WO2012070286A1 - Lens unit - Google Patents

Lens unit Download PDF

Info

Publication number
WO2012070286A1
WO2012070286A1 PCT/JP2011/068221 JP2011068221W WO2012070286A1 WO 2012070286 A1 WO2012070286 A1 WO 2012070286A1 JP 2011068221 W JP2011068221 W JP 2011068221W WO 2012070286 A1 WO2012070286 A1 WO 2012070286A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
barrel
cylindrical
nonmagnetic
lens barrel
Prior art date
Application number
PCT/JP2011/068221
Other languages
French (fr)
Japanese (ja)
Inventor
康之 近藤
正義 中川
秀行 今井
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2012545636A priority Critical patent/JPWO2012070286A1/en
Priority to CN201180051979XA priority patent/CN103189777A/en
Publication of WO2012070286A1 publication Critical patent/WO2012070286A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation

Definitions

  • the present invention relates to a lens unit in which a lens barrel and a lens used as an optical component are integrated with a mobile product, an electronic device such as a projector, and an optical communication device.
  • a lens unit 6 with a lens barrel shown in FIG. 14 is widely used as an optical component in mobile products, electronic devices such as projectors, and optical communication devices.
  • a lens unit 6 with a lens barrel described in Patent Document 1 which is a prior art includes a lens barrel 7, a lens 8, and a low melting point glass 9 for bonding the lens barrel 7 and the lens 8.
  • austenitic stainless steel SUS304, SUS316, or SUS321 having a thermal expansion coefficient higher than that of the lens 8 by at least 20 ⁇ 10 -7 / ° C. is used.
  • low melting point glass 9 containing lead oxide is used, which is harmful to human body and pollutes the environment.
  • the low melting point glass 9 containing lead oxide may be denatured in water or under a high temperature and high humidity environment.
  • the modified low melting point glass 9 is easily peeled off, peeled off and attached to the lens 8 or the optical fiber to reduce the amount of transmitted light.
  • the manufacturing method of manufacturing a lens unit only with a cylindrical lens barrel and a lens without using low melting point glass 9 containing lead oxide has raised the processing temperature because lead-free glass is used as the material of the lens. Therefore, when the cylindrical barrel is formed of a metal having a thermal expansion coefficient higher by at least 20 ⁇ 10 ⁇ 7 / ° C. or more than the thermal expansion coefficient of the lens as in the prior art, large stress occurs in the lens. And performance deterioration due to birefringence and breakage such as cracks occurred.
  • the lens barrel 7 is magnetized at the time of cutting, and magnetic particles adhere to the lens barrel 7 in the subsequent process. Then, the magnetic particles are brought into electronic devices and optical communication devices, and come off due to vibration when carrying the electronic devices or the like or a motor movable in the devices, and adhere to optical components to deteriorate optical performance. was there.
  • An object of the present invention is to provide a lens unit that prevents performance deterioration and breakage of a lens and significantly reduces particles attached to a cylindrical lens barrel.
  • the lens unit according to the present invention comprises a cylindrical lens barrel and a lens fixed to the inner peripheral surface of the cylindrical lens barrel, wherein the lens is melted at a softening point or higher and solidified at a common temperature.
  • the cylindrical barrel being non-magnetic, the difference in thermal expansion coefficient between the cylindrical barrel and the lens being less than or equal to 20 ⁇ 10 ⁇ 7 / ° C., the cylindrical mirror A thermal expansion coefficient of the lens is smaller than that of a tube.
  • cylindrical lens barrel is made of a nonmagnetic material and is not magnetized at the time of cutting, magnetic particles attached to the cylindrical lens barrel in the subsequent steps are significantly increased. Can be reduced to
  • the lens since the stress applied to the lens is sufficiently small, the lens is not deteriorated in performance due to birefringence or the like and is not broken due to a crack or the like.
  • the present invention it is possible to provide a lens unit that prevents the performance deterioration and breakage of the lens and significantly reduces particles attached to the cylindrical barrel.
  • the cylindrical barrel is preferably titanium or a titanium alloy.
  • the cylindrical lens barrel is a nonmagnetic material, and the difference in thermal expansion coefficient between the cylindrical lens barrel and the lens is 20 ⁇ 10 ⁇ 7 / ° C. or less.
  • the thermal expansion coefficient of the lens is smaller than that of a cylindrical lens barrel.
  • the cylindrical lens barrel and the lens be airtightly joined.
  • the cylindrical lens barrel be cylindrical.
  • the stress by which the cylindrical lens barrel tightens the lens is uniform along the surface where the cylindrical lens barrel contacts the lens, and thus the tightening becomes effective. It becomes difficult to generate problems such as a crack and a crack in the lens.
  • the lens is an aspheric lens. Since an aspheric lens suppresses spherical aberration, it sharpens the image plane of an electronic device such as a projector and also improves the coupling efficiency of the optical communication device.
  • an outer diameter of a portion of the cylindrical lens barrel in contact with the lens be equal to or less than 20.5 times an outer diameter of the lens.
  • the cylindrical lens barrel is made of a nonmagnetic material, it is not magnetized at the time of cutting, so magnetic particles attached to the cylindrical lens barrel in the subsequent steps are significantly reduced. it can.
  • the lens since the stress applied to the lens is sufficiently small, the lens does not deteriorate its performance or break due to cracking or the like.
  • the present invention it is possible to provide a lens unit which prevents the performance deterioration and breakage of the lens and significantly reduces the particles adhering to the cylindrical barrel.
  • FIG. 5 is a schematic plan view showing the lens unit with a nonmagnetic barrel according to the first embodiment as viewed from the upper surface side.
  • FIG. 2 is a schematic cross-sectional view of the lens unit with a nonmagnetic barrel according to the first embodiment, taken along line II-II in FIG. 1; It is explanatory drawing of the manufacturing method of the lens unit with a nonmagnetic lens barrel which is 1st embodiment.
  • It is a schematic diagram which shows the 1st application example which mounted the lens unit with a nonmagnetic lens barrel which is 1st embodiment in the projector.
  • FIG. 9 is a first modified example of the lens unit with a nonmagnetic barrel according to the first embodiment, and is a schematic cross-sectional view taken along the line IX-IX in FIG. 8;
  • FIG. 13 is a schematic plan view showing a second modified example of the lens unit with a nonmagnetic barrel according to the first embodiment, as viewed from the upper side.
  • FIG. 11 is a second modified example of the lens unit with a nonmagnetic barrel according to the first embodiment, and is a schematic cross-sectional view taken along the line XI-XI in FIG. It is plane schematic which shows the 3rd modification of the lens unit with a nonmagnetic barrel which is 1st embodiment seeing from an upper side.
  • FIG. 13 is a third variant of the lens unit with a nonmagnetic barrel according to the first embodiment, and is a schematic sectional view taken along the line XIII-XIII in FIG. 12; It is a cross-sectional schematic drawing of the lens unit with a lens barrel comprised from the lens barrel which is a prior art, a lens, and low melting glass. It is explanatory drawing which shows a mode that the lens barrel of the lens unit with a lens barrel which is prior art is magnetized, and a magnetic particle adheres.
  • FIG. 1 and FIG. 2 show a lens unit 1 with a nonmagnetic barrel, which is a first embodiment to which the present invention is applied.
  • the nonmagnetic lens barrel 2 is cylindrical and made of nonmagnetic titanium.
  • An aspheric lens 3 is provided inside the nonmagnetic lens barrel 2.
  • a substance having an absolute value of magnetic susceptibility of 5 ⁇ 10 ⁇ 6 cm 3 / g or less is nonmagnetic.
  • the material of the nonmagnetic lens barrel 2 is titanium, it is not limited thereto. It can be selected from materials having an absolute value of magnetic susceptibility of 5 ⁇ 10 ⁇ 6 cm 3 / g or less. Titanium, bismuth, thallium, tungsten, tantalum, tin, aluminum, chromium, magnesium, gallium, niobium, zirconium, strontium, molybdenum, iridium, osmium, rhenium, gold, platinum, zinc, silver, copper, or two or more metals It can also be selected from alloys consisting of the above metals, and the above metals and those containing impurities added to the above alloys.
  • the metal and the alloy have a difference in thermal expansion coefficient with the lens of 20 ⁇ 10 ⁇ 7 / ° C. or less, and the thermal expansion coefficient is larger than that of the lens, and the melting point is larger than the softening point of the lens is necessary.
  • the difference between the thermal expansion coefficient of the nonmagnetic substance and the glass type of the lens is 20 ⁇ 10 ⁇ 7 / ° C. or less, and the thermal expansion coefficient of the nonmagnetic substance is larger than that of the lens.
  • Combinations satisfying the melting point greater than the softening point of the lens, as shown in Table 1, are as follows.
  • K-PKF80, K-GFK70, K-GFK68 which is a glass type made of Sumida Optical Glass Co., Ltd., L-BAL 35 which is a glass type of Ohara Co., Ltd., made of chromium or titanium, or made of Sumita Optical Glass It is a combination of K-PBK40 and K-VC89 which are glass types, SUS305, SUS316 or SUS316L which is nonmagnetic, and K-CaFK95, K-PG 325 and K-PG 375 which are glass types made by Sumita Optical Glass.
  • the aspheric lens 3 and the cylindrical nonmagnetic lens barrel 2 are provided, but the shape of the lens may be other than the aspheric surface, and the shape of the cylindrical barrel may be other than cylindrical. is there.
  • the nonmagnetic barrel 2 is manufactured by forming a through hole in the nonmagnetic material by cutting (a).
  • the nonmagnetic lens barrel 2 is placed in a press, and the lens material 30 is inserted from the opening and placed on the lower mold 33 (b), and heated by the heater 31 to a temperature above the softening point of the lens material 30 (c).
  • the lens material 30 is pressed by the upper mold 32 and the lower mold 33 having the optically functional surface forming portion, thereby transferring the shape of the optically functional surface forming portion to the lens material 30 (d).
  • an optical function surface is simultaneously formed.
  • a plurality of lens units 1 with nonmagnetic lens barrels are installed in the film forming apparatus 34, and an optical function film is formed on the front and back of the optical function surface by heating the film forming source 35 (e).
  • a material of the optical function film a material for forming an antireflective film such as magnesium fluoride or silicon dioxide is used.
  • the thermal expansion coefficient of the nonmagnetic lens barrel 2 is selected to be larger than the thermal expansion coefficient of the aspheric lens 3.
  • the nonmagnetic lens barrel 2 shrinks more than the aspheric lens 3 in the cooling process to return to normal temperature from the softening point of the lens material 30.
  • the aspheric lens 3 is fastened to the nonmagnetic lens barrel 2 and firmly and airtightly fixed.
  • the aspheric lens 3 is directly and firmly fixed to the nonmagnetic barrel 2 firmly and airtightly without using an adhesive layer such as low melting point glass.
  • FIG. 4 is a schematic view showing a first application example in which the lens unit 1 with a nonmagnetic barrel according to the first embodiment is mounted on a projector 100 as an image display device.
  • the light from the lamp 101 is collected by the lens unit 1 with nonmagnetic lens barrel, passes through the color wheel 102 which is color-coded into three colors rotated by the motor 102a, and is again collected by the lens unit 1 with nonmagnetic lens barrel. It is reflected by an optical semiconductor 103 equipped with hundreds of thousands to millions of mirrors which move independently, and is projected onto a screen by a projection lens 104.
  • the metal of the magnetic body and the metal scrap thereof are magnetized by metal processing. It is considered that the temperature of the metal and the metal scraps exceeds the Curie temperature due to the heat generated by the metal processing, and magnetization is caused by the leakage magnetic field from the drive motor or the like, the geomagnetism, or the like.
  • austenitic stainless steel having a small Ni content causes martensitic transformation and is magnetized when cold working (cutting, cold heading, etc.) is performed. This magnetization is influenced in relation to the chemical composition and the cold working rate. Therefore, some austenitic stainless steels SUS304 and SUS321, which have a low Ni content, may undergo martensitic transformation and magnetization with the amount of processing.
  • the nonmagnetic lens barrel 2 is made of titanium, it is nonmagnetic and is not magnetized by cold working or the like.
  • the lens barrel 7 formed of austenitic stainless steel SUS 304 and SUS 321 described in Patent Document 1 is magnetized at the time of cutting, and as shown in FIG. 15, the magnetic particles 202 adhere to the lens barrel 7 in the subsequent steps, When the cylindrical lens unit 6 is mounted on the projector 100, the magnetic particles 202 may be brought into the casing of the projector 100.
  • the magnetic particles 202 attached to the lens barrel 7 fall off from the lens barrel 7 and adhere to the surfaces of the lens 8 and the projection lens 104 due to the carrying and handling of the projector 100 and the vibration generated by the motor 102a.
  • the nonmagnetic lens barrel-equipped lens unit 1 is suitable for downsizing because it can prevent the above problems without shielding.
  • the lens unit 1 with the nonmagnetic lens barrel is provided with the nonmagnetic lens barrel 2 that does not magnetize, adhesion of the magnetic particles 202 and the like to the nonmagnetic lens barrel 2 corresponds to the prior art. It is significantly reduced compared to.
  • the nonmagnetic lens barrel 2 by providing the nonmagnetic lens barrel 2, it is possible to provide a lens unit that significantly reduces the adhesion of the magnetic particles 202 to the cylindrical lens barrel, and the electronic device and the light can be provided. The carry-in of the magnetic particles 202 to a communication device etc. is greatly reduced.
  • a magnetic sensor for detecting a rotation angle and a magnetic sensor for a brushless motor are mounted on the color wheel 102 shown in FIG. 4 which is a first application example.
  • the brushless motor is used from the requirement of high performance and long life because the motor 102a rotates at a high speed, and a magnetic sensor is mounted on the brushless motor to detect the rotation angle.
  • the magnetic field from the magnetized lens barrel 7 acts on the sensing surface of the magnetic sensor to generate an output voltage.
  • the output voltage is an error of the rotation angle, and the high-precision control of the color wheel 102 is lost. As a result, high brightness and high image quality requirements for the projector 100 are lost.
  • the lens unit 1 with a nonmagnetic lens barrel is not magnetized, an output voltage causing an error is not generated from the magnetic sensor. Therefore, the color wheel 102 can be controlled with high accuracy, and the projector 100 with high brightness and high image quality can be provided.
  • FIG. 100 Although the example of the projector 100 which is an image display apparatus was demonstrated as a 1st application example, it is not limited to the projector 100.
  • FIG. For example, in recent years, a lens unit with a lens barrel has begun to be used for a portable product such as a microprojector miniaturized by using a mobile product or a high-intensity semiconductor laser as a light source. The present invention is effective even when applied to these products.
  • micro-projector for example, laser light of three primary colors is converted into one-dimensional illumination light in the vertical direction by an illumination lens, and this one-dimensional illumination light is diffracted by a fine MEMS (Micro Electro-Mechanical Systems) device to form a one-dimensional image, Only one diffracted light of this one-dimensional image may be collected through the projection lens and scanned horizontally by a scanning mirror to project a two-dimensional image on the screen.
  • MEMS Micro Electro-Mechanical Systems
  • FIG. 5 shows a second application example in which the lens unit 1 with a nonmagnetic barrel according to the first embodiment is mounted on the transmission / reception module 300 in such optical communication.
  • the light emitted from the laser diode 303 which is a light emitting element, is collected by the lens unit 1 with a nonmagnetic barrel, passes through the multiplexing filter 302, enters the optical fiber 301, and the light emitted from the optical fiber 301 is The light is reflected by the wave combining filter 302, collected by the lens unit 1 with a nonmagnetic lens barrel, and incident on a photodiode 304 which is a light receiving element.
  • the magnetic particles 202 or the like attached to the lens barrel 7 due to the vibration or the like generated in the transmission / reception module 300 It is conceivable that the ink drops off from the cylinder 7 and adheres to the surface of the lens 8 or the multiplexing filter 302 or the like. As a result, the light intensity is degraded, and when the magnetic particles 202 or the like are large, this causes a failure in which light is not transmitted or received.
  • the magnetic particles 202 attached to the nonmagnetic lens barrel 2 can be significantly reduced, the light intensity generated by mounting the lens unit 6 with lens barrel on the transmission / reception module 300 which is an optical communication device is deteriorated.
  • the magnetic particles 202 are large, it is possible to greatly reduce the problem that light is not transmitted and received.
  • the lens unit 6 with a lens barrel is composed of the lens barrel 7, the lens 8 and the low melting point glass 9.
  • the low melting point glass 9 containing lead oxide is weak to moisture, changes as time passes, and a fine crack is formed on the surface.
  • the low melting point glass 9 peels off due to a fine crack.
  • the peeled low melting point glass 9 adheres to the lens 8 and becomes turbid due to the minute cracks on the surface thereof, and the transparency of the lens 8 is inhibited.
  • the peeling off of the lens reduces the bonding strength of the lens, and in extreme cases, the lens 8 may even come off.
  • the low melting point glass 9 since the low melting point glass 9 is not included, a defect of the manufacturing process related to the low melting point glass 9 and a defect of the low melting point glass 9 itself do not occur.
  • the lens 8 and the lens barrel 7 having an inner diameter slightly larger than the lens 8 and the low melting glass 9 are heated to 450 ° C. at which the low melting glass 9 melts.
  • the glass 9 was introduced into the gap between the lens barrel 7 and the lens 8 and filled, the glass 9 was fixed by cooling to a normal temperature. At this time, by making the thermal expansion coefficient of the low melting point glass 9 smaller than that of the barrel 7 and larger than that of the lens 8, the stress on the lens 8 due to the contraction of the barrel 7 is relaxed.
  • the lens unit 1 with nonmagnetic barrel is formed only with the nonmagnetic barrel 2 and the aspheric lens 3 as shown in FIG. 1, for example, without using low melting point glass containing lead. . Therefore, in the above-described manufacturing method shown in FIG. 3, it is necessary to heat the lens material 30 to about the softening point.
  • lead-free glass manufactured by OHARA INC .: L-BAL35
  • its softening point is 619 ° C.
  • lead-free glass manufactured by OHARA INC .: L-BAL 35
  • L-BAL 35 lead-free glass
  • the present invention is not limited to this. It is possible to use any lead-free glass which has a difference in thermal expansion coefficient of 20 ⁇ 10 ⁇ 7 / ° C. or less from the cylindrical barrel and a thermal expansion coefficient smaller than that of the cylindrical barrel.
  • the present invention raises the temperature of the manufacturing method. Therefore, as in the prior art described in Patent Document 1, when the cylindrical lens barrel is formed of a material having a thermal expansion coefficient higher by at least 20 ⁇ 10 ⁇ 7 / ° C. or more than the thermal expansion coefficient of the lens, the lens In this case, large stress was generated, and performance deterioration due to birefringence etc. and breakage such as cracks occurred.
  • the difference in thermal expansion coefficient between the cylindrical lens barrel and the lens is 20 ⁇ 10 ⁇ 7 / ° C. or less, and the thermal expansion coefficient of the lens from the cylindrical lens barrel Needs to be small. This is explained below.
  • the cylinder 50 and the cylinder 51 are weighted when cooled from the softening point of the cylinder 50 to a common temperature (25 ° C.)
  • coefficient of thermal expansion
  • T softening point-25
  • stress
  • E Young's modulus
  • subscript 1 means cylinder
  • subscript 2 means cylinder.
  • the subscript z means the z-axis direction
  • the subscript r means the r-axis direction.
  • L is the length in the z-axis direction of the cylinder 50 and the cylinder 51
  • D1 is the outer diameter of the cylinder 50
  • D2 is the outer diameter of the cylinder 51.
  • thermal contraction length L ⁇ ⁇ ⁇ T
  • stress contraction length L ⁇ ⁇ / E
  • L ⁇ ( ⁇ 1 ⁇ T + ⁇ 1z / E1) L ⁇ ( ⁇ 2 ⁇ T + ⁇ 2z / E2)
  • S1 ⁇ ⁇ 1z + S2 ⁇ ⁇ 2z 0 (2)
  • S1 the cross sectional area of the cylinder 50
  • S2 the cross sectional area of the cylinder 50.
  • stress ⁇ 1 z and stress ⁇ 1 r to be applied to the cylinder 50 as the lens are calculated.
  • the cylinder 50 is made of lead-free glass (manufactured by OHARA INC .: L-BAL 35), and the cylinder 51 is made of titanium.
  • ⁇ 1 81 ⁇ 10 -7 / °C
  • a ⁇ 2 84 ⁇ 10 -7 /°C
  • E1 10.08 ⁇ 10 10 N / m 2
  • E2 10.63 ⁇ 10 10 N / m 2.
  • D1 0.0038 m
  • D2 0.005 m
  • S1 ⁇ ⁇ (D1 / 2) ⁇ (D1 / 2)
  • S2 ⁇ ⁇ (D2 / 2) ⁇ (D2 / 2) ⁇ ⁇ It is (D1 / 2) x (D1 / 2).
  • ⁇ 1 z 7.8 ⁇ 10 6 N / m 2
  • 1 r 9.2 ⁇ 10 6 N / m 2 It is determined.
  • the austenitic stainless steel SUS304 described in Patent Document 1 is used to form the cylinder 51 from titanium as in the present invention, the stress applied to the cylinder 50 is approximately 100 times greater. In the aspheric lens 3 according to the embodiment, damage such as performance deterioration and cracks occurred.
  • Non-Patent Document 1 shows tensile strength which is the maximum tensile stress immediately before breaking.
  • the tensile strength is also referred to as mechanical strength, and is described as mechanical strength in the present invention.
  • the mechanical strength of the glass is 3 ⁇ 10 7 to 9 ⁇ 10 7 N / m 2 .
  • the stress ⁇ 1 z and the stress ⁇ 1 r in the first embodiment of the present invention are equal to or less than the mechanical strength of glass, the mechanical strength is exceeded when using austenitic stainless steel SUS 304 described in Patent Document 1.
  • the difference in thermal expansion coefficient between the cylindrical barrel and the lens is 20 ⁇ 10 ⁇ 7 / ° C. or less, and the thermal expansion coefficient of the lens is smaller than that of the cylindrical barrel.
  • the lens can be firmly fixed to the cylindrical barrel, and the stress applied to the lens can be made approximately equal to or less than the mechanical strength of the glass.
  • the stress ⁇ 1 r applied to the lens in the r-axis direction does not depend on the shape but depends on the thermal expansion coefficient, the Young's modulus and the softening point. Therefore, in order to reduce the stress ⁇ 1 r applied to the lens in the r-axis direction, it is necessary to appropriately select the material of the lens and the cylindrical barrel.
  • the stress ⁇ 1 r determined by the material of the lens and the cylindrical barrel is constant at 9.2 ⁇ 10 6 N / m 2, and as the outer diameter of the cylindrical barrel decreases.
  • the stress ⁇ 1 z decreases. That is, the material of the lens and the cylindrical barrel is appropriately selected to reduce the stress ⁇ 1 r, and the shape of the cylindrical barrel is ⁇ 1 z ⁇ ⁇ 1 r (9)
  • the stress applied to the lens is increased, but the cylindrical lens barrel has higher mechanical strength than the lens, and the increased stress is applied to the cylindrical mirror. It is preferable because the tube is deformed to relieve the stress applied to the lens.
  • the outer diameter of the cylindrical barrel in contact with the lens may be reduced.
  • a protrusion is provided and the outside diameter of the cylindrical lens barrel is large.
  • FIG.8 plane schematic drawing in FIG.8, FIG.10, FIG.12, and the cross-sectional schematic drawing in FIG.9, FIG.11, FIG.13.
  • the outer diameter of the portion in contact with the lens is small with respect to the cylindrical lens barrel, and the large outer diameter is provided in the other portion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

[Problem] The lens tube of a conventional lens unit magnetizes, and magnetic particles adhere to the lens tube, and the magnetic particles are introduced into an electronic device or the like when the lens tube is incorporated, which degrades the performance of the electronic device. [Solution] A lens unit for which the lens tube is nonmagnetic and the difference in the thermal expansion coefficients of the lens tube and the lens is 20×10-7/°C or less, thus preventing deterioration in the performance of and damage to the lens, and greatly reducing the amount of particles adhering to the tubular lens tube.

