WO2012077233A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2012077233A1
WO2012077233A1 PCT/JP2010/072262 JP2010072262W WO2012077233A1 WO 2012077233 A1 WO2012077233 A1 WO 2012077233A1 JP 2010072262 W JP2010072262 W JP 2010072262W WO 2012077233 A1 WO2012077233 A1 WO 2012077233A1
Authority
WO
WIPO (PCT)
Prior art keywords
power circuit
temperature
circuit unit
current
switching element
Prior art date
Application number
PCT/JP2010/072262
Other languages
English (en)
French (fr)
Inventor
雄二 白形
中島 泰
藤田 暢彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/072262 priority Critical patent/WO2012077233A1/ja
Priority to US13/879,722 priority patent/US9531318B2/en
Priority to CN201080070584.XA priority patent/CN103250346B/zh
Priority to EP10860542.9A priority patent/EP2651030A4/en
Priority to JP2012547661A priority patent/JP5611367B2/ja
Publication of WO2012077233A1 publication Critical patent/WO2012077233A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • the present invention relates to a rotating electrical machine in which a rotor is rotated by supplying current to an armature winding.
  • a temperature detection device for detecting the temperature of the armature winding, and a map in which the protection temperature of the armature winding corresponding to the rotation speed of the rotor is set by inputting the rotation speed information of the rotor
  • a rotating electrical machine that performs overheat protection on an armature winding by calculating the protection temperature of the armature winding using the above and comparing the temperature of the armature winding with the calculated protection temperature
  • the present invention provides a rotating electrical machine that can be miniaturized.
  • a rotating electrical machine includes a stator having an armature winding, a rotor rotatably provided inside the stator, and a semiconductor switching element for power circuit, And a control unit configured to set a current supply permission time corresponding to a rotation speed of the rotor and control supply of current by the power circuit unit, the control unit including the armature The supply of current by the power circuit unit is stopped when the integration time of the energization time to the winding is longer than the energization permission time.
  • the control device sets the energization permission time corresponding to the rotational speed of the rotor, and the integration time of the energization time to the armature winding is longer than the energization permission time, Since the supply of current by the power circuit unit is stopped, even when the temperature of the armature winding transiently changes, such as at the start of the rotating electrical machine, the transient temperature change of the armature winding is accommodated. Thus, the overheat protection of the armature winding can be performed. As a result, a cooling device for cooling the armature winding becomes unnecessary, and downsizing of the rotating electrical machine can be achieved.
  • FIG. 1 is a cross-sectional view showing a rotary electric machine according to Embodiment 1 of the present invention.
  • the rotary electric machine includes a bracket 1, a stator 2 housed in the bracket 1, a rotor 3 rotatably provided inside the stator 2, and a rotor 3, and penetrates the rotor 3.
  • a fixed rotation shaft 4 a current supply device 5 for supplying current to each of the stator 2 and the rotor 3, a control board (control device) 6 for controlling the supply of current by the current supply device 5, and a rotation shaft
  • a resolver 7 for detecting the rotational speed of the motor.
  • the resolver 7 detects the rotational speed of the rotating shaft 4 to detect the rotational speed of the rotor 3.
  • the stator 2 has a stator body 8 and an armature winding 9 provided on the stator body 8.
  • the rotor 3 includes a rotor body 10, a field winding 11 provided on the rotor body 10 for generating a magnetomotive force, a fan 12 formed in a ring shape and rotating with the rotor body 10, and an inner side of the fan 12 And a slip ring 13 which rotates with the rotor body 10.
  • the current supply device 5 includes a brush 14 in contact with the slip ring 13, a brush holder 15 for holding the brush 14, and a field circuit unit 16 for supplying current to the field winding 11 via the slip ring 13 and the brush 14. , A wiring member 17 connected to the armature winding 9, and a power circuit portion 18 for supplying an alternating current to the armature winding 9 via the wiring member 17.
  • a heat sink 19 provided across the field circuit unit 16 and the power circuit unit 18, a cooling fin 20 provided on the heat sink 19, and terminals such as power wiring are inserted.
  • the fan 12 is arranged to generate a wind toward the current supply device 5 as the fan 12 rotates.
  • the heat sink 19 is formed in a disk shape. A plurality of protrusions (not shown) are formed on one surface of the heat sink 19. Each of the field circuit unit 16 and the power circuit unit 18 is fixed to separate convex portions of the heat sink 19 via an insulating adhesive. Therefore, each of the field circuit unit 16 and the power circuit unit 18 is disposed on the same surface of the heat sink 19.
  • the case 21 is fixed to the heat sink 19 via an adhesive.
  • the case 21 is disposed on the same plane as the surface of the heat sink 19 on which the field circuit unit 16 and the power circuit unit 18 are disposed.
  • the power wiring terminal of the field circuit unit 16 and the power wiring terminal of the power circuit unit 18 are connected to the power wiring of the case 21. After the field circuit unit 16 and the power circuit unit 18 are accommodated in the case 21 and the relay substrate 22 and the connector 23 are electrically connected to the field circuit unit 16 and the power circuit unit 18, the inside of the case 21 is resin
  • the electronic module 24 is formed by sealing.
  • the cooling fin 20 is disposed on the surface of the heat sink 19 opposite to the surface on which the field circuit portion 16 and the power circuit portion 18 are attached.
  • the cooling fins 20 are arranged such that the wind generated by the rotation of the fan 12 hits the cooling fins 20.
  • the cooling fin 20 is formed with a recess into which the brush holder 15 is inserted.
  • the brush holder 15 inserted into the recess is electrically connected to the field circuit unit 16 through a terminal inserted into the case 21.
  • the formation of the recess in the cooling fin 20 reduces the cooling capacity of the cooling fin 20, but the heat diffusion to the entire heat sink 19 suppresses the reduction in the cooling capability of the cooling fin 20 due to the recess.
  • the brush holder 15 and the wiring member 17 are disposed between the fan 12 and the heat sink 19.
  • the brush holder 15 and the wiring member 17 form a cooling air passage which is a passage of air generated by the rotation of the fan 12.
  • the electronic module 24 is housed in the bracket 1.
  • the control board 6 and the resolver 7 are disposed outside the bracket 1.
  • the field circuit unit 16 includes a semiconductor switching element for field that supplies current to the field winding 11, an electronic component such as a capacitor electrically connected to the semiconductor switching element for field, and a semiconductor switching for field. And a metal frame on which elements and electronic components are mounted.
  • the field circuit section 16 is a molded module in which a semiconductor switching element for a field, an electronic component and a metal frame are resin-sealed in a box shape by transfer molding.
  • the metal frame is made of thermally conductive copper or copper alloy.
