WO2012066743A1 - Hard coating film and image display device - Google Patents

Hard coating film and image display device Download PDF

Info

Publication number
WO2012066743A1
WO2012066743A1 PCT/JP2011/006200 JP2011006200W WO2012066743A1 WO 2012066743 A1 WO2012066743 A1 WO 2012066743A1 JP 2011006200 W JP2011006200 W JP 2011006200W WO 2012066743 A1 WO2012066743 A1 WO 2012066743A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
hard coat
resin
polyester resin
mass
Prior art date
Application number
PCT/JP2011/006200
Other languages
French (fr)
Japanese (ja)
Inventor
岡野 賢
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012544093A priority Critical patent/JP5783182B2/en
Priority to KR1020137015338A priority patent/KR101563794B1/en
Publication of WO2012066743A1 publication Critical patent/WO2012066743A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements

Definitions

  • the present invention relates to a hard coat film and an image display device, and more particularly to a hard coat film and an image display device that are improved in blocking and flexibility after a durability test.
  • hard coat films have been used for display devices such as displays, mobile phones, mobile games, touch panels, etc. to prevent damage and to prevent scattering of glass display surfaces such as CRT and PDP.
  • Polycarbonate films, polypropylene films, cycloolefin films, and polyester films are generally used as base films for hard coat films.
  • biaxially stretched films of polyester films are superior in mechanical properties. It is suitably used because it has properties, flame resistance or chemical resistance.
  • the interference color unevenness generally has a refractive index in the plane direction of the polyester film of about 1.66, and the ultraviolet curable acrylic resin layer suitably used for the hard coat layer of the hard coat film generally has a refractive index of 1.
  • This refractive index difference causes interference at the interface between the polyester film and the ultraviolet curable acrylic resin layer, resulting in color unevenness due to interference.
  • This interference color unevenness has been requested to be improved because the hard coat film is transparent and is detected under a special fluorescent lamp such as a three-wavelength fluorescent lamp rather than sunlight or an incandescent lamp.
  • the interlaminar adhesion between the hard coat layer and the substrate film was particularly markedly deteriorated under moisture-resistant conditions assuming a bathroom or a hot and humid area where a mobile phone or the like is used.
  • Patent Document 1 discloses a technique for providing an easy-adhesion layer on a polyester film.
  • the blocking described above was remarkable after the durability test assuming transportation and long-term storage of the hard coat film.
  • it is suitable for hard coat film because it is used by pressing with a pen or finger at the time of information input when used as a surface film for touch panel when processing a hard coat film in a display device.
  • flexibility is deteriorated after an endurance test assuming various use environments.
  • an object of the present invention is to provide a hard coat film and an image display device that are improved in blocking and flexibility after the durability test.
  • the easy-adhesion layer contains at least one selected from a polyester resin, an acrylic resin, and a urethane resin, and the hard coat layer has active energy.
  • a hard coat film comprising a line curable isocyanurate derivative.
  • the polyester resin of the easy-adhesion layer contains two components of polyester resins (X) and (Y), and the polyester resins (X) and (Y) each contain the following acids as acid components: 4.
  • the hard coat film as described in any one of 1 to 3 above.
  • Polyester resin (X) Sodium, sulfonate, and isophthalic acid are included in the acid component.
  • the hard coat layer contains an active energy ray-curable isocyanurate derivative (A) and an active energy ray-curable resin (B) other than the isocyanurate derivative, the active energy ray-curable isocyanurate derivative (A) and the 5.
  • the hard coat film as described in any one of 1 to 4 above, wherein the mass ratio of the active energy ray-curable resin (B) other than the isocyanurate derivative is 10:90 to 50:50 .
  • the image display device described in 7 is a liquid crystal display device including a touch panel, and the hard coat film described in any one of 1 to 6 is used as a constituent member of the touch panel. Image display device.
  • the present inventor has made extensive studies on the above problems, and is an easy-adhesion layer provided between the hard coat layer and the base film in order to prevent interlayer adhesion and interference color unevenness between the hard coat layer and the base film.
  • an active energy ray curable isocyanurate derivative for the hard coat layer, the surface energy of the easy adhesive layer and the hard coat layer is controlled, and the easy adhesive layer and the hard coat By forming a state with a low affinity with the layer, it is possible to obtain good performance in blocking properties after the durability test, and further, by configuring the hard coat film as described above, the elasticity of the hard coat film even after the durability test.
  • the present invention has been found that good flexibility can be obtained without deteriorating.
  • active energy ray-curable isocyanurate derivatives and active energy ray-curable resins other than isocyanurate derivatives are simply described as active energy ray-curable resins.
  • the active energy ray curable type refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays or electron beams, and specifically, a resin having an ethylenically unsaturated group.
  • the active energy ray-curable isocyanurate derivative is not particularly limited as long as it is a compound having a structure in which one or more ethylenically unsaturated groups are bonded to an isocyanuric acid skeleton.
  • a compound having three or more ethylenically unsaturated groups and one or more isocyanurate rings in the same molecule shown is preferable from the viewpoint of the object effect of the present invention.
  • the kind of ethylenically unsaturated group is an acryloyl group, a methacryloyl group, a styryl group, and a vinyl ether group, more preferably a methacryloyl group or an acryloyl group, and particularly preferably an acryloyl group.
  • L 2 is a divalent linking group, preferably a substituted or unsubstituted alkyleneoxy group or polyalkyleneoxy group having 4 or less carbon atoms in which a carbon atom is bonded to the isocyanurate ring, Particularly preferred are alkyleneoxy groups, which may be the same or different.
  • R 2 represents a hydrogen atom or a methyl group, and may be the same or different.
  • Other compounds include isocyanuric acid diacrylate compounds, and isocyanuric acid ethoxy-modified diacrylate represented by the following general formula (2).
  • ⁇ -caprolactone-modified active energy ray-curable isocyanurate derivatives specifically, compounds represented by the following general formula (3).
  • R 1 to R 3 in the chemical structural formula is attached with a functional group represented by the following a, b, and c, and at least one of R 1 to R 3 is a functional group of b.
  • Examples of commercially available isocyanuric acid triacrylate compounds include A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Examples of commercially available isocyanuric acid diacrylate compounds include Aronix M-215 manufactured by Toagosei Co., Ltd.
  • Examples of the mixture of the isocyanuric acid triacrylate compound and the isocyanuric acid diacrylate compound include Aronix M-315 and Aronix M-313 manufactured by Toagosei Co., Ltd.
  • ⁇ -Caprolactone-modified active energy ray-curable isocyanurate derivatives include ⁇ -caprolactone-modified tris- (acryloxyethyl) isocyanurate, Shin-Nakamura Chemical Co., Ltd. A-9300-1CL, Toagosei Co., Ltd. Examples include Aronix M-327, but are not limited thereto.
  • Active energy ray curable resins other than isocyanurate derivatives include UV curable urethane acrylate resins, UV curable polyester acrylate resins, UV curable epoxy acrylate resins, UV curable polyol acrylate resins, or UV curable resins. Epoxy resins and the like are preferably used. Of these, ultraviolet curable acrylate resins are preferred.
  • polyfunctional acrylate is preferable.
  • the polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
  • polyfunctional acrylate monomer examples include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate.
  • Monofunctional acrylates may be used as active energy ray-curable resins other than isocyanurate derivatives.
  • Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate.
  • Monofunctional acrylates can be obtained from Shin Nakamura Chemical Co., Ltd., Osaka Organic Chemical Industry Co., Ltd., and the like. These compounds are used alone or in admixture of two or more.
