WO2012073586A1 - Gas-liquid separation device for four-stroke engine, and lubrication device for four-stroke engine - Google Patents

Gas-liquid separation device for four-stroke engine, and lubrication device for four-stroke engine Download PDF

Info

Publication number
WO2012073586A1
WO2012073586A1 PCT/JP2011/072268 JP2011072268W WO2012073586A1 WO 2012073586 A1 WO2012073586 A1 WO 2012073586A1 JP 2011072268 W JP2011072268 W JP 2011072268W WO 2012073586 A1 WO2012073586 A1 WO 2012073586A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oil
opening
gasket
stroke engine
Prior art date
Application number
PCT/JP2011/072268
Other languages
French (fr)
Japanese (ja)
Inventor
敏裕 冨田
久保田 宏
良成 菊地
浩二 杉山
眞樹 栗本
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Priority to CN201180057665.0A priority Critical patent/CN103249923B/en
Priority to BR112013010427-9A priority patent/BR112013010427B1/en
Publication of WO2012073586A1 publication Critical patent/WO2012073586A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/06Means for keeping lubricant level constant or for accommodating movement or position of machines or engines
    • F01M11/062Accommodating movement or position of machines or engines, e.g. dry sumps
    • F01M11/065Position
    • F01M11/067Position inverted, e.g. for inverted flight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/04Pressure lubrication using pressure in working cylinder or crankcase to operate lubricant feeding devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M13/0416Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil arranged in valve-covers

