuit of the half-bridge inverter circuit 510 and the pre-drive circuit of the upper arm. Thereby, the switching element of the upper arm is turned on. As a result, the output terminal is short-circuited to the DC input terminal P via the upper arm switching element.
  • FIG. 12A, FIG. 12B, FIG. 12C, and FIG. 12D are diagrams showing respective gate states of the switching element 105 in FIG. 9 when the AC input electrical angle is around 30 degrees, around 40 degrees, around 90 degrees, and around 100 degrees, respectively. It is.
  • the terminal R to which + 50V is applied is regarded as the DC input terminal P of the half-bridge inverter circuit 510 in FIG. 11, and the terminal T to which ⁇ 100V is applied is the half-bridge inverter circuit 510 in FIG. DC input terminal N.
  • the state of FIG. 12A is equivalent to the above inverter operation when 50 V is applied to the DC input terminal P and ⁇ 100 V is applied to the DC input terminal N in the half-bridge inverter circuit 510 of FIG. Can be understood from the description of FIG. 3B.
  • FIG. 12B it can be seen that if the terminal R is replaced with the terminal S, this equivalence is established.
  • the current for driving the load is constantly discharged from the positive voltage AC power supply of the three-phase AC power supply, and the three-phase AC power supply
  • the operation of sucking the load current into the negative voltage AC power supply can be realized using the direct conversion circuit 100.
  • the phase is set so as to become the DC input terminal N of the half-bridge inverter circuit 510, and the other two phases are switched to the DC input terminal P Select the power supply so that
  • the phase is set so as to become the DC input terminal P of the half-bridge inverter circuit 510, and the other two phases are alternately used as the DC input terminal N. Select the power supply so that
  • the waveform shown by the broken line near 150 V on the three-phase AC input terminal voltage is a waveform for explaining the second aspect. If two power sources are selected from the three AC power sources based on the second viewpoint and the same operation as that of the half-bridge inverter circuit 510 is performed, the DC input terminals P and DC of the virtual half-bridge inverter circuit 510 The voltage difference with the input terminal N has a dotted waveform shape. In other words, this dotted waveform is the average value of the power supply voltage of the virtual inverter. Note that the voltage value of the dotted waveform is not a complete DC value with respect to the AC input electrical angle, but is sufficiently operable as a matrix converter. In actual use, since a negative feedback operation of a current amount is generally performed with respect to a load current, it is not a problem that the voltage value of the dotted line waveform is not a complete DC value.
  • the PWM drive timing signal CK12 alternately switches two phases to be selected from the three-phase AC power supply as the DC input terminal of the half-bridge inverter circuit 510 according to the second aspect of the matrix converter design. It is used for
  • the fourth embodiment relates to a method for driving the direct conversion circuits of the first to third embodiments and a matrix converter control device for driving these direct conversion circuits, and particularly, a three-phase circuit.
  • the present invention relates to a three-phase AC input one-phase PWM output matrix converter control device that generates a one-phase AC output signal using PWM from an AC input signal.
  • the fourth embodiment there is provided a method for selecting a three-phase AC power source that takes advantage of the first aspect of the matrix converter design of the direct conversion circuit 100 and that is the second aspect of the matrix converter design. Incorporated.
  • the conventional half-bridge / PWM output inverter controller 500 shown in FIG. 11 includes the direct conversion circuit 100 shown in FIG. 8, the gate control circuit 332 of a simple logic circuit, and the input voltage detection circuit 310.
  • the system change from the drive system of the existing half-bridge / PWM inverter control device 500 to the matrix converter control device 300 can be performed easily and intuitively.
  • FIG. 13 is a block diagram of a matrix converter control device 301 according to the fifth embodiment.
  • the matrix converter control device 301 has a configuration in which a PWM gain correction circuit 340 is added to the matrix converter control device 300 according to the fourth embodiment shown in FIG.
  • the PWM gain correction circuit 340 generates a PWM gain correction signal 342 according to the PWM output correction signal 341.
  • This PWM gain correction signal 342 is such that the one-phase AC signal generated by the direct conversion circuit 100 approaches the one-phase AC signal generated when the absolute value of the difference indicated by the PWM output correction signal 341 is constant. This is a signal for correcting the PWM control signal.
  • This series of operations is performed by a virtual half-bridge inverter circuit when a half-bridge inverter circuit is operated by selecting two power sources from three AC power sources, which are illustrated by broken lines at the top in FIG. It works to correct the average value of the power supply voltage. Thereby, the average value of the power supply voltage of this virtual half bridge inverter circuit can be made closer to the DC value with respect to the AC input electrical angle.
  • the correction to the average value of the power supply voltage of the virtual half-bridge inverter circuit is also described in the description of the fourth embodiment.
  • the load current has an effect of reducing the ripple with respect to the AC electrical angle.
  • FIG. 14 is a block diagram of a matrix converter control device 302 having a three-phase AC input and two-phase PWM output according to the sixth embodiment of the present invention.
  • the matrix converter control device 302 includes an input voltage detection circuit 310, a PWM control unit 320, and a matrix converter 350 having a three-phase AC input and two-phase PWM output.
  • the 3-phase AC input 2-phase PWM output matrix converter 350 includes two 3-phase AC input 1-phase PWM output matrix converters 330F and 330R. These matrix converters 330F and 330R have the same configuration as the matrix converter 330 with three-phase AC input and one-phase PWM output shown in FIG.
  • the matrix converter control device 302 drives a load connected between the two output terminals of the two matrix converters 330F and 330R.
  • the function of the input voltage detection circuit 310 shown in FIG. 14 is the same as that of the input voltage detection circuit 310 shown in FIG. Further, the PWM control unit 320 shown in FIG. 14 generates a PWM control signal FPWMC to be supplied to the matrix converter 330F with respect to the PWM control unit 320 shown in FIG. 8, and the PWM control signal RPWMC to be supplied to the matrix converter 330R. The point of generating is different.
  • FIG. 15 is a block diagram showing a configuration of an existing H-bridge / PWM inverter control device 501 that extracts AC power of an arbitrary frequency from a conventional DC power source.
  • the matrix converter control device 302 has a feature that the system can be easily changed from the drive system of the H bridge / PWM inverter control device 501 shown in FIG.
  • the drive method of the matrix converter control device 302 can be easily derived from the drive method of the inverter control device 501 shown in FIG. 15 and the drive method and design method of the matrix converter control device 300 described in the fourth embodiment. Therefore, detailed description is omitted.
  • FIG. 16 is a block diagram of a matrix converter control device 303 with three-phase AC input and two-phase PWM output according to the seventh embodiment of the present invention.
  • the matrix converter control device 303 has a configuration in which a PWM gain correction circuit 340 is added to the matrix converter control device 302 according to the sixth embodiment shown in FIG.
  • the input voltage detection circuit 310 generates the PWM output correction signal 341 according to the relationship between the input amplitude voltages of the three-phase AC input.
  • the PWM gain correction circuit 340 generates a PWM gain correction signal 342 for correcting the PWM control signals FPWMC and RPWMC generated by the PWM control unit 320 according to the PWM output correction signal 341.
  • the PWM control unit 320 corrects the PWM duty of the PWM control signals FPWMC and RPWMC according to the PWM gain correction signal 342.
  • This series of operations is performed by a virtual half-bridge inverter circuit when a half-bridge inverter circuit is operated by selecting two power sources from three AC power sources, which are illustrated by broken lines at the top in FIG. It works to correct the average value of the power supply voltage. Thereby, the average value of the power supply voltage of this virtual half bridge inverter circuit can be made closer to the DC value with respect to the AC input electrical angle.
  • the correction to the average value of the power supply voltage of the virtual half-bridge inverter circuit is also described in the description of the fourth embodiment.
  • a negative feedback operation of the current amount is performed with respect to the load current, Not very important.
  • the control system of the matrix converter that does not perform the negative feedback operation of the current amount with respect to the load current, there is an effect in reducing the ripple with respect to the AC electrical angle in the load current.
  • FIG. 17 is a block diagram of a matrix converter control device 304 for three-phase AC input and three-phase PWM output according to the eighth embodiment of the present invention.
  • the matrix converter control device 304 includes an input voltage detection circuit 310, a PWM control unit 320, and a matrix converter 351 with a three-phase AC input and a three-phase PWM output.
  • the three-phase AC input three-phase PWM output matrix converter 351 includes three three-phase AC input one-phase PWM output matrix converters 330U, 330V, and 330W. These matrix converters 330U, 330V, and 330W have the same configuration as that of the matrix converter 330 with three-phase AC input and one-phase PWM output illustrated in FIG.
  • the matrix converter control device 304 drives a load connected between the three output terminals of the matrix converters 330U, 330V, and 330W of the three three-phase AC input and one-phase PWM outputs.
  • the function of the input voltage detection circuit 310 shown in FIG. 17 is the same as that of the input voltage detection circuit 310 shown in FIG. Also, the PWM control unit 320 shown in FIG. 17 generates a PWM control signal UPWMC to be supplied to the matrix converter 330U with respect to the PWM control unit 320 shown in FIG. 8, and the PWM control signal VPWMC to be supplied to the matrix converter 330V. And a PWM control signal WPWMC that is supplied to the matrix converter 330W is generated.
  • 18A and 18B show the results of performing the operation verification of the matrix converter control device 304 by the transient analysis simulation using SPICE.
  • the simulation conditions are as follows in order to shorten the analysis study time of the simulation of excessive analysis.
  • the frequency of the sine wave profile of each phase that changes the PWM duty of the PWM control signal in a sine wave shape is set to 4 KHz.
  • each phase AC power supply is set to 278 Hz, and the cycle is set to 3.6 msec.
  • the AC power supply voltage amplitude is set to -20V to + 20V.
  • the simulation result in FIG. 18A corresponds to the range of the AC input electrical angle in the timing waveform diagram in FIG. 9 from 40 degrees to 100 degrees.
  • 18B is an enlarged view of FIG. 18A and corresponds to the timing waveform of the AC input electrical angle of 50 degrees to 70 degrees in FIG.
  • the upper waveform shows the U-phase, V-phase, and W-phase sine wave profiles.
  • the middle waveform in the figure shows the output load current of the U phase, V phase, and W phase.
  • the output load current is a load current flowing through a three-phase inductive load Y-connected to the U output terminal, the V output terminal, and the W output terminal.
  • the lower part of the figure shows three-phase AC power supply voltage waveforms of R, S, and T, and output voltage waveforms of the U output terminal, the V output terminal, and the W output terminal.
  • the output load currents of the U-phase, V-phase, and W-phase are expressed in spite of the fact that the power supply voltages of the alternating current R, alternating current S, and alternating current T change in a sine wave shape at a frequency of 278 Hz
  • the sine wave profile of the U phase, V phase, and W phase is followed to change into a sine wave at a frequency of 4 KHz.
  • the PWM output waveforms at the U output terminal, the V output terminal, and the W output terminal are substantially the same as those shown in FIG. From the above, it can be seen that the matrix converter control device 304 of this three-phase AC input three-phase PWM output is operating properly.
  • FIG. 19 is a block diagram showing a configuration of an existing H-bridge / PWM inverter control device 502 that extracts AC power of an arbitrary frequency from a conventional DC power source.
  • the matrix converter control device 304 according to the eighth embodiment has a feature that the system can be easily changed from the drive system of the inverter control device 502 shown in FIG.
  • the driving method of the matrix converter control device 304 can be easily derived from the driving method of the inverter control device 502 shown in FIG. 19 and the driving method and design method of the matrix converter control device 300 described in the fourth embodiment. Therefore, detailed description is omitted.
  • FIG. 20 is a block diagram of a matrix converter control device 305 with three-phase AC input and three-phase PWM output according to the ninth embodiment of the present invention.
  • the matrix converter control device 305 has a configuration in which a PWM gain correction circuit 340 is added to the matrix converter control device 304 according to the eighth embodiment shown in FIG.
  • the input voltage detection circuit 310 generates the PWM output correction signal 341 according to the relationship between the input amplitude voltages of the three-phase AC input.
  • the PWM gain correction circuit 340 generates a PWM gain correction signal 342 for correcting the PWM control signals UPWMC, VPWMC, and WPWMC generated by the PWM control unit 320 according to the PWM output correction signal 341.
  • the PWM control unit 320 corrects the PWM duty of the PWM control signals UPWMC, VPWMC, and WPWMC according to the PWM gain correction signal 342.
  • This series of operations is performed by a virtual half-bridge inverter circuit when a half-bridge inverter circuit is operated by selecting two power sources from three AC power sources, which are illustrated by broken lines at the top in FIG. It works to correct the average value of the power supply voltage. Thereby, the average value of the power supply voltage of this virtual half bridge inverter circuit can be made closer to the DC value with respect to the AC input electrical angle.
  • the correction to the average value of the power supply voltage of the virtual half-bridge inverter circuit is also described in the description of the fourth embodiment.
  • a negative feedback operation of the current amount is performed with respect to the load current, Not very important.
  • the control system of the matrix converter that does not perform the negative feedback operation of the current amount with respect to the load current, there is an effect in reducing the ripple with respect to the AC electrical angle in the load current.
  • each processing unit included in the direct conversion circuit and the matrix converter control device according to the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention can be applied to a direct conversion circuit and a matrix converter control device for driving the direct conversion circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

 本発明に係る直接変換回路(100)は、3つの交流入力端子(101)と出力端子(102)との間に接続されている3つの交流スイッチ(104)を備える。交流スイッチ(104)は、対応する交流入力端子(101)と出力端子(102)との間に直列に接続された第1及び第2スイッチング素子(105)を含む。第1及び第2スイッチング素子(105)の各々は、ソース/ゲート間電圧が閾値電圧より高い場合、ソース/ドレイン間電圧の極性に応じてソース端子からドレイン端子へ又はドレイン端子からソース端子へ電流を流し、ソース/ゲート間電圧が閾値電圧以下の場合、ドレイン端子からソース端子への電流を遮断し、ドレイン/ゲート間電圧が閾値電圧以上の場合、ソース端子からドレイン端子に電流を流す。