Description

レンズユニットLens unit
 本発明は、モバイル製品やプロジェクタなどの電子機器及び光通信機器等に、光学部品として使用される鏡筒とレンズとを一体化したレンズユニットに関する。 The present invention relates to a lens unit in which a lens barrel and a lens used as an optical component are integrated with a mobile product, an electronic device such as a projector, and an optical communication device.
 モバイル製品やプロジェクタなどの電子機器及び光通信機器等に、光学部品として、図14に示す鏡筒付きレンズユニット6が広く使われている。従来技術である特許文献1に記載された鏡筒付きレンズユニット6は、鏡筒7と、レンズ8と、鏡筒7とレンズ8を接合する低融点ガラス9から構成されている。 A lens unit 6 with a lens barrel shown in FIG. 14 is widely used as an optical component in mobile products, electronic devices such as projectors, and optical communication devices. A lens unit 6 with a lens barrel described in Patent Document 1 which is a prior art includes a lens barrel 7, a lens 8, and a low melting point glass 9 for bonding the lens barrel 7 and the lens 8.
鏡筒7の材料として、レンズ8の熱膨張係数よりも少なくとも20×10-7/℃以上高い熱膨張係数を有するオーステナイト系ステンレスSUS304、SUS316、SUS321が使用されている。 As a material of the lens barrel 7, austenitic stainless steel SUS304, SUS316, or SUS321 having a thermal expansion coefficient higher than that of the lens 8 by at least 20 × 10 -7 / ° C. is used.
 また、酸化鉛を含む低融点ガラス9が使用されており、人体に有害であると同時に環境を汚染する。 In addition, low melting point glass 9 containing lead oxide is used, which is harmful to human body and pollutes the environment.
また、鏡筒7とレンズ8を低融点ガラス9で接合する従来技術では、低融点ガラス9に関連する製造過程の不具合や低融点ガラス9自体の不具合が発生していた。例えば、特許文献2に記載されるように、酸化鉛が含有された低融点ガラス9は、水中もしくは高温高湿の環境下において、変性する場合があった。この変性した低融点ガラス9は剥離しやすく、剥離してレンズ8や光ファイバに付着し、透過光量を低減させていた。 Further, in the prior art in which the lens barrel 7 and the lens 8 are joined by the low melting point glass 9, a defect in the manufacturing process related to the low melting point glass 9 and a defect in the low melting point glass 9 itself have occurred. For example, as described in Patent Document 2, the low melting point glass 9 containing lead oxide may be denatured in water or under a high temperature and high humidity environment. The modified low melting point glass 9 is easily peeled off, peeled off and attached to the lens 8 or the optical fiber to reduce the amount of transmitted light.
特開平8-313779号公報JP-A-8-313779 特開2007-192990号公報JP 2007-192990 A
 酸化鉛を含む低融点ガラス9を使用しないで、筒状の鏡筒とレンズのみでレンズユニットを製作する製法は、前記レンズの材質として無鉛ガラスを使用するため処理温度が高温化した。そのため、従来技術のように、前記レンズの熱膨張係数よりも少なくとも20×10-7/℃以上高い熱膨張係数を有する金属で前記筒状の鏡筒を形成すると、前記レンズに大きな応力が生じ、複屈折等による性能劣化やクラック等の破損が発生した。 The manufacturing method of manufacturing a lens unit only with a cylindrical lens barrel and a lens without using low melting point glass 9 containing lead oxide has raised the processing temperature because lead-free glass is used as the material of the lens. Therefore, when the cylindrical barrel is formed of a metal having a thermal expansion coefficient higher by at least 20 × 10 −7 / ° C. or more than the thermal expansion coefficient of the lens as in the prior art, large stress occurs in the lens. And performance deterioration due to birefringence and breakage such as cracks occurred.
特許文献1に記載された従来技術では、鏡筒7の材料として、オーステナイト系ステンレスSUS304、SUS321が使用されていた。ところが、前記ステンレス鋼は、冷間加工(切削、冷間圧造等)を行なうとマルテンサイト変態を起し磁化することが知られている。 In the prior art described in Patent Document 1, austenitic stainless steel SUS304 and SUS321 are used as the material of the lens barrel 7. However, it is known that the stainless steel causes martensitic transformation and is magnetized when cold working (cutting, cold rolling, etc.) is performed.
よって、切削加工時に鏡筒7が磁化し、その後の工程で鏡筒7に磁性パーティクルが付着する。そして該磁性パーティクルが電子機器及び光通信機器等に持ち込まれ、電子機器等
の持ち運びの際の振動や機器内で可動するモータ等の影響で脱落し、光学部品に付着し光学性能を劣化させる問題があった。
Therefore, the lens barrel 7 is magnetized at the time of cutting, and magnetic particles adhere to the lens barrel 7 in the subsequent process. Then, the magnetic particles are brought into electronic devices and optical communication devices, and come off due to vibration when carrying the electronic devices or the like or a motor movable in the devices, and adhere to optical components to deteriorate optical performance. was there.
 本発明の目的は、レンズの性能劣化及び破損を防止するとともに筒状の鏡筒に付着するパーティクルを大幅に低減するレンズユニットを提供することである。 An object of the present invention is to provide a lens unit that prevents performance deterioration and breakage of a lens and significantly reduces particles attached to a cylindrical lens barrel.
本発明のレンズユニットは、筒状の鏡筒と前記筒状の鏡筒の内周面に固定されたレンズとからなり、前記固定は前記レンズが軟化点以上で溶融され常用温度で固化されてなり、前記筒状の鏡筒が非磁性体であること、前記筒状の鏡筒と前記レンズとの熱膨張係数の差が20×10-7/℃以下であること、前記筒状の鏡筒より前記レンズの熱膨張係数が小さいことを特徴とする。 The lens unit according to the present invention comprises a cylindrical lens barrel and a lens fixed to the inner peripheral surface of the cylindrical lens barrel, wherein the lens is melted at a softening point or higher and solidified at a common temperature. The cylindrical barrel being non-magnetic, the difference in thermal expansion coefficient between the cylindrical barrel and the lens being less than or equal to 20 × 10 −7 / ° C., the cylindrical mirror A thermal expansion coefficient of the lens is smaller than that of a tube.
 このような態様であれば、前記筒状の鏡筒が非磁性体からなるので、その切削加工時に磁化することがないので、その後の工程で前記筒状の鏡筒に付着する磁性パーティクルを大幅に低減できる。 In such an embodiment, since the cylindrical lens barrel is made of a nonmagnetic material and is not magnetized at the time of cutting, magnetic particles attached to the cylindrical lens barrel in the subsequent steps are significantly increased. Can be reduced to
 このような態様であれば、前記レンズに加重される応力は充分に小さいので、前記レンズは、複屈折等により性能を劣化させること及びクラック等で破損することはない。 In such an embodiment, since the stress applied to the lens is sufficiently small, the lens is not deteriorated in performance due to birefringence or the like and is not broken due to a crack or the like.
よって、本発明によれば、前記レンズの性能劣化や破損を防止するとともに前記筒状の鏡筒に付着するパーティクルを大幅に低減するレンズユニットを提供することができる。 Therefore, according to the present invention, it is possible to provide a lens unit that prevents the performance deterioration and breakage of the lens and significantly reduces particles attached to the cylindrical barrel.
前記筒状の鏡筒が、チタンまたはチタン合金であることが好ましい。
このような態様であれば、前記筒状の鏡筒は非磁性体であり、前記筒状の鏡筒と前記レンズとの熱膨張係数の差は20×10-7/℃以下であり、前記筒状の鏡筒より前記レンズの熱膨張係数は小さくなる。
The cylindrical barrel is preferably titanium or a titanium alloy.
In such an embodiment, the cylindrical lens barrel is a nonmagnetic material, and the difference in thermal expansion coefficient between the cylindrical lens barrel and the lens is 20 × 10 −7 / ° C. or less. The thermal expansion coefficient of the lens is smaller than that of a cylindrical lens barrel.
前記筒状の鏡筒とレンズが気密に接合されていることが好ましい。
このような態様であれば、気密封止を必要とする電子部品を製作できるとともに気密封止を必要とする電子機器及び光通信機器の筐体に取りつけることが可能である。
It is preferable that the cylindrical lens barrel and the lens be airtightly joined.
With such an aspect, it is possible to manufacture an electronic component that requires hermetic sealing and to attach it to a casing of an electronic device and an optical communication device that requires hermetic sealing.
前記筒状の鏡筒が円筒状であることが好ましい。
このような態様であれば、前記筒状の鏡筒が前記レンズを締め付ける応力が、前記筒状の鏡筒と前記レンズが接する面に沿って均一になるため、締め付けが効果的になるとともに前記レンズにクラックや割れ等の不具合が発生し難くなる。
It is preferable that the cylindrical lens barrel be cylindrical.
In such an embodiment, the stress by which the cylindrical lens barrel tightens the lens is uniform along the surface where the cylindrical lens barrel contacts the lens, and thus the tightening becomes effective. It becomes difficult to generate problems such as a crack and a crack in the lens.
前記レンズが非球面レンズであることが好ましい。
非球面レンズは、球面収差を抑えるのでプロジェクタなどの電子機器の像面を鮮明にし、光通信機器の結合効率も向上させる。
Preferably, the lens is an aspheric lens.
Since an aspheric lens suppresses spherical aberration, it sharpens the image plane of an electronic device such as a projector and also improves the coupling efficiency of the optical communication device.
前記筒状の鏡筒の前記レンズに接する部分の外径が、前記レンズの外径の20.5倍以下であることが好ましい。
この態様であれば、前記筒状の鏡筒が前記レンズを保持し且つ締め付ける応力を小さくできるので、前記レンズにクラックや割れ等の不具合が発生し難くなる。
It is preferable that an outer diameter of a portion of the cylindrical lens barrel in contact with the lens be equal to or less than 20.5 times an outer diameter of the lens.
In this aspect, since the stress that the cylindrical lens barrel holds and tightens the lens can be reduced, problems such as cracking and breakage are less likely to occur in the lens.
 本発明によれば、前記筒状の鏡筒が非磁性体からなるので、その切削加工時に磁化することがないので、その後の工程で前記筒状の鏡筒に付着する磁性パーティクルを大幅に低減できる。 According to the present invention, since the cylindrical lens barrel is made of a nonmagnetic material, it is not magnetized at the time of cutting, so magnetic particles attached to the cylindrical lens barrel in the subsequent steps are significantly reduced. it can.
本発明によれば、レンズに加重される応力は充分に小さいので、前記レンズは、その性能を劣化させること及びクラック等で破損をすることはない。 According to the present invention, since the stress applied to the lens is sufficiently small, the lens does not deteriorate its performance or break due to cracking or the like.
よって、本発明によれば、前記レンズの性能劣化や破損を防止するとともに前記筒状の鏡筒に付着するパーティクルを大幅に低減するレンズユニットを提供することが可能である。 Therefore, according to the present invention, it is possible to provide a lens unit which prevents the performance deterioration and breakage of the lens and significantly reduces the particles adhering to the cylindrical barrel.