Definitions

  • the present invention relates to a gas-liquid separator for separating oil mist and blow-by gas of a 4-stroke engine and a lubrication device for a 4-stroke engine.
  • This 4-stroke engine is likely to be heavier because it requires a larger number of parts than a 2-stroke engine. Especially in portable work machines, it is assumed that the operator works while carrying the work machine. The weight reduction of the engine is required.
  • a high oil concentration is required around the crankshaft, and a valve system does not require a higher oil concentration around the crankshaft.
  • oil or oil mist in the crank chamber is sent to the valve chamber and the valve device without adjusting the concentration by utilizing the pressure fluctuation in the crank chamber. Therefore, in order to lubricate the valve device, Oil or oil mist is excessively fed into the valve chamber, and the amount of oil that stays in the valve chamber increases so much that the oil is discharged along with the discharge of blow-by gas into the combustion chamber. There is a problem of being consumed. Therefore, the oil replenishment period is shortened, and failure to replenish oil may cause poor lubrication. Further, when the amount of oil discharged into the combustion chamber becomes excessive, a large amount of oil is discharged from the muffler to the outside without being burned, which may adversely affect the environment.
  • the present invention has been made in view of such a background, and in order to prevent the oil from being discharged into the combustion chamber, the gas-liquid separation of the four-stroke engine with more reliable gas-liquid separation of the oil and blow-by gas. It is an object of the present invention to provide an apparatus and a lubrication apparatus for a four-stroke engine.
  • a gas-liquid separation device of a four-stroke engine has a gas-liquid separation chamber that is formed by branching from an oil circulation path and separates oil mist from blow-by gas containing oil mist. And the gas-liquid separation chamber has a first opening through which the blow-by gas is introduced from the oil circulation path, and a second opening through which oil separated from the blow-by gas is returned to the oil circulation path And a third opening that exhausts the blow-by gas from which the oil mist has been separated from the gas-liquid separation chamber and communicates with the intake passage to the combustion chamber, the first opening being the first The third opening is formed in the second wall, and the gas-liquid separation chamber has a gas-liquid separation member between the first opening and the third opening. Is formed (claimed) 1).
  • this gas-liquid separation device includes a gas-liquid separation member, it becomes possible to appropriately separate liquid oil from blow-by gas. Moreover, since oil can be appropriately separated, oil consumption can be suppressed. Furthermore, it is possible to suppress the discharge of unburned oil that adversely affects the environment.
  • the inflow direction of blow-by gas flowing in from the first opening and the outflow direction of blow-by gas flowing out from the third opening are twisted. It forms so that it may become a positional relationship (Claim 2).
  • the gas-liquid separator in the present invention can more appropriately separate liquid oil from blow-by gas.
  • the first opening is formed near the center of the first wall, and the third opening is formed on the second wall. It is formed at one of the left and right corners of the upper side position (Claim 3).
  • the gas-liquid separator of the 4-stroke engine according to the present invention can perform gas-liquid separation more appropriately.
  • One aspect of the gas-liquid separation member in the present invention is a gasket having a plurality of central through holes in the vicinity of the center (Claim 4).
  • the gas-liquid separation device of the four-stroke engine according to the present invention can separate large liquid droplets of the liquid oil by the first gasket.
  • the second opening is formed at one of the two left and right corners of the lower direction position of the first wall, and the first wall is formed in the first wall.
  • the gas-liquid separator of the four-stroke engine according to the present invention can efficiently discharge the liquid oil separated in the first gasket from the second opening. .
  • a through hole is formed at a corner of the gasket at a position where the second opening of the first wall is formed.
  • the gas-liquid separator of the four-stroke engine according to the present invention efficiently discharges the liquid oil separated after passing through the first gasket from the second opening. It becomes possible.
  • One aspect of the gas-liquid separation member according to the present invention is such that the gas-liquid separation member is in an upward direction position and has a through hole at a corner on the side opposite to the side on which the third opening is formed. (7).
  • the blow-by gas containing liquid oil flows into the gas-liquid separation chamber through the first opening,
  • the liquid oil can be separated by colliding with the second gasket.
  • the through hole of the second gasket is formed at a position opposite to the side on which the third opening is formed, the blow-by gas that has passed through the through hole is smoothly opened to the third opening. Can be discharged from the section.
  • the second opening is formed at any one of the left and right corners of the lower side position of the first wall (Claim 8).
  • the gas-liquid separator of the four-stroke engine according to the present invention can discharge liquid oil from the second opening more reliably.
  • the second opening is formed on the side of the power drive shaft of the four-stroke engine among the two left and right corners, and the third opening is formed at the two left and right corners. Of these, it is formed on the side opposite to the drive shaft.
  • the gas-liquid separation member has a mesh shape (claim 10).
  • the gas-liquid separator of the 4-stroke engine according to the present invention can also separate oil mist with small oil droplets.
  • the first wall is formed to face the second wall (claim 11).
  • One aspect of the gas-liquid separation member in the present invention is a first gasket having a plurality of through holes in the vicinity of the center, a side in the upper direction, and the side on which the third opening is formed.
  • a second gasket having a through-hole formed at the opposite corner position; and a mesh-shaped net; wherein the first gasket, the second gasket, and the net have the first opening. From the side, the first gasket, the net, and the second gasket are arranged in this order (claim 12).
  • the oil mist can be more effectively separated by the synergistic effect of the first gasket, the second gasket and the net.
  • One aspect of the gas-liquid separation member in the present invention is a first gasket having a plurality of through holes in the vicinity of the center, a side in the upper direction, and the side on which the third opening is formed.
  • liquid oil can be more effectively separated by the synergistic effect of the first gasket and the second gasket.
  • One aspect of the gas-liquid separation member in the present invention includes a first gasket having a plurality of through holes in the vicinity of the center, and a mesh-shaped net, and the first gasket and the net are the first gasket and the first gasket.
  • the first gasket and the net are arranged in this order from the opening side.
  • the liquid oil can be more effectively separated by the synergistic effect of the first gasket and the net.
  • One aspect of the gas-liquid separation member according to the present invention is a second position in which a through hole is formed at a corner on the opposite side to the side on which the third opening is formed, the upper direction position.
  • the second gasket and the net are arranged in this order from the first opening side to the net and the second gasket. ).
  • the liquid oil can be more effectively separated by the synergistic effect of the second gasket and the net.
  • oil is supplied to the crank chamber and the valve chamber that are configured as a part of the oil circulation path by utilizing pressure fluctuations in the crank chamber due to reciprocation of the piston.
  • a direct passage that communicates the valve operating chamber and the crank chamber at the time of negative pressure in the crank chamber is provided, and an opening end portion of the direct passage that opens into the crank chamber is formed by the piston.
  • the oil separated by the gas-liquid separator can be efficiently recovered in the oil circulation path.
  • oil is circulated in the oil circulation path to lubricate each part using the pressure fluctuation in the crank chamber due to the reciprocating motion of the piston, and the negative pressure in the crank chamber is reduced.
  • a recirculation passage that communicates the second opening of the gas-liquid separator according to claim 1 and the crank chamber is provided at the time of pressure, and an opening end portion that opens into the crank chamber of the recirculation passage is provided with the piston at the top. It is opened when moving from the position near the dead center toward the top dead center, and is closed so that the piston moves while moving from the position near the top dead center toward the bottom dead center (Claim 17).
  • the oil separated by the gas-liquid separator can be efficiently recovered in the oil circulation path.
  • One aspect of the lubricating device for a four-stroke engine according to the present invention has a fourth opening for returning the oil separated from the blow-by gas to the oil circulation path, and is provided at a position in the lower direction of the first wall.
  • the second opening and the fourth opening are formed at respective positions on the left and right corners (claim 18).
  • the gas-liquid separator of the four-stroke engine and the four-stroke which ensured the gas-liquid separation of the oil and the blow-by gas.
  • An engine lubrication device can be provided.
  • FIG. 1 shows the four-stroke engine when the piston is located at the top dead center.
  • the 4-stroke engine 1 includes a cylinder block 3 in which a cylinder head 3 a is integrated, a crankcase 5 that is attached to a lower portion of the cylinder block 3 to form a crank chamber 5 a, and a crankcase 5 And an oil reservoir chamber 7 disposed at the lower side position.
  • the oil reservoir 7 is provided separately from the crankcase 5 and stores oil A (hereinafter simply referred to as “oil A”).
  • a crankshaft (not shown) is rotatably supported at a connecting portion between the cylinder block 3 and the crankcase 5, and a piston 6 is connected to the crankshaft via a counterweight, a connecting rod connected thereto, and the like.
  • the piston 6 is slidably inserted into a cylinder 3b provided in the cylinder block 3.
  • An intake port and an exhaust port communicating with a carburetor (not shown) and an exhaust muffler (not shown) are provided on the upper wall of the cylinder 3b provided in the cylinder block 3, respectively.
  • An intake valve and an exhaust valve for opening and closing the port are provided.
  • the four-stroke engine 1 of the present embodiment may be used by being carried around, and in that case, the four-stroke engine 1 can be used in a state where it is temporarily rotated and the top and bottom are reversed.
  • the valve operating mechanism 10 for driving these valves is composed of components such as a valve drive gear 10a fixed to a crankshaft, a cam gear 10b driven by the valve drive gear 10a and connected to a cam, and a rocker arm (not shown). Is done.
  • the valve drive gear 10 a and the cam gear 10 b are valve drives provided in the middle of a supply passage 31 that connects the valve chamber 4 formed in the head of the cylinder block 3 and the oil reservoir chamber 7. Parts such as a rocker arm, which are accommodated in the chamber 32, are provided in the valve operating chamber 4.
  • An oil feed passage 34 is provided between the oil reservoir 7 and the cylinder block 3.
  • a suction portion 35 is attached to an end portion of the oil feeding passage 34 on the oil reservoir chamber side.
  • the suction portion 35 includes a tube body 35a that is formed of an elastic material such as rubber and can be easily bent, and a weight 35b with a suction port attached to a tip portion of the tube body 35a.
  • the weight 35b of the suction portion 35 is attached so as to be movable in a vertically downward position due to gravity. As a result, even if the oil reservoir 7 is tilted, the weight 35b is below the oil level of the oil A stored in a specified amount range.
  • the suction port of the suction part 35 can be immersed.
  • the oil feed passage 34 sucks up the oil A from the oil reservoir chamber 7 by communicating the inside of the crank chamber 5a and the oil reservoir chamber 7 when the inside of the crank chamber 5a tends to become negative pressure due to the rise of the piston 6. This is the portion that is fed into the crank chamber 5a.
  • the position of the opening end 34a that opens to the crank chamber 5a side of the oil feeding passage 34 is a position that opens as the piston 6 moves while the piston 6 moves from the position near the top dead center toward the top dead center. It is provided and is located on the bottom dead center side of the skirt 6a below the piston that has moved to a position near the top dead center. Therefore, the opening end 34a of the oil feeding passage 34 is already fully opened when the piston 6 reaches the top dead center.
  • the oil feed passage 34 is provided with a reed valve at the open end 34a, or provided with a passage on the crankshaft so as to function as a rotary valve.
  • the oil feed passage 34 and the crank chamber 5a can be operated at a negative pressure in the crank chamber 5a. You may make it communicate.
  • a check valve 37 is provided in the middle of the oil feed passage 34.
  • the check valve 37 opens and closes in response to a change in the pressure in the crank chamber 5a, opens in a state where the pressure in the crank chamber 5a is low with respect to the oil reservoir chamber 7, and connects the oil feed passage 34 to the crank chamber 5a. It is comprised so that it may close in the state where the inside pressure is higher.
  • a communication passage 39 is provided between the bottom of the crank chamber 5 a and the oil reservoir 7 to communicate the crank chamber 5 a with the oil reservoir 7.
  • the communication passage 39 is for sending oil mist generated in the crank chamber 5 a and oil liquefied by the oil mist to the oil reservoir 7.
  • a reed valve 40 is provided at an open end 39 a that opens to the crank chamber side of the communication passage 39.
  • the reed valve 40 is configured to be openable and closable according to a change in the pressure in the crank chamber 5a, and is opened by the positive pressure in the crank chamber when the piston 6 moves to the bottom dead center side so that the communication passage 39 is in a communicating state. It is configured.
  • the reed valve 40 when the reed valve 40 is opened and the communication passage 39 is in a communication state, the oil mist and oil in the crank chamber 5 a are sent into the oil reservoir chamber 7 through the communication passage 39.
  • the space 7b of the oil reservoir 7 is divided by a baffle plate 7c that also functions as a gasket.
  • An opening end 31a of the supply passage 31 is formed at a position in the upper direction of the baffle plate 7c.
  • An opening end 39b on the oil reservoir chamber side of the communication passage 39 opens at a substantially center in the oil reservoir chamber 7, and the oil level of the oil A stored below a specified amount regardless of the inclined state of the oil reservoir chamber 7. It is arranged at the upper position. For this reason, the oil mist discharged from the open end 39b of the communication passage 39 is blown below the oil surface of the oil, so that the inside of the oil is not bubbled, but is gently returned to the oil reservoir 7 and the oil mist Many are liquefied. However, a part of the oil mist discharged from the open end 39b bounces on the oil surface or the wall surface and stays in the space 7a in the oil tank upper side position in the oil reservoir chamber 7. Thus, the open end 39b of the communication path 39 disposed at a position on the oil surface of the oil A functions as a part of the liquefying means for liquefying the oil mist.
  • the opening end portion 31a of the supply passage 31 opens at a substantially central portion of the internal space in the oil reservoir chamber 7, and regardless of the inclined state of the oil reservoir chamber 7, the oil surface of the oil A stored below a specified amount is provided. Even if a position changes, it arrange
  • the opening end 39 b of the communication passage 39 is disposed so as to protrude into the oil reservoir 7 with respect to the opening end 31 a of the supply passage 31, so that the discharge is performed from the opening end 39 b of the communication passage 39. Oil mist does not directly enter the open end 31 a of the supply passage 31.
  • the communication passage 39 and the supply passage 31 may be arranged in a direction away from the adjacent opening end portion as proceeding to each opening end portion side. That is, the opening end 31 a of the supply passage 31 and the vicinity thereof are arranged on the base side of the communication passage 39 with respect to a plane orthogonal to the extending direction of the communication passage 39 (direction indicated by the alternate long and short dash line) at the opening end 39 b.
  • the oil mist discharged from the communication passage 39 does not directly enter the open end 31 a of the supply passage 31. That is, the arrangement of the supply passage 31 and the communication passage 39 in the oil reservoir 7 functions as an inflow prevention portion that prevents oil mist discharged from the communication passage 39 from directly flowing into the opening end portion 31 a of the supply passage 31. Yes. For this reason, the concentration of oil mist flowing through the supply passage 31 is lower than the concentration of oil supplied from the oil feed passage 34 into the crank chamber 5a.
  • An opening end portion 31 a on the valve operating chamber 4 side of the supply passage 31 opens to the cylinder block 3 side of the valve operating chamber 4. Therefore, the oil mist flowing through the supply passage 31 lubricates the valve mechanism 10 in the valve drive chamber 32, is discharged from the open end 31 b and is supplied into the valve chamber 4, and the rocker arm in the valve chamber 4. Lubricate etc.
  • the valve operating chamber 4 and the valve drive chamber 32 are communicated with each other by a push rod passage 33.
  • the push rod passage 33 communicates with the valve operating chamber 4 through an opening 31b. The push rod passes through the push rod passage 33, and the push rod drives the rocker arm in the valve operating chamber 4.
  • oil mist, liquefied oil, and the like are separated from the fluid (oil mist, liquefied oil, blow-by gas) that flows into the valve operating chamber 4 from the push rod passage 33.
  • a protruding wall member 45 is formed.
  • a plurality of suction pipes 43 are provided in the valve train chamber 4 in order to suck the oil accumulated in the valve train chamber 4.
  • An opening end portion 43 a on the valve operating chamber 4 side of the suction pipe 43 opens to the cylinder block 3 side of the valve operating chamber 4.
  • the suction pipe 43 and the suction passage 42 are connected.
  • the suction passage 42 is provided on the opposite side of the valve operating chamber 4 from the crank chamber 5 a, and the suction pipe 43 is provided so as to extend to the crank chamber in the valve operating chamber 4. Is open.
  • the tip of the opening of the suction pipe 43 is disposed near the crank chamber side bottom surface of the valve operating chamber 4 in order to suck up oil from the crank chamber side bottom surface of the valve operating chamber 4.
  • the suction pipe 43 is arranged at the corner of the valve operating chamber 4, and even if the 4-stroke engine 1 is tilted in a state where the valve operating chamber 4 is positioned in the upper direction position, the suction pipe 43 moves through any of the suction pipes 43. The oil accumulated in the valve chamber 4 is sucked.
  • a plurality of small holes 44 are provided in the suction passage 42.
  • the small hole 44 is disposed at the corner of the valve operating chamber 4 on the opposite side to the crank chamber 5a, and even if the 4-stroke engine 1 is tilted in a reverse state in which the valve operating chamber 4 is positioned at the lower side position, The oil accumulated in the valve operating chamber 4 can be sucked through the small hole 44.
  • the suction passage 42 is provided with a direct passage 46, and the valve operating chamber 4 and the crank chamber 5 a communicate with each other through the direct passage 46 when the crank chamber 5 a has a negative pressure.
  • the position of the opening end portion 46a on the crank chamber side of the direct passage 46 is the same as that of the opening end portion 34a of the oil feeding passage 34 while the piston 6 moves from the position near the top dead center toward the top dead center. It is provided at a position that opens with the movement of the skirt portion 6a and is located on the bottom dead center side of the skirt portion 6a below the piston that has moved to a position near the top dead center. Therefore, the opening end 46a of the direct passage 46 is already fully opened when the piston 6 reaches the top dead center.
  • the direct passage 46 may be provided with a check valve that allows the flow from the valve operating chamber 4 to the crank chamber 5a and restricts the flow from the crank chamber 5a to the valve operating chamber 4 side. By doing in this way, it can prevent reliably that oil and oil mist flow back from the crank chamber 5a to the valve operating chamber 4.
  • One end portion 48 a of the breather passage 48 is opened at a substantially central portion of the valve operating chamber 4, and the other end portion of the breather passage 48 is connected to the air cleaner 50.
  • the breather passage 48 is provided for the purpose of discharging blow-by gas to the combustion chamber. Oil mist and blow-by gas in the valve operating chamber 4 are sent to the air cleaner 50 via the breather passage 48 and are separated into oil and blow-by gas by the oil separator 51 provided in the air cleaner 50. Since one end portion 48a of the breather passage 48 opens at a substantially central portion of the valve operating chamber 4, even if a large amount of oil stays in the valve operating chamber 4, the oil is not easily sucked in.
  • the breather passage 48 is provided with a check valve, which prevents the backflow of blow-by gas and oil mist from the air cleaner 50 to the valve operating chamber 4 side.
  • the oil that has undergone gas-liquid separation is sent to the crank chamber 5a through a reflux passage 52 that communicates between the air cleaner 50 and the crank chamber 5a.
  • the return passage 52 is provided with a check valve that allows only the flow toward the crank chamber.
  • the blow-by gas separated from the gas and liquid is sent to the combustion chamber.
  • a return passage 54 for returning the oil in the valve drive chamber 32 into the crank chamber 5a is provided.
  • the return passage 54 is configured to be smaller than 1/10 of the cross-sectional area of the communication passage 39.
  • Oil mist and oil in the crank chamber 5a flow through the communication passage 39 having a large cross-sectional area, and the return passage 54 is plugged with oil, so that oil does not flow back from the crank chamber 5a to the valve drive chamber 32. Almost no.
  • the inner diameter of the communication path 39 is 9 mm
  • the inner diameter of the return path 54 is 2 mm.
  • the return passage 54 may be provided so as to communicate the valve drive chamber 32 and the direct passage 46 described above. By providing the return passage 54 in this way, oil is not supplied to the valve operating chamber 4 more than necessary. Further, a check valve may be provided in the return passage 54 to allow the oil flow to the crank chamber side and restrict the oil flow to the valve drive chamber 32 side. In this way, the backflow of oil from the crank chamber 5a to the valve drive chamber 32 side can be reliably prevented.
  • a flow rate adjusting passage 56 is provided between the valve drive chamber 32 and the oil feeding passage 34.
  • the flow rate adjusting passage 56 sucks the air in the valve drive chamber 32, whereby the flow rate of oil supplied to the crank chamber 5a via the oil feeding passage 34 is adjusted. If the amount of sucked air is large, the flow rate of oil supplied through the oil feeding passage 34 decreases.
  • the flow rate adjusting passage 56 is preferably separated from the bottom of the valve drive chamber 32 and provided at a position where it is difficult to suck the oil staying in the valve drive chamber 32.
  • connection position of the flow rate adjusting passage 56 to the oil feeding passage 34 is located closer to the oil reservoir chamber than the check valve 37 provided in the oil feeding passage 34. For this reason, when the oil supply is shut off by the check valve 37, the oil is accumulated in the oil feed passage 34 on the oil reservoir chamber side of the check valve 37, and the flow regulating passage 56 and the oil feed passage 34 are connected to each other. Becomes a state where oil has accumulated. Thus, at the timing when the oil feeding passage 34 sucks air from the flow rate adjusting passage 56, only air does not flow through the oil feeding passage 34, and the oil in the oil feeding passage 34 together with the air sent from the valve drive chamber 32. It is sent to the crank chamber 5a.
  • the flow rate adjusting passage 56 is provided with a flow restrictor 57 that adjusts the flow rate of air sent from the valve drive chamber 32 to the oil feeding passage 34.
  • a flow restrictor 57 that adjusts the flow rate of air sent from the valve drive chamber 32 to the oil feeding passage 34.
  • the flow restrictor 57 does not need to be provided separately from the flow adjustment passage 56 and may be configured as a part of the flow adjustment passage 56. For example, if a part of the flow rate adjusting passage 56 is formed along the seal surfaces of the cylinder block 3 and the crankcase 5 and connected to the oil feed passage 34 by the seal surface, the flow restrictor 57 can be easily configured.
  • the oil circulation path of the lubricating device 30 includes an oil feeding passage 34, a communication passage 39, a supply passage 31, a push rod passage 33, a suction pipe 43, a small hole 44, a suction passage 42, a direct passage 46, a breather passage 48, and a reflux passage. 52, a return passage 54, and a flow rate adjustment passage 56.
  • crank chamber 5a When the four-stroke engine 1 is started, a pressure change occurs in the crank chamber 5a due to the up-and-down movement of the piston 6, the crank chamber 5a is depressurized when the piston 6 is raised, and tends to be negative, and the crank chamber is lowered when the piston 6 is lowered. 5a is boosted and tends to be positive.
  • the opening end portion 34a of the oil feed passage 34 starts to open as the piston 6 moves to the vicinity of the top dead center, and the crank chamber 5a and the oil reservoir chamber 7 communicate with each other.
  • the negative pressure in the crank chamber 5a acts on 34.
  • the suction portion 35 of the oil feed passage 34 is in a state of being submerged under the oil surface of the oil A in the oil reservoir chamber 7, and the oil A is sucked from the oil reservoir chamber 7 and the crank chamber 5a. Sent in. Since the open end 34a is already fully opened when the piston 6 reaches the top dead center position, the negative pressure in the crank chamber 5a can be sufficiently applied to the oil feed passage 34. Therefore, the oil A pumped from below the oil level can be sufficiently supplied into the crank chamber 5a.
  • the oil sent into the crank chamber 5a lubricates driving parts such as the piston 6 and the crankshaft, and at the same time, is scattered by these driving parts to become oil mist. Part of the oil mist adheres to the wall surface of the crank chamber 5a and is liquefied again.
  • the crank chamber 5a changes to a positive pressure
  • the reed valve 40 is opened, and the crank chamber 5a and the oil reservoir 7 are in communication.
  • the oil mist and oil whose pressure is increased in the crank chamber 5a are sent to the oil reservoir 7 through the communication passage 39, and the pressure in the oil reservoir 7 is increased.
  • the oil mist discharged from the communication passage 39 is liquefied by colliding with the oil surface of the oil A accumulated in the oil reservoir chamber 7 or the wall surface of the oil reservoir chamber 7 and stored in the oil reservoir chamber 7.
  • the concentration of the oil mist remaining by the collision in the oil reservoir chamber 7 and rebounding is lower than the concentration in the crank chamber 5a.
  • the check valve 37 acts to block the oil feed passage 34 so that the oil from the crank chamber 5a to the oil reservoir chamber 7 does not flow back, and the open end 34a is then closed by the piston 6. Closed.
  • the oil liquefied in the valve drive chamber 32 can be sent to the crank chamber 5a through the return passage 54. For this reason, it is possible to prevent oil from staying excessively in the valve drive chamber 32, and to prevent oil from flowing into the valve operating chamber 4. Further, the oil can be prevented from blocking the supply passage 31.
  • the oil mist supplied to the valve operating chamber 4 lubricates the valve operating mechanism provided in the valve operating chamber 4 and is sent to the crank chamber 5 a through the direct passage 46. Further, even if the oil mist supplied in the valve chamber 4 is liquefied and stays, strong negative pressure in the crank chamber 5a acts and oil can be sent into the crank chamber 5a. Oil can be prevented from staying.
  • FIG. 2 is an explanatory diagram of the air cleaner 50.
  • the direction is defined.
  • the upper direction refers to a vertical upper direction in a positional relationship during storage or the like where the 4-stroke engine 1 is not used (upper side in FIG. 2).
  • This upper direction substantially coincides with the vertical upper direction in the state where the four-stroke engine 1 is used for the longest in the use state.
  • the direction opposite to the upper direction is referred to as the lower direction (the lower side in FIG. 2).
  • the side on which the rod 60 to which various tools driven by the 4-stroke engine 1 are attached is defined as the rod side (upper left direction in FIG. 2).
  • the direction opposite to the rod side direction is referred to as the anti-rod side direction (the lower right side in FIG. 2).
  • a transmission shaft passes through the rod 60, and this transmission shaft is connected to the power drive shaft of the four-stroke engine 1.
  • the transmission shaft is also connected to various tools. As a result, the various tools are driven by the power of the 4-stroke engine 1.
  • the direction opposite to the side attached to the four-stroke engine 1 to which the air cleaner 50 is attached is referred to as the external side direction (the lower left direction in FIG. 2).
  • the direction opposite to the internal direction is referred to as the internal side direction (in FIG. 2, the upper right direction on the page).
  • the positional relationship of torsion refers to a positional relationship in which two fluid flows do not cross each other even if the central axes of both flows are extended.
  • the direction used in FIG. 1 is also based on the above definition.
  • a rod 60 on which a tool driven by the four-stroke engine 1 is mounted at the tip or the like is connected to the four-stroke engine 1 in the rod side direction.
  • the 4-stroke engine 1 is used for a brush cutter (see FIG. 7A) or an olive harvester (see FIG. 8A).
  • the rod 60 is often used while being inclined so as to approach the ground as the distance from the 4-stroke engine increases (see FIG. 7A).
  • the olive harvester is often used in an inclined manner so as to move away from the ground as it moves away from the 4-stroke engine (see FIG. 9A).
  • the air cleaner 50 is arrange
  • the air cleaner 50 has a function of taking in air and removing dust and dirt contained in the air to provide air to the intake system.
  • the air cleaner 50 also has a function of sending blow-by gas to the intake system.
  • the air cleaner 50 has an outer shell formed by an air cleaner plate 50b fixed to the four-stroke engine 1 side and a removable air cleaner cover 50a.
  • An internal space formed by the air cleaner plate 50b and the air cleaner cover 50a has an air cleaner space 50d and a gas-liquid separation space 50c, which are spaces for removing dust and dirt in the air.
  • a first air cleaner filter 50e and a second air cleaner filter 50f that remove dust and dirt in the air by a filter function are arranged.
  • the second air cleaner filter 50f is disposed closer to the air cleaner plate 50b than the first air cleaner filter 50e.
  • the first air cleaner filter 50e is made of sponge or the like, and the second air cleaner filter 50f is made of felt or the like.
  • FIG. 3 is an explanatory diagram of the oil separator 51.
  • the oil separator 51 is formed by a gas-liquid separation space 50 c of the air cleaner 50, a separator plate 501, and a gas-liquid separation member 601.
  • the separator plate 501 is disposed in the gas-liquid separation space 50c and the air cleaner passage arrangement portion 113.
  • the air cleaner passage arrangement portion 113 that allows the gas-liquid separation space 50c and the air cleaner space 50d to communicate with each other is formed at a position opposite to the rod 60 in the air cleaner space 50d.
  • the gas-liquid separation space 50c is formed by a substantially rectangular first wall 101 formed in the inner side direction, and a side surface extending in the outer side direction with the first wall 101 as a base. Moreover, the gas-liquid separation space 50c is opened in the external side direction. This side surface is formed by the first side surface 107, the second side surface 109, and the third side surface 111.
  • the first side surface 107, the second side surface 109, and the third side surface 111 are formed in the order of the first side surface 107, the second side surface 109, and the third side surface 111 in the outward direction.
  • the first side surface 107, the second side surface 109, and the third side surface 111 are formed so that the first side surface 107, the second side surface 109, and the third side surface 111 are opened in this order. (See also FIG. 5).
  • a separator gasket 201 In the gas-liquid separation space 50c, a separator gasket 201, a separator net 301, a separator stopper 401, and a separator plate 501 are sequentially arranged from the first wall 101 side to the outside side.
  • the separator gasket 201, the separator net 301, and the separator stopper 401 constitute a gas-liquid separation member 601.
  • a separator plate 501 is disposed in the space formed by the second side surface 109.
  • a first opening 103 communicating with the breather passage 48 is formed near the center of the first wall 101. Further, a second opening 105 communicating with the reflux passage 52 is formed at the lower side position of the first wall 101 and at the rod side direction position. And the 2nd opening part 105 is located in the left corner, as FIG. 4 shows. However, the right side may be the right corner, but the left side corresponding to the rod side direction is particularly good.
  • a second wall 501d is formed on the outer surface of the separator plate 501. And the 3rd opening part 501g connected to the air cleaner channel
  • path 501c is formed in the position of the anti-rod side direction of this 2nd wall 501d.
  • the gas-liquid separation chamber 117 (see FIG. 5) is formed by the second wall 501d, the first wall 101, and the first side surface 107.
  • the blow-by gas containing the oil mist flowing in from the first opening 103 is first separated by the separator gasket 201 from the oil mist having large oil droplets. Specifically, the oil mist that could not pass through the central through hole 201d formed in the separator gasket 201 is separated. The separated oil mist is liquefied, and the liquefied oil is discharged from the gas-liquid separation chamber 117 through the second opening 105.
  • the gas component of oil is contained in blowby gas, it is only described as blowby gas for convenience.
  • the blow-by gas containing oil mist that has passed through the separator gasket 201 passes through the net-like separator net 301. Then, the oil mist with small oil droplets is also separated from the blow-by gas at the net-like portion. The separated oil mist is liquefied, and the liquefied oil passes through the gasket corner through hole 201c formed in the separator gasket 201, and then is discharged from the gas-liquid separation chamber 117 through the second opening 105. .
  • the blow-by gas containing the oil mist that has passed through the separator net collides with the wall of the separator stopper 401, whereby the oil mist is separated from the blow-by gas.
  • the separated oil mist is liquefied, and the liquefied oil passes through the separator net 301, passes through the gasket corner through hole 201 c formed in the separator gasket 201, and then passes through the second opening 105. It is discharged from the liquid separation chamber 117.
  • the blow-by gas after colliding with the separator stopper 401 passes through a through hole 401 c formed in the separator stopper 401.
  • the blow-by gas that has passed through the through hole 401c collides with the second wall 501d formed in the separator plate 501 and is introduced into the third opening 501g.
  • the air passes through the air cleaner passage 501c from the third opening 501g and is introduced into the air cleaner space 50d.
  • blow-by gas is mixed into the air filtered by the first air cleaner filter 50e and the second air cleaner filter 50f.
  • the blowby gas mixed in the intake air is burned in the combustion chamber.
  • FIG. 4 is an explanatory diagram of the structure of the gas-liquid separation chamber 117 viewed from the direction A in FIG.
  • FIG. 4 shows a state in which only the separator gasket 201 is disposed in the gas-liquid separation space 50c.
  • the first wall 101 has a first opening 103 at the center position.
  • a second opening 105 is formed at the lower side position and the rod side position.
  • the first wall 101 is formed with a protruding portion 114 that slightly protrudes outward from the first wall 101 and surrounds the first opening 103. Since this discharge portion is present, a groove 116 is formed so as to surround the first opening 103.
  • the groove portion 116 has a bottomed groove shape formed in the first wall 101.
  • the groove part 116 is formed in a rectangular shape with a long side extending in the rod side direction and the half rod side direction and a short side extending in the upper side direction and the lower side direction.
  • the groove 116 is covered with the upper portion of the groove, and has a pipe shape.
  • This pipe-shaped passage is referred to as a lubricating oil return passage 115.
  • gasket corner through holes 201c of the separator gasket 201 are formed at positions corresponding to the respective corners of the groove 116 having a rectangular shape.
  • the crank chamber 5a since the crank chamber 5a periodically becomes negative pressure, the fluid is periodically sucked from the second opening 105, so that the lubricating oil return passage 115 is like a straw. Demonstrate the function.
  • the oil that has been separated and liquefied by the separator net 301 and the separator stopper 401 passes through the gasket corner through-hole 201c, is returned to the reflux passage 52 from the second opening 105, and is used again as oil. It becomes possible.
  • a chamfer 105a is formed around the second opening 105.
  • the chamfered portion 105a has a shape such as a truncated cone shape.
  • FIG. 5 is an explanatory diagram of a VV cross section in FIG.
  • FIG. 5 is an explanatory view of a VV cross section when a separator net 301, a separator stopper 401, and a separator plate 501 are arranged in addition to the separator gasket 201, unlike FIG.
  • a first opening 103 that allows the gas-liquid separation chamber 117 and the breather passage 48 to communicate with each other, and a second opening 105 that allows the gas-liquid separation chamber 117 and the reflux passage 52 to communicate with each other are formed on the first wall 101.
  • the breather passage 48 and the reflux passage 52 are formed in parallel.
  • a separator gasket 201, a separator net 301, a separator stopper 401, and a separator plate 501 are arranged in this order from the first wall 101 side. Further, a first side surface 107, a second side surface 109, and a third side surface 111 are formed in this order from the first wall 101 side. Then, in order from the first wall 101 side, the first side surface 107, the second side surface 109, and the third side surface 111 are in order of the height in the upper side direction and the lower side direction, the rod side direction, and the anti-rod side. The width in the direction is formed to be wide. In the first side surface 107, the separator gasket 201, the separator net 301, and the separator stopper 401 are disposed.
  • a separator plate 501 is disposed in the second side surface 109. Inside the separator plate 501, a groove-shaped blow-by gas induction space 501i is formed with the second wall 501d facing the first wall 101 as the bottom surface and the plate inner side surface 501h as the side surface. The blow-by gas induction space 501i is communicated with the air cleaner passage 501c through the third opening 501g. In addition, a gas-liquid separation chamber 117 is formed by the second wall 501d, the first wall 101, and the first side surface 107.
  • FIG. 6 is an explanatory diagram of the separator gasket 201, the separator net 301, the separator stopper 401, and the separator plate 501.
  • FIG. 6A-1 is a view of the separator plate 501 viewed from the B side in FIG. 6A-2 is a cross-sectional view of FIG. 6A-1.
  • the separator plate 501 is formed of a plate main body portion 501a and an air cleaner passage 501c formed at an upper side position and an anti-rod side direction position.
  • the air cleaner passage 501c has a tubular shape inclined in the inner side direction toward the upper side.
  • the plate body 501a is formed with a blow-by gas induction space 501i formed as a prismatic groove with the second wall 501d as a bottom surface and the plate inner side surface 501h as a side surface.
  • the blow-by gas guiding space 501i is in communication with a third opening 501g, which is an opening of the air cleaner passage 501c, via a plate passage 501e.
  • the plate body 501a is formed of elastic rubber or the like, and has a gasket function by being press-fitted into the second side surface 109.
  • a plate sheet metal 501b which is a metal sheet metal for maintaining the strength of the separator plate 501, is disposed at a position in the outer side direction of the plate body 501a.
  • FIG. 6B-1 is a view of the separator stopper 401 viewed from the B side in FIG.
  • FIG. 6B-2 is a cross-sectional view in FIG.
  • the stopper main body 401a of the separator stopper 401 has a rectangular plate shape.
  • a through hole 401c is formed at the rod side direction position and the upper side position of the stopper main body 401a.
  • the stopper main body 401a is formed of elastic rubber or the like, and has a gasket function by being press-fitted into the first side face 107.
  • a stopper sheet metal 401b which is a metal sheet for maintaining the strength of the separator stopper 401, is disposed at a position in the outer side direction of the stopper main body 401a.
  • FIG. 6C-1 is a view of the separator net 301 viewed from the B side in FIG.
  • FIG. 6C-2 is a cross-sectional view of FIG.
  • the net body 301a of the separator net 301 has a rectangular plate shape.
  • the net body 301a is formed by weaving a thread-like member in a mesh shape. The finer the mesh of the mesh member, the higher the oil mist separation efficiency.
  • FIG. 6D-1 is a view of the separator gasket 201 viewed from the B side in FIG. FIG. 6 (d-2) is a cross-sectional view of FIG. 6 (d-1).
  • the gasket main body 201a of the separator gasket 201 has a rectangular plate shape.
  • a central through hole 201d is formed at the center of the gasket body 201a.
  • One central through hole 201d is formed at the center, and one at each of the central hole at the upper side position, the lower side direction, the rod side direction, and the opposite rod side position.
  • gasket corner through holes 201c are formed at the four corners of the gasket main body 201a.
  • the gasket main body 201a is formed of elastic rubber or the like, and has a gasket function by being press-fitted into the first side face 107. In particular, it has a role of forming the lubricating oil return passage 115 by being in pressure contact with the protrusion 114 of the first wall 101.
  • a gasket sheet metal 201b which is a metal sheet for maintaining the strength of the separator gasket 201, is disposed inside the gasket body 201a.
  • FIG. 7 is an explanatory diagram of the relationship between the second opening 105 and the through hole 401c of the separator stopper 401 when a work tool such as a brush cutter is located on the ground side.
  • FIG. 7A is a view when a brush cutter as a work tool is connected to the rod 60. Further, an air cleaner 50 is connected to the 4-stroke engine 1 as shown in FIG.
  • FIG. 7B is a view of the air cleaner 50 and the rod 60 in FIG. In FIG. 7B, the main body of the 4-stroke engine 1 is omitted.
  • the second opening 105 and the through hole 401c of the separator stopper 401 are formed on the rod 60 side, that is, on the rod side direction position.
  • the fourth opening 106 is formed at a position opposite to the rod 60 and communicates with the reflux passage 52, thereby enhancing the oil discharging effect in the gas-liquid separation chamber 117. Can do.
  • the air cleaner 50 is inclined as shown in FIG. If it does so, the oil which exists between the separator stopper 401 and the separator gasket 201 will accumulate in the rod side direction position and the downward direction position like FIG.7 (b). In this case, the oil touches the second opening 105 and is always discharged from the second opening 105. The same applies to the oil between the first wall 101 and the separator gasket 201. Therefore, as shown in the gas-liquid separation chamber 117 and FIG. 7B, the oil level 119 of the oil is always low. Therefore, in this case, a problem that a large amount of oil is consumed and a problem that the oil is not burned sufficiently do not occur.
  • FIG. 8 is an explanatory diagram of the relationship between the second opening 105 and the through hole 401c of the separator stopper 401 when a work tool such as an olive harvester is located on the side opposite to the ground side.
  • FIG. 8A is a diagram in the case where an olive harvester as a work tool is connected to the rod 60.
  • the work tool arranged at the tip of the rod 60 when the work tool arranged at the tip of the rod 60 is in a position opposite to the ground from the 4-stroke engine 1 (for example, the 4-stroke engine 1 is an olive harvester). If used). Further, even if a normal tool (for example, a mower tool) is mounted, the work tool disposed at the tip of the rod 60 is in a position on the ground side with respect to the 4-stroke engine 1, depending on circumstances. In some cases, the work tool disposed at the tip of the rod 60 temporarily or permanently may work in a state where the work tool is located on the opposite side of the ground from the 4-stroke engine 1.
  • the work tool arranged at the tip of the rod 60 is grounded more than the 4-stroke engine 1 even when the work tool placed at the tip of the rod 60 is in a position opposite to the ground from the 4-stroke engine 1.
  • a tool that is supposed to perform both the work and the work in the position opposite to the above is mounted on the 4-stroke engine 1.
  • a state as shown in FIG. 8B is obtained temporarily or constantly during work. That is, the oil level 119 accumulates at the position opposite to the rod and in the lower direction and constantly accumulates up to the oil level 119a. Temporarily, the oil level 119 rises to about the oil level 119b.
  • FIG. 9 is an explanatory diagram of a modified example of the shape of the gas-liquid separation chamber 117.
  • the gas-liquid separation chamber 117 has a rectangular parallelepiped shape formed by the rectangular first wall 101 and the first side surface 107 that rises perpendicularly thereto.
  • the 1st opening part 103 is formed in the center position of the 1st wall 101, and the 2nd opening part 105 is formed in the lower side position and the rod side direction position. Then, the 4-stroke engine 1 is only tilted so that the direction opposite to the rod side is slightly downward, so that there is a possibility that the oil does not touch the second opening 105 and the oil is not discharged.
  • FIG. 9B the shape of the wall portion 121 at the lower side position of the first side face 107 and at the anti-rod side position is changed.
  • the wall portion 121 has a shape protruding upward from the second opening 105.
  • the wall portion 121 may have a shape as shown in FIG. In other words, the protruding wall portion 121 has a shape protruding in the upward direction and may have a shape in which oil concentrates on the second opening 105 side even when the 4-stroke engine 1 is not inclined. .
  • FIG. 10 is an explanatory view of a modified example of the separator gasket 201.
  • circular gasket corner through holes 201 c are formed at the four corners of the separator gasket 201.
  • the gasket corner through hole 201c may have any shape.
  • the notch 201e may be formed at the rod side direction position and the lower side position.
  • the position where the notch 201e is formed is preferably the same as the position where the second opening 105 is formed.
  • the gasket corner through-hole 201c located at the front position of the second opening 105 has a larger through-hole shape in order to smoothly pass a large amount of oil. For this reason, it is appropriate to secure a large flow path as the notch 201e.
  • a simple large through-hole shape may be sufficient.
  • FIG. 11 is an explanatory diagram of a modified example of the separator net 301.
  • the net main body 301a is entirely formed of a net. However, they need not all be uniform.
  • a sponge portion 301b may be formed at a position where the second opening 105 is formed.
  • the mesh near the center of the net body 301a (the vicinity where the central through hole 201d of the separator gasket 201 is formed) can be made fine, and the mesh of other parts can be made coarse. Good.
  • the oil mist can be effectively liquefied by the fine part of the mesh, and the oil liquefied by the coarse part (sponge part 301b) can be more smoothly guided to the second opening 105. It becomes.
  • FIG. 12 is a schematic explanatory diagram of a lubrication device for a 4-stroke engine according to the second embodiment of the present invention.
  • the reflux passage 52 and the crank chamber 5a are connected via the oil feed passage 34.
  • the reflux passage 52 is connected to the direct passage 46. It is connected. Note that description of the same parts as those of the first embodiment is omitted.
  • the opening end that opens to the crank chamber 5a on the reflux passage 52 side opens when the piston 6 moves from the position near the top dead center toward the top dead center, and the piston 6 changes from the position near the top dead center to the bottom dead center. It is provided so as to close while moving toward it. By doing in this way, the oil A separated by the oil separator 51 can be efficiently recovered in the oil circulation path.
  • the separated oil A can be efficiently collected in the oil circulation path from the oil separator 51, the separated oil is not sent to the combustion chamber, and the excessive consumption of the oil A can be prevented.
  • the amount of oil mist sent from the valve operating chamber 4 to the air cleaner 50 changes as the four-stroke engine 1 tilts. Specifically, if oil can be efficiently sent from the valve operating chamber 4 to the crank chamber 5a, the amount of oil mist sent to the air cleaner 50 is reduced. Conversely, if the oil A cannot be efficiently sent to the crank chamber 5a, the amount of oil mist sent to the air cleaner 50 increases. As a result of the fluctuation of the amount of oil mist sent to the air cleaner 50, the amount of oil separated by the oil separator 51 fluctuates. The fact that the amount of oil separated by the oil separator 51 varies means that the amount of oil A recovered in the oil circulation path varies.
  • the oil reservoir chamber is set according to the amount of oil sent from the oil separator 51 to the recirculation passage 52.
  • the amount of oil A sucked up from 7 will fluctuate.
  • the recirculation passage 52 and the crank chamber 5a are connected without using the oil feeding passage 34.
  • the oil feeding passage 34 and the reflux passage 52 can be separated, and the amount of oil A sucked up through the oil feeding passage 34 can be stabilized.
  • the opening end that opens to the crank chamber 5a on the reflux passage 52 side opens when the piston 6 moves from the position near the top dead center toward the top dead center, and the piston 6 changes from the position near the top dead center to the bottom dead center.
  • the reflux passage 52 and the crank chamber 5a are connected via the direct passage 46 as shown in FIG.
  • the quantity of the oil A sent to the crank chamber 5a via the oil feeding path 34 can be stabilized more. This makes it possible to stabilize the amount of circulating oil.
  • the oil separator 51 of the present invention is formed by branching from an oil circulation path, and has a gas-liquid separation chamber 117 that separates oil mist from blow-by gas containing oil mist.
  • the gas-liquid separation chamber 117 has a first opening 103 into which blow-by gas is introduced from the oil circulation path. Furthermore, the gas-liquid separation chamber 117 exhausts the blow-by gas from which the oil separated from the blow-by gas is returned to the oil circulation path and the blow-by gas from which the oil mist is separated from the gas-liquid separation chamber and burns. And a third opening 501g communicating with the intake passage to the chamber.
  • the first opening 103 is formed in the first wall 101
  • the third opening 501g is formed in the second wall 501d
  • the gas-liquid separation chamber 117 includes the first opening 103 and the first opening 103.
  • a gas-liquid separation member is formed between the three openings 501g.
  • the inflow direction of blow-by gas flowing in from the first opening 103 and the outflow direction of blow-by gas flowing out from the third opening 501g are in a twisted positional relationship.
  • the oil separator 51 can more appropriately separate liquid oil from blow-by gas that is returned to intake air.
  • the first opening 103 is formed in the vicinity of the center of the first wall 101, and the third opening 501g is formed at one of the left and right corners of the upper side position of the second wall 501d. Is a constituent requirement. Since it has such a configuration requirement, the oil separator 51 in the present invention can perform gas-liquid separation more appropriately.
  • gas-liquid separation member 601 One aspect of the gas-liquid separation member 601 is a separator gasket 201 having a plurality of central through holes 201d near the center. Since it has such a configuration, the oil separator 51 can separate the liquid oil having large oil droplets by the separator gasket 201.
  • the second opening 105 is formed at one of the left and right corners of the lower side position of the first wall 101.
  • a groove 116 is formed at a position outside the central through hole 201d of the separator gasket 201 so as to surround the first opening 103, and a pipe-like lubricating oil return passage 115 is formed by the groove 116 and the separator gasket 201. Since the return passage 115 communicates with the second opening 105, the oil separator 51 efficiently removes the liquid oil separated in the separator gasket 201 from the second opening 105. It becomes possible to discharge.
  • a gasket corner through hole 201c is formed at a position where the second opening 105 of the first wall 101 is formed.
  • the gas-liquid separation member 601 is a separator stopper 401 that has a through-hole 401c formed at a corner on the side opposite to the side on which the third opening 501g is formed. Since it has such a structure, the oil separator 51 flows into the gas-liquid separation chamber through the blow-by gas first opening 103 containing liquid oil, and the blow-by gas that has flowed in collides with the separator stopper 401. Liquid oil can be separated. Furthermore, since the through-hole 401c of the separator stopper 401 is formed at a position opposite to the side where the third opening 501g is formed, the blow-by gas that has passed through the through-hole 401c is smoothly third. It is possible to discharge from the opening 501g.
  • a second opening 105 is formed at one of the two left and right corners of the lower side position of the first wall 101.
  • the second opening 105 is formed on the power drive shaft side of the four-stroke engine 1 in the two left and right corners, and the third opening 501g is formed on the opposite side to the drive shaft in the two left and right corners. Yes. Since it has such a configuration, a through hole 401c formed at a corner position on the side opposite to the side on which the third opening 501g is formed, and the third opening 501g, The opening 501g is configured to be separated from the position. As a result, the blowby gas that has passed through the through hole 401c can be smoothly guided to the third opening 501g.
  • the gas-liquid separation member 601 has a mesh shape. Since it has such a configuration, the oil separator 51 can also separate oil mist with small oil droplets.
  • the first wall 101 is formed so as to face the second wall 501d. Since it has such a structure, it becomes possible to ensure enough space in which a gas-liquid separation member is formed.
  • the gas-liquid separation member 601 has a separator gasket 201 having a plurality of central through holes 201d in the vicinity of the center, and is located at the corner on the side opposite to the side where the third opening 501g is formed at the upper side position.
  • the separator stopper 401 having a through hole 401c formed at a position and a mesh-shaped separator net 301 are provided.
  • the separator gasket 201, the separator stopper 401, and the separator net 301 are separated from the first opening 103 side by the separator gasket 201.
  • the separator net 301 and the separator stopper 401 are arranged in this order, the oil mist can be more effectively separated by the synergistic effect of the separator gasket 201, the separator stopper 401, and the separator net 301. It becomes possible.
  • the gas-liquid separation member 601 has a separator gasket 201 having a plurality of central through holes 201d in the vicinity of the center, and is located at the corner on the side opposite to the side where the third opening 501g is formed at the upper side position. And a separator stopper 401 in which a through hole 401c is formed. Further, the separator gasket 201 and the separator stopper 401 are arranged in this order from the first opening 103 side in the order of the separator gasket 201 and the separator stopper 401. With such a configuration, the liquid oil can be more effectively separated by the synergistic effect of the separator gasket 201 and the separator stopper 401.
  • the gas-liquid separation member 601 includes a separator gasket 201 having a plurality of central through holes 201d near the center, and a mesh-shaped separator net 301.
  • the separator gasket 201 and the separator net 301 are disposed in the order of the separator gasket 201 and the separator net 301 from the first opening 103 side. With such a configuration, the liquid oil can be more effectively separated by the synergistic effect of the separator gasket 201 and the separator net 301.
  • the gas-liquid separation member 601 has a mesh shape and a separator stopper 401 having a through-hole 401c formed at a corner on the side opposite to the side on which the third opening 501g is formed.
  • the separator net 301 is provided.
  • the separator net 301 and the separator stopper 401 are arranged in this order from the first opening 103 side. With such a configuration, the liquid oil can be more effectively separated by the synergistic effect of the separator stopper 401 and the separator net 301.
  • the lubricating device of the four-stroke engine 1 supplies oil A to the crank chamber 5a and the valve chamber 4 configured as a part of the oil circulation path by utilizing the pressure fluctuation in the crank chamber 5a due to the reciprocating motion of the piston 6.
  • lubrication is performed, and when the negative pressure in the crank chamber 5a is negative, there is provided a direct passage 46 that communicates between the valve chamber 4 and the crank chamber 5a, and the opening end portion of the direct passage 46 that opens into the crank chamber 5a is a piston. 6 is opened when moving from the position near the top dead center toward the top dead center, and is closed while the piston 6 moves from the position near the top dead center toward the bottom dead center.
  • the lubrication device of the 4-stroke engine 1 uses the pressure fluctuation in the crank chamber 5a due to the reciprocating motion of the piston 6 to circulate oil A in the oil circulation path to lubricate each part, and at the time of negative pressure in the crank chamber, A reflux passage 52 that communicates the second opening 105 of the oil separator 51 and the crank chamber 5a is provided, and the opening end of the reflux passage 52 that opens into the crank chamber has a piston 6 that is dead from the position near the top dead center.
  • the piston 6 is opened during movement toward the point, and is closed so that the piston 6 moves from the position near the top dead center toward the bottom dead center.
  • the oil separator 51 is an example of a gas-liquid separator for a 4-stroke engine in the present invention.
  • the separator gasket 201, the separator net 301, and the separator stopper 401 are examples of the gas-liquid separation member in the present invention.
  • the gas-liquid separation member may be composed of all of the separator gasket 201, the separator net 301, and the separator stopper 401, may be composed of any two, or may be composed of any one. May be.
  • Separator gasket 201 is an example of a first gasket in the present invention.
  • Separator stopper 401 is an example of the second gasket in the present invention.
  • Separator net 301 is an example of a net in the present invention.
  • gas-liquid separation chamber 117 which is a space formed by the second wall 501d, the first wall 101, and the first side surface 107. That is, the gas-liquid separation chamber may be any space as long as it can separate the gas-liquid formed in the oil circulation path. Further, the present invention is not limited to the above embodiment, and may have various changed structures and configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