  • the power circuit unit 18 includes a semiconductor switching element for power circuit that supplies current to the armature winding 9, a temperature detection diode (first temperature detection device) that detects a temperature of the semiconductor switching element for power circuit, and power circuit It has a metal frame on which a semiconductor switching element and a temperature detection diode are mounted.
  • the power circuit unit 18 is a molded module in which a semiconductor switching element for power circuit, a temperature measuring diode and a metal frame are resin-sealed in a box shape by transfer molding.
  • the metal frame is made of thermally conductive copper or copper alloy.
  • the power circuit unit 18 is provided with upper and lower arms.
  • the power circuit unit 18 is provided with a plurality of exposed connection terminals.
  • the connection terminal includes one electrically connected to a temperature detection diode.
  • the control board 6 has an energization permission time map in which the energization permission time corresponding to the rotational speed of the rotor 3 is set.
  • the energization permission time corresponds to each increase value ⁇ T of the temperature of the semiconductor switching element for power circuit.
  • the temperature rise value ⁇ T of the power circuit semiconductor switching element is calculated from the difference between the actual temperature of the power circuit semiconductor switching element and the limit temperature of the power circuit semiconductor switching element.
  • the energization permission time is weighted corresponding to the rotational speed of the rotor 3. That is, in the energization permission time map, the energization permission time becomes longer as the rotational speed of the rotor 3 becomes larger.
  • the operation modes of the rotary electric machine include operation modes such as restart for starting the engine again, assist for increasing the power of the vehicle, power generation, regenerative power generation, idling stop, and the like. In any operation mode, it is necessary to perform overheat protection in order to prevent occurrence of abnormal overheating in the power switching semiconductor switching element of the power circuit unit 18.
  • the semiconductor switching element for power circuit Although the operating time is short, the flow of current is large, and the temperature rise is particularly large at the time of driving such as restart or assist with large calorific value. Therefore, depending on the temperature of the semiconductor switching element for the power circuit before operation, the element limit temperature of the semiconductor switching element for the power circuit even when the idling stop (+ restart) or the driving operation is not performed or when the operation is performed. In order not to exceed the above, it is necessary to have an operating time that can operate. However, in the case of idling stop, although the semiconductor switching element for power circuits itself does not generate heat, for example, the power circuit via the heat sink 19 by heat received from the stator 2 etc. which is a portion other than the semiconductor switching elements for power circuits. It is also necessary to consider the case where the temperature of the semiconductor switching element rises.
  • FIG. 3 is a flow chart showing control of current supply to the power circuit unit 18 by the control board 6 of FIG.
  • control substrate 6 Before operation, which is before power generation by the rotating electrical machine, control substrate 6 can be operated at the temperature of the semiconductor switching element for power circuit and the temperature necessary for supplying current to the semiconductor switching element for power circuit. The temperature is compared (step S1). The temperature of the power switching semiconductor switching element is detected by a temperature detection diode. The next operable temperature is determined in consideration of the temperature increase necessary depending on the subsequent operation, for example, idling stop + restart or drive.
  • control board 6 determines in step S1 that the temperature of the semiconductor switching element for power circuit is higher than the next operable temperature, it does not shift to the next operation (step S2). Thereby, the overheat protection of the rotating electrical machine is started.
  • control substrate 6 determines in step S1 that the temperature of the semiconductor switching element for power circuit is lower than the next operable temperature, control substrate 6 controls the current from the semiconductor switching element for power circuit to armature winding 9 Supply is started, and the next operation of the rotary electric machine is started (step S3).
  • the control board 6 determines the energization permission time with reference to the energization permission time map using the temperature of the semiconductor switching element for power circuit and the rotational speed of the rotor 3 by the resolver 7, and counts the integration time from the operation start (Step S4).
  • control board 6 compares the integration time with the energization permission time (step S5). When the control board 6 determines in step S5 that the integration time is shorter than the energization permission time, the operation of the rotating electrical machine is continued (step S6). If the integration time is shorter than the energization permission time, and the rotational speed of the rotor 3 changes during operation, the control board 6 refers to the energization permission time map to set the current rotational speed of the rotor 3 Change to the corresponding energization permission time.
  • step S5 If the control board 6 determines in step S5 that the integration time is longer than the energization permission time, overheat protection of the rotating electrical machine is generated, and the operation of the rotating electrical machine is stopped (step S7).
  • the control permission time corresponding to the rotational speed of the rotor 3 is set in the control board 6 and the control of the armature winding 9 is performed.
  • the supply of current by the power circuit unit 18 is stopped when the integration time is longer than the energization permission time, so the temperature of the armature winding 9 transiently changes, such as at the start of the rotating electrical machine. Even in this case, the overheat protection of the armature winding 9 can be performed in response to the transient temperature change of the armature winding 9. As a result, a cooling device for cooling the armature winding 9 becomes unnecessary, and downsizing of the rotary electric machine can be achieved.
  • the rotating electrical machine is provided with a temperature detection diode for detecting the temperature of the semiconductor switching element for power circuit, and the control board 6 controls the supply of current by the power circuit unit 18 corresponding to the temperature of the semiconductor switching element for power circuit. Therefore, it is possible to decide whether or not to perform the next operation depending on the temperature of the semiconductor switching element for the power circuit immediately before starting the driving. Thereby, the semiconductor switching element for power circuits can be protected surely.
  • the energization permission time corresponding to the temperature of the power circuit semiconductor switching element is set in the control board 6, the energization permission time can be set long.
  • the energization permission time is weighted according to the rotational speed of the rotor 3, the energization permission time can be set long.