Description

直接変換回路及びマトリックスコンバータ制御装置
 本発明は、直接変換回路及びマトリックスコンバータ制御装置に関し、特に、3相交流信号を、パルス幅変調を用いて1相交流信号に変換するための直接変換回路、及びそれを用いたマトリックスコンバータ制御装置に関する。
 図21は、特許文献1等の多数の文献で引用されている直接変換方式(又はAC直接方式とも言われる)のマトリックスコンバータ等に用いられる従来の直接変換回路の図である。
 図21に示す従来の直接変換回路では正負両方の電圧極性に対する耐圧を有する交流スイッチS1~S9を図21に示すように配置構成している。
 この交流スイッチ(S1~S9)は、図21(a)に示すように、ダイオードとIGBT(Insulated Gate Bipolar Transistor)とが互いに逆向きに並列接続された回路を2つ直列接続した構成である。または、この交流スイッチは、図21(b)に示すように逆耐圧能力のある2つのIGBTを逆向きに並列に接続した構成である。
 IGBTは、高耐圧であり、かつ大電流駆動するデバイスのなかで導通損失が小さいことが特長である。そのため従来の直接変換方式(AC直接方式)のマトリックスコンバータでは、交流スイッチに用いられるスイッチング素子としてIGBTが用いられている。但し、IGBTは片方向にしか電流が流せないことと、また逆方向の耐圧が弱いこととにより、図21(a)のようにダイオードとIGBTとが互いに逆向きに並列接続された回路を2つ直列接続した構成が一般的である。また逆方向の耐圧を上げたIGBTも開発されている。これにより、図21(b)のようにIGBTチップを向かい合わせに逆並列に接続した逆阻止IGBT(reverse blocking IGBT)も交流スイッチとして使われている。
 一方で、IBGTのようなシリコン系のパワースイッチング素子とは異なった窒化物半導体で構成されるパワースイッチング素子の開発が進められている。このパワースイッチング素子の特長を用いたインバータに関する技術が特許文献2等に開示されている。
特開2004-135462号公報 特開2009-159812号公報
 しかしながら、上記IGBTを用いた直接変換回路は以下に説明する課題を有している。
 図22Aは、IGBTのI-V特性を示す図である。図22Bは、ダイオードのI-V特性を示す図である。
 IGBTではコレクタ-エミッタ間にPN接合が存在する。これにより、図22Aに図示されているように、IGBTが電流を流す場合に、電流の大小にかかわらずコレクタ-エミッタ間にPN接合によるオフセット電圧が生じる。また、図22Bに示すように、同様にダイオードは、電流の大小によらず、VF電圧にオフセット電圧が生じる。
 従って、図21(a)に示す交流スイッチの場合、このスイッチに流れる電流の大小にかかわらず、ダイオード及びIGBTの両方によるPN接合オフセット電圧による導通損失が常に発生する。また、図21(b)に示す交流スイッチの場合においても、IGBTのPN接合オフセット電圧による導通損失が発生する。
 結果としてIGBT及びダイオードを用いた交流スイッチでマトリックスコンバータの直接変換回路を構成した場合、交流スイッチを流れる電流が小さい領域においてでさえ、直接変換回路の損失には下限値が存在している。結果としてこのマトリックスコンバータの消費電力の下限が制限され、入力電力に対する出力電力の比率を示す効率には上限が課せられる。
 また、IGBTでは少数キャリアの蓄積効果により、IGBTのターンオフ動作時にテール電流が流れる。これにより、ターンオフ時のスイッチング損失が悪化する。そしてダイオードではダイオード内の少数キャリア蓄積効果によるリカバリー電流によりIGBTのターンオン動作時のスイッチング損失が悪化する。結果として、図21(a)及び図21(b)に示す交流スイッチではスイッチング損失の下限が存在する。そして、これらの交流スイッチを用いてマトリックスコンバータの直接変換回路を構成した場合、このスイッチング損失がマトリックスコンバータの消費電力及び効率に悪影響を及ぼす。
 なお、上記の特許文献2では窒化物半導体をインバータに用いる技術が開示されているだけであり、当該特許文献2は、マトリックスコンバータに関するものではない。
 そこで、本発明は、損失を低減し、効率を向上できる直接変換回路、及びマトリックスコンバータ制御装置を提供することを目的とする。
 上記目的を達成するために、本発明の一形態に係る直接変換回路は、3相交流信号を、パルス幅変調を用いて1相交流信号に変換するための直接変換回路であって、前記3相交流信号が供給される3つの交流入力端子と、6つのゲート信号が入力される6つのゲート信号入力端子と、前記1相交流信号を出力するための出力端子と、各々が、前記3つの交流入力端子の各々と前記出力端子との間に接続されている3つの交流スイッチとを備え、前記3つの交流スイッチの各々は、対応する前記交流入力端子と前記出力端子との間に直列に接続された第1及び第2スイッチング素子を含み、前記第1及び第2スイッチング素子の各々は、第1端子と第2端子とゲート端子とを有し、前記第1端子の電圧を基準とした前記ゲート端子の電圧である第1電圧が閾値電圧より高い場合、前記第1端子と前記第2端子との間に印加される電圧の極性に応じて前記第1端子から前記第2端子へ又は前記第2端子から前記第1端子へ電流を流し、前記第1電圧が前記閾値電圧以下の場合、前記第2端子から前記第1端子への電流を遮断し、前記第1電圧が前記閾値電圧以下、かつ前記第2端子の電圧を基準にして前記ゲート端子の電圧が前記閾値電圧以上の場合、前記第1端子から前記第2端子に電流を流し、前記直接変換回路は、さらに、前記6つのゲート信号の各々と、前記3つの交流スイッチに含まれる6つの前記スイッチング素子の各々との組に対応し、対応する組のゲート信号に応じて、当該対応する組のスイッチング素子の前記第1端子と前記ゲート端子との間に電圧を供給する6つのプリドライブ回路とを備える。
 この構成によれば、本発明の一形態に係る直接変換回路では、交流スイッチに用いられるスイッチング素子は、第1端子と第2端子との間に電流を流した場合、第1電圧にIGBTのようなPN接合によるオフセット電圧が生じない。これにより、該スイッチング素子の導通損失は小さくできる。さらに、該交流スイッチは、ダイオードを持たなくてもよいので、該ダイオードによるオフセット電圧も生じない。これにより、該交流スイッチは導通損失を減らすことができる。さらに、ダイオードが減ることにより、直接変換回路の部品点数の削減と低コスト化と小型化とを実現できる。このように、本発明の一形態に係る直接変換回路は、損失を低減し、効率を向上できる。
 また、前記第1及び第2スイッチング素子の前記第2端子は互いに接続されており、前記第1スイッチング素子の前記第1端子は、前記出力端子に接続されており、前記第2スイッチング素子の前記第1端子は、前記交流入力端子に接続されていてもよい。
 また、前記第1及び第2スイッチング素子の前記第1端子は互いに接続されており、前記第1スイッチング素子の前記第2端子は前記出力端子に接続されており、前記第2スイッチング素子の前記第2端子は、前記交流入力端子に接続されていてもよい。
 また、前記第1及び第2スイッチング素子の各々は、半導体基板の上に形成された窒化物半導体で構成される半導体積層体と、前記半導体積層体の上に互いに間隔をおいて形成されており、前記第1端子及び前記第2端子として機能する第1電極及び第2電極と、前記第1電極と前記第2電極との間に形成されており、前記ゲート端子として機能するゲート電極とを備えてもよい。
 この構成によれば、本発明の一形態に係る直接変換回路は、スイッチング素子の少数キャリアの効果を少なくできる。これにより、該スイッチング素子では、IGBTに存在するターンオフ時のテール電流もほとんど生じない。そのために、該直接変換回路は、スイッチング損失をより減らすことができる。また、該交流スイッチは、ダイオードリカバリー電流によるスイッチング損失の影響を排除できる。
 また、前記交流スイッチは、半導体基板の上に形成された窒化物半導体で構成される半導体積層体と、前記半導体積層体の上に互いに間隔をおいて形成されており、前記第1及び第2スイッチング素子の各々の前記第1端子として機能する第1電極及び第2電極と、前記第1電極と第2電極との間に形成されており、前記第1及び第2スイッチング素子の各々のゲート端子として機能する2つのゲート電極とを備えてもよい。
 この構成によれば、本発明の一形態に係る直接変換回路では、交流スイッチを一つの半導体チップで形成できるため、該交流スイッチのサイズを小さくできる。結果として、該直接変換回路をより小型化できる。
 また、前記スイッチング素子は、MOSFETであってもよい。
 また、本発明の一形態に係るマトリックスコンバータは、3相交流信号を、パルス幅変調を用いて1相交流信号に変換するマトリックスコンバータ制御装置であって、前記直接変換回路を含むマトリックスコンバータと、前記6つのゲート信号の元となるPWM制御信号を生成し、生成した前記PWM制御信号を前記マトリックスコンバータへ供給するPWM制御部とを備えてもよい。
 この構成によれば、本発明の一形態に係るマトリックスコンバータ制御装置は、上記直接変換回路を適切に駆動する3相交流入力1相PWM出力のマトリックスコンバータ動作を実現できる。
 また、前記マトリックスコンバータ制御装置は、さらに、前記3相交流入力信号の各相の電圧値を検出する入力電圧検出回路を備え、前記マトリックスコンバータは、さらに、前記PWM制御信号を用いて前記6つのゲート信号を生成することにより、前記直接変換回路を制御する駆動制御部を備え、前記駆動制御部は、所定の期間ごとに、前記入力電圧検出回路の検出結果を用いて、前記3相交流信号のうち電圧の絶対値が最も高い相の信号である第1相信号と、前記3相交流信号のうち前記第1相信号以外の第2相信号と、前記3相交流信号のうち前記第1相信号及び前記第2相信号以外の第3相信号とを判別し、前記交流入力端子を介して前記第3相信号が供給される交流スイッチである第3交流スイッチを遮断状態とし、前記交流入力端子を介して前記第1相信号が供給される交流スイッチである第1交流スイッチと、前記交流入力端子を介して前記第2相信号が供給される交流スイッチである第2交流スイッチとを用いて、前記第1相信号及び前記第2相信号から前記1相交流信号を生成してもよい。
 この構成によれば、例えば、従来からあるDC電源から任意の周波数の交流電力を取り出す既存の半ブリッジ・PWMインバータ制御装置の駆動システムから該マトリックスコンバータ制御装置へのシステム変更を容易にできる。
 また、前記駆動制御部は、前記第1相信号以外の2つの相の信号のうち、前記第2相信号と判別する信号を、所定の期間ごとに切り替えてもよい。
 また、前記入力電圧検出回路は、さらに、前記第1相信号と前記第2相信号との差分の絶対値を示すPWM出力補正信号を生成し、前記マトリックスコンバータ制御装置は、さらに、前記PWM出力補正信号に応じて、前記差分の絶対値が一定の場合に生成される1相交流信号に、前記直接変換回路が生成する1相交流信号が近づくように、前記PWM制御信号を補正するためのPWMゲイン補正信号を生成するPWMゲイン補正回路を備え、前記PWM制御部は、前記PWMゲイン補正信号に応じて前記PWM制御信号のデューティを補正してもよい。
 この構成によれば、本発明の一形態に係るマトリックスコンバータ制御装置は、より精度良く3相交流電源から任意の周波数の交流電力を取り出すことができる。
 また、本発明の一形態に係るマトリックスコンバータ制御装置は、3相交流信号を、パルス幅変調を用いて2相交流信号に変換するマトリックスコンバータ制御装置であって、各々が前記直接変換回路を含む第1及び第2マトリックスコンバータと、PWM制御部とを備え、前記PWM制御部は、前記第1マトリックスコンバータに含まれる前記直接変換回路の前記6つのゲート信号の元となる第1PWM制御信号を生成し、生成した前記第1PWM制御信号を前記第1マトリックスコンバータへ供給し、前記第2マトリックスコンバータに含まれる前記直接変換回路の前記6つのゲート信号の元となる第2PWM制御信号を生成し、生成した前記第2PWM制御信号を前記第2マトリックスコンバータへ供給してもよい。
 この構成によれば、本発明の一形態に係るマトリックスコンバータ制御装置では、上記直接変換回路を適切に駆動する3相交流入力2相PWM出力のマトリックスコンバータ動作を実現できる。
 また、本発明の一形態に係るマトリックスコンバータ制御装置は、3相交流信号を、パルス幅変調を用いて3相交流信号に変換するマトリックスコンバータ制御装置であって、各々が前記直接変換回路を含む第1~第3マトリックスコンバータと、PWM制御部とを備え、前記PWM制御部は、前記第1マトリックスコンバータに含まれる前記直接変換回路の前記6つのゲート信号の元となる第1PWM制御信号を生成し、生成した前記第1PWM制御信号を前記第1マトリックスコンバータへ供給し、前記第2マトリックスコンバータに含まれる前記直接変換回路の前記6つのゲート信号の元となる第2PWM制御信号を生成し、生成した前記第2PWM制御信号を前記第2マトリックスコンバータへ供給し、前記第3マトリックスコンバータに含まれる前記直接変換回路の前記6つのゲート信号の元となる第3PWM制御信号を生成し、生成した前記第3PWM制御信号を前記第3マトリックスコンバータへ供給してもよい。
 この構成によれば、本発明の一形態に係るマトリックスコンバータ制御装置では、上記直接変換回路を適切に駆動する3相交流入力3相PWM出力のマトリックスコンバータ動作を実現できる。
 なお、本発明は、このような直接変換回路及びマトリックスコンバータ制御装置として実現できるだけでなく、マトリックスコンバータ制御装置に含まれる特徴的な手段をステップとする直接変換回路の駆動方法、又はマトリックスコンバータの制御方法として実現したり、そのような特徴的なステップをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD-ROM等の非一時的なコンピュータ読み取り可能な記録媒体、及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
 さらに、本発明は、このような直接変換回路又はマトリックスコンバータ制御装置の機能の一部又は全てを実現する半導体集積回路(LSI)として実現できる。
 本発明は、損失を低減し、効率を向上できる直接変換回路及びマトリックスコンバータ制御装置を提供できる。
図1は、本発明の第1の実施形態に係る直接変換回路の構成を示す図である。 図2Aは、本発明の第1の実施形態に係るスイッチング素子の電流電圧特性を示す図である。 図2Bは、本発明の第1の実施形態に係るスイッチング素子の電流電圧特性を示す図である。 図2Cは、本発明の第1の実施形態に係るスイッチング素子の電流電圧特性を示す図である。 図3Aは、本発明の第1の実施形態に係る交流スイッチの構成を示す図である。 図3Bは、本発明の第1の実施形態に係る交流スイッチの動作状態を示す図である。 図4Aは、本発明の第1の実施形態に係る直接変換回路の動作状態を示す図である。 図4Bは、本発明の第1の実施形態に係る直接変換回路の動作状態を示す図である。 図4Cは、本発明の第1の実施形態に係る直接変換回路の動作状態を示す図である。 図4Dは、本発明の第1の実施形態に係る直接変換回路の動作状態を示す図である。 図4Eは、本発明の第1の実施形態に係る直接変換回路の動作状態を示す図である。 図4Fは、本発明の第1の実施形態に係る直接変換回路の動作状態を示す図である。 図4Gは、本発明の第1の実施形態に係る直接変換回路の動作状態を示す図である。 図4Hは、本発明の第1の実施形態に係る直接変換回路の動作状態を示す図である。 図5Aは、本発明の第1の実施形態に係る交流スイッチの変形例の構成を示す図である。 図5Bは、本発明の第1の実施形態に係る交流スイッチの変形例の動作状態を示す図である。 図6は、本発明の第2の実施形態に係るスイッチング素子の断面図である。 図7は、本発明の第3の実施形態に係る交流スイッチの断面図である。 図8は、本発明の第4の実施形態に係るマトリックスコンバータ制御装置のブロック図である。 図9は、本発明の第4の実施形態に係るマトリックスコンバータ制御装置の動作時のタイミング波形を示す図である。 図10は、本発明の第4の実施形態に係るゲート制御回路等の回路図である。 図11は、一般的な半ブリッジ・PWM出力インバータ制御装置のブロック図である。 図12Aは、本発明の第4の実施形態に係るスイッチング素子の動作状態を示す図である。 図12Bは、本発明の第4の実施形態に係るスイッチング素子の動作状態を示す図である。 図12Cは、本発明の第4の実施形態に係るスイッチング素子の動作状態を示す図である。 図12Dは、本発明の第4の実施形態に係るスイッチング素子の動作状態を示す図である。 図13は、本発明の第5の実施形態に係るマトリックスコンバータ制御装置のブロック図である。 図14は、本発明の第6の実施形態に係るマトリックスコンバータ制御装置のブロック図である。 図15は、一般的なHブリッジ・PWM出力インバータ制御装置のブロック図である。 図16は、本発明の第7の実施形態に係るマトリックスコンバータ制御装置のブロック図である。 図17は、本発明の第8の実施形態に係るマトリックスコンバータ制御装置のブロック図である。 図18Aは、本発明の第8の実施形態に係るマトリックスコンバータ制御装置の過度解析シミュレーション結果を示す図である。 図18Bは、本発明の第8の実施形態に係るマトリックスコンバータ制御装置の過度解析シミュレーション結果を示す図である。 図19は、一般的な3相・PWMインバータ制御装置のブロック図である。 図20は、本発明の第9の実施形態に係るマトリックスコンバータ制御装置のブロック図である。 図21は、従来の直接変換回路の構成を示す図である。 図22Aは、IGBTの電流電圧特性を示す図である。 図22Bは、ダイオードの電流電圧特性を示す図である。
 以下、本発明に係る、マトリックスコンバータに用いられる直接変換回路と該直接変換回路を駆動するマトリックスコンバータ制御装置とそれに用いられている該直接変換回路の駆動方法について順次、好適な実施形態を添付の図面を参照しつつ詳細に説明する。
 なお、本発明は、以下の実施形態に記載した具体的な構成に限定されるものではなく、実施形態において説明する技術的思想と同様の技術的思想及び当技術分野における技術常識に基づいて構成されるものを含むものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 (第1の実施形態)
 図1は、本発明に係る直接変換回路の第1の実施形態に係る直接変換回路の構成を示す図である。以下、この図1を用いて、本発明の第1の実施形態に係る直接変換回路の構成を説明する。
