WO2012073946A1 - Thermoelectric conversion element and thermoelectric conversion module - Google Patents

Thermoelectric conversion element and thermoelectric conversion module Download PDF

Info

Publication number
WO2012073946A1
WO2012073946A1 PCT/JP2011/077500 JP2011077500W WO2012073946A1 WO 2012073946 A1 WO2012073946 A1 WO 2012073946A1 JP 2011077500 W JP2011077500 W JP 2011077500W WO 2012073946 A1 WO2012073946 A1 WO 2012073946A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
silicide
conversion element
transition metal
electrode
Prior art date
Application number
PCT/JP2011/077500
Other languages
French (fr)
Japanese (ja)
Inventor
努 飯田
康彦 本多
多田 光宏
昌保 赤坂
Original Assignee
学校法人東京理科大学
東レ・ダウコーニング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学, 東レ・ダウコーニング株式会社 filed Critical 学校法人東京理科大学
Priority to JP2012546882A priority Critical patent/JP5881066B2/en
Publication of WO2012073946A1 publication Critical patent/WO2012073946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a thermoelectric conversion element and a thermoelectric conversion module including the thermoelectric conversion element.
  • thermoelectric conversion element capable of mutual conversion between thermal energy and electrical energy forms a pair of electrode layers on both sides of the thermoelectric conversion layer, and maintains one of the electrode layers at a high temperature and the other at a low temperature to form a temperature difference.
  • the heat is converted into electric power by utilizing the Seebeck effect in which an electromotive force is generated corresponding to the temperature difference.
  • thermoelectric conversion materials constituting the thermoelectric conversion layer bismuth-tellurium-based materials, lead-tellurium-based materials, cobalt-antimony-based materials, semiconductor silicide-based materials, and the like are known.
  • semiconductor silicide-based materials such as magnesium silicide are attracting attention because of their low environmental burden (see, for example, Patent Documents 1 to 3).
  • thermoelectric conversion element using magnesium silicide as a thermoelectric conversion material
  • nickel is widely used as an electrode material because there is little mutual diffusion with magnesium silicide and excellent high-temperature durability.
  • nickel when nickel is used as the electrode material, there is a problem that the contact resistance between the thermoelectric conversion layer and the electrode layer becomes relatively high.
  • thermoelectric conversion element provided with the thermoelectric conversion element with which the contact resistance between a thermoelectric conversion layer and an electrode layer was reduced, and this thermoelectric conversion element.
  • thermoelectric conversion element provided with the thermoelectric conversion element with which the contact resistance between a thermoelectric conversion layer and an electrode layer was reduced, and this thermoelectric conversion element.
  • the inventors of the present invention have made extensive studies in order to achieve the above object. As a result, it has been found that the above problem can be solved by using transition metal silicide or a mixture of transition metal silicide and metal material as the material of the electrode layer formed on both sides of the thermoelectric conversion layer made of semiconductor silicide.
  • the invention has been completed. Specifically, the present invention is as follows.
  • thermoelectric conversion element in which a pair of electrode layers are formed on both sides of a thermoelectric conversion layer made of semiconductor silicide, at least one of the pair of electrode layers is a transition metal silicide or a mixture of a transition metal silicide and a metal material.
  • Thermoelectric conversion element consisting of body.
  • the semiconductor silicide is magnesium silicide.
  • the transition metal silicide is at least one selected from the group consisting of nickel silicide, chromium silicide, cobalt silicide, and titanium silicide.
  • thermoelectric conversion module provided with the thermoelectric conversion element of any one of said (1) to (4).
  • thermoelectric conversion element with reduced contact resistance between the thermoelectric conversion layer and the electrode layer, and a thermoelectric conversion module including the thermoelectric conversion element.
  • thermoelectric conversion element which concerns on this invention. It is a figure which shows the one aspect
  • FIG. 3 is a view showing thermoelectric conversion elements manufactured in Examples 1 to 4 and Comparative Example 1.
  • FIG. 3 is a view showing thermoelectric conversion elements manufactured in Examples 1 to 4 and Comparative Example 1.
  • thermoelectric conversion layer 4 is a diagram showing the results of observing the interface between the thermoelectric conversion layer and the electrode layer in the sintered bodies obtained in Examples 1 to 4 and Comparative Example 1 with an optical microscope. It is a figure which shows the structure of the measuring apparatus which measures the IV characteristic of a thermoelectric conversion element.
  • FIG. 4 is a diagram showing IV characteristics of thermoelectric conversion elements manufactured in Examples 1 to 4 and Comparative Example 1.
  • thermoelectric conversion element is a thermoelectric conversion element in which a pair of electrode layers are formed on both sides of a thermoelectric conversion layer made of semiconductor silicide, and at least one of the pair of electrode layers is transition metal silicide or transition metal silicide. And a metal material.
  • FIG. 1 shows an embodiment of a thermoelectric conversion element according to the present invention.
  • a pair of electrode layers 12 a and 12 b are formed on both sides of a prismatic thermoelectric conversion layer 11.
  • thermoelectric conversion material constituting the thermoelectric conversion layer 11 semiconductor silicide such as magnesium silicide (Mg 2 Si) and iron silicide (FeSi 2 ) is used, and these are dopants such as antimony, aluminum, bismuth, silver and copper. May be included.
  • magnesium silicide is preferable because it is thermally stable, has high thermoelectric conversion efficiency, and has high rigidity. An example of a method for synthesizing magnesium silicide will be described in detail later.
  • the average particle diameter of the semiconductor silicide is not particularly limited, but for example, it is preferable to use a semiconductor silicide having a particle diameter of 75 ⁇ m or less.
  • transition metal silicide or a mixture of transition metal silicide and metal material is used as the electrode material constituting at least one of the electrode layers 12a and 12b.
  • the thermoelectric conversion layer and the electrode layer can be compared with a case where a metal material such as nickel is used. The contact resistance between them can be reduced.
  • both the electrode layers 12a and 12b are made of transition metal silicide or a mixture of transition metal silicide and a metal material.
  • a transition metal silicide or a mixture of a transition metal silicide and a metal material may be used for only one of them, and a metal material such as nickel may be used for the other.
  • the electrode layer using the transition metal silicide or the mixture of the transition metal silicide and the metal material is disposed on the high temperature side of the thermoelectric conversion module. There are two reasons for this.
  • the first reason is that it is preferable to use an electrode material having a relatively low resistance value on the high temperature side because an increase in resistance in the electrode is expected in a high temperature state during operation.
  • the second reason is that nickel tends to form an oxide in a high temperature environment, which causes an increase in resistance due to deterioration of the interface between the thermoelectric conversion layer and the electrode layer. This is because the increase in resistance due to such deterioration can be prevented.
  • transition metal silicide examples include nickel silicide (NiSi, NiSi 2 ), chromium silicide (CrSi 2 ), cobalt silicide (CoSi 2 ), titanium silicide (TiSi 2 ), molybdenum silicide (MoSi 2 ), tungsten silicide (WSi 2 ). Etc. Among these, at least one selected from the group consisting of nickel silicide, chromium silicide, and cobalt silicide is preferable, and cobalt silicide is particularly preferable.
  • the average particle diameter of the transition metal silicide is not particularly limited, but it is preferable to use a transition metal silicide having a particle diameter of 2 to 15 ⁇ m, for example.
  • nickel, titanium, copper, aluminum, iron etc. are mentioned as a metal material mixed with the said transition metal silicide as needed.
  • nickel is particularly preferable because of excellent heat resistance.
  • the average particle diameter of the metal material is not particularly limited, but it is preferable to use, for example, a material having a thickness of 2 to 3 ⁇ m. Whether or not a metal material is mixed is arbitrary, but it is preferable to mix a metal material particularly when chromium silicide, cobalt silicide, or titanium silicide is used as the transition metal silicide.
  • the mixing ratio (transition metal silicide / metal material) is preferably 30/70 to 70/30 (mass basis).
  • the mixing ratio (transition metal silicide / metal material) is preferably 30/70 to 50/50 (mass basis).
  • nickel silicide is used as the transition metal silicide, it is preferable whether or not a metal material is mixed, and the mixing ratio (transition metal silicide / metal material) is preferably 30/70 to 100/0 (mass basis). It can be illustrated.
  • thermoelectric conversion element 1 for example, a space corresponding to the shape of the thermoelectric conversion element 1 (for example, a rod-like, columnar, plate-like member having a circular or polygonal cross section) was formed. 1 is manufactured simply by placing and depositing the materials to be used to a desired thickness in accordance with the configuration of the thermoelectric conversion element 1 shown in FIG. Can do.
  • thermoelectric conversion element 1 An example of means for manufacturing the thermoelectric conversion element 1 will be described using the manufacturing apparatus 2 having the configuration shown in FIGS. 2 and 3 (in FIGS. 2 and 3, the state inside the carbon die 21 is easily understood. Thus, a part of the carbon die 21 is omitted).
  • 2 shows a state before the manufacturing apparatus 2 is filled with the constituent material of the thermoelectric conversion element 1
  • FIG. 3 shows a state after the constituent material of the thermoelectric conversion element 1 is filled.
  • the manufacturing apparatus 2 is filled with a carbon die 21 in which a cylindrical space portion 23 is formed, and a space portion 23 (in FIG. 3, the constituent material of the thermoelectric conversion element 1 and the like).
  • the carbon punches 22a and 22b disposed above and below the portion).
  • the carbon punch 22 b disposed below the space portion 23 is fixed to the carbon die 21.
  • the carbon punch 22 a disposed above the space portion 23 is removable, and the material to be sintered such as semiconductor silicide is spaced from above the space portion 23.
  • the unit 23 can be input.
  • the carbon punch 22a disposed above the space portion 23 is removed (state of FIG. 2), and the space portion 23 has the structure shown in FIG.
  • the electrode material layer, the thermoelectric conversion material layer, and the electrode are deposited and deposited in the order of the electrode material, the thermoelectric conversion material, and the electrode material in accordance with the configuration of the thermoelectric conversion element 1 shown in FIG. A material layer is formed.
  • the carbon punch 22a When the material of each layer is charged, it is preferable to press and harden with the carbon punch 22a or the like.
  • the carbon punch 22a is inserted from above the space 23 and the material is sandwiched between the carbon punches 22a and 22b to obtain the state shown in FIG.
  • thermoelectric conversion element 1 having the configuration shown in FIG. 1 can be obtained.
  • a hot press sintering method HP
  • a hot isostatic pressing method HIP
  • a discharge plasma sintering method SPS
  • the spark plasma sintering method is a type of pressure compression sintering using the direct current pulse current method. It is a method of heating and sintering by applying a large pulse current to various materials. -This is a method in which an electric current is passed through a conductive material such as graphite and the material is processed and processed by Joule heating.
  • Specific sintering conditions are preferably a sintering pressure of 5 to 60 MPa, a sintering temperature of 800 to 870 ° C., and a sintering time (holding time) of 2 to 10 minutes. At this time, it is preferable to raise the temperature stepwise up to the sintering temperature (for example, room temperature ⁇ 600 ° C. ⁇ 800 ° C. ⁇ 840 ° C.). Moreover, it is preferable to perform a sintering process in inert gas atmosphere, such as nitrogen gas, argon gas, and helium gas.
  • inert gas atmosphere such as nitrogen gas, argon gas, and helium gas.
  • an insulating material such as SiO 2 is introduced and deposited between the electrode material layer and the carbon punches 22a and 22b in order to prevent melting of the electrode material. It is preferable to form an insulating material layer. Alternatively, the same effect can be achieved by applying boron nitride to the surfaces of the carbon punches 22a and 22b in contact with the electrode material. Further, in order to prevent the semiconductor silicide from adhering to the manufacturing apparatus 2, it is preferable to sandwich carbon paper at the contact portion with the semiconductor silicide.
  • thermoelectric conversion element manufactured as described above for the purpose of reducing the contact resistance between the thermoelectric conversion layer and the electrode layer.
  • the specific method of the annealing treatment is not particularly limited, and a method in which a thermoelectric conversion element is placed in a high-temperature furnace and annealing treatment is performed on the thermoelectric conversion element by heat from a heater provided in the furnace may be used, or rapid thermal annealing Alternatively, the thermoelectric conversion element may be annealed using light energy such as flash lamp annealing.
  • Magnesium silicide as a semiconductor silicide can be synthesized by a conventional method using magnesium, silicon, and, if necessary, a dopant.
  • the temperature at the time of synthesis is set to a temperature equal to or higher than the melting point of magnesium silicide (1085 ° C.),
  • a melt synthesis method in which the entire system is synthesized in a melted state is preferable because uniform magnesium silicide can be obtained.
  • This melt synthesis method includes a mixing step of mixing magnesium, silicon, and, if necessary, a dopant to obtain a composition raw material, and a heating and melting step of heating and melting the composition raw material.
  • the mixing step magnesium and silicon are mixed at an atomic weight ratio of about 2: 1, and a dopant is further mixed as necessary to obtain a composition raw material.
