WO2012069373A1 - Method for producing high-temperature resistant jet engine component - Google Patents

Method for producing high-temperature resistant jet engine component Download PDF

Info

Publication number
WO2012069373A1
WO2012069373A1 PCT/EP2011/070438 EP2011070438W WO2012069373A1 WO 2012069373 A1 WO2012069373 A1 WO 2012069373A1 EP 2011070438 W EP2011070438 W EP 2011070438W WO 2012069373 A1 WO2012069373 A1 WO 2012069373A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
metal powder
molten state
low
jet engine
Prior art date
Application number
PCT/EP2011/070438
Other languages
German (de)
French (fr)
Inventor
Dan Roth-Fagaraseanu
Alexander Schult
Original Assignee
Rolls-Royce Deutschland Ltd & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls-Royce Deutschland Ltd & Co Kg filed Critical Rolls-Royce Deutschland Ltd & Co Kg
Priority to US13/989,278 priority Critical patent/US20130266470A1/en
Priority to EP11793368.9A priority patent/EP2643114B1/en
Publication of WO2012069373A1 publication Critical patent/WO2012069373A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0475Impregnated alloys

Definitions

  • the invention relates to a method for near-net-shape production of geometrically complex designed, consisting of an intermetallic phase engine components.
  • the invention has for its object to develop a method for cost-effective, near net shape production of existing from an intermetallic phase, high temperature resistant engine components with geometrically complex structure.
  • the basic idea of the invention lies in the use of metal powder spraying for the production of engine components made of an intermetallic phase, but where the binder is a low-melting metallic phase in molten or near-molten state and the metal powder is made from a higher-melting metallic phase and the molded part which is present in the result of an injection molding process and essentially corresponds to the final contour is not debinded, but is subjected to a heat treatment to produce an intermetallic phase.
  • the binder is a low-melting metallic phase in molten or near-molten state
  • the metal powder is made from a higher-melting metallic phase and the molded part which is present in the result of an injection molding process and essentially corresponds to the final contour is not debinded, but is subjected to a heat treatment to produce an intermetallic phase.
  • the mixing of the molten or near-molten state low-melting phase with the high-melting-phase metal powder is carried out under the action of kneading and shearing forces generated by an extruder screw in an extruder.
  • good mixing and temperature increase and a reduction in viscosity of the metal powder-melt mixture for carrying out the injection molding process are ensured.
  • the metal powder-melt mixture can be additionally heated in the extruder by means of heating means.
  • the engine component which has been demolded after solidification can be subjected to a machining finish before the heat treatment.
  • a first low-melting phase For example, aluminum, in the molten state
  • a second refractory metallic phase for example, iron
  • the first low-melting point metallic phase may also be present in a not completely molten state - in the case of the aluminum used here in a below the melting point temperature range between 400 ° C and 600 ° C -.
  • the metal powder produced from a metallic phase in this case iron
  • the two metallic phases are intensively mixed with one another. Due to the shearing and kneading forces exerted by the extruder screw 4 on the mixture, the viscosity of the mixture continues to decrease. Due to the mechanical force and optionally an extruder heating, the mixture is also heated.
  • step IV The previously brought into a low-viscosity, injection-moldable state mixture of a powdery high-melting metallic phase and a low-melting molten metallic phase (Fe, Al) is now introduced in step IV by injection molding in a mold 5.
  • the casting process for the injection molding required binder is not made of thermoplasti ⁇ rule plastics and waxes, but is formed by the binder acting as a molten, low Schmel ⁇ collapsing metallic phase.
  • the metal powder Binder mixture can either be injected directly from the extruder 4 in the mold 5 or, as the drawing shows, are first introduced into a cylinder 6 and then pressed by means of a pressure piston 7 in the cavity 8 of the mold 5.
  • a molded part corresponding to the final shape or substantially the final shape of the engine component is removed from the mold after cooling and solidification, which can be machined in a further step VI with little machining effort.
  • the molded part is subjected to a specific heat treatment tailored to the two metallic phases, in this case iron and aluminum, to produce a high-temperature-resistant intermetallic phase. Since, in contrast to the known metal powder injection molding using a thermoplastic binder, a compact (non-porous) molded part is already present after the demolding, shrinkage of the component during the heat treatment provided for producing the intermetallic compound is not difficult to control.