 図1に示されている直接変換回路100は、マトリックスコンバータ等で用いられる1相分の直接変換回路である。この直接変換回路100は、3相交流信号が供給される3つの交流入力端子101R、101S、101Tと、1つの出力端子102と、6つのゲート信号が供給されるゲート信号入力端子103とを有する。なお、3つの交流入力端子101R、101S及び101Tを特に区別しない場合には、交流入力端子101と記す。
 この直接変換回路100は、ゲート信号入力端子103に供給されたゲート信号で制御される。そして、この直接変換回路100は、交流入力端子101に供給された3相交流信号を、パルス幅変調を用いて1相交流信号に変換し、変換した1相交流信号を出力端子102へ出力する。言い換えると、この直接変換回路100は、3相交流信号を、任意の周波数の1相交流信号に変換する。
 また、直接変換回路100は、3つの交流スイッチ104R、104S及び104Tと、6個のプリドライブ回路106と、レベルシフト回路107とを備える。なお、3つ交流スイッチ104R、104S及び104Tを特に区別しない場合には、交流スイッチ104と記す。
 3つの交流スイッチ104は、3相交流入力端子101と出力端子102との間に接続されている。具体的には、交流スイッチ104Rは、交流入力端子101Rと出力端子102との間に接続されている。交流スイッチ104Sは、交流入力端子101Sと出力端子102との間に接続されている。交流スイッチ104Tは、交流入力端子101Tと出力端子102との間に接続されている。
 各交流スイッチ104は、双方向に電流制御を行うことができる2つの制御端子(ゲート端子)を有する。この交流スイッチ104は、2つのゲート端子を有する双方向スイッチング素子であり、以下の特長を持つ1つのゲート端子を有する双方向スイッチング素子105を2つ組み合わせたものと等価である。
 1つのゲート端子を有する双方向スイッチング素子105は、電流制御をするゲート端子とこの電流を流出入するための第1端子及び第2端子とを持つ。また、以下では、第1端子の一方をソース端子と呼び、他方をドレイン端子と呼ぶ。
 また、このスイッチング素子105は、図2A、図2B及び図2Cに図示される電流電圧特性を有する。以下にこれらの特性図の説明をする。
 図2A及び図2Bは、ソース端子電圧を基準としたゲート端子電圧の電圧であるゲート/ソース間電圧Vgsが閾値電圧Vthより高い場合の、ドレイン端子とソース端子との間の電圧VDSと、ドレイン端子からソース端子へ又はソース端子からドレイン端子へ流れる電流IDSとの関係を示す図である。図2A及び図2Bに示すように、電圧Vgsが閾値電圧Vthより高い場合、スイッチング素子105は、電圧VDSの極性及び値に応じてソース端子からドレイン端子へ、又はドレインからソースへ電流IDSを流すことができる。
 図2A及び図2Bの電流電圧特性はMOSFETのものと類似の特性である。特に図2Bに示す電流電圧特性を逆FET特性と呼ぶことにする。これらの図からわかるように、スイッチング素子105は、図22Aに図示されているIGBTの電流電圧特性のようなPN接合によるオフセット電圧を持たない。
 また、図2Cは、電圧Vgsが閾値電圧Vth以下の場合の、電圧VDSと電流IDSとの関係を示す図である。図2Cに図示されているように、電圧Vgsが閾値電圧Vth以下の場合にはドレイン端子からソース端子への電流は遮断される。また、この場合に、ドレイン端子電圧を基準としたゲート端子電圧が閾値電圧以上になるとソース端子からドレイン端子に電流を流すことができる特性を有する。この特性を逆導通特性と呼ぶ。
 以上のようにスイッチング素子105は双方向に電流を流すことができ、かつIGBTのような電流電圧特性においてオフセット電圧を持たない双方向スイッチング素子である。
 また、図1に示すように、交流スイッチ104は、2個のスイッチング素子105A及び105Bを含む。なお、2個のスイッチング素子105A及び105Bを特に区別しない場合にはスイッチング素子105と記す。
 この2個のスイッチング素子105A及び105Bのドレイン端子は互いに接続されている。また、スイッチング素子105Bのソース端子は出力端子102に接続されており、スイッチング素子105Aのソース端子は交流入力端子101に接続されている。つまり、この2個のスイッチング素子105A及び105Bは直列接続されている。
 ゲート信号入力端子103には、6つのゲート信号が外部から供給される。
 レベルシフト回路107は、ゲート信号入力端子103に入力された6つのゲート信号を6つのプリドライブ回路106に伝達する。なお、レベルシフト回路107は、ゲート信号入力端子103に入力された6つのゲート信号の電圧レベルを変更し、電圧レベルを変更した6つのゲート信号を6つのプリドライブ回路106に伝達してもよい。
 6つのプリドライブ回路106の各々は、レベルシフト回路107により伝達される6つのゲート信号の各々、及び6つのスイッチング素子105の各々に対応して設けられている。各プリドライブ回路106は、レベルシフト回路107から伝達された、対応するゲート信号に応じて、対応するスイッチング素子105のソース端子とゲート端子との間に電圧を供給することにより当該スイッチング素子105を駆動する。
 以下にこの直接変換回路100の動作を説明するが、その前に1つの交流スイッチ104がどのように動作するかを説明し、その後で3つの交流スイッチ104で構成された1相分の直接変換回路100がどうのようにして3相交流電源から1つの交流電流をスイッチング動作により生成するかを説明する。
 図3Aは、1個の交流スイッチ104とその駆動回路を示す図である。また、図3Aでは、交流スイッチ104に対応する2個のプリドライブ回路106を、それぞれプリドライブ回路106A及び106Bと記している。
 プリドライブ回路106Aは、スイッチング素子105Aのゲート端子とソース端子との間にゲート電圧Vgs1を供給する。プリドライブ回路106Bは、スイッチング素子105Bのゲート端子とソース端子との間にゲート電圧Vgs2を供給する。具体的には、プリドライブ回路106A及び106Bは、ゲート電圧Vgs1又はVgs2として、0V又はスイッチング素子105の閾値電圧Vth以上の電圧Vgを供給する。
 図3Bは、交流スイッチ104の動作モードを示す図である。交流スイッチ104は、図3B(a)~(d)に示す4通りの動作モードを有する。各図の上側の図は交流スイッチ104の動作状態(設定状態)を示す図であり、下側の図は交流スイッチ104の等価の動作状態を示す図である。
 図3B(a)は、スイッチング素子105A及び105Bに電圧Vgs1及びVgs2として共に電圧Vgが供給されている場合の動作状態を示す図である。この場合、スイッチング素子105A及び105Bは、図2A及び図2Bに示す電流電圧特性で動作する。つまり、スイッチング素子105A及び105Bは、MOSFET等におけるいわゆる三極管領域で動作する。この場合、交流スイッチ104は、抵抗値Ronを持つ抵抗を2つ直列接続したものと等価である。この等価動作状態を通電モードと呼ぶ。
 図3B(b)は、スイッチング素子105Aに電圧Vgs1として電圧Vgが供給され、スイッチング素子105Bに電圧Vgs2として0Vが供給されている場合の動作状態を示す図である。電圧Vgが供給されているスイッチング素子105Aは抵抗値Ronを持つ抵抗と等価である。また、0Vが供給されているスイッチング素子105Bは、図2Cからわかるようにゲート端子及びソース端子をアノードとし、ドレイン端子をカソードとするダイオードと等価である。このダイオード表現の意味するところは、ゲート端子とソース端子との間に0Vが与えられたスイッチング素子105は、ソース端子からドレイン端子に向けてしか電流を流さないことを意味している。
 この図3B(b)のように出力端子102から交流入力端子101に電流を流す状態を逆導通モード1又はSourceオフモードと呼ぶ。Sourceオフと命名したのは交流入力端子101から出力端子102へ電流を吐き出す状態を止めているからである。
 また、図3B(c)のように交流入力端子101から出力端子102に電流を流す状態を逆導通モード2又はSinkオフモードと呼ぶ。Sinkオフと命名したのは出力端子102から交流入力端子101へ電流を引き込む状態を止めているからである。
 図3B(d)は、スイッチング素子105A及び105Bに電圧Vgs1及びVgs2として共に0Vが供給されている動作状態を示す図である。この場合、スイッチング素子105A及び105Bは、交流入力端子101と出力端子102との間に2つのダイオードを逆向きに接続した回路と等価になる。この等価動作状態からわかるように交流入力端子101と出力端子102との間は導通特性がない。この状態をオフモードと呼ぶ。
 次に3つの交流スイッチ104で構成された1相分の直接変換回路100がどうのようにして3相交流信号から1相交流信号をスイッチング動作により生成するかを、図4A~図4Hを用いて説明する。
 図4A~図4Hは、3つの交流スイッチ104を図3Bの下側に図示した交流スイッチ104の等価動作状態に置き換えて、3つの交流入力端子101に入力される3相交流電源から出力端子102にどうのようにして電流が連続的に流れるかの一例を示す図である。この説明は動作の一部を説明したものにしかすぎないが、マトリックスコンバータが3相交流電源から任意の周波数の交流信号を取り出す方法はここで説明されている動作を基本として、当該動作を応用しただけのものである。
 図4A~図4Hを用いて、1相分の直接変換回路100の3つの交流スイッチ104の一連の動作を説明する前に、直接変換回路100に課せられた外的条件と、当該直接変換回路100に対応したマトリックスコンバータ制御部から当該直接変換回路100に要求される動作を説明する。なお、以下に述べる外的条件は動作を説明する上では適切なものであるが、実使用上の動作とは必ずしも一致していないことを留意の上、説明を続ける。
 直接変換回路100の各交流入力端子101には3相交流信号が印可される。また、ある一定の期間において、交流入力端子101R(以下、R端子とも記す)と交流入力端子101S(以下、S端子とも記す)には共に+50Vが印可され、交流入力端子101T(以下、T端子とも記す)には-100Vが印可されているとする。またマトリックスコンバータが負荷を駆動する状態としては、この直接変換回路100の出力端子102は負荷電流を引き込む状態とする。また、負荷は誘導性負荷のために時間的に連続して負荷電流が出力端子102に引き込まれるとする。この場合、マトリックスコンバータ制御部は、直接変換回路100に対して、T端子の-100Vの交流電源から負荷電流を駆動電流として引き込み、R端子及びS端子の+50Vの各交流電源に対してはかわるがわるに負荷電流を還流電流として引き込むような駆動制御を課す。なぜこのような駆動制御をするかは後述の他の実施形態で説明する。
 駆動電流及び還流電流はPWM(Pulse Width Modulation:パルス幅変調)駆動するインバータが誘導性負荷を駆動するときの動作説明で用いられる技術用語である。負荷電流をある与えられた電流値にするためには、PWM駆動のスイッチング周期のある期間だけ、負荷とインバータのスイッチング素子群との接続を通して、負荷を2つの電源間に挿入した状態にする。この時、負荷に流れる負荷電流は増加していく。この時の負荷電流を駆動電流と呼ぶ。
 また、負荷電流を一定値に制御するためには、該PWM駆動のスイッチング周期の残りの時間では、負荷と該インバータのスイッチング素子群との別の接続を通して、負荷の両端を2つの電源のうちいずれか1つの電源に短絡させた状態にし、負荷電流を減らすことが必要である。この状態での負荷に流れる負荷電流を還流電流と呼ぶ。
 PWM駆動のインバータでは負荷電流が駆動電流である期間と還流電流である期間とのデューティ比をPWM制御することにより負荷電流を制御している。マトリックスコンバータでも同じようにPWM制御することにより、負荷電流の電流値を時間と共に制御できる。これにより、負荷に任意の周波数及び大きさの電力を供給できる。
 前述のマトリックスコンバータ制御部が直接変換回路に課する負荷駆動動作をより具体的に安定動作するための動きを整理すると、直接変換回路100には以下のスイッチング動作が求められる。
 (1)負荷電流を増加させるために、T端子と出力端子102とを接続して、T端子の交流電源(-100V)に駆動電流を流し込む。
 (2)負荷電流の流れをT端子の交流電源(-100V)からR端子の交流電源(+50V)に切り換えることで、負荷電流を駆動電流状態から還流電流状態に変更する。これにより負荷電流値を制御する(還流電流状態では負荷電流は減少する。)。
 (3)負荷電流を再度増加させるために、T端子と出力端子102とを接続して、T端子の交流電源(-100V)に駆動電流を流し込む。
 (4)負荷電流の流れをT端子の交流電源(-100V)からS端子の交流電源(+50V)に切り換えることで、負荷電流を駆動電流状態から還流電流状態に変更する。これにより負荷電流値を制御する。
 (5)ある一定期間、上記(1)から(4)の状態にして負荷電流を駆動電流状態と還流電流状態との間を繰り返し遷移させることで負荷電流値を制御する。
 (6)上記(5)の負荷電流の制御において、負荷が誘導性負荷であるため、負荷電流が連続した電流を維持するように直接変換回路100がスイッチング動作をすることが求められる。
 (7)直接変換回路100のスイッチング動作においてR端子、S端子、T端子の各相の交流電源が直接変換回路100を介して双方向に電流が流せるモード、すなわち交流電源間が短絡するモードが一瞬たりとも無いことが求められる。
 以下、図4A~図4Hに図示した直接変換回路100の動作が、上記の要求されるスイッチング動作を満足することを説明する。つまり、直接変換回路100は、マトリックスコンバータの直接変換回路として十分に動作するものであることを説明する。
 図4Aでは、交流スイッチ104Tが通電モードであり、T端子と出力端子102とが低抵抗で接続される。これにより、負荷電流が駆動電流としてT端子の交流電源(-100V)に流れ込むことにより、負荷電流が増加する。この状態を交流スイッチ104Tによる駆動状態と呼ぶ。
 図4B及び図4Cは、負荷電流を還流電流としてR端子の交流電源(+50V)に流し込むときの状態を示す図である。図4Cでは、交流スイッチ104Rが通電モードであり、T端子と出力端子102とが低抵抗で接続される。これにより、負荷電流が還流電流としてR端子の交流電源(+50V)に流れ込む。この状態を交流スイッチ104Rによる同期整流状態と呼ぶ。
 図4Bでは、誘導性負荷のつながった出力端子102の接続先をT端子からR端子へ切り替える時の中間状態を示している。この状態ではR端子の交流電源(+50V)とT端子の交流電源(-100V)とは2つの逆導通モードのダイオードでつながっているが、ダイオードの向きは2つの該ダイオードともアノードはT端子の-100Vの交流電源側に接続されており、カソードはR端子の+50Vの交流電源側に接続されている。従って該ダイオードの逆耐圧がこの交流電源間の電圧差に対して十分にあれば、R端子とT端子とは絶縁状態である。また、S端子も、図示されているダイオードの向きにより出力端子102、R端子及びT端子とは絶縁されている。また、負荷電流は誘導性負荷を流れるので連続的な電流となる。また、図4Bでは出力端子102とR端子との間の交流スイッチ104Rのスイッチング素子105Bがオフして逆導通モード1となる。これにより、誘導性負荷の影響により負荷電流は出力端子102からR端子の交流電源(+50V)に還流電流として吸い込まれる。このように、T端子の交流電源(-100V)と、R端子の交流電源(+50V)とが短絡することなしに、負荷電流を駆動電流から還流電流へ切り替えることができる。
 ここで、インバータにおいて同じ出力端子を駆動する上armのスイッチング素子と下armのスイッチング素子とが同時にオン動作をすることによりインバータの(+)電源から(-)電源に大電流が流れる状態を避けるために上armと下armのスイッチング素子を同時にオフさせる方法が用いられている。この上armと下armのスイッチング素子を同時にオフさせる期間はデッドタイム期間と呼ばれている。上記の図4Bの状態は、このデッドタイム期間と同様である。そのため、図4Bでの還流電流をデッドタイム時(DT時)還流電流と呼ぶ。
 また、図4B及び図4Cでは負荷電流が還流電流状態であることにより負荷電流値は減少したが、負荷電流値をある一定値に制御するためには、再び負荷電流を駆動電流状態にして負荷電流値を増やす動作が必要となる。そのために、R端子に交流スイッチ104Rを介して接続されていた出力端子102は再び交流スイッチ104Tを介してT端子に接続される。これにより、誘導性負荷の負荷電流は出力端子102からT端子の交流電源(-100V)に駆動電流として吸い込まれる。
 図4Eはその状態を示した図である。図4Eでは、交流スイッチ104Tが通電モードであり、交流スイッチ104Tを介して出力端子102とT端子とが低抵抗状態で接続される。このように、上記の交流スイッチ104Tによる駆動状態に戻る。
 図4Dは、図4Cから図4Eに状態が遷移する間の状態を示す図である。つまり、図4Dの状態は、誘導性負荷のつながった出力端子102の接続先をR端子からT端子へ切り替える時の中間状態を示している。この状態は図4Bと同じ状態で、R端子とT端子とは絶縁状態である。また、S端子も他の端子とは絶縁されている。また、図4Dにおいては交流スイッチ104Rのスイッチング素子105Bがオフして逆導通モード1となる。また、負荷電流は誘導性負荷を流れるために連続的な電流となるので、当該負荷電流は、出力端子102からR端子の交流電源(+50V)にデッドタイム時(DT時)還流電流として吸い込まれる。このように、R端子の交流電源(+50V)と、T端子の交流電源(-100V)とが短絡することなしに、負荷電流を還流電流から駆動電流へ切り替えることができる。
 また、図4Eでは負荷電流が駆動電流状態であることにより負荷電流値は増加したが、負荷電流値をある一定値に制御するためには、再び負荷電流を還流電流状態にして負荷電流値を減少させる動作が必要となる。そのために、T端子に交流スイッチ104Tを介して接続されていた出力端子102を、交流スイッチ104Sを介してS端子に接続する。これにより、誘導性負荷の負荷電流は出力端子102からS端子の交流電源(+50V)に還流電流として吸い込まれる。
 図4Gはその状態を示した図である。図4Gでは、交流スイッチ104Sが通電モードであり、交流スイッチ104Sを介して出力端子102とT端子とが低抵抗状態で接続される。この状態を交流スイッチ104Sによる同期整流状態と呼ぶ。