This oil separator (51), which provides a gas-liquid separation device for a four-stroke engine that more reliably achieves gas-liquid separation of oil and blow-by gas so that oil is not discharged in the combustion chamber, and which provides a lubrication device for a four-stroke engine, has a gas-liquid separation chamber (117) that branches from an oil circulation path, and separates oil mist from blow-by gas containing the oil mist. The gas-liquid separation chamber (117) has: a first opening (103) through which blow-by gas from the oil circulation path is introduced; a second opening (105) for circulating oil separated from the blow-by gas in the oil circulation path; and a third opening (501g) that links an intake passageway to the combustion chamber, and through which blow-by gas, from which the oil mist has been separated, is discharged from the gas-liquid separation chamber. The first opening (103) is formed in a first wall (101), and the third opening (501g) is formed in a second wall (501d). A gas-liquid separation member in the gas-liquid separation chamber (117) is formed between the first opening (103) and the third opening (501g).

Description

4ストロークエンジンの気液分離装置及び4ストロークエンジンの潤滑装置4-stroke engine gas-liquid separation device and 4-stroke engine lubrication device
 本発明は、4ストロークエンジンのオイルミストとブローバイガスとを分離する気液分離装置及び4ストロークエンジンの潤滑装置に関する。 The present invention relates to a gas-liquid separator for separating oil mist and blow-by gas of a 4-stroke engine and a lubrication device for a 4-stroke engine.
 環境問題に関する意識の高まりや排ガス規制の強化等により、刈払機や背負式ブロワのような、作業者自身が携帯若しくは背負って作業を行う作業機の駆動エンジンは、2ストロークエンジンから4ストロークエンジンに置き換えられつつある。 Due to increasing awareness of environmental issues and stricter exhaust gas regulations, the drive engines for work machines that are carried or carried by workers themselves, such as brush cutters and back-loading blowers, have been changed from 2-stroke engines to 4-stroke engines. It is being replaced.
 この4ストロークエンジンは、必要な部品数が2ストロークエンジンと比較して多いため重くなり易く、特に携帯型作業機では、作業者が作業機を携帯しながら作業を行うのが前提となるので、エンジンの軽量化が求められる。 This 4-stroke engine is likely to be heavier because it requires a larger number of parts than a 2-stroke engine. Especially in portable work machines, it is assumed that the operator works while carrying the work machine. The weight reduction of the engine is required.
 そこで、潤滑用のポンプを別に設けることなくクランク室内の圧力変動を利用してオイルを循環させる潤滑装置を備えた4ストロークエンジンが開発されている(特許文献1及び特許文献2参照)。この潤滑装置は、クランク室の底部に設けられたチェック弁を有する。このチェック弁は正圧時に開いて、クランク室内のオイル又はオイルミストが油溜室内に送られる。油溜室内に設けられた連通管を通ったオイル又はオイルミストは動弁室及びこれを駆動させる動弁装置に供給されて、充分なオイルが動弁室や動弁装置に供給される。動弁室内に溜まるオイルは、ピストンの上昇移動時にクランク室と動弁室を連通状態にするクランク室に設けられた連通穴が開口してクランク室に戻される。 Therefore, a 4-stroke engine equipped with a lubrication device that circulates oil by utilizing pressure fluctuations in the crank chamber without separately providing a lubrication pump has been developed (see Patent Document 1 and Patent Document 2). This lubricating device has a check valve provided at the bottom of the crank chamber. This check valve opens at the time of positive pressure, and oil or oil mist in the crank chamber is sent into the oil reservoir chamber. Oil or oil mist that has passed through a communication pipe provided in the oil reservoir chamber is supplied to the valve operating chamber and the valve operating device that drives the valve operating chamber, and sufficient oil is supplied to the valve operating chamber and the valve operating device. The oil accumulated in the valve operating chamber is returned to the crank chamber by opening a communication hole provided in the crank chamber that brings the crank chamber into communication with the valve operating chamber when the piston moves upward.
 ところで、オイルの潤滑経路にブローバイガスが混入し、潤滑経路中にブローバイガス濃度が高まった状態で、オイルとブローバイガスが混ざり続けると、オイルの劣化が進んで駆動部品の潤滑に悪影響がでる。そこで、一般に、潤滑経路中のブローバイガスを燃焼室に排出し、オイルの早期劣化を防止するような処置が取られ、特許文献1にも記載されているようにエアクリーナを介して動弁室と燃焼室を連通させる構造がよく用いられている。 By the way, if blowby gas is mixed in the lubrication path of the oil and the concentration of blowby gas is increased in the lubrication path, the oil deteriorates and the lubrication of the drive parts is adversely affected. Therefore, generally, a measure is taken to discharge the blow-by gas in the lubrication path to the combustion chamber to prevent early deterioration of the oil, and as described in Patent Document 1, the valve chamber is connected to the valve chamber via an air cleaner. A structure in which the combustion chamber communicates is often used.
特開平08-260926号公報Japanese Patent Laid-Open No. 08-260926 特開2007-224824号公報JP 2007-224824 A
 一般に、クランク軸周りには高いオイル濃度を必要とし、動弁装置にはクランク軸周りほど高いオイル濃度を必要としない。 Generally, a high oil concentration is required around the crankshaft, and a valve system does not require a higher oil concentration around the crankshaft.
 従来の潤滑装置は、クランク室内の圧力変動を利用してクランク室内のオイル又はオイルミストを濃度調整せずに動弁室及び動弁装置に送っているので、動弁装置を潤滑するために、動弁室へオイル又はオイルミストが過剰に送り込まれ、動弁室内に滞留するオイルの量が多くなりすぎて、ブローバイガスの燃焼室への排出と共にオイルが多く排出されてしまい、オイルが早期に消費されてしまうという問題がある。従って、オイルの補充期間が短くなり、オイルの補充を怠ると潤滑不良を起こす原因になる。また燃焼室へのオイルの排出量が更に過剰になると、オイルが未燃焼のまま大量にマフラから外部に排出され、環境へ悪影響を与える虞が生じる。 In the conventional lubrication device, oil or oil mist in the crank chamber is sent to the valve chamber and the valve device without adjusting the concentration by utilizing the pressure fluctuation in the crank chamber. Therefore, in order to lubricate the valve device, Oil or oil mist is excessively fed into the valve chamber, and the amount of oil that stays in the valve chamber increases so much that the oil is discharged along with the discharge of blow-by gas into the combustion chamber. There is a problem of being consumed. Therefore, the oil replenishment period is shortened, and failure to replenish oil may cause poor lubrication. Further, when the amount of oil discharged into the combustion chamber becomes excessive, a large amount of oil is discharged from the muffler to the outside without being burned, which may adversely affect the environment.
 本発明は、このような背景に鑑みてなされたものであり、燃焼室へオイルが排出されないようにするために、オイルとブローバイガスの気液分離をより確実にした4ストロークエンジンの気液分離装置及び4ストロークエンジンの潤滑装置を提供することを目的とする。 The present invention has been made in view of such a background, and in order to prevent the oil from being discharged into the combustion chamber, the gas-liquid separation of the four-stroke engine with more reliable gas-liquid separation of the oil and blow-by gas. It is an object of the present invention to provide an apparatus and a lubrication apparatus for a four-stroke engine.
 このような課題を解決するため、本発明の4ストロークエンジンの気液分離装置は、オイル循環経路から分岐して形成され、オイルミストを含んだブローバイガスからオイルミストを分離する気液分離室を有し、前記気液分離室は、前記オイル循環経路から前記ブローバイガスが導入される第1の開口部と、前記ブローバイガスから分離されたオイルを前記オイル循環経路に還流する第2の開口部と、オイルミストが分離されたブローバイガスを、前記気液分離室から排気して燃焼室への吸気通路へ連通する第3の開口部と、を有し、前記第1の開口部は第1の壁に形成され、前記第3の開口部は第2の壁に形成され、前記気液分離室には、前記第1の開口部と前記第3の開口部との間に気液分離部材が形成されることを特徴とする(請求項1)。 In order to solve such problems, a gas-liquid separation device of a four-stroke engine according to the present invention has a gas-liquid separation chamber that is formed by branching from an oil circulation path and separates oil mist from blow-by gas containing oil mist. And the gas-liquid separation chamber has a first opening through which the blow-by gas is introduced from the oil circulation path, and a second opening through which oil separated from the blow-by gas is returned to the oil circulation path And a third opening that exhausts the blow-by gas from which the oil mist has been separated from the gas-liquid separation chamber and communicates with the intake passage to the combustion chamber, the first opening being the first The third opening is formed in the second wall, and the gas-liquid separation chamber has a gas-liquid separation member between the first opening and the third opening. Is formed (claimed) 1).
 このような構成要件、特に、この気液分離装置が気液分離部材を有することによって、ブローバイガスから液状のオイルを適切に分離することが可能となる。
 また、オイルを適切に分離することができることから、オイルの消費が抑えられる。さらに、環境に悪影響を及ぼす未燃焼のオイルの排出を抑えることが可能となる。
By having such a constituent requirement, in particular, this gas-liquid separation device includes a gas-liquid separation member, it becomes possible to appropriately separate liquid oil from blow-by gas.
Moreover, since oil can be appropriately separated, oil consumption can be suppressed. Furthermore, it is possible to suppress the discharge of unburned oil that adversely affects the environment.
 本発明における4ストロークエンジンの気液分離装置の一態様は、前記第1の開口部から流入するブローバイガスの流入方向と、前記第3の開口部から流出するブローバイガスの流出方向とがねじれの位置関係となるように形成される(請求項2)。 In one aspect of the gas-liquid separator for a four-stroke engine according to the present invention, the inflow direction of blow-by gas flowing in from the first opening and the outflow direction of blow-by gas flowing out from the third opening are twisted. It forms so that it may become a positional relationship (Claim 2).
 このような構成を有することから、本発明における気液分離装置は、ブローバイガスから液状のオイルをより適切に分離することが可能となる。 Since it has such a configuration, the gas-liquid separator in the present invention can more appropriately separate liquid oil from blow-by gas.
 本発明における4ストロークエンジンの気液分離装置の一態様は、前記第1の開口部は、前記第1の壁の中央付近に形成され、前記第3の開口部は、前記第2の壁の上側方向位置の左右二隅のいずれかの位置に形成されている(請求項3)。 In one aspect of the gas-liquid separator for a four-stroke engine according to the present invention, the first opening is formed near the center of the first wall, and the third opening is formed on the second wall. It is formed at one of the left and right corners of the upper side position (Claim 3).
 このような構成要件を有することから、本発明における4ストロークエンジンの気液分離装置は、より適切に気液分離が可能となる。 Since it has such a configuration requirement, the gas-liquid separator of the 4-stroke engine according to the present invention can perform gas-liquid separation more appropriately.
 本発明における気液分離部材の一態様は、中央付近に複数の中央貫通穴を有するガスケットである(請求項4)。 One aspect of the gas-liquid separation member in the present invention is a gasket having a plurality of central through holes in the vicinity of the center (Claim 4).
 このような構成を有することから、本発明における4ストロークエンジンの気液分離装置は、液状のオイルのうち油滴の大きなものは第1のガスケットによって分離することが可能となる。 Since it has such a configuration, the gas-liquid separation device of the four-stroke engine according to the present invention can separate large liquid droplets of the liquid oil by the first gasket.
 本発明における気液分離部材の一態様は、前記第1の壁の下側方向位置の左右二隅のいずれかの位置に前記第2の開口部が形成されており、前記第1の壁には、前記第1の開口部を取り囲む様に前記ガスケットの前記中央貫通穴より外側位置に溝部が形成され、前記溝部と前記ガスケットによって管路状の潤滑油戻通路が形成され、前記潤滑油戻通路は前記第2の開口部と連通している(請求項5)。 In one aspect of the gas-liquid separation member according to the present invention, the second opening is formed at one of the two left and right corners of the lower direction position of the first wall, and the first wall is formed in the first wall. Has a groove formed outside the central through hole of the gasket so as to surround the first opening, and a duct-like lubricating oil return passage is formed by the groove and the gasket. The passage communicates with the second opening (Claim 5).
 このような構造を有することから、本発明における4ストロークエンジンの気液分離装置は、第1のガスケットにおいて分離された液状のオイルを効率的に第2の開口部から排出することが可能となる。 With such a structure, the gas-liquid separator of the four-stroke engine according to the present invention can efficiently discharge the liquid oil separated in the first gasket from the second opening. .
 本発明における気液分離部材の一態様は、前記ガスケットの隅には、前記第1の壁の前記第2の開口部が形成されている位置に、貫通穴が形成されている(請求項6)。 In one aspect of the gas-liquid separation member according to the present invention, a through hole is formed at a corner of the gasket at a position where the second opening of the first wall is formed. ).
 このような構造を有することから、本発明における4ストロークエンジンの気液分離装置は、第1のガスケットを通過した後に分離された液状のオイルをも、効率的に第2の開口部から排出することが可能となる。 With such a structure, the gas-liquid separator of the four-stroke engine according to the present invention efficiently discharges the liquid oil separated after passing through the first gasket from the second opening. It becomes possible.
 本発明における気液分離部材の一態様は、前記気液分離部材は、上側方向位置であり、かつ、前記第3の開口部が形成されている側とは反対側の隅の位置に貫通穴が形成されたガスケットである(請求項7)。 One aspect of the gas-liquid separation member according to the present invention is such that the gas-liquid separation member is in an upward direction position and has a through hole at a corner on the side opposite to the side on which the third opening is formed. (7).
 このような構造を有することから、本発明における4ストロークエンジンの気液分離装置は、液状のオイルを含んだブローバイガスは第1の開口部を通して気液分離室に流入し、流入したブローバイガスが第2のガスケットに衝突することにより液状のオイルを分離することが可能となる。
 さらに、第2のガスケットの貫通穴が第3の開口部が形成されている側とは反対側の位置に形成されていることから、この貫通穴を通過したブローバイガスをスムーズに第3の開口部から排出することができる。
Due to such a structure, in the gas-liquid separator for a four-stroke engine according to the present invention, the blow-by gas containing liquid oil flows into the gas-liquid separation chamber through the first opening, The liquid oil can be separated by colliding with the second gasket.
Further, since the through hole of the second gasket is formed at a position opposite to the side on which the third opening is formed, the blow-by gas that has passed through the through hole is smoothly opened to the third opening. Can be discharged from the section.
 本発明における気液分離部材の一態様は、前記第1の壁の下側方向位置の左右二隅のいずれかの位置に前記第2の開口部が形成されている(請求項8)。 In one aspect of the gas-liquid separation member in the present invention, the second opening is formed at any one of the left and right corners of the lower side position of the first wall (Claim 8).
 このような構成を有することから、本発明における4ストロークエンジンの気液分離装置は、より確実に第2の開口部から液状のオイルを排出することが可能となる。 With such a configuration, the gas-liquid separator of the four-stroke engine according to the present invention can discharge liquid oil from the second opening more reliably.
 本発明における気液分離部材の一態様は、前記第2の開口部は、左右二隅のうち4ストロークエンジンの動力駆動軸の側に形成され、前記第3の開口部は、左右二隅のうち前記駆動軸とは反対側に形成されている(請求項9)。 In one aspect of the gas-liquid separation member in the present invention, the second opening is formed on the side of the power drive shaft of the four-stroke engine among the two left and right corners, and the third opening is formed at the two left and right corners. Of these, it is formed on the side opposite to the drive shaft.
 このような構成を有することから、動力駆動軸を下に向けた場合には、気液分離されたオイルが第2の開口部からオイル循環経路に容易に戻ることになり、動力駆動軸を上に向けた場合には、前記第3の開口部が形成されている側とは反対の隅の位置に形成されている貫通穴がより上に向くことになりブローバイガスから液状のオイルをより適切に分離することが可能となる。 With such a configuration, when the power drive shaft is directed downward, the gas-liquid separated oil easily returns from the second opening to the oil circulation path, and the power drive shaft is raised. , The through-hole formed at the corner opposite to the side where the third opening is formed is directed upward, and liquid oil is more appropriately supplied from the blow-by gas. Can be separated.
 本発明における気液分離部材の一態様は、前記気液分離部材は、メッシュ形状を有する(請求項10)。 In one aspect of the gas-liquid separation member in the present invention, the gas-liquid separation member has a mesh shape (claim 10).
 このような構成を有することから、本発明における4ストロークエンジンの気液分離装置は、油滴が小さいオイルミストも分離することが可能となる。 Since it has such a configuration, the gas-liquid separator of the 4-stroke engine according to the present invention can also separate oil mist with small oil droplets.
 前記第1の壁は前記第2の壁と対向するように形成されている(請求項11)。 The first wall is formed to face the second wall (claim 11).
 このような構成を有することから、気液分離部材が形成される空間を十分に確保することが可能となる。 Since it has such a configuration, it is possible to ensure a sufficient space in which the gas-liquid separation member is formed.
 本発明における前記気液分離部材の一態様は、中央付近に複数の貫通穴を有する第1のガスケットと、上側方向位置であり、かつ、前記第3の開口部が形成されている側とは反対側の隅の位置に貫通穴が形成された第2のガスケットと、メッシュ形状のネットとを有し、前記第1のガスケット、前記第2のガスケット及び前記ネットは、前記第1の開口部側から、前記第1のガスケット、前記ネット、前記第2のガスケットの順に配置されていることを特徴とする(請求項12)。 One aspect of the gas-liquid separation member in the present invention is a first gasket having a plurality of through holes in the vicinity of the center, a side in the upper direction, and the side on which the third opening is formed. A second gasket having a through-hole formed at the opposite corner position; and a mesh-shaped net; wherein the first gasket, the second gasket, and the net have the first opening. From the side, the first gasket, the net, and the second gasket are arranged in this order (claim 12).
 このような構成を有することから、第1のガスケット、第2のガスケット及び前記ネットの相乗効果によって、より効果的にオイルミストを分離することが可能となる。 Since it has such a configuration, the oil mist can be more effectively separated by the synergistic effect of the first gasket, the second gasket and the net.
 本発明における前記気液分離部材の一態様は、中央付近に複数の貫通穴を有する第1のガスケットと、上側方向位置であり、かつ、前記第3の開口部が形成されている側とは反対側の隅の位置に貫通穴が形成された第2のガスケットとを有し、前記第1のガスケット及び前記第2のガスケットは、前記第1の開口部側から、前記第1のガスケット、前記第2のガスケットの順に配置されている(請求項13)。 One aspect of the gas-liquid separation member in the present invention is a first gasket having a plurality of through holes in the vicinity of the center, a side in the upper direction, and the side on which the third opening is formed. A second gasket in which a through hole is formed at a position of an opposite corner, and the first gasket and the second gasket from the first opening side, the first gasket, The second gaskets are arranged in this order (claim 13).
 このような構成を有することから、前記第1のガスケット及び前記第2のガスケットの相乗効果によって、より効果的に液状のオイルを分離することが可能となる。 Since it has such a configuration, liquid oil can be more effectively separated by the synergistic effect of the first gasket and the second gasket.
 本発明における前記気液分離部材の一態様は、中央付近に複数の貫通穴を有する第1のガスケットと、メッシュ形状のネットとを有し、前記第1のガスケット及び前記ネットは、前記第1の開口部側から、前記第1のガスケット、前記ネットの順に配置されている(請求項14)。 One aspect of the gas-liquid separation member in the present invention includes a first gasket having a plurality of through holes in the vicinity of the center, and a mesh-shaped net, and the first gasket and the net are the first gasket and the first gasket. The first gasket and the net are arranged in this order from the opening side.
 このような構成を有することから、前記第1のガスケット及び前記ネットの相乗効果によって、より効果的に液状のオイルを分離することが可能となる。 Since it has such a configuration, the liquid oil can be more effectively separated by the synergistic effect of the first gasket and the net.
 本発明における前記気液分離部材の一態様は、上側方向位置であり、かつ、前記第3の開口部が形成されている側とは反対側の隅の位置に貫通穴が形成された第2のガスケットと、メッシュ形状のネットとを有し、前記第2のガスケット及び前記ネットは、前記第1の開口部側から、前記ネット、前記第2のガスケットの順に配置されている(請求項15)。 One aspect of the gas-liquid separation member according to the present invention is a second position in which a through hole is formed at a corner on the opposite side to the side on which the third opening is formed, the upper direction position. The second gasket and the net are arranged in this order from the first opening side to the net and the second gasket. ).
 このような構成を有することから、前記第2のガスケット及び前記ネットの相乗効果によって、より効果的に液状のオイルを分離することが可能となる。 Since it has such a configuration, the liquid oil can be more effectively separated by the synergistic effect of the second gasket and the net.
 本発明における4ストロークエンジンの潤滑装置の一態様は、ピストンの往復動によるクランク室内の圧力変動を利用して、前記オイル循環経路の一部として構成される前記クランク室および動弁室にオイルを供給して潤滑を行い、前記クランク室内の負圧時に前記動弁室と前記クランク室とを連通する直通通路が設けられ、前記直通通路の前記クランク室内に開口する開口端部は、前記ピストンが上死点近傍位置から上死点に向かう移動時に開口し、前記ピストンが前記上死点近傍位置から下死点に向かって移動する間は閉じるように設けられ、請求項1記載の気液分離装置の第2の開口部と直通通路を接続したことを特徴とする(請求項16)。 In one aspect of the lubricating device for a four-stroke engine in the present invention, oil is supplied to the crank chamber and the valve chamber that are configured as a part of the oil circulation path by utilizing pressure fluctuations in the crank chamber due to reciprocation of the piston. Supplying and lubricating, a direct passage that communicates the valve operating chamber and the crank chamber at the time of negative pressure in the crank chamber is provided, and an opening end portion of the direct passage that opens into the crank chamber is formed by the piston. 2. The gas-liquid separation according to claim 1, wherein the gas-liquid separation is provided so as to open when moving from a position near the top dead center toward the top dead center and to be closed while the piston moves from the position near the top dead center toward the bottom dead center. The second opening of the device is connected to the direct passage (claim 16).
 このような構成を有することから、気液分離装置によって分離されたオイルを効率良くオイル循環経路に回収することができる。 Since it has such a configuration, the oil separated by the gas-liquid separator can be efficiently recovered in the oil circulation path.
 本発明における4ストロークエンジンの潤滑装置の一態様は、ピストンの往復動によるクランク室内の圧力変動を利用して、前記オイル循環経路でオイルを循環させて各部の潤滑を行い、前記クランク室内の負圧時に、請求項1記載の気液分離装置の第2の開口部と前記クランク室とを連通する還流通路が設けられ、前記還流通路のクランク室内に開口する開口端部は、前記ピストンが上死点近傍位置から上死点に向かう移動時に開口し、前記ピストンが上死点近傍位置から下死点に向かって移動する間は閉じるように設けられたことを特徴とする(請求項17)。  According to one aspect of the lubricating device for a four-stroke engine in the present invention, oil is circulated in the oil circulation path to lubricate each part using the pressure fluctuation in the crank chamber due to the reciprocating motion of the piston, and the negative pressure in the crank chamber is reduced. A recirculation passage that communicates the second opening of the gas-liquid separator according to claim 1 and the crank chamber is provided at the time of pressure, and an opening end portion that opens into the crank chamber of the recirculation passage is provided with the piston at the top. It is opened when moving from the position near the dead center toward the top dead center, and is closed so that the piston moves while moving from the position near the top dead center toward the bottom dead center (Claim 17). . *
 このような構成を有することから、気液分離装置によって分離されたオイルを効率良くオイル循環経路に回収することができる。 Since it has such a configuration, the oil separated by the gas-liquid separator can be efficiently recovered in the oil circulation path.
 本発明における4ストロークエンジンの潤滑装置の一態様は、前記ブローバイガスから分離されたオイルを前記オイル循環経路に還流する第4の開口部を有し、前記第1の壁の下側方向位置の左右二隅のそれぞれの位置に、前記第2の開口部と前記第4の開口部が形成されることを特徴とする(請求項18) One aspect of the lubricating device for a four-stroke engine according to the present invention has a fourth opening for returning the oil separated from the blow-by gas to the oil circulation path, and is provided at a position in the lower direction of the first wall. The second opening and the fourth opening are formed at respective positions on the left and right corners (claim 18).
 このような構成を有することから、気液分離室でのオイルの排出効果を高めることができる。 Since it has such a configuration, the oil discharge effect in the gas-liquid separation chamber can be enhanced.
 本発明における4ストロークエンジンの気液分離装置によって、燃焼室へオイルが排出されないようにするために、オイルとブローバイガスの気液分離をより確実にした4ストロークエンジンの気液分離装置及び4ストロークエンジンの潤滑装置を提供することができる。 In order to prevent the oil from being discharged into the combustion chamber by the gas-liquid separator of the four-stroke engine according to the present invention, the gas-liquid separator of the four-stroke engine and the four-stroke which ensured the gas-liquid separation of the oil and the blow-by gas. An engine lubrication device can be provided.
本発明の第1の実施形態に係わる4ストロークエンジンの潤滑装置の概略説明図である。It is a schematic explanatory drawing of the lubrication apparatus of the 4-stroke engine concerning the 1st Embodiment of this invention. エアクリーナの説明図である。It is explanatory drawing of an air cleaner. オイルセパレータの説明図である。It is explanatory drawing of an oil separator. 図3におけるA方向から見た気液分離室の構造の説明図である。It is explanatory drawing of the structure of the gas-liquid separation chamber seen from the A direction in FIG. 図4におけるV-V断面の説明図である。It is explanatory drawing of the VV cross section in FIG. セパレータガスケット、セパレータネット、セパレータストッパ、セパレータプレートの説明図である。It is explanatory drawing of a separator gasket, a separator net, a separator stopper, and a separator plate. 刈払機のような作業工具が地面側に位置している場合の第2の開口部とセパレータストッパの貫通穴との関係の説明図である。It is explanatory drawing of the relationship between the 2nd opening part when a working tool like a brush cutter is located in the ground side, and the through-hole of a separator stopper. オリーブ収穫機のような作業工具が地面側と反対側に位置している場合の第2の開口部とセパレータストッパの貫通穴との関係の説明図である。It is explanatory drawing of the relationship between the 2nd opening part and the through-hole of a separator stopper when working tools, such as an olive harvester, are located in the opposite side to the ground side. 気液分離室の形状の変形例の説明図である。It is explanatory drawing of the modification of the shape of a gas-liquid separation chamber. セパレータガスケットの変形例の説明図である。It is explanatory drawing of the modification of a separator gasket. セパレータネットの変形例の説明図である。It is explanatory drawing of the modification of a separator net. 本発明の第2の実施形態に係わる4ストロークエンジンの潤滑装置の概略説明図である。It is a schematic explanatory drawing of the lubrication apparatus of the 4-stroke engine concerning the 2nd Embodiment of this invention. 本発明の別の実施形態のエアクリーナプレートの部分説明図である。It is a partial explanatory view of an air cleaner plate of another embodiment of the present invention. 本発明の別の実施形態に係わる気液分離装置の概略説明図である。It is a schematic explanatory drawing of the gas-liquid separation apparatus concerning another embodiment of this invention.
<第1の実施形態>
 以下、本発明の4ストロークエンジンの潤滑装置の好ましい実施の形態を図1~図4に基づいて説明する。潤滑装置は4ストロークエンジンに搭載されるものであるので、この潤滑装置を搭載した4ストロークエンジンについて図1(概略説明図)を用いて説明する。
 なお、図1は、ピストンが上死点に位置した状態にあるときの4ストロークエンジンを示している。
<First Embodiment>
A preferred embodiment of a lubrication device for a four-stroke engine according to the present invention will be described below with reference to FIGS. Since the lubrication device is mounted on a 4-stroke engine, a 4-stroke engine equipped with this lubrication device will be described with reference to FIG.
FIG. 1 shows the four-stroke engine when the piston is located at the top dead center.
 4ストロークエンジン1は、図1に示すように、シリンダヘッド3aが一体化されているシリンダブロック3と、シリンダブロック3の下部に取り付けられてクランク室5aを形成するクランクケース5と、クランクケース5の下側方向位置に配設された油溜室7とを備える。
 油溜室7は、クランクケース5と別個に設けられ、オイルA(以下、単に「オイルA」と記す。)を貯留する。
As shown in FIG. 1, the 4-stroke engine 1 includes a cylinder block 3 in which a cylinder head 3 a is integrated, a crankcase 5 that is attached to a lower portion of the cylinder block 3 to form a crank chamber 5 a, and a crankcase 5 And an oil reservoir chamber 7 disposed at the lower side position.
The oil reservoir 7 is provided separately from the crankcase 5 and stores oil A (hereinafter simply referred to as “oil A”).
 シリンダブロック3とクランクケース5との接続部分には、クランク軸(図示せず)が回転自在に支持され、このクランク軸にはカウンタウェイトやこれに連結されたコンロッド等を介してピストン6が連接されている。ピストン6はシリンダブロック3内に設けられたシリンダ3b内に摺動自在に挿入されている。 A crankshaft (not shown) is rotatably supported at a connecting portion between the cylinder block 3 and the crankcase 5, and a piston 6 is connected to the crankshaft via a counterweight, a connecting rod connected thereto, and the like. Has been. The piston 6 is slidably inserted into a cylinder 3b provided in the cylinder block 3.
 シリンダブロック3内に設けられたシリンダ3bの上壁には、気化器(図示せず)及び排気マフラ(図示せず)にそれぞれ連通する吸気ポート及び排気ポートが設けられ、これらの各ポートには、ポートを開閉する吸気バルブ及び排気バルブが配設されている。 An intake port and an exhaust port communicating with a carburetor (not shown) and an exhaust muffler (not shown) are provided on the upper wall of the cylinder 3b provided in the cylinder block 3, respectively. An intake valve and an exhaust valve for opening and closing the port are provided.
 ここで、本実施形態の4ストロークエンジン1は、携帯して用いられる場合もあり、その際には4ストロークエンジン1は一時的に回転して天地が逆転した状態等で使用されうる。 Here, the four-stroke engine 1 of the present embodiment may be used by being carried around, and in that case, the four-stroke engine 1 can be used in a state where it is temporarily rotated and the top and bottom are reversed.
 これらのバルブを駆動する動弁機構10は、クランク軸に固着されたバルブ駆動ギヤ10a、バルブ駆動ギヤ10aによって駆動されカムが連接されたカムギヤ10b、ロッカーアーム(図示せず)等の部品により構成される。
 この動弁機構10のうちバルブ駆動ギヤ10a及びカムギヤ10bは、シリンダブロック3の頭部に形成された動弁室4と油溜室7とを連通する供給通路31の途中に設けられたバルブ駆動室32内に収容され、ロッカーアーム等の部品は、動弁室4内に設けられている。
The valve operating mechanism 10 for driving these valves is composed of components such as a valve drive gear 10a fixed to a crankshaft, a cam gear 10b driven by the valve drive gear 10a and connected to a cam, and a rocker arm (not shown). Is done.
Of the valve mechanism 10, the valve drive gear 10 a and the cam gear 10 b are valve drives provided in the middle of a supply passage 31 that connects the valve chamber 4 formed in the head of the cylinder block 3 and the oil reservoir chamber 7. Parts such as a rocker arm, which are accommodated in the chamber 32, are provided in the valve operating chamber 4.
 油溜室7とシリンダブロック3との間には、送油通路34が設けられている。送油通路34の油溜室側の端部には、吸入部35が取り付けられている。
 吸入部35は、ゴム等の弾性材料により形成されて容易に撓むことができる管体35aと、管体35aの先端部に取り付けられた吸入口付きの錘35bとを有してなる。
 吸入部35の錘35bは、重力により鉛直下側方向位置に移動可能に取り付けられており、これにより油溜室7が傾いても、規定量の範囲で貯留されるオイルAの油面下に吸入部35の吸入口を没入させることができる。
An oil feed passage 34 is provided between the oil reservoir 7 and the cylinder block 3. A suction portion 35 is attached to an end portion of the oil feeding passage 34 on the oil reservoir chamber side.