  • Each of the field circuit unit 16 and the power circuit unit 18 is disposed on the same surface of the heat sink 19, and the relay substrate 22 is electrically connected to the field circuit unit 16 and the power circuit unit 18. Even when the positions of the respective connection terminals of the field circuit unit 16 and the power circuit unit 18 are dispersed within the area 24, each of the field circuit unit 16 and the power circuit unit 18 is electrically connected to the control board 6. It can be easily connected to
  • the heat sink 19 is formed in a disk shape, and each of the field circuit unit 16 and the power circuit unit 18 is disposed on the same surface in the heat sink 19, and the cooling fin 20 is provided in the field circuit unit 16 and the power circuit unit in the heat sink 19. Since the surface 18 is disposed on the side opposite to the side on which the 18 is attached, the arrangement space in the bracket 1 can be effectively used, the size of the heat sink 19 can be increased, and the field circuit section It is possible to easily secure the installation space of the power circuit section 16 and the power circuit section 18 and secure the area of the cooling fin 20.
  • FIG. 4 is a view showing an energization permission time map of the rotary electric machine according to Embodiment 2 of the present invention.
  • the energization permission time after the start of the operation is determined based on the temperature of the semiconductor switching element for the power circuit before the operation, but in the second embodiment, the control substrate 6 further It has an energization permission time map in which the corresponding permission energization time is set.
  • the energization permission time corresponding to the B terminal voltage and the rotational speed of the rotor 3 is set for each increase value ⁇ T of the temperature of the semiconductor switching element for power circuit.
  • the current supplied to the power circuit semiconductor switching element changes corresponding to the B terminal voltage applied to the power circuit semiconductor switching element.
  • the amount of heat generation in the semiconductor switching element for power circuit is changed due to the change in the value of < ' >, and the amount of temperature change of the semiconductor switching element for power circuit is changed.
  • the control permission time corresponding to the B terminal voltage is set, the control board 6 is generated due to the change of the B terminal voltage
  • the energization permission time can be set according to the temperature change amount of the power switching semiconductor switching element.
  • the control board 6 immediately before the start of driving Whether to perform the next operation can be determined by the temperature of the semiconductor switching element for power circuit and the B terminal voltage. Thereby, the semiconductor switching element for power circuits can be protected surely.
  • FIG. 5 is a flowchart showing control of current supply to power circuit unit 18 by control substrate 6 of the rotary electric machine according to Embodiment 3 of the present invention.
  • the operation is resumed (the operation is continued) again (step S8). It is determined whether the temperature of the semiconductor switching element for semiconductors has become lower than a predetermined temperature or whether a predetermined time has elapsed since the supply of current by the power circuit unit 18 has been stopped (step S9).
  • control substrate 6 determines that the temperature of the semiconductor switching element for power circuit is lower than a predetermined temperature, or control is performed when a predetermined time has elapsed since the supply of current by power circuit unit 18 is stopped.
  • the substrate 6 determines, the next operation of the rotary electric machine starts (step S3).
  • control substrate 6 determines that the temperature of the semiconductor switching element for power circuit is not lower than the predetermined temperature, or a predetermined time has elapsed since the supply of current by power circuit unit 18 is stopped. If the control board 6 determines that the power supply is not performed, the supply of the current by the power circuit unit 18 remains stopped (step S7).
  • step S8 when the operation is not started again (the operation is continued) in step S8, the operation is moved to another operation (step S10).
  • control board 6 supplies current by power circuit unit 18 because the integration time of the energization time is longer than the energization permission time. Until the temperature of the semiconductor switching element for power circuit falls below a predetermined temperature, or until a predetermined time elapses from the stop of the supply of current by the power circuit unit 18. Since the supply of the current is stopped, it is possible to prevent the occurrence of the stop due to the integration time exceeding the energization permission time immediately after the re-operation.
  • the rotary electric machine according to Embodiment 4 of the present invention further includes a thermistor (second temperature detection device) that detects the temperature of the heat sink 19.
  • the control board 6 further has an energization permission time map corresponding to the temperature of the heat sink 19.
  • the heat sink 19 In operation, since the rotor 3 is rotating, the heat sink 19 is cooled by the cooling air. Therefore, the temperature of the heat sink 19 is lower than the temperature of the semiconductor switching element for power circuit. However, at the time of idling stop, for example, the temperature of the heat sink 19 rises after the operation is stopped due to the heat received from the stator 2. On the other hand, the temperature of the semiconductor switching element for power circuit drops due to the operation stop. As a result, the temperature difference between the power circuit semiconductor switching element and the heat sink 19 disappears with the passage of time after the operation is stopped, and furthermore, the temperature of the heat sink 19 becomes higher than the temperature of the power circuit semiconductor switching element There is a case.
  • the temperature of the heat sink 19 is lower than the temperature of the power circuit semiconductor switching element by comparing the temperature of the heat sink 19 before the start of operation with the temperature of the power circuit semiconductor switching element.
  • the conduction permission time is determined using the temperature of the semiconductor switching element for power circuit, and when the temperature of the heat sink 19 is higher than the temperature of the semiconductor switching element for power circuit, the heat sink 19 The power-on time is determined by using the temperature of.
  • the control circuit 6 includes the thermistor for detecting the temperature of the heat sink 19, and the control circuit 6 responds to the temperature of the heat sink 19. Since the supply of the current by the above is controlled, even when the temperature of the heat sink 19 is higher than the temperature of the semiconductor switching element for power circuit, the overheat protection of the semiconductor switching element for power circuit can be reliably performed.
  • the thermistor for detecting the temperature of the heat sink 19 has been described as an example of the second temperature detection device. However, the temperature detection device for detecting the temperature in the bracket 1 in addition to the temperature of the heat sink 19 If it is