  • an active energy ray-curable isocyanurate derivative and an active energy ray-curable resin other than an isocyanurate derivative are used in combination in the hard coat layer, other than the active energy ray-curable isocyanurate derivative (A) and the isocyanurate derivative
  • the object of the present invention is achieved even after a more severe weather resistance test. The effect is more preferable from the starting point.
  • the hard coat layer preferably contains a photopolymerization initiator to accelerate the curing of the active energy ray-curable resin.
  • photopolymerization initiator examples include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. .
  • the hard coat layer according to the present invention is applied on the easy-adhesion layer of the film substrate by the following method as a hard coat layer coating composition by diluting the above-described active energy ray-curable resin with a solvent or the like, and drying. From the viewpoint of productivity, it is preferable to provide a cured product.
  • Solvents include alcohols (methanol, isopropyl alcohol, 1-methoxy-2-propanol, etc.), ketones (methyl ethyl ketone, acetone, methyl isobutyl ketone, etc.) or acetate esters (methyl acetate, ethyl acetate, butyl acetate, etc.) Solvents are preferred.
  • the coating amount is suitably 0.1 to 40 ⁇ m, preferably 0.5 to 30 ⁇ m, as the wet film thickness.
  • the dry film thickness is from 0.1 to 30 ⁇ m, preferably from 1 to 20 ⁇ m, particularly preferably from 6 to 15 ⁇ m.
  • a known coating method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die (extrusion) coater, or an ink jet method can be used. Drying is preferably carried out at a temperature of 40 ° C. or more in the reduced rate drying section because the diluent solvent does not remain in the hard coat layer, and more preferably the temperature in the reduced rate drying zone is 80 ° C. or higher and 130 ° C. It is as follows.
  • the drying process changes from a constant state to a gradually decreasing state when drying starts.
  • the decreasing section is called the decreasing rate drying section.
  • UV curing treatment is generally used from the viewpoint of productivity, and heat treatment is performed after UV curing treatment as necessary.
  • the heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 50 to 1000 mJ / cm 2 , preferably 50 to 300 mJ / cm 2 .
  • irradiating active rays it is preferably performed while applying tension in the film transport direction, more preferably while applying tension in the width direction.
  • the tension to be applied is preferably 30 to 300 N / m.
  • the method for applying tension is not particularly limited, and tension may be applied in the transport direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
  • the hard coat layer may be a single layer or a plurality of layers.
  • the hard coat layer may be divided into two or more layers.
  • a hard-coat layer may be provided in the single side
  • the thickness of the uppermost layer when two or more layers are provided is preferably in the range of 0.05 to 2 ⁇ m.
  • Two or more layers may be formed as a simultaneous multilayer.
  • the simultaneous multi-layer is to form a hard coat layer by applying two or more hard coat layers on a base material by a wet on wet (wet coating method) without passing through a drying step.
  • the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
  • the hard coat layer preferably contains an ultraviolet absorber from the viewpoint of the object effect and adhesiveness of the present invention.
  • the ultraviolet absorber is a compound that has an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less and has little absorption of visible light having a wavelength of 400 nm or more. Specific examples include, but are not limited to, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, and the like. Although the following specific examples are given as a benzotriazole type ultraviolet absorber, this invention is not limited to these.
  • UV-1 2- (2'-hydroxy-5'-methylphenyl) benzotriazole
  • UV-2 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole
  • UV-3 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole
  • UV-4 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-chlorobenzotriazole
  • UV-5 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole
  • UV-6 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
  • UV-7 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-ch
  • UV-10 2,4-dihydroxybenzophenone
  • UV-11 2,2'-dihydroxy-4-methoxybenzophenone
  • UV-12 2-hydroxy-4-methoxy-5-sulfobenzophenone
  • UV-13 bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
  • the above ultraviolet absorber is preferably a benzotriazole ultraviolet absorber or a benzophenone ultraviolet absorber because the transparency of the hard coat layer is excellent.
  • Commercially available products such as PUVA-30M (manufactured by Otsuka Chemical Co., Ltd.) can also be used as the polymer ultraviolet absorber.
  • As a constitution containing an ultraviolet absorber it may be contained in a single hard coat layer, but the hard coat layer is composed of two or more layers, and an ultraviolet absorber is added to the hard coat layer in contact with the easily adhesive layer group.
  • the composition to contain is also mentioned. It is preferable that the hard coat layer contains an ultraviolet absorber from the viewpoint that the object and effects of the present invention are satisfactorily exhibited.
  • the thickness of the hard coat layer in contact with the base film is preferably in the range of 0.05 to 2 ⁇ m.
  • Two or more layers may be formed as a simultaneous multilayer.
  • the simultaneous multi-layering is to form a hard coat layer by applying two or more hard coat layers on a base material without going through a drying step.
  • the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
  • the hard coat layer may contain a conductive agent in order to impart antistatic properties, and preferred conductive agents include metal oxide particles or ⁇ -conjugated conductive polymers.
  • An ionic liquid is also preferably used as the conductive compound.
  • the hard coat layer has a nonionic surfactant such as a silicone surfactant, a fluorosurfactant or a polyoxyether, an anionic surfactant, from the viewpoint of coating properties and the uniform dispersibility of fine particles. And a fluorine-siloxane graft polymer.
  • the fluorine-siloxane graft polymer refers to a copolymer polymer obtained by grafting polysiloxane containing siloxane and / or organosiloxane alone and / or organopolysiloxane to at least a fluorine resin.
  • Examples of commercially available products include ZX-022H, ZX-007C, ZX-049, ZX-047-D manufactured by Fuji Kasei Kogyo Co., Ltd. These components are preferably added in a range of 0.01 to 3% by mass with respect to the solid component in the coating solution.
  • the hard coat layer may contain inorganic fine particles and organic fine particles as necessary.
  • silicon oxide, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated silicic acid Mention may be made of calcium, aluminum silicate, magnesium silicate and calcium phosphate.
  • silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used.
  • These inorganic fine particles are preferably coated with an organic component having a reactive functional group on a part of the surface because the scratch resistance is improved while maintaining the transparency of the hard coat film.
  • an organic component having a reactive functional group on a part of the surface for example, a compound containing an organic component such as a silane coupling agent reacts with a hydroxyl group present on the surface of the metal oxide fine particles, and the surface A mode in which an organic component is bonded to a part of the metal particle, a mode in which an organic component is attached to a hydroxyl group present on the surface of a metal oxide fine particle by an interaction such as a hydrogen bond, or one or more inorganic particles in a polymer particle.
  • a compound containing an organic component such as a silane coupling agent reacts with a hydroxyl group present on the surface of the metal oxide fine particles, and the surface A mode in which an organic component is bonded to a part of the metal particle, a mode in which an organic component is attached to a hydroxyl group present on the surface of a metal oxide fine particle by an interaction such as a hydrogen bond, or one or more inorganic particles in a polymer particle.
  • Organic particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, and melamine resin. Powder, polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, polyfluoroethylene resin powder, or the like can be added.
  • Preferred fine particles include crosslinked polystyrene particles (for example, SX-130H, SX-200H, SX-350H manufactured by Soken Chemical), polymethyl methacrylate-based particles (for example, MX150 and MX300 manufactured by Soken Chemical), and fluorine-containing acrylic resin fine particles. .
  • Examples of the fluorine-containing acrylic resin fine particles include commercially available products such as FS-701 manufactured by Nippon Paint.
  • Examples of the acrylic particles include Nippon Paint: S-4000, and examples of the acrylic-styrene particles include Nippon Paint: S-1200, MG-251.
  • the average particle diameter of these fine particle powders is not particularly limited, but is preferably 0.01 to 5 ⁇ m, and more preferably 0.01 to 1.0 ⁇ m. Moreover, you may contain 2 or more types of microparticles
  • the average particle diameter of the fine particles can be measured by, for example, a laser diffraction particle size distribution measuring device.