  • the atomic weight ratio of the dopant is preferably 0.10 to 2.00 at%.
  • magnesium powder having a purity of 99.5% or more can be used.
  • silicon high-purity silicon powder having a purity of 99.9999% or more can be used.
  • a purified silicon powder obtained by purifying silicon sludge discharged when grinding or polishing a silicon ingot or a silicon wafer can be used (see International Publication No. 2008/75789).
  • the dopant include antimony, aluminum, bismuth, silver, copper and the like.
  • the composition raw material obtained in the mixing step is heat-treated under a temperature condition not lower than the melting point of magnesium silicide (1085 ° C.) and lower than the melting point of silicon (1410 ° C.) to melt and synthesize magnesium silicide.
  • the pressure condition may be atmospheric pressure, but is preferably 1.33 ⁇ 10 ⁇ 3 Pa to atmospheric pressure.
  • the heating condition is 1085 ° C. or higher and lower than 1410 ° C., for example, 2 to 10 hours. At this time, it is preferable to use a temperature raising condition of 150 to 250 ° C./h until reaching 150 ° C., and a temperature raising condition of 350 to 450 ° C./h until reaching 1100 ° C.
  • the atmospheric condition is preferably a reducing atmosphere in order to avoid the production of magnesium oxide and silicon oxide as much as possible.
  • the reducing atmosphere gas include 100% by volume of hydrogen gas and inert gas such as nitrogen gas and argon gas containing hydrogen gas. When an inert gas containing hydrogen gas is used as the reducing atmosphere gas, the hydrogen gas in the inert gas is preferably 5% by volume or more.
  • the heating and melting step includes an opening and a lid that covers the opening, a contact surface of the edge of the opening with the lid, and a contact surface of the lid with the opening.
  • a heat-resistant container that has been polished.
  • the polishing treatment of the contact surface to the lid portion at the edge of the opening and the contact surface to the opening portion of the lid portion is not particularly limited, and it is only necessary that the polishing treatment is performed.
  • a surface roughness Ra of the contact surface is preferably 0.2 to 1.0 ⁇ m to form a close contact state, and more preferably 0.2 to 0.5 ⁇ m.
  • heat-resistant containers examples include sealed containers made of alumina, magnesia, zirconia, platinum, iridium, silicon carbide, boron nitride, pyrolytic boron nitride, pyrolytic graphite, quartz, and the like.
  • the dimensions of the heat-resistant container include those having a container body having an inner diameter of 12 to 300 mm, an outer diameter of 15 to 320 mm, a height of 50 to 250 mm, and a lid portion having a diameter of 15 to 320 mm.
  • the upper surface of the lid portion is directly or indirectly adjusted as necessary. It can be pressurized with a weight.
  • the pressure during the pressurization is, for example, 1 to 10 kg / cm 2 .
  • the magnesium silicide synthesized in this manner is preferably finely pulverized into particles having a narrow particle size distribution.
  • the magnesium silicide is not particularly limited, however, for example, those disclosed in the specifications of International Publication No. 2008/077589, International Application No. PCT / JP2010 / 061185, International Application No. PCT / JP2010 / 062509, and the like are preferable. Can be used. In the present invention, it is particularly preferable to use magnesium silicide having a polycrystalline structure as described in International Publication No. 2008/0775789.
  • thermoelectric conversion module includes the thermoelectric conversion element according to the present invention.
  • One mode of a thermoelectric conversion module including the thermoelectric conversion element 1 described above is shown in FIG.
  • the thermoelectric conversion element 1 uses semiconductor silicide as a thermoelectric conversion material, and can be used mainly as an n-type semiconductor element.
  • the electrode layer 12a side is heated in the thermoelectric conversion module 3 shown in FIG. 4, the electrode layer 12a side becomes higher potential than the electrode layer 12b side due to the temperature difference.
  • a current flows from the electrode layer 12a side to the electrode layer 12b side.
  • the electrode layer 12a disposed on at least the high temperature side of the electrode layers 12a and 12b is preferably made of a transition metal silicide or a mixture of a transition metal silicide and a metal material.
  • thermoelectric conversion module 4 The other aspect of the thermoelectric conversion module provided with the thermoelectric conversion element 1 is shown in FIG.
  • thermoelectric conversion module 4 shown in FIG. 5 a plurality of thermoelectric conversion elements 1 as n-type semiconductor elements are arranged in parallel via electrodes 32.
  • the electromotive force and power obtained can be increased by using a plurality of thermoelectric conversion elements 1.
  • FIG. 6 shows still another aspect of the thermoelectric conversion module including the thermoelectric conversion element 1.
  • the thermoelectric conversion module 5 shown in FIG. 6 includes a thermoelectric conversion element 1 as an n-type semiconductor element and a thermoelectric conversion element 40 as a p-type semiconductor element arranged in a ⁇ shape via an electrode 33.
  • the thermoelectric conversion element 40 side has a higher potential than the thermoelectric conversion element 1 side due to the temperature difference.
  • a current flows from the thermoelectric conversion element 40 to the thermoelectric conversion element 1 by connecting the load 31 between the thermoelectric conversion element 40 and the thermoelectric conversion element 1.
  • Example 1 magnesium silicide containing no dopant synthesized by a melt synthesis method (manufactured by Union Material, TYPE: MSGI-SG-UN, LOT: 10A233) is automatically used as a semiconductor silicide so as to have an average particle size of 75 ⁇ m. What was pulverized in a mortar was used. The magnesium silicide does not contain unreacted substances such as unreacted silicon and magnesium.
  • NiSi nickel silicide
  • SiO 2 powder manufactured by High Purity Chemical Laboratory; purity 99.9%, average particle size 63 ⁇ m
  • the carbon punch 22a ( ⁇ 15 mm ⁇ 20 mm) is removed from above the space portion 23 of the carbon die 21 ( ⁇ 15 mm ⁇ 30 mm), and the upper portion of the manufacturing apparatus 2 is opened, so that the magnesium silicide powder is placed in the space.
  • the portion 23 was charged and deposited to form a thermoelectric conversion material layer.
  • nickel silicide powder and SiO 2 powder are input and deposited in this order to form an electrode layer and an insulating material layer, and then a carbon punch 22a is inserted from above the space 23 to sandwich the material. State 3 was assumed.
  • carbon paper was sandwiched between the contact portions with magnesium silicide. Further, a carbon felt was wound around the carbon die 21 in order to lower the cooling rate during cooling.
  • sintering was performed in a vacuum atmosphere using a discharge plasma sintering apparatus (manufactured by ELENIX, “PAS-III-Es”) to obtain a sintered body.
  • the sintering conditions are as follows. Sintering temperature: 840 ° C Sintering pressure: 30.0 MPa Temperature rising rate: 300 ° C / min ⁇ 2min (up to 600 ° C) 100 ° C / min ⁇ 2min (600-800 ° C) 10 °C / min ⁇ 4min (800 ⁇ 840 °C) 0 ° C / min ⁇ 5min (840 ° C) Cooling conditions: Vacuum cooling Atmosphere: Ar 60 Pa (vacuum when cooling)
  • thermoelectric conversion element 6 having an electrode layer thickness of 0.2 to 0.25 mm was obtained. Further, the central portion obtained by dividing the electrode layer into three parts was removed to obtain a thermoelectric conversion element 6 having a shape as shown in FIG. In the thermoelectric conversion element 6 shown in FIG. 7, electrode layers 14 a and 14 b are formed on both ends of the upper surface of the thermoelectric conversion layer 13.
  • thermoelectric conversion element 6 having a shape as shown in FIG. 7 was obtained in the same manner as in Example 1 except that a mixture of 3 ⁇ m) and 1: 1 (mass basis) was used.
  • Example 3 Cobalt silicide (CoSi 2 ) powder (manufactured by Furuuchi Chemical; purity 99%, average particle size 3.91 ⁇ m) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 ⁇ m) as electrode materials 7 was obtained in the same manner as in Example 1 except that a mixture obtained by mixing 1: 1 and (by mass) was obtained.
  • thermoelectric conversion element 6 having a shape as shown in FIG. 7 was obtained in the same manner as in Example 1 except that a mixture of 3 ⁇ m) and 1: 1 (mass basis) was used.
  • thermoelectric conversion element 6 having the shape as shown in FIG. 7 was used in the same manner as in Example 1 except that nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 ⁇ m) was used as the electrode material. Got.
  • transition metal silicide nickel silicide
  • chrome silicide, cobalt silicide, titanium silicide nickel silicide
  • nickel nickel silicide
  • thermoelectric conversion element 6 obtained in Examples 1 to 4 and Comparative Example 1 using a measuring apparatus 7 (“Tektronix 370A” manufactured by Sony Tektrinics) having a curve tracer 52 whose schematic configuration is shown in FIG. The IV characteristics were measured.
  • a test method as shown in FIG. 9, the tungsten electrodes 51a and 51b of the measuring device 7 are brought into contact with the electrode layers 14a and 14b of the thermoelectric conversion element 6 and a bias voltage is applied, and the obtained linear result is obtained. Ohmic contact was assumed. The results are shown in FIG.
  • thermoelectric conversion elements of Examples 1 to 3 using transition metal silicide (nickel silicide) or a mixture of transition metal silicide (chromium silicide, cobalt silicide) and nickel as electrode materials The resistance value was low compared with the thermoelectric conversion element of Comparative Example 1 using nickel as a material. From this, it was confirmed that the contact resistance can be lowered by using transition metal silicide or a mixture of transition metal silicide and metal material as the electrode material.
  • Example 5 A prismatic thermoelectric conversion element (length 1.9 mm ⁇ width 15 mm ⁇ height 2.1 mm (electrode) as shown in FIG. A layer thickness of 0.2 to 0.25 mm) was produced. A predetermined electrode material (nickel silicide) was used for both of the electrode layers 12a and 12b in FIG.
  • Example 6 As electrode materials, chromium silicide (CrSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 ⁇ m) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 ⁇ m) A prismatic thermoelectric conversion element was produced in the same manner as in Example 5 except that a mixture obtained by mixing 1: 1) was used.
  • Example 7 As electrode materials, cobalt silicide (CoSi 2 ) powder (manufactured by Furuuchi Chemical; purity 99%, average particle size 3.91 ⁇ m) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 ⁇ m) A prismatic thermoelectric conversion element was produced in the same manner as in Example 5 except that a mixture prepared by mixing 1: 1 at a mass (based on mass) was used.
  • thermoelectric conversion element was produced in the same manner as in Example 5 except that nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 ⁇ m) was used as the electrode material.
  • thermoelectric conversion elements of Examples 5 to 7 and Comparative Example 2 were the same as those described above except that the tungsten electrodes of the measuring device were brought into contact with the electrode layers 12a and 12b (see FIG. 1). Measured with The measurement results are shown in Table 2.
  • thermoelectromotive force of the thermoelectric conversion elements of Examples 5 to 7 and Comparative Example 2 was set to 373 K on the low temperature side using a thermoelectromotive force / thermal conductivity measuring device (“ZEM2” manufactured by ULVAC-RIKO). The high temperature side was set to 873 K, and the maximum output value (mW) was measured. The measurement results are shown in Table 2.
  • thermoelectric conversion elements of Examples 5 to 7 had smaller resistance values and larger maximum output values than the thermoelectric conversion elements of Comparative Example 2.
  • Example 8 As electrode materials, cobalt silicide (CoSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 ⁇ m) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) 3 ⁇ m) was used in the same manner as in Example 1 except that a mixture obtained by mixing 33:67 (based on mass) was used to obtain a thermoelectric conversion element 6 having a shape as shown in FIG.
  • CoSi 2 cobalt silicide
  • Example 9 As electrode materials, cobalt silicide (CoSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 ⁇ m) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) 3 ⁇ m) was used in the same manner as in Example 1 except that a mixture obtained by mixing at 66:34 (mass basis) was used to obtain a thermoelectric conversion element 6 having a shape as shown in FIG.
  • CoSi 2 cobalt silicide
  • Example 10 As electrode materials, chromium silicide (CrSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 ⁇ m) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) 3 ⁇ m) was used in the same manner as in Example 1 except that a mixture obtained by mixing 33:67 (based on mass) was used to obtain a thermoelectric conversion element 6 having a shape as shown in FIG.
  • CrSi 2 chromium silicide
  • Example 11 As electrode materials, chromium silicide (CrSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 ⁇ m) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) 3 ⁇ m) was used in the same manner as in Example 1 except that a mixture obtained by mixing at 66:34 (mass basis) was used to obtain a thermoelectric conversion element 6 having a shape as shown in FIG.
  • CrSi 2 chromium silicide
  • Example 12 Nickel silicide (NiSi) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 ⁇ m) and nickel powder (manufactured by High-Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 ⁇ m) as electrode materials 7) was used in the same manner as in Example 1 except that a mixture in which 66:34 (mass basis) was mixed was obtained, and a thermoelectric conversion element 6 having a shape as shown in FIG. 7 was obtained.
  • NiSi Nickel silicide
  • Example 13 As electrode materials, titanium silicide (TiSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 ⁇ m) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) 3 ⁇ m) was used in the same manner as in Example 1 except that a mixture obtained by mixing 33:67 (based on mass) was used to obtain a thermoelectric conversion element 6 having a shape as shown in FIG.
  • TiSi 2 titanium silicide
  • NiSi 2 nickel powder
  • thermoelectric conversion elements 6 obtained in Examples 8 to 13 was performed by the above-described method, and the resistance value was calculated from the results and the like. Using these results, the relationship between the mixing ratio of the transition metal silicide and the metal material and the resistance value (m ⁇ ) is shown in Table 3. Table 3 also includes the resistance values of Examples 1 to 3 shown in Table 1 above.