Abstract

For the near net shape manufacture of geometrically complex, high temperature resistant jet engine components that consist of an intermetallic phase a low-melting metallic phase which is present in a molten state or in a temperature range close to the molten state is mixed with a high-melting metallic phase which is present as a metal powder and the mixture is mechanically worked by subjecting it to shearing and kneading forces and heated in the process and its viscosity reduced. In a subsequent injection molding process the substantially near net shape jet engine component is shaped and optionally mechanically finished and is then subjected to a heat treatment to produce an intermetallic phase.

Description

Verfahren zur Herstellung von hochtemperaturbeständigen Triebwerksbauteilen  Method of making high temperature engine components
Beschreibung description
Die Erfindung betrifft ein Verfahren zur endkonturnahen Herstellung von geometrisch komplex gestalteten, aus einer intermetallischen Phase bestehenden Triebwerksbauteilen . The invention relates to a method for near-net-shape production of geometrically complex designed, consisting of an intermetallic phase engine components.
Es ist allgemein bekannt, Bauteile mit geometrisch kom¬ plizierter Gestalt in wenigen Arbeitsschritten endkontur- nah durch Metallpulverspritzgießen herzustellen. Bei dem auch als MIM-Verfahren (Metal Injection Moulding) be- zeichneten Metallpulverspritzguss wird zunächst ein Me¬ tallpulver mit einem aus thermoplastischem Kunststoff und Wachsen bestehenden Binder zu einem fließfähigen Werkstoff (Feedstock) vermischt. Das in Form eines Granulats vorliegende Material wird in einem herkömmlichen Spritz- gießprozess mithilfe eines Extruders in eine Form ge¬ spritzt. Nach dem Abkühlen, Erstarren und Entformen steht zunächst ein sogenanntes Grünteil zur Verfügung, aus dem anschließend der Binder chemisch, thermisch oder kataly- tisch herausgelöst wird. Das im Ergebnis der Entbinderung entstehende offenporige Braunteil wird in einem darauf¬ folgenden Sinterprozess bis auf seine endgültige Form verdichtet und weist aufgrund der verbleibenden geringen Restporosität mechanische Eigenschaften auf, die mit den Eigenschaften des Vollmaterials im Wesentlichen überein- stimmen. It is generally known to produce components with geometrically com ¬ more complicated shape in a few steps endkontur- close by metal powder injection molding. In the as MIM method (Metal Injection Molding) loading recorded metal injection molding, first a ¬ Me tallpulver with a group consisting of thermoplastic and waxes binder to form a flowable material (feedstock) are mixed. This material is in the form of granules ¬ injected using an extruder ge into a mold in a conventional injection molding process. After cooling, solidification and demolding, a so-called green part is initially available, from which the binder is then dissolved out chemically, thermally or catalytically. The resulting as a result of open-pored debinding brown part to its final shape compressed in a subsequent ¬ following sintering process and has low porosity due to the remaining mechanical properties, which are in accordance with the properties of the solid material substantially.
Zur endkonturnahen Fertigung hochtemperaturbeständiger Bauteile werden bekanntermaßen in Pulverform vorliegende Superlegierungen im MIM-Verfahren verarbeitet. Darüber hinaus wurde bereits vorgeschlagen, ein aus einer intermetallischen Phase bestehendes Metallpulver zu erzeugen und daraus auf der Grundlage des Metallpulverspritzgie¬ ßens hochtemperaturbeständige Triebwerksbauteile endab- messungsnah und mit gegenüber herkömmlichen Herstellungsverfahren vermindertem Zerspanungsaufwand herzustellen. Die herkömmliche Herstellung intermetallischer Phasen und eines daraus gefertigten Metallpulvers für das Metallpul¬ verspritzgießen ist mit einem hohen Arbeits- und Kostenaufwand verbunden. Zudem bereitet die endkonturnahe ma߬ genaue Fertigung des Bauteils aufgrund der Schrumpfung des Braunteils im Ergebnis des sich an die Entbinderung anschließenden Sinterprozesses Schwierigkeiten. For near-net-shape production of high-temperature resistant components are known to be present in powder form superalloys processed in the MIM process. Moreover, it has already been proposed to produce a metal powder consisting of an intermetallic phase and therefrom on the basis of Metallpulverspritzgie ¬ ßens high temperature resistant engine components endab- messungsnah and to produce with respect to conventional production methods, reduced chip removal. The conventional production of intermetallic phases and a metal powder produced therefrom for the metal powder injection molding is associated with a high labor and cost. In addition, the near-net shape accurate ¬ production of the component due to the shrinkage of the brown part as a result of subsequent to the debinding sintering process difficulties.