  • the ratio of the ultraviolet curable resin composition and the fine particles is desirably 10 to 400 parts by mass, more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the resin composition.
  • the hard coat film of the present invention has a pencil hardness, which is an index of hardness, of H or higher, more preferably 3H or higher. If it is 3H or more, it is not only difficult to be damaged when used in a display device, but is also used as a surface protection film for large-sized liquid crystal display devices and digital signage liquid crystal display devices that are often used outdoors. Excellent film strength even when exposed.
  • the pencil hardness is evaluated by the pencil hardness evaluation method specified by JISK5400 using the test pencil specified by JIS S 6006 after the prepared hard coat film is conditioned at a temperature of 23 ° C. and a relative humidity of 55% for 2 hours or more. It is the value measured according to.
  • the hard coat layer is a method of forming surface irregularities by adding inorganic or organic fine particles as described above, a method of forming surface irregularities using phase separation by pinodal decomposition, or a method of forming protrusions on the surface by pressing a mold.
  • the antiglare property may be imparted.
  • the mold roll those having fine irregularities and coarse ones can be appropriately selected and applied, and patterns, mats, lenticular lenses, and spherical irregularities arranged regularly or randomly can be used.
  • Anti-glare is to reduce the visibility of the reflected image by blurring the outline of the image reflected on the surface so that the reflected image or light reflection is not an issue when using a display device or the like. .
  • the arithmetic average roughness Ra (JIS B0601: 1994) of the surface irregularities of the hard coat layer is preferably 1 to 300 nm.
  • the height of the protrusion shape is preferably 10 nm to 4 ⁇ m.
  • the width of the protrusion shape is 50 nm to 300 ⁇ m, preferably 50 nm to 100 ⁇ m.
  • the 10-point average roughness Rz is 10 times or less the centerline average roughness Ra, and the average mountain valley distance Sm is preferably 5 to 150 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the deviation is 0.5 ⁇ m or less
  • the standard deviation of the average valley distance Sm with respect to the center line is 20 ⁇ m or less
  • the surface having an inclination angle of 0 to 5 degrees is 10% or more.
  • the arithmetic average roughness Ra, Sm, Rz described above is a value measured with an optical interference surface roughness meter (for example, RST / PLUS, manufactured by WYKO) according to JIS B0601: 1994.
  • the kurtosis (Rku) is preferably 3 or less.
  • the kurtosis (Rku) is a parameter that defines the shape of the convex portion of the surface uneven shape.
  • the kurtosis (Rku) of the antiglare layer is more preferably 1.5 to 2.8. Further, the absolute value of the degree of distortion (Rsk) of the surface is preferably 1 or less.
  • the skewness (Rsk) is a parameter indicating the ratio of the convex portion and the concave portion to the average surface of the concavo-convex shape, and the concavo-convex shape becomes a positively large value when there are many convex portions with respect to the average surface, If there are many concave portions with respect to the average surface, the value becomes negatively large.
  • the absolute value of the skewness (Rsk) exceeds 1, white blur tends to occur.
  • the absolute value of the skewness (Rsk) is preferably 0.01 to 0.5.
  • the kurtosis (Rku) and the skewness (Rsk) can be measured using the optical interference type surface roughness meter.
  • the image sharpness (transmission image clarity) according to JIS-K7105 is preferably 5% to 90% when measured with an optical comb width of 0.5 mm.
  • the base film is easy to manufacture and has excellent transparency and adhesion to the easy-adhesion layer, an acrylic resin film, a polycarbonate resin film, a polypropylene resin film, a cycloolefin resin film, and a polyester
  • an acrylic resin film is easy to manufacture and has excellent transparency and adhesion to the easy-adhesion layer
  • a polycarbonate resin film is easy to manufacture and has excellent transparency and adhesion to the easy-adhesion layer
  • a polypropylene resin film a polypropylene resin film
  • a cycloolefin resin film a cycloolefin resin film
  • a polyester is at least one selected from resin-based films.
  • the acrylic resin film is a film containing a resin having a skeleton derived from acrylic acid or methacrylic acid.
  • the acrylic resin include, but are not limited to, poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester Copolymer, methyl methacrylate-acrylic acid ester- (meth) acrylic acid copolymer, methyl (meth) acrylate-styrene copolymer, polymer having an alicyclic hydrocarbon group (for example, methyl methacrylate- Cyclohexyl methacrylate copolymer, methyl methacrylate- (meth) acrylate norbornyl copolymer), and the like.
  • poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (
  • acrylic resins poly (meth) acrylate C1-6 alkyl such as poly (meth) methyl acrylate is preferable, and methyl methacrylate resin is more preferable.
  • Commercially available acrylic resins include Delpet 60N, 80N (Asahi Kasei Chemicals Corporation), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) ) And the like. Two or more acrylic resins can be used in combination.
  • the polycarbonate resin film will be described.
  • the polycarbonate resin film is a film containing a resin composed of a compound called poly-4,4′-isopropylidene-diphenyl carbonate.
  • This polycarbonate resin can be produced from bisphenol A and carbonyl chloride in the interfacial polycondensation method, and can be produced from bisphenol A and diphenyl carbonate in the transesterification method.
  • a polypropylene resin is a film containing a resin having a skeleton derived from propylene.
  • polypropylene resin is not particularly limited, but is a homopolymer of propylene or a copolymer of propylene and one or more monomers selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 12 carbon atoms. A polymer etc. are mentioned.
  • the cycloolefin resin film is a film containing a resin having a skeleton derived from cycloolefin.
  • cycloolefin resins include, but are not limited to, resins obtained by subjecting a ring-opening (co) polymer of norbornene monomers to polymer modification such as maleic acid addition or cyclopentadiene addition as necessary.
  • examples thereof include resins obtained by addition polymerization of norbornene monomers and resins obtained by addition polymerization of norbornene monomers and olefin monomers such as ethylene and ⁇ -olefin.
  • norbornene monomers used for obtaining a ring-opening (co) polymer of norbornene monomers include, for example, norbornene, 2-norbornene, 5-methyl-2-norbornene, 5,5-dimethyl-2-norbornene 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-ethylidene-2-norbornene, 5-methoxycarbonyl-2-norbornene, 5-cyano-2-norbornene, 5-methyl-5-methoxycarbonyl Examples include -2-norbornene, 5-phenyl-2-norbornene, 5-phenyl-5-methyl-norbornene.
  • a tungsten, molybdenum, or chromium catalyst called a metathesis polymerization catalyst is preferably used.
  • a cycloolefin resin-type film a zeonore film (made by Nippon Zeon Co., Ltd.), an arton film (made by JSR Co., Ltd.), etc. are mentioned.
  • the polyester resin film will be described.
  • the polyester resin film is preferably a biaxially stretched polyester resin film from the viewpoint of thermal and mechanical stability.
  • a biaxially stretched polyester film is a polyester resin film that has been stretched in two directions and heat-treated as necessary.
  • Dicarboxylic acids used in the polyester resin include aromatic dicarboxylic acids such as terephthalic acid, naphthalene dicarboxylic acid, isophthalic acid, diphenyl carboxylic acid, diphenyl sulfone dicarboxylic acid, diphenoxyethane dicarboxylic acid, 5-sodium sulfone dicarboxylic acid, and phthalic acid.
  • oxalic acid succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid, fumaric acid and other aliphatic dicarboxylic acids, cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids, and paraoxybenzoic acid and other oxycarboxylic acids.
  • succinic acid adipic acid
  • sebacic acid dimer acid
  • maleic acid fumaric acid and other aliphatic dicarboxylic acids
  • cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids and paraoxybenzoic acid and other oxycarboxylic acids.