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

 小型化を図ることができる回転電機を得る。電機子巻線9を有する固定子2と、固定子2の内側に回転可能に設けられた回転子3と、パワー回路用半導体スイッチング素子を有し、電機子巻線9に電流を供給するパワー回路部18と、回転子3の回転速度に対応した通電許可時間が設定され、パワー回路部18による電流の供給を制御する制御基板6とを備え、制御基板6は、電機子巻線9への通電時間の積算時間が通電許可時間よりも大きいときに、パワー回路部18による電流の供給を停止する。

Description

回転電機
 この発明は、電流が電機子巻線に供給されることにより回転子が回転する回転電機に関する。
 従来、電機子巻線の温度を検出する温度検出装置を備え、回転子の回転速度情報が入力されることにより、回転子の回転速度に対応した電機子巻線の保護温度が設定されたマップを用いて電機子巻線の保護温度を算出し、電機子巻線の温度と算出された保護温度とを比較して、電機子巻線の過熱保護を行う回転電機が知られている(例えば、特許文献1参照)。
特開平11-355959号公報
 しかしながら、回転電機の始動時等、電機子巻線の温度が過渡的に変化するときには、温度検出装置が検出する電機子巻線の温度と、実際の電機子巻線の温度との間に差異が生じてしまう。電機子巻線の過渡的な温度の変化に対応して電機子巻線の過熱保護を行うためには、電機子巻線を冷却する冷却装置が必要となり、これにより、回転電機が大型化してしまうという問題点があった。
 この発明は、小型化を図ることができる回転電機を提供するものである。
 この発明に係る回転電機は、電機子巻線を有する固定子と、前記固定子の内側に回転可能に設けられた回転子と、パワー回路用半導体スイッチング素子を有し、前記電機子巻線に電流を供給するパワー回路部と、前記回転子の回転速度に対応した通電許可時間が設定され、前記パワー回路部による電流の供給を制御する制御装置とを備え、前記制御装置は、前記電機子巻線への通電時間の積算時間が前記通電許可時間よりも長いときに、前記パワー回路部による電流の供給を停止する。
 この発明に係る回転電機によれば、制御装置は、回転子の回転速度に対応した通電許可時間が設定され、電機子巻線への通電時間の積算時間が通電許可時間よりも長いときに、パワー回路部による電流の供給を停止するので、回転電機の始動時等、電機子巻線の温度が過渡的に変化するときであっても、電機子巻線の過渡的な温度の変化に対応して電機子巻線の過熱保護を行うことができる。これにより、電機子巻線を冷却する冷却装置が不要となり、回転電機の小型化を図ることができる。
この発明の実施の形態1に係る回転電機を示す断面図である。 図1の回転電機の通電許可時間マップを示す図である。 図1の制御基板によるパワー回路部への電流の供給の制御を示すフローチャートである。 この発明の実施の形態2に係る回転電機の通電許可時間マップを示す図である。 この発明の実施の形態3に係る回転電機の制御基板によるパワー回路部への電流の供給の制御を示すフローチャートである。
 以下、この発明の各実施の形態を図に基づいて説明するが、各図において、同一または相当の部材、部位については、同一符号を付して説明する。
 実施の形態1.
 図1はこの発明の実施の形態1に係る回転電機を示す断面図である。図において、回転電機は、ブラケット1と、ブラケット1内に収容された固定子2と、固定子2の内側に回転可能に設けられた回転子3と、回転子3を貫通し回転子3に固定された回転軸4と、固定子2および回転子3のそれぞれに電流を供給する電流供給装置5と、電流供給装置5による電流の供給を制御する制御基板(制御装置)6と、回転軸4の回転速度を検出するレゾルバ7とを備えている。レゾルバ7が回転軸4の回転速度を検出することにより、回転子3の回転速度が検出される。
 固定子2は、固定子本体8と、固定子本体8に設けられた電機子巻線9とを有している。回転子3は、回転子本体10と、回転子本体10に設けられ起磁力を発生させる界磁巻線11と、リング形状に形成され回転子本体10とともに回転するファン12と、ファン12の内側に配置され回転子本体10とともに回転するスリップリング13とを有している。
 電流供給装置5は、スリップリング13に接触するブラシ14と、ブラシ14を保持するブラシホルダ15と、スリップリング13およびブラシ14を介して界磁巻線11に電流を供給する界磁回路部16と、電機子巻線9に接続された配線部材17と、配線部材17を介して電機子巻線9に交流の電流を供給するパワー回路部18とを有している。
 また、電流供給装置5は、界磁回路部16およびパワー回路部18に渡って設けられたヒートシンク19と、ヒートシンク19に設けられた冷却フィン20と、パワー配線等のターミナルがインサートされ、界磁回路部16およびパワー回路部18が収容されたケース21と、界磁回路部16およびパワー回路部18のそれぞれに電気的に接続された中継基板22と、中継基板22に設けられ制御基板6と中継基板22とを電気的に接続するコネクタ23とを有している。
 ファン12は、ファン12が回転することにより電流供給装置5に向かう風を発生させるように配置されている。
 ヒートシンク19は、円盤形状に形成されている。ヒートシンク19の一方の面には、複数の凸部(図示せず)が形成されている。界磁回路部16およびパワー回路部18のそれぞれは、絶縁性接着剤を介してヒートシンク19の別々の凸部に固着されている。したがって、界磁回路部16およびパワー回路部18のそれぞれは、ヒートシンク19における同一の面に配置されている。ケース21は、接着剤を介してヒートシンク19に固着されている。ケース21は、界磁回路部16およびパワー回路部18が配置されたヒートシンク19の面と同一の面に配置されている。ケース21のパワー配線には、界磁回路部16のパワー配線端子とパワー回路部18のパワー配線端子とが接続されている。界磁回路部16およびパワー回路部18をケース21内に収容し、さらに、中継基板22およびコネクタ23を界磁回路部16およびパワー回路部18と電気的に接続した後、ケース21内を樹脂封止することで、電子モジュール24が形成されている。
 冷却フィン20は、ヒートシンク19における界磁回路部16およびパワー回路部18が取り付けられている面とは反対側の面に配置されている。また、冷却フィン20は、ファン12の回転により発生する風が冷却フィン20に当たるように配置されている。
 冷却フィン20には、ブラシホルダ15が挿入される凹部が形成されている。凹部に挿入されたブラシホルダ15は、ケース21にインサートされたターミナルを介して界磁回路部16と電気的に接続されている。冷却フィン20に凹部が形成されることにより、冷却フィン20の冷却能力が低下するものの、ヒートシンク19全体への熱の拡散により、凹部による冷却フィン20冷却能力の低下が抑制される。
 ファン12とヒートシンク19との間に、ブラシホルダ15および配線部材17が配置されている。ブラシホルダ15および配線部材17により、ファン12の回転により発生する風の流路である冷却風路が形成されている。
 電子モジュール24は、ブラケット1内に収容されている。制御基板6およびレゾルバ7は、ブラケット1の外側に配置されている。