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur kostengünstigen, endkonturnahen Herstellung von aus einer intermetallischen Phase bestehenden, hochtemperaturbeständigen Triebwerksbauteilen mit geometrisch komplexer Struktur zu entwickeln. The invention has for its object to develop a method for cost-effective, near net shape production of existing from an intermetallic phase, high temperature resistant engine components with geometrically complex structure.
Erfindungsgemäß wird die Aufgabe mit einem Verfahren ge- mäß den Merkmalen des Patentanspruchs 1 gelöst. According to the invention the object is achieved by a method according to the features of patent claim 1.
Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche. Der Grundgedanke der Erfindung liegt in de Anwendung des Metallpulverspritzens zur Herstellung von aus einer intermetallischen Phase bestehenden Triebwerksbauteilen, wobei jedoch als Binder eine in schmelzflüssigem oder nahe dem schmelzflüssigen Zustand befindliche niedrig schmelzende metallische Phase dient und das Metallpulver aus einer höher schmelzenden metallischen Phase hergestellt ist und das im Ergebnis eines Spritzgießprozesses vorliegende, im Wesentlichen der Endkontur entsprechende Formteil nicht entbindert wird, sondern einer Wärmebe- handlung zur Erzeugung einer intermetallischen Phase unterzogen wird. Somit können mit geringem Fertigungs- und Kostenaufwand aus einer intermetallischen Phase bestehende, hochtemperaturbeständige Triebwerksbauteile mit geo¬ metrisch komplexer Struktur endkonturnah hergestellt werden. In dem gleichen Verfahren können auch drei oder mehr metallische Phasen zur Herstellung von hochtemperaturbe¬ ständigen, aus einer intermetallischen Phase bestehenden Triebwerksbauteilen eingesetzt werden. Advantageous developments of the invention are the subject of the dependent claims. The basic idea of the invention lies in the use of metal powder spraying for the production of engine components made of an intermetallic phase, but where the binder is a low-melting metallic phase in molten or near-molten state and the metal powder is made from a higher-melting metallic phase and the molded part which is present in the result of an injection molding process and essentially corresponds to the final contour is not debinded, but is subjected to a heat treatment to produce an intermetallic phase. Thus, with little manufacturing and Cost of an intermetallic phase existing, high temperature resistant engine components with geo ¬ metric complex structure near net shape produced. In the same method, three or more metallic phases for the preparation of hochtemperaturbe ¬ permanent, consisting of an intermetallic phase of engine components may be used.
Das Vermischen der schmelzflüssigen oder nahe dem schmelzflüssigen Zustand befindlichen niedrig schmelzenden Phase mit dem aus der hoch schmelzenden Phase bestehenden Metallpulver erfolgt unter der Wirkung von mittels einer Extruderschnecke erzeugten Knet- und Scherkräften in einem Extruder. Dadurch sind eine gute Durchmischung und Temperaturerhöhung sowie eine Viskositätsverringerung des Metallpulver-Schmelze-Gemisches zur Durchführung des Spritzgießprozesses gewährleistet . The mixing of the molten or near-molten state low-melting phase with the high-melting-phase metal powder is carried out under the action of kneading and shearing forces generated by an extruder screw in an extruder. As a result, good mixing and temperature increase and a reduction in viscosity of the metal powder-melt mixture for carrying out the injection molding process are ensured.
In weiterer Ausgestaltung der Erfindung kann das Metall- pulver-Schmelze-Gemisch im Extruder mittels Heizmitteln zusätzlich erwärmt werden. In a further embodiment of the invention, the metal powder-melt mixture can be additionally heated in the extruder by means of heating means.