第一の実施形態である非磁性鏡筒付きレンズユニットを上面側から見て示す平面略図である。5 is a schematic plan view showing the lens unit with a nonmagnetic barrel according to the first embodiment as viewed from the upper surface side. 第一の実施形態である非磁性鏡筒付きレンズユニットの図1におけるII-II線に沿って切断した断面略図である。FIG. 2 is a schematic cross-sectional view of the lens unit with a nonmagnetic barrel according to the first embodiment, taken along line II-II in FIG. 1; 第一の実施形態である非磁性鏡筒付きレンズユニットの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the lens unit with a nonmagnetic lens barrel which is 1st embodiment. 第一の実施形態である非磁性鏡筒付きレンズユニットをプロジェクタに搭載した第一の適用例を示す模式図である。It is a schematic diagram which shows the 1st application example which mounted the lens unit with a nonmagnetic lens barrel which is 1st embodiment in the projector. 第一の実施形態である非磁性鏡筒付きレンズユニットを、光通信用送受信モジュールに搭載した第二の適用例を示す模式図である。It is a schematic diagram which shows the 2nd application example which mounts the lens unit with a nonmagnetic lens barrel which is 1st embodiment in the transmission / reception module for optical communications. 温度が変化する時に生じる応力を計算するための説明図である。It is explanatory drawing for calculating the stress which arises when temperature changes. 第一の実施形態におけるレンズに加重される応力と鏡筒の外径との関係を示すグラフである。It is a graph which shows the relationship between the stress given to the lens in 1st embodiment, and the outer diameter of a lens barrel. 第一の実施形態である非磁性鏡筒付きレンズユニットの第一の変形例を上側から見て示す平面略図である。It is plane schematic which shows the 1st modification of the lens unit with a nonmagnetic lens barrel which is 1st embodiment seeing from an upper side. 第一の実施形態である非磁性鏡筒付きレンズユニットの第一の変形例であり、図8におけるIX-IX線に沿って切断した断面略図である。FIG. 9 is a first modified example of the lens unit with a nonmagnetic barrel according to the first embodiment, and is a schematic cross-sectional view taken along the line IX-IX in FIG. 8; 第一の実施形態である非磁性鏡筒付きレンズユニットの第二の変形例を上側から見て示す平面略図である。FIG. 13 is a schematic plan view showing a second modified example of the lens unit with a nonmagnetic barrel according to the first embodiment, as viewed from the upper side. 第一の実施形態である非磁性鏡筒付きレンズユニットの第二の変形例であり、図10におけるXI-XI線に沿って切断した断面略図である。11 is a second modified example of the lens unit with a nonmagnetic barrel according to the first embodiment, and is a schematic cross-sectional view taken along the line XI-XI in FIG. 第一の実施形態である非磁性鏡筒付きレンズユニットの第三の変形例を上側から見て示す平面略図である。It is plane schematic which shows the 3rd modification of the lens unit with a nonmagnetic barrel which is 1st embodiment seeing from an upper side. 第一の実施形態である非磁性鏡筒付きレンズユニットの第三の変形例であり、図12におけるXIII-XIII線に沿って切断した断面略図である。FIG. 13 is a third variant of the lens unit with a nonmagnetic barrel according to the first embodiment, and is a schematic sectional view taken along the line XIII-XIII in FIG. 12; 従来技術である鏡筒とレンズと低融点ガラスとから構成される鏡筒付きレンズユニットの断面略図である。It is a cross-sectional schematic drawing of the lens unit with a lens barrel comprised from the lens barrel which is a prior art, a lens, and low melting glass. 従来技術である鏡筒付きレンズユニットの鏡筒が磁化し磁性パーティクが付着した様子を示す説明図である。It is explanatory drawing which shows a mode that the lens barrel of the lens unit with a lens barrel which is prior art is magnetized, and a magnetic particle adheres.
図1、図2は、本発明を適用した第一の実施形態である非磁性鏡筒付きレンズユニット1を示す。非磁性鏡筒2は、円筒状であり、非磁性のチタンからなる。非磁性鏡筒2の内側に非球面レンズ3が設けられている。 FIG. 1 and FIG. 2 show a lens unit 1 with a nonmagnetic barrel, which is a first embodiment to which the present invention is applied. The nonmagnetic lens barrel 2 is cylindrical and made of nonmagnetic titanium. An aspheric lens 3 is provided inside the nonmagnetic lens barrel 2.
 本発明では、磁化率の絶対値が5×10-6cm3/g以下である物質を非磁性としている。 In the present invention, a substance having an absolute value of magnetic susceptibility of 5 × 10 −6 cm 3 / g or less is nonmagnetic.
第一の実施形態では、非磁性鏡筒2の材質はチタンとしたが、これに限られない。磁化率の絶対値が5×10-6cm3/g以下である物質から選択できる。チタン、ビスマス、タリウム、タングステン、タンタル、スズ、アルミニウム、クロム、マグネシウム、ガリ
ウム、ニオブ、ジルコニウム、ストロンチウム、モリブデン、イリジウム、オスミウム、レニウム、金、白金、亜鉛、銀、銅いずれかの金属またはふたつ以上からなる合金、前記金属及び前記合金に不純物を添加したものからも選択できる。また、非磁性のステンレス鋼からも選択できる。また、前記金属及び前記合金は、レンズとの熱膨張係数の差が20×10-7/℃以下であり、前記レンズより熱膨張係数が大きく、その融点が前記レンズの軟化点より大きいことが必要である。
In the first embodiment, although the material of the nonmagnetic lens barrel 2 is titanium, it is not limited thereto. It can be selected from materials having an absolute value of magnetic susceptibility of 5 × 10 −6 cm 3 / g or less. Titanium, bismuth, thallium, tungsten, tantalum, tin, aluminum, chromium, magnesium, gallium, niobium, zirconium, strontium, molybdenum, iridium, osmium, rhenium, gold, platinum, zinc, silver, copper, or two or more metals It can also be selected from alloys consisting of the above metals, and the above metals and those containing impurities added to the above alloys. It can also be selected from nonmagnetic stainless steel. The metal and the alloy have a difference in thermal expansion coefficient with the lens of 20 × 10 −7 / ° C. or less, and the thermal expansion coefficient is larger than that of the lens, and the melting point is larger than the softening point of the lens is necessary.
 現時点の公表されたデータから、非磁性の物質と前記レンズの硝種において、熱膨張係数の差が20×10-7/℃以下で、前記レンズより熱膨張係数が大きく、前記非磁性の物質の融点が前記レンズの軟化点より大きいことを満足する組み合わせは、表1に示すように、以下となる。銅と(株)住田光学ガラス製の硝種であるK-PKF80、K-GFK70、K-GFK68、クロムまたはチタンと(株)オハラ(株)製の硝種であるL-BAL35または住田光学ガラス製の硝種であるK-PBK40、K-VC89、非磁性であるSUS305、SUS316またはSUS316Lと(株)住田光学ガラス製の硝種であるK-CaFK95、K-PG325、K-PG375の組み合わせである。 According to the data published at the present time, the difference between the thermal expansion coefficient of the nonmagnetic substance and the glass type of the lens is 20 × 10 −7 / ° C. or less, and the thermal expansion coefficient of the nonmagnetic substance is larger than that of the lens. Combinations satisfying the melting point greater than the softening point of the lens, as shown in Table 1, are as follows. K-PKF80, K-GFK70, K-GFK68, which is a glass type made of Sumida Optical Glass Co., Ltd., L-BAL 35 which is a glass type of Ohara Co., Ltd., made of chromium or titanium, or made of Sumita Optical Glass It is a combination of K-PBK40 and K-VC89 which are glass types, SUS305, SUS316 or SUS316L which is nonmagnetic, and K-CaFK95, K-PG 325 and K-PG 375 which are glass types made by Sumita Optical Glass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第一の実施形態では非球面レンズ3及び円筒状の非磁性鏡筒2を設けたが、レンズの形状は非球面以外も可能であり、筒状の鏡筒の形状も円筒状以外も可能である。 In the first embodiment, the aspheric lens 3 and the cylindrical nonmagnetic lens barrel 2 are provided, but the shape of the lens may be other than the aspheric surface, and the shape of the cylindrical barrel may be other than cylindrical. is there.
第一の実施形態である非磁性鏡筒付きレンズユニット1の製造方法を図3により説明する。まず始めに、切削加工によって非磁性材に貫通孔を形成することで非磁性鏡筒2を製作する(a)。この非磁性鏡筒2をプレス装置に設置し、開口部からレンズ素材30を挿入し下型33の上に置き(b)、ヒータ31によってレンズ素材30の軟化点以上に加熱する(c)。次に、光学機能面形成部を有する上型32及び下型33によりレンズ素材30をプレスすることで光学機能面形成部の形状をレンズ素材30に転写する(d)。非球面レンズ3と非磁性鏡筒2とを一体化するとともに、光学機能面をも同時に形成する。次に、複数個の非磁性鏡筒付きレンズユニット1を成膜装置34に設置し、成膜源35を加熱する等によって前記光学機能面の表裏に光学機能膜を成膜する(e)。前記光学機能膜の材料としてはフッ化マグネシウムや二酸化珪素などの反射防止膜を形成する材料が用いられる。 A method of manufacturing the lens unit 1 with a nonmagnetic barrel according to the first embodiment will be described with reference to FIG. First, the nonmagnetic barrel 2 is manufactured by forming a through hole in the nonmagnetic material by cutting (a). The nonmagnetic lens barrel 2 is placed in a press, and the lens material 30 is inserted from the opening and placed on the lower mold 33 (b), and heated by the heater 31 to a temperature above the softening point of the lens material 30 (c). Next, the lens material 30 is pressed by the upper mold 32 and the lower mold 33 having the optically functional surface forming portion, thereby transferring the shape of the optically functional surface forming portion to the lens material 30 (d). As well as integrating the aspheric lens 3 and the nonmagnetic lens barrel 2 together, an optical function surface is simultaneously formed. Next, a plurality of lens units 1 with nonmagnetic lens barrels are installed in the film forming apparatus 34, and an optical function film is formed on the front and back of the optical function surface by heating the film forming source 35 (e). As a material of the optical function film, a material for forming an antireflective film such as magnesium fluoride or silicon dioxide is used.
 非磁性鏡筒2の熱膨張係数は、非球面レンズ3の熱膨張係数より大きくなるように選ばれている。プレス成形によって非球面レンズ3は非磁性鏡筒2と一体形成された後、レンズ素材30の軟化点以上から常用温度に戻る冷却過程で、非磁性鏡筒2は非球面レンズ3よりも大きく収縮するため、非球面レンズ3は非磁性鏡筒2に締め付けられ強固に及び気密に固定される。 The thermal expansion coefficient of the nonmagnetic lens barrel 2 is selected to be larger than the thermal expansion coefficient of the aspheric lens 3. After the aspheric lens 3 is integrally formed with the nonmagnetic lens barrel 2 by press molding, the nonmagnetic lens barrel 2 shrinks more than the aspheric lens 3 in the cooling process to return to normal temperature from the softening point of the lens material 30. For this purpose, the aspheric lens 3 is fastened to the nonmagnetic lens barrel 2 and firmly and airtightly fixed.
第一の実施形態では、低融点ガラス等の接着層を用いることなく、非球面レンズ3は非磁性鏡筒2に直接に強固に及び気密に固定される。 In the first embodiment, the aspheric lens 3 is directly and firmly fixed to the nonmagnetic barrel 2 firmly and airtightly without using an adhesive layer such as low melting point glass.