 界磁回路部16は、界磁巻線11に電流を供給する界磁用半導体スイッチング素子と、界磁用半導体スイッチング素子に電気的に接続されたコンデンサ等の電子部品と、界磁用半導体スイッチング素子および電子部品が搭載された金属フレームとを有している。界磁回路部16は、界磁用半導体スイッチング素子、電子部品および金属フレームがトランスファーモールド成形により箱状に樹脂封止されたモールド成形型モジュールとなっている。金属フレームは、熱伝導性のよい銅または銅合金から構成されている。
 パワー回路部18は、電機子巻線9に電流を供給するパワー回路用半導体スイッチング素子と、パワー回路用半導体スイッチング素子の温度を検出する検温ダイオード(第1の温度検出装置)と、パワー回路用半導体スイッチング素子および検温ダイオードが搭載された金属フレームとを有している。パワー回路部18は、パワー回路用半導体スイッチング素子、検温ダイオードおよび金属フレームがトランスファーモールド成形により箱状に樹脂封止されたモールド成形型モジュールとなっている。金属フレームは、熱伝導性のよい銅または銅合金から構成されている。パワー回路部18には、上下アームが設けられている。パワー回路部18には、露出する複数の接続端子が設けられている。この接続端子には、検温ダイオードに電気的に接続しているものが含まれている。
 制御基板6は、回転子3の回転速度に対応した通電許可時間が設定された通電許可時間マップを有している。通電許可時間マップには、図2に示すように、パワー回路用半導体スイッチング素子の温度の上昇値ΔTごとに、通電許可時間が対応されている。パワー回路用半導体スイッチング素子の温度の上昇値ΔTとは、パワー回路用半導体スイッチング素子の実際の温度と、パワー回路用半導体スイッチング素子の限界の温度との差異から算出される。通電許可時間は、回転子3の回転速度に対応した重み付けがされている。つまり、通電許可時間マップでは、回転子3の回転速度が大きくなるにつれて通電許可時間が長くなるようになっている。
 回転電機の動作モードには、エンジンを再び始動させるための再始動、車の動力を増加させるアシスト、発電、回生発電、アイドリングストップ等の動作モードがある。何れの動作モードにおいても、パワー回路部18のパワー回路用半導体スイッチング素子における異常過熱の発生を防止するために、過熱保護を行う必要がある。
 パワー回路用半導体スイッチング素子において、動作時間は短いが流れる電流が大きく発熱量の大きい再始動やアシスト等の駆動時が特に温度上昇が大きくなる。そのため、動作前のパワー回路用半導体スイッチング素子の温度によってはアイドリングストップ(+再始動)や駆動の動作を行わない場合や、動作を行う場合であってもパワー回路用半導体スイッチング素子の素子限界温度を超えないように動作可能な通電時間とする必要がある。ただし、アイドリングストップの場合は、パワー回路用半導体スイッチング素子自体は発熱をしないが、例えば、パワー回路用半導体スイッチング素子以外の部分である固定子2等からの受熱によりヒートシンク19を介して、パワー回路用半導体スイッチング素子が温度上昇する場合も考慮する必要がある。
 次に、回転電機の過熱保護の動作について説明する。図3は図1の制御基板6によるパワー回路部18への電流の供給の制御を示すフローチャートである。回転電機による動力が発生する前である動作前では、制御基板6は、パワー回路用半導体スイッチング素子の温度と、パワー回路用半導体スイッチング素子に電流を供給するために必要な温度である次動作可能温度とを比較する(ステップS1)。パワー回路用半導体スイッチング素子の温度は、検温ダイオードにより検出される。次動作可能温度は、直後の動作、例えば、アイドリングストップ+再始動や駆動等を行う場合によって必要な温度上昇分を考慮して決められている。パワー回路用半導体スイッチング素子の温度と次動作可能温度とを比較することにより、パワー回路用半導体スイッチング素子の温度によっては、例えば、極短時間のアシストしか行うことができずに、回転電機が過熱保護をすぐに開始してしまうことが防止される。
 ステップS1で、パワー回路用半導体スイッチング素子の温度が次動作可能温度よりも高いと制御基板6が判定すると、次動作に移行しない(ステップS2)。これにより、回転電機の過熱保護が開始される。
 一方、ステップS1で、パワー回路用半導体スイッチング素子の温度が次動作可能温度よりも低いと制御基板6が判定すると、制御基板6はパワー回路用半導体スイッチング素子から電機子巻線9への電流の供給を開始させて、回転電機の次動作が開始する(ステップS3)。
 また、制御基板6は、パワー回路用半導体スイッチング素子の温度とレゾルバ7による回転子3の回転速度とを用い、通電許可時間マップを参照して通電許可時間を決め、動作開始から積算時間をカウントする(ステップS4)。
 その後、制御基板6は、積算時間と通電許可時間とを比較する(ステップS5)。ステップS5で、積算時間が通電許可時間よりも短いと制御基板6が判定すると、回転電機の動作が継続される(ステップS6)。積算時間が通電許可時間よりも短い場合で、動作中に回転子3の回転速度が変化した場合には、制御基板6は、通電許可時間マップを参照し、現在の回転子3の回転速度に対応した通電許可時間に変更する。
 ステップS5で、積算時間が通電許可時間よりも長いと制御基板6が判定すると、回転電機の過熱保護が発生し、回転電機の動作が停止する(ステップS7)。
 以上説明したように、この発明の実施の形態1に係る回転電機によれば、制御基板6は、回転子3の回転速度に対応した通電許可時間が設定され、電機子巻線9への通電時間の積算時間が通電許可時間よりも長いときに、パワー回路部18による電流の供給を停止するので、回転電機の始動時等、電機子巻線9の温度が過渡的に変化するときであっても、電機子巻線9の過渡的な温度の変化に対応して電機子巻線9の過熱保護を行うことができる。これにより、電機子巻線9を冷却する冷却装置が不要となり、回転電機の小型化を図ることができる。
 また、回転電機は、パワー回路用半導体スイッチング素子の温度を検出する検温ダイオードを備え、制御基板6は、パワー回路用半導体スイッチング素子の温度に対応して、パワー回路部18による電流の供給を制御するので、駆動を開始する直前のパワー回路用半導体スイッチング素子の温度により次の動作を行うか否かを決めることができる。これにより、パワー回路用半導体スイッチング素子を確実に保護することができる。
 また、制御基板6は、パワー回路用半導体スイッチング素子の温度に対応した通電許可時間が設定されているので、通電許可時間を長く設定することができる。
 また、通電許可時間は、回転子3の回転速度に対応した重み付けがされているので、通電許可時間を長く設定することができる。
 界磁回路部16およびパワー回路部18のそれぞれは、ヒートシンク19における同一の面に配置され、中継基板22が界磁回路部16およびパワー回路部18に電気的に接続されているので、電子モジュール24内で、界磁回路部16およびパワー回路部18のそれぞれの接続端子の位置が散らばっている場合であっても、界磁回路部16およびパワー回路部18のそれぞれを制御基板6に電気的に容易に接続することができる。
 ヒートシンク19が円盤形状に形成され、界磁回路部16およびパワー回路部18のそれぞれは、ヒートシンク19における同一の面に配置され、冷却フィン20は、ヒートシンク19における界磁回路部16およびパワー回路部18が取り付けられている面とは反対側の面に配置されているので、ブラケット1内における配置スペースを有効に使用することができ、ヒートシンク19のサイズを大きくすることができ、界磁回路部16およびパワー回路部18の設置スペース確保や冷却フィン20の面積の確保を容易に行うことができる。