Abstract

Provided is a thermoelectric conversion element having reduced contact resistance between a thermoelectric conversion layer and an electrode layer, and a thermoelectric conversion module provided with the thermoelectric conversion element. This thermoelectric conversion element has a pair of electrode layers formed on the sides of a thermoelectric conversion layer comprising a semiconductor silicide; the thermoelectric conversion element is characterized in that at least one of the pair of electrode layers comprises a transition metal silicide or a mixture of a transition metal silicide and a metallic material. The semiconductor silicide can be magnesium silicide and the like, and the transition metal silicide can be nickel silicide, chromium silicide, cobalt silicide, titanium silicide and the like.

Description

熱電変換素子及び熱電変換モジュールThermoelectric conversion element and thermoelectric conversion module
 本発明は、熱電変換素子及び該熱電変換素子を備えた熱電変換モジュールに関する。 The present invention relates to a thermoelectric conversion element and a thermoelectric conversion module including the thermoelectric conversion element.
 熱エネルギーと電気エネルギーとの相互変換が可能な熱電変換素子は、熱電変換層の両側に一対の電極層を形成し、電極層の一方を高温、他方を低温に維持して温度差を形成させ、かかる温度差に対応させて起電力が発生するゼーベック効果を利用し、熱を電力に変換するものである。 A thermoelectric conversion element capable of mutual conversion between thermal energy and electrical energy forms a pair of electrode layers on both sides of the thermoelectric conversion layer, and maintains one of the electrode layers at a high temperature and the other at a low temperature to form a temperature difference. The heat is converted into electric power by utilizing the Seebeck effect in which an electromotive force is generated corresponding to the temperature difference.
 上記熱電変換層を構成する熱電変換材料としては、ビスマス-テルル系材料、鉛-テルル系材料、コバルト-アンチモン系材料、半導体シリサイド系材料等が知られている。この中でも、環境負荷が少ないことから、マグネシウムシリサイド等の半導体シリサイド系材料が注目されている(例えば特許文献1~3を参照)。 As thermoelectric conversion materials constituting the thermoelectric conversion layer, bismuth-tellurium-based materials, lead-tellurium-based materials, cobalt-antimony-based materials, semiconductor silicide-based materials, and the like are known. Of these, semiconductor silicide-based materials such as magnesium silicide are attracting attention because of their low environmental burden (see, for example, Patent Documents 1 to 3).
特開2005-314805号公報JP 2005-314805 A 特開2002-285274号公報JP 2002-285274 A 特開2009-260173号公報JP 2009-260173 A
 ところで、熱電変換材料としてマグネシウムシリサイドを用いた熱電変換素子においては、マグネシウムシリサイドとの相互拡散が少なく、高温耐久性にも優れていることから、電極材料としてニッケルが汎用されている。しかし、電極材料としてニッケルを用いた場合、熱電変換層と電極層との間の接触抵抗が比較的高くなるという問題があった。 By the way, in a thermoelectric conversion element using magnesium silicide as a thermoelectric conversion material, nickel is widely used as an electrode material because there is little mutual diffusion with magnesium silicide and excellent high-temperature durability. However, when nickel is used as the electrode material, there is a problem that the contact resistance between the thermoelectric conversion layer and the electrode layer becomes relatively high.
 本発明は、以上の課題に鑑みてなされたものであり、熱電変換層と電極層との間の接触抵抗が低減された熱電変換素子、及び該熱電変換素子を備えた熱電変換モジュールを提供することを目的とする。 This invention is made | formed in view of the above subject, and provides the thermoelectric conversion element provided with the thermoelectric conversion element with which the contact resistance between a thermoelectric conversion layer and an electrode layer was reduced, and this thermoelectric conversion element. For the purpose.
 本発明者らは、上記目的を達成するため鋭意研究を重ねた。その結果、半導体シリサイドからなる熱電変換層の両側に形成される電極層の材料として、遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体を用いることにより上記課題を解決できることを見出し、本発明を完成するに至った。具体的には、本発明は以下のとおりである。 The inventors of the present invention have made extensive studies in order to achieve the above object. As a result, it has been found that the above problem can be solved by using transition metal silicide or a mixture of transition metal silicide and metal material as the material of the electrode layer formed on both sides of the thermoelectric conversion layer made of semiconductor silicide. The invention has been completed. Specifically, the present invention is as follows.
 (1) 半導体シリサイドからなる熱電変換層の両側に一対の電極層が形成された熱電変換素子において、上記一対の電極層の少なくとも一方が、遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体からなる熱電変換素子。
 (2) 上記半導体シリサイドがマグネシウムシリサイドである上記(1)記載の熱電変換素子。
 (3) 上記遷移金属シリサイドが、ニッケルシリサイド、クロムシリサイド、コバルトシリサイド、及びチタンシリサイドからなる群より選ばれる少なくとも1種である上記(1)又は(2)記載の熱電変換素子。
 (4) 上記金属材料がニッケルである上記(1)から(3)のいずれか1項記載の熱電変換素子。
 (5) 上記(1)から(4)のいずれか1項記載の熱電変換素子を備えた熱電変換モジュール。
 (6) 上記熱電変換素子の一対の電極層のうち少なくとも高温側に配置される電極層が、遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体からなる上記(5)記載の熱電変換モジュール。
(1) In a thermoelectric conversion element in which a pair of electrode layers are formed on both sides of a thermoelectric conversion layer made of semiconductor silicide, at least one of the pair of electrode layers is a transition metal silicide or a mixture of a transition metal silicide and a metal material. Thermoelectric conversion element consisting of body.
(2) The thermoelectric conversion element according to (1), wherein the semiconductor silicide is magnesium silicide.
(3) The thermoelectric conversion element according to (1) or (2), wherein the transition metal silicide is at least one selected from the group consisting of nickel silicide, chromium silicide, cobalt silicide, and titanium silicide.
(4) The thermoelectric conversion element according to any one of (1) to (3), wherein the metal material is nickel.
(5) The thermoelectric conversion module provided with the thermoelectric conversion element of any one of said (1) to (4).
(6) The thermoelectric conversion according to (5), wherein the electrode layer disposed on at least the high temperature side of the pair of electrode layers of the thermoelectric conversion element is made of transition metal silicide or a mixture of transition metal silicide and a metal material. module.
 本発明によれば、熱電変換層と電極層との間の接触抵抗が低減された熱電変換素子、及び該熱電変換素子を備えた熱電変換モジュールを提供することができる。 According to the present invention, it is possible to provide a thermoelectric conversion element with reduced contact resistance between the thermoelectric conversion layer and the electrode layer, and a thermoelectric conversion module including the thermoelectric conversion element.
本発明に係る熱電変換素子の一態様を示す図である。It is a figure which shows the one aspect | mode of the thermoelectric conversion element which concerns on this invention. 熱電変換素子を製造する製造装置の一態様を示す図である。It is a figure which shows the one aspect | mode of the manufacturing apparatus which manufactures a thermoelectric conversion element. 熱電変換素子を製造する製造装置の一態様を示す図である。It is a figure which shows the one aspect | mode of the manufacturing apparatus which manufactures a thermoelectric conversion element. 本発明に係る熱電変換モジュールの一態様を示す図である。It is a figure which shows the one aspect | mode of the thermoelectric conversion module which concerns on this invention. 本発明に係る熱電変換モジュールの他の態様を示す図である。It is a figure which shows the other aspect of the thermoelectric conversion module which concerns on this invention. 本発明に係る熱電変換モジュールのさらに他の態様を示す図である。It is a figure which shows the further another aspect of the thermoelectric conversion module which concerns on this invention. 実施例1~4、比較例1で製造した熱電変換素子を示す図である。FIG. 3 is a view showing thermoelectric conversion elements manufactured in Examples 1 to 4 and Comparative Example 1. 実施例1~4、比較例1で得られた焼結体における熱電変換層と電極層との界面を光学顕微鏡により観察した結果を示す図である。FIG. 4 is a diagram showing the results of observing the interface between the thermoelectric conversion layer and the electrode layer in the sintered bodies obtained in Examples 1 to 4 and Comparative Example 1 with an optical microscope. 熱電変換素子のI-V特性を測定する測定装置の構成を示す図である。It is a figure which shows the structure of the measuring apparatus which measures the IV characteristic of a thermoelectric conversion element. 実施例1~4、比較例1で製造した熱電変換素子のI-V特性を示す図である。FIG. 4 is a diagram showing IV characteristics of thermoelectric conversion elements manufactured in Examples 1 to 4 and Comparative Example 1.
≪熱電変換素子≫
 本発明に係る熱電変換素子は、半導体シリサイドからなる熱電変換層の両側に一対の電極層が形成された熱電変換素子において、上記一対の電極層の少なくとも一方が、遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体からなるものである。
≪Thermoelectric conversion element≫
The thermoelectric conversion element according to the present invention is a thermoelectric conversion element in which a pair of electrode layers are formed on both sides of a thermoelectric conversion layer made of semiconductor silicide, and at least one of the pair of electrode layers is transition metal silicide or transition metal silicide. And a metal material.
 本発明に係る熱電変換素子の一態様を図1に示す。図1に示す熱電変換素子1は、角柱状の熱電変換層11の両側に一対の電極層12a,12bが形成されている。 FIG. 1 shows an embodiment of a thermoelectric conversion element according to the present invention. In the thermoelectric conversion element 1 shown in FIG. 1, a pair of electrode layers 12 a and 12 b are formed on both sides of a prismatic thermoelectric conversion layer 11.
 熱電変換層11を構成する熱電変換材料としては、マグネシウムシリサイド(MgSi)、鉄シリサイド(FeSi)等の半導体シリサイドが用いられ、これらは、アンチモン、アルミニウム、ビスマス、銀、銅等のドーパントを含んでいてもよい。この中でも、熱的に安定であり、熱電変換効率が高く、しかも高い剛性を有する点から、マグネシウムシリサイドが好ましい。なお、マグネシウムシリサイドの合成方法の一例については、後で詳述する。
 この半導体シリサイドの平均粒径は、特に制限はないが、例えば75μm以下のものを使用することが好ましい。
As the thermoelectric conversion material constituting the thermoelectric conversion layer 11, semiconductor silicide such as magnesium silicide (Mg 2 Si) and iron silicide (FeSi 2 ) is used, and these are dopants such as antimony, aluminum, bismuth, silver and copper. May be included. Among these, magnesium silicide is preferable because it is thermally stable, has high thermoelectric conversion efficiency, and has high rigidity. An example of a method for synthesizing magnesium silicide will be described in detail later.
The average particle diameter of the semiconductor silicide is not particularly limited, but for example, it is preferable to use a semiconductor silicide having a particle diameter of 75 μm or less.