Das nach dem Erstarren entformte Triebwerksbauteil kann vor der Wärmebehandlung einer spanenden Fertigbearbeitung unterworfen werden. The engine component which has been demolded after solidification can be subjected to a machining finish before the heat treatment.
Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnung, in deren einziger Figur schematisch eine Metallpulverspritzgießvorrichtung dargestellt ist, und ei- nes VerfahrensablaufSchemas näher erläutert. An embodiment of the invention will be explained in more detail with reference to the drawing, in the sole figure of which a metal powder injection molding apparatus is shown schematically, and a method flowchart.
In Schritt I des Verfahrens zur endkonturnahen Herstel¬ lung eines geometrisch komplex gestalteten, aus einer intermetallischen Phase bestehenden, hochtemperaturbestän- digen Triebwerksbauteils, beispielsweise einer Turbinen¬ schaufel, werden eine erste niedrig schmelzende Phase, zum Beispiel Aluminium, in geschmolzenem Zustand und eine zweite hoch schmelzende metallische Phase, zum Beispiel Eisen, als Metallpulver bereitgestellt. Die erste niedrig schmelzende metallische Phase kann auch in einem nicht vollständig geschmolzenen Zustand - im Falle des hier eingesetzten Aluminiums in einem unterhalb des Schmelzpunkts Temperaturbereich zwischen 400°C und 600°C - vorliegen. Gegenüber einem aus einer intermetallischen Verbindung bestehenden Metallpulver kann das aus einer me- tallischen Phase (hier Eisen) gefertigte Metallpulver mit geringem Aufwand hergestellt werden. In Step I of the method for near net shape herstel ¬ development of a geometrically complex shaped, consisting of an intermetallic phase, hochtemperaturbestän- ended engine component, such as a turbine blade, are a first low-melting phase, For example, aluminum, in the molten state, and a second refractory metallic phase, for example, iron, are provided as metal powder. The first low-melting point metallic phase may also be present in a not completely molten state - in the case of the aluminum used here in a below the melting point temperature range between 400 ° C and 600 ° C -. Compared with a metal powder consisting of an intermetallic compound, the metal powder produced from a metallic phase (in this case iron) can be produced with little effort.
In dem nachfolgenden Schritt II werden die geschmolzene niedrig schmelzende metallische Phase (Aluminium) und die als Metallpulver vorliegende hoch schmelzende metallische Phase (Eisen) jeweils über einen ersten und einen zweiten Trichter 1, 2 in einen Extruder 3 eingetragen. In dem im Extruder 3 stattfindenden Schritt III werden die beiden metallischen Phasen intensiv miteinander vermischt. Durch die von der Extruderschnecke 4 auf das Gemisch ausgeübten Scher- und Knetkräfte nimmt die Viskosität des Gemisches weiter ab. Aufgrund der mechanischen Kraftwirkung und gegebenenfalls einer Extruderheizung wird das Gemisch zudem erwärmt . In the subsequent step II, the molten low-melting point metallic phase (aluminum) and present as metal powder high-melting metallic phase (iron) in each case via a first and a second funnel 1, 2 entered into an extruder 3. In the step III taking place in the extruder 3, the two metallic phases are intensively mixed with one another. Due to the shearing and kneading forces exerted by the extruder screw 4 on the mixture, the viscosity of the mixture continues to decrease. Due to the mechanical force and optionally an extruder heating, the mixture is also heated.
Das zuvor in einen niedrig viskosen, spritzgießfähigen Zustand gebrachte Gemisch aus einer pulverförmigen hoch schmelzenden metallischen Phase und einer niedrig schmelzenden, geschmolzenen metallischen Phase (Fe, AI) wird nun in Schritt IV durch Spritzgießen in ein Formwerkzeug 5 eingetragen. Im Unterschied zu einem herkömmlichen Metallpulverspritzgießverfahren besteht der für den Spritz- gussprozess erforderliche Binder nicht aus thermoplasti¬ schen Kunststoffen und Wachsen, sondern wird durch die als Binder fungierende schmelzflüssige, niedrig schmel¬ zende metallische Phase gebildet. Das Metallpulver- Binder-Gemisch kann entweder direkt aus dem Extruder 4 in das Formwerkzeug 5 eingespritzt werden oder, wie die Zeichnung zeigt, erst in einen Zylinder 6 eingebracht werden und dann mithilfe eines Druckkolbens 7 in den Hohlraum 8 des Formwerkzeugs 5 gepresst