 図4は、第一の実施形態である非磁性鏡筒付きレンズユニット1を、画像表示装置であるプロジェクタ100に搭載した第一の適用例を示す模式図である。ランプ101からの光は、非磁性鏡筒付きレンズユニット1で集光され、モータ102aによって回転する三色に色分けされたカラーホイール102を通り、再び非磁性鏡筒付きレンズユニット1で集光され、独立に動く超微細な数十万~数百万個の鏡を備えた光半導体103で反射され、投射レンズ104によってスクリーンに投影される。 FIG. 4 is a schematic view showing a first application example in which the lens unit 1 with a nonmagnetic barrel according to the first embodiment is mounted on a projector 100 as an image display device. The light from the lamp 101 is collected by the lens unit 1 with nonmagnetic lens barrel, passes through the color wheel 102 which is color-coded into three colors rotated by the motor 102a, and is again collected by the lens unit 1 with nonmagnetic lens barrel. It is reflected by an optical semiconductor 103 equipped with hundreds of thousands to millions of mirrors which move independently, and is projected onto a screen by a projection lens 104.
ところで、磁性体の金属及びその金属屑は、金属加工で磁化することが一般的に知られている。これは、金属加工で発生する熱により前記金属及び前記金属屑の温度がキュリー温度を越え、駆動モータ等からの漏洩磁場、地磁気等によって磁化すると考えられる。 By the way, it is generally known that the metal of the magnetic body and the metal scrap thereof are magnetized by metal processing. It is considered that the temperature of the metal and the metal scraps exceeds the Curie temperature due to the heat generated by the metal processing, and magnetization is caused by the leakage magnetic field from the drive motor or the like, the geomagnetism, or the like.
Ni含有量が少ないオーステナイト系ステンレスは、冷間加工(切削、冷間圧造等)を行なうとマルテンサイト変態を起し磁化することが知られている。この磁化は、化学成分と冷間加工率とに関連して影響を受ける。よって、Ni含有量が少ない、オーステナイト系ステンレスSUS304、SUS321には、加工量に伴いマルテンサイト変態し磁化するものがある。 It is known that austenitic stainless steel having a small Ni content causes martensitic transformation and is magnetized when cold working (cutting, cold heading, etc.) is performed. This magnetization is influenced in relation to the chemical composition and the cold working rate. Therefore, some austenitic stainless steels SUS304 and SUS321, which have a low Ni content, may undergo martensitic transformation and magnetization with the amount of processing.
本発明による第一の実施形態では、非磁性鏡筒2はチタンで形成されているので、非磁性であるとともに冷間加工等により磁化することはない。 In the first embodiment of the present invention, since the nonmagnetic lens barrel 2 is made of titanium, it is nonmagnetic and is not magnetized by cold working or the like.
 特許文献1に記載されたオーステナイト系ステンレスSUS304、SUS321から形成された鏡筒7は切削加工時に磁化し、図15に示すように、その後の工程で磁性パーティクル202が鏡筒7に付着し、鏡筒付きレンズユニット6をプロジェクタ100に搭載すると、磁性パーティクル202がプロジェクタ100の筐体内に持ち込まれることがあった。 The lens barrel 7 formed of austenitic stainless steel SUS 304 and SUS 321 described in Patent Document 1 is magnetized at the time of cutting, and as shown in FIG. 15, the magnetic particles 202 adhere to the lens barrel 7 in the subsequent steps, When the cylindrical lens unit 6 is mounted on the projector 100, the magnetic particles 202 may be brought into the casing of the projector 100.
プロジェクタ100の持ち運び、取り扱い及びモータ102aで発生する振動により、鏡筒7に付着した磁性パーティクル202は、鏡筒7より脱落しレンズ8や投射レンズ104等の表面に付着する。 The magnetic particles 202 attached to the lens barrel 7 fall off from the lens barrel 7 and adhere to the surfaces of the lens 8 and the projection lens 104 due to the carrying and handling of the projector 100 and the vibration generated by the motor 102a.
 また、図4に示すように、非磁性鏡筒付きレンズユニット1の近傍にはモータ102aがあり、この永久磁石からの漏洩磁場は、常時、非磁性鏡筒付きレンズユニット1に印加されている。従来技術の磁化した鏡筒7の場合には、この漏洩磁場によって消磁され、磁性パーティクル202の鏡筒7に対する付着力が弱まり、磁性パーティクル202がレンズ8や投射レンズ104等の表面へ付着し易くなる。 Further, as shown in FIG. 4, there is a motor 102 a in the vicinity of the lens unit 1 with nonmagnetic barrel, and the leakage magnetic field from this permanent magnet is always applied to the lens unit 1 with nonmagnetic barrel. . In the case of the magnetized lens barrel 7 of the prior art, this leakage magnetic field demagnetizes the adhesive force of the magnetic particles 202 to the lens barrel 7 weakens, and the magnetic particles 202 easily adhere to the surfaces of the lens 8 and the projection lens 104 etc. Become.
 モータ102aをシールドすれば前記問題は低減するが、これは小型化に反する。逆に言えば、非磁性鏡筒付きレンズユニット1は、シールドをしないで前記不具合を防ぐことができるので、小型化に適している。 Shielding the motor 102a reduces the problem, but this is against miniaturization. Conversely, the nonmagnetic lens barrel-equipped lens unit 1 is suitable for downsizing because it can prevent the above problems without shielding.
上述のように、磁性パーティクル202が非球面レンズ3や投射レンズ104等の表面に付着すると、画像表示装置であるプロジェクタ100の画像欠陥となり問題であった。ところが、本発明によれば、非磁性鏡筒付きレンズユニット1は磁化しない非磁性鏡筒2を備えているために、磁性パーティクル202等が非磁性鏡筒2に付着することは、従来技術に比べて大幅に低減された。 As described above, when the magnetic particles 202 adhere to the surface of the aspheric lens 3 or the projection lens 104, the image defect of the projector 100 which is an image display device occurs. However, according to the present invention, since the lens unit 1 with the nonmagnetic lens barrel is provided with the nonmagnetic lens barrel 2 that does not magnetize, adhesion of the magnetic particles 202 and the like to the nonmagnetic lens barrel 2 corresponds to the prior art. It is significantly reduced compared to.
よって、本発明によれば、非磁性鏡筒2を備えることで、筒状の鏡筒に磁性パーティク202が付着することを大幅に低減するレンズユニットを提供することができ、電子機器及び光通信機器等への磁性パーティクル202の持ち込みを大幅に低減した。 Therefore, according to the present invention, by providing the nonmagnetic lens barrel 2, it is possible to provide a lens unit that significantly reduces the adhesion of the magnetic particles 202 to the cylindrical lens barrel, and the electronic device and the light can be provided. The carry-in of the magnetic particles 202 to a communication device etc. is greatly reduced.
また、第一の適用例である図4に示すカラーホイール102には、回転角度の検出のための磁気センサ及びブラシレスモータ用磁気センサが搭載されている。ブラシレスモータは、モータ102aが高速回転するために高性能・長寿命の要求から使用され、ブラシレスモータには回転角度の検出のために磁気センサが搭載されている。 In addition, a magnetic sensor for detecting a rotation angle and a magnetic sensor for a brushless motor are mounted on the color wheel 102 shown in FIG. 4 which is a first application example. The brushless motor is used from the requirement of high performance and long life because the motor 102a rotates at a high speed, and a magnetic sensor is mounted on the brushless motor to detect the rotation angle.
鏡筒付きレンズユニット6を、プロジェクタ100に搭載した場合、磁化した鏡筒7からの磁界が、前記磁気センサの感受面に作用して出力電圧が発生する。この出力電圧が回
転角度の誤差となり、カラーホイール102の高精度な制御が損なわれ、その結果、プロジェクタ100に対する高輝度、且つ高画質な要求が損なわれていた。
When the lens unit with lens barrel 6 is mounted on the projector 100, the magnetic field from the magnetized lens barrel 7 acts on the sensing surface of the magnetic sensor to generate an output voltage. The output voltage is an error of the rotation angle, and the high-precision control of the color wheel 102 is lost. As a result, high brightness and high image quality requirements for the projector 100 are lost.
本発明によれば、非磁性鏡筒付きレンズユニット1は磁化しないので、前記磁気センサから誤差となる出力電圧は発生しない。よって、カラーホイール102の高精度な制御が可能となり、高輝度、且つ高画質なプロジェクタ100を提供することができる。 According to the present invention, since the lens unit 1 with a nonmagnetic lens barrel is not magnetized, an output voltage causing an error is not generated from the magnetic sensor. Therefore, the color wheel 102 can be controlled with high accuracy, and the projector 100 with high brightness and high image quality can be provided.
第一の適用例として画像表示装置であるプロジェクタ100の例を説明したが、プロジェクタ100に限定されるものではない。例えば、近年は、モバイル製品や高輝度の半導体レーザを光源に使うことで小型化したマイクロプロジェクタなどの持ち運び容易な製品に鏡筒付きレンズユニットが使用され始めている。これらの製品に適用しても、本発明は有効である。 Although the example of the projector 100 which is an image display apparatus was demonstrated as a 1st application example, it is not limited to the projector 100. FIG. For example, in recent years, a lens unit with a lens barrel has begun to be used for a portable product such as a microprojector miniaturized by using a mobile product or a high-intensity semiconductor laser as a light source. The present invention is effective even when applied to these products.
マイクロプロジェクタとしては、例えば、三原色のレーザ光が照明レンズで垂直方向の一次元照明光にされ、この一次元照明光が微細なMEMS(Micro Electro-Mechanical Systems)デバイスで回折され一次元像となり、この一次元像の回折光のみが投射レンズを通り集光され、走査ミラーで水平方向に走査されて二次元像がスクリーンに投影されるものがある。 As a micro-projector, for example, laser light of three primary colors is converted into one-dimensional illumination light in the vertical direction by an illumination lens, and this one-dimensional illumination light is diffracted by a fine MEMS (Micro Electro-Mechanical Systems) device to form a one-dimensional image, Only one diffracted light of this one-dimensional image may be collected through the projection lens and scanned horizontally by a scanning mirror to project a two-dimensional image on the screen.
 近年、大量の情報を高速に授受するために、光通信網の需要が高まっている。図5は、第一の実施形態である非磁性鏡筒付きレンズユニット1を、このような光通信における送受信モジュール300に搭載した第二の適用例である。 In recent years, the demand for optical communication networks is increasing in order to exchange a large amount of information at high speed. FIG. 5 shows a second application example in which the lens unit 1 with a nonmagnetic barrel according to the first embodiment is mounted on the transmission / reception module 300 in such optical communication.
発光素子であるレーザーダイオード303から射出された光は、非磁性鏡筒付きレンズ
ユニット1によって集光され合波フィルタ302を通り光ファイバ301に入射するとともに、光ファイバ301から射出された光は、合波フィルタ302によって反射され非磁性鏡筒付きレンズユニット1によって集光され受光素子であるフォトダイオード304に入射する。
The light emitted from the laser diode 303, which is a light emitting element, is collected by the lens unit 1 with a nonmagnetic barrel, passes through the multiplexing filter 302, enters the optical fiber 301, and the light emitted from the optical fiber 301 is The light is reflected by the wave combining filter 302, collected by the lens unit 1 with a nonmagnetic lens barrel, and incident on a photodiode 304 which is a light receiving element.