The suction portion 35 includes a tube body 35a that is formed of an elastic material such as rubber and can be easily bent, and a weight 35b with a suction port attached to a tip portion of the tube body 35a.
The weight 35b of the suction portion 35 is attached so as to be movable in a vertically downward position due to gravity. As a result, even if the oil reservoir 7 is tilted, the weight 35b is below the oil level of the oil A stored in a specified amount range. The suction port of the suction part 35 can be immersed.
 送油通路34は、ピストン6の上昇によりクランク室5a内が負圧化傾向となったときに、クランク室5a内と油溜室7とを連通させて油溜室7からオイルAを吸い上げてクランク室5a内に供給する部分である。
 送油通路34のクランク室5a側に開口する開口端部34aの位置は、ピストン6が上死点近傍位置から上死点に向かって移動する間にピストン6の移動に伴って開口する位置に設けられ、上死点近傍位置に移動したピストン下部のスカート部6aの下死点方向側に位置している。
 従って、送油通路34の開口端部34aは、ピストン6が上死点に達した時点では既に全開している。
The oil feed passage 34 sucks up the oil A from the oil reservoir chamber 7 by communicating the inside of the crank chamber 5a and the oil reservoir chamber 7 when the inside of the crank chamber 5a tends to become negative pressure due to the rise of the piston 6. This is the portion that is fed into the crank chamber 5a.
The position of the opening end 34a that opens to the crank chamber 5a side of the oil feeding passage 34 is a position that opens as the piston 6 moves while the piston 6 moves from the position near the top dead center toward the top dead center. It is provided and is located on the bottom dead center side of the skirt 6a below the piston that has moved to a position near the top dead center.
Therefore, the opening end 34a of the oil feeding passage 34 is already fully opened when the piston 6 reaches the top dead center.
 なお、送油通路34は、開口端部34aにリード弁を設け、又は、クランク軸に通路を設けてロータリバルブとして機能させる等、クランク室5a内の負圧時に送油通路34とクランク室5aを連通させるようにしてもよい。 The oil feed passage 34 is provided with a reed valve at the open end 34a, or provided with a passage on the crankshaft so as to function as a rotary valve. For example, the oil feed passage 34 and the crank chamber 5a can be operated at a negative pressure in the crank chamber 5a. You may make it communicate.
 送油通路34の途中には、逆止弁37が設けられている。この逆止弁37は、クランク室5aの圧力変化に応じて開閉し、油溜室7内に対しクランク室5a内の圧力が低い状態で開いて送油通路34を連通状態にし、クランク室5a内の圧力の方が高い状態で閉じるように構成されている。 A check valve 37 is provided in the middle of the oil feed passage 34. The check valve 37 opens and closes in response to a change in the pressure in the crank chamber 5a, opens in a state where the pressure in the crank chamber 5a is low with respect to the oil reservoir chamber 7, and connects the oil feed passage 34 to the crank chamber 5a. It is comprised so that it may close in the state where the inside pressure is higher.
 クランク室5aの底部と油溜室7との間には、クランク室5aと油溜室7を連通する連通路39が設けられている。この連通路39は、クランク室5a内で生成されたオイルミスト及び、このオイルミストが液化したオイルを油溜室7に送るためのものである。
 連通路39のクランク室側に開口する開口端部39aにはリード弁40が設けられている。このリード弁40は、クランク室5aの圧力変化に応じて開閉可能に構成され、ピストン6が下死点側に移動するときのクランク室内の正圧によって開いて連通路39を連通状態にするように構成されている。
 このためリード弁40が開いて連通路39が連通状態になると、クランク室5a内のオイルミスト及びオイルが連通路39を通って油溜室7内に送られる。
 油溜室7の空間部7bは、ガスケットとしての機能をも有するバッフルプレート7cによって区分けされている。
 バッフルプレート7cの上側方向位置に、供給通路31の開口端部31aが形成されている。
A communication passage 39 is provided between the bottom of the crank chamber 5 a and the oil reservoir 7 to communicate the crank chamber 5 a with the oil reservoir 7. The communication passage 39 is for sending oil mist generated in the crank chamber 5 a and oil liquefied by the oil mist to the oil reservoir 7.
A reed valve 40 is provided at an open end 39 a that opens to the crank chamber side of the communication passage 39. The reed valve 40 is configured to be openable and closable according to a change in the pressure in the crank chamber 5a, and is opened by the positive pressure in the crank chamber when the piston 6 moves to the bottom dead center side so that the communication passage 39 is in a communicating state. It is configured.
Therefore, when the reed valve 40 is opened and the communication passage 39 is in a communication state, the oil mist and oil in the crank chamber 5 a are sent into the oil reservoir chamber 7 through the communication passage 39.
The space 7b of the oil reservoir 7 is divided by a baffle plate 7c that also functions as a gasket.
An opening end 31a of the supply passage 31 is formed at a position in the upper direction of the baffle plate 7c.
 連通路39の油溜室側の開口端部39bは、油溜室7内の略中央で開口し、油溜室7の傾斜状態に拘わらず、規定量以下で貯留されたオイルAの油面上となる位置に配置されている。
 このため、連通路39の開口端部39bから吐出するオイルミストは、オイルの油面下に吹きつけられることでオイル内部を泡立てることはなく、穏やかに油溜室7に戻され、オイルミストの多くが液化される。
 但し、開口端部39bから吐出するオイルミストの一部は油面上や壁面上で跳ね返って、油溜室7内の油面上側方向位置の空間部7a内に滞留する。このようにオイルAの油面上の位置に配置された連通路39の開口端部39bは、オイルミストを液化させる液化手段の一部として機能する。
An opening end 39b on the oil reservoir chamber side of the communication passage 39 opens at a substantially center in the oil reservoir chamber 7, and the oil level of the oil A stored below a specified amount regardless of the inclined state of the oil reservoir chamber 7. It is arranged at the upper position.
For this reason, the oil mist discharged from the open end 39b of the communication passage 39 is blown below the oil surface of the oil, so that the inside of the oil is not bubbled, but is gently returned to the oil reservoir 7 and the oil mist Many are liquefied.
However, a part of the oil mist discharged from the open end 39b bounces on the oil surface or the wall surface and stays in the space 7a in the oil tank upper side position in the oil reservoir chamber 7. Thus, the open end 39b of the communication path 39 disposed at a position on the oil surface of the oil A functions as a part of the liquefying means for liquefying the oil mist.
 従って、連通路39から吐出するオイルミストはその大部分が液化され、油溜室7内に貯留するオイルミストの濃度を低くすることができる。 Therefore, most of the oil mist discharged from the communication passage 39 is liquefied, and the concentration of the oil mist stored in the oil reservoir 7 can be reduced.
 供給通路31の開口端部31aは、油溜室7内の内部空間の略中央部で開口し、油溜室7の傾斜状態に拘わらず、規定量以下で貯留されたオイルAの油面の位置が変化しても油面下に没することがないように配置されている。さらに、図1に示すように、開口端部31aに対して開口端部39bが突出するように配置している。 The opening end portion 31a of the supply passage 31 opens at a substantially central portion of the internal space in the oil reservoir chamber 7, and regardless of the inclined state of the oil reservoir chamber 7, the oil surface of the oil A stored below a specified amount is provided. Even if a position changes, it arrange | positions so that it may not be immersed under an oil surface. Furthermore, as shown in FIG. 1, it arrange | positions so that the opening edge part 39b may protrude with respect to the opening edge part 31a.
 このように、供給通路31の開口端部31aに対し連通路39の開口端部39bが油溜室7内に突出するように配置されているので、連通路39の開口端部39bから吐出するオイルミストが供給通路31の開口端部31aに直接に入ることはない。さらに好ましくは連通路39と供給通路31は、各開口端部側に進むに従って隣接する開口端部と離れる方向に配置されてもよい。
 即ち、開口端部39bにおける連通路39の延伸方向(一点鎖線で示した方向)に直交する平面に対し、供給通路31の開口端部31a及びその近傍が連通路39の基部側に配置されていれば、連通路39から吐出するオイルミストが直接に供給通路31の開口端部31aに入ることはない。
 つまり油溜室7における供給通路31と連通路39の配置は、連通路39から吐出するオイルミストが直接に供給通路31の開口端部31aに流入するのを阻止する流入阻止部として機能している。
 このため、供給通路31を流れるオイルミストの濃度は、送油通路34からクランク室5a内に供給されるオイルの濃度と比較して低くなる。
As described above, the opening end 39 b of the communication passage 39 is disposed so as to protrude into the oil reservoir 7 with respect to the opening end 31 a of the supply passage 31, so that the discharge is performed from the opening end 39 b of the communication passage 39. Oil mist does not directly enter the open end 31 a of the supply passage 31. More preferably, the communication passage 39 and the supply passage 31 may be arranged in a direction away from the adjacent opening end portion as proceeding to each opening end portion side.
That is, the opening end 31 a of the supply passage 31 and the vicinity thereof are arranged on the base side of the communication passage 39 with respect to a plane orthogonal to the extending direction of the communication passage 39 (direction indicated by the alternate long and short dash line) at the opening end 39 b. Then, the oil mist discharged from the communication passage 39 does not directly enter the open end 31 a of the supply passage 31.
That is, the arrangement of the supply passage 31 and the communication passage 39 in the oil reservoir 7 functions as an inflow prevention portion that prevents oil mist discharged from the communication passage 39 from directly flowing into the opening end portion 31 a of the supply passage 31. Yes.
For this reason, the concentration of oil mist flowing through the supply passage 31 is lower than the concentration of oil supplied from the oil feed passage 34 into the crank chamber 5a.
 供給通路31の動弁室4側の開口端部31aは、動弁室4のシリンダブロック3側に開口している。このため、供給通路31を流れるオイルミストはバルブ駆動室32内の動弁機構10を潤滑し、開口端部31bから吐出して動弁室4内に供給されて動弁室4内のロッカーアーム等を潤滑する。
 動弁室4とバルブ駆動室32とがプッシュロッド通路33によって連通されている。
 このプッシュロッド通路33は動弁室4に開口部31bによって連通している。
 このプッシュロッド通路33をプッシュロッドが貫通して、プッシュロッドが動弁室4内のロッカーアームを駆動している。
 また、動弁室4内には、プッシュロッド通路33から動弁室4内に流入した流体(オイルミスト、液化しているオイル、ブローバイガス)からオイルミスト及び液化したオイル等を分離するための突起状の壁部材45が形成されている。
An opening end portion 31 a on the valve operating chamber 4 side of the supply passage 31 opens to the cylinder block 3 side of the valve operating chamber 4. Therefore, the oil mist flowing through the supply passage 31 lubricates the valve mechanism 10 in the valve drive chamber 32, is discharged from the open end 31 b and is supplied into the valve chamber 4, and the rocker arm in the valve chamber 4. Lubricate etc.
The valve operating chamber 4 and the valve drive chamber 32 are communicated with each other by a push rod passage 33.
The push rod passage 33 communicates with the valve operating chamber 4 through an opening 31b.
The push rod passes through the push rod passage 33, and the push rod drives the rocker arm in the valve operating chamber 4.
Further, in the valve operating chamber 4, oil mist, liquefied oil, and the like are separated from the fluid (oil mist, liquefied oil, blow-by gas) that flows into the valve operating chamber 4 from the push rod passage 33. A protruding wall member 45 is formed.
 動弁室4内には、動弁室4内に溜まったオイルを吸引するために吸引管43が複数設けられている。
 吸引管43の動弁室4側の開口端部43aは、動弁室4のシリンダブロック3側に開口している。
 そして、吸引管43と吸引通路42が接続されている。吸引通路42は動弁室4のクランク室5aとは反対側に設けられ、吸引管43はこれに連通して動弁室4内のクランク室側へ延びるように設けられ、吸引管43の先端は開口している。
 吸引管43の開口先端部は、動弁室4内のクランク室側底面からオイルを吸い上げるために、動弁室4のクランク室側底面の近傍位置に配置されている。
 そして、吸引管43は動弁室4の隅部に配置されて、動弁室4が上側方向位置に位置する状態で4ストロークエンジン1が傾いても、いずれかの吸引管43を介して動弁室4内に溜まるオイルが吸引されるようになっている。
A plurality of suction pipes 43 are provided in the valve train chamber 4 in order to suck the oil accumulated in the valve train chamber 4.
An opening end portion 43 a on the valve operating chamber 4 side of the suction pipe 43 opens to the cylinder block 3 side of the valve operating chamber 4.
The suction pipe 43 and the suction passage 42 are connected. The suction passage 42 is provided on the opposite side of the valve operating chamber 4 from the crank chamber 5 a, and the suction pipe 43 is provided so as to extend to the crank chamber in the valve operating chamber 4. Is open.
The tip of the opening of the suction pipe 43 is disposed near the crank chamber side bottom surface of the valve operating chamber 4 in order to suck up oil from the crank chamber side bottom surface of the valve operating chamber 4.
The suction pipe 43 is arranged at the corner of the valve operating chamber 4, and even if the 4-stroke engine 1 is tilted in a state where the valve operating chamber 4 is positioned in the upper direction position, the suction pipe 43 moves through any of the suction pipes 43. The oil accumulated in the valve chamber 4 is sucked.
 また吸引通路42には***44が複数設けられている。この***44は、動弁室4のクランク室5aとは反対側の隅部に配置され、動弁室4が下側方向位置に位置する反転状態で4ストロークエンジン1が傾いても、いずれかの***44を介して動弁室4内に溜まるオイルを吸引できる。 Further, a plurality of small holes 44 are provided in the suction passage 42. The small hole 44 is disposed at the corner of the valve operating chamber 4 on the opposite side to the crank chamber 5a, and even if the 4-stroke engine 1 is tilted in a reverse state in which the valve operating chamber 4 is positioned at the lower side position, The oil accumulated in the valve operating chamber 4 can be sucked through the small hole 44.
 吸引通路42には直通通路46が設けられ、クランク室5a内の負圧時に、動弁室4とクランク室5aとが直通通路46を介して連通する。
 直通通路46のクランク室側の開口端部46aの位置は、送油通路34の開口端部34aと同様に、ピストン6が上死点近傍位置から上死点に向かって移動する間にピストン6の移動に伴って開口する位置に設けられ、上死点近傍位置に移動したピストン下部のスカート部6aの下死点方向側に位置している。
 従って、直通通路46の開口端部46aは、ピストン6が上死点に達した時点では既に全開している。
The suction passage 42 is provided with a direct passage 46, and the valve operating chamber 4 and the crank chamber 5 a communicate with each other through the direct passage 46 when the crank chamber 5 a has a negative pressure.
The position of the opening end portion 46a on the crank chamber side of the direct passage 46 is the same as that of the opening end portion 34a of the oil feeding passage 34 while the piston 6 moves from the position near the top dead center toward the top dead center. It is provided at a position that opens with the movement of the skirt portion 6a and is located on the bottom dead center side of the skirt portion 6a below the piston that has moved to a position near the top dead center.
Therefore, the opening end 46a of the direct passage 46 is already fully opened when the piston 6 reaches the top dead center.
 また直通通路46に、動弁室4からクランク室5a側への流れを許容し、クランク室5aから動弁室4側への流れを規制する逆止弁を設けてもよい。
 このようにすることで、クランク室5aから動弁室4へオイルやオイルミストが逆流することを確実に防止することができる。
The direct passage 46 may be provided with a check valve that allows the flow from the valve operating chamber 4 to the crank chamber 5a and restricts the flow from the crank chamber 5a to the valve operating chamber 4 side.
By doing in this way, it can prevent reliably that oil and oil mist flow back from the crank chamber 5a to the valve operating chamber 4.
 動弁室4の略中央部にはブリーザ通路48の一端部48aが開口し、ブリーザ通路48の他端部がエアクリーナ50に接続されている。
 ブリーザ通路48は、ブローバイガスを燃焼室へ排出することを目的として設けられている。動弁室4内のオイルミストやブローバイガスは、ブリーザ通路48を介してエアクリーナ50に送られ、エアクリーナ50に設けられたオイルセパレータ51により液化されたオイルとブローバイガスに気液分離される。
 ブリーザ通路48の一端部48aは、動弁室4の略中央部に開口するので、動弁室4にオイルが多く滞留しても、容易にそのオイルを吸い込むことはない。このブリーザ通路48には逆止弁が設けられ、この逆止弁によりエアクリーナ50から動弁室4側へのブローバイガスやオイルミストの逆流を防止している。
One end portion 48 a of the breather passage 48 is opened at a substantially central portion of the valve operating chamber 4, and the other end portion of the breather passage 48 is connected to the air cleaner 50.
The breather passage 48 is provided for the purpose of discharging blow-by gas to the combustion chamber. Oil mist and blow-by gas in the valve operating chamber 4 are sent to the air cleaner 50 via the breather passage 48 and are separated into oil and blow-by gas by the oil separator 51 provided in the air cleaner 50.
Since one end portion 48a of the breather passage 48 opens at a substantially central portion of the valve operating chamber 4, even if a large amount of oil stays in the valve operating chamber 4, the oil is not easily sucked in. The breather passage 48 is provided with a check valve, which prevents the backflow of blow-by gas and oil mist from the air cleaner 50 to the valve operating chamber 4 side.
 気液分離されたオイルは、エアクリーナ50とクランク室5aを連通する還流通路52を通ってクランク室5aに送られる。還流通路52にはクランク室側への流れのみを許容する逆止弁が設けられている。一方、気液分離されたブローバイガスは燃焼室に送られる。 The oil that has undergone gas-liquid separation is sent to the crank chamber 5a through a reflux passage 52 that communicates between the air cleaner 50 and the crank chamber 5a. The return passage 52 is provided with a check valve that allows only the flow toward the crank chamber. On the other hand, the blow-by gas separated from the gas and liquid is sent to the combustion chamber.
 バルブ駆動室32の油溜室側の底部とクランク室5aの間には、バルブ駆動室32内のオイルをクランク室5a内に戻すための戻し通路54が設けられている。クランク室5aの負圧時には、戻し通路54を介してバルブ駆動室32に溜まるオイルが吸引される。この戻し通路54は、連通路39の断面積の1/10よりも小さく構成されている。
 クランク室5aの正圧時には、リード弁40が開き、クランク室5aと油溜室7が連通状態になる。クランク室5a内のオイルミストとオイルは断面積の大きな連通路39を流れ、戻し通路54はオイルで栓がされた状態になるので、クランク室5aからバルブ駆動室32へオイルが逆流することは殆どない。本実施例では、連通路39の内径をφ9mm、戻し通路54の内径をφ2mmとしている。
Between the bottom of the valve drive chamber 32 on the oil reservoir chamber side and the crank chamber 5a, a return passage 54 for returning the oil in the valve drive chamber 32 into the crank chamber 5a is provided. When the crank chamber 5a has a negative pressure, the oil accumulated in the valve drive chamber 32 is sucked through the return passage 54. The return passage 54 is configured to be smaller than 1/10 of the cross-sectional area of the communication passage 39.
At the time of positive pressure in the crank chamber 5a, the reed valve 40 is opened, and the crank chamber 5a and the oil reservoir chamber 7 are in communication with each other. Oil mist and oil in the crank chamber 5a flow through the communication passage 39 having a large cross-sectional area, and the return passage 54 is plugged with oil, so that oil does not flow back from the crank chamber 5a to the valve drive chamber 32. Almost no. In this embodiment, the inner diameter of the communication path 39 is 9 mm, and the inner diameter of the return path 54 is 2 mm.
 なお、戻し通路54は、バルブ駆動室32と前述した直通通路46とを連通するように設けてもよい。このように戻し通路54を設けることで、動弁室4に必要以上にオイルが供給されることはない。
 また、戻し通路54内に、クランク室側へのオイルの流れを許容し、バルブ駆動室32側へのオイルの流れを規制する逆止弁を設けてもよい。このようにすると、クランク室5a内からバルブ駆動室32側へのオイルの逆流を確実に防止することができる。
The return passage 54 may be provided so as to communicate the valve drive chamber 32 and the direct passage 46 described above. By providing the return passage 54 in this way, oil is not supplied to the valve operating chamber 4 more than necessary.
Further, a check valve may be provided in the return passage 54 to allow the oil flow to the crank chamber side and restrict the oil flow to the valve drive chamber 32 side. In this way, the backflow of oil from the crank chamber 5a to the valve drive chamber 32 side can be reliably prevented.
 またバルブ駆動室32と送油通路34との間には、流量調整通路56が設けられている。
 流量調整通路56がバルブ駆動室32内の空気を吸い込むことで、送油通路34を介してクランク室5aに供給されるオイルの流量が調整される。
 この空気の吸い込み量が多ければ、送油通路34を介して供給されるオイルの流量は減少する。なお、流量調整通路56は、バルブ駆動室32の底部から離し、バルブ駆動室32に滞留するオイルを吸い込みにくい位置に設けるのが良い。
A flow rate adjusting passage 56 is provided between the valve drive chamber 32 and the oil feeding passage 34.
The flow rate adjusting passage 56 sucks the air in the valve drive chamber 32, whereby the flow rate of oil supplied to the crank chamber 5a via the oil feeding passage 34 is adjusted.
If the amount of sucked air is large, the flow rate of oil supplied through the oil feeding passage 34 decreases. The flow rate adjusting passage 56 is preferably separated from the bottom of the valve drive chamber 32 and provided at a position where it is difficult to suck the oil staying in the valve drive chamber 32.
 流量調整通路56の送油通路34への接続位置は、送油通路34に設けられた逆止弁37よりも油溜室側に位置している。
 このため、逆止弁37によりオイルの供給を遮断すると、逆止弁37よりも油溜室側の送油通路34内にはオイルが溜まり、流量調整通路56と送油通路34の接続部位にはオイルが溜まった状態になる。
 これによって、流量調整通路56から送油通路34が空気を吸い込むタイミングで、空気だけが送油通路34を流れることはなく、バルブ駆動室32から送り込まれた空気とともに送油通路34内のオイルがクランク室5aに送られる。
The connection position of the flow rate adjusting passage 56 to the oil feeding passage 34 is located closer to the oil reservoir chamber than the check valve 37 provided in the oil feeding passage 34.
For this reason, when the oil supply is shut off by the check valve 37, the oil is accumulated in the oil feed passage 34 on the oil reservoir chamber side of the check valve 37, and the flow regulating passage 56 and the oil feed passage 34 are connected to each other. Becomes a state where oil has accumulated.
Thus, at the timing when the oil feeding passage 34 sucks air from the flow rate adjusting passage 56, only air does not flow through the oil feeding passage 34, and the oil in the oil feeding passage 34 together with the air sent from the valve drive chamber 32. It is sent to the crank chamber 5a.
 この流量調整通路56には、バルブ駆動室32から送油通路34に送られる空気の流量を調整する流量絞り57が設けられている。
 流量絞り57を調整してバルブ駆動室32から吸い込まれる空気の量を調整することで、送油通路34を介してクランク室5aに供給されるオイルの流量を調整することができる。つまり、流量調整通路56の内径を気にせず、流量絞り57の設計のみで容易にオイルの流量調整ができる。
The flow rate adjusting passage 56 is provided with a flow restrictor 57 that adjusts the flow rate of air sent from the valve drive chamber 32 to the oil feeding passage 34.
By adjusting the flow rate restrictor 57 and adjusting the amount of air sucked from the valve drive chamber 32, the flow rate of oil supplied to the crank chamber 5a via the oil feed passage 34 can be adjusted. That is, the flow rate of oil can be easily adjusted only by designing the flow restrictor 57 without worrying about the inner diameter of the flow rate adjusting passage 56.
 なお、流量絞り57は、流量調整通路56と別体に設ける必要はなく、流量調整通路56の一部として構成されてもよい。例えば、シリンダブロック3とクランクケース5のシール面に沿って流量調整通路56の一部を形成し、シール面で送油通路34と接続すると、流量絞り57を容易に構成することができる。 The flow restrictor 57 does not need to be provided separately from the flow adjustment passage 56 and may be configured as a part of the flow adjustment passage 56. For example, if a part of the flow rate adjusting passage 56 is formed along the seal surfaces of the cylinder block 3 and the crankcase 5 and connected to the oil feed passage 34 by the seal surface, the flow restrictor 57 can be easily configured.
 つまり、潤滑装置30のオイル循環経路は、送油通路34、連通路39、供給通路31、プッシュロッド通路33、吸引管43、***44、吸引通路42、直通通路46、ブリーザ通路48、還流通路52、戻し通路54、流量調整通路56を有して構成されている。 That is, the oil circulation path of the lubricating device 30 includes an oil feeding passage 34, a communication passage 39, a supply passage 31, a push rod passage 33, a suction pipe 43, a small hole 44, a suction passage 42, a direct passage 46, a breather passage 48, and a reflux passage. 52, a return passage 54, and a flow rate adjustment passage 56.
 4ストロークエンジン1が始動されると、ピストン6の昇降運動によりクランク室5aに圧力変化が生じ、ピストン6の上昇時にはクランク室5aが減圧されて負圧化傾向となり、ピストン6の下降時にはクランク室5aが昇圧されて正圧化傾向となる。 When the four-stroke engine 1 is started, a pressure change occurs in the crank chamber 5a due to the up-and-down movement of the piston 6, the crank chamber 5a is depressurized when the piston 6 is raised, and tends to be negative, and the crank chamber is lowered when the piston 6 is lowered. 5a is boosted and tends to be positive.
 クランク室5aが負圧化傾向となり、ピストン6の上死点近傍への移動に伴い送油通路34の開口端部34aが開き始め、クランク室5aと油溜室7が連通すると、送油通路34にクランク室5a内の負圧が作用する。
 4ストロークエンジン1が傾いても送油通路34の吸入部35は、油溜室7のオイルAの油面下に没した状態にあり、油溜室7からオイルAが吸い込まれてクランク室5a内に送られる。開口端部34aは、ピストン6が上死点位置に達した時点では既に全開となっているので、クランク室5a内の負圧を充分に送油通路34に作用させることができる。
 そのため、油面下より汲み上げられるオイルAをクランク室5a内に充分に供給することができる。
When the crank chamber 5a tends to become negative pressure, the opening end portion 34a of the oil feed passage 34 starts to open as the piston 6 moves to the vicinity of the top dead center, and the crank chamber 5a and the oil reservoir chamber 7 communicate with each other. The negative pressure in the crank chamber 5a acts on 34.
Even if the 4-stroke engine 1 is tilted, the suction portion 35 of the oil feed passage 34 is in a state of being submerged under the oil surface of the oil A in the oil reservoir chamber 7, and the oil A is sucked from the oil reservoir chamber 7 and the crank chamber 5a. Sent in. Since the open end 34a is already fully opened when the piston 6 reaches the top dead center position, the negative pressure in the crank chamber 5a can be sufficiently applied to the oil feed passage 34.
Therefore, the oil A pumped from below the oil level can be sufficiently supplied into the crank chamber 5a.
 クランク室5a内に送られたオイルは、ピストン6,クランクシャフトなどの駆動部品を潤滑し、同時にそれらの駆動部品により飛散されてオイルミストになる。オイルミストの一部はクランク室5aの壁面に付着して再度液化される。 The oil sent into the crank chamber 5a lubricates driving parts such as the piston 6 and the crankshaft, and at the same time, is scattered by these driving parts to become oil mist. Part of the oil mist adheres to the wall surface of the crank chamber 5a and is liquefied again.
 ピストン6が上死点から下降するときには、クランク室5aが正圧に変わり、リード弁40は開放されて、クランク室5aと油溜室7は連通する。そして、クランク室5a内で昇圧されたオイルミスト及びオイルが連通路39を通って油溜室7に送られ、油溜室7内の圧力が高まる。連通路39から吐出するオイルミストは油溜室7内に溜まるオイルAの油面や油溜室7の壁面に衝突することで液化し、油溜室7に貯留される。
 油溜室7内で衝突して跳ね返ることで残ったオイルミストの濃度は、クランク室5a内での濃度よりも低くなる。
 なお、クランク室5aが正圧になると、逆止弁37の作用によりクランク室5aから油溜室7へのオイルが逆流しないよう送油通路34が遮断され、次いで開口端部34aがピストン6により閉じられる。
When the piston 6 descends from the top dead center, the crank chamber 5a changes to a positive pressure, the reed valve 40 is opened, and the crank chamber 5a and the oil reservoir 7 are in communication. Then, the oil mist and oil whose pressure is increased in the crank chamber 5a are sent to the oil reservoir 7 through the communication passage 39, and the pressure in the oil reservoir 7 is increased. The oil mist discharged from the communication passage 39 is liquefied by colliding with the oil surface of the oil A accumulated in the oil reservoir chamber 7 or the wall surface of the oil reservoir chamber 7 and stored in the oil reservoir chamber 7.
The concentration of the oil mist remaining by the collision in the oil reservoir chamber 7 and rebounding is lower than the concentration in the crank chamber 5a.
When the crank chamber 5a becomes positive pressure, the check valve 37 acts to block the oil feed passage 34 so that the oil from the crank chamber 5a to the oil reservoir chamber 7 does not flow back, and the open end 34a is then closed by the piston 6. Closed.
 油溜室7内の圧力が高まることで、油溜室7内と動弁室4の間に圧力勾配ができ、油溜室7内に溜まるオイルミストは、供給通路31を介して動弁室4に送られる。
 油溜室7から動弁室4にオイルミストを送る過程で、供給通路31に設けられたバルブ駆動室32内の動弁機構10の各部品は潤滑される。この際オイルミストの一部は液化する。
By increasing the pressure in the oil reservoir 7, a pressure gradient is created between the oil reservoir 7 and the valve operating chamber 4, and the oil mist accumulated in the oil reservoir 7 is supplied via the supply passage 31 to the valve operating chamber. Sent to 4.
In the process of sending oil mist from the oil reservoir chamber 7 to the valve operating chamber 4, each component of the valve operating mechanism 10 in the valve drive chamber 32 provided in the supply passage 31 is lubricated. At this time, part of the oil mist is liquefied.
 バルブ駆動室32で液化されてなったオイルは、戻し通路54を介してクランク室5aに送ることができる。
 このため、バルブ駆動室32でオイルが過度に滞留することを抑止でき、動弁室4にオイルが流出することを抑止できる。またオイルが供給通路31を塞ぐ事を防止できる。
The oil liquefied in the valve drive chamber 32 can be sent to the crank chamber 5a through the return passage 54.
For this reason, it is possible to prevent oil from staying excessively in the valve drive chamber 32, and to prevent oil from flowing into the valve operating chamber 4. Further, the oil can be prevented from blocking the supply passage 31.
 動弁室4に供給されたオイルミストは、動弁室4内に設けられた動弁機構を潤滑し、直通通路46を介してクランク室5aに送られる。
 また動弁室4内に供給されたオイルミストが液化して滞留してもクランク室5a内の強い負圧が作用して、クランク室5a内にオイルを送ることができ、動弁室4でオイルが滞留することを抑止できる。
The oil mist supplied to the valve operating chamber 4 lubricates the valve operating mechanism provided in the valve operating chamber 4 and is sent to the crank chamber 5 a through the direct passage 46.
Further, even if the oil mist supplied in the valve chamber 4 is liquefied and stays, strong negative pressure in the crank chamber 5a acts and oil can be sent into the crank chamber 5a. Oil can be prevented from staying.
 従って、動弁室4からブリーザ通路48を介してブローバイガスを排出する際のオイルの放出を抑えることができる。 Therefore, it is possible to suppress the oil release when the blow-by gas is discharged from the valve operating chamber 4 through the breather passage 48.
 図2は、エアクリーナ50の説明図である。 FIG. 2 is an explanatory diagram of the air cleaner 50.
 ここで、方向について定義を行う。本実施形態において上側方向とは、4ストロークエンジン1が使用されていない保管時等における位置関係での鉛直上側方向をいう(図2において、紙面上側)。
 この上側方向は使用状態において4ストロークエンジン1が最も長く使用される状態における鉛直上側方向と略一致する。この上側方向とは反対方向を下側方向という(図2において、紙面下側)。
 また、4ストロークエンジン1によって駆動される各種工具が先端に取り付けられるロッド60が配置されている側をロッド側と定義する(図2において、紙面左上方向)。このロッド側方向と反対の方向を反ロッド側方向という(図2において、紙面右下方向)。
 なお、ロッド60内には伝達軸が貫通しており、この伝達軸は4ストロークエンジン1の動力駆動軸と接続されている。また、この伝達軸は各種工具とも接続されている。その結果、各種工具は4ストロークエンジン1の動力によって駆動される。
 さらに、エアクリーナ50が取り付けられている4ストロークエンジン1に取り付けられている側とは反対方向を外部側方向という(図2において、紙面左下方向)。この内部方向とは反対側方向を内部側方向という(図2において、紙面右上方向)。
 なお、ねじれの位置関係とは、2つの流体の流れにおいて、両方の流れの中心軸を延長しても互いに交わらない位置関係をいう。
 図1において用いた方向も上記定義に基づいている。
Here, the direction is defined. In the present embodiment, the upper direction refers to a vertical upper direction in a positional relationship during storage or the like where the 4-stroke engine 1 is not used (upper side in FIG. 2).
This upper direction substantially coincides with the vertical upper direction in the state where the four-stroke engine 1 is used for the longest in the use state. The direction opposite to the upper direction is referred to as the lower direction (the lower side in FIG. 2).
Further, the side on which the rod 60 to which various tools driven by the 4-stroke engine 1 are attached is defined as the rod side (upper left direction in FIG. 2). The direction opposite to the rod side direction is referred to as the anti-rod side direction (the lower right side in FIG. 2).