werden. The previously brought into a low-viscosity, injection-moldable state mixture of a powdery high-melting metallic phase and a low-melting molten metallic phase (Fe, Al) is now introduced in step IV by injection molding in a mold 5. In contrast to a conventional Metallpulverspritzgießverfahren the casting process for the injection molding required binder is not made of thermoplasti ¬ rule plastics and waxes, but is formed by the binder acting as a molten, low Schmel ¬ collapsing metallic phase. The metal powder Binder mixture can either be injected directly from the extruder 4 in the mold 5 or, as the drawing shows, are first introduced into a cylinder 6 and then pressed by means of a pressure piston 7 in the cavity 8 of the mold 5.
Im nachfolgenden Schritt V wird nach dem Erkalten und Erstarren ein der Endform oder im Wesentlichen der Endform des Triebwerkbauteils entsprechendes Formteil entformt, das in einem weiteren Schritt VI mit geringem Zerspanungsaufwand spanend bearbeitet werden kann. Die beim Me¬ tallpulverspritzgussprozess in Schritt IV als Binder die¬ nende niedrig schmelzende metallische Phase bleibt in dem Formteil, das heißt, anders als bei dem herkömmlichen Me- tallpulverspritzguss wird das im Spritzgießprozess er¬ zeugte Formteil nicht entbindert. In the subsequent step V, a molded part corresponding to the final shape or substantially the final shape of the engine component is removed from the mold after cooling and solidification, which can be machined in a further step VI with little machining effort. The link Me ¬ tallpulverspritzgussprozess in Step IV as a binder, the designating ¬ low melting point metal phase remains in the mold part, that is, unlike the conventional metal tallpulverspritzguss that during the injection molding it ¬ sired shape part is not subjected to binder removal.
In einem sich anschließenden Schritt VII wird das Formteil einer auf die beiden metallischen Phasen - hier Ei- sen und Aluminium - abgestimmten spezifischen Wärmebehandlung zur Erzeugung einer hochtemperaturbeständigen intermetallischen Phase unterzogen. Da im Gegensatz zu dem bekannten Metallpulverspritzgießen unter Verwendung eines thermoplastischen Binders bereits nach der Entfor- mung ein kompaktes (nicht poröses) Formteil vorliegt, kommt es auch nicht zu einer nur schwer beherrschbaren Schrumpfung des Bauteils während der zur Erzeugung der intermetallischen Verbindung vorgesehenen Wärmebehandlung . In a subsequent step VII, the molded part is subjected to a specific heat treatment tailored to the two metallic phases, in this case iron and aluminum, to produce a high-temperature-resistant intermetallic phase. Since, in contrast to the known metal powder injection molding using a thermoplastic binder, a compact (non-porous) molded part is already present after the demolding, shrinkage of the component during the heat treatment provided for producing the intermetallic compound is not difficult to control.
Im Ergebnis der zuvor beschriebenen Verfahrensschritte I bis VII steht ein aus einer intermetallischen Verbindung bestehendes, hochtemperaturbeständiges und durch den Ein¬ satz von Leichtbaukomponenten zudem leichtes Triebwerks- bauteil zur Verfügung, das in einer nahezu beliebigen komplexen Struktur mit vergleichsweise geringem Ferti- gungsaufwand kostengünstig hergestellt werden kann. Neben der oben beispielhaft erwähnten Materialkombination aus Eisen und Aluminium kann eine Vielzahl weiterer hoch und niedrig schmelzender metallischer Phasen, beispielsweise Titan und Aluminium, verwendet werden. As a result of the process steps I to VII described above is an existing, high temperature resistant from an intermetallic compound, and also light by the A ¬ set of lightweight components jet engine component is available that in an almost arbitrary complex structure with a comparatively low manufacturing tion effort can be produced inexpensively. In addition to the above-exemplified material combination of iron and aluminum, a variety of other high and low melting metallic phases, such as titanium and aluminum, can be used.
Bezugszeichenliste erster Trichter von 3 (Fe-Pulver) zweiter Trichter von 3 (Al-SchmelzeReference numeral list first funnel of 3 (Fe powder) second funnel of 3 (Al melt
Extruder extruder
ExtruderSchnecke  extruder screw
Formwerkzeug  mold
Zylinder  cylinder
Druckkolben  pressure piston
Hohlraum von 5  Cavity of 5