 電極層12a,12bの少なくとも一方を構成する電極材料としては、遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体が用いられる。このように、電極材料として、遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体を用いることにより、ニッケル等の金属材料を用いた場合と比較して、熱電変換層と電極層との間の接触抵抗を低減することができる。 As the electrode material constituting at least one of the electrode layers 12a and 12b, transition metal silicide or a mixture of transition metal silicide and metal material is used. Thus, by using a transition metal silicide or a mixture of a transition metal silicide and a metal material as an electrode material, the thermoelectric conversion layer and the electrode layer can be compared with a case where a metal material such as nickel is used. The contact resistance between them can be reduced.
 なお、熱電変換層と電極層との間の接触抵抗を低減する観点からは、電極層12a,12bの両方が、遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体からなることが好ましいが、コスト等を考慮し、いずれか一方のみに遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体を用い、他方にはニッケル等の金属材料を用いるようにしても構わない。この場合、遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体を用いた電極層を、熱電変換モジュールの高温側に配置することが好ましい。この理由としては、下記の2つが挙げられる。
 1つ目の理由は、高温側においては、動作時の高温状態時に電極における抵抗の増大が見込まれるため、相対的に抵抗値が低い電極材料を使用することが好ましいためである。
 2つ目の理由は、ニッケルは高温環境下において酸化物を形成しやすく、それにより熱電変換層と電極層との界面の劣化による抵抗の増大を招いてしまうが、遷移金属シリサイドは高温において比較的安定であり、このような劣化による抵抗の増大を防ぐことができるためである。
From the viewpoint of reducing the contact resistance between the thermoelectric conversion layer and the electrode layer, it is preferable that both the electrode layers 12a and 12b are made of transition metal silicide or a mixture of transition metal silicide and a metal material. However, considering cost and the like, a transition metal silicide or a mixture of a transition metal silicide and a metal material may be used for only one of them, and a metal material such as nickel may be used for the other. In this case, it is preferable that the electrode layer using the transition metal silicide or the mixture of the transition metal silicide and the metal material is disposed on the high temperature side of the thermoelectric conversion module. There are two reasons for this.
The first reason is that it is preferable to use an electrode material having a relatively low resistance value on the high temperature side because an increase in resistance in the electrode is expected in a high temperature state during operation.
The second reason is that nickel tends to form an oxide in a high temperature environment, which causes an increase in resistance due to deterioration of the interface between the thermoelectric conversion layer and the electrode layer. This is because the increase in resistance due to such deterioration can be prevented.
 上記遷移金属シリサイドとしては、ニッケルシリサイド(NiSi,NiSi)、クロムシリサイド(CrSi)、コバルトシリサイド(CoSi)、チタンシリサイド(TiSi)、モリブデンシリサイド(MoSi)、タングステンシリサイド(WSi)等が挙げられる。この中でも、ニッケルシリサイド、クロムシリサイド、及びコバルトシリサイドからなる群より選ばれる少なくとも1種が好ましく、コバルトシリサイドが特に好ましい。
 この遷移金属シリサイドの平均粒径は、特に制限はないが、例えば2~15μmのものを使用することが好ましい。
Examples of the transition metal silicide include nickel silicide (NiSi, NiSi 2 ), chromium silicide (CrSi 2 ), cobalt silicide (CoSi 2 ), titanium silicide (TiSi 2 ), molybdenum silicide (MoSi 2 ), tungsten silicide (WSi 2 ). Etc. Among these, at least one selected from the group consisting of nickel silicide, chromium silicide, and cobalt silicide is preferable, and cobalt silicide is particularly preferable.
The average particle diameter of the transition metal silicide is not particularly limited, but it is preferable to use a transition metal silicide having a particle diameter of 2 to 15 μm, for example.
 また、上記遷移金属シリサイドと必要に応じて混合される金属材料としては、ニッケル、チタン、銅、アルミニウム、鉄等が挙げられる。この中でも、耐熱性に優れることから、ニッケルが特に好ましい。
 この金属材料の平均粒径は、特に制限はないが、例えば2~3μmのものを使用することが好ましい。
 金属材料を混合するか否かは任意であるが、上記遷移金属シリサイドとして特にクロムシリサイド、コバルトシリサイド、又はチタンシリサイドを用いる場合には、金属材料を混合することが好ましい。遷移金属シリサイドと金属材料との混合比は、遷移金属シリサイド/金属材料=30/70~90/10(質量基準)であることが好ましい。より好ましい上記混合比は、使用する遷移金属シリサイドの種類によって異なる。
Moreover, nickel, titanium, copper, aluminum, iron etc. are mentioned as a metal material mixed with the said transition metal silicide as needed. Among these, nickel is particularly preferable because of excellent heat resistance.
The average particle diameter of the metal material is not particularly limited, but it is preferable to use, for example, a material having a thickness of 2 to 3 μm.
Whether or not a metal material is mixed is arbitrary, but it is preferable to mix a metal material particularly when chromium silicide, cobalt silicide, or titanium silicide is used as the transition metal silicide. The mixing ratio of the transition metal silicide to the metal material is preferably transition metal silicide / metal material = 30/70 to 90/10 (mass basis). The more preferable mixing ratio varies depending on the type of transition metal silicide used.
 例えば、遷移金属シリサイドとしてコバルトシリサイド、クロムシリサイドを用いる場合には、混合比(遷移金属シリサイド/金属材料)が30/70~70/30(質量基準)であることが好ましい。
 また、遷移金属シリサイドとしてチタンシリサイドを用いる場合には、混合比(遷移金属シリサイド/金属材料)が30/70~50/50(質量基準)であることが好ましい。
 なお、遷移金属シリサイドとしてニッケルシリサイドを用いる場合には、金属材料を混合してもしなくても好ましく、混合比(遷移金属シリサイド/金属材料)として30/70~100/0(質量基準)を好ましく例示することができる。
For example, when cobalt silicide or chromium silicide is used as the transition metal silicide, the mixing ratio (transition metal silicide / metal material) is preferably 30/70 to 70/30 (mass basis).
When titanium silicide is used as the transition metal silicide, the mixing ratio (transition metal silicide / metal material) is preferably 30/70 to 50/50 (mass basis).
When nickel silicide is used as the transition metal silicide, it is preferable whether or not a metal material is mixed, and the mixing ratio (transition metal silicide / metal material) is preferably 30/70 to 100/0 (mass basis). It can be illustrated.
 上記熱電変換素子1を得るには、例えば、熱電変換素子1の形状(例えば、断面が円形状、多角形状等である棒状、柱状、板状等の部材等)に対応した空間が形成された成形型等に、図1に示した熱電変換素子1の構成に倣って、使用する材料をそれぞれ所望の厚さになるように投入・堆積させ、焼結処理を施すことにより簡便に製造することができる。 In order to obtain the thermoelectric conversion element 1, for example, a space corresponding to the shape of the thermoelectric conversion element 1 (for example, a rod-like, columnar, plate-like member having a circular or polygonal cross section) was formed. 1 is manufactured simply by placing and depositing the materials to be used to a desired thickness in accordance with the configuration of the thermoelectric conversion element 1 shown in FIG. Can do.
 熱電変換素子1を製造する手段の一例を、図2及び図3に示した構成の製造装置2を用いて説明する(なお、図2及び図3は、カーボンダイ21内部の状態が分かりやすくなるように、カーボンダイ21の一部を省略している。)。図2は、製造装置2に熱電変換素子1の構成材料を充填する前の状態を示し、図3は、熱電変換素子1の構成材料を充填した後の状態を示す。図2及び図3に示すように、製造装置2は、円柱状の空間部23が形成されたカーボンダイ21と、空間部23(図3では熱電変換素子1の構成材料等が充填されている部分のこと)の上方及び下方に配設される2つのカーボンパンチ22a,22bとから構成される。なお、図2に示した製造装置2にあっては、2つのカーボンパンチ22a,22bのうち、空間部23の下方に配設されるカーボンパンチ22bは、カーボンダイ21に対して固定されている一方、図2に示すように、空間部23の上方に配設されるカーボンパンチ22aは、取り外し可能となっており、当該空間部23の上方より、半導体シリサイド等の焼結対象の材料が空間部23に投入可能とされる。 An example of means for manufacturing the thermoelectric conversion element 1 will be described using the manufacturing apparatus 2 having the configuration shown in FIGS. 2 and 3 (in FIGS. 2 and 3, the state inside the carbon die 21 is easily understood. Thus, a part of the carbon die 21 is omitted). 2 shows a state before the manufacturing apparatus 2 is filled with the constituent material of the thermoelectric conversion element 1, and FIG. 3 shows a state after the constituent material of the thermoelectric conversion element 1 is filled. As shown in FIGS. 2 and 3, the manufacturing apparatus 2 is filled with a carbon die 21 in which a cylindrical space portion 23 is formed, and a space portion 23 (in FIG. 3, the constituent material of the thermoelectric conversion element 1 and the like). The carbon punches 22a and 22b disposed above and below the portion). In the manufacturing apparatus 2 shown in FIG. 2, of the two carbon punches 22 a and 22 b, the carbon punch 22 b disposed below the space portion 23 is fixed to the carbon die 21. On the other hand, as shown in FIG. 2, the carbon punch 22 a disposed above the space portion 23 is removable, and the material to be sintered such as semiconductor silicide is spaced from above the space portion 23. The unit 23 can be input.
 図2及び図3の製造装置2を用いて熱電変換素子1を製造するには、空間部23の上方に配設されるカーボンパンチ22aを取り外し(図2の状態)、空間部23に図1に示した熱電変換素子1の構成に倣って、電極材料、熱電変換材料、電極材料の順で、それぞれ所望の厚さになるように投入・堆積させ、電極材料層、熱電変換材料層、電極材料層を形成する。各層の材料を投入する際には、カーボンパンチ22a等で押圧して、押し固めるようにすることが好ましい。材料の投入・堆積が終了したら、空間部23の上方からカーボンパンチ22aを入れて材料をカーボンパンチ22a,22bで挟み込み、図3に示した状態とする。 In order to manufacture the thermoelectric conversion element 1 using the manufacturing apparatus 2 of FIGS. 2 and 3, the carbon punch 22a disposed above the space portion 23 is removed (state of FIG. 2), and the space portion 23 has the structure shown in FIG. The electrode material layer, the thermoelectric conversion material layer, and the electrode are deposited and deposited in the order of the electrode material, the thermoelectric conversion material, and the electrode material in accordance with the configuration of the thermoelectric conversion element 1 shown in FIG. A material layer is formed. When the material of each layer is charged, it is preferable to press and harden with the carbon punch 22a or the like. When the material is charged and deposited, the carbon punch 22a is inserted from above the space 23 and the material is sandwiched between the carbon punches 22a and 22b to obtain the state shown in FIG.
 そして、図3の状態で焼結処理を施すことにより焼結体を得る。得られた焼結体をワイヤーソーやブレードソーのような切断機で所定の大きさにカットすることにより、図1に示した構成の熱電変換素子1を得ることができる。 And a sintered compact is obtained by performing a sintering process in the state of FIG. By cutting the obtained sintered body into a predetermined size with a cutting machine such as a wire saw or a blade saw, the thermoelectric conversion element 1 having the configuration shown in FIG. 1 can be obtained.
 焼結方法としては、ホットプレス焼結法(HP)、熱間等方圧焼結法(HIP)、放電プラズマ焼結法(SPS)等を採用することができるが、放電プラズマ焼結法が好ましい。放電プラズマ焼結法は、直流パルス通電法を用いた加圧圧縮焼結法の一種で、パルス大電流を種々の材料に通電することによって加熱・焼結する方法であり、原理的には金属・グラファイト等の導電性材料に電流を流し、ジュール加熱により材料を加工・処理する方法である。 As a sintering method, a hot press sintering method (HP), a hot isostatic pressing method (HIP), a discharge plasma sintering method (SPS) or the like can be adopted. preferable. The spark plasma sintering method is a type of pressure compression sintering using the direct current pulse current method. It is a method of heating and sintering by applying a large pulse current to various materials. -This is a method in which an electric current is passed through a conductive material such as graphite and the material is processed and processed by Joule heating.