  • paraoxybenzoic acid and other oxycarboxylic acids can be used.
  • the glycols used in the polyester resin include aliphatic glycols such as ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, and neopentylglycol, and polyoxyalkylene glycols such as diethylene glycol, polyethylene glycol, and polypropylene glycol.
  • alicyclic glycols such as cyclohexanedimethanol, aromatic glycols such as bisphenol A and bisphenol S can be used.
  • terephthalic acid or naphthalenedicarboxylic acid it is preferable to use terephthalic acid or naphthalenedicarboxylic acid as the dicarboxylic acid, and ethylene glycol as the glycol.
  • polyester resin film examples include a polyethylene terephthalate film.
  • an alkaline earth metal compound a manganese compound, a cobalt compound, an aluminum compound, an antimony compound, a titanium compound, a germanium compound or the like as a catalyst during polymerization.
  • a catalyst two or more of these dicarboxylic acids, glycols, and catalysts may be used in combination.
  • a polyester resin film is preferable from the viewpoint that heat resistance, mechanical strength, dimensional stability, and the object effect of the present invention are more satisfactorily exhibited.
  • the thickness of the base film is preferably 10 ⁇ m or more and 350 ⁇ m or less, more preferably 20 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the base film is preferably 10 ⁇ m or more and 350 ⁇ m or less, more preferably 20 ⁇ m or more and 200 ⁇ m or less.
  • the base film having a width of 1 to 4 m is used. If it exceeds 4 m, conveyance becomes difficult.
  • the length of the substrate film is preferably 500 to 10,000 m, more preferably 1000 m to 7000 m. By setting it as the range of the said length, it is excellent in the processability in application
  • the base film usually has an arithmetic average surface roughness (Ra) of 2 nm to 10 nm, more preferably 2 nm to 6 nm.
  • the base film can be subjected to mat treatment as necessary.
  • mat treatment scratch resistance and handling in the treatment after the production of the film base material is improved.
  • the arithmetic average surface roughness (Ra) of the base film subjected to such a mat treatment is preferably 2 nm or more and 2 ⁇ m or less, more preferably 2 nm or more and 1 ⁇ or less.
  • the fine particles added for the mat treatment preferably have an average particle size of 0.005 to 3 ⁇ m.
  • Fine particles include inorganic particles such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, and crosslinked polymers. And so on.
  • silicon dioxide is preferably used from the viewpoint that handling properties and haze increase of the base film can be suppressed.
  • the base film preferably has a total light transmittance of 90% or more, more preferably 92% or more. Moreover, as a realistic upper limit, it is about 99%. Further, the haze value is preferably 2% or less, more preferably 1.5% or less. The total light transmittance and haze value can be measured according to JIS K7361 and JIS K7136.
  • the in-plane retardation Ro of the base film is preferably in the range of 0 to 200 nm and the retardation Rth in the thickness direction is in the range of ⁇ 150 to 150 nm.
  • Ro and Rth are values defined by the following formulas (I) and (II).
  • Formula (I) Ro (nx ⁇ ny) ⁇ d
  • Formula (II) Rth ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d (Where nx is the refractive index in the slow axis direction in the film plane, ny is the refractive index in the direction perpendicular to the slow axis in the substrate film plane, and nz is the refractive index in the thickness direction of the film) And d is the film thickness (nm).)
  • the retardation can be determined at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH using, for example, KOBRA-21ADH (Oji Scientific Instruments).
  • the substrate film When the substrate film has the retardation, when used in a liquid crystal display device, it suppresses the conversion action of the polarization direction of the transmitted light, and optimizes and controls the polarization in the transmission axis direction of the polarizer. Excellent.
  • the method for producing the base film is not particularly limited.
  • the raw material for flakes of synthetic resin and additives such as a plasticizer are mixed by a known mixing method to prepare a thermoplastic resin composition in advance. Can do.
  • thermoplastic resin composition can be obtained by, for example, pre-blending with a mixer such as an omni mixer and then extruding and kneading the obtained mixture.
  • a mixer such as an omni mixer
  • the kneader used for extrusion kneading is not particularly limited, and for example, a known kneader such as an extruder such as a single screw extruder or a twin screw extruder or a pressure kneader can be used.
  • a known method such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, or a compression molding method can be used.
  • the solution casting method (solution casting method) and the melt extrusion method are preferable from the viewpoint of productivity.
  • thermoplastic resin composition extruded and kneaded in advance may be used, or other additives such as a synthetic resin and a plasticizer are separately dissolved in a solvent to obtain a uniform mixed solution, and then a solution. It may be formed by a casting method (solution casting method) or a melt extrusion method.
  • Solvents used in the solution casting method include, for example, chlorinated solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; methanol, ethanol, and isopropanol Alcohol solvents such as n-butanol and 2-butanol; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether, etc. It is done. These solvents may be used alone or in combination of two or more. Examples of the apparatus for performing the solution casting method (solution casting method) include a drum casting machine, a band casting machine, and a spin coater.
  • chlorinated solvents such as chloroform
  • melt extrusion method examples include a T-die method and an inflation method.
  • the molding temperature of the film during melt extrusion is preferably 150 ° C. or higher and 350 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C. or lower.
  • a T-die When forming a film by the T-die method, a T-die is attached to the tip of a known single-screw extruder or twin-screw extruder, the film is extruded and wound up, and the film is obtained in a roll state. it can. Under the present circumstances, it is also possible to set it as a uniaxial stretching process by adjusting the temperature of a winding roll suitably, and adding extending
  • the base film may be an unstretched film or a stretched film.
  • stretching a uniaxially stretched film may be sufficient and a biaxially stretched film may be sufficient.
  • a biaxially stretched film it may be biaxially stretched simultaneously or sequentially biaxially stretched. In the case of biaxial stretching, the mechanical strength is improved and the film performance is improved.
  • the stretching temperature when performing the stretching step is preferably near the glass transition temperature of the thermoplastic resin composition of the film raw material, specifically, (glass transition temperature-30) ° C. to (glass transition temperature + 100) ° C. It is preferably carried out, more preferably (glass transition temperature ⁇ 20) ° C. to (glass transition temperature + 80) ° C. If the stretching temperature is lower than (glass transition temperature ⁇ 30) ° C., a sufficient stretching ratio cannot be obtained, which is not preferable. If the stretching temperature is higher than (glass transition temperature + 100) ° C., resin flow occurs, and stable stretching cannot be performed.
  • the draw ratio defined by the area ratio can be preferably in the range of 1.1 to 25 times, more preferably in the range of 1.3 to 10 times.
  • the stretching speed (one direction) is preferably in the range of 10 to 20000% / min, more preferably in the range of 100 to 10,000% / min. If it is slower than 10% / min, it takes time to obtain a sufficient draw ratio, and the production cost is increased, which is not preferable. If it is faster than 20000% / min, the stretched film may be broken, which is not preferable. Furthermore, in order to stabilize the optical isotropy and mechanical properties of the base film, a heat treatment (annealing) can be performed after the stretching treatment.
  • the amount of heat applied during stretching or heat treatment may be used for drying after applying an easy-adhesion layer described later as a water-based paint.
  • both ends in the width direction of the film may be embossed (knurled) to prevent blocking.
  • the processing portions at both ends of the film cannot be used, and the portions are generally cut and discarded.
  • masking may be performed with a protective film in order to prevent scratching.
  • a plasticizer may be added to the resin composition forming the film base as necessary.
  • the plasticizer is not particularly limited, but has a functional group capable of interacting with a synthetic resin by hydrogen bonding or the like so as not to cause haze of the base film or bleed out or volatilize from the base film.