Note that a transmission shaft passes through the rod 60, and this transmission shaft is connected to the power drive shaft of the four-stroke engine 1. The transmission shaft is also connected to various tools. As a result, the various tools are driven by the power of the 4-stroke engine 1.
Furthermore, the direction opposite to the side attached to the four-stroke engine 1 to which the air cleaner 50 is attached is referred to as the external side direction (the lower left direction in FIG. 2). The direction opposite to the internal direction is referred to as the internal side direction (in FIG. 2, the upper right direction on the page).
Note that the positional relationship of torsion refers to a positional relationship in which two fluid flows do not cross each other even if the central axes of both flows are extended.
The direction used in FIG. 1 is also based on the above definition.
 図2のように、4ストロークエンジン1には、この4ストロークエンジン1によって駆動される工具が先端等に装着されるロッド60がそのロッド側方向に接続されている。
 この4ストロークエンジン1は、刈払機(図7(a)参照)又はオリーブ収穫機(図8(a)参照)に使用される。そして、刈払機であればロッド60は4ストロークエンジンから離れるに従って地面に近づくように傾斜して使用される場合が多い(図7(a)参照)。また、オリーブ収穫機であれば、4ストロークエンジンから離れるに従って地面から離れるように傾斜して使用される場合が多い(図9(a)参照)。
 そして、エアクリーナ50は、ロッド60を前方方向としたときに、4ストロークエンジン1の左側面上側方向の位置に配置されている。
 エアクリーナ50は、空気を取り込みその空気中に含まれる埃やゴミなどを除去して吸気系統に空気を提供する機能を有し、さらに、本実施形態では、ブローバイガスを吸気系統に送る機能をも有している。
 エアクリーナ50は、4ストロークエンジン1の側に固定されているエアクリーナプレート50bと着脱可能なエアクリーナカバー50aによって、その外殻が形成されている。
 このエアクリーナプレート50bとエアクリーナカバー50aとによって形成されている内部空間内は、空気中の埃やゴミを除去するための空間であるエアクリーナ空間50dと気液分離空間50cとを有する。
 エアクリーナ空間50dには、空気中のゴミや埃をフィルタ機能によって除去する第1のエアクリーナフィルタ50e及び第2のエアクリーナフィルタ50fが配置されている。
 第2のエアクリーナフィルタ50fは第1のエアクリーナフィルタ50eよりも、エアクリーナプレート50b側に配置されている。
 また、第1のエアクリーナフィルタ50eはスポンジ等で形成されており、第2のエアクリーナフィルタ50fはフェルト等で形成されている。
As shown in FIG. 2, a rod 60 on which a tool driven by the four-stroke engine 1 is mounted at the tip or the like is connected to the four-stroke engine 1 in the rod side direction.
The 4-stroke engine 1 is used for a brush cutter (see FIG. 7A) or an olive harvester (see FIG. 8A). In the case of a brush cutter, the rod 60 is often used while being inclined so as to approach the ground as the distance from the 4-stroke engine increases (see FIG. 7A). Further, in the case of an olive harvester, the olive harvester is often used in an inclined manner so as to move away from the ground as it moves away from the 4-stroke engine (see FIG. 9A).
And the air cleaner 50 is arrange | positioned in the position of the left side upper side direction of the 4-stroke engine 1, when the rod 60 is made into the front direction.
The air cleaner 50 has a function of taking in air and removing dust and dirt contained in the air to provide air to the intake system. In the present embodiment, the air cleaner 50 also has a function of sending blow-by gas to the intake system. Have.
The air cleaner 50 has an outer shell formed by an air cleaner plate 50b fixed to the four-stroke engine 1 side and a removable air cleaner cover 50a.
An internal space formed by the air cleaner plate 50b and the air cleaner cover 50a has an air cleaner space 50d and a gas-liquid separation space 50c, which are spaces for removing dust and dirt in the air.
In the air cleaner space 50d, a first air cleaner filter 50e and a second air cleaner filter 50f that remove dust and dirt in the air by a filter function are arranged.
The second air cleaner filter 50f is disposed closer to the air cleaner plate 50b than the first air cleaner filter 50e.
The first air cleaner filter 50e is made of sponge or the like, and the second air cleaner filter 50f is made of felt or the like.
 図3は、オイルセパレータ51の説明図である。 FIG. 3 is an explanatory diagram of the oil separator 51.
 図3のように、オイルセパレータ51は、エアクリーナ50の気液分離空間50c、セパレータプレート501及び気液分離部材601によって形成されている。
 なお、セパレータプレート501は、気液分離空間50c及びエアクリーナ通路配置部113に配置されている。
As shown in FIG. 3, the oil separator 51 is formed by a gas-liquid separation space 50 c of the air cleaner 50, a separator plate 501, and a gas-liquid separation member 601.
The separator plate 501 is disposed in the gas-liquid separation space 50c and the air cleaner passage arrangement portion 113.
 気液分離空間50cとエアクリーナ空間50dとを連通させるエアクリーナ通路配置部113は、エアクリーナ空間50dのロッド60とは反ロッド側方向の位置に形成されている。
 気液分離空間50cは、内部側方向に形成された略四角形の第1の壁101と、この第1の壁101を底辺として外部側方向に延びる側面とによって形成されている。また、気液分離空間50cは、外部側方向に開口している。
 この側面は、第1の側面107、第2の側面109及び第3の側面111によって形成されている。第1の側面107、第2の側面109及び第3の側面111は、外部側方向に向かって、第1の側面107、第2の側面109及び第3の側面111の順に形成されている。
 第1の側面107、第2の側面109及び第3の側面111は、第1の側面107、第2の側面109及び第3の側面111の順に開口する大きさが大きくなるように形成されている(図5も参照)。
The air cleaner passage arrangement portion 113 that allows the gas-liquid separation space 50c and the air cleaner space 50d to communicate with each other is formed at a position opposite to the rod 60 in the air cleaner space 50d.
The gas-liquid separation space 50c is formed by a substantially rectangular first wall 101 formed in the inner side direction, and a side surface extending in the outer side direction with the first wall 101 as a base. Moreover, the gas-liquid separation space 50c is opened in the external side direction.
This side surface is formed by the first side surface 107, the second side surface 109, and the third side surface 111. The first side surface 107, the second side surface 109, and the third side surface 111 are formed in the order of the first side surface 107, the second side surface 109, and the third side surface 111 in the outward direction.
The first side surface 107, the second side surface 109, and the third side surface 111 are formed so that the first side surface 107, the second side surface 109, and the third side surface 111 are opened in this order. (See also FIG. 5).
 気液分離空間50cには、セパレータガスケット201、セパレータネット301、セパレータストッパ401及びセパレータプレート501が、第1の壁101側から外部側方向に順に配置されている。
 ここで、セパレータガスケット201、セパレータネット301及びセパレータストッパ401は、気液分離部材601を構成している。
In the gas-liquid separation space 50c, a separator gasket 201, a separator net 301, a separator stopper 401, and a separator plate 501 are sequentially arranged from the first wall 101 side to the outside side.
Here, the separator gasket 201, the separator net 301, and the separator stopper 401 constitute a gas-liquid separation member 601.
 第1の側面107によって形成される空間内に、セパレータガスケット201、セパレータネット301及びセパレータストッパ401が配置される。
 第2の側面109が形成する空間内に、セパレータプレート501が配置される。
In the space formed by the first side surface 107, the separator gasket 201, the separator net 301, and the separator stopper 401 are disposed.
A separator plate 501 is disposed in the space formed by the second side surface 109.
 第1の壁101の中央付近に、ブリーザ通路48と連通される第1の開口部103が形成される。また、第1の壁101の下側方向位置、かつ、ロッド側方向位置に還流通路52と連通される第2の開口部105が形成されている。
 そして、第2の開口部105は、図4に示されるように、左側の隅に位置している。
 もっとも、隅であれば右側であってもよいが、ロッド側方向に相当する左側が特に良い。
A first opening 103 communicating with the breather passage 48 is formed near the center of the first wall 101. Further, a second opening 105 communicating with the reflux passage 52 is formed at the lower side position of the first wall 101 and at the rod side direction position.
And the 2nd opening part 105 is located in the left corner, as FIG. 4 shows.
However, the right side may be the right corner, but the left side corresponding to the rod side direction is particularly good.
 セパレータプレート501の外部側方向の面には、第2の壁501dが形成されている。
 そして、この第2の壁501dの反ロッド側方向の位置に、エアクリーナ通路501cに連通する第3の開口部501gが形成されている。
 この第2の壁501dと、第1の壁101及び第1の側面107によって気液分離室117(図5参照)が形成される。
A second wall 501d is formed on the outer surface of the separator plate 501.
And the 3rd opening part 501g connected to the air cleaner channel | path 501c is formed in the position of the anti-rod side direction of this 2nd wall 501d.
The gas-liquid separation chamber 117 (see FIG. 5) is formed by the second wall 501d, the first wall 101, and the first side surface 107.
 第1の開口部103から流入するオイルミストを含んだブローバイガスは、まず、セパレータガスケット201よって、オイルミストのうち油滴の大きなものが分離される。
 具体的には、セパレータガスケット201に形成されている中央貫通穴201dを通過出来なかったオイルミストが分離させる。
 分離されたオイルミストは、液化し、液化したオイルが第2の開口部105を通して、気液分離室117から排出される。
 なお、ブローバイガスにはオイルの気体成分が含まれているが、簡便のために単にブローバイガスと記載している。
The blow-by gas containing the oil mist flowing in from the first opening 103 is first separated by the separator gasket 201 from the oil mist having large oil droplets.
Specifically, the oil mist that could not pass through the central through hole 201d formed in the separator gasket 201 is separated.
The separated oil mist is liquefied, and the liquefied oil is discharged from the gas-liquid separation chamber 117 through the second opening 105.
In addition, although the gas component of oil is contained in blowby gas, it is only described as blowby gas for convenience.
 また、セパレータガスケット201を通過したオイルミストを含んだブローバイガスは、ネット状のセパレータネット301を通過する。そうすると、ネット状の部分で油滴の小さなオイルミストもブローバイガスから分離される。
 分離されたオイルミストは、液化し、液化したオイルは、セパレータガスケット201に形成されたガスケット隅貫通穴201cを通過し、その後、第2の開口部105を通して、気液分離室117から排出される。
The blow-by gas containing oil mist that has passed through the separator gasket 201 passes through the net-like separator net 301. Then, the oil mist with small oil droplets is also separated from the blow-by gas at the net-like portion.
The separated oil mist is liquefied, and the liquefied oil passes through the gasket corner through hole 201c formed in the separator gasket 201, and then is discharged from the gas-liquid separation chamber 117 through the second opening 105. .
 セパレータネットを通過したオイルミストを含んだブローバイガスは、セパレータストッパ401の壁に衝突し、これによって、オイルミストはブローバイガスから分離される。
 そして、分離されたオイルミストは、液化し、液化したオイルは、セパレータネット301を通過し、セパレータガスケット201に形成されたガスケット隅貫通穴201cを通過し、その後、第2の開口部105を通して気液分離室117から排出される。
The blow-by gas containing the oil mist that has passed through the separator net collides with the wall of the separator stopper 401, whereby the oil mist is separated from the blow-by gas.
The separated oil mist is liquefied, and the liquefied oil passes through the separator net 301, passes through the gasket corner through hole 201 c formed in the separator gasket 201, and then passes through the second opening 105. It is discharged from the liquid separation chamber 117.
 セパレータストッパ401に衝突した後のブローバイガスは、セパレータストッパ401に形成された貫通穴401cを通過する。
 そして、この貫通穴401cを通過したブローバイガスは、セパレータプレート501に形成された第2の壁501dに衝突し、第3の開口部501gに導入される。そして、この第3の開口部501gからエアクリーナ通路501cを通過して、エアクリーナ空間50dに導入される。
 その後、エアクリーナ空間50dにおいて、ブローバイガスは第1のエアクリーナフィルタ50e及び第2のエアクリーナフィルタ50fによってろ過された空気に混入される。
 そして、吸気に混入されたブローバイガスは、燃焼室において燃焼される。
The blow-by gas after colliding with the separator stopper 401 passes through a through hole 401 c formed in the separator stopper 401.
The blow-by gas that has passed through the through hole 401c collides with the second wall 501d formed in the separator plate 501 and is introduced into the third opening 501g. Then, the air passes through the air cleaner passage 501c from the third opening 501g and is introduced into the air cleaner space 50d.
Thereafter, in the air cleaner space 50d, blow-by gas is mixed into the air filtered by the first air cleaner filter 50e and the second air cleaner filter 50f.
The blowby gas mixed in the intake air is burned in the combustion chamber.
 図4は、図3におけるA方向から見た気液分離室117の構造の説明図である。 FIG. 4 is an explanatory diagram of the structure of the gas-liquid separation chamber 117 viewed from the direction A in FIG.
 図4では、気液分離空間50cにセパレータガスケット201のみを配置した状態を表している。
 図4のように、第1の壁101には、中央位置に第1の開口部103が形成されている。また、下側方向位置かつロッド側位置には、第2の開口部105が形成されている。
 第1の壁101には、第1の壁101よりも外部側方向にわずかに突出し、第1の開口部103を取り囲むように形成された突出部114が形成されている。
 この吐出部が有ることから、第1の開口部103を取り囲むように溝部116が形成されている。溝部116は、第1の壁101に形成された有底の溝形状である。
 溝部116は、ロッド側方向及び半ロッド側方向に延びる長辺と、上側方向及び下側方向に延びる短辺とで、長方形の形状に溝が形成されている。
 この溝部116はセパレータガスケット201が第1の壁101に密着する事によって、溝の上部分に蓋がされるようになって、管路状の形状となる。
 この管路状の形状の通路を潤滑油戻通路115という。
また、長方形形状を有する溝部116の各角に該当する位置に、セパレータガスケット201のガスケット隅貫通穴201cが形成されている。
 ここで、クランク室5aが周期的に負圧になることによって、周期的に第2の開口部105から流体が吸い込まれているのであるから、この潤滑油戻通路115は、あたかもストローのような機能を発揮する。
 このストローのような機能によって、セパレータネット301及びセパレータストッパ401によって分離され液化したオイルがガスケット隅貫通穴201cを通過して第2の開口部105から還流通路52へ戻され、再びオイルとして利用することが可能となる。
FIG. 4 shows a state in which only the separator gasket 201 is disposed in the gas-liquid separation space 50c.
As shown in FIG. 4, the first wall 101 has a first opening 103 at the center position. In addition, a second opening 105 is formed at the lower side position and the rod side position.
The first wall 101 is formed with a protruding portion 114 that slightly protrudes outward from the first wall 101 and surrounds the first opening 103.
Since this discharge portion is present, a groove 116 is formed so as to surround the first opening 103. The groove portion 116 has a bottomed groove shape formed in the first wall 101.
The groove part 116 is formed in a rectangular shape with a long side extending in the rod side direction and the half rod side direction and a short side extending in the upper side direction and the lower side direction.
When the separator gasket 201 comes into close contact with the first wall 101, the groove 116 is covered with the upper portion of the groove, and has a pipe shape.
This pipe-shaped passage is referred to as a lubricating oil return passage 115.
In addition, gasket corner through holes 201c of the separator gasket 201 are formed at positions corresponding to the respective corners of the groove 116 having a rectangular shape.
Here, since the crank chamber 5a periodically becomes negative pressure, the fluid is periodically sucked from the second opening 105, so that the lubricating oil return passage 115 is like a straw. Demonstrate the function.
By this function like a straw, the oil that has been separated and liquefied by the separator net 301 and the separator stopper 401 passes through the gasket corner through-hole 201c, is returned to the reflux passage 52 from the second opening 105, and is used again as oil. It becomes possible.
 第2の開口部105の周りには、面取部105aが形成されている。この面取部105aは、円錐台形状等の形状を有している。これによって、セパレータガスケット201の中央貫通穴201dによって分離され、液化したオイルが第2の開口部105から還流通路52へ戻される。 Around the second opening 105, a chamfer 105a is formed. The chamfered portion 105a has a shape such as a truncated cone shape. As a result, the oil separated and liquefied by the central through hole 201 d of the separator gasket 201 is returned from the second opening 105 to the reflux passage 52.
 図5は、図4におけるV-V断面の説明図である。
 図5は、図4と異なりセパレータガスケット201に加えて、セパレータネット301、セパレータストッパ401、セパレータプレート501が配置されている場合におけるV-V断面の説明図である。
FIG. 5 is an explanatory diagram of a VV cross section in FIG.
FIG. 5 is an explanatory view of a VV cross section when a separator net 301, a separator stopper 401, and a separator plate 501 are arranged in addition to the separator gasket 201, unlike FIG.
 気液分離室117とブリーザ通路48とを連通させる第1の開口部103と、気液分離室117と還流通路52とを連通させる第2の開口部105とが、第1の壁101に形成されている。
 また、ブリーザ通路48と還流通路52とは、平行に形成されている。
A first opening 103 that allows the gas-liquid separation chamber 117 and the breather passage 48 to communicate with each other, and a second opening 105 that allows the gas-liquid separation chamber 117 and the reflux passage 52 to communicate with each other are formed on the first wall 101. Has been.
The breather passage 48 and the reflux passage 52 are formed in parallel.
 第1の壁101側から順に、セパレータガスケット201、セパレータネット301、セパレータストッパ401、セパレータプレート501が配置されている。
 また、第1の壁101側から順に、第1の側面107、第2の側面109、第3の側面111が形成されている。
 そして、第1の壁101側から順に、第1の側面107、第2の側面109、第3の側面111が順にその上側方向及び下側方向の高さ、及び、ロッド側方向及び反ロッド側方向の幅が広くなるように形成されている。
 この第1の側面107内に、セパレータガスケット201、セパレータネット301、セパレータストッパ401が配置される。また、第2の側面109内に、セパレータプレート501が配置される。
 セパレータプレート501の内部には、第1の壁101を向いた第2の壁501dを底面とし、プレート内部側面501hを側面とした、溝形状のブローバイガス誘導空間501iが形成されている。
 このブローバイガス誘導空間501iは、エアクリーナ通路501cに第3の開口部501gを介して連通されている。
 また、第2の壁501dと、第1の壁101及び第1の側面107によって気液分離室117が形成される。
A separator gasket 201, a separator net 301, a separator stopper 401, and a separator plate 501 are arranged in this order from the first wall 101 side.
Further, a first side surface 107, a second side surface 109, and a third side surface 111 are formed in this order from the first wall 101 side.
Then, in order from the first wall 101 side, the first side surface 107, the second side surface 109, and the third side surface 111 are in order of the height in the upper side direction and the lower side direction, the rod side direction, and the anti-rod side. The width in the direction is formed to be wide.
In the first side surface 107, the separator gasket 201, the separator net 301, and the separator stopper 401 are disposed. A separator plate 501 is disposed in the second side surface 109.
Inside the separator plate 501, a groove-shaped blow-by gas induction space 501i is formed with the second wall 501d facing the first wall 101 as the bottom surface and the plate inner side surface 501h as the side surface.
The blow-by gas induction space 501i is communicated with the air cleaner passage 501c through the third opening 501g.
In addition, a gas-liquid separation chamber 117 is formed by the second wall 501d, the first wall 101, and the first side surface 107.
 図6は、セパレータガスケット201、セパレータネット301、セパレータストッパ401、セパレータプレート501の説明図である。 FIG. 6 is an explanatory diagram of the separator gasket 201, the separator net 301, the separator stopper 401, and the separator plate 501.
 図6(a-1)は、セパレータプレート501を図3のB側から見た図である。図6(a-2)は、図6(a-1)における断面図である。
 セパレータプレート501はプレート本体部501aと、上側方向位置、かつ、反ロッド側方向位置に形成されたエアクリーナ通路501cから形成されている。
 エアクリーナ通路501cは上側方向に向かって、内部側方向に傾斜した管状の形状を有している。
 プレート本体部501aには、第2の壁501dを底面とし、プレート内部側面501h側面とした、角柱状の溝として形成されるブローバイガス誘導空間501iが形成される。
 このブローバイガス誘導空間501iは、エアクリーナ通路501cの開口部である第3の開口部501gと、プレート通路501eを介して連通されている。
 このプレート本体部501aは弾性を有するゴム等で形成されており、第2の側面109に圧入されることによって、ガスケット機能をも有している。
 プレート本体部501aの外部側方向位置には、セパレータプレート501の強度を保持するための金属板金であるプレート板金501bが配置されている。
FIG. 6A-1 is a view of the separator plate 501 viewed from the B side in FIG. 6A-2 is a cross-sectional view of FIG. 6A-1.
The separator plate 501 is formed of a plate main body portion 501a and an air cleaner passage 501c formed at an upper side position and an anti-rod side direction position.
The air cleaner passage 501c has a tubular shape inclined in the inner side direction toward the upper side.
The plate body 501a is formed with a blow-by gas induction space 501i formed as a prismatic groove with the second wall 501d as a bottom surface and the plate inner side surface 501h as a side surface.
The blow-by gas guiding space 501i is in communication with a third opening 501g, which is an opening of the air cleaner passage 501c, via a plate passage 501e.
The plate body 501a is formed of elastic rubber or the like, and has a gasket function by being press-fitted into the second side surface 109.
A plate sheet metal 501b, which is a metal sheet metal for maintaining the strength of the separator plate 501, is disposed at a position in the outer side direction of the plate body 501a.
 図6(b-1)は、セパレータストッパ401を図3のB側から見た図である。図6(b-2)は、図6(b-1)における断面図である。
 セパレータストッパ401のストッパ本体部401aは、長方形の板形状を有している。
 ストッパ本体部401aのロッド側方向位置、かつ、上側方向位置には、貫通穴401cが形成されている。
 このストッパ本体部401aは弾性を有するゴム等で形成されており、第1の側面107に圧入されることによって、ガスケット機能をも有している。
 ストッパ本体部401aの外部側方向位置には、セパレータストッパ401の強度を保持するための金属板金であるストッパ板金401bが配置されている。
FIG. 6B-1 is a view of the separator stopper 401 viewed from the B side in FIG. FIG. 6B-2 is a cross-sectional view in FIG.
The stopper main body 401a of the separator stopper 401 has a rectangular plate shape.
A through hole 401c is formed at the rod side direction position and the upper side position of the stopper main body 401a.
The stopper main body 401a is formed of elastic rubber or the like, and has a gasket function by being press-fitted into the first side face 107.
A stopper sheet metal 401b, which is a metal sheet for maintaining the strength of the separator stopper 401, is disposed at a position in the outer side direction of the stopper main body 401a.
 図6(c-1)は、セパレータネット301を図3のB側から見た図である。図6(c-2)は、図6(c-1)における断面図である。
 セパレータネット301のネット本体部301aは、長方形の板形状を有している。
 このネット本体部301aは、網目状に糸状の部材が織り込まれて形成されている。
 この網目状の部材の網の目はできるだけ細かいほうがオイルミストの分離効率が高くなる。
FIG. 6C-1 is a view of the separator net 301 viewed from the B side in FIG. FIG. 6C-2 is a cross-sectional view of FIG.
The net body 301a of the separator net 301 has a rectangular plate shape.
The net body 301a is formed by weaving a thread-like member in a mesh shape.
The finer the mesh of the mesh member, the higher the oil mist separation efficiency.
 図6(d-1)は、セパレータガスケット201を図3のB側から見た図である。図6(d-2)は、図6(d-1)における断面図である。
 セパレータガスケット201のガスケット本体部201aは、長方形の板形状を有している。
 このガスケット本体部201aには、その中央部に中央貫通穴201dが形成されている。
 中央貫通穴201dは、中央に1つ、そしてこの中央の穴の上側方向位置、下側方向、ロッド側方向、反ロッド側位置にそれぞれ1つずつ形成されている。
 また、ガスケット本体部201aの四隅にはそれぞれガスケット隅貫通穴201cが形成されている。
 このガスケット本体部201aは弾性を有するゴム等で形成されており、第1の側面107に圧入されることによって、ガスケット機能をも有している。特に、第1の壁101の突出部114と圧接することによって、潤滑油戻通路115を形成する役割を有している。
 ガスケット本体部201aの内部には、セパレータガスケット201の強度を保持するための金属板金であるガスケット板金201bが配置されている。
FIG. 6D-1 is a view of the separator gasket 201 viewed from the B side in FIG. FIG. 6 (d-2) is a cross-sectional view of FIG. 6 (d-1).
The gasket main body 201a of the separator gasket 201 has a rectangular plate shape.
A central through hole 201d is formed at the center of the gasket body 201a.
One central through hole 201d is formed at the center, and one at each of the central hole at the upper side position, the lower side direction, the rod side direction, and the opposite rod side position.
Further, gasket corner through holes 201c are formed at the four corners of the gasket main body 201a.
The gasket main body 201a is formed of elastic rubber or the like, and has a gasket function by being press-fitted into the first side face 107. In particular, it has a role of forming the lubricating oil return passage 115 by being in pressure contact with the protrusion 114 of the first wall 101.
A gasket sheet metal 201b, which is a metal sheet for maintaining the strength of the separator gasket 201, is disposed inside the gasket body 201a.
 図7は、刈払機のような作業工具が地面側に位置している場合の第2の開口部105とセパレータストッパ401の貫通穴401cとの関係の説明図である。 FIG. 7 is an explanatory diagram of the relationship between the second opening 105 and the through hole 401c of the separator stopper 401 when a work tool such as a brush cutter is located on the ground side.
 図7(a)は、作業工具である刈払機がロッド60に接続されている場合の図である。また、図7(a)のように4ストロークエンジン1にはエアクリーナ50が接続されている。
 そして、図7(a)のエアクリーナ50の部分およびロッド60との図が図7(b)である。
 なお、図7(b)は4ストロークエンジン1の本体部は省略して記載してある。
FIG. 7A is a view when a brush cutter as a work tool is connected to the rod 60. Further, an air cleaner 50 is connected to the 4-stroke engine 1 as shown in FIG.
FIG. 7B is a view of the air cleaner 50 and the rod 60 in FIG.
In FIG. 7B, the main body of the 4-stroke engine 1 is omitted.
 ところで、セパレータストッパ401の貫通穴401cにまで油面119が到達してしまうと、この貫通穴401cを通してオイルがセパレータプレート501のブローバイガス誘導空間501i(図5参照のこと)に侵入してしまう。そうすると、さらに、エアクリーナ通路501cを介してエアクリーナ空間50dにオイルが大量に供給されてしまう。
 その結果、オイルが大量に消費されてしまうという問題、及び、オイルが十分に燃焼されなくなってしまうという問題が生ずる。
 そこで、本実施形態では、図7(a)のように、第2の開口部105及びセパレータストッパ401の貫通穴401cは、ロッド60側、つまり、ロッド側方向位置に形成している。
 なお、図13、図14に示すように、第4の開口部106をロッド60の反対位置に形成し還流通路52と連通させることで、気液分離室117でのオイルの排出効果を高めることができる。
By the way, when the oil level 119 reaches the through hole 401c of the separator stopper 401, the oil enters the blow-by gas induction space 501i (see FIG. 5) of the separator plate 501 through the through hole 401c. Then, a large amount of oil is further supplied to the air cleaner space 50d through the air cleaner passage 501c.
As a result, there arises a problem that a large amount of oil is consumed and a problem that the oil is not burned sufficiently.
Therefore, in the present embodiment, as shown in FIG. 7A, the second opening 105 and the through hole 401c of the separator stopper 401 are formed on the rod 60 side, that is, on the rod side direction position.
As shown in FIGS. 13 and 14, the fourth opening 106 is formed at a position opposite to the rod 60 and communicates with the reflux passage 52, thereby enhancing the oil discharging effect in the gas-liquid separation chamber 117. Can do.
 このように形成した場合には、ロッド60の先端に配置された作業工具が4ストロークエンジン1よりも地面側位置にある状態で作業する場合(例えば、4ストロークエンジン1が刈払機に使用された場合)には、エアクリーナ50は図7(a)のように傾く。
 そうすると、セパレータストッパ401とセパレータガスケット201との間にあるオイルは、図7(b)のように、ロッド側方向位置、かつ、下側方向位置に溜まることになる。
 この場合には、オイルは第2の開口部105部分に触れており常時第2の開口部105から排出されている。
 また、第1の壁101とセパレータガスケット201の間にあるオイルも同様である。
 従って、気液分離室117、図7(b)のように、オイルの油面119は常に低い状態となる。
 したがって、この場合には、オイルが大量に消費されてしまうという問題、及び、オイルが十分に燃焼されなくなってしまうという問題が生ずることはない。
When formed in this way, when the work tool arranged at the tip of the rod 60 is in a state where it is located on the ground side of the 4-stroke engine 1 (for example, the 4-stroke engine 1 is used for a brush cutter). In this case, the air cleaner 50 is inclined as shown in FIG.
If it does so, the oil which exists between the separator stopper 401 and the separator gasket 201 will accumulate in the rod side direction position and the downward direction position like FIG.7 (b).
In this case, the oil touches the second opening 105 and is always discharged from the second opening 105.
The same applies to the oil between the first wall 101 and the separator gasket 201.
Therefore, as shown in the gas-liquid separation chamber 117 and FIG. 7B, the oil level 119 of the oil is always low.
Therefore, in this case, a problem that a large amount of oil is consumed and a problem that the oil is not burned sufficiently do not occur.
 図8は、オリーブ収穫機のような作業工具が地面側と反対側に位置している場合の第2の開口部105とセパレータストッパ401の貫通穴401cとの関係の説明図である。 FIG. 8 is an explanatory diagram of the relationship between the second opening 105 and the through hole 401c of the separator stopper 401 when a work tool such as an olive harvester is located on the side opposite to the ground side.
 図8(a)は、作業工具であるオリーブ収穫機がロッド60に接続されている場合の図である。 FIG. 8A is a diagram in the case where an olive harvester as a work tool is connected to the rod 60.
 図8(a)のように、ロッド60の先端に配置された作業工具が4ストロークエンジン1よりも地面とは反対側位置にある状態で作業する場合(例えば、4ストロークエンジン1がオリーブ収穫機に使用された場合)もある。
 また、ロッド60の先端に配置された作業工具が4ストロークエンジン1よりも地面側位置にある状態で作業するのが通常の工具(例えば、草刈機の工具)が装着されていても、場合によっては、一時的又は恒常的にロッド60の先端に配置された作業工具が4ストロークエンジン1よりも地面とは反対側位置にある状態で作業する場合もありうる。
 また、ロッド60の先端に配置された作業工具が4ストロークエンジン1よりも地面とは反対側位置にある状態で作業も、ロッド60の先端に配置された作業工具が4ストロークエンジン1よりも地面とは反対側位置にある状態で作業も、両方を行うことを想定した工具が4ストロークエンジン1に装着される場合もありうる。
 その場合には、一時的又は作業中恒常的に、図8(b)のような状態となる。
 つまり、その油面119は反ロッド側方向位置、かつ、下側方向位置に溜り、恒常的に油面119aまで溜まってしまう。一時的には、油面119b程度まで油面119は上昇してしまう。
 なぜなら、気液分離室117からオイルを排出する第2の開口部105がある位置まで油面119が上昇しなければ、気液分離室117からオイルを排出できないからである。
 しかし、この場合であっても、第2の開口部105及び貫通穴401cは、ロッド側方向位置に形成されていることから、セパレータストッパ401の貫通穴401cには油面119は到達しない。
 つまり、第2の開口部105及び貫通穴401cがロッド側方向位置に形成することによって、オイルが大量に消費されてしまうという問題、及び、オイルが十分に燃焼されなくなってしまうという問題の発生を防止することが可能となる。
As shown in FIG. 8 (a), when the work tool arranged at the tip of the rod 60 is in a position opposite to the ground from the 4-stroke engine 1 (for example, the 4-stroke engine 1 is an olive harvester). If used).
Further, even if a normal tool (for example, a mower tool) is mounted, the work tool disposed at the tip of the rod 60 is in a position on the ground side with respect to the 4-stroke engine 1, depending on circumstances. In some cases, the work tool disposed at the tip of the rod 60 temporarily or permanently may work in a state where the work tool is located on the opposite side of the ground from the 4-stroke engine 1.
Further, the work tool arranged at the tip of the rod 60 is grounded more than the 4-stroke engine 1 even when the work tool placed at the tip of the rod 60 is in a position opposite to the ground from the 4-stroke engine 1. There may be a case where a tool that is supposed to perform both the work and the work in the position opposite to the above is mounted on the 4-stroke engine 1.
In that case, a state as shown in FIG. 8B is obtained temporarily or constantly during work.
That is, the oil level 119 accumulates at the position opposite to the rod and in the lower direction and constantly accumulates up to the oil level 119a. Temporarily, the oil level 119 rises to about the oil level 119b.
This is because the oil cannot be discharged from the gas-liquid separation chamber 117 unless the oil level 119 rises to a position where the second opening 105 for discharging the oil from the gas-liquid separation chamber 117 is located.
However, even in this case, the oil level 119 does not reach the through hole 401c of the separator stopper 401 because the second opening 105 and the through hole 401c are formed in the rod side direction position.
That is, when the second opening 105 and the through hole 401c are formed at the position in the rod side direction, there is a problem that a large amount of oil is consumed and a problem that the oil is not burned sufficiently. It becomes possible to prevent.