 具体的な焼結条件としては、焼結圧力5~60MPa、焼結温度800~870℃、焼結時間(保持時間)2~10分間とすることが好ましい。この際、焼結温度までは段階的に(例えば、室温→600℃→800℃→840℃といったように)昇温することが好ましい。また、焼結処理は、窒素ガス、アルゴンガス、ヘリウムガス等の不活性ガス雰囲気で行うことが好ましい。 Specific sintering conditions are preferably a sintering pressure of 5 to 60 MPa, a sintering temperature of 800 to 870 ° C., and a sintering time (holding time) of 2 to 10 minutes. At this time, it is preferable to raise the temperature stepwise up to the sintering temperature (for example, room temperature → 600 ° C. → 800 ° C. → 840 ° C.). Moreover, it is preferable to perform a sintering process in inert gas atmosphere, such as nitrogen gas, argon gas, and helium gas.
 なお、焼結方法として放電プラズマ焼結法を採用する場合、電極材料の溶融を防ぐため、電極材料層とカーボンパンチ22a,22bとの間にSiOのような絶縁性材料を投入・堆積させ、絶縁性材料層を形成しておくことが好ましい。あるいは、電極材料と接するカーボンパンチ22a,22bの表面にボロンナイトライドを塗布することによっても、同様の効果を奏することができる。
 また、半導体シリサイドが製造装置2に固着してしまうことを防ぐため、半導体シリサイドとの接触部分には、カーボンペーパーを挟んでおくことが好ましい。
When the discharge plasma sintering method is employed as a sintering method, an insulating material such as SiO 2 is introduced and deposited between the electrode material layer and the carbon punches 22a and 22b in order to prevent melting of the electrode material. It is preferable to form an insulating material layer. Alternatively, the same effect can be achieved by applying boron nitride to the surfaces of the carbon punches 22a and 22b in contact with the electrode material.
Further, in order to prevent the semiconductor silicide from adhering to the manufacturing apparatus 2, it is preferable to sandwich carbon paper at the contact portion with the semiconductor silicide.
 上記のようにして製造した熱電変換素子に対して、熱電変換層と電極層との間の接触抵抗を小さくする目的で、アニール処理を施してもよい。アニール処理の具体的な方法は特に限定されず、高温の炉に熱電変換素子を入れて炉内に設けられたヒーターからの熱で熱電変換素子にアニーリング処理を施す方法でもよいし、ラピッドサーマルアニールやフラッシュランプアニールのような光エネルギーを用いて熱電変換素子にアニーリング処理を施す方法であってもよい。 An annealing treatment may be applied to the thermoelectric conversion element manufactured as described above for the purpose of reducing the contact resistance between the thermoelectric conversion layer and the electrode layer. The specific method of the annealing treatment is not particularly limited, and a method in which a thermoelectric conversion element is placed in a high-temperature furnace and annealing treatment is performed on the thermoelectric conversion element by heat from a heater provided in the furnace may be used, or rapid thermal annealing Alternatively, the thermoelectric conversion element may be annealed using light energy such as flash lamp annealing.
<マグネシウムシリサイドの合成方法>
 半導体シリサイドとしてのマグネシウムシリサイドは、マグネシウム、シリコン、及び必要に応じてドーパントを用いて常法により合成することができるが、合成する際の温度をマグネシウムシリサイドの融点(1085℃)以上の温度とし、系全体を融液とした状態で合成する溶融合成法によれば、均一なマグネシウムシリサイドを得ることができるため好ましい。
 この溶融合成法は、マグネシウム、シリコン、及び必要に応じてドーパントを混合して組成原料を得る混合工程と、この組成原料を加熱溶融する加熱溶融工程と、を含む。
<Method of synthesizing magnesium silicide>
Magnesium silicide as a semiconductor silicide can be synthesized by a conventional method using magnesium, silicon, and, if necessary, a dopant. The temperature at the time of synthesis is set to a temperature equal to or higher than the melting point of magnesium silicide (1085 ° C.), A melt synthesis method in which the entire system is synthesized in a melted state is preferable because uniform magnesium silicide can be obtained.
This melt synthesis method includes a mixing step of mixing magnesium, silicon, and, if necessary, a dopant to obtain a composition raw material, and a heating and melting step of heating and melting the composition raw material.
[混合工程]
 混合工程では、マグネシウムとシリコンとを約2:1の原子量比で混合し、必要に応じてさらにドーパントを混合して組成原料を得る。ドーパントを混合する場合、ドーパントの原子量比は0.10~2.00at%であることが好ましい。
[Mixing process]
In the mixing step, magnesium and silicon are mixed at an atomic weight ratio of about 2: 1, and a dopant is further mixed as necessary to obtain a composition raw material. When the dopant is mixed, the atomic weight ratio of the dopant is preferably 0.10 to 2.00 at%.
 マグネシウムとしては、例えば純度99.5%以上のマグネシウム粉末を用いることができる。
 シリコンとしては、純度99.9999%以上の高純度シリコン粉末を用いることができる。また、シリコンインゴットやシリコンウェーハを研削、研磨する際に排出されるシリコンスラッジを純化精製して得た純化精製シリコン粉末を用いることもできる(国際公開第2008/75789号を参照)。
 ドーパントとしては、アンチモン、アルミニウム、ビスマス、銀、銅等が挙げられる。
As magnesium, for example, magnesium powder having a purity of 99.5% or more can be used.
As silicon, high-purity silicon powder having a purity of 99.9999% or more can be used. In addition, a purified silicon powder obtained by purifying silicon sludge discharged when grinding or polishing a silicon ingot or a silicon wafer can be used (see International Publication No. 2008/75789).
Examples of the dopant include antimony, aluminum, bismuth, silver, copper and the like.
[加熱溶融工程]
 加熱溶融工程では、混合工程にて得た組成原料をマグネシウムシリサイドの融点(1085℃)以上かつシリコンの融点(1410℃)未満の温度条件下で熱処理して、マグネシウムシリサイドを溶融合成する。
[Heating and melting process]
In the heating and melting step, the composition raw material obtained in the mixing step is heat-treated under a temperature condition not lower than the melting point of magnesium silicide (1085 ° C.) and lower than the melting point of silicon (1410 ° C.) to melt and synthesize magnesium silicide.
 圧力条件としては、大気圧でもよいが、1.33×10-3Pa~大気圧が好ましい。
 また、加熱条件としては、1085℃以上1410℃未満で、例えば2~10時間とすることができる。この際、150℃に達するまでは150~250℃/hの昇温条件、1100℃に達するまでは350~450℃/hの昇温条件とすることが好ましい。
 また、雰囲気条件としては、酸化マグネシウムや酸化シリコンの生成を極力避けるため、還元雰囲気下が好ましい。還元雰囲気ガスとしては、100体積%の水素ガスや、水素ガスを含む、窒素ガス、アルゴンガス等の不活性ガスを挙げることができる。還元雰囲気ガスとして水素ガスを含む不活性ガスを使用する場合、不活性ガス中の水素ガスは、5体積%以上であることが好ましい。
The pressure condition may be atmospheric pressure, but is preferably 1.33 × 10 −3 Pa to atmospheric pressure.
The heating condition is 1085 ° C. or higher and lower than 1410 ° C., for example, 2 to 10 hours. At this time, it is preferable to use a temperature raising condition of 150 to 250 ° C./h until reaching 150 ° C., and a temperature raising condition of 350 to 450 ° C./h until reaching 1100 ° C.
In addition, the atmospheric condition is preferably a reducing atmosphere in order to avoid the production of magnesium oxide and silicon oxide as much as possible. Examples of the reducing atmosphere gas include 100% by volume of hydrogen gas and inert gas such as nitrogen gas and argon gas containing hydrogen gas. When an inert gas containing hydrogen gas is used as the reducing atmosphere gas, the hydrogen gas in the inert gas is preferably 5% by volume or more.
 なお、この加熱溶融工程は、開口部とこの開口部を覆う蓋部とを備え、上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面とが共に研磨処理された耐熱容器中で行うことが好ましい。このように研磨処理することで、組成原料の組成比率に近い組成比率を有するマグネシウムシリサイドを得ることができる。これは、上記蓋部と上記開口部の辺縁との接触面において隙間が形成されず、耐熱容器が密閉されるため、蒸発したマグネシウムの耐熱容器外への飛散を抑制することができるためと考えられる。 The heating and melting step includes an opening and a lid that covers the opening, a contact surface of the edge of the opening with the lid, and a contact surface of the lid with the opening. Are preferably carried out in a heat-resistant container that has been polished. By polishing in this way, magnesium silicide having a composition ratio close to the composition ratio of the composition raw material can be obtained. This is because no gap is formed on the contact surface between the lid and the edge of the opening, and the heat-resistant container is sealed, so that it is possible to suppress scattering of evaporated magnesium outside the heat-resistant container. Conceivable.
 上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面との研磨処理については特に限定されず、研磨処理されたものでありさえすればよい。しかし、特に、当該接触面の表面粗さRaを0.2~1.0μmにすると密着状態を形成するのに好ましく、0.2~0.5μmにするとより好ましい。 The polishing treatment of the contact surface to the lid portion at the edge of the opening and the contact surface to the opening portion of the lid portion is not particularly limited, and it is only necessary that the polishing treatment is performed. However, in particular, a surface roughness Ra of the contact surface is preferably 0.2 to 1.0 μm to form a close contact state, and more preferably 0.2 to 0.5 μm.
 このような耐熱容器としては、アルミナ、マグネシア、ジルコニア、白金、イリジウム、シリコンカーバイト、ボロンナイトライド、パイロライティックボロンナイトライド、パイロライティックグラファイト、石英等からなる密閉容器を挙げることができる。また、上記耐熱容器の寸法としては、容器本体が内径12~300mm、外径15~320mm、高さ50~250mmで、蓋部の直径が15~320mmのものを挙げることができる。 Examples of such heat-resistant containers include sealed containers made of alumina, magnesia, zirconia, platinum, iridium, silicon carbide, boron nitride, pyrolytic boron nitride, pyrolytic graphite, quartz, and the like. The dimensions of the heat-resistant container include those having a container body having an inner diameter of 12 to 300 mm, an outer diameter of 15 to 320 mm, a height of 50 to 250 mm, and a lid portion having a diameter of 15 to 320 mm.
 さらに、上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面とを密着させるため、必要に応じて、上記蓋部の上面を直接又は間接におもりにて加圧することができる。当該加圧の際の圧力は、例えば1~10kg/cmである。 Furthermore, in order to bring the contact surface to the lid portion at the edge of the opening portion into close contact with the contact surface to the opening portion in the lid portion, the upper surface of the lid portion is directly or indirectly adjusted as necessary. It can be pressurized with a weight. The pressure during the pressurization is, for example, 1 to 10 kg / cm 2 .
 このようにして合成されたマグネシウムシリサイドは、微細で、狭い粒度分布を有する粒子に粉砕することが好ましい。 The magnesium silicide synthesized in this manner is preferably finely pulverized into particles having a narrow particle size distribution.
 なお、マグネシウムシリサイドとしては、特に限定されないが、例えば国際公開第2008/075789号や、国際出願番号PCT/JP2010/061185、国際出願番号PCT/JP2010/062509等の明細書に開示されたものを好ましく用いることができる。本発明においては、国際公開第2008/075789号等に記載されるような多結晶構造を有するマグネシウムシリサイドを用いることが特に好ましい。 The magnesium silicide is not particularly limited, however, for example, those disclosed in the specifications of International Publication No. 2008/077589, International Application No. PCT / JP2010 / 061185, International Application No. PCT / JP2010 / 062509, and the like are preferable. Can be used. In the present invention, it is particularly preferable to use magnesium silicide having a polycrystalline structure as described in International Publication No. 2008/0775789.
≪熱電変換モジュール≫
 本発明に係る熱電変換モジュールは、本発明に係る熱電変換素子を備えたものである。
 上述した熱電変換素子1を備えた熱電変換モジュールの一態様を図4に示す。熱電変換素子1は、熱電変換材料として半導体シリサイドを使用しており、主としてn型半導体素子として使用することができる。図4に示す熱電変換モジュール3において電極層12a側を加熱すると、温度差により電極層12a側が電極層12b側よりも高電位となる。このとき、電極層12aと電極層12bとの間に負荷31を接続することで、電極層12a側から電極層12b側へと電流が流れることになる。