  • plasticizers include, but are not limited to, phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, polyhydric alcohol plasticizers.
  • Glycolate plasticizers citrate ester plasticizers, fatty acid ester plasticizers, carboxylic ester plasticizers, polyester plasticizers, sugar esterified products (particularly compounds having a furanose structure and / or a pyranose structure are preferred) Etc.
  • These plasticizers may be used in combination.
  • the plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the base film.
  • a base film may contain the ultraviolet absorber described in the hard-coat layer.
  • an ultraviolet absorber having a molecular weight of 400 or more is preferable because it is difficult to volatilize at a high boiling point and hardly scatters during high temperature molding.
  • antioxidants can also be added to the base film in order to improve the thermal decomposability and thermal colorability during molding.
  • An antistatic agent may be added.
  • a phosphorus-based flame retardant may be added to the base film.
  • Phosphorus flame retardants include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, condensed aryl phosphate ester, halogenated alkyl phosphate ester, halogen-containing condensed phosphate ester, halogen-containing phosphorous phosphorus
  • acid esters or a mixture of two or more types can be mentioned.
  • the base film preferably has a defect of 5 ⁇ m or more in diameter in the film plane of 1 piece / 10 cm square or less.
  • the number of defects is greater than 1/10 cm square, for example, when the film is tensioned during processing in a later process, the film may break with the defects as a starting point, and productivity may decrease.
  • the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • the base film preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more, in the measurement based on JIS-K7127-1999.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the easy-adhesion layer according to the present invention represents a layer provided in order to improve interlayer adhesion between the base film and the hard coat layer, and specifically, when the base film and the hard coat layer are directly bonded.
  • polyester resins are preferable from the viewpoint that the objective effect of the present invention is easily exerted, and it is preferable to use 50% by mass or more of polyester resins with respect to the components constituting the easy-adhesion layer.
  • each resin will be described.
  • the polyester resin is produced by esterifying (transesterifying) a dicarboxylic acid and a diol and polycondensing the polyester resin according to a known method.
  • dicarboxylic acid examples include aromatic dicarboxylic acids or esters such as terephthalic acid, isophthalic acid, phthalic acid, and naphthalene dicarboxylic acid, and aliphatic dicarboxylic acids such as adipic acid, succinic acid, sebacic acid, and dodecanedioic acid. Hydroxycarboxylic acids such as hydroxybenzoic acid or their esters can be used.
  • diol examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, bisphenols, and the like.
  • the component which has a hydrophilic group may be copolymerized and hydrophilicity may be provided.
  • examples of such a component having a hydrophilic group include dicarboxylic acid components such as 5-sodium sulfoisophthalic acid, and diol components such as ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol.
  • dicarboxylic acid components such as 5-sodium sulfoisophthalic acid
  • diol components such as ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol.
  • the polyester resins it is preferable to use in combination two or more resins having different glass transition points from the viewpoint of the object effect of the present invention and prevention of oligomer precipitation by heating.
  • the polyester resin (X) having a glass transition point Tg of 105 ° C. or higher and lower than 135 ° C. those using 2,6-naphthalenedicarboxylic acid and / or sodium sulfonate / isophthalic acid as the acidic component are preferable. More preferably, an acidic component using sodium, sulfonate, or isophthalic acid is preferable.
  • the content molar ratio of sodium sulfonate / isophthalic acid is preferably 15/50 or less, more preferably 10/50 or less, when the total acidic content of the polyester resin (X) is 50.
  • polyester resin (Y) having a glass transition point Tg of 65 ° C. or higher and lower than 95 ° C. those using terephthalic acid and / or trimellitic acid as the acidic component are preferable, and those using trimellitic acid are more preferable. preferable.
  • the molar ratio of trimellitic acid is preferably 20/50 or less, more preferably 15/50 or less, assuming that the total acidic content of the polyester resin (Y) is 50.
  • ethylene glycol is preferred.
  • the acrylic resin can be synthesized by polymerizing a reactive polymer having a skeleton derived from acrylic acid or methacrylic acid.
  • reactive polymers include those having a carboxyl group such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxyphenyl acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxybutyl (meta ) Acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate and other hydroxyl groups, (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N, Those having an amide group such as N-dimethyl (meth) acrylamide, N-methylol (meth) acrylamide, those having a glycidyl group such as glycidyl (meth) acrylate, 7-amino-3,7-dimethyloc
  • copolymer components other than the above that constitute the acrylic resin include acrylic ester, methacrylic ester, propylene, vinyl chloride, cellulose, ethylene, ethyleneimine, vinyl alcohol, peptide, and vinyl. Pyridine-based, diene-based, fluorine-based, acrylonitrile-based, and the like can be mentioned. From the viewpoints of versatility and coating properties, it is preferable to include acrylate-based and methacrylic ester-based.
  • the component which comprises these acrylic resins can be used individually or in combination of multiple types.
  • the urethane resin can be synthesized from a polyhydroxyl compound, diisocyanate, and a low molecular weight chain extender containing at least two hydrogen atoms that react with the diisocyanate by a known method. For example, after synthesizing a relatively high molecular weight polyurethane in a solvent, water is added little by little to phase inversion emulsification, and the solvent is removed by decompression, or polyethylene glycol or carboxyl group is introduced as a hydrophilic group in the polymer. There is a method in which the urethane prepolymer dissolved or dispersed in water is added and reacted with a chain extender.
  • polyhydroxyl compounds used in the production of urethane resins include carboxylic acids such as phthalic acid, adipic acid, dimerized linolenic acid and maleic acid; glycols such as ethylene glycol, propylene glycol, butylene glycol and diethylene glycol; Polyester polyols obtained by dehydration condensation reaction from methylolpropane, hexanetriol, glycerin, trimethylolethane, pentaerythritol, etc .; polyoxypropylene glycol, polyoxybutylene glycol, polytetramethylene glycol, polyoxypropylene triol, polyoxyethylene poly Initiators are inorganic acids such as oxypropylene triol, sorbitol, pentaerythritol, sucrose, starch and phosphoric acid Polyoxypropylene polyols, polyether polyols such as polyoxypropylene polyoxyethylene polyol, acrylic polyol, a derivative of castor
  • diisocyanates used in the production of urethane resins include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, tetramethylene Diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, trimethylhexamethylene diisocyanate, 1,4-cyclohexylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 3,3'-dimethyl-4,4 '-Biphenylene diisocyanate, 3,3'-dimethoxy-4,4'-biphenylene diisocyanate, 3,3'-dichloro-4,4' Biphenylene diisocyanate,
  • chain extenders used in the production of urethane resins include ethylene glycol, 1,4-butanediol, trimethylolpropane, triisopropanolamine, N, N-bis (2-hydroxypropyl) aniline, hydroquinone-bis Polyols such as ( ⁇ -hydroxyethyl) ether and resorcinol-bis ( ⁇ -hydroxyethyl) ether, ethylenediamine, propylenediamine, hexamethylenediamine, phenylenediamine, tolylenediamine, diphenyldiamine, diaminodiphenylmethane, diaminodiphenylmethane, diaminodicyclohexyl Examples include methane, piperazine, isophoronediamine, polyamines such as diethylenetriamine and dipropylenetriamine, hydrazines, and water. These chain extenders can be used alone
  • the synthetic reaction in the production of the urethane-based resin can be performed in the presence of a catalyst such as an organic tin compound, organic bismuth, or amine, and among these, it is particularly preferable to perform in the presence of an organic tin compound.
  • a catalyst such as an organic tin compound, organic bismuth, or amine, and among these, it is particularly preferable to perform in the presence of an organic tin compound.