第一の適用例と同じように、鏡筒付きレンズユニット6を送受信モジュール300に搭載した場合には、送受信モジュール300に発生する振動等により、鏡筒7に付着した磁性パーティクル202等が、鏡筒7より脱落しレンズ8や合波フィルタ302等の表面に付着することが考えられる。この結果、光強度が劣化する、また、磁性パーティクル202等が大きい場合には光が送受信されない故障の原因となる。 As in the first application example, when the lens unit 6 with the lens barrel is mounted on the transmission / reception module 300, the magnetic particles 202 or the like attached to the lens barrel 7 due to the vibration or the like generated in the transmission / reception module 300 It is conceivable that the ink drops off from the cylinder 7 and adheres to the surface of the lens 8 or the multiplexing filter 302 or the like. As a result, the light intensity is degraded, and when the magnetic particles 202 or the like are large, this causes a failure in which light is not transmitted or received.
本発明によれば、非磁性鏡筒2に付着する磁性パーティクル202を大幅に低減できるので、鏡筒付きレンズユニット6を光通信機器である送受信モジュール300に搭載することで発生する光強度が劣化する、また、磁性パーティクル202が大きい場合には光が送受信されないと言う不具合を大幅に低減することができた。 According to the present invention, since the magnetic particles 202 attached to the nonmagnetic lens barrel 2 can be significantly reduced, the light intensity generated by mounting the lens unit 6 with lens barrel on the transmission / reception module 300 which is an optical communication device is deteriorated. In addition, when the magnetic particles 202 are large, it is possible to greatly reduce the problem that light is not transmitted and received.
 本発明によれば、上述した製造方法によって、例えば、図1に示すように非磁性鏡筒2と非球面レンズ3とのみで一体化された非磁性鏡筒付きレンズユニット1が得られる。と
ころが、従来技術では、図14に示すように鏡筒7、レンズ8及び低融点ガラス9から鏡筒付きレンズユニット6が構成されている。
According to the present invention, the lens unit 1 with a nonmagnetic barrel integrated with only the nonmagnetic barrel 2 and the aspheric lens 3 as shown in FIG. However, in the prior art, as shown in FIG. 14, the lens unit 6 with a lens barrel is composed of the lens barrel 7, the lens 8 and the low melting point glass 9.
 また、特許文献2に記載されるように、酸化鉛を含有した低融点ガラス9は、湿気に弱く、時間が経過するにつれて変化し、表面に微細なクラックが入る。また、低融点ガラス9は、微細なクラックによって剥離する。剥離した低融点ガラス9は、レンズ8に付着し、その表面に微細なクラックが入ることで白濁し、レンズ8の透明度を阻害する。また、剥離によってレンズ接合強度が低下し、甚だしい場合にはレンズ8の脱落が生じることさえある。 Further, as described in Patent Document 2, the low melting point glass 9 containing lead oxide is weak to moisture, changes as time passes, and a fine crack is formed on the surface. In addition, the low melting point glass 9 peels off due to a fine crack. The peeled low melting point glass 9 adheres to the lens 8 and becomes turbid due to the minute cracks on the surface thereof, and the transparency of the lens 8 is inhibited. In addition, the peeling off of the lens reduces the bonding strength of the lens, and in extreme cases, the lens 8 may even come off.
 本発明によれば、低融点ガラス9を含まないので、低融点ガラス9に関連する製造過程の不具合や低融点ガラス9自体の不具合が発生することはない。 According to the present invention, since the low melting point glass 9 is not included, a defect of the manufacturing process related to the low melting point glass 9 and a defect of the low melting point glass 9 itself do not occur.
特許文献1に記載される従来技術では、レンズ8とレンズ8より僅かに大きい内径を有する鏡筒7と低融点ガラス9とを、低融点ガラス9が融ける450℃まで加熱昇温させ、低融点ガラス9を鏡筒7とレンズ8との隙間に流入させ充填させた後に、常用温度まで冷却することにより固定していた。その際、低融点ガラス9の熱膨張係数を鏡筒7より小さくレンズ8より大きくすることで、鏡筒7の収縮によるレンズ8への応力を緩和していた。 In the prior art described in Patent Document 1, the lens 8 and the lens barrel 7 having an inner diameter slightly larger than the lens 8 and the low melting glass 9 are heated to 450 ° C. at which the low melting glass 9 melts. After the glass 9 was introduced into the gap between the lens barrel 7 and the lens 8 and filled, the glass 9 was fixed by cooling to a normal temperature. At this time, by making the thermal expansion coefficient of the low melting point glass 9 smaller than that of the barrel 7 and larger than that of the lens 8, the stress on the lens 8 due to the contraction of the barrel 7 is relaxed.
 本発明によれば、鉛を含む低融点ガラスを使用しないで、例えば、図1に示すように、非磁性鏡筒2と非球面レンズ3とのみで非磁性鏡筒付きレンズユニット1を形成する。そのため、図3に示す上述した製造方法では、レンズ素材30の軟化点程度に加熱する必要がある。第一の実施形態では、レンズ素材30として無鉛ガラス(株式会社オハラ製:L-BAL35)を使用しており、その軟化点は619℃である。 According to the present invention, the lens unit 1 with nonmagnetic barrel is formed only with the nonmagnetic barrel 2 and the aspheric lens 3 as shown in FIG. 1, for example, without using low melting point glass containing lead. . Therefore, in the above-described manufacturing method shown in FIG. 3, it is necessary to heat the lens material 30 to about the softening point. In the first embodiment, lead-free glass (manufactured by OHARA INC .: L-BAL35) is used as the lens material 30, and its softening point is 619 ° C.
 第一の実施形態では、レンズ素材30として無鉛ガラス(株式会社オハラ製:L-BAL35)を使用しているが、これに限定されるものではない。筒状の鏡筒との熱膨張係数の差が20×10-7/℃以下であり、且つ前記筒状の鏡筒より熱膨張係数が小さい、無鉛ガラスなら使用可能である。 In the first embodiment, lead-free glass (manufactured by OHARA INC .: L-BAL 35) is used as the lens material 30. However, the present invention is not limited to this. It is possible to use any lead-free glass which has a difference in thermal expansion coefficient of 20 × 10 −7 / ° C. or less from the cylindrical barrel and a thermal expansion coefficient smaller than that of the cylindrical barrel.
 本発明は、特許文献1に記載される従来技術に比べて、製造方法が高温化する。よって、特許文献1に記載される従来技術のように、レンズの熱膨張係数よりも少なくとも20×10-7/℃以上高い熱膨張係数を有する材料で筒状の鏡筒を形成すると、前記レンズに大きな応力が生じ、複屈折等による性能劣化やクラック等の破損が発生した。 As compared with the prior art described in Patent Document 1, the present invention raises the temperature of the manufacturing method. Therefore, as in the prior art described in Patent Document 1, when the cylindrical lens barrel is formed of a material having a thermal expansion coefficient higher by at least 20 × 10 −7 / ° C. or more than the thermal expansion coefficient of the lens, the lens In this case, large stress was generated, and performance deterioration due to birefringence etc. and breakage such as cracks occurred.
 よって、本発明によれば、前記筒状の鏡筒と前記レンズとの熱膨張係数の差が20×10-7/℃以下であること及び前記筒状の鏡筒より前記レンズの熱膨張係数が小さいことが必要であった。このことを、以下に説明する。 Therefore, according to the present invention, the difference in thermal expansion coefficient between the cylindrical lens barrel and the lens is 20 × 10 −7 / ° C. or less, and the thermal expansion coefficient of the lens from the cylindrical lens barrel Needs to be small. This is explained below.
 図6に示す前記レンズである円柱50と前記筒状の鏡筒である円筒51の構成で、円柱50の軟化点から常用温度(25℃)に冷却された時に、円柱50と円筒51に加重される応力を計算する。ここでは、計算を簡単にするために、前記レンズを円柱50に、前記筒状の鏡筒を円筒51としたが、実際的に問題はないと考える。ただし、α=熱膨張係数、T=軟化点-25、σ=応力、E=ヤング率であり、添字の1は円柱を、添字の2は円筒を意味する。また、添字のzはz軸方向、添字のrはr軸方向を意味する。Lは、円柱50と円筒51のz軸方向の長さであり、D1は円柱50の外径、D2は円筒51の外径である。 In the configuration of the cylinder 50 which is the lens shown in FIG. 6 and the cylinder 51 which is the cylindrical lens barrel, the cylinder 50 and the cylinder 51 are weighted when cooled from the softening point of the cylinder 50 to a common temperature (25 ° C.) Calculate the stress to be Here, in order to simplify the calculation, although the lens is a cylinder 50 and the cylindrical barrel is a cylinder 51, it is considered that there is practically no problem. Where α = coefficient of thermal expansion, T = softening point-25, σ = stress, E = Young's modulus, subscript 1 means cylinder, and subscript 2 means cylinder. The subscript z means the z-axis direction, and the subscript r means the r-axis direction. L is the length in the z-axis direction of the cylinder 50 and the cylinder 51, D1 is the outer diameter of the cylinder 50, and D2 is the outer diameter of the cylinder 51.
z軸方向について、熱による収縮長さ=L×α×T、応力による収縮長さ=L×σ/Eであり、円柱50と円筒51の収縮長さは同じなので
 L×(α1×T+σ1z/E1)=L×(α2×T+σ2z/E2)      (1)
 外力は加重されていないので、
S1×σ1z+S2×σ2z=0                      (2)ただし、S1=円柱50の断面積、S2=円筒50の断面積である。
式(1)と式(2)から
σ1z=S2×E1×E2×(α2-α1)×T/(S1×E1+S2×E2) (3)σ2z=-S1×E1×E2×(α2-α1)×T/(S1×E1+S2×E2)(4)と求まる。
In the z-axis direction, thermal contraction length = L × α × T, stress contraction length = L × σ / E, and since the contraction lengths of the cylinder 50 and the cylinder 51 are the same, L × (α1 × T + σ1z / E1) = L × (α2 × T + σ2z / E2) (1)
Because the external force is not loaded,
S1 × σ1z + S2 × σ2z = 0 (2) where S1 = the cross sectional area of the cylinder 50, and S2 = the cross sectional area of the cylinder 50.
From the equations (1) and (2), σ 1 z = S 2 × E 1 × E 2 × (α 2 −α 1) × T / (S 1 × E 1 + S 2 × E 2) (3) σ 2 z = −S 1 × E 1 × E 2 × (α 2 −α 1) × T / (S1 × E1 + S2 × E2) (4) is obtained.
r軸方向について、熱による収縮長さ=D1×α×T、応力による収縮長さ=D1×σ
/Eであり、円柱50の外径と円筒51の内径の収縮長さは同じなので、
D1×(α1×T+σ1r/E1)=D1×(α2×T+σ2r/E2)      (5)
外力は加重されていないので、
π×D1×L×(σ1r+σ2r)=0                   (6)式(5)と式(6)から
σ1r=E1×E2×(α2-α1)×T/(E1+E2)            (7)
σ2r=-E1×E2×(α2-α1)×T/(E1+E2)           (8)
と求まる。
Thermal contraction length = D1 × α × T, stress contraction length = D1 × σ in the r-axis direction
Because the outer diameter of the cylinder 50 and the contraction length of the inner diameter of the cylinder 51 are the same,
D1 × (α1 × T + σ1r / E1) = D1 × (α2 × T + σ2r / E2) (5)
Because the external force is not loaded,
From the equation (5) and the equation (6), .sigma.1r = E1.times.E2.times. (. alpha.2-.alpha.1) .times.T / (E1 + E2) (7) .pi..times.D1.times.L.times. (. sigma.1 r + .sigma.2 r) = 0
σ 2 r = −E 1 × E 2 × (α 2 −α 1) × T / (E 1 + E 2) (8)
It is determined.