≪Thermoelectric conversion module≫
The thermoelectric conversion module according to the present invention includes the thermoelectric conversion element according to the present invention.
One mode of a thermoelectric conversion module including the thermoelectric conversion element 1 described above is shown in FIG. The thermoelectric conversion element 1 uses semiconductor silicide as a thermoelectric conversion material, and can be used mainly as an n-type semiconductor element. When the electrode layer 12a side is heated in the thermoelectric conversion module 3 shown in FIG. 4, the electrode layer 12a side becomes higher potential than the electrode layer 12b side due to the temperature difference. At this time, by connecting the load 31 between the electrode layer 12a and the electrode layer 12b, a current flows from the electrode layer 12a side to the electrode layer 12b side.
 なお、上述したとおり、電極層12a,12bのうち少なくとも高温側に配置される電極層12aは、遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体からなることが好ましい。 Note that, as described above, the electrode layer 12a disposed on at least the high temperature side of the electrode layers 12a and 12b is preferably made of a transition metal silicide or a mixture of a transition metal silicide and a metal material.
 熱電変換素子1を備えた熱電変換モジュールの他の態様を図5に示す。図5に示す熱電変換モジュール4は、n型半導体素子としての熱電変換素子1が、電極32を介して複数並列に並べられたものである。かかる熱電変換モジュール4にあっては、熱電変換素子1を複数にすることにより、得られる起電力及び電力を大きなものとすることができる。 The other aspect of the thermoelectric conversion module provided with the thermoelectric conversion element 1 is shown in FIG. In the thermoelectric conversion module 4 shown in FIG. 5, a plurality of thermoelectric conversion elements 1 as n-type semiconductor elements are arranged in parallel via electrodes 32. In the thermoelectric conversion module 4, the electromotive force and power obtained can be increased by using a plurality of thermoelectric conversion elements 1.
 熱電変換素子1を備えた熱電変換モジュールのさらに他の態様を図6に示す。図6に示す熱電変換モジュール5は、n型半導体素子としての熱電変換素子1と、p型半導体素子としての熱電変換素子40とが、電極33を介してπ形に並べられたものである。図6に示す熱電変換モジュール5において電極33側を加熱すると、温度差により熱電変換素子40側が熱電変換素子1側よりも高電位となる。このとき、熱電変換素子40と熱電変換素子1との間に負荷31を接続することで、熱電変換素子40から熱電変換素子1へと電流が流れることになる。 FIG. 6 shows still another aspect of the thermoelectric conversion module including the thermoelectric conversion element 1. The thermoelectric conversion module 5 shown in FIG. 6 includes a thermoelectric conversion element 1 as an n-type semiconductor element and a thermoelectric conversion element 40 as a p-type semiconductor element arranged in a π shape via an electrode 33. When the electrode 33 side is heated in the thermoelectric conversion module 5 shown in FIG. 6, the thermoelectric conversion element 40 side has a higher potential than the thermoelectric conversion element 1 side due to the temperature difference. At this time, a current flows from the thermoelectric conversion element 40 to the thermoelectric conversion element 1 by connecting the load 31 between the thermoelectric conversion element 40 and the thermoelectric conversion element 1.
 以下、本発明について、実施例を挙げて詳細に説明する。なお、本発明は以下に示す実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the Example shown below at all.
<実施例1>
 実施例1では、半導体シリサイドとして、溶融合成法にて合成したドーパントを含まないマグネシウムシリサイド(ユニオンマテリアル製、TYPE:MSGI-SG-UN、LOT:10A233)を、平均粒径75μmとなるように自動乳鉢にて粉砕したものを用いた。なお、上記マグネシウムシリサイドは未反応のシリコンやマグネシウム等の未反応物を含まない。
<Example 1>
In Example 1, magnesium silicide containing no dopant synthesized by a melt synthesis method (manufactured by Union Material, TYPE: MSGI-SG-UN, LOT: 10A233) is automatically used as a semiconductor silicide so as to have an average particle size of 75 μm. What was pulverized in a mortar was used. The magnesium silicide does not contain unreacted substances such as unreacted silicon and magnesium.
 また、電極材料として、ニッケルシリサイド(NiSi)粉末(豊島製作所製;純度99.9%、平均粒径16.78μm)を用いた。また、絶縁性材料としてSiO粉末(高純度化学研究所製;純度99.9%、平均粒径63μm)を用いた。 Further, nickel silicide (NiSi) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 16.78 μm) was used as an electrode material. Further, SiO 2 powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, average particle size 63 μm) was used as the insulating material.
 まず、図2に示すように、カーボンダイ21(φ15mm×30mm)の空間部23の上方からカーボンパンチ22a(φ15mm×20mm)を外して製造装置2の上方を開放状態として、マグネシウムシリサイド粉末を空間部23に投入・堆積させ、熱電変換材料層を形成した。次いで、ニッケルシリサイド粉末、SiO粉末をこの順で投入・堆積させて電極層、絶縁性材料層を形成した後、空間部23の上方からカーボンパンチ22aを入れて材料を挟み込むようにして、図3の状態とした。
 なお、マグネシウムシリサイドが製造装置2に固着してしまうことを防ぐため、マグネシウムシリサイドとの接触部分には、カーボンペーパーを挟んだ。
 また、冷却時の降温速度を下げるため、カーボンダイ21の周囲にはカーボンフェルトを巻き付けた。
First, as shown in FIG. 2, the carbon punch 22a (φ15 mm × 20 mm) is removed from above the space portion 23 of the carbon die 21 (φ15 mm × 30 mm), and the upper portion of the manufacturing apparatus 2 is opened, so that the magnesium silicide powder is placed in the space. The portion 23 was charged and deposited to form a thermoelectric conversion material layer. Next, nickel silicide powder and SiO 2 powder are input and deposited in this order to form an electrode layer and an insulating material layer, and then a carbon punch 22a is inserted from above the space 23 to sandwich the material. State 3 was assumed.
In order to prevent magnesium silicide from adhering to the manufacturing apparatus 2, carbon paper was sandwiched between the contact portions with magnesium silicide.
Further, a carbon felt was wound around the carbon die 21 in order to lower the cooling rate during cooling.
 そして、放電プラズマ焼結装置(ELENIX製、「PAS-III-Es」)を用いて真空雰囲気下で焼結を行い、焼結体を得た。焼結条件は下記のとおりである。
  焼結温度:840℃
  焼結圧力:30.0MPa
  昇温速度:300℃/min×2min(~600℃)
       100℃/min×2min(600~800℃)
       10℃/min×4min(800~840℃)
       0℃/min×5min(840℃)
  冷却条件:真空放冷
  雰囲気:Ar 60Pa(冷却時は真空)
Then, sintering was performed in a vacuum atmosphere using a discharge plasma sintering apparatus (manufactured by ELENIX, “PAS-III-Es”) to obtain a sintered body. The sintering conditions are as follows.
Sintering temperature: 840 ° C
Sintering pressure: 30.0 MPa
Temperature rising rate: 300 ° C / min × 2min (up to 600 ° C)
100 ° C / min × 2min (600-800 ° C)
10 ℃ / min × 4min (800 ~ 840 ℃)
0 ° C / min × 5min (840 ° C)
Cooling conditions: Vacuum cooling Atmosphere: Ar 60 Pa (vacuum when cooling)
 その後、得られた焼結体をワイヤーソー(ムサシノ電子製、「CS-203」)を用いて切り出し、アルミナ粉を用いて研磨することにより、縦1.9mm×横15mm×高さ2.1mm(電極層の厚さ0.2~0.25mm)の熱電変換素子を得た。さらに、電極層を3分割した中央部分を除去し、図7に示すような形状の熱電変換素子6を得た。図7に示す熱電変換素子6においては、熱電変換層13の上面の両端に電極層14a,14bが形成されている。 Thereafter, the obtained sintered body was cut out using a wire saw ("CS-203" manufactured by Musashino Electronics Co., Ltd.) and polished with alumina powder to obtain a length of 1.9 mm x width 15 mm x height 2.1 mm. A thermoelectric conversion element having an electrode layer thickness of 0.2 to 0.25 mm was obtained. Further, the central portion obtained by dividing the electrode layer into three parts was removed to obtain a thermoelectric conversion element 6 having a shape as shown in FIG. In the thermoelectric conversion element 6 shown in FIG. 7, electrode layers 14 a and 14 b are formed on both ends of the upper surface of the thermoelectric conversion layer 13.
<実施例2>
 電極材料として、クロムシリサイド(CrSi)粉末(豊島製作所製;純度99.9%、平均粒径6.0μm)とニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)とを1:1(質量基準)で混合した混合体を用いたほかは、実施例1と同様にして図7に示すような形状の熱電変換素子6を得た。
<Example 2>
As electrode materials, chromium silicide (CrSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 μm) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) A thermoelectric conversion element 6 having a shape as shown in FIG. 7 was obtained in the same manner as in Example 1 except that a mixture of 3 μm) and 1: 1 (mass basis) was used.
<実施例3>
 電極材料として、コバルトシリサイド(CoSi)粉末(フルウチ化学製;純度99%、平均粒径3.91μm)とニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)とを1:1(質量基準)で混合した混合体を用いたほかは、実施例1と同様にして図7に示すような形状の熱電変換素子6を得た。
<Example 3>
Cobalt silicide (CoSi 2 ) powder (manufactured by Furuuchi Chemical; purity 99%, average particle size 3.91 μm) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 μm) as electrode materials 7 was obtained in the same manner as in Example 1 except that a mixture obtained by mixing 1: 1 and (by mass) was obtained.
<実施例4>
 電極材料として、チタンシリサイド(TiSi)粉末(豊島製作所製;純度99.9%、平均粒径6.3μm)とニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)とを1:1(質量基準)で混合した混合体を用いたほかは、実施例1と同様にして図7に示すような形状の熱電変換素子6を得た。
<Example 4>
As electrode materials, titanium silicide (TiSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.3 μm) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) A thermoelectric conversion element 6 having a shape as shown in FIG. 7 was obtained in the same manner as in Example 1 except that a mixture of 3 μm) and 1: 1 (mass basis) was used.
<比較例1>
 電極材料としてニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)を用いたほかは、実施例1と同様にして図7に示すような形状の熱電変換素子6を得た。
<Comparative Example 1>
The thermoelectric conversion element 6 having the shape as shown in FIG. 7 was used in the same manner as in Example 1 except that nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 μm) was used as the electrode material. Got.
<評価>
[光学顕微鏡による表面観察]
 自動研磨機(ムサシノ電子製、「MA-150」)を用いて、実施例1~4、比較例1で得られた焼結体の表面を鏡面加工し、熱電変換層と電極層との界面を光学顕微鏡により観察した。実施例1~4、比較例1における観察結果をそれぞれ図8(a)~(e)に示す。
<Evaluation>
[Surface observation by optical microscope]
Using an automatic polishing machine (Musashino Electronics, "MA-150"), the surfaces of the sintered bodies obtained in Examples 1 to 4 and Comparative Example 1 were mirror-finished, and the interface between the thermoelectric conversion layer and the electrode layer Was observed with an optical microscope. The observation results in Examples 1 to 4 and Comparative Example 1 are shown in FIGS. 8 (a) to 8 (e), respectively.
 図8(a)~(e)に示すように、電極材料として遷移金属シリサイド(ニッケルシリサイド)を用いた場合も、遷移金属シリサイド(クロムシリサイド、コバルトシリサイド、チタンシリサイド)とニッケルとの混合体を用いた場合も、電極材料としてニッケルを用いた場合と同様に、熱電変換層との良好な接着が観察された。 As shown in FIGS. 8A to 8E, even when transition metal silicide (nickel silicide) is used as an electrode material, a mixture of transition metal silicide (chrome silicide, cobalt silicide, titanium silicide) and nickel is used. When used, good adhesion with the thermoelectric conversion layer was observed as in the case of using nickel as the electrode material.