 電機子巻線9とパワー回路部18とが配線部材17を介して電気的に接続されているので、固定子2の位置と電子モジュール24の配線取付位置とが大きく離れた場合であっても、電機子巻線9とパワー回路部18との電気的接続を容易に行うことができる。これにより、電機子巻線9およびパワー回路部18のそれぞれの配置位置の自由度を向上させることができる。
 実施の形態2.
 図4はこの発明の実施の形態2に係る回転電機の通電許可時間マップを示す図である。実施の形態1では、動作前のパワー回路用半導体スイッチング素子の温度に基づいて動作開始後の通電許可時間を決めていたが、実施の形態2では、さらに、制御基板6は、B端子電圧に対応した許可通電時間が設定された通電許可時間マップを有している。新たな通電許可時間マップには、パワー回路用半導体スイッチング素子の温度の上昇値ΔTごとに、B端子電圧および回転子3の回転速度に対応した通電許可時間が設定されている。
 回転子3の回転速度が変化しなくても、パワー回路用半導体スイッチング素子に印加されるB端子電圧に対応して、パワー回路用半導体スイッチング素子に供給される電流が変化するので、B端子電圧の変化によってパワー回路用半導体スイッチング素子における発熱量が変化して、パワー回路用半導体スイッチング素子の温度変化量が変化する。
 以上説明したように、この発明の実施の形態2に係る回転電機によれば、制御基板6は、B端子電圧に対応した通電許可時間が設定されているので、B端子電圧の変化によって発生するパワー回路用半導体スイッチング素子の温度変化量に対応して、通電許可時間を設定することができる。これにより、過熱保護をするときの条件を細分化することができ、温度推定の精度向上につながり、回転電機の動作可能な条件を増やすことができ、過大な冷却性能が不要となり回転電機の小型軽量化を図ることができる。
 また、制御基板6は、パワー回路部18による電流の供給の開始前におけるパワー回路用半導体スイッチング素子の温度およびB端子電圧に対応した通電許可時間が設定されているので、駆動を開始する直前のパワー回路用半導体スイッチング素子の温度およびB端子電圧により次の動作を行うか否かを決めることができる。これにより、パワー回路用半導体スイッチング素子を確実に保護することができる。
 実施の形態3.
 図5はこの発明の実施の形態3に係る回転電機の制御基板6によるパワー回路部18への電流の供給の制御を示すフローチャートである。実施の形態3では、回転電機の過熱保護により回転電機の動作が停止した後(ステップS7)、再び動作を開始(動作を継続)する場合には(ステップS8)、制御基板6は、パワー回路用半導体スイッチング素子の温度が所定の温度よりも低くなったか否か、または、パワー回路部18による電流の供給の停止から所定の時間が経過したか否かを判定する(ステップS9)。
 ステップS9で、パワー回路用半導体スイッチング素子の温度が所定の温度よりも低くなったと制御基板6が判定するか、または、パワー回路部18による電流の供給の停止から所定の時間が経過したと制御基板6が判定すると、回転電機の次動作が開始する(ステップS3)。
 一方、ステップS9で、パワー回路用半導体スイッチング素子の温度が所定の温度よりも低くないと制御基板6が判定するか、または、パワー回路部18による電流の供給の停止から所定の時間が経過していないと制御基板6が判定すると、パワー回路部18による電流の供給を停止したままとなる(ステップS7)。
 一方、ステップS8で再び動作を開始(動作を継続)しない場合には、別の動作へ移動する(ステップS10)。
 以上説明したように、この発明の実施の形態3に係る回転電機によれば、制御基板6は、通電時間の積算時間が通電許可時間よりも長くなったことによりパワー回路部18による電流の供給を停止した後、パワー回路用半導体スイッチング素子の温度が所定の温度よりも低くなるまで、または、パワー回路部18による電流の供給の停止から所定の時間が経過するまで、パワー回路部18による電流の供給を停止したままとするので、再動作した直後に積算時間が通電許可時間を越えることによる停止が発生することを防ぐことができる。
 実施の形態4.
 この発明の実施の形態4に係る回転電機は、ヒートシンク19の温度を検出するサーミスタ(第2の温度検出装置)をさらに備えている。制御基板6は、ヒートシンク19の温度に対応した通電許可時間マップをさらに有している。これにより、次動作可能温度や通電許可時間についての細分化を図ることができ、パワー回路用半導体スイッチング素子の温度推定の精度が向上する。
 動作中は、回転子3が回転しているので、冷却風によりヒートシンク19が冷却される。したがって、ヒートシンク19の温度は、パワー回路用半導体スイッチング素子の温度よりも低くなる。しかしながら、アイドリングストップ時には、例えば、固定子2からの受熱によりヒートシンク19の温度は、動作停止後から上昇する。一方、パワー回路用半導体スイッチング素子の温度は、動作停止により、低下する。その結果、動作停止後の時間の経過とともに、パワー回路用半導体スイッチング素子とヒートシンク19との間の温度差がなくなり、さらには、ヒートシンク19の温度がパワー回路用半導体スイッチング素子の温度よりも高くなる場合がある。
 ヒートシンク19の温度がパワー回路用半導体スイッチング素子の温度よりも高い場合には、ヒートシンク19によるパワー回路用半導体スイッチング素子の冷却効果が低下するので、通電許可時間を短くする必要がある。したがって、実施の形態4では、動作開始前のヒートシンク19の温度とパワー回路用半導体スイッチング素子の温度とを比較して、ヒートシンク19の温度がパワー回路用半導体スイッチング素子の温度よりも低い場合には、実施の形態1と同様に、パワー回路用半導体スイッチング素子の温度を用いて、通電許可時間が決められ、ヒートシンク19の温度がパワー回路用半導体スイッチング素子の温度よりも高い場合には、ヒートシンク19の温度を用いて、通電許可時間が決められるようになっている。
 以上説明したように、この発明の実施の形態4に係る回転電機によれば、ヒートシンク19の温度を検出するサーミスタを備え、制御基板6は、ヒートシンク19の温度に対応して、パワー回路部18による電流の供給を制御するので、ヒートシンク19の温度がパワー回路用半導体スイッチング素子の温度よりも高い場合にも、パワー回路用半導体スイッチング素子の過熱保護を確実に行うことができる。
 なお、上記実施の形態4では、第2の温度検出装置として、ヒートシンク19の温度を検出するサーミスタを例に説明したが、ヒートシンク19の温度以外に、ブラケット1内の温度を検出する温度検出装置であればよい。
 1 ブラケット、2 固定子、3 回転子、4 回転軸、5 電流供給装置、6 制御基板(制御装置)、7 レゾルバ、8 固定子本体、9 電機子巻線、10 回転子本体、11 界磁巻線、12 ファン、13 スリップリング、14 ブラシ、15 ブラシホルダ、16 界磁回路部、17 配線部材、18 パワー回路部、19 ヒートシンク、20 冷却フィン、21 ケース、22 中継基板、23 コネクタ。24 電子モジュール。