 図4Fは、図4Eから図4Gに状態が遷移する間の状態を示す図である。つまり、図4Gの状態は、誘導性負荷のつながった出力端子102の接続先をT端子からS端子へ切り替える時の中間状態を示している。この状態は図4B又は図4Dと類似の状態であるので、詳細な説明は省略し結果だけ述べる。この状態では、T端子とS端子とは絶縁状態であり、R端子は他の端子と絶縁されている。また、出力端子102とS端子との間の交流スイッチ104Sのスイッチング素子105Bがオフして逆導通モード1となる。また、負荷電流が誘導性負荷を流れるために、当該負荷電流は連続的な電流になる。よって、この負荷電流は、出力端子102からS端子の交流電源(+50V)にデッドタイム時(DT時)還流電流として吸い込まれる。このように、T端子の交流電源(-100V)と、S端子の交流電源(+50V)とが短絡することなしに、負荷電流を駆動電流から還流電流へ切り替えることができる。
 また、図4Gでは、負荷電流が還流電流状態であるのために負荷電流値は減少したが、負荷電流値をある一定値に制御するためには、再び負荷電流を駆動電流状態にして負荷電流値を増加させる動作が必要となる。この説明のために直接変換回路100に課せられた外的条件として、ある一定の期間においてR端子及びS端子には共に+50Vが印可され、T端子には-100Vが印可されている。この状態が継続している場合は、図4Gに示す交流スイッチ104Sによる同期整流状態から、再び、図4Aに示す交流スイッチ104Tによる駆動状態へ戻る。
 図4Hは、図4Gから図4Aに状態が遷移する間の状態を示す図である。つまり、図4Hの状態は、誘導性負荷のつながった出力端子102の接続先をS端子からT端子へ切り替える時の中間状態を示している。この状態は図4Fと同じ状態で、S端子とT端子とは絶縁状態である。また、R端子は他の端子と絶縁されている。また、図4Hにおいては出力端子102とS端子との間の交流スイッチ104Sのスイッチング素子105Bがオフして逆導通モード1となる。また、負荷電流が誘導性負荷を流れるために当該負荷電流は連続的な電流となる。よって、当該負荷電流は出力端子102からS端子の交流電源(+50V)にデッドタイム時(DT時)還流電流として吸い込まれる。このように、S端子の交流電源(+50V)と、T端子の交流電源(-100V)とが短絡することなしに、負荷電流を還流電流から駆動電流へ切り替えることができる。
 また、前述の直接変換回路100に課せられた外的条件は交流電源に関するものであり、この条件は時間経過により刻々と変化して行く。そのため、ある一定の期間においてR端子及びS端子には共に+50Vが印可され、T端子には-100Vが印可されている状態である。この状態が別の状態に変わった場合は、図4Gの負荷電流は還流電流状態から図4Aの交流スイッチ104Tによる駆動状態へは戻らず、その状態変化に応じて、別の駆動状態になる。従って、直接変換回路100の外的条件が変化した場合、図4A~図4Hにおける図4G以降のスイッチング動作は、マトリックスコンバータの制御方法に応じて、図4Hから図4Aを経由して図4Gまでに対応する別のスイッチング動作状態に変化する。
 この別のスイッチング動作においても直接変換回路100のスイッチング動作は、交流スイッチ104のスイッチング動作の順番が変わるだけで、基本的に図4A~図4Hで説明したものとの同じである。故に本発明の第1の実施形態に直接変換回路100はマトリックスコンバータの直接変換回路として十分に実用的なものであることが説明できた。
 上記で説明したように、交流スイッチ104として用いられるスイッチング素子105は、ドレイン端子とソース端子との間に電流を流した場合、ドレイン/ソース間電圧にIGBTのようなPN接合によるオフセット電圧を有さない。これにより、該スイッチング素子105は、IGBTに比べ、導通損失を小さくできる。従って該交流スイッチ104で構成された直接変換回路100は、IGBTで構成された直接変換回路に比べ導通損失を小さくできる。また、スイッチング素子105が有する図2Cで説明した逆導通特性により、交流スイッチ104はダイオードを持たない構成となる。従って該交流スイッチ104で構成された直接変換回路100は、ダイオードによるPN接合によるオフセット電圧もなく、これによる導通損失をなくすことができる。また、直接変換回路100はダイオードのリカバリー電流によるスイッチング損失の影響も排除できるとともに、ダイオードが減ることにより部品点数の削減と低コスト化と小型化とを実現できる。
 なお、本発明の第1の実施形態に係る交流スイッチ104として、図5Aに図示されている構成を用いてもよい。図5Aに示す交流スイッチ104では、スイッチング素子105A及び105Bのソース端子同士が接続され、この2個のうち一方のもののドレイン端子が出力端子102にされ、もう一方のもののドレイン端子が交流入力端子101に接続されている。
 また、図5Bは、図5Aに示す交流スイッチ104の動作モードを示す図である。図5Bに示すように、図5Aに示す交流スイッチ104は、図3Aに示す交流スイッチ104と同様の働きをすることができる。
 なお、スイッチング素子105は、同期整流用MOSFET等の双方向に電流を流せる既存のスイッチング素子であってもよい。この構成でも本発明の第1の実施形態に係る直接変換回路100は、原理的に動作可能である。この場合も、スイッチング素子105のドレイン端子とソース端子との間に電流を流した場合のドレイン/ソース間電圧にIGBTのようなPN接合によるオフセット電圧を有さないので該スイッチング素子105による導通損失を小さくできる。但し、これらの既存のデバイスではソースとドレインとの間に寄生のPN接合ダイオードが存在し、リカバリー電流によるスイッチング損失が発生する点に注意が必要である。
 (第2の実施形態)
 本発明の第2の実施形態は、上述したスイッチング素子105の具体的な構成の一例を説明する。本発明の第2の実施形態に係るスイッチング素子105は、半導体基板の上に形成された窒化物半導体で構成される半導体積層体と、半導体積層体の上に互いに間隔をおいて形成されたドレイン端子及びソース端子と、ドレイン端子とソース端子との間に形成されたゲート端子とを備える。このスイッチング素子105について図6を用いて説明する。
 図6は、本発明の第2の実施形態に係るスイッチング素子105の断面図である。図6に示すスイッチング素子105は、半導体基板の上に形成された窒化物半導体で構成されるノーマリオフ型のヘテロ接合FETである。このスイッチング素子105は、シリコン基板201(半導体基板)と、バッファ層202と、半導体積層体203と、ソース電極206aと、ドレイン電極206bと、保護膜207と、ゲート電極208と、コントロール層209と、配線210とを含む。また、半導体積層体203は、アンドープの窒化ガリウム層204と、n型の窒化アルミニウムガリウム層205とを含む。
 バッファ層202は、シリコン基板201の上に形成されている。このバッファ層202は窒化アルミニウムと窒化ガリウムとが交互に積層された層である。
 半導体積層体203は、バッファ層202の上に形成されている。この半導体積層体203は、アンドープの窒化ガリウム層204と、n型の窒化アルミニウムガリウム層205とを含む。n型の窒化アルミニウムガリウム層205は、アンドープの窒化ガリウム層204の上に形成されている。この2つの層の間のヘテロ界面近傍には2次元電子ガスが発生する。これにより、当該ヘテロ界面付近のキャリア濃度が高くなる。この領域はFETのチャンネル領域と呼ばれる。
 ソース電極206aは、ソース端子用のオーミック電極であり、ドレイン電極206bは、ドレイン端子用のオーミック電極である。これらのソース電極206a及びドレイン電極206bは、半導体積層体203の上に形成されており、チャンネル領域とオーミック接合する。また、ソース電極206a及びドレイン電極206bは配線210と接続されている。このソース電極206a及びドレイン電極206bは、本発明の第1電極及び第2電極に相当し、上記ソース端子及びドレイン端子として機能する。
 コントロール層209は、FET特性を制御するp型半導体層であり、ソース電極206aとドレイン電極206bとの間の領域、かつn型の窒化アルミニウムガリウム層205の上に形成されている。
 ゲート電極208は、コントロール層209の上には形成されており、コントロール層209とオーミック接触している。このゲート電極208に与えられる電気信号により、ノーマリオフ型のヘテロ接合FETすなわちスイッチング素子105のドレイン端子からソース端子へ流れる電流が制御される。つまり、このゲート電極208は、上記ゲート端子として機能する。
 ここで、図6に示すように、ドレイン電極206bからゲート電極208までの距離は、ソース電極206aからゲート電極208までの距離より長い。これは、ドレイン端子とゲート端子との間の耐圧を、ソース端子とゲート端子との間の耐圧より大きくするためである。なお、このような窒化物半導体で構成されるノーマリオフ型のヘテロ接合FETの形成方法についての詳細な説明は上記特許文献2に詳しく記載されているのでこれ以上の説明は省略する。
 図6に示すスイッチング素子105は、IGBTのように高耐圧であり、かつ大電流駆動できるデバイスである。さらに、このスイッチング素子105は、IGBTの電流電圧特性におけるPN接合によるオフセット電圧を持たずに、図2A及び図2Bで図示したような双方に電流を流す特性を有する。さらに、スイッチング素子105は、そのオン抵抗値Ronを小さくでき、かつその面積を非常に小さくできる。さらに、スイッチング素子105は、図2Cに図示した逆導通特性をも有する。それに加え、スイッチング素子105は、少数キャリアによる蓄積効果がほとんどなく、IGBTのようなターンオフ時のテール電流効果もほとんどない。
 故に、このスイッチング素子105を用いた交流スイッチ104で構成された直接変換回路100は、従来のIGBTで構成された直接変換回路に比べ、導通損失を大幅に小さくできる。またダイオードがないため、ダイオードのリカバリー電流によるスイッチング損失の影響も排除できる。また、ダイオードが減ることにより、直接変換回路100は、部品点数の削減と低コスト化と小型化とが可能となる。さらに、直接変換回路100は、IGBTに存在するターンオフ時のテール電流もほとんどないために、この効果によりIGBTで構成した直接変換回路よりさらにスイッチング損失をへらし、より高速にスイッチング動作できる。
 (第3の実施形態)
 本発明の第3の実施形態では、上述した交流スイッチ104の具体的な構成の一例であって、上記第2の実施形態とは異なる例を説明する。本発明の第3の実施形態に係る交流スイッチ104は、半導体基板の上に形成された窒化物半導体で構成される半導体積層体と、半導体積層体の上に互いに間隔をおいて形成された第1出力端子及び第2出力端子と、第1出力端子と第2出力端子との間に形成された第1ゲート端子と第2ゲート端子を備える。この交流スイッチ104について図7を用いて説明する。
 図7は、本発明の第3の実施形態に係る交流スイッチ104の断面図である。この交流スイッチ104は、第2の実施形態で説明した、図6に図示したノーマリオフ型のヘテロ接合FETを、2個直列に並べるとともに、そのFETのドレイン端子部分のチャンネル領域を共通にした構成である。
 この交流スイッチ104は、シリコン基板211(半導体基板)と、バッファ層212と、半導体積層体213と、オーミック電極216a及び216bと、保護膜217と、ゲート電極218a及び218bと、コントロール層219a及び219bと、配線220とを含む。
 バッファ層212は、シリコン基板211の上に形成されている。このバッファ層212は窒化アルミニウムと窒化ガリウムとを交互に積層された層である。
 半導体積層体213は、バッファ層212の上に形成されている。この半導体積層体213は、アンドープの窒化ガリウム層214と、n型の窒化アルミニウムガリウム層215とを含む。n型の窒化アルミニウムガリウム層215は、アンドープの窒化ガリウム層214の上に形成されている。この2つの層の間のヘテロ界面近傍には2次元電子ガスが発生する。これにより、当該ヘテロ界面付近のキャリア濃度が高くなる。この領域はFETのチャンネル領域と呼ばれる。
 オーミック電極216a及び216bは、半導体積層体213の上に形成されている。オーミック電極216aは、第1の出力端子である第1のソース端子用のオーミック電極である。オーミック電極216bは、第2の出力端子である第2のソース端子用のオーミック電極である。このオーミック電極216a及び216bは、チャンネル領域とオーミック接合する。また、各オーミック電極216a及び216bは、配線220と接続されている。このオーミック電極216a及び216bは、本発明の第1電極及び第2電極に相当し、上記スイッチング素子105A及び105Bのソース端子として機能する。
 コントロール層219a及び219bは、オーミック電極216aとオーミック電極216bとの間の領域、かつn型の窒化アルミニウムガリウム層215の上に形成されている。このコントロール層219a及び219bは、FET特性を制御するp型半導体層である。
 ゲート電極218aはコントロール層219aの上に形成されており、ゲート電極218bは、コントロール層219bの上に形成されている。コントロール層219aとゲート電極218aとはオーミック接触しており、コントロール層219bとゲート電極218bとはオーミック接触している。このゲート電極218a及び218bは、交流スイッチ104の2つのゲート端子として機能する。
 前述したように、交流スイッチ104は1つのゲート端子を有するノーマリオフ型のヘテロ接合FETを、2個直列に並べたうえで、そのFETのドレイン端子部分のチャンネル領域を共通にした構成である。ゲート電極218aに与えられる電気信号に応じて、ゲート電極218aを有する第1のノーマリオフ型のヘテロ接合FETは、もう一つの第2のヘテロ接合FETと共有しているドレイン領域からソース端子へ流れる電流を制御する。同様に、第2のゲート電極218bに与えられる電気信号に応じて、ゲート電極218bを有する第2のノーマリオフ型のヘテロ接合FETは、もう一つの第1のヘテロ接合FETと共有しているドレイン領域からソース端子へ流れる電流を制御する。
 なお、図7では、ゲート電極218aからゲート電極218bまでの距離がゲート電極218aからオーミック電極216aまでの距離及びゲート電極218bからオーミック電極216bまでの距離より長い。これは、ゲート電極218aとゲート電極218bとの間の領域は、先ほど説明したように、2つのヘテロ接合FETを直列に接続したときの共有のドレイン領域であるためである。つまり、第2の実施形態で説明したように、ドレイン端子とゲート端子との間の耐圧のほうがソース端子とゲート端子との間の耐圧より大きいことが要求されているからである。また、このような窒化物半導体で構成されるノーマリオフ型のヘテロ接合FETの形成方法についての詳細な説明は上記特許文献2に詳しく記載されているのでこれ以上の説明は省略する。
 図7のように形成された交流スイッチ104は、前述の第2の実施形態で説明した効果を有する。それに加え、第2の実施形態では2個のスイッチング素子105が必要であったが、第3の実施形態では1個のスイッチング素子を用いて交流スイッチを構成する。これにより、直接変換回路100に用いられるスイッチング素子の個数が減るので、直接変換回路100をより小型化できる。
 また、交流スイッチ104は、ドレイン領域を共有した構成のため、交流スイッチ104のサイズを、スイッチング素子105を2個直列に接続した場合のサイズに比べ、小さくできる。
 (第4の実施形態)
 第4の実施形態では、上述した直接変換回路100を駆動する方法及びこれらの直接変換回路100を駆動するマトリックスコンバータ制御装置について説明する。具体的には、3相交流電圧から1相PWM信号を出力する3相交流入力1相PWM出力のマトリックスコンバータ制御装置について説明する。
 図8は、本発明の第4の実施形態に係るマトリックスコンバータ制御装置300のブロック図である。
 図8に示すマトリックスコンバータ制御装置300は、3相交流信号を、PWMを用いて1相交流信号に変換する。このマトリックスコンバータ制御装置300は、入力電圧検出回路310と、PWM制御部320と、3相交流入力1相PWM出力のマトリックスコンバータ330とを備える。また、マトリックスコンバータ330は、直接変換回路100と、駆動制御部360とを備える。
 ここで、入力電圧検出回路310、PWM制御部320、及び駆動制御部360は、第1の実施形態で述べたマトリックスコンバータ制御部に相当する。
 入力電圧検出回路310は、交流入力端子101に供給される3相交流入力電圧を検出する。この入力電圧検出回路310は、3相交流入力電圧に応じてゲート制御回路332を制御するためのゲート制御信号を生成する。具体的には、入力電圧検出回路310は、3相交流入力信号の各相の電圧値を検出する。
 駆動制御部360は、PWM制御信号を用いて6つのゲート信号を生成することにより、直接変換回路100を制御する。
 具体的には、駆動制御部360は、所定の期間ごとに、入力電圧検出回路310の検出結果を用いて、3相交流信号のうち電圧の絶対値が最も高い相の信号である第1相信号と、3相交流信号のうち第1相信号以外の第2相信号と、3相交流信号のうち第1相信号及び第2相信号以外の第3相信号とを判別する。そして、駆動制御部360は、交流入力端子101を介して第3相信号が供給される交流スイッチ104である第3交流スイッチを遮断状態とする。また、駆動制御部360は、交流入力端子101を介して第1相信号が供給される交流スイッチ104である第1交流スイッチと、交流入力端子101を介して第2相信号が供給される交流スイッチ104である第2交流スイッチとを用いて、第1相信号及び第2相信号から1相交流信号を生成し、生成した1相交流信号を出力端子102へ出力する。
 また、駆動制御部360は、第1相信号以外の2つの相の信号のうち、第2相信号と判別する信号を、所定の期間ごとに切り替える。
 この駆動制御部360は、ゲート制御回路332と、PWM駆動信号生成回路331とを備える。
 PWM制御部320は、PWM制御信号「PWM」と、PWM駆動タイミング信号「CK12」を生成する。PWM制御信号は、直接変換回路100に供給される6つのゲート信号の元となる信号である。このPWM制御部320は、三角波を生成する三角波回路321と、比較器322とを備える。比較器322は、三角波回路321により生成された三角波と正弦波プロファイルとを比較することによりPWM制御信号を生成する。