Claims

Patentansprüche claims
Verfahren zur endkonturnahen Herstellung von geometrisch komplex gestalteten, aus einer intermetallischen Phase bestehenden, hochtemperaturbe¬ ständigen Triebwerksbauteilen, dadurch gekennzeichnet, dass mindestens eine niedrig schmelzende metallische Phase in schmelzflüssigem Zustand oder in einem Temperaturbereich nahe dem schmelzflüssigen Zustand mit mindestens einer als Metallpulver vorliegenden hoch schmelzenden metallischen Phase gemischt und das Gemisch mechanisch bearbeitet und dabei erwärmt und dessen Viskosität verringert wird und anschließend in einem Spritzgießprozess das im Wesentlichen der Endkontur entsprechende Triebwerksbauteil geformt wird, das danach einer Wärmebehandlung zur Erzeugung einer intermetallischen Phase unterzogen wird. Process for the near net shape production of geometrically complex, consisting of an intermetallic phase, hochtemperaturbe ¬ permanent engine components, characterized in that at least one low-melting metallic phase in the molten state or in a temperature range near the molten state with at least one present as a metal powder high-melting metallic Phase mixed and mechanically processed the mixture while heating and its viscosity is reduced and then formed in an injection molding the substantially final contour corresponding engine component, which is then subjected to a heat treatment to produce an intermetallic phase.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Vermischen der niedrig und hoch schmelzenden Phasen unter der Wirkung von Knet- und Scherkräften in einem Extruder erfolgt. A method according to claim 1, characterized in that the mixing of the low and high melting phases takes place under the action of kneading and shearing forces in an extruder.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Metallpulver-Schmelze-Gemisch mittels Heizmitteln zusätzlich erwärmt wird. A method according to claim 1, characterized in that the metal powder-melt mixture is additionally heated by means of heating means.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das nach dem Erstarren entformte Triebwerks¬ bauteil vor der Wärmebehandlung einer mechanischen Fertigbearbeitung unterworfen wird. A method according to claim 1, characterized in that the demolded after solidification engine ¬ component before the heat treatment is subjected to a mechanical finishing.
PCT/EP2011/070438 2010-11-25 2011-11-18 Method for producing high-temperature resistant jet engine component WO2012069373A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/989,278 US20130266470A1 (en) 2010-11-25 2011-11-18 Method for the manufacturing high-temperature resistant engine components
EP11793368.9A EP2643114B1 (en) 2010-11-25 2011-11-18 Method for producing high-temperature resistant jet engine component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010061959A DE102010061959A1 (en) 2010-11-25 2010-11-25 Method of making high temperature engine components
DE102010061959.0 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012069373A1 true WO2012069373A1 (en) 2012-05-31

Family

ID=45217512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070438 WO2012069373A1 (en) 2010-11-25 2011-11-18 Method for producing high-temperature resistant jet engine component

Country Status (4)

Country Link
US (1) US20130266470A1 (en)
EP (1) EP2643114B1 (en)
DE (1) DE102010061959A1 (en)
WO (1) WO2012069373A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10597761B2 (en) 2014-06-12 2020-03-24 University Of Florida Research Foundation, Inc. Self-repairing metal alloy matrix composites, methods of manufacture and use thereof and articles comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330701A (en) * 1992-02-28 1994-07-19 Xform, Inc. Process for making finely divided intermetallic
WO2002085561A2 (en) * 2001-04-24 2002-10-31 Forschungszentrum Jülich GmbH Production of component parts by metal injection moulding (mim)
WO2004028726A1 (en) * 2002-09-25 2004-04-08 University Of Rochester Method and apparatus for the manufacture of high temperature materials by combustion synthesis and semi-solid forming
US20070017817A1 (en) * 2004-06-19 2007-01-25 Claus Mueller Method for manufacturing components of a gas turbine and a component of a gas turbine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1458074A1 (en) * 1963-05-07 1970-01-08 Int Standard Electric Corp Process for injection molding and heat treatment of aluminum alloys as well as aluminum alloys and products made from them
GB8622458D0 (en) * 1986-09-18 1986-10-22 Alcan Int Ltd Alloying aluminium
DE3935955C1 (en) * 1989-10-27 1991-01-24 Mtu Muenchen Gmbh
US5765623A (en) * 1994-12-19 1998-06-16 Inco Limited Alloys containing insoluble phases and method of manufacture thereof
US6024806A (en) * 1995-07-19 2000-02-15 Kubota Corporation A1-base alloy having excellent high-temperature strength
SG80596A1 (en) * 1998-08-04 2001-05-22 Nat Iniversity Of Singapore Metastable aluminium-titanium materials
DE19907118C1 (en) * 1999-02-19 2000-05-25 Krauss Maffei Kunststofftech Injection molding apparatus for producing molded metal parts with dendritic properties comprises an extruder with screw system
US6860314B1 (en) * 2002-08-22 2005-03-01 Nissei Plastic Industrial Co. Ltd. Method for producing a composite metal product
US20040261970A1 (en) * 2003-06-27 2004-12-30 Cyco Systems Corporation Pty Ltd. Method and apparatus for producing components from metal and/or metal matrix composite materials
DE10343781B4 (en) * 2003-09-22 2009-02-12 Mtu Aero Engines Gmbh Process for the production of components
US7387763B2 (en) * 2004-07-27 2008-06-17 General Electric Company Preparation of sheet by injection molding of powder, consolidation, and heat treating
EP1905856B1 (en) * 2005-03-29 2010-02-10 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Al base alloy excellent in heat resistance, workability and rigidity
US7691214B2 (en) * 2005-05-26 2010-04-06 Honeywell International, Inc. High strength aluminum alloys for aircraft wheel and brake components
US20080169077A1 (en) * 2007-01-11 2008-07-17 Yahya Hodjat Method of reinforcing low melting temperature cast metal parts
US8118556B2 (en) * 2007-01-31 2012-02-21 Caterpillar Inc. Compressor wheel for a turbocharger system
CA2792432A1 (en) * 2010-03-24 2011-09-29 Rheinfelden Alloys Gmbh & Co. Kg Process for producing die-cast parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330701A (en) * 1992-02-28 1994-07-19 Xform, Inc. Process for making finely divided intermetallic
WO2002085561A2 (en) * 2001-04-24 2002-10-31 Forschungszentrum Jülich GmbH Production of component parts by metal injection moulding (mim)
WO2004028726A1 (en) * 2002-09-25 2004-04-08 University Of Rochester Method and apparatus for the manufacture of high temperature materials by combustion synthesis and semi-solid forming
US20070017817A1 (en) * 2004-06-19 2007-01-25 Claus Mueller Method for manufacturing components of a gas turbine and a component of a gas turbine