  • organic tin compounds include stannous acetate, stannous octoate, stannous laurate, stannous oleate and the like; dibutyltin acetate, dibutyltin dilaurate, dibutyltin maleate Dialkyltin salts of carboxylic acids such as dibutyltin di-2-ethylhexoate, dilauryltin diacetate, dioctyltin diacetate; trialkyl hydroxides such as trimethyltin hydroxide, tributyltin hydroxide, trioctyltin hydroxide Tin: Dialkyltin oxide such as dibutyltin oxide, dioctyltin oxide and dilauryltin oxide; Dialkyltin chloride such as dibutyltin dichloride and dioctyltin dichloride, etc., and these may be used alone. More than one species may be used in combination
  • a resin selected from a polyester resin, an acrylic resin, and a urethane resin is applied to a base film as an aqueous emulsion or an aqueous solution (hereinafter referred to as “aqueous emulsion etc.”) and dried. Can be formed. Moreover, after apply
  • the solid content of the water-based emulsion is usually 10% by mass or more and 50% by mass or less.
  • Water is used as the main solvent for the aqueous emulsion and the like, but a small amount of an organic solvent miscible with water may be used. Examples of such organic solvents include lower alcohols, polyhydric alcohols and alkyl ethers or alkyl esters thereof.
  • Water-based emulsions, etc. are known as dip coating methods, air knife coating methods, curtain coating methods, roller coating methods, wire bar coating methods, gravure coating methods, extrusion coating methods (die coating methods), etc. Can be applied. Subsequently, an easily bonding layer can be formed by drying the applied water-based emulsion and the like.
  • crosslinking agent it is preferable to add a crosslinking agent to the aqueous emulsion for forming the easy-adhesion layer, if necessary.
  • the crosslinking agent include melamine, oxazoline, aldehyde, N-methylol compound, dioxane derivative, active vinyl compound, active halogen compound, isoxazole, dialdehyde starch, isocyanate compound, and silane coupling agent. .
  • These crosslinking agents may be used alone or in combination of two or more.
  • the addition amount of the crosslinking agent is preferably 0.1% by mass or more and 20% by mass or less, and more preferably 0.5% by mass or more and 15% by mass or less with respect to the total amount of the hydrophilic resin.
  • other resin components such as amino group-containing resins, surfactants, slipping agents, dyes, UV absorbers, matting agents (silica) , Colloidal silica, etc., preferably having an average particle size of 0.005 to 3 ⁇ m), preservatives, thickeners, film-forming aids, antistatic agents, antioxidants, and the like.
  • the total light transmittance of the base film provided with the easy adhesion layer is preferably 90% or more, and more preferably 91% or more.
  • the haze of the base film provided with the easy adhesion layer is preferably 2% or less, more preferably 1.5% or less.
  • the total light transmittance is less than 90%, when used in a display device, the luminance is reduced or the original color of the article looks dark.
  • the haze greatly exceeds 2%, the article appears whitish and cloudy when used in a display device, which may undesirably impair the original appearance of the article such as an image of a flat panel display or home appliances.
  • the hard coat film of the present invention can be provided with a functional layer such as an antireflection layer or a transparent conductive thin layer.
  • the hard coat film according to the present invention can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on the hard coat layer.
  • the antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference.
  • the antireflection layer is composed of a low refractive index layer having a lower refractive index than the protective film as the support, or a combination of a high refractive index layer and a low refractive index layer having a higher refractive index than the protective film as the support.
  • it is.
  • it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support).
  • an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
  • the layer structure of the antireflection film the following structure is conceivable, but is not limited thereto.
  • the low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm.
  • the film thickness of the low refractive index layer is preferably 5 nm to 0.5 ⁇ m, more preferably 10 nm to 0.3 ⁇ m, and most preferably 30 nm to 0.2 ⁇ m.
  • the composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles.
  • the particles having the outer shell layer and having a porous or hollow interior are preferably hollow silica-based fine particles.
  • composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
  • OSi-1 organosilicon compound represented by the following general formula (OSi-1)
  • hydrolyzate thereof a hydrolyzate thereof
  • polycondensate thereof a polycondensate thereof.
  • R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
  • a solvent and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added. Further, it may contain a thermosetting and / or photocurable compound mainly containing a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group. Specifically, a fluorine-containing polymer or a fluorine-containing sol-gel compound is used.
  • fluorine-containing polymer examples include hydrolysates and dehydration condensates of perfluoroalkyl group-containing silane compounds [eg (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], and fluorine-containing monomers. Examples thereof include fluorine-containing copolymers having units and cross-linking reactive units as constituent units.
  • the refractive index of the high refractive index layer is preferably adjusted to a range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm.
  • the thickness of the high refractive index layer is preferably 5 nm to 1 ⁇ m, more preferably 10 nm to 0.2 ⁇ m, and most preferably 30 nm to 0.1 ⁇ m.
  • the means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like.
  • Metal oxide The metal oxide fine particles used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
  • the kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S
  • a metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used.
  • at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium tin oxide (ITO), antimony doped tin oxide (ATO), and zinc antimonate is used. It is particularly preferable to use it as the main component. In particular, it is preferable to contain zinc antimonate particles.
  • the average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, and is particularly preferably 10 to 150 nm.
  • the average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased.
  • the shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
  • the metal oxide fine particles may be surface-treated with an organic compound.
  • an organic compound By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . Therefore, the amount of surface modification with a preferable organic compound is 0.1% by mass to 5% by mass, more preferably 0.5% by mass to 3% by mass with respect to the metal oxide particles.
  • the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined.
  • the high refractive index layer may contain a ⁇ -conjugated conductive polymer.
  • the ⁇ -conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a ⁇ -conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
  • the ⁇ -conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group.
  • a functional group such as a group, a hydroxy group, or a cyano group may be introduced.
  • the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 ⁇ and PF 6 ⁇ , CF 3 SO 2 ⁇ , and the like. , (CF 3 SO 2 ) 2 N ⁇ , CF 3 CO 2 —, etc.
  • the ratio of the polymer to the binder is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the polymer, and particularly preferably 100 to 200 parts by mass of the binder with respect to 100 parts by mass of the polymer.
  • a transparent conductive thin layer may be formed on the hard coat layer of the hard coat film.
  • a generally widely known transparent conductive material can be used.
  • a transparent conductive material such as indium oxide, tin oxide, indium tin oxide, gold, silver, or palladium can be used. These can be formed as a thin film on the hard coat film by vacuum deposition, sputtering, ion plating, solution coating, or the like.
  • a transparent conductive material that is excellent in transparency and electrical conductivity and is mainly composed of any one of indium oxide, tin oxide, and indium tin oxide, which can be obtained at a relatively low cost, can be suitably used.
  • the thickness of the transparent conductive thin film varies depending on the material to be applied, it cannot be said unconditionally.
  • the surface resistivity is 1000 ⁇ or less, preferably 500 ⁇ or less. A range of 20 nm or more and 80 nm or less, preferably 70 nm or less is preferable. In such a thin film, visible light interference fringes due to uneven thickness of the transparent conductive thin layer are unlikely to occur.
  • the hard coat film of this invention is preferable at the point by which the performance excellent in visibility (clearness) is exhibited by using it for an image display apparatus.
  • an image display device a reflection type, a transmission type, a semi-transmission type liquid crystal display device, a liquid crystal display device of various driving methods such as a TN type, an STN type, an OCB type, a VA type, an IPS type and an ECB type, an organic EL display Examples thereof include a device and a plasma display.
  • the hard coat film of the present invention when used for a touch panel member of a liquid crystal display device including a touch panel, it is preferable in terms of excellent visibility and durability against pen input (such as scratches caused by sliding). .
  • FIG. 1 An example when used for a touch panel is shown in FIG.