[I-V測定(オーミック接触の確認)]
 概略構成を図9に示したカーブトレーサ52を備えた測定装置7(ソニーテクトリニクス製、「Tektronix 370A」)を用いて、実施例1~4、比較例1で得られた熱電変換素子6のI-V特性を測定した。試験方法としては、図9に示すように、測定装置7のタングステン電極51a,51bを熱電変換素子6の電極層14a,14bに接触させ、バイアス電圧を印加して、得られた線形の結果をオーミック接触とした。結果を図10に示す。
[IV measurement (confirmation of ohmic contact)]
A thermoelectric conversion element 6 obtained in Examples 1 to 4 and Comparative Example 1 using a measuring apparatus 7 (“Tektronix 370A” manufactured by Sony Tektrinics) having a curve tracer 52 whose schematic configuration is shown in FIG. The IV characteristics were measured. As a test method, as shown in FIG. 9, the tungsten electrodes 51a and 51b of the measuring device 7 are brought into contact with the electrode layers 14a and 14b of the thermoelectric conversion element 6 and a bias voltage is applied, and the obtained linear result is obtained. Ohmic contact was assumed. The results are shown in FIG.
 図10に示すように、評価した熱電変換素子6の全てについて、V=IRの関係が具備する直線関係が得られ、オーミック接触が取れていることが確認できた。 As shown in FIG. 10, it was confirmed that a linear relationship with the relationship V = IR was obtained for all of the evaluated thermoelectric conversion elements 6 and ohmic contact was obtained.
[抵抗値の測定]
 実施例1~3、比較例1で得られた熱電変換素子6のI-V測定の結果等から抵抗値を算出した。結果を下記表1に示す。
[Measurement of resistance value]
The resistance value was calculated from the IV measurement results and the like of the thermoelectric conversion elements 6 obtained in Examples 1 to 3 and Comparative Example 1. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、電極材料として遷移金属シリサイド(ニッケルシリサイド)、又は遷移金属シリサイド(クロムシリサイド、コバルトシリサイド)とニッケルとの混合体を用いた実施例1~3の熱電変換素子は、電極材料としてニッケルを用いた比較例1の熱電変換素子と比較して抵抗値が低かった。このことから、電極材料として遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体を用いることにより、接触抵抗を低下できることが確認できた。 As shown in Table 1, the thermoelectric conversion elements of Examples 1 to 3 using transition metal silicide (nickel silicide) or a mixture of transition metal silicide (chromium silicide, cobalt silicide) and nickel as electrode materials The resistance value was low compared with the thermoelectric conversion element of Comparative Example 1 using nickel as a material. From this, it was confirmed that the contact resistance can be lowered by using transition metal silicide or a mixture of transition metal silicide and metal material as the electrode material.
<実施例5>
 図7に示す形状にする工程を行わない以外は実施例1と同様の方法で、図1に示すような角柱状の熱電変換素子(縦1.9mm×横15mm×高さ2.1mm(電極層の厚さ0.2~0.25mm))を製造した。なお、図1における電極層12a及び12bの両方に、所定の電極材料(ニッケルシリサイド)を使用した。
<Example 5>
A prismatic thermoelectric conversion element (length 1.9 mm × width 15 mm × height 2.1 mm (electrode) as shown in FIG. A layer thickness of 0.2 to 0.25 mm) was produced. A predetermined electrode material (nickel silicide) was used for both of the electrode layers 12a and 12b in FIG.
<実施例6>
 電極材料としてクロムシリサイド(CrSi)粉末(豊島製作所製;純度99.9%、平均粒径6.0μm)とニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)とを1:1(質量基準)で混合した混合体を用いた以外は実施例5と同様の方法で角柱状の熱電変換素子を製造した。
<Example 6>
As electrode materials, chromium silicide (CrSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 μm) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 μm) A prismatic thermoelectric conversion element was produced in the same manner as in Example 5 except that a mixture obtained by mixing 1: 1) was used.
<実施例7>
 電極材料としてコバルトシリサイド(CoSi)粉末(フルウチ化学製;純度99%、平均粒径3.91μm)とニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)とを1:1(質量基準)で混合した混合体を用いた以外は実施例5と同様の方法で角柱状の熱電変換素子を製造した。
<Example 7>
As electrode materials, cobalt silicide (CoSi 2 ) powder (manufactured by Furuuchi Chemical; purity 99%, average particle size 3.91 μm) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 μm) A prismatic thermoelectric conversion element was produced in the same manner as in Example 5 except that a mixture prepared by mixing 1: 1 at a mass (based on mass) was used.
<比較例2>
 電極材料としてニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)を用いた以外は実施例5と同様の方法で角柱状の熱電変換素子を製造した。
<Comparative Example 2>
A prismatic thermoelectric conversion element was produced in the same manner as in Example 5 except that nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 μm) was used as the electrode material.
[熱電変換素子の最大出力の測定]
 先ず、実施例5~7、比較例2の熱電変換素子の抵抗値を、電極層12a,12b(図1参照)に測定装置のタングステン電極を接触させたこと以外は上記の方法と同様の方法で測定した。測定結果を表2に示した。次いで、実施例5~7、比較例2の熱電変換素子の熱起電力を、熱起電力・熱伝導率測定装置(アルバック理工社製、「ZEM2」)を用いて、低温側を373Kに設定し高温側を873Kに設定して、最大出力値(mW)として測定した。測定結果を表2に示した。
[Measurement of maximum output of thermoelectric conversion element]
First, the resistance values of the thermoelectric conversion elements of Examples 5 to 7 and Comparative Example 2 were the same as those described above except that the tungsten electrodes of the measuring device were brought into contact with the electrode layers 12a and 12b (see FIG. 1). Measured with The measurement results are shown in Table 2. Next, the thermoelectromotive force of the thermoelectric conversion elements of Examples 5 to 7 and Comparative Example 2 was set to 373 K on the low temperature side using a thermoelectromotive force / thermal conductivity measuring device (“ZEM2” manufactured by ULVAC-RIKO). The high temperature side was set to 873 K, and the maximum output value (mW) was measured. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、実施例5~7の熱電変換素子は、比較例2の熱電変換素子と比べて、抵抗値が小さく、最大出力値が大きいことが確認された。 From Table 2, it was confirmed that the thermoelectric conversion elements of Examples 5 to 7 had smaller resistance values and larger maximum output values than the thermoelectric conversion elements of Comparative Example 2.
<実施例8>
 電極材料として、コバルトシリサイド(CoSi)粉末(豊島製作所製;純度99.9%、平均粒径6.0μm)とニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)とを33:67(質量基準)で混合した混合体を用いたほかは、実施例1と同様にして図7に示すような形状の熱電変換素子6を得た。
<Example 8>
As electrode materials, cobalt silicide (CoSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 μm) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) 3 μm) was used in the same manner as in Example 1 except that a mixture obtained by mixing 33:67 (based on mass) was used to obtain a thermoelectric conversion element 6 having a shape as shown in FIG.
<実施例9>
 電極材料として、コバルトシリサイド(CoSi)粉末(豊島製作所製;純度99.9%、平均粒径6.0μm)とニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)とを66:34(質量基準)で混合した混合体を用いたほかは、実施例1と同様にして図7に示すような形状の熱電変換素子6を得た。
<Example 9>
As electrode materials, cobalt silicide (CoSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 μm) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) 3 μm) was used in the same manner as in Example 1 except that a mixture obtained by mixing at 66:34 (mass basis) was used to obtain a thermoelectric conversion element 6 having a shape as shown in FIG.
<実施例10>
 電極材料として、クロムシリサイド(CrSi)粉末(豊島製作所製;純度99.9%、平均粒径6.0μm)とニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)とを33:67(質量基準)で混合した混合体を用いたほかは、実施例1と同様にして図7に示すような形状の熱電変換素子6を得た。
<Example 10>
As electrode materials, chromium silicide (CrSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 μm) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) 3 μm) was used in the same manner as in Example 1 except that a mixture obtained by mixing 33:67 (based on mass) was used to obtain a thermoelectric conversion element 6 having a shape as shown in FIG.
<実施例11>
 電極材料として、クロムシリサイド(CrSi)粉末(豊島製作所製;純度99.9%、平均粒径6.0μm)とニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)とを66:34(質量基準)で混合した混合体を用いたほかは、実施例1と同様にして図7に示すような形状の熱電変換素子6を得た。
<Example 11>
As electrode materials, chromium silicide (CrSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 μm) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) 3 μm) was used in the same manner as in Example 1 except that a mixture obtained by mixing at 66:34 (mass basis) was used to obtain a thermoelectric conversion element 6 having a shape as shown in FIG.
<実施例12>
 電極材料として、ニッケルシリサイド(NiSi)粉末(豊島製作所製;純度99.9%、平均粒径6.0μm)とニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)とを66:34(質量基準)で混合した混合体を用いたほかは、実施例1と同様にして図7に示すような形状の熱電変換素子6を得た。
<Example 12>
Nickel silicide (NiSi) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 μm) and nickel powder (manufactured by High-Purity Chemical Laboratory; purity 99.9%, particle size 2 to 3 μm) as electrode materials 7) was used in the same manner as in Example 1 except that a mixture in which 66:34 (mass basis) was mixed was obtained, and a thermoelectric conversion element 6 having a shape as shown in FIG. 7 was obtained.
<実施例13>
 電極材料として、チタンシリサイド(TiSi)粉末(豊島製作所製;純度99.9%、平均粒径6.0μm)とニッケル粉末(高純度化学研究所製;純度99.9%、粒径2~3μm)とを33:67(質量基準)で混合した混合体を用いたほかは、実施例1と同様にして図7に示すような形状の熱電変換素子6を得た。
<Example 13>
As electrode materials, titanium silicide (TiSi 2 ) powder (manufactured by Toshima Seisakusho; purity 99.9%, average particle size 6.0 μm) and nickel powder (manufactured by High Purity Chemical Laboratory; purity 99.9%, particle size 2 to 2) 3 μm) was used in the same manner as in Example 1 except that a mixture obtained by mixing 33:67 (based on mass) was used to obtain a thermoelectric conversion element 6 having a shape as shown in FIG.
[抵抗値の測定]
 実施例8~13で得られた熱電変換素子6のI-V測定を上述の方法で行い、その結果等から抵抗値を算出した。これらの結果を用いて、遷移金属シリサイドと金属材料との混合比と抵抗値(mΩ)との関係を表3に示した。なお、表3には、上記表1に示した実施例1~3の抵抗値も含めて示した。
[Measurement of resistance value]
The IV measurement of the thermoelectric conversion elements 6 obtained in Examples 8 to 13 was performed by the above-described method, and the resistance value was calculated from the results and the like. Using these results, the relationship between the mixing ratio of the transition metal silicide and the metal material and the resistance value (mΩ) is shown in Table 3. Table 3 also includes the resistance values of Examples 1 to 3 shown in Table 1 above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、遷移金属シリサイドと金属材料との混合比の好ましい範囲は、使用する遷移金属シリサイドの種類によって異なることが確認された。 From Table 3, it was confirmed that the preferable range of the mixing ratio between the transition metal silicide and the metal material differs depending on the type of transition metal silicide used.
 1 熱電変換素子、 2 製造装置、 3,4,5 熱電変換モジュール、 6 熱電変換素子、 7 測定装置、 11 熱電変換層、 12a,12b 電極層、 13 熱電変換層、 14a,14b 電極層、 21 カーボンダイ、 22a,22b カーボンパンチ、 23 空間部、 31 負荷、 32,33 電極、 40 熱電変換素子、 51a,51b タングステン電極、 52 カーブトレーサ
 