 図9は、気液分離室117の形状の変形例の説明図である。 FIG. 9 is an explanatory diagram of a modified example of the shape of the gas-liquid separation chamber 117.
 上記の実施形態では、図9(a)のように、気液分離室117は、長方形の第1の壁101とそれに垂直に立ちあがる第1の側面107によって形成される、直方体形状である。
 そして、第1の開口部103はその第1の壁101の中央位置に形成され、第2の開口部105は、下側方向位置、かつ、ロッド側方向位置に形成されている。
 それでは、4ストロークエンジン1が、わずかに反ロッド側方向が下になる様に傾いただけで、第2の開口部105にはオイルが触れず、オイルの排出がなされないというおそれがある。
In the above embodiment, as shown in FIG. 9A, the gas-liquid separation chamber 117 has a rectangular parallelepiped shape formed by the rectangular first wall 101 and the first side surface 107 that rises perpendicularly thereto.
And the 1st opening part 103 is formed in the center position of the 1st wall 101, and the 2nd opening part 105 is formed in the lower side position and the rod side direction position.
Then, the 4-stroke engine 1 is only tilted so that the direction opposite to the rod side is slightly downward, so that there is a possibility that the oil does not touch the second opening 105 and the oil is not discharged.
 そこで、図9(b)では、第1の側面107の下側方向位置、かつ、反ロッド側位置の壁部分121は、形状を変更している。
 この壁部分121は、第2の開口部105よりも上側方向に突出している形状を有している。
 この壁部分121は、図9(c)のような形状を有していてもよい。
 つまり、突出している壁部分121は、上側方向に突出している形状を有していて、4ストロークエンジン1が傾かない状態でも第2の開口部105の側にオイルが集中する形状であれば良い。
Therefore, in FIG. 9B, the shape of the wall portion 121 at the lower side position of the first side face 107 and at the anti-rod side position is changed.
The wall portion 121 has a shape protruding upward from the second opening 105.
The wall portion 121 may have a shape as shown in FIG.
In other words, the protruding wall portion 121 has a shape protruding in the upward direction and may have a shape in which oil concentrates on the second opening 105 side even when the 4-stroke engine 1 is not inclined. .
 図10は、セパレータガスケット201の変形例の説明図である。 FIG. 10 is an explanatory view of a modified example of the separator gasket 201.
 上記の実施形態では、図10(a)のように、セパレータガスケット201の四隅には円形形状のガスケット隅貫通穴201cが形成されている。このガスケット隅貫通穴201cの形状はどのようなものであっても良い。
 また、図10(b)のように、ロッド側方向位置、かつ、下側方向位置に切り欠き201eを形成しても良い。
 この切り欠き201eを形成する位置は、第2の開口部105が形成されている位置と同じにするのが良い。
 このように、切り欠き201eの位置と第2の開口部105の位置とを同じ位置にすることによって、セパレータネット301及びセパレータストッパ401とによって分離されたオイルを、容易に第2の開口部105まで導くことが可能となっている。
 つまり、第2の開口部105からオイルが吸い込まれる構造であるから、第2の開口部105の正面位置から最も多くのオイルが吸い込まれることになる。
 そのため、第2の開口部105の正面位置に位置するガスケット隅貫通穴201cは多くのオイルをスムーズに通過させるために、より大きな貫通穴形状を有していたほうが適切である。
 このため、切り欠き201eとして大きな流路を確保することが適切である。
 なお、切り欠き201eとしたが、単なる大きな貫通穴形状であってもよい。
In the above embodiment, as shown in FIG. 10A, circular gasket corner through holes 201 c are formed at the four corners of the separator gasket 201. The gasket corner through hole 201c may have any shape.
Further, as shown in FIG. 10B, the notch 201e may be formed at the rod side direction position and the lower side position.
The position where the notch 201e is formed is preferably the same as the position where the second opening 105 is formed.
Thus, by making the position of the notch 201e and the position of the second opening 105 the same, the oil separated by the separator net 301 and the separator stopper 401 can be easily removed from the second opening 105. It is possible to lead to.
That is, since the oil is sucked from the second opening 105, the most oil is sucked from the front position of the second opening 105.
Therefore, it is appropriate that the gasket corner through-hole 201c located at the front position of the second opening 105 has a larger through-hole shape in order to smoothly pass a large amount of oil.
For this reason, it is appropriate to secure a large flow path as the notch 201e.
In addition, although it was set as the notch 201e, a simple large through-hole shape may be sufficient.
 図11は、セパレータネット301の変形例の説明図である。 FIG. 11 is an explanatory diagram of a modified example of the separator net 301.
 上記の実施形態では、図11(a)のように、ネット本体部301aは全てネットによって形成されている。
 しかし、全て均一である必要性はない。
 例えば、図11(b)のように、第2の開口部105が形成されている位置にスポンジ部301bを形成しても良い。
 このように、スポンジ部301bが形成されていることによって、スポンジ部301bがオイルを吸着し、エアクリーナからもれることを防止することが可能となる。
 また、ネットによって形成されていても、ネット本体部301aの中央付近(セパレータガスケット201の中央貫通穴201dが形成される付近)は、網目を細かくして、その他の部分の網目を粗くしてもよい。
 このように形成することによって、網目の細かい部分によってオイルミストを効果的に液化し、網目の粗い部分(スポンジ部301b)によって液化したオイルをよりスムーズに第2の開口部105まで導くことが可能となる。
In the above embodiment, as shown in FIG. 11A, the net main body 301a is entirely formed of a net.
However, they need not all be uniform.
For example, as shown in FIG. 11B, a sponge portion 301b may be formed at a position where the second opening 105 is formed.
Thus, by forming the sponge part 301b, it becomes possible to prevent the sponge part 301b from adsorbing oil and leaking from the air cleaner.
Further, even if it is formed by a net, the mesh near the center of the net body 301a (the vicinity where the central through hole 201d of the separator gasket 201 is formed) can be made fine, and the mesh of other parts can be made coarse. Good.
By forming in this way, the oil mist can be effectively liquefied by the fine part of the mesh, and the oil liquefied by the coarse part (sponge part 301b) can be more smoothly guided to the second opening 105. It becomes.
<第2の実施形態>
 図12は、本発明の第2の実施形態に係わる4ストロークエンジンの潤滑装置の概略説明図である。
<Second Embodiment>
FIG. 12 is a schematic explanatory diagram of a lubrication device for a 4-stroke engine according to the second embodiment of the present invention.
 第1の実施形態では、還流通路52とクランク室5aの接続は、送油通路34を介して接続したが、図12に示された第2の実施形態では、還流通路52は直通通路46に接続されている。なお、第1の実施形態と同一の部分については説明を省略する。
 そして、還流通路52側のクランク室5aに開口する開口端部は、ピストン6が上死点近傍位置から上死点に向かう移動時に開口し、ピストン6が上死点近傍位置から下死点に向かって移動する間は閉じるように設けている。
 このようにすることで、オイルセパレータ51によって分離されたオイルAを効率良くオイル循環経路に回収することができる。
 そして、オイルセパレータ51から、分離されたオイルAを効率良くオイル循環経路に回収することができれば、分離されたオイルが燃焼室に送られることも無く、オイルAの過剰消費を防止できる。
 もっとも、オイルAの循環油量を安定させるためには、還流通路52とクランク室5aの接続を、直通通路46を介す若しくは直接接続すると好適である。
In the first embodiment, the reflux passage 52 and the crank chamber 5a are connected via the oil feed passage 34. However, in the second embodiment shown in FIG. 12, the reflux passage 52 is connected to the direct passage 46. It is connected. Note that description of the same parts as those of the first embodiment is omitted.
The opening end that opens to the crank chamber 5a on the reflux passage 52 side opens when the piston 6 moves from the position near the top dead center toward the top dead center, and the piston 6 changes from the position near the top dead center to the bottom dead center. It is provided so as to close while moving toward it.
By doing in this way, the oil A separated by the oil separator 51 can be efficiently recovered in the oil circulation path.
If the separated oil A can be efficiently collected in the oil circulation path from the oil separator 51, the separated oil is not sent to the combustion chamber, and the excessive consumption of the oil A can be prevented.
However, in order to stabilize the circulating oil amount of the oil A, it is preferable to connect the reflux passage 52 and the crank chamber 5a via the direct passage 46 or directly.
 以下、図2のような構造とする理由を説明する。
 動弁室4からエアクリーナ50に送られるオイルミストの量は、4ストロークエンジン1が傾斜することによって変化する。
 具体的には、動弁室4からクランク室5aに効率良くオイルを送ることができればエアクリーナ50に送られるオイルミストの量は少なくなる。逆に、クランク室5aに効率良くオイルAを送ることができなければエアクリーナ50に送られるオイルミストの量は増える。
 そして、このエアクリーナ50に送られるオイルミストの量が変動することの結果、オイルセパレータ51で分離されるオイルの量が変動する。
 このオイルセパレータ51で分離されるオイルの量が変動するということは、オイル循環経路に回収されるオイルAの量が変動することを意味する。
 さらに、第1の実施形態のように、送油通路34を介して還流通路52とクランク室5aを接続した場合、オイルセパレータ51から還流通路52に送られるオイルの量に応じて、油溜室7から吸い上げられるオイルAの量が変動することになる。
 このように、オイル循環経路に回収されるオイルAの量(送油通路34から吸い上げられるオイルA)が変動することをできるだけ避けた方が、4ストロークエンジン1の安定、及び、オイルAの過剰消費の抑制という点で有利である。
 そこで、第2の実施形態では、図12のように、直通通路46を介して還流通路52とクランク室5aを接続している。換言すると、送油通路34を介さずに、還流通路52とクランク室5aを接続している。
 このようにすることで、送油通路34と還流通路52とを分離することができ、送油通路34を介して吸い上げられるオイルAの量を安定化することが可能となる。
 そのことはさらに、オイルセパレータ51によって分離されたオイルを効率良くオイル循環経路に回収することも可能にする。
 そして、オイルセパレータ51から、分離されたオイルAを効率良くオイル循環経路に回収することができれば、分離されたオイルAが燃焼室に送られることも無く、オイルAの過剰消費を防止できる。
Hereinafter, the reason for the structure as shown in FIG. 2 will be described.
The amount of oil mist sent from the valve operating chamber 4 to the air cleaner 50 changes as the four-stroke engine 1 tilts.
Specifically, if oil can be efficiently sent from the valve operating chamber 4 to the crank chamber 5a, the amount of oil mist sent to the air cleaner 50 is reduced. Conversely, if the oil A cannot be efficiently sent to the crank chamber 5a, the amount of oil mist sent to the air cleaner 50 increases.
As a result of the fluctuation of the amount of oil mist sent to the air cleaner 50, the amount of oil separated by the oil separator 51 fluctuates.
The fact that the amount of oil separated by the oil separator 51 varies means that the amount of oil A recovered in the oil circulation path varies.
Further, when the recirculation passage 52 and the crank chamber 5a are connected via the oil feed passage 34 as in the first embodiment, the oil reservoir chamber is set according to the amount of oil sent from the oil separator 51 to the recirculation passage 52. The amount of oil A sucked up from 7 will fluctuate.
As described above, it is preferable to avoid fluctuations in the amount of oil A collected in the oil circulation path (oil A sucked up from the oil feeding passage 34) as much as possible, and to stabilize the 4-stroke engine 1 and excessive oil A. This is advantageous in terms of suppression of consumption.
Therefore, in the second embodiment, as shown in FIG. 12, the reflux passage 52 and the crank chamber 5a are connected via the direct passage 46. In other words, the recirculation passage 52 and the crank chamber 5a are connected without using the oil feeding passage 34.
By doing so, the oil feeding passage 34 and the reflux passage 52 can be separated, and the amount of oil A sucked up through the oil feeding passage 34 can be stabilized.
This further enables the oil separated by the oil separator 51 to be efficiently collected in the oil circulation path.
If the separated oil A can be efficiently collected in the oil circulation path from the oil separator 51, the separated oil A is not sent to the combustion chamber, and excessive consumption of the oil A can be prevented.
 また、還流通路52側のクランク室5aに開口する開口端部は、ピストン6が上死点近傍位置から上死点に向かう移動時に開口し、ピストン6が上死点近傍位置から下死点に向かって移動する間は閉じるように設けていることによって、より強力に、還流通路52(オイルセパレータ51)に存在するオイルを吸引することが可能になる。 The opening end that opens to the crank chamber 5a on the reflux passage 52 side opens when the piston 6 moves from the position near the top dead center toward the top dead center, and the piston 6 changes from the position near the top dead center to the bottom dead center. By providing it so as to be closed while moving in the direction, it becomes possible to suck oil present in the reflux passage 52 (oil separator 51) more strongly.
<第3の実施形態>
 第2の実施形態では、図12のように直通通路46を介して還流通路52とクランク室5aを接続していた。
 しかし、直通通路46を介さずに還流通路52とクランク室5aを接続することも可能である。
 このようにしたことによって、送油通路34を介してクランク室5aに送られるオイルAの量をより安定化することができる。
 そして、このことによって、循環油量を安定化することが可能になる。
<Third Embodiment>
In the second embodiment, the reflux passage 52 and the crank chamber 5a are connected via the direct passage 46 as shown in FIG.
However, it is also possible to connect the reflux passage 52 and the crank chamber 5a without using the direct passage 46.
By doing in this way, the quantity of the oil A sent to the crank chamber 5a via the oil feeding path 34 can be stabilized more.
This makes it possible to stabilize the amount of circulating oil.
 <実施形態の構成及び効果>
 本発明のオイルセパレータ51は、オイル循環経路から分岐して形成され、オイルミストを含んだブローバイガスからオイルミストを分離する気液分離室117を有している。
 また、気液分離室117は、オイル循環経路からブローバイガスが導入される第1の開口部103を有している。
 さらに、気液分離室117は、ブローバイガスから分離されたオイルをオイル循環経路に還流する第2の開口部105と、オイルミストが分離されたブローバイガスを、気液分離室から排気して燃焼室への吸気通路へ連通する第3の開口部501gとを有している。
 そして、第1の開口部103は第1の壁101に形成され、第3の開口部501gは第2の壁501dに形成され、気液分離室117には、第1の開口部103と第3の開口部501gとの間に気液分離部材が形成される。
 このような構成要件、特に、このオイルセパレータ51が気液分離部材601を有することによって、吸気に戻すブローバイガスから液状のオイルを適切に分離することが可能となる。
 また、オイルを適切に分離することができることから、オイルの過剰消費が抑えられる。さらに、環境に悪影響を及ぼす未燃焼のオイルの排出を抑えることが可能となる。
<Configuration and Effect of Embodiment>
The oil separator 51 of the present invention is formed by branching from an oil circulation path, and has a gas-liquid separation chamber 117 that separates oil mist from blow-by gas containing oil mist.
The gas-liquid separation chamber 117 has a first opening 103 into which blow-by gas is introduced from the oil circulation path.
Furthermore, the gas-liquid separation chamber 117 exhausts the blow-by gas from which the oil separated from the blow-by gas is returned to the oil circulation path and the blow-by gas from which the oil mist is separated from the gas-liquid separation chamber and burns. And a third opening 501g communicating with the intake passage to the chamber.
The first opening 103 is formed in the first wall 101, the third opening 501g is formed in the second wall 501d, and the gas-liquid separation chamber 117 includes the first opening 103 and the first opening 103. A gas-liquid separation member is formed between the three openings 501g.
Such a component, particularly, the oil separator 51 having the gas-liquid separation member 601 makes it possible to appropriately separate the liquid oil from the blow-by gas returned to the intake air.
Moreover, since oil can be appropriately separated, excessive consumption of oil can be suppressed. Furthermore, it is possible to suppress the discharge of unburned oil that adversely affects the environment.
 第1の開口部103から流入するブローバイガスの流入方向と、第3の開口部501gから流出するブローバイガスの流出方向とがねじれの位置関係となるように形成される。
 このような構成を有することから、オイルセパレータ51は、吸気に戻すブローバイガスから液状のオイルをより適切に分離することが可能となる。
The inflow direction of blow-by gas flowing in from the first opening 103 and the outflow direction of blow-by gas flowing out from the third opening 501g are in a twisted positional relationship.
With such a configuration, the oil separator 51 can more appropriately separate liquid oil from blow-by gas that is returned to intake air.
 第1の開口部103は、第1の壁101の中央付近に形成され、第3の開口部501gは、第2の壁501dの上側方向位置の左右二隅のいずれかの位置に形成されていることを構成要件とする。
 このような構成要件を有することから、本発明におけるオイルセパレータ51は、より適切に気液分離が可能となる。
The first opening 103 is formed in the vicinity of the center of the first wall 101, and the third opening 501g is formed at one of the left and right corners of the upper side position of the second wall 501d. Is a constituent requirement.
Since it has such a configuration requirement, the oil separator 51 in the present invention can perform gas-liquid separation more appropriately.
 気液分離部材601の一態様は、中央付近に複数の中央貫通穴201dを有するセパレータガスケット201である。
 このような構成を有することから、オイルセパレータ51は、液状のオイルのうち油滴の大きなものはセパレータガスケット201によって分離することが可能となる。
One aspect of the gas-liquid separation member 601 is a separator gasket 201 having a plurality of central through holes 201d near the center.
Since it has such a configuration, the oil separator 51 can separate the liquid oil having large oil droplets by the separator gasket 201.
 気液分離部材601の一態様は、第1の壁101の下側方向位置の左右二隅のいずれかの位置に第2の開口部105が形成されており、第1の壁101には、第1の開口部103を取り囲む様にセパレータガスケット201の中央貫通穴201dより外側位置に溝部116が形成され、溝部116とセパレータガスケット201によって管路状の潤滑油戻通路115が形成され、潤滑油戻通路115は第2の開口部105と連通している
 このような構造を有することから、オイルセパレータ51は、セパレータガスケット201において分離された液状のオイルを効率的に第2の開口部105から排出することが可能となる。
In one aspect of the gas-liquid separation member 601, the second opening 105 is formed at one of the left and right corners of the lower side position of the first wall 101. A groove 116 is formed at a position outside the central through hole 201d of the separator gasket 201 so as to surround the first opening 103, and a pipe-like lubricating oil return passage 115 is formed by the groove 116 and the separator gasket 201. Since the return passage 115 communicates with the second opening 105, the oil separator 51 efficiently removes the liquid oil separated in the separator gasket 201 from the second opening 105. It becomes possible to discharge.
 セパレータガスケット201の隅には、第1の壁101の第2の開口部105が形成されている位置に、ガスケット隅貫通穴201cが形成されている。
 このような構造を有することから、オイルセパレータ51は、セパレータガスケット201を通過した後に分離された液状のオイルをも、効率的に第2の開口部105から排出することが可能となる。
At the corner of the separator gasket 201, a gasket corner through hole 201c is formed at a position where the second opening 105 of the first wall 101 is formed.
With such a structure, the oil separator 51 can efficiently discharge the liquid oil separated after passing through the separator gasket 201 from the second opening 105.
 気液分離部材601は、上側方向位置であり、かつ、第3の開口部501gが形成されている側とは反対側の隅の位置に貫通穴401cが形成されたセパレータストッパ401である。
 このような構造を有することから、オイルセパレータ51は、液状のオイルを含んだブローバイガス第1の開口部103を通して気液分離室に流入し、流入したブローバイガスがセパレータストッパ401に衝突することにより液状のオイルを分離することが可能となる。
 さらに、セパレータストッパ401の貫通穴401cが第3の開口部501gが形成されている側とは反対側の位置に形成されていることから、この貫通穴401cを通過したブローバイガスをスムーズに第3の開口部501gから排出することができる。
The gas-liquid separation member 601 is a separator stopper 401 that has a through-hole 401c formed at a corner on the side opposite to the side on which the third opening 501g is formed.
Since it has such a structure, the oil separator 51 flows into the gas-liquid separation chamber through the blow-by gas first opening 103 containing liquid oil, and the blow-by gas that has flowed in collides with the separator stopper 401. Liquid oil can be separated.
Furthermore, since the through-hole 401c of the separator stopper 401 is formed at a position opposite to the side where the third opening 501g is formed, the blow-by gas that has passed through the through-hole 401c is smoothly third. It is possible to discharge from the opening 501g.
 第1の壁101の下側方向位置の左右二隅のいずれかの位置に第2の開口部105が形成されている。
 このような構成を有することから、オイルセパレータ51は、より確実に第2の開口部105から液状のオイルを排出することが可能となる。
A second opening 105 is formed at one of the two left and right corners of the lower side position of the first wall 101.
With such a configuration, the oil separator 51 can discharge liquid oil from the second opening 105 more reliably.
 第2の開口部105は、左右二隅のうち4ストロークエンジン1の動力駆動軸の側に形成され、第3の開口部501gは、左右二隅のうち駆動軸とは反対側に形成されている。
 このような構成を有することから、上側方向位置であり、かつ、第3の開口部501gが形成されている側とは反対側の隅の位置に形成されている貫通穴401cと、第3の開口部501gとは、位置が離れた構成となる。
 その結果、貫通穴401cを通過したブローバイガスを円滑に第3の開口部501gまで誘導することが可能となる。
The second opening 105 is formed on the power drive shaft side of the four-stroke engine 1 in the two left and right corners, and the third opening 501g is formed on the opposite side to the drive shaft in the two left and right corners. Yes.
Since it has such a configuration, a through hole 401c formed at a corner position on the side opposite to the side on which the third opening 501g is formed, and the third opening 501g, The opening 501g is configured to be separated from the position.
As a result, the blowby gas that has passed through the through hole 401c can be smoothly guided to the third opening 501g.
 気液分離部材601は、メッシュ形状を有する。
 このような構成を有することから、オイルセパレータ51は、油滴が小さいオイルミストも分離することが可能となる。
The gas-liquid separation member 601 has a mesh shape.
Since it has such a configuration, the oil separator 51 can also separate oil mist with small oil droplets.
 第1の壁101は第2の壁501dと対向するように形成されている。
 このような構成を有することから、気液分離部材が形成される空間を十分に確保することが可能となる。
The first wall 101 is formed so as to face the second wall 501d.
Since it has such a structure, it becomes possible to ensure enough space in which a gas-liquid separation member is formed.
 気液分離部材601は、中央付近に複数の中央貫通穴201dを有するセパレータガスケット201と、上側方向位置であり、かつ、第3の開口部501gが形成されている側とは反対側の隅の位置に貫通穴401cが形成されたセパレータストッパ401と、メッシュ形状のセパレータネット301とを有し、セパレータガスケット201、セパレータストッパ401及びセパレータネット301は、第1の開口部103側から、セパレータガスケット201、セパレータネット301、セパレータストッパ401の順に配置されている
 このような構成を有することから、セパレータガスケット201、セパレータストッパ401及びセパレータネット301の相乗効果によって、より効果的にオイルミストを分離することが可能となる。
The gas-liquid separation member 601 has a separator gasket 201 having a plurality of central through holes 201d in the vicinity of the center, and is located at the corner on the side opposite to the side where the third opening 501g is formed at the upper side position. The separator stopper 401 having a through hole 401c formed at a position and a mesh-shaped separator net 301 are provided. The separator gasket 201, the separator stopper 401, and the separator net 301 are separated from the first opening 103 side by the separator gasket 201. Since the separator net 301 and the separator stopper 401 are arranged in this order, the oil mist can be more effectively separated by the synergistic effect of the separator gasket 201, the separator stopper 401, and the separator net 301. It becomes possible.
 気液分離部材601は、中央付近に複数の中央貫通穴201dを有するセパレータガスケット201と、上側方向位置であり、かつ、第3の開口部501gが形成されている側とは反対側の隅の位置に貫通穴401cが形成されたセパレータストッパ401とを有している。
 また、セパレータガスケット201及びセパレータストッパ401は、第1の開口部103側から、セパレータガスケット201、セパレータストッパ401の順に配置されている。
 このような構成を有することから、セパレータガスケット201及びセパレータストッパ401の相乗効果によって、より効果的に液状のオイルを分離することが可能となる。
The gas-liquid separation member 601 has a separator gasket 201 having a plurality of central through holes 201d in the vicinity of the center, and is located at the corner on the side opposite to the side where the third opening 501g is formed at the upper side position. And a separator stopper 401 in which a through hole 401c is formed.
Further, the separator gasket 201 and the separator stopper 401 are arranged in this order from the first opening 103 side in the order of the separator gasket 201 and the separator stopper 401.
With such a configuration, the liquid oil can be more effectively separated by the synergistic effect of the separator gasket 201 and the separator stopper 401.
 気液分離部材601は、中央付近に複数の中央貫通穴201dを有するセパレータガスケット201と、メッシュ形状のセパレータネット301とを有している。
 そして、セパレータガスケット201及びセパレータネット301は、第1の開口部103側から、セパレータガスケット201及びセパレータネット301の順に配置されている。
 このような構成を有することから、セパレータガスケット201及びセパレータネット301の相乗効果によって、より効果的に液状のオイルを分離することが可能となる。
The gas-liquid separation member 601 includes a separator gasket 201 having a plurality of central through holes 201d near the center, and a mesh-shaped separator net 301.
The separator gasket 201 and the separator net 301 are disposed in the order of the separator gasket 201 and the separator net 301 from the first opening 103 side.
With such a configuration, the liquid oil can be more effectively separated by the synergistic effect of the separator gasket 201 and the separator net 301.
 気液分離部材601は、上側方向位置であり、かつ、第3の開口部501gが形成されている側とは反対側の隅の位置に貫通穴401cが形成されたセパレータストッパ401と、メッシュ形状のセパレータネット301とを有している。
 そして、第1の開口部103側から、セパレータネット301、セパレータストッパ401の順に配置されている。
 このような構成を有することから、セパレータストッパ401及びセパレータネット301の相乗効果によって、より効果的に液状のオイルを分離することが可能となる。
The gas-liquid separation member 601 has a mesh shape and a separator stopper 401 having a through-hole 401c formed at a corner on the side opposite to the side on which the third opening 501g is formed. The separator net 301 is provided.
The separator net 301 and the separator stopper 401 are arranged in this order from the first opening 103 side.
With such a configuration, the liquid oil can be more effectively separated by the synergistic effect of the separator stopper 401 and the separator net 301.
 4ストロークエンジン1の潤滑装置は、ピストン6の往復動によるクランク室5a内の圧力変動を利用して、オイル循環経路の一部として構成されるクランク室5aおよび動弁室4にオイルAを供給して潤滑を行い、クランク室5a内の負圧時に動弁室4とクランク室5aとを連通する直通通路46が設けられ、直通通路46のクランク室5a内に開口する開口端部は、ピストン6が上死点近傍位置から上死点に向かう移動時に開口し、ピストン6が上死点近傍位置から下死点に向かって移動する間は閉じるように設けられている。
 このような構成を有することから、オイルセパレータ51によって分離されたオイルAを効率良くオイル循環経路に回収することができる。
The lubricating device of the four-stroke engine 1 supplies oil A to the crank chamber 5a and the valve chamber 4 configured as a part of the oil circulation path by utilizing the pressure fluctuation in the crank chamber 5a due to the reciprocating motion of the piston 6. Thus, lubrication is performed, and when the negative pressure in the crank chamber 5a is negative, there is provided a direct passage 46 that communicates between the valve chamber 4 and the crank chamber 5a, and the opening end portion of the direct passage 46 that opens into the crank chamber 5a is a piston. 6 is opened when moving from the position near the top dead center toward the top dead center, and is closed while the piston 6 moves from the position near the top dead center toward the bottom dead center.
With such a configuration, the oil A separated by the oil separator 51 can be efficiently recovered in the oil circulation path.
 4ストロークエンジン1の潤滑装置は、ピストン6の往復動によるクランク室5a内の圧力変動を利用して、オイル循環経路でオイルAを循環させて各部の潤滑を行い、クランク室内の負圧時に、オイルセパレータ51の第2の開口部105とクランク室5aとを連通する還流通路52が設けられ、還流通路52のクランク室内に開口する開口端部は、ピストン6が上死点近傍位置から上死点に向かう移動時に開口し、ピストン6が上死点近傍位置から下死点に向かって移動する間は閉じるように設けられる。
 このような構成を有することから、オイルセパレータ51によって分離されたオイルAを効率良くオイル循環経路に回収することができる。
The lubrication device of the 4-stroke engine 1 uses the pressure fluctuation in the crank chamber 5a due to the reciprocating motion of the piston 6 to circulate oil A in the oil circulation path to lubricate each part, and at the time of negative pressure in the crank chamber, A reflux passage 52 that communicates the second opening 105 of the oil separator 51 and the crank chamber 5a is provided, and the opening end of the reflux passage 52 that opens into the crank chamber has a piston 6 that is dead from the position near the top dead center. The piston 6 is opened during movement toward the point, and is closed so that the piston 6 moves from the position near the top dead center toward the bottom dead center.
With such a configuration, the oil A separated by the oil separator 51 can be efficiently recovered in the oil circulation path.
 オイルセパレータ51が、本発明における4ストロークエンジンの気液分離装置の一例である。
 セパレータガスケット201、セパレータネット301及びセパレータストッパ401は、本発明における気液分離部材の一例である。
 気液分離部材は、セパレータガスケット201、セパレータネット301及びセパレータストッパ401の全てから構成されていてもよいし、いずれか2つから構成されていてもよいし、さらにいずれか1つから構成されていても良い。
 セパレータガスケット201は、本発明における第1のガスケットの一例である。
 セパレータストッパ401は、本発明における第2のガスケットの一例である。
 セパレータネット301は、本発明におけるネットの一例である。
 また、本発明における気液分離室の一例が、第2の壁501dと、第1の壁101及び第1の側面107によって形成される空間である気液分離室117である。つまり、気液分離室は、オイル循環経路中に形成される気液を分離可能な空間であればどの様なものであってもよい。
 また、本発明は以上の実施形態に限定されるものではなく、様々な変化した構造、構成を有していて良い。
The oil separator 51 is an example of a gas-liquid separator for a 4-stroke engine in the present invention.
The separator gasket 201, the separator net 301, and the separator stopper 401 are examples of the gas-liquid separation member in the present invention.
The gas-liquid separation member may be composed of all of the separator gasket 201, the separator net 301, and the separator stopper 401, may be composed of any two, or may be composed of any one. May be.
Separator gasket 201 is an example of a first gasket in the present invention.
Separator stopper 401 is an example of the second gasket in the present invention.
Separator net 301 is an example of a net in the present invention.
An example of the gas-liquid separation chamber in the present invention is the gas-liquid separation chamber 117 which is a space formed by the second wall 501d, the first wall 101, and the first side surface 107. That is, the gas-liquid separation chamber may be any space as long as it can separate the gas-liquid formed in the oil circulation path.
Further, the present invention is not limited to the above embodiment, and may have various changed structures and configurations.
 1…4ストロークエンジン、46…直通通路、50…エアクリーナ、50c…気液分離空間、51…オイルセパレータ(4ストロークエンジンの気液分離装置)、52…還流通路(直通通路)、54…戻し通路,56…流量調整通路、60…ロッド、101…第1の壁、103…第1の開口部、105…第2の開口部、105a…面取部、106…第4の開口部、107…第1の側面、113…エアクリーナ通路配置部、114…突出部、115…潤滑油戻通路、116…溝部、117…気液分離室、121…壁部分、201…セパレータガスケット(第1のガスケット)、201c…ガスケット隅貫通穴(貫通穴)、201d…中央貫通穴(貫通穴)、301…セパレータネット(ネット)、301b…スポンジ部、401…セパレータストッパ(第2のガスケット)、401c…貫通穴、501…セパレータプレート、501d…第2の壁、501g…第3の開口部、601…気液分離部材 DESCRIPTION OF SYMBOLS 1 ... 4-stroke engine, 46 ... Direct passage, 50 ... Air cleaner, 50c ... Gas-liquid separation space, 51 ... Oil separator (gas-liquid separation apparatus of 4-stroke engine), 52 ... Reflux passage (direct passage), 54 ... Return passage , 56 ... Flow rate adjusting passage, 60 ... Rod, 101 ... First wall, 103 ... First opening, 105 ... Second opening, 105a ... Chamfering part, 106 ... Fourth opening, 107 ... 1st side surface, 113 ... Air cleaner passage arrangement part, 114 ... Projection part, 115 ... Lubricant return path, 116 ... Groove part, 117 ... Gas-liquid separation chamber, 121 ... Wall part, 201 ... Separator gasket (first gasket) 201c ... Gasket corner through hole (through hole), 201d ... Central through hole (through hole), 301 ... Separator net (net), 301b ... Sponge part, 401 ... Separator Stopper (second gasket), 401c ... through hole, 501 ... separator plates, 501d ... second wall, 501 g ... third opening, 601 ... gas-liquid separating member