  • a transparent conductive thin film 12 is formed on the transparent hard coat film 11 of the present invention, and the glass substrate 13 on which the transparent conductive thin film 15 is formed is spaced apart from the transparent conductive thin film 15 with a certain distance therebetween. By making them face each other, the resistive touch panel 10 can be configured. Electrodes (not shown) are arranged at the ends of the hard coat film 11 and the glass substrate 13. When the user presses down the hard coat film 11 with the transparent conductive thin film 12 with a finger or a pen, the transparent conductive thin film 12 comes into contact with the transparent conductive thin film 15 on the glass substrate 13. The pressed position is detected by electrically detecting this contact through the electrode at the end.
  • a liquid crystal display device with a touch panel can be configured by mounting the touch panel 10 of FIG. 2 on the color liquid crystal display panel 20.
  • Example 1 Preparation of base film 1 with an easy adhesion layer> Polyethylene terephthalate containing no filler was melt-extruded at 280 ° C., and cast on a 20 ° C. cast drum applied with an electrostatic force to produce an unstretched sheet. This sheet was preheated at 100 ° C., and stretched at a temperature of 3 times in the longitudinal direction by roll stretching. Thereafter, the easy-adhesion layer water-based paint 1 adjusted to a concentration of 4.5% was applied to both sides of the sheet. After coating, the film was stretched 3.5 times in the width direction at 120 ° C. and heat-treated at 220 ° C.
  • Polyester resin (X) having a Tg of 120 ° C. and a sodium / sulfonate / isophthalic acid molar ratio of 7/50 19 parts by mass
  • Polyester resin (Y) having a Tg of 80 ° C. and a trimellitic acid molar ratio of 12/50 45 parts by mass
  • ⁇ Preparation of base film 3 with an easy adhesion layer> In the production of the base film 1, the coating amount of the easy-adhesion layer water-based paint 3 was adjusted so that the film thickness of the easy-adhesion layer was 150 nm, and the easy-adhesion layer water-based paint 1 was changed to the easy-adhesion layer water-based paint 3. Except for the above, a base film 3 with an easy adhesion layer was obtained in the same manner.
  • ⁇ Preparation of base film 4 with an easy adhesion layer> In the production of the base film 1, the coating amount of the easy-adhesion layer water-based paint 4 was adjusted so that the film thickness of the easy-adhesion layer was 150 nm, and the easy-adhesion layer water-based paint 1 was changed to the easy-adhesion layer water-based paint 4. Except for the above, a base film 4 with an easily adhesive layer was obtained in the same manner.
  • Aqueous urethane having a solid content of 40% by mass (“Aron Neotan UE-1300” manufactured by Toagosei Co., Ltd.) 25 parts by mass Hydroxyethyl methacrylate 5 parts by mass Potassium persulfate 0.2 parts by mass Colloidal silica having a particle size of 150 nm 2 parts by mass Part
  • ⁇ Preparation of base film 5 with an easy adhesion layer> In the production of the base film 1, the coating amount of the easy-adhesion layer water-based paint 5 was adjusted so that the film thickness of the easy-adhesion layer was 150 nm, and the easy-adhesion layer water-based paint 1 was changed to the easy-adhesion layer water-based paint 5. Except for the above, a base film 5 with an easy adhesion layer was obtained in the same manner.
  • a reaction vessel was charged with 0.12 parts by mass of nium tetrakispentafluorophenylborate (manufactured by Strem) and 0.33 parts by mass of allyltributyltin (manufactured by Aldrich) dissolved in 10 parts by mass of toluene.
  • nium tetrakispentafluorophenylborate manufactured by Strem
  • allyltributyltin manufactured by Aldrich
  • the mass average molecular weight (Mw) was measured, the number average molecular weight (Mn) was 100200, the mass average molecular weight (Mw) was 256300, and the molecular weight distribution (Mw / Mn) was 2.56.
  • Norbornene dope solution Norbornene polymer 1 100 parts by mass Silicon oxide fine particles (Aerosil R972V, manufactured by Nippon Aerosil Co., Ltd.) 0.1 parts by mass Methylene chloride 400 parts by mass Ethanol 40 parts by mass Butanol 5 parts by mass
  • the above materials were mixed to prepare a dope solution, and the obtained dope solution was cast from a casting die onto a support having a temperature of 35 ° C. made of a stainless steel endless belt to form a web.
  • the web was dried on the support, and the web was peeled from the support with a peeling roll when the residual solvent amount of the web reached 100% by mass.
  • the application amount of the water-based paint was adjusted to the peeled web so that the film thickness of the easy-adhesion layer was 150 nm and applied to both sides of the web. After coating, the film was transported while being dried at 120 ° C., and then held at both ends of the web with a tenter, and then stretched at 150 ° C.
  • the film was further dried at 160 ° C.
  • the substrate with an easy-adhesion layer is a cycloolefin film having a norbornene ring having a width of 1.5 m, a film thickness of 80 ⁇ m, and a length of 6000 m, which is subjected to a knurling process of 10 mm width and 5 ⁇ m average height at both ends Film 6 was obtained.
  • ⁇ Preparation of base film 7 with an easy adhesion layer> In the production of the base film 6, a base film 7 with an easy-adhesion layer was produced in the same manner except that the norbornene dope liquid was changed to the following acrylic dope liquid.
  • the following materials are sequentially put into a sealed container, the temperature in the container is raised from 20 ° C. to 80 ° C., and the mixture is stirred for 3 hours while maintaining the temperature at 80 ° C. to obtain methyl methacrylate / methyl acrylate.
  • the copolymer was completely dissolved.
  • the silicon oxide fine particles were added dispersed in a solution of a solvent to be added in advance and a small amount of cellulose ester.
  • the dope was filtered using a filter paper (Azumi filter paper No. 244, manufactured by Azumi Filter Paper Co., Ltd.) to obtain a dope solution 2.
  • Methyl methacrylate / methyl acrylate copolymer 9: 1 molar ratio 100 parts by mass [2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole] 1 part by mass Methylene chloride 400 parts by mass Methanol 100 parts by mass Silicon oxide fine particles (Aerosil R972V, manufactured by Nippon Aerosil Co., Ltd.) 0.1 parts by mass
  • both ends are subjected to a knurling process with a width of 10 mm and an average height of 5 ⁇ m, wound up, and a 125 ⁇ m thick propylene film in which an easy adhesion layer having a width of 1.5 m, a length of 6000 m, and 150 nm is formed on both sides.
  • a base film 8 with an adhesive layer was obtained.
  • the illuminance of the irradiated part is 100 mW / cm 2 using an ultraviolet lamp and the irradiation amount is 0
  • the coating layer was cured at 3 J / cm 2 , a hard coat layer 1 having a dry film thickness of 8 ⁇ m was formed and wound up, and a roll-shaped hard coat film 1 was produced.
  • Hard coat layer composition 1 The following materials were stirred and mixed to obtain hard coat layer coating composition 1.
  • a hard coat film 2 was produced in the same manner except that the hard coat layer composition 2 was changed to the following on the produced base film 1.
  • Hard coat layer composition 2 The following materials were stirred and mixed to obtain hard coat layer coating composition 2.
  • a hard coat film 3 was produced in the same manner except that the hard coat layer coating composition 3 was changed to the following on the produced base film 1.
  • Hard coat layer composition 3 (Hard coat layer composition 3) The following materials were stirred and mixed to obtain hard coat layer coating composition 3.
  • a hard coat film 4 was produced in the same manner except that the hard coat layer coating composition 4 was changed to the following on the produced base film 1.
  • Hard coat layer composition 4 (Hard coat layer composition 4) The following materials were stirred and mixed to obtain hard coat layer coating composition 4.