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion element, 2 Manufacturing apparatus, 3, 4, 5 Thermoelectric conversion module, 6 Thermoelectric conversion element, 7 Measuring apparatus, 11 Thermoelectric conversion layer, 12a, 12b Electrode layer, 13 Thermoelectric conversion layer, 14a, 14b Electrode layer, 21 Carbon die, 22a, 22b carbon punch, 23 space, 31 load, 32, 33 electrode, 40 thermoelectric conversion element, 51a, 51b tungsten electrode, 52 curve tracer

Claims (5)

  1.  半導体シリサイドからなる熱電変換層の両側に一対の電極層が形成された熱電変換素子において、
     前記一対の電極層の少なくとも一方が、遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体からなる熱電変換素子。
    In a thermoelectric conversion element in which a pair of electrode layers are formed on both sides of a thermoelectric conversion layer made of semiconductor silicide,
    A thermoelectric conversion element in which at least one of the pair of electrode layers is made of a transition metal silicide or a mixture of a transition metal silicide and a metal material.
  2.  前記半導体シリサイドが多結晶構造のマグネシウムシリサイドである請求項1記載の熱電変換素子。 The thermoelectric conversion element according to claim 1, wherein the semiconductor silicide is a magnesium silicide having a polycrystalline structure.
  3.  前記遷移金属シリサイドが、ニッケルシリサイド、クロムシリサイド、コバルトシリサイド、及びチタンシリサイドからなる群より選ばれる少なくとも1種であり、
     前記金属材料がニッケルである請求項1又は2記載の熱電変換素子。
    The transition metal silicide is at least one selected from the group consisting of nickel silicide, chromium silicide, cobalt silicide, and titanium silicide;
    The thermoelectric conversion element according to claim 1 or 2, wherein the metal material is nickel.
  4.  請求項1から3のいずれか1項記載の熱電変換素子を備えた熱電変換モジュール。 A thermoelectric conversion module comprising the thermoelectric conversion element according to any one of claims 1 to 3.
  5.  前記熱電変換素子の一対の電極層のうち少なくとも高温側に配置される電極層が、遷移金属シリサイド、又は遷移金属シリサイドと金属材料との混合体からなる請求項4記載の熱電変換モジュール。
     
     
    5. The thermoelectric conversion module according to claim 4, wherein at least one of the pair of electrode layers of the thermoelectric conversion element is made of transition metal silicide or a mixture of transition metal silicide and a metal material.

PCT/JP2011/077500 2010-11-30 2011-11-29 Thermoelectric conversion element and thermoelectric conversion module WO2012073946A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012546882A JP5881066B2 (en) 2010-11-30 2011-11-29 Thermoelectric conversion element and thermoelectric conversion module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-266599 2010-11-30
JP2010266599 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073946A1 true WO2012073946A1 (en) 2012-06-07

Family

ID=46171875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077500 WO2012073946A1 (en) 2010-11-30 2011-11-29 Thermoelectric conversion element and thermoelectric conversion module

Country Status (3)

Country Link
JP (1) JP5881066B2 (en)
TW (1) TW201234688A (en)
WO (1) WO2012073946A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050372A (en) * 2013-09-03 2015-03-16 学校法人明星学苑 Method for manufacturing thermoelectric conversion module
NL2017871B1 (en) * 2016-11-25 2018-06-08 Rgs Dev B V Thermoelectric conversion device
WO2019177147A1 (en) 2018-03-16 2019-09-19 三菱マテリアル株式会社 Thermoelectric conversion element
JP2019165215A (en) * 2018-03-16 2019-09-26 三菱マテリアル株式会社 Thermoelectric conversion element
KR20190118183A (en) * 2018-03-30 2019-10-17 제이엑스금속주식회사 Photodiodes and Photosensitive Devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2020545B1 (en) 2018-03-07 2019-09-13 Rgs Dev B V Thermoelectric conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202274A (en) * 1993-12-28 1995-08-04 Nissan Motor Co Ltd Thermoelectric device and its manufacture
JP2009260173A (en) * 2008-04-21 2009-11-05 Tokyo Univ Of Science Thermoelectric conversion element, and thermoelectric module equipped with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269559A (en) * 1999-03-12 2000-09-29 Yazaki Corp Thermoelectric device and its manufacture
JP2002076448A (en) * 2000-09-04 2002-03-15 Shin Etsu Handotai Co Ltd Thermoelectric element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202274A (en) * 1993-12-28 1995-08-04 Nissan Motor Co Ltd Thermoelectric device and its manufacture
JP2009260173A (en) * 2008-04-21 2009-11-05 Tokyo Univ Of Science Thermoelectric conversion element, and thermoelectric module equipped with the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050372A (en) * 2013-09-03 2015-03-16 学校法人明星学苑 Method for manufacturing thermoelectric conversion module
NL2017871B1 (en) * 2016-11-25 2018-06-08 Rgs Dev B V Thermoelectric conversion device
WO2019177147A1 (en) 2018-03-16 2019-09-19 三菱マテリアル株式会社 Thermoelectric conversion element
JP2019165215A (en) * 2018-03-16 2019-09-26 三菱マテリアル株式会社 Thermoelectric conversion element
CN111630672A (en) * 2018-03-16 2020-09-04 三菱综合材料株式会社 Thermoelectric conversion element
KR20200130806A (en) 2018-03-16 2020-11-20 미쓰비시 마테리알 가부시키가이샤 Thermoelectric conversion element
US11152554B2 (en) 2018-03-16 2021-10-19 Mitsubishi Materials Corporation Thermoelectric conversion element
JP7242999B2 (en) 2018-03-16 2023-03-22 三菱マテリアル株式会社 Thermoelectric conversion element
KR20190118183A (en) * 2018-03-30 2019-10-17 제이엑스금속주식회사 Photodiodes and Photosensitive Devices
CN110574172A (en) * 2018-03-30 2019-12-13 国立大学法人茨城大学 Photodiode and light sensing apparatus
KR102370289B1 (en) * 2018-03-30 2022-03-04 제이엑스금속주식회사 Photodiodes and photosensitive devices

Also Published As

Publication number Publication date
JP5881066B2 (en) 2016-03-09
TW201234688A (en) 2012-08-16
JPWO2012073946A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5881066B2 (en) Thermoelectric conversion element and thermoelectric conversion module
TWI485266B (en) Aluminum-magnesium-silicon composite material and method for manufacturing the same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module using the composite material
JP6663612B2 (en) Method for producing polycrystalline magnesium silicide and method for producing sintered body
US8388883B2 (en) Process for producing thermoelectric semiconductor materials and legs
CN110366784B (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
JP6222666B2 (en) Mg-Si-based thermoelectric conversion material and manufacturing method thereof, sintered body for thermoelectric conversion, thermoelectric conversion element, and thermoelectric conversion module
JP7251187B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
CN103262272B (en) There is the metal material of N-shaped thermoelectricity conversion performance
JP7121227B2 (en) Thermoelectric conversion material and method for producing thermoelectric conversion material
WO2013047475A1 (en) Magnesium silicide, thermoelectric conversion material, sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module
JP7157993B2 (en) Polycrystalline magnesium silicide and its use
KR102409289B1 (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and manufacturing method of magnesium-based thermoelectric conversion material
WO2019004373A1 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
JP2018157130A (en) Manufacturing method of thermoelectric conversion material
JP7248157B2 (en) Thermoelectric conversion material and method for producing thermoelectric conversion material
JP2019218592A (en) Silicide alloy material and element including the same
WO2019168029A1 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and method for producing thermoelectric conversion material
CN115516651A (en) Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546882

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844258

Country of ref document: EP

Kind code of ref document: A1