Claims (18)

  1.  オイル循環経路から分岐して形成され、オイルミストを含んだブローバイガスからオイルミストを分離する気液分離室を有し、
     前記気液分離室は、
      前記オイル循環経路から前記ブローバイガスが導入される第1の開口部と、
      前記ブローバイガスから分離されたオイルを前記オイル循環経路に還流する第2の開口部と、
      オイルミストが分離されたブローバイガスを、前記気液分離室から排気して燃焼室への吸気通路へ連通する第3の開口部と、を有し、
     前記第1の開口部は第1の壁に形成され、
     前記第3の開口部は第2の壁に形成され、
     前記気液分離室には、前記第1の開口部と前記第3の開口部との間に気液分離部材が形成されることを特徴とする
     4ストロークエンジンの気液分離装置。
    A gas-liquid separation chamber that is formed by branching from the oil circulation path and separates the oil mist from the blow-by gas containing the oil mist;
    The gas-liquid separation chamber is
    A first opening through which the blow-by gas is introduced from the oil circulation path;
    A second opening for returning oil separated from the blow-by gas to the oil circulation path;
    A third opening that exhausts the blow-by gas from which the oil mist is separated from the gas-liquid separation chamber and communicates with the intake passage to the combustion chamber;
    The first opening is formed in the first wall;
    The third opening is formed in the second wall;
    In the gas-liquid separation chamber, a gas-liquid separation member is formed between the first opening and the third opening.
  2.  前記第1の開口部から流入するブローバイガスの流入方向と、前記第3の開口部から流出するブローバイガスの流出方向とがねじれの位置関係となるように形成されることを特徴とする
     請求項1に記載の4ストロークエンジンの気液分離装置。
    The inflow direction of blow-by gas flowing in from the first opening and the outflow direction of blow-by gas flowing out from the third opening are formed to have a twisted positional relationship. 4. A gas-liquid separator for a 4-stroke engine according to 1.
  3.  前記第1の開口部は、前記第1の壁の中央付近に形成され、
     前記第3の開口部は、前記第2の壁の上側方向位置の左右二隅のいずれかの位置に形成されていることを特徴とする
     請求項2に記載の4ストロークエンジンの気液分離装置。
    The first opening is formed near the center of the first wall;
    3. The gas-liquid separator for a four-stroke engine according to claim 2, wherein the third opening is formed at one of left and right corners of the upper side position of the second wall. .
  4.  前記気液分離部材は、中央付近に複数の中央貫通穴を有するガスケットであることを特徴とする
     請求項3に記載の4ストロークエンジンの気液分離装置。
    The gas-liquid separation device for a four-stroke engine according to claim 3, wherein the gas-liquid separation member is a gasket having a plurality of central through holes near the center.
  5.  前記第1の壁の下側方向位置の左右二隅のいずれかの位置に前記第2の開口部が形成されており、
     前記第1の壁には、
      前記第1の開口部を取り囲む様に前記ガスケットの前記中央貫通穴より外側位置に溝部が形成され、
     前記溝部と前記ガスケットによって管路状の潤滑油戻通路が形成され、前記潤滑油戻通路は前記第2の開口部と連通していることを特徴とする
     請求項4に記載の4ストロークエンジンの気液分離装置。
    The second opening is formed at either one of the two left and right corners of the lower direction of the first wall;
    The first wall includes
    A groove is formed at a position outside the central through hole of the gasket so as to surround the first opening,
    5. The four-stroke engine according to claim 4, wherein a pipe-like lubricating oil return passage is formed by the groove and the gasket, and the lubricating oil return passage communicates with the second opening. Gas-liquid separator.
  6.  前記ガスケットの隅には、前記第1の壁の前記第2の開口部が形成されている位置に、貫通穴が形成されていることを特徴とする
     請求項5に記載の4ストロークエンジンの気液分離装置。
    6. The four-stroke engine engine according to claim 5, wherein a through hole is formed in a corner of the gasket at a position where the second opening of the first wall is formed. Liquid separation device.
  7.  前記気液分離部材は、上側方向位置であり、かつ、前記第3の開口部が形成されている側とは反対側の隅の位置に貫通穴が形成されたガスケットであることを特徴とする
     請求項3に記載の4ストロークエンジンの気液分離装置。
    The gas-liquid separation member is a gasket in which a through hole is formed at a corner on the side opposite to the side on which the third opening is formed, the upper-side direction position. The gas-liquid separator for a 4-stroke engine according to claim 3.
  8.  前記第1の壁の下側方向位置の左右二隅のいずれかの位置に前記第2の開口部が形成されていることを特徴とする
     請求項7に記載の4ストロークエンジンの気液分離装置。
    8. The gas-liquid separator for a four-stroke engine according to claim 7, wherein the second opening is formed at one of two left and right corners of the lower side position of the first wall. 9. .
  9.  前記第2の開口部は、左右二隅のうち4ストロークエンジンの動力駆動軸の側に形成され、
     前記第3の開口部は、左右二隅のうち前記駆動軸とは反対側に形成されていることを特徴とする
     請求項8に記載の4ストロークエンジンの気液分離装置。
    The second opening is formed on the side of the power drive shaft of the four-stroke engine among the two left and right corners,
    The gas-liquid separator for a four-stroke engine according to claim 8, wherein the third opening is formed on the opposite side of the two left and right corners from the drive shaft.
  10.  前記気液分離部材は、メッシュ形状を有することを特徴とする
     請求項3に記載の4ストロークエンジンの気液分離装置。
    The gas-liquid separation device for a 4-stroke engine according to claim 3, wherein the gas-liquid separation member has a mesh shape.
  11.  前記第1の壁は前記第2の壁と対向するように形成されていることを特徴とする
     請求項1に記載の4ストロークエンジンの気液分離装置。
    The gas-liquid separator for a four-stroke engine according to claim 1, wherein the first wall is formed so as to face the second wall.
  12.  前記気液分離部材は、中央付近に複数の貫通穴を有する第1のガスケットと、上側方向位置であり、かつ、前記第3の開口部が形成されている側とは反対側の隅の位置に貫通穴が形成された第2のガスケット、メッシュ形状のネットとを有し、
     前記第1のガスケット、前記第2のガスケット及び前記ネットは、
      前記第1の開口部側から、前記第1のガスケット、前記ネット、前記第2のガスケットの順に配置されていることを特徴とする
     請求項3に記載の4ストロークエンジンの気液分離装置。
    The gas-liquid separation member has a first gasket having a plurality of through holes in the vicinity of the center, a position in the upper direction, and a corner position opposite to the side on which the third opening is formed. A second gasket having a through-hole formed therein, and a mesh-shaped net,
    The first gasket, the second gasket and the net are
    The gas-liquid separator for a four-stroke engine according to claim 3, wherein the first gasket, the net, and the second gasket are arranged in this order from the first opening side.
  13.   前記気液分離部材は、中央付近に複数の貫通穴を有する第1のガスケットと、上側方向位置であり、かつ、前記第3の開口部が形成されている側とは反対側の隅の位置に貫通穴が形成された第2のガスケットとを有し、
     前記第1のガスケット及び前記第2のガスケットは、
      前記第1の開口部側から、前記第1のガスケット、前記第2のガスケットの順に配置されていることを特徴とする
     請求項3に記載の4ストロークエンジンの気液分離装置。
    The gas-liquid separation member has a first gasket having a plurality of through holes in the vicinity of the center, a position in the upper direction, and a corner position opposite to the side on which the third opening is formed. And a second gasket having a through hole formed therein,
    The first gasket and the second gasket are:
    The gas-liquid separator for a four-stroke engine according to claim 3, wherein the first gasket and the second gasket are arranged in this order from the first opening side.
  14.  前記気液分離部材は、中央付近に複数の貫通穴を有する第1のガスケットと、メッシュ形状のネットとを有し、
     前記第1のガスケット及び前記ネットは、
      前記第1の開口部側から、前記第1のガスケット、前記ネットの順に配置されていることを特徴とする
     請求項3に記載の4ストロークエンジンの気液分離装置。
    The gas-liquid separation member includes a first gasket having a plurality of through holes near the center, and a mesh-shaped net.
    The first gasket and the net are
    The gas-liquid separator for a 4-stroke engine according to claim 3, wherein the first gasket and the net are arranged in this order from the first opening side.
  15.  前記気液分離部材は、上側方向位置であり、かつ、前記第3の開口部が形成されている側とは反対側の隅の位置に貫通穴が形成された第2のガスケットと、メッシュ形状のネットとを有し、
     前記第2のガスケット及び前記ネットは、
      前記第1の開口部側から、前記ネット、前記第2のガスケットの順に配置されていることを特徴とする
     請求項3に記載の4ストロークエンジンの気液分離装置。
    The gas-liquid separation member is a second gasket in which a through-hole is formed at a corner on the side opposite to the side on which the third opening is formed, and a mesh shape. With a net of
    The second gasket and the net are
    The gas-liquid separator for a four-stroke engine according to claim 3, wherein the net and the second gasket are arranged in this order from the first opening side.
  16.  ピストンの往復動によるクランク室内の圧力変動を利用して、前記オイル循環経路の一部として構成される前記クランク室および動弁室にオイルを供給して潤滑を行う4ストロークエンジンの潤滑装置であって、
     前記クランク室内の負圧時に前記動弁室と前記クランク室とを連通する直通通路が設けられ、
     前記直通通路の前記クランク室内に開口する開口端部は、
      前記ピストンが上死点近傍位置から上死点に向かう移動時に開口し、
      前記ピストンが前記上死点近傍位置から下死点に向かって移動する間は閉じるように
     設けられ、
     請求項1記載の気液分離装置の第2の開口部と前記直通通路を接続したことを特徴とする4ストロークエンジンの潤滑装置。
    A lubrication device for a four-stroke engine that performs lubrication by supplying oil to the crank chamber and the valve chamber that are configured as a part of the oil circulation path by utilizing pressure fluctuations in the crank chamber due to reciprocation of a piston. And
    A direct passage is provided for communicating the valve chamber and the crank chamber at the time of negative pressure in the crank chamber;
    An opening end portion that opens into the crank chamber of the direct passage is,
    When the piston moves from a position near the top dead center toward the top dead center,
    The piston is provided to be closed while moving from the position near the top dead center toward the bottom dead center,
    A lubricating device for a four-stroke engine, wherein the second opening of the gas-liquid separator according to claim 1 and the direct passage are connected.
  17.  ピストンの往復動によるクランク室内の圧力変動を利用して、前記オイル循環経路でオイルを循環させて各部の潤滑を行う4ストロークエンジンの潤滑装置であって、
     前記クランク室内の負圧時に、請求項1記載の気液分離装置の第2の開口部と前記クランク室とを連通する還流通路が設けられ、
     前記還流通路の前記クランク室内に開口する開口端部は、
      前記ピストンが上死点近傍位置から上死点に向かう移動時に開口し、
      前記ピストンが前記上死点近傍位置から下死点に向かって移動する間は閉じるように
     設けられたことを特徴とする4ストロークエンジンの潤滑装置。
    A lubrication device for a four-stroke engine that lubricates each part by circulating oil in the oil circulation path using pressure fluctuation in the crank chamber due to reciprocation of a piston,
    A reflux passage is provided that communicates the second opening of the gas-liquid separator according to claim 1 and the crank chamber during negative pressure in the crank chamber.
    An opening end portion that opens into the crank chamber of the reflux passage is,
    When the piston moves from a position near the top dead center toward the top dead center,
    A four-stroke engine lubrication device, wherein the piston is provided to be closed while moving from a position near the top dead center toward a bottom dead center.
  18.  前記ブローバイガスから分離されたオイルを前記オイル循環経路に還流する第4の開口部を有し、前記第1の壁の下側方向位置の左右二隅のそれぞれの位置に、前記第2の開口部と前記第4の開口部が形成されることを特徴とする
     請求項5に記載の4ストロークエンジンの気液分離装置。
    A fourth opening for returning the oil separated from the blow-by gas to the oil circulation path; and the second opening at each of the two left and right corners of the lower side position of the first wall. The gas-liquid separation device for a four-stroke engine according to claim 5, wherein a part and a fourth opening are formed.
PCT/JP2011/072268 2010-11-30 2011-09-28 Gas-liquid separation device for four-stroke engine, and lubrication device for four-stroke engine WO2012073586A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180057665.0A CN103249923B (en) 2010-11-30 2011-09-28 Gas-liquid separation device for four-stroke engine, and lubrication device for four-stroke engine
BR112013010427-9A BR112013010427B1 (en) 2010-11-30 2011-09-28 GAS-LIQUID SEPARATION APPLIANCE AND LUBRICATION APPLIANCE FOR FOUR-STROKE ENGINE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-266866 2010-11-30
JP2010266866 2010-11-30
JP2011-176321 2011-08-11
JP2011176321 2011-08-11