第一の実施形態における、前記レンズである円柱50に加重される応力σ1zと応力σ1rを計算する。円柱50は無鉛ガラス(株式会社オハラ製:L-BAL35)からなり、円筒51はチタンからなる。L-BAL35の軟化点は619℃であり、T=619℃-25℃(常用温度)=594℃である。α1=81×10-7/℃、α2=84×10-7/℃、E1=10.08×1010N/m2、E2=10.63×1010N/m2である。また、D1=0.0038m、D2=0.005mであり、S1=π×(D1/2)×(D1/2)、S2=π×(D2/2)×(D2/2)-π×(D1/2)×(D1/2)である。これらの値を、式(3)と式(7)に代入して計算すると、
σ1z=7.8×106N/m2
σ1r=9.2×106N/m2
と求まる。
In the first embodiment, stress σ 1 z and stress σ 1 r to be applied to the cylinder 50 as the lens are calculated. The cylinder 50 is made of lead-free glass (manufactured by OHARA INC .: L-BAL 35), and the cylinder 51 is made of titanium. The softening point of L-BAL 35 is 619 ° C., and T = 619 ° C.-25 ° C. (normal temperature) = 594 ° C. α1 = 81 × 10 -7 / ℃ , a α2 = 84 × 10 -7 /℃,E1=10.08×10 10 N / m 2, E2 = 10.63 × 10 10 N / m 2. Also, D1 = 0.0038 m, D2 = 0.005 m, S1 = π × (D1 / 2) × (D1 / 2), S2 = π × (D2 / 2) × (D2 / 2) −π × It is (D1 / 2) x (D1 / 2). Substituting these values into Equation (3) and Equation (7),
σ 1 z = 7.8 × 10 6 N / m 2
σ 1 r = 9.2 × 10 6 N / m 2
It is determined.
 ところが、特許文献1に記載された従来技術のように、円筒51にオーステナイト系ステンレスSUS304を使用すると、α2=184×10-7/℃、E2=19.3×1010N/m2であり、他は上記の値を使い計算すると、
σ1z=3.6×108N/m2
σ1r=4.1×108N/m2
と求まる。
However, as in the prior art described in Patent Document 1, when using austenitic stainless steel SUS304 for the cylinder 51, α2 = 184 × 10 −7 / ° C., E 2 = 19.3 × 10 10 N / m 2 , Others are calculated using the above values,
σ 1 z = 3.6 × 10 8 N / m 2
σ 1 r = 4.1 × 10 8 N / m 2
It is determined.
よって、本発明のように円筒51をチタンから形成するのに比べて、特許文献1に記載
のオーステナイト系ステンレスSUS304で形成すると、円柱50に加重される応力がほぼ100倍大きくなり、第一の実施形態である非球面レンズ3に、その性能劣化やクラック等の破損が発生した。
Therefore, when the austenitic stainless steel SUS304 described in Patent Document 1 is used to form the cylinder 51 from titanium as in the present invention, the stress applied to the cylinder 50 is approximately 100 times greater. In the aspheric lens 3 according to the embodiment, damage such as performance deterioration and cracks occurred.
非特許文献1に破壊する直前の最大の引張り応力である引張り強さが示されている。引張り強さは機械的強度とも言われ、本発明では機械的強度と記述した。この非特許文献1によれば、ガラスの機械的強度は、3×107~9×107N/m2である。本発明の実施
形態1の応力σ1zと応力σ1rはガラスの機械的強度以下であるが、特許文献1に記載のオーステナイト系ステンレスSUS304を使用すると機械的強度を越えてしまう。
Non-Patent Document 1 shows tensile strength which is the maximum tensile stress immediately before breaking. The tensile strength is also referred to as mechanical strength, and is described as mechanical strength in the present invention. According to this Non-Patent Document 1, the mechanical strength of the glass is 3 × 10 7 to 9 × 10 7 N / m 2 . Although the stress σ 1 z and the stress σ 1 r in the first embodiment of the present invention are equal to or less than the mechanical strength of glass, the mechanical strength is exceeded when using austenitic stainless steel SUS 304 described in Patent Document 1.
 ところで、α2=81×10-7/℃(L-BAL35と同じ)+20×10-7/℃、E2=10.63×1010N/m2(チタンと同じ)とし、他は第一の実施形態の数値を使い計算すると、
σ1z=5.2×107N/m2
σ1r=6.2×107N/m2
となる。この値は、ガラスの機械的強度とほぼ同じである。
Incidentally, the α2 = 81 × 10 -7 / ℃ ( same as L-BAL35) + 20 × 10 -7 /℃,E2=10.63×10 10 N / m 2 ( same as titanium) and the other first If it calculates using the numerical value of the embodiment,
σ 1 z = 5.2 × 10 7 N / m 2
σ 1 r = 6.2 × 10 7 N / m 2
It becomes. This value is approximately the same as the mechanical strength of the glass.
このように、前記筒状の鏡筒と前記レンズとの熱膨張係数の差が20×10-7/℃以下であること及び前記筒状の鏡筒より前記レンズの熱膨張係数が小さくすることで、前記レンズを前記筒状の鏡筒に強固に固定することができるとともに、前記レンズに加重される応力をほぼガラスの機械的強度以下とすることができた。 Thus, the difference in thermal expansion coefficient between the cylindrical barrel and the lens is 20 × 10 −7 / ° C. or less, and the thermal expansion coefficient of the lens is smaller than that of the cylindrical barrel. Thus, the lens can be firmly fixed to the cylindrical barrel, and the stress applied to the lens can be made approximately equal to or less than the mechanical strength of the glass.
さて、式(3)を見て分かるように、前記筒状の鏡筒の断面積S2を小さくすると、z軸方向のレンズに加重される応力σ1zは小さくなる。よって、前記レンズに機械的強度以上に応力が加重されて破壊することを防止するためには、前記筒状の鏡筒の断面積S2を小さくすることが有効である。 Now, as can be seen from the equation (3), when the cross-sectional area S2 of the cylindrical barrel is reduced, the stress σ 1 z applied to the lens in the z-axis direction decreases. Therefore, it is effective to reduce the cross-sectional area S2 of the cylindrical barrel in order to prevent the lens from being stressed by mechanical stress or more and broken.
 一方、r軸方向のレンズに加重される応力σ1rは、形状には依存しなく、熱膨張係数、ヤング率及び軟化点に依存している。よって、r軸方向のレンズに加重される応力σ1rを小さくするためには、前記レンズ及び前記筒状の鏡筒の材質を適切に選択する必要がある。 On the other hand, the stress σ 1 r applied to the lens in the r-axis direction does not depend on the shape but depends on the thermal expansion coefficient, the Young's modulus and the softening point. Therefore, in order to reduce the stress σ 1 r applied to the lens in the r-axis direction, it is necessary to appropriately select the material of the lens and the cylindrical barrel.
図7に、式(3)、式(7)に、第一の実施形態における数値を代入して計算し、前記レンズに加重される応力と前記筒状の鏡筒の外径との関係を示した。ただし、α1=81×10-7/℃、α2=84×10-7/℃、T=軟化点-25=614-25=594℃、E1=10.08×1010N/m2、E2=10.63×1010N/m2、また、D1=3.8×10-3mであるのでS1=1.13×10-52である。 The numerical values in the first embodiment are substituted for the equations (3) and (7) in FIG. 7 to calculate the relationship between the stress applied to the lens and the outer diameter of the cylindrical lens barrel. Indicated. However, α1 = 81 × 10 −7 / ° C., α2 = 84 × 10 −7 / ° C., T = softening point −25 = 614−25 = 594 ° C., E1 = 10.08 × 10 10 N / m 2 , E2 Since 10.63 × 10 10 N / m 2 and D 1 = 3.8 × 10 −3 m, S 1 = 1.13 × 10 −5 m 2 .
図7を見ると、前記レンズ及び前記筒状の鏡筒の材質で決まる応力σ1rは9.2×106N/m2と一定であり、前記筒状の鏡筒の外径が小さくなるに従い応力σ1zは小さくなる。即ち、前記レンズ及び前記筒状の鏡筒の材質を適切に選んで応力σ1rを小さくし、前記筒状の鏡筒の形状を
σ1z≦σ1r                               (9)
となるように選べば、前記レンズに加重される応力を小さくできるので、軟化点から常用温度(25℃)への冷却で生じる応力による前記レンズの破壊を抑制することができる。この場合、前記筒状の鏡筒に加重される応力は大きくなるが、前記筒状の鏡筒は前記レンズに比べ機械的強度が大きいこと、また、この大きくなった応力が前記筒状の鏡筒を変形させ前記レンズに加重される応力を緩和するので好ましい。
Referring to FIG. 7, the stress σ 1 r determined by the material of the lens and the cylindrical barrel is constant at 9.2 × 10 6 N / m 2, and as the outer diameter of the cylindrical barrel decreases. The stress σ 1 z decreases. That is, the material of the lens and the cylindrical barrel is appropriately selected to reduce the stress σ 1 r, and the shape of the cylindrical barrel is σ 1 z ≦ σ 1 r (9)
By selecting so that the stress applied to the lens can be reduced, it is possible to suppress the breakage of the lens due to the stress caused by the cooling from the softening point to the ordinary temperature (25 ° C.). In this case, the stress applied to the cylindrical lens barrel is increased, but the cylindrical lens barrel has higher mechanical strength than the lens, and the increased stress is applied to the cylindrical mirror. It is preferable because the tube is deformed to relieve the stress applied to the lens.
式(9)に、式(3)、式(7)を代入して、両辺をE1×E2×(α2-α1)×Tで割って、
S2/(S1×E1+S2×E2)≦1/(E1+E2)
となり、両辺を整理すると、
S2≦S1 
となる。次に、
S1=π×(D1/2)×(D1/2)、S2=π×(D2/2)×(D2/2)-π×
(D1/2)×(D1/2)であるので、
D2≦20.5×D1                            (10)
を得る。よって、前記筒状の鏡筒の外径(D2)は、前記レンズの外径(D1)を20.5倍した値よりも小さく選ぶことが適切である。
Substituting the equations (3) and (7) into the equation (9), dividing both sides by E1 × E2 × (α2-α1) × T,
S2 / (S1 × E1 + S2 × E2) ≦ 1 / (E1 + E2)
If you arrange both sides,
S2 ≦ S1
It becomes. next,
S1 = π × (D1 / 2) × (D1 / 2), S2 = π × (D2 / 2) × (D2 / 2) −π ×
Since (D1 / 2) × (D1 / 2),
D2 ≦ 2 0.5 × D1 (10)
Get Therefore, the outer diameter of said tubular barrel (D2), it is appropriate to choose less than the value that is 2 to 0.5 times the outer diameter (D1) of the lens.
上述したように、軟化点から常用温度(25℃)への冷却で生じる応力を小さくするためには、前記レンズが接する前記筒状の鏡筒の外径を小さくすれば良い。また、冶工具等で取り扱い易くするためには、突出部が設けられて前記筒状の鏡筒の外径が大きい方が好ましい。この二つを両立するための変形例を、図8、図10、図12に平面略図、図9、図11、図13に断面略図によって示した。これらの変形例では、筒状の鏡筒に対し前記レンズに接する部分の外径は小さく、他の部分に大きい外径を設けている。 As described above, in order to reduce the stress caused by the cooling from the softening point to the ordinary temperature (25 ° C.), the outer diameter of the cylindrical barrel in contact with the lens may be reduced. Moreover, in order to make it easy to handle with a jig etc., it is preferable that a protrusion is provided and the outside diameter of the cylindrical lens barrel is large. The modified example for making these two compatible is shown by plane schematic drawing in FIG.8, FIG.10, FIG.12, and the cross-sectional schematic drawing in FIG.9, FIG.11, FIG.13. In these modifications, the outer diameter of the portion in contact with the lens is small with respect to the cylindrical lens barrel, and the large outer diameter is provided in the other portion.
1 非磁性鏡筒付きレンズユニット
2 非磁性鏡筒
3 非球面レンズ
6 鏡筒付きレンズユニット
7 鏡筒
8 レンズ
9 低融点ガラス
30 レンズ素材
31 ヒータ
32 上型
33 下型
34 成膜装置
35 成膜源
50 円柱
51 円筒
100 プロジェクタ
101 ランプ
102 カラーホイール
102a モータ
103 光半導体
104 投射レンズ
202 磁性パーティクル
300 送受信モジュール
301 光ファイバ
302 合波フィルタ
303 レーザーダイオード
304 フォトダイオード
1 lens unit with nonmagnetic lens barrel 2 nonmagnetic lens barrel 3 aspheric lens 6 lens unit with lens barrel 7 lens barrel 8 lens 9 low melting point glass 30 lens material 31 heater 32 upper mold 33 lower mold 34 film forming apparatus 35 film forming Source 50 cylinder 51 cylinder 100 projector 101 lamp 102 color wheel 102 motor 103 optical semiconductor 104 projection lens 202 magnetic particle 300 transmission / reception module 301 optical fiber 302 combining filter 303 laser diode 304 photodiode