 PWM駆動信号生成回路331は、PWM制御信号を用いてPWM駆動信号「LG」及び「UG」を生成する。
 ゲート制御回路332は、PWM駆動信号「LG」及び「UG」とPWM駆動タイミング信号「CK12」とゲート制御信号とに応じて6つのゲート信号を生成する。このゲート制御回路332は、下段ゲート制御回路335と、上段ゲート制御回路336とを含む。下段ゲート制御回路335は、PWM駆動信号「LG」とPWM駆動タイミング信号「CK12」とゲート制御信号とに応じて、3つのスイッチング素子105Aに供給する3つのゲート信号を生成する。上段ゲート制御回路336は、PWM駆動信号「UG」とPWM駆動タイミング信号「CK12」とゲート制御信号とに応じて、3つのスイッチング素子105Bに供給する3つのゲート信号を生成する。
 図9は、図8に図示したマトリックスコンバータ制御装置300の動作時のタイミング波形を示す図である。この図を用いてマトリックスコンバータ制御装置300の動作を説明する。
 3相交流電源は文字通り交流であるため、経時的に電源電圧が変化する。図9ではこの交流電源の変化を時間的な変化でなく、電気角の変化で記述している。また、図9では紙面の制約上の理由で交流入力電源の電気角が0度から210度までの場合しか描かれていない。しかしながら、このマトリックスコンバータ制御装置300の駆動方法の説明は、基本的には図9のタイミング図で30度から150度の区間の動作説明をすれば、十分に理解できる。以後、この30度から150度の区間について動作を説明する。
 図9の各信号の名称は図8に図示した信号名に対応している。図9の上側にある3つの正弦波波形はR端子、S端子、及びT端子に入力される3相交流電源の電圧波形である。この説明では各交流電源電圧は-100Vから+100Vまでの範囲を正弦波状に変化し、各交流電源の位相は120度ずつずれているとしている。図9において、この3相の交流入力端子電圧の上に、150V近辺に破線で図示されている波形についてはこの後でマトリックスコンバータの制御方法の説明について使う波形である。この波形については、そこで説明する。
 3相の交流入力端子電圧の下にある「正弦波プロファイル」と「三角波」と「PWM」と「CK12」は図8に図示されているPWM制御部320に関する信号である。
 「正弦波プロファイル」は、実使用においてはこのマトリックスコンバータ330の出力端子102のPWM出力電圧の平均値を正弦波状に出力するための信号である。この信号と「三角波」とから比較器322を用いてPWM信号「PWM」を生成する。「正弦波プロファイル」を任意の周波数の正弦波波形にすると、「PWM」はそのデューティが「正弦波プロファイル」と同じ正弦波状のPWM信号となる。この実施形態の説明では、図9での説明をしやすくするために「正弦波プロファイル」は、「PWM」のデューティがある固定値となるように、DC値としている。なお、この実施形態ではPWM信号「PWM]を生成するために、PWM制御部320に、「正弦波プロファイル」信号と「三角波」信号を導入しているが、必ずしもこのようにする必要はなく、デジタル的な信号処理でPWM信号「PWM」を生成してもよい。
 「CK12」は、図8に図示されているPWM制御部320で生成されるPWM駆動タイミング信号である。このPWM駆動タイミング信号「CK12」は、ゲート制御回路332で生成されるゲート信号の制御に用いられる。また、このPWM駆動タイミング信号「CK12」は、PWM信号「PWM」に同期して出力される。後で説明するが、マトリックスコンバータ制御装置300の出力端子102から出力されるPWM出力は2回のPWM動作の出力をひとつのPWM出力と考えて制御されている。「CK12]はこの2回のPWM動作を切り替えるために用いられる信号である。
 「UG」及び「LG]は、図8に図示されているPWM駆動信号生成回路331から出力されるPWM駆動信号であり、PWM信号「PWM」が波形整形された信号である。この「UG」及び「LG」は、図11に図示されている通常の半ブリッジ・インバータ回路にも用いられるPWM信号である。なお、この半ブリッジ・インバータ回路については後で説明する。「UG」はインバータの上アームのスイッチング素子の駆動信号であり、「LG」はインバータの下アームのスイッチング素子の駆動信号である。
 「RG2」、「RG1」、「SG2」、「SG1」、「TG2」、「TG1」は図8に図示されている6つのスイッチング素子105の各ゲート電圧信号(ゲート/ソース間電圧)である。この後の説明と関連づけるために「RG2」、「SG2」及び「TG2」を下側ゲート電圧信号と呼び、「RG1」、「SG1」及び「TG1」を上側ゲート電圧信号と呼ぶ。
 「RG2」、「SG2」及び「TG2」は、上記の「CK12」及び「LG」と、入力電圧検出回路310で生成されるゲート制御信号とを用いて、ゲート制御回路332で波形整形された信号である。この「RG2」、「SG2」及び「TG2」は、「LG]信号の立下りエッジのタイミングで波形整形されて出力される。
 「RG1」、「SG1」及び「TG1」は、上記の「CK12」及び「UG」と、図8に図示されている入力電圧検出回路310で生成されたゲート制御信号とを用いて、ゲート制御回路332で波形整形された信号である。この「RG1」、「SG1」及び「TG1」は「UG]信号の立ち上りエッジのタイミングで波形整形されて出力される。
 ゲート電圧信号「RG2」、「RG1」、「SG2」、「SG1」、「TG2」、及び「TG1」が図9に図示されているようになると、マトリックスコンバータ330の出力端子102に出力されるPWM出力電圧は、図9に図示されている「出力端子電圧」のような波形となる。この図9の場合では、図4A~図4Hに図示されているように、負荷電流は出力端子102から吸い込まれるものと設定している。
 また、図9の「出力端子電圧」のPWM波形は、「正弦波プロファイル」をDC値に設定した状態での、マトリックスコンバータの適切な出力波形となっている。「正弦波プロファイル」をDC値に設定することで、「PWM」のデューティをある固定値にできる。このように、本発明に係るマトリックスコンバータ制御装置300が適切な制御動作をしていることがわかる。ちなみに、第1の実施形態において図4A~図4Hで説明した直接変換回路100の動作は、図9では交流入力電気角の30度から50度直前の状態である。さらに話が逸脱するが、図9では、PWM制御信号「PWM」の周波数は、便宜上、交流電源の周波数の36倍にしている。実際の使用では、一般的に「PWM」の周波数は交流電源の周波数の100倍以上となっている。
 図10は、図8で図示されている入力電圧検出回路310、PWM駆動信号生成回路331及びゲート制御回路332の具体的な構成を示す図である。この図10を用いて、これらの動作を説明する。なお、各信号の極性は以下に例示する通りである必要は無く、技術の常識の範囲で極性は任意に設定してよい。
 入力電圧検出回路310は、交流入力端子101であるR端子、S端子及びT端子に入力される各交流電源電圧R、S及びTの各々についてのゼロクロス検出部311R、311S及び311Tを備える。なお、ゼロクロス検出部311R、311S及び311Tを特に区別しない場合には、ゼロクロス検出部311と記す。このゼロクロス検出部311は、入力電圧が0V以上であればHレベルを出力し、入力電圧が0V以下であればLレベルを出力する。入力電圧検出回路310は、3つのゼロクロス検出部311を用いて、3相交流電源の各交流電源電圧のゼロクロスを検出して、各相に対応するゲート制御信号RD、SD及びTDをゲート制御回路332へ出力する。
 PWM駆動信号生成回路331は図10に図示されていないPWM制御部320から送られてきたPWM制御信号を、図10に図示されている遅延回路で構成された回路で処理して、2つのPWM駆動信号「UG」及び「LG」を生成する。具体的には、図9に示すように、「UG」及び「LG」は「PWM」に同期した信号である。また、「UG」及び「LG」は、その一方がHレベル(アクティブ)の場合に、他方がLレベル(非アクティブ)となる。また、「UG」及び「LG」の一方がHレベルになる期間と、他方がLレベルになる期間との間には、「UG」及び「LG」の両方がLレベルになる期間が存在する。
 また、前述したように、「UG」及び「LG」は、この後で説明する、図11に図示されている通常の半ブリッジ・インバータ回路に用いられるPWM駆動信号と同様である。「UG」はインバータの上アームのスイッチング素子の駆動信号であり、「LG」はインバータの下アームのスイッチング素子の駆動信号である。本発明の第4の実施形態に係るマトリックスコンバータ制御装置300では「UG」及び「LG」は直接変換回路100の交流スイッチ104を駆動するゲート電圧信号を生成するために用いられる。
 ゲート制御回路332は、図10に図示されているように、3つの下段ゲート制御部337R、337S及び337Tと、3つの上段ゲート制御部338R、338S及び338Tとを備える。なお、下段ゲート制御部337R、337S及び337Tを特に区別しない場合には、下段ゲート制御部337と記す。同様に、上段ゲート制御部338R、338S及び338Tを特に区別しない場合には、上段ゲート制御部338と記す。
 3つの下段ゲート制御部337は3つとも同じ回路構成である。同じく3つの上段ゲート制御部338も3つとも同じ回路構成である。3つの下段ゲート制御部337は前述した直接変換回路100の下側ゲート電圧信号「RG2」、「SG2」及び「TG2」の基となる下側ゲート信号「RG2a」、「SG2a」及び「TG2a」を生成する。同様に3つの上段ゲート制御部338は前述した直接変換回路100の上側ゲート電圧信号「RG1」、「SG1」及び「TG1」の基となる上側ゲート信号「RG1a」、「SG1a」及び「TG1a」を生成する。
 各下段ゲート制御部337は、入力電圧検出回路310から供給されるゲート制御信号「RD」、「SD」及び「TD」と、PWM制御部320から供給されるPWM駆動タイミング信号「CK12」と、PWM駆動信号生成回路331から供給されるPWM信号「LG」とを、図10に図示されている回路で信号処理することで、下側ゲート信号「RG2a」、「SG2a」及び「TG2a」を生成する。ここで、下側ゲート信号「RG2a」、「SG2a」及び「TG2a」は、図9に示された下側ゲート電圧信号「RG2」、「SG2」及び「TG2」と同じタイミングで変化する信号である。
 同様に、各上段ゲート制御部338は、入力電圧検出回路310から供給されるゲート制御信号RD、SD及びTDと、PWM制御部320から供給されるPWM駆動タイミング信号CK12と、PWM駆動信号生成回路331から供給されるPWM信号「UG」とを、図10に図示されている回路で信号処理することで、上側ゲート信号RG1a、SG1a及びTG1aを生成する。この上側ゲート信号RG1a、SG1a及びTG1aは、図9に示された下側ゲート電圧信号RG1、SG1及びTG1と同じタイミングで変化する信号である。
 以上のようにして図10に図示された入力電圧検出回路310とPWM駆動信号生成回路331とゲート制御回路332は、図9に図示されたタイミング波形を実現する適切な実施形態であることがわかった。また、この実施形態からわかるように、本発明の第4の実施形態に係るマトリックスコンバータ制御装置300は、本発明の第1の実施形態から第3の実施形態に係る直接変換回路100を用いて、複雑なデジタル処理をすることなしに簡単なロジック回路でマトリックスコンバータ動作を実現できる。
 なお、図9に図示されたマトリックスコンバータ制御装置300の出力波形は、本発明に係る直接変換回路100を念頭においてマトリックスコンバータ330にこの直接変換回路100の適用を考えた時に考案した波形図である。この考え方は、通常のインバータに、本発明の第1の実施形態に係る交流スイッチ104を適用した場合の考え方を基に、その考えを拡張することにより、達成したものである。この点について以下に説明をする。これにより、本発明に係る直接変換回路100と、本発明に係るマトリックスコンバータの制御方法又はマトリックスコンバータ制御装置300とを加え合わせることで、いかに簡単に、かつ直感的に、従来のインバータ制御装置又はインバータ駆動方法から新たなマトリックスコンバータ制御装置300又はマトリックスコンバータ駆動方法が生み出せるかを理解できるはずである。
 図11は従来からある半ブリッジ・PWM出力のインバータ制御装置500のブロック図である。このインバータ制御装置500は、半ブリッジ・インバータ回路510と、PWM制御部520と、PWM駆動信号生成回路531とを備える。
 ここでは、半ブリッジ・インバータ回路510の出力段のスイッチング素子としてパワーMOSFET等のデバイスを想定している。該スイッチング素子に並列に接続されているダイオードはパワーMOSFET等に寄生するダイオード又は外付けのフリーホイール・ダイオードを意味している。これらのデバイスは、高電圧のDC電源電圧が供給されるDC入力端子Pと、低電圧のDC電源電圧が供給されるDC入力端子Nと、出力端子とに対して、図11の半ブリッジ・インバータ回路510内に図示されているように接続される。
 PWM制御部520は、図8に図示したマトリックスコンバータ制御装置300のPWM制御部320に対して、PWM駆動タイミング信号「CK12」を生成する点を除けば、基本的には同じものである。
 PWM駆動信号生成回路531は、図8に図示したPWM駆動信号生成回路331と同じものである。PWM駆動信号生成回路531が生成するPWM信号「UG」は、半ブリッジ・インバータ回路510のレベルシフト回路と上アームのプリドライブ回路とを介して上アームのスイッチング素子のゲートを駆動する。これにより、上アームのスイッチング素子がオン動作する。その結果、出力端子は該上アームのスイッチング素子を介在してDC入力端子Pに短絡した状態になる。
 PWM駆動信号生成回路531により生成されるPWM信号「LG」は、半ブリッジ・インバータ回路510のレベルシフトと下アームのプリドライブ回路とを介して下アームのスイッチング素子のゲートを駆動する。これにより、下アームのスイッチング素子がオン動作する。その結果、出力端子は該下アームのスイッチング素子を介在してDC入力端子Nに短絡した状態になる。
 該2つのスイッチング素子が同時にオン動作すると、上記DC入力端子PとDC入力端子Nとが該2つスイッチング素子を介して短絡状態になるために、高電圧のDC電源電圧から低電圧のDC電源電圧へ大電流が流れる貫通状態に至る。この状態を防止するために該2つのスイッチング素子が同時にオフしている状態を経由して、2つのスイッチング素子のオンとオフとを切り換える。この2つのスイッチング素子のそれぞれオンとオフとの切り換り遷移時において該2つのスイッチング素子が同時にオフしている状態はデッドタイムと呼ばれる。この期間では、該2つのスイッチング素子はともにオフしているので出力端子に接続されている誘導性負荷の負荷電流は、上記のダイオードを経由して、DC入力端子P又はDC入力端子Nに流れる。
 以上が、図11に図示されている半ブリッジ・PWM出力のインバータ制御装置500の動作である。次に、図9に示すタイミング波形を見直して、そこから、本発明に係るマトリックスコンバータ制御装置300と、図11に図示されたインバータ制御装置500における半ブリッジ・インバータ回路510との動作の関連性を考察する。
 図12A、図12B、図12C及び図12Dはそれぞれ、図9において、交流入力電気角が30度前後、40度前後、90度前後及び100度前後でのスイッチング素子105の各ゲート状態を示す図である。
 図12Aにおいて、+50Vが印可されている端子Rを図11の半ブリッジ・インバータ回路510のDC入力端子Pとみなして、-100Vが印可されている端子Tを図11の半ブリッジ・インバータ回路510のDC入力端子Nとみなす。そうすると、図12Aの状態は、図11の半ブリッジ・インバータ回路510においてDC入力端子Pに50Vを印可し、DC入力端子Nには-100Vを与えた場合での上記インバータ動作と等価であることが図3Bの説明からわかる。同様に図12Bにおいても端子Rを端子Sに置き換えれば、この等価性が成り立つことが判る。
 図12Cと図12Dでは、+100Vが印可されている端子Rを図11の半ブリッジ・インバータ回路510のDC入力端子Pとみなす。図12Cの場合では-50Vが印可されている端子Sを図11の半ブリッジ・インバータ回路510のDC入力端子Nとみなす。図12Dの場合では-50Vが印可されている端子Tを図11の半ブリッジ・インバータ回路510のDC入力端子Nとみなす。そうすると、図12C及び図12Dの状態は、図11の半ブリッジ・インバータ回路510においてDC入力端子Pに100Vを印可し、DC入力端子Nには-50Vを与えた場合での上記インバータ動作と等価であることが図3Bの説明からわかる。
 以上のことから、マトリックスコンバータを設計する上での第1の観点として判ったことは以下の通りである。
 (マトリックスコンバータ設計上の第1の観点)
 本発明に係る直接変換回路100を従来の半ブリッジ・インバータ回路510に置き換え、従来の半ブリッジ・インバータ回路510のPWM駆動信号「UG」及び「LG」を直接変換回路100の6つのゲート端子にうちのある特定の2つのゲート端子に印可して、かつ他の4つのゲート端子の条件を適切に設定する手段が確立できたなら、3相交流電源のうち2相の交流電源を意図的に選択できる。そして、選択した電源間で半ブリッジ・インバータ回路510と同様の動作が可能となる。
 直接変換回路100のこの6つのゲート端子の条件を常に適切に与える手段があれば、絶えず3相交流電源の正電圧の交流電源から負荷を駆動する電流を吐き出させ、かつ、3相交流電源の負電圧の交流電源に負荷電流を吸い込ませる動作を、直接変換回路100を用いて実現できる。
 この第1の観点では、直接変換回路100を用いて3相交流電源を半ブリッジ・インバータ回路510の2つのDC電源のように利用して負荷電流を取り出せることは確認できた。しかし、3相交流電源は経時的に変化するために3相交流電源から取り出した2つの電源を、DC電源とみなせるように、当該2つの電源を選択して取り出す方法を確立する必要がある。これをマトリックスコンバータ設計上の第2の観点と考えると、以下の方法が電源の選択方法として直感的にも判りやすく、本発明ではこの方法を第2の観点として用いた。
 (マトリックスコンバータ設計上の第2の観点)
 3相交流電源の全交流入力角360度を60度毎の6つの領域にわけ、各領域での交流電源電圧の絶対値が最大の相を選択する。
 絶対値が最大の相の交流電源電圧が負電圧であるならば、その相を半ブリッジ・インバータ回路510のDC入力端子Nとなるように設定し、他の2相を交代にDC入力端子Pとなるように電源を選択する。