Publications (1)

Publication Number Publication Date
WO2012073586A1 true WO2012073586A1 (en) 2012-06-07

Family

ID=46171541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072268 WO2012073586A1 (en) 2010-11-30 2011-09-28 Gas-liquid separation device for four-stroke engine, and lubrication device for four-stroke engine

Country Status (3)

Country Link
CN (1) CN103249923B (en)
BR (1) BR112013010427B1 (en)
WO (1) WO2012073586A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075105A (en) * 2013-10-08 2015-04-20 ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー Oil mist separator
GB2520125A (en) * 2013-09-02 2015-05-13 Snecma Tank having an inclined partition provided at its ends with through-holes for continuous supply of a supply liquid to a turbine engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114251153B (en) * 2020-09-24 2023-03-10 北京汽车动力总成有限公司 Bent pipeline structure and vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441610U (en) * 1987-09-07 1989-03-13
JPS6446414U (en) * 1987-09-18 1989-03-22
JPH0676614U (en) * 1993-03-31 1994-10-28 株式会社土屋製作所 Oil mist separator
JPH06336911A (en) * 1993-05-27 1994-12-06 Toyota Autom Loom Works Ltd Lubricating oil separating device and gasket therewith
JP2002276321A (en) * 2001-03-22 2002-09-25 Fuji Robin Ind Ltd Lubricating device for 4-cycle engine
JP2007263069A (en) * 2006-03-29 2007-10-11 Makita Numazu Corp Portable 4-cycle engine and working machine equipped with it
JP2010248934A (en) * 2009-04-10 2010-11-04 Toyota Boshoku Corp Oil separator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441610U (en) * 1987-09-07 1989-03-13
JPS6446414U (en) * 1987-09-18 1989-03-22
JPH0676614U (en) * 1993-03-31 1994-10-28 株式会社土屋製作所 Oil mist separator
JPH06336911A (en) * 1993-05-27 1994-12-06 Toyota Autom Loom Works Ltd Lubricating oil separating device and gasket therewith
JP2002276321A (en) * 2001-03-22 2002-09-25 Fuji Robin Ind Ltd Lubricating device for 4-cycle engine
JP2007263069A (en) * 2006-03-29 2007-10-11 Makita Numazu Corp Portable 4-cycle engine and working machine equipped with it
JP2010248934A (en) * 2009-04-10 2010-11-04 Toyota Boshoku Corp Oil separator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2520125A (en) * 2013-09-02 2015-05-13 Snecma Tank having an inclined partition provided at its ends with through-holes for continuous supply of a supply liquid to a turbine engine
US9347335B2 (en) 2013-09-02 2016-05-24 Snecma Tank having an inclined partition provided at its ends with through-holes for continuous supply of a supply liquid to a turbine engine
GB2520125B (en) * 2013-09-02 2016-06-15 Snecma Tank having an inclined partition provided at its ends with through-holes for continuous supply of a supply liquid to a turbine engine
JP2015075105A (en) * 2013-10-08 2015-04-20 ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー Oil mist separator

Also Published As

Publication number Publication date
BR112013010427A2 (en) 2016-08-09
CN103249923A (en) 2013-08-14
BR112013010427B1 (en) 2021-08-10
CN103249923B (en) 2015-06-17

Similar Documents

Publication Publication Date Title
US8695563B2 (en) Lubrication system for four-stroke engine
JP5455080B2 (en) 4-cycle engine lubrication system
JP5463111B2 (en) Lubricating device for portable 4-cycle engine
US9534535B2 (en) Four-stroke engine
US8978614B2 (en) Lubrication apparatus for four-stroke engine
WO2012073586A1 (en) Gas-liquid separation device for four-stroke engine, and lubrication device for four-stroke engine
JP5483275B2 (en) 4-cycle engine lubrication system
US8746203B2 (en) Lubrication apparatus for four-stroke engine
JP5536578B2 (en) 4-cycle engine lubrication system
JP2011069240A (en) Lubrication system for four-cycle engine
CN106567757B (en) Lubricating device for engine
JP4139247B2 (en) 4-cycle engine lubrication system
WO2012073587A1 (en) Lubrication device for four-stroke engine
US20120060790A1 (en) Lubrication structure for four-stroke engine
JP2002276321A (en) Lubricating device for 4-cycle engine
JP2012117427A (en) Lubricating device for four-cycle engine
JP2003083024A (en) 4-cycle internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845286

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013010427

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 112013010427

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130429