Claims (6)

  1. 筒状の鏡筒と、
    前記筒状の鏡筒の内周面に固定されたレンズと、
    からなり、
    前記固定は前記レンズが軟化点以上で溶融され常用温度で固化されてなり、
    前記筒状の鏡筒が非磁性体であること、
    前記筒状の鏡筒と前記レンズとの熱膨張係数の差が20×10-7/℃以下であること、前記筒状の鏡筒より前記レンズの熱膨張係数が小さいこと、
    を特徴とするレンズユニット。
    A cylindrical lens barrel,
    A lens fixed to the inner peripheral surface of the cylindrical lens barrel;
    Consists of
    In the fixing, the lens is melted at a softening point or higher and solidified at a normal temperature,
    The cylindrical barrel is nonmagnetic;
    The difference in thermal expansion coefficient between the cylindrical barrel and the lens is 20 × 10 −7 / ° C. or less, and the thermal expansion coefficient of the lens is smaller than that of the cylindrical barrel.
    A lens unit characterized by
  2. 前記筒状の鏡筒が、チタンまたはチタン合金であることを特徴とする請求項1に記載のレンズユニット。 The lens unit according to claim 1, wherein the cylindrical barrel is titanium or a titanium alloy.
  3. 前記筒状の鏡筒と前記レンズが気密に接合されていることを特徴とする請求項1または請求項2のいずれかに記載のレンズユニット。 The lens unit according to claim 1, wherein the cylindrical lens barrel and the lens are airtightly joined.
  4. 前記筒状の鏡筒が円筒状であることを特徴とする請求項1から請求項3のいずれかに記載のレンズユニット。 The lens unit according to any one of claims 1 to 3, wherein the cylindrical lens barrel is cylindrical.
  5. 前記レンズが非球面レンズであることを特徴とする請求項1から請求項4のいずれかに記載のレンズユニット。 The lens unit according to any one of claims 1 to 4, wherein the lens is an aspheric lens.
  6. 前記筒状の鏡筒の前記レンズに接する部分の外径が、前記レンズの外径の20.5倍以下であることを特徴とする請求項1から請求項5のいずれかに記載のレンズユニット。 The lens unit according to any one of claims 1 to 5, wherein an outer diameter of a portion of the cylindrical barrel in contact with the lens is equal to or less than 20.5 times an outer diameter of the lens.
PCT/JP2011/068221 2010-11-24 2011-08-10 Lens unit WO2012070286A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012545636A JPWO2012070286A1 (en) 2010-11-24 2011-08-10 Lens unit
CN201180051979XA CN103189777A (en) 2010-11-24 2011-08-10 Lens unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-261640 2010-11-24
JP2010261640 2010-11-24