 絶対値が最大の相の交流電源電圧が正電圧であるならば、その相を半ブリッジ・インバータ回路510のDC入力端子Pとなるように設定し、他の2相を交代にDC入力端子Nとなるように電源を選択する。
 この第2の観点を説明するために上記の図9を参照する。図9において、3相の交流入力端子電圧の上に、150V近辺に破線で図示されている波形は、上記の第2の観点を説明するための波形である。上記の第2の観点に基づいて3つの交流電源から2つの電源を選択して半ブリッジ・インバータ回路510と同様の動作をすれば、この仮想の半ブリッジ・インバータ回路のDC入力端子PとDC入力端子Nとの間の電圧差は点線波形の形状となる。言い換えるとこの点線波形は、該仮想インバータの電源電圧の平均値である。なお、この点線波形の電圧値は交流入力電気角に対して、完全なDC値とはなっていないが、マトリックスコンバータとしては十分に動作可能なものである。また実際の使用では、一般的に負荷電流に対して電流量の負帰還動作をさせるので、この点線波形の電圧値が完全なDC値となっていないことは問題とはならない。
 また、上記のPWM駆動タイミング信号CK12は上記のマトリックスコンバータ設計上の第2の観点の半ブリッジ・インバータ回路510のDC入力端子として3相の交流電源のうち、選択する2相を交互に入れ代えるために使われている。
 以上のように、第4の実施形態は、上記第1から第3の実施形態の直接変換回路を駆動する方法及びこれらの直接変換回路を駆動するマトリックスコンバータ制御装置に関するものであり、特に3相交流入力信号からPWMを用いて1相交流出力信号を生成する3相交流入力1相PWM出力マトリックスコンバータ制御装置に関するものであった。
 この第4の実施形態では、該直接変換回路100がもつ上記マトリックスコンバータ設計上の第1の観点の特長を生かし、かつ上記マトリックスコンバータ設計上の第2の観点の3相交流電源の選択方法を取り入れた。これにより、図11に図示した従来の半ブリッジ・PWM出力インバータ制御装置500に、図8で図示されている直接変換回路100と簡単なロジック回路のゲート制御回路332と入力電圧検出回路310とをつけ加えただけのマトリックスコンバータ制御装置300の構成で、簡単にかつ直感的に、既存の半ブリッジ・PWMインバータ制御装置500の駆動システムから該マトリックスコンバータ制御装置300へのシステム変更ができる。
 (第5の実施形態)
 第5の実施形態では、上述した第4の実施形態に係るマトリックスコンバータ制御装置の変形例について説明する。
 図13は、第5の実施形態に係るマトリックスコンバータ制御装置301のブロック図である。このマトリックスコンバータ制御装置301は、図8に図示された第4の実施形態に係るマトリックスコンバータ制御装置300にPWMゲイン補正回路340を付け加えた構成である。
 このマトリックスコンバータ制御装置301では、入力電圧検出回路310は、3相の交流入力の各入力振幅電圧の関係に応じてPWM出力補正信号341を生成する。具体的には、PWM出力補正信号341は、3相交流信号のうち、最も絶対値が大きい第1相信号と、それ以外の第2相信号との差分の絶対値を示す。
 PWMゲイン補正回路340は、上記PWM出力補正信号341に応じてPWMゲイン補正信号342を生成する。このPWMゲイン補正信号342は、PWM出力補正信号341で示される差分の絶対値が一定の場合に生成される1相交流信号に、直接変換回路100が生成する1相交流信号が近づくように、PWM制御信号を補正するための信号である。
 PWM制御部320は、PWMゲイン補正信号342に応じてPWM制御信号のPWMデューティを補正する。
 この一連の動作は、図9において一番上に破線で図示されている、3つの交流電源から2つの電源を選択して半ブリッジ・インバータ回路動作をした時の仮想の半ブリッジ・インバータ回路の電源電圧の平均値を補正するように作用する。これにより、この仮想の半ブリッジ・インバータ回路の電源電圧の平均値を交流入力電気角に対してよりDC値に近づけることができる。
 この仮想の半ブリッジ・インバータ回路の電源電圧の平均値に対する補正は、第4の実施形態の説明においても述べたが、一般的に負荷電流に対して電流量の負帰還動作をさせた場合はあまり重要でない。一方で、負荷電流に対して電流量の負帰還動作をさせないマトリックスコンバータの制御システムでは、負荷電流に交流電気角に対するリップルを減らす効果がある。
 (第6の実施形態)
 第6の実施形態では、上記第1から第3の実施形態の直接変換回路100を用いた3相交流電圧から2相PWM信号を生成する3相交流入力2相PWM出力のマトリックスコンバータ制御装置を説明する。なお、以下では、第4の実施形態との相違点を主に説明し、重複する説明は省略する。
 図14は、本発明の第6の実施形態に係る3相交流入力2相PWM出力のマトリックスコンバータ制御装置302のブロック図である。
 図14に示すマトリックスコンバータ制御装置302は、3相交流信号を、パルス幅変調を用いて2相交流信号に変換する。このマトリックスコンバータ制御装置302は、入力電圧検出回路310と、PWM制御部320と、3相交流入力2相PWM出力のマトリックスコンバータ350とを備える。
 3相交流入力2相PWM出力のマトリックスコンバータ350は、2個の3相交流入力1相PWM出力のマトリックスコンバータ330F及び330Rを含む。これらのマトリックスコンバータ330F及び330Rは、図8に図示された3相交流入力1相PWM出力のマトリックスコンバータ330と同様の構成である。マトリックスコンバータ制御装置302は、この2つのマトリックスコンバータ330F及び330Rの2つの出力端子間に接続されている負荷を駆動する。
 また、図14に示す入力電圧検出回路310の機能は、図8に図示された入力電圧検出回路310と同様である。また、図14に示すPWM制御部320は、図8に図示されたPWM制御部320に対して、マトリックスコンバータ330Fに供給するPWM制御信号FPWMCを生成し、マトリックスコンバータ330Rに供給するPWM制御信号RPWMCを生成する点が異なる。
 この構成により、本発明の第1から第3の実施形態に係る直接変換回路100を適切に駆動する3相交流入力2相PWM出力のマトリックスコンバータ制御装置302を実現できる。
 図15は、従来からあるDC電源から任意の周波数の交流電力を取り出す既存のHブリッジ・PWMのインバータ制御装置501の構成を示すブロック図である。
 また、第6の実施形態に係るマトリックスコンバータ制御装置302は、図15に図示するHブリッジ・PWMのインバータ制御装置501の駆動システムからシステム変更を容易にできるという特長を有する。
 なお、このマトリックスコンバータ制御装置302の駆動方法は、図15に図示するインバータ制御装置501の駆動方法と、第4の実施形態で説明したマトリックスコンバータ制御装置300の駆動方法及び設計方法から容易に導き出せるので、詳細な説明は省略する。
 (第7の実施形態)
 第7の実施形態では、上述した第6の実施形態に係るマトリックスコンバータ制御装置に、上述した第5の実施形態と同様の変形を行った場合について説明する。
 図16は、本発明の第7の実施形態に係る3相交流入力2相PWM出力のマトリックスコンバータ制御装置303のブロック図である。
 このマトリックスコンバータ制御装置303は図14に図示された第6の実施形態に係るマトリックスコンバータ制御装置302にPWMゲイン補正回路340を付け加えた構成である。
 このマトリックスコンバータ制御装置303では、入力電圧検出回路310は、3相の交流入力の各入力振幅電圧の関係に応じてPWM出力補正信号341を生成する。PWMゲイン補正回路340は、上記PWM出力補正信号341に応じてPWM制御部320で生成されたPWM制御信号FPWMC及びRPWMCを補正するためのPWMゲイン補正信号342を生成する。PWM制御部320は、該PWMゲイン補正信号342に応じてPWM制御信号FPWMC及びRPWMCのPWMデューティを補正する。
 この一連の動作は、図9において一番上に破線で図示されている、3つの交流電源から2つの電源を選択して半ブリッジ・インバータ回路動作をした時の仮想の半ブリッジ・インバータ回路の電源電圧の平均値を補正するように作用する。これにより、この仮想の半ブリッジ・インバータ回路の電源電圧の平均値を交流入力電気角に対してよりDC値に近づけることができる。
 この仮想の半ブリッジ・インバータ回路の電源電圧の平均値に対する補正は、第4の実施形態の説明においても述べたが、一般的に負荷電流に対して電流量の負帰還動作をさせた場合はあまり重要でない。一方で、負荷電流に対して電流量の負帰還動作をさせないマトリックスコンバータの制御システムでは、負荷電流に交流電気角に対するリップルを減らすことに効果がある。
 (第8の実施形態)
 第8の実施形態では、上記第1から第3の実施形態に係る直接変換回路100を用いた3相交流入力信号から3相PWM信号を生成する3相交流入力3相PWM出力のマトリックスコンバータ制御装置について説明する。
 図17は、本発明の第8の実施形態に係る3相交流入力3相PWM出力のマトリックスコンバータ制御装置304のブロック図である。
 図17に示すマトリックスコンバータ制御装置304は、3相交流信号を、パルス幅変調を用いて3相交流信号に変換する。このマトリックスコンバータ制御装置304は、入力電圧検出回路310と、PWM制御部320と、3相交流入力3相PWM出力のマトリックスコンバータ351とを備える。
 3相交流入力3相PWM出力のマトリックスコンバータ351は、3個の3相交流入力1相PWM出力のマトリックスコンバータ330U、330V及び330Wを含む。これらのマトリックスコンバータ330U、330V及び330Wは、図8に図示された3相交流入力1相PWM出力のマトリックスコンバータ330と同様の構成である。マトリックスコンバータ制御装置304は、この3つの3相交流入力1相PWM出力のマトリックスコンバータ330U、330V及び330Wの3つの出力端子間に接続されている負荷を駆動する。
 また、図17に示す入力電圧検出回路310の機能は、図8に図示された入力電圧検出回路310と同様である。また、図17に示すPWM制御部320は、図8に図示されたPWM制御部320に対して、マトリックスコンバータ330Uに供給するPWM制御信号UPWMCを生成し、マトリックスコンバータ330Vに供給するPWM制御信号VPWMCを生成し、マトリックスコンバータ330Wに供給するPWM制御信号WPWMCを生成する点が異なる。
 このマトリックスコンバータ制御装置304の動作検証を、SPICEを用いた過度解析シミュレーションで実施した結果を図18A及び図18Bに図示する。
 過度解析のシミュレーションの解析検討時間を短くする関係で、シミュレーション条件を以下のようにしている。
 (1)PWM制御信号のPWMデューティを正弦波状に変化させる各相の正弦波プロファイルの周波数を4KHzに設定。
 (2)各相交流電源の周波数を278Hz、周期は3.6msecに設定。交流電源電圧振幅は-20V~+20Vに設定。
 (3)PWM駆動のキャリア周波数を50KHzに設定。
 (4)U出力端子、V出力端子、W出力端子にY結線した3相の誘導性負荷の各相の負荷をL=3mH、R=10Ωに設定。
 図18Aのシミュレーション結果は、図9におけるタイミング波形図における交流入力電気角が40度から100度の範囲に相当する。また、図18Bは、図18Aの拡大図であり、図9における交流入力電気角50度~70度のタイミング波形に相当する。
 また、図18A及び図18Bにおいて、上段の波形は、U相、V相及びW相の正弦波プロファイルを示す。
 同図の中段の波形は、U相、V相及びW相の出力負荷電流を示す。ここで出力負荷電流とは、U出力端子、V出力端子及びW出力端子にY結線された3相の誘導性負荷に流れる負荷電流である。
 同図の下段は、R、S及びTの3相交流電源電圧波形と、U出力端子、V出力端子及びW出力端子の出力電圧波形とを示す。
 図18A及び図18Bに示すように、交流R、交流S及び交流Tの電源電圧が周波数278Hzで正弦波状に変化しているにもかかわらず、U相、V相及びW相の出力負荷電流は、U相、V相及びW相の正弦波プロファイルの信号に追随して4KHzの周波数で正弦波状に変化にしている。またU出力端子、V出力端子及びW出力端子のPWM出力波形は図9で図示したものと、ほぼ同じ形状の波形となっている。以上のことから、この3相交流入力3相PWM出力のマトリックスコンバータ制御装置304は適切に動作していることがわかる。
 この構成により、本発明の第1から第3の実施形態に係る直接変換回路100を適切に駆動する3相交流入力3相PWM出力のマトリックスコンバータ制御装置304を実現できる。
 図19は、従来からあるDC電源から任意の周波数の交流電力を取り出す既存のHブリッジ・PWMのインバータ制御装置502の構成を示すブロック図である。
 また、第8の実施形態に係るマトリックスコンバータ制御装置304は、図19に図示するインバータ制御装置502の駆動システムからシステム変更が容易にできるという特長を有する。
 なお、このマトリックスコンバータ制御装置304の駆動方法は、図19に図示するインバータ制御装置502の駆動方法と、第4の実施形態で説明したマトリックスコンバータ制御装置300の駆動方法及び設計方法から容易に導き出せるので、詳細な説明は省略する。
 (第9の実施形態)
 第9の実施形態では、上述した第8の実施形態に係るマトリックスコンバータ制御装置に、上述した第5の実施形態と同様の変形を行った場合について説明する。
 図20は、本発明の第9の実施形態に係る3相交流入力3相PWM出力のマトリックスコンバータ制御装置305のブロック図である。
 このマトリックスコンバータ制御装置305は、図17に図示された第8の実施形態に係るマトリックスコンバータ制御装置304にPWMゲイン補正回路340を付け加えた構成である。
 このマトリックスコンバータ制御装置305では、入力電圧検出回路310は、3相の交流入力の各入力振幅電圧の関係に応じてPWM出力補正信号341を生成する。PWMゲイン補正回路340は上記PWM出力補正信号341に応じてPWM制御部320で生成されるPWM制御信号UPWMC、VPWMC及びWPWMCを補正するPWMゲイン補正信号342を生成する。PWM制御部320はPWMゲイン補正信号342に応じてPWM制御信号UPWMC、VPWMC及びWPWMCのPWMデューティを補正する。
 この一連の動作は、図9において一番上に破線で図示されている、3つの交流電源から2つの電源を選択して半ブリッジ・インバータ回路動作をした時の仮想の半ブリッジ・インバータ回路の電源電圧の平均値を補正するように作用する。これにより、この仮想の半ブリッジ・インバータ回路の電源電圧の平均値を交流入力電気角に対してよりDC値に近づけることができる。
 この仮想の半ブリッジ・インバータ回路の電源電圧の平均値に対する補正は、第4の実施形態の説明においても述べたが、一般的に負荷電流に対して電流量の負帰還動作をさせた場合はあまり重要でない。一方で、負荷電流に対して電流量の負帰還動作をさせないマトリックスコンバータの制御システムでは、負荷電流に交流電気角に対するリップルを減らすことに効果がある。
 以上、発明をある程度の詳細さをもって好適な実施形態について説明したが、この好適な実施形態の現開示内容は構成の細部において変化してしかるべきものであり、各要素の組合せや順序の変化は請求された発明の範囲及び思想を逸脱することなく実現し得るものである。
 また、上記実施形態に係る直接変換回路及びマトリックスコンバータ制御装置に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 また、上記実施形態に係る、直接変換回路及びマトリックスコンバータ制御装置、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。
 また、上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。さらに、ハイ/ローにより表される論理レベル又はオン/オフにより表されるスイッチング状態は、本発明を具体的に説明するために例示するものであり、例示された論理レベル又はスイッチング状態の異なる組み合わせにより、同等な結果を得ることも可能である。さらに、上で示した論理回路の構成は本発明を具体的に説明するために例示するものであり、異なる構成の論理回路により同等の入出力関係を実現することも可能である。また、トランジスタ等のn型及びp型等は、本発明を具体的に説明するために例示するものであり、これらを反転させることで、同等の結果を得ることも可能である。また、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。
 本発明は、直接変換回路及び該直接変換回路を駆動させるマトリックスコンバータ制御装置に適用できる。
 100 直接変換回路
 101、101R、101S、101T 交流入力端子
 102 出力端子
 103 ゲート信号入力端子
 104、104R、104S、104T 交流スイッチ
 105、105A、105B スイッチング素子
 106、106A、106B プリドライブ回路
 107 レベルシフト回路
 201、211 シリコン基板
 202、212 バッファ層
 203、213 半導体積層体
 204、214 アンドープの窒化ガリウム層
 205、215 n型の窒化アルミニウムガリウム層
 206a ソース電極
 206b ドレイン電極
 207、217 保護膜
 208、218a、218b ゲート電極
 209、219a、219b コントロール層
 210、220 配線
 216a、216b オーミック電極
 300、301、302、303、304、305 マトリックスコンバータ制御装置
 310 入力電圧検出回路
 311、311R、311S、311T ゼロクロス検出部
 320、520 PWM制御部
 321 三角波回路
 322 比較器
 330、330F、330R、330U、330V、330W、350、351 マトリックスコンバータ
 331、531 PWM駆動信号生成回路
 332 ゲート制御回路
 335 下段ゲート制御回路
 336 上段ゲート制御回路
 337、337R、337S、337T 下段ゲート制御部
 338、338R、338S、338T 上段ゲート制御部
 340 PWMゲイン補正回路
 341 PWM出力補正信号
 342 PWMゲイン補正信号
 360 駆動制御部
 500、501、502 インバータ制御装置
 510 半ブリッジ・インバータ回路