Claims (8)

  1.  電機子巻線を有する固定子と、
     前記固定子の内側に回転可能に設けられた回転子と、
     パワー回路用半導体スイッチング素子を有し、前記電機子巻線に電流を供給するパワー回路部と、
     前記回転子の回転速度に対応した通電許可時間が設定され、前記パワー回路部による電流の供給を制御する制御装置とを備え、
     前記制御装置は、前記電機子巻線への通電時間の積算時間が前記通電許可時間よりも長いときに、前記パワー回路部による電流の供給を停止することを特徴とする回転電機。
  2.  前記パワー回路用半導体スイッチング素子の温度を検出する第1の温度検出装置をさらに備え、
     前記制御装置は、前記パワー回路用半導体スイッチング素子の温度に対応して、前記パワー回路部による電流の供給を制御することを特徴とする請求項1に記載の回転電機。
  3.  前記制御装置は、前記パワー回路用半導体スイッチング素子の温度に対応した前記通電許可時間が設定されていることを特徴とする請求項2に記載の回転電機。
  4.  前記制御装置は、前記通電時間の積算時間が前記通電許可時間よりも長くなったことにより前記パワー回路部による電流の供給を停止した後、前記パワー回路用半導体スイッチング素子の温度が所定の温度よりも低くなるまで、または、前記パワー回路部による電流の供給の停止から所定の時間が経過するまで、前記パワー回路部による電流の供給を停止したままとすることを特徴とする請求項2または請求項3に記載の回転電機。
  5.  前記制御装置は、B端子電圧に対応した前記通電許可時間が設定されていることを特徴とする請求項1ないし請求項4の何れか1項に記載の回転電機。
  6.  前記通電許可時間は、前記回転子の回転速度に対応した重み付けがされていることを特徴とする請求項1ないし請求項5の何れか1項に記載の回転電機。
  7.  前記制御装置は、前記パワー回路部による電流の供給の開始前における前記パワー回路用半導体スイッチング素子の温度およびB端子電圧に対応した前記通電許可時間が設定されていることを特徴とする請求項2に記載の回転電機。
  8.  前記パワー回路部に設けられたヒートシンクと、
     前記ヒートシンクの温度を検出する第2の温度検出装置とをさらに備え、
     前記制御装置は、前記ヒートシンクの温度に対応して、前記パワー回路部による電流の供給を制御することを特徴とする請求項1ないし請求項7の何れか1項に記載の回転電機。
PCT/JP2010/072262 2010-12-10 2010-12-10 回転電機 WO2012077233A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/072262 WO2012077233A1 (ja) 2010-12-10 2010-12-10 回転電機
US13/879,722 US9531318B2 (en) 2010-12-10 2010-12-10 Rotating electrical machine
CN201080070584.XA CN103250346B (zh) 2010-12-10 2010-12-10 旋转电机
EP10860542.9A EP2651030A4 (en) 2010-12-10 2010-12-10 Rotating electrical machine
JP2012547661A JP5611367B2 (ja) 2010-12-10 2010-12-10 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072262 WO2012077233A1 (ja) 2010-12-10 2010-12-10 回転電機