Also Published As

Publication number Publication date
EP2643114B1 (en) 2014-10-01
US20130266470A1 (en) 2013-10-10
DE102010061959A1 (en) 2012-05-31
EP2643114A1 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
EP2794152B1 (en) Method for manufacturing a compact component, and component that can be produced by means of the method
DE10317473B3 (en) Ceramic molds for metal casting and their production process
DE102012206087A1 (en) Making component e.g. turbine of aircraft engine, by preparing first component part, injecting second component part to the first compact part to form multi-component part, removing binder from part to form brown part and then sintering
DE102015216802A1 (en) Method for producing a capsule for hot isostatic pressing
WO2007112727A2 (en) Method for production of a honeycomb seal
WO2016124502A1 (en) Method and device for additively producing components
DE102009049695A1 (en) Method for producing a rotor of a turbocharger
DE102013007735A1 (en) Manufacture of salt kernel involves compressing salt mixture under high pressure, solidifying, adding mixture of binding agent and pure salt powder, injecting powder mixture into mold, and pressing
DE10331397A1 (en) Production of blade segments for gas turbines comprises using a powder metallurgical injection molding
EP2643114B1 (en) Method for producing high-temperature resistant jet engine component
DE112010001446T5 (en) Cylinder liner of metal matrix composite material and method of making the same
WO2008113422A1 (en) Production of a partial fiber composite structure in a component using a laser remelting treatment
DE102014007889B4 (en) Process for producing a salt body, in particular for die casting
DE102012006572A1 (en) Preparing complex formed cast parts using a pressure casting machine, in which lost cast parts are used during casting process, comprises forming lost cast parts from a ceramic body, where the cast parts are prepared using a lost model
EP2643113B1 (en) Method for the near net shape manufacture of high temperature resistant jet engine components
DE102020107105A1 (en) Method for producing a sintered hybrid component
DE102014119736A1 (en) Mold and process for its production and process for the production of castings
DE3726259C1 (en) Process for the production of components from metallic or non-metallic powder
DE10343781B4 (en) Process for the production of components
WO2019020337A1 (en) Method for producing a component, in particular for a motor vehicle, and component
DE19703177C2 (en) Process for the production of ceramic or powder metallurgical components
DE19508959C2 (en) Shaped body made of ceramic, powder metallurgical or composite material and process for its production
DE102004060023B4 (en) Method for producing a honeycomb seal segment
DE19703176C2 (en) Process for the production of ceramic or powder metallurgical components
DE10336701B4 (en) Process for the production of components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11793368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011793368

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13989278

Country of ref document: US