Publications (1)

Publication Number Publication Date
WO2012070286A1 true WO2012070286A1 (en) 2012-05-31

Family

ID=46145647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068221 WO2012070286A1 (en) 2010-11-24 2011-08-10 Lens unit

Country Status (3)

Country Link
JP (1) JPWO2012070286A1 (en)
CN (1) CN103189777A (en)
WO (1) WO2012070286A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116102A (en) * 2017-01-17 2018-07-26 日本電気硝子株式会社 Lens with holder
JP2020187898A (en) * 2019-05-13 2020-11-19 オムロン株式会社 Switch and operating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898174B (en) * 2015-06-10 2017-05-31 清华大学 The preparation method of pure Attractive Orbit verification quality

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219822A (en) * 1985-07-19 1987-01-28 Canon Inc Lens assembly
JPH01212539A (en) * 1987-10-08 1989-08-25 Siemens Ag Implantable blood oxygen sensor and use thereof
JPH03237023A (en) * 1990-02-14 1991-10-22 Alps Electric Co Ltd Production of optical part
JPH06235846A (en) * 1993-02-12 1994-08-23 Toshiba Corp Coherent light receiver
JPH11218698A (en) * 1998-02-03 1999-08-10 Minolta Co Ltd Light beam scan optical device
JP2003258352A (en) * 2002-02-28 2003-09-12 Shinko Electric Ind Co Ltd Method of manufacturing lens cap
JP2004279879A (en) * 2003-03-18 2004-10-07 Alps Electric Co Ltd Optical device with holder
JP2005089217A (en) * 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd Method of manufacturing lens
JP2005215231A (en) * 2004-01-29 2005-08-11 Nippon Sheet Glass Co Ltd Optical component and its manufacturing method
JP2007157920A (en) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd Lens cap processing method, and lens cap assembling jig used therefor
JP2008158279A (en) * 2006-12-25 2008-07-10 Sony Corp Color separation prism and color imaging apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491657B2 (en) * 2003-09-19 2010-06-30 三菱電機株式会社 Optical components and metal holders
JP2010008800A (en) * 2008-06-27 2010-01-14 Hitachi Maxell Ltd Optical component and optical device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219822A (en) * 1985-07-19 1987-01-28 Canon Inc Lens assembly
JPH01212539A (en) * 1987-10-08 1989-08-25 Siemens Ag Implantable blood oxygen sensor and use thereof
JPH03237023A (en) * 1990-02-14 1991-10-22 Alps Electric Co Ltd Production of optical part
JPH06235846A (en) * 1993-02-12 1994-08-23 Toshiba Corp Coherent light receiver
JPH11218698A (en) * 1998-02-03 1999-08-10 Minolta Co Ltd Light beam scan optical device
JP2003258352A (en) * 2002-02-28 2003-09-12 Shinko Electric Ind Co Ltd Method of manufacturing lens cap
JP2004279879A (en) * 2003-03-18 2004-10-07 Alps Electric Co Ltd Optical device with holder
JP2005089217A (en) * 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd Method of manufacturing lens
JP2005215231A (en) * 2004-01-29 2005-08-11 Nippon Sheet Glass Co Ltd Optical component and its manufacturing method
JP2007157920A (en) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd Lens cap processing method, and lens cap assembling jig used therefor
JP2008158279A (en) * 2006-12-25 2008-07-10 Sony Corp Color separation prism and color imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116102A (en) * 2017-01-17 2018-07-26 日本電気硝子株式会社 Lens with holder
JP2020187898A (en) * 2019-05-13 2020-11-19 オムロン株式会社 Switch and operating device
JP7226078B2 (en) 2019-05-13 2023-02-21 オムロン株式会社 switch and operating device

Also Published As

Publication number Publication date
JPWO2012070286A1 (en) 2014-05-19
CN103189777A (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP6687805B2 (en) Optical system for head mounted display
US6953432B2 (en) Imager cover-glass mounting
TWI451118B (en) Optical unit and camera device
JP5434457B2 (en) Optical unit and imaging device
CN107085300B (en) Virtual image display device and method for manufacturing image element unit
WO2009101928A1 (en) Lens unit, image capturing lens, image capturing device, and portable terminal
JP5204591B2 (en) Lens unit
TW200814844A (en) LED source with hollow collection lens
CN111736344B (en) Virtual image display device
JP2006003549A (en) Imaging unit for endoscope and its assembly method
WO2004098174A1 (en) Imaging device
WO2012070286A1 (en) Lens unit
CN102928958A (en) Optical unit, method of producing the same, and image pickup apparatus
JP2009251366A (en) Method for manufacturing imaging lens, imaging lens, and imaging apparatus
WO2018062298A1 (en) Lens unit and imaging device
JP4598379B2 (en) Diaphragm structure and compound lens device including the same
EP1517167B1 (en) Method of manufacturing an optical component using optical transmission element joining metal holder
JP2007203334A (en) Substrate, electrooptical device and electronic equipment, manufacturing method of substrate, manufacturing method of electrooptical device
JP2008172349A (en) Imaging apparatus, its manufacturing method, and portable terminal apparatus
JP2006222700A (en) Imaging device
JP2002258129A (en) Vibrationproof lens system and method of manufacturing it
JP2005189487A (en) Liquid crystal display element and liquid crystal projector devoce using the same
WO2009125662A1 (en) Imaging lens manufacturing method, imaging lens, and imaging device
JP2011232614A (en) Method for manufacturing imaging lens
JP2009122408A (en) Optical low-pass filter and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545636

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843817

Country of ref document: EP

Kind code of ref document: A1