Publications (1)

Publication Number Publication Date
WO2012077233A1 true WO2012077233A1 (ja) 2012-06-14

Family

ID=46206752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072262 WO2012077233A1 (ja) 2010-12-10 2010-12-10 回転電機

Country Status (5)

Country Link
US (1) US9531318B2 (ja)
EP (1) EP2651030A4 (ja)
JP (1) JP5611367B2 (ja)
CN (1) CN103250346B (ja)
WO (1) WO2012077233A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532100B (zh) * 2013-10-18 2016-06-08 富盛科技股份有限公司 一种连续旋转云台电机温度过热保护方法
CN105811851A (zh) * 2016-04-28 2016-07-27 安庆市峰邦工业产品设计有限公司 一种调速电机主机转速降低控制组件
CN105896471B (zh) * 2016-05-11 2017-03-22 广东好太太科技集团股份有限公司 一种用于电动晾衣机的电机热保护装置及其方法
CN107584192B (zh) * 2016-07-07 2020-01-21 上海沪工焊接集团股份有限公司 电焊机过热保护方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327718A (ja) * 1989-06-23 1991-02-06 Hitachi Ltd 過負荷検出装置
JPH09215388A (ja) * 1996-01-29 1997-08-15 Toyota Motor Corp インバータ装置
JPH11355959A (ja) * 1998-06-10 1999-12-24 Hitachi Ltd 回転電機の温度保護装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227703A (en) * 1992-04-21 1993-07-13 General Electric Company Protection system for alternating current, battery powered electric traction motor vehicle
JP3724026B2 (ja) * 1995-04-24 2005-12-07 株式会社デンソー 車両用同期発電装置及びその励磁制御方法
JP2000324602A (ja) * 1999-05-07 2000-11-24 Honda Motor Co Ltd 動力システムの故障検出方式
JP3926519B2 (ja) * 1999-08-30 2007-06-06 本田技研工業株式会社 ハイブリッド車両
JP3676190B2 (ja) * 2000-05-12 2005-07-27 本田技研工業株式会社 ハイブリッド車両の制御装置
JP4172148B2 (ja) 2000-12-19 2008-10-29 株式会社デンソー 車両用電動発電装置
JP2004040922A (ja) * 2002-07-04 2004-02-05 Sanyo Electric Co Ltd 温度検出回路を備えたインバータ回路装置
JP4082327B2 (ja) 2003-10-02 2008-04-30 日産自動車株式会社 ハイブリッド車両の発電量制御装置
JP2006136122A (ja) * 2004-11-05 2006-05-25 Kokusan Denki Co Ltd 発電装置の出力制御装置
US7541756B1 (en) * 2005-01-25 2009-06-02 Cooper Technologies Company Temperature compensated test for a power distribution switching device
FR2886506B1 (fr) 2005-05-31 2011-02-25 Valeo Equip Electr Moteur Module electronique pour machine electrique tournante
US7205737B1 (en) * 2006-01-04 2007-04-17 Robert Bosch Gmbh Systems and methods of monitoring a motor load
CN101796713B (zh) * 2007-10-09 2012-09-12 三菱电机株式会社 电动机控制装置、电清扫器和手干燥装置
JP5865013B2 (ja) * 2011-10-27 2016-02-17 三洋電機株式会社 車両用の電源装置及びこの電源装置を備える車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327718A (ja) * 1989-06-23 1991-02-06 Hitachi Ltd 過負荷検出装置
JPH09215388A (ja) * 1996-01-29 1997-08-15 Toyota Motor Corp インバータ装置
JPH11355959A (ja) * 1998-06-10 1999-12-24 Hitachi Ltd 回転電機の温度保護装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2651030A4 *

Also Published As

Publication number Publication date
JP5611367B2 (ja) 2014-10-22
JPWO2012077233A1 (ja) 2014-05-19
EP2651030A1 (en) 2013-10-16
CN103250346A (zh) 2013-08-14
US20130221890A1 (en) 2013-08-29
US9531318B2 (en) 2016-12-27
EP2651030A4 (en) 2017-12-27
CN103250346B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
JP4361486B2 (ja) 電気モータの電力用電子部品及び制御用電子部品を搭載する装置構造
US8198763B2 (en) Controller-integrated electric rotating machine with a shifted control circuit
JP4275614B2 (ja) 車両用回転電機
JP5001662B2 (ja) 電動式パワーステアリング装置
JP5393014B2 (ja) コンバータモータおよびコンバータユニット
JP4116644B2 (ja) 制御装置一体型回転電機
JP6621491B2 (ja) 回転電機
JP5300784B2 (ja) 半導体モジュール及び半導体モジュールを搭載した回転電機
JP5893099B1 (ja) 電力供給ユニット一体型回転電機
WO2012077233A1 (ja) 回転電機
JP4166804B2 (ja) 制御装置一体型回転電機
WO2011099258A1 (ja) ブラシレスモータの駆動装置およびブラシレスモータ並びに空気調整機
JP2010004598A (ja) 制御装置一体型回転電機
CN113141088A (zh) 旋转电机
JP6415512B2 (ja) 制御装置一体型回転電機
JP2005348494A (ja) 回転電機
CN112994362B (zh) 旋转电机
JP7002621B1 (ja) 制御装置一体型回転電機
JP7166408B1 (ja) 回転電機
JP6701953B2 (ja) 電動圧縮機
JP2022153956A (ja) 電力変換装置及びそれを用いた回転電機
WO2016125426A1 (ja) ブラシレスモータおよび電気機器
CN112385123A (zh) 旋转电机
JP2005245150A (ja) 車両用回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012547661

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13879722

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010860542

Country of ref document: EP