Claims (12)

  1.  3相交流信号を、パルス幅変調を用いて1相交流信号に変換するための直接変換回路であって、
     前記3相交流信号が供給される3つの交流入力端子と、
     6つのゲート信号が入力される6つのゲート信号入力端子と、
     前記1相交流信号を出力するための出力端子と、
     各々が、前記3つの交流入力端子の各々と前記出力端子との間に接続されている3つの交流スイッチとを備え、
     前記3つの交流スイッチの各々は、対応する前記交流入力端子と前記出力端子との間に直列に接続された第1及び第2スイッチング素子を含み、
     前記第1及び第2スイッチング素子の各々は、
     第1端子と第2端子とゲート端子とを有し、
     前記第1端子の電圧を基準とした前記ゲート端子の電圧である第1電圧が閾値電圧より高い場合、前記第1端子と前記第2端子との間に印加される電圧の極性に応じて前記第1端子から前記第2端子へ又は前記第2端子から前記第1端子へ電流を流し、
     前記第1電圧が前記閾値電圧以下の場合、前記第2端子から前記第1端子への電流を遮断し、
     前記第1電圧が前記閾値電圧以下、かつ前記第2端子の電圧を基準にして前記ゲート端子の電圧が前記閾値電圧以上の場合、前記第1端子から前記第2端子に電流を流し、
     前記直接変換回路は、さらに、
     前記6つのゲート信号の各々と、前記3つの交流スイッチに含まれる6つの前記スイッチング素子の各々との組に対応し、対応する組のゲート信号に応じて、当該対応する組のスイッチング素子の前記第1端子と前記ゲート端子との間に電圧を供給する6つのプリドライブ回路とを備える
     直接変換回路。
  2.  前記第1及び第2スイッチング素子の前記第2端子は互いに接続されており、
     前記第1スイッチング素子の前記第1端子は、前記出力端子に接続されており、
     前記第2スイッチング素子の前記第1端子は、前記交流入力端子に接続されている
     請求項1記載の直接変換回路。
  3.  前記第1及び第2スイッチング素子の前記第1端子は互いに接続されており、
     前記第1スイッチング素子の前記第2端子は前記出力端子に接続されており、
     前記第2スイッチング素子の前記第2端子は、前記交流入力端子に接続されている
     請求項1記載の直接変換回路。
  4.  前記第1及び第2スイッチング素子の各々は、
     半導体基板の上に形成された窒化物半導体で構成される半導体積層体と、
     前記半導体積層体の上に互いに間隔をおいて形成されており、前記第1端子及び前記第2端子として機能する第1電極及び第2電極と、
     前記第1電極と前記第2電極との間に形成されており、前記ゲート端子として機能するゲート電極とを備える
     請求項1~3のいずれか1項に記載の直接変換回路。
  5.  前記交流スイッチは、
     半導体基板の上に形成された窒化物半導体で構成される半導体積層体と、
     前記半導体積層体の上に互いに間隔をおいて形成されており、前記第1及び第2スイッチング素子の各々の前記第1端子として機能する第1電極及び第2電極と、
     前記第1電極と第2電極との間に形成されており、前記第1及び第2スイッチング素子の各々のゲート端子として機能する2つのゲート電極とを備える
     請求項2記載の直接変換回路。
  6.  前記スイッチング素子は、MOSFETである
     請求項1~3のいずれか1項に記載の直接変換回路。
  7.  3相交流信号を、パルス幅変調を用いて1相交流信号に変換するマトリックスコンバータ制御装置であって、
     請求項1~6のいずれか1項に記載の直接変換回路を含むマトリックスコンバータと、
     前記6つのゲート信号の元となるPWM制御信号を生成し、生成した前記PWM制御信号を前記マトリックスコンバータへ供給するPWM制御部とを備える
     マトリックスコンバータ制御装置。
  8.  前記マトリックスコンバータ制御装置は、さらに、
     前記3相交流信号の各相の電圧値を検出する入力電圧検出回路を備え、
     前記マトリックスコンバータは、さらに、前記PWM制御信号を用いて前記6つのゲート信号を生成することにより、前記直接変換回路を制御する駆動制御部を備え、
     前記駆動制御部は、所定の期間ごとに、
     前記入力電圧検出回路の検出結果を用いて、前記3相交流信号のうち電圧の絶対値が最も高い相の信号である第1相信号と、前記3相交流信号のうち前記第1相信号以外の第2相信号と、前記3相交流信号のうち前記第1相信号及び前記第2相信号以外の第3相信号とを判別し、
     前記交流入力端子を介して前記第3相信号が供給される交流スイッチである第3交流スイッチを遮断状態とし、
     前記交流入力端子を介して前記第1相信号が供給される交流スイッチである第1交流スイッチと、前記交流入力端子を介して前記第2相信号が供給される交流スイッチである第2交流スイッチとを用いて、前記第1相信号及び前記第2相信号から前記1相交流信号を生成する
     請求項7記載のマトリックスコンバータ制御装置。
  9.  前記駆動制御部は、前記第1相信号以外の2つの相の信号のうち、前記第2相信号と判別する信号を、所定の期間ごとに切り替える
     請求項8記載のマトリックスコンバータ制御装置。
  10.  前記入力電圧検出回路は、さらに、前記第1相信号と前記第2相信号との差分の絶対値を示すPWM出力補正信号を生成し、
     前記マトリックスコンバータ制御装置は、さらに、
     前記PWM出力補正信号に応じて、前記差分の絶対値が一定の場合に生成される1相交流信号に、前記直接変換回路が生成する1相交流信号が近づくように、前記PWM制御信号を補正するためのPWMゲイン補正信号を生成するPWMゲイン補正回路を備え、
     前記PWM制御部は、前記PWMゲイン補正信号に応じて前記PWM制御信号のデューティを補正する
     請求項8又は9に記載のマトリックスコンバータ制御装置。
  11.  3相交流信号を、パルス幅変調を用いて2相交流信号に変換するマトリックスコンバータ制御装置であって、
     各々が請求項1~6のいずれか1項に記載の直接変換回路を含む第1及び第2マトリックスコンバータと、
     PWM制御部とを備え、
     前記PWM制御部は、
     前記第1マトリックスコンバータに含まれる前記直接変換回路の前記6つのゲート信号の元となる第1PWM制御信号を生成し、生成した前記第1PWM制御信号を前記第1マトリックスコンバータへ供給し、
     前記第2マトリックスコンバータに含まれる前記直接変換回路の前記6つのゲート信号の元となる第2PWM制御信号を生成し、生成した前記第2PWM制御信号を前記第2マトリックスコンバータへ供給する
     マトリックスコンバータ制御装置。
  12.  3相交流信号を、パルス幅変調を用いて3相交流信号に変換するマトリックスコンバータ制御装置であって、
     各々が請求項1~6のいずれか1項に記載の直接変換回路を含む第1~第3マトリックスコンバータと、
     PWM制御部とを備え、
     前記PWM制御部は、
     前記第1マトリックスコンバータに含まれる前記直接変換回路の前記6つのゲート信号の元となる第1PWM制御信号を生成し、生成した前記第1PWM制御信号を前記第1マトリックスコンバータへ供給し、
     前記第2マトリックスコンバータに含まれる前記直接変換回路の前記6つのゲート信号の元となる第2PWM制御信号を生成し、生成した前記第2PWM制御信号を前記第2マトリックスコンバータへ供給し、
     前記第3マトリックスコンバータに含まれる前記直接変換回路の前記6つのゲート信号の元となる第3PWM制御信号を生成し、生成した前記第3PWM制御信号を前記第3マトリックスコンバータへ供給する
     マトリックスコンバータ制御装置。
PCT/JP2011/006875 2010-12-09 2011-12-08 直接変換回路及びマトリックスコンバータ制御装置 WO2012077348A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012547718A JPWO2012077348A1 (ja) 2010-12-09 2011-12-08 直接変換回路及びマトリックスコンバータ制御装置
US13/910,419 US8767426B2 (en) 2010-12-09 2013-06-05 Matrix converter controlling apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010275123 2010-12-09
JP2010-275123 2010-12-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/910,419 Continuation US8767426B2 (en) 2010-12-09 2013-06-05 Matrix converter controlling apparatus

Publications (1)

Publication Number Publication Date
WO2012077348A1 true WO2012077348A1 (ja) 2012-06-14

Family

ID=46206858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006875 WO2012077348A1 (ja) 2010-12-09 2011-12-08 直接変換回路及びマトリックスコンバータ制御装置

Country Status (3)

Country Link
US (1) US8767426B2 (ja)
JP (1) JPWO2012077348A1 (ja)
WO (1) WO2012077348A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9438255B1 (en) * 2015-07-31 2016-09-06 Inphi Corporation High frequency delay lock loop systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11146649A (ja) * 1997-11-11 1999-05-28 Yaskawa Electric Corp Pwmサイクロコンバータ
JP2001298953A (ja) * 2000-04-13 2001-10-26 Fuji Electric Co Ltd 電力変換装置
JP2007312585A (ja) * 2006-05-15 2007-11-29 Ohira Denshi Kk 非接触電力電装装置
JP2010172067A (ja) * 2009-01-20 2010-08-05 Daikin Ind Ltd 双方向スイッチ駆動回路及びマトリックスコンバータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892677A (en) * 1997-06-02 1999-04-06 Reliance Electric Industrial Company Adaptive overlapping communication control of modular AC-AC converter and integration with device module of multiple AC-AC switches
JP4019263B2 (ja) 2002-10-11 2007-12-12 富士電機ホールディングス株式会社 交流−交流直接変換形電力変換装置
DE102004016453A1 (de) * 2004-03-31 2005-11-03 Alstom Technology Ltd Verfahren zur Verbesserung der Betriebsweise eines Matrix-Konverters
WO2006103155A1 (de) * 2005-03-31 2006-10-05 Alstom Technology Ltd Matrix konverter
JP4967595B2 (ja) * 2006-10-20 2012-07-04 トヨタ自動車株式会社 コンバータ制御装置
JP5433214B2 (ja) 2007-12-07 2014-03-05 パナソニック株式会社 モータ駆動回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11146649A (ja) * 1997-11-11 1999-05-28 Yaskawa Electric Corp Pwmサイクロコンバータ
JP2001298953A (ja) * 2000-04-13 2001-10-26 Fuji Electric Co Ltd 電力変換装置
JP2007312585A (ja) * 2006-05-15 2007-11-29 Ohira Denshi Kk 非接触電力電装装置
JP2010172067A (ja) * 2009-01-20 2010-08-05 Daikin Ind Ltd 双方向スイッチ駆動回路及びマトリックスコンバータ

Also Published As

Publication number Publication date
US20130265812A1 (en) 2013-10-10
JPWO2012077348A1 (ja) 2014-05-19
US8767426B2 (en) 2014-07-01

Similar Documents

Publication Publication Date Title
US8299737B2 (en) Motor driving circuit
KR101297545B1 (ko) 양방향 스위치회로 및 이를 구비한 전력변환장치
US6069809A (en) Resonant inverter apparatus
WO2012176403A1 (ja) 昇降圧型ac/dcコンバータ
US9281776B2 (en) Power conversion apparatus including different voltage-type bridge circuits
WO2012153836A1 (ja) スイッチング回路及び半導体モジュール
Dai et al. Characterization and implementation of hybrid reverse-voltage-blocking and bidirectional switches using WBG devices in emerging motor drive applications
JP2015154591A (ja) ゲート駆動回路および電源装置
CN102347702A (zh) 高效半桥直流到交流转换器
TWM531088U (zh) Igbt短路檢測保護電路及基於igbt的可控整流電路
CN110022078B (zh) 电力变换装置
WO2019154138A1 (zh) 一种用于逆变器或整流器的电桥电路
JP5619673B2 (ja) スイッチング回路及び半導体モジュール
US20150207428A1 (en) Inverter drive circuit
WO2012077348A1 (ja) 直接変換回路及びマトリックスコンバータ制御装置
JP5647558B2 (ja) インバータ装置
EP3407494A1 (en) Efficient switching circuit
JP5440201B2 (ja) 双方向スイッチのゲート駆動装置
JP6167244B2 (ja) 電力変換装置、モータ装置および逆変換器モジュール
KR101280424B1 (ko) 비대칭 pwm 방식을 위한 3상 비대칭 인버터회로
JP2017228912A (ja) 半導体装置
JP2015204723A (ja) 半導体装置及びそれを用いた電力変換装置
US11271547B2 (en) Gate drive circuit, drive device, semiconductor device, and gate drive method
WO2024057598A1 (ja) 半導体スイッチング素子のゲート駆動回路、電動機制御システムおよび半導体装置
JP6679967B2 (ja) 半導体素子の駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547718

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846173

Country of ref document: EP

Kind code of ref document: A1