  • Hard coat films 5 to 14 were prepared in the same manner as in the preparation of hard coat film 1, except that the hard coat layer coating composition and the base film with an easy-adhesion layer were changed as shown in Table 1.
  • Each hard coat film 1 to 14 after the durability test is conditioned for 14 hours in an atmosphere of 23 ° C. and 55% RH, and is cylindrical using a type 1 test apparatus in accordance with JIS K5600-5-1.
  • the flexibility was evaluated by the mandrel method. It shows that it is excellent in the flexibility, so that the numerical value of the diameter of a mandrel is low.
  • tris (2-acryloyloxyethyl) isocyanurate which is an active energy ray-curable isocyanurate derivative of the hard coat layer resin in Table 1, is described as TAIC, and isocyanuric acid ethoxy-modified diacrylate is described as DAIC.
  • TAIC active energy ray-curable isocyanurate derivative of the hard coat layer resin in Table 1
  • DAIC isocyanuric acid ethoxy-modified diacrylate
  • an easily bonding layer and a base film abbreviation are as follows.
  • PET Polyethylene terephthalate film
  • COF Cycloolefin film
  • ACF Acrylic film
  • PP Propylene film
  • polyester resin, acrylic resin and urethane resin are selected on both sides of at least one base film selected from acrylic resin film, polypropylene resin film, cycloolefin resin film, and polyester resin film.
  • the hard-coating film of the present invention consisting of an easy-adhesion layer containing at least one resin and a hard-coating layer containing an active energy ray-curable isocyanurate derivative is excellent in blocking resistance and flexibility. I know that.
  • the base film is made of a polyester resin film
  • the easy-adhesion layer has a glass transition point Tg of 105 ° C. or more and less than 135 ° C.
  • a hard coat film composed of a resin (X) and a polyester resin (Y) having a glass transition point Tg of 65 ° C. or higher and lower than 95 ° C. and containing trimellitic acid as an acid component is particularly excellent in blocking resistance. Since it has flexibility, it turns out that it is a particularly preferable structure.
  • Example 2 In the production of the hard coat film 1 of Example 1, the active energy ray-curable isocyanurate derivative of the hard coat layer coating composition 1 is not tris (2-acryloyloxyethyl) isocyanurate (A) or an isocyanurate derivative. Except that the mass ratio of the active energy ray-curable resin (pentaerythritol tri / tetraacrylate) (B) was changed to hard coat layer coating compositions 5 to 8 changed as shown in Table 2, Examples In the same manner as in Example 1, hard coat films 15 to 18 were produced.
  • Example 2 For the obtained hard coat films 15 to 18 and the hard coat film 1 produced in Example 1, the storage period of blocking resistance was changed to 15 days, and the storage period of the flexible durability test was set to 750. Evaluation was performed in the same manner as in Example 1 except that the time was changed. The obtained results are shown in Table 2.
  • Example 3 ⁇ Preparation of hard coat film 19>
  • the following hard coat layer coating composition 9 is filtered through a polypropylene filter having a pore diameter of 0.4 ⁇ m to prepare a hard coat layer coating solution, which is applied using an extrusion coater, After drying at 80 ° C., a hard coat layer 1 having a dry film thickness of 1 ⁇ m was formed by curing the coating layer using an ultraviolet lamp at an irradiation part with an illuminance of 80 mW / cm 2 and an irradiation amount of 50 mJ / cm 2 .
  • the hard coat layer coating composition 1 is applied onto the hard coat layer 1 by an extrusion coater, dried at 80 ° C., and purged with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less. While using an ultraviolet lamp, the illuminance of the irradiated part is 100 mW / cm 2 , the irradiation amount is 0.3 J / cm 2 , the coating layer is cured, and the hard coat layer 2 having a dry film thickness of 7 ⁇ m is formed and wound up. A hard coat film 19 was produced.
  • Hardcoat layer coating composition 9 The following materials were stirred and mixed to obtain hard coat layer coating composition 9.
  • a hard coat film 20 was produced in the same manner except that the hard coat layer coating composition 9 was changed to the hard coat layer coating composition 10 in the production of the hard coat film 19.
  • Hardcoat layer coating composition 10 (Hardcoat layer coating composition 10) The following materials were stirred and mixed to obtain a hard coat layer coating composition 10.
  • Adhesion evaluation weather resistance test
  • the hard coat films 19 and 20 and the hard coat film 1 produced in Example 1 were cut out for samples each having a size of 10 cm ⁇ 10 cm, and assumed to be used outdoors. Next, after 500 cycles were placed at 85 ° C. for 30 minutes alternately), the sample was irradiated with light for 168 hours with a light resistance tester (eye super UV tester, manufactured by Iwasaki Electric Co., Ltd.).
  • a light resistance tester eye super UV tester, manufactured by Iwasaki Electric Co., Ltd.
  • the method After conditioning the hard coat films 19 and 20 after the weather resistance test and the hard coat film 1 prepared in Example 1 in an atmosphere of 23 ° C. and 55% RH for 12 hours, the method conforms to JISK5400 at intervals of 1 mm. Make 11 cuts vertically and horizontally, make 1 mm square, 100 grids, apply cellophane tape, peel off at 90 degrees, count the number of grids remaining without peeling, Evaluated by criteria.
  • the peeled area ratio was less than 5% ⁇ : The peeled area ratio was less than 10% ⁇ : The peeled area ratio was 10% or more
  • the hard coat film of the present invention exhibits the objective effect of the present invention even in a more severe durability test by including an ultraviolet absorber in the hard coat layer, and is further excellent. It is preferable because it has excellent adhesion.
  • Example 4 ⁇ Preparation of conductive hard coat film 1>
  • a hard coat film was produced in the same manner except that the hard coat layer composition 1 was applied on both sides.
  • a transparent conductive thin film of indium tin oxide (ITO) having a surface resistivity of about 400 ⁇ is provided on one side of the produced hard coat film using a sputtering method, and the conductive hard coat film 1 shown in FIG. 3 is produced. did.
  • ITO indium tin oxide
  • ⁇ Preparation of conductive hard coat film 2> In producing the hard coat film 2, a hard coat film was produced in the same manner except that the hard coat layer composition 2 was applied on both sides. A transparent conductive thin film of indium tin oxide (ITO) having a surface resistivity of about 400 ⁇ was provided on one side of the prepared hard coat film using a sputtering method, and a conductive hard coat film 2 was prepared.
  • ITO indium tin oxide
  • ⁇ Preparation of resistive touch panel liquid crystal display device 1 The conductive hard coat film of a commercially available resistive film type touch panel liquid crystal display device (model name: LCD-USB10XB-T, manufactured by IO DATA) is peeled off, and the produced conductive hard coat film 1 is as shown in FIG.
  • the resistive film type touch panel liquid crystal display device 1 was produced by bonding so that the hard coat layer was on the viewing side.
  • resistive touch panel liquid crystal display device 2 was prepared in the same manner except that the conductive hard coat film 1 was changed to the conductive hard coat film 2 in the production of the resistive touch panel liquid crystal display device 1, and the following items were evaluated. went.
  • The fluorescent lamp looks straight.
  • X The fluorescent lamp looks bent.
  • Pen sliding resistance A polyacetal pen with a tip of 0.08 mm ⁇ is used on the surface of the hard coat layer of each conductive hard coat film used in the liquid crystal display device of the resistance film type touch panel. The hard coat layer was scratched and peeled off visually at the sliding portion after reciprocating 150,000 times on a straight line of 40 mm at a moving speed of 100 mm / sec.
  • the liquid crystal display device of the resistive film type touch panel using the conductive hard coat film 1 of the present invention was good in both visibility and pen sliding resistance.
  • Hard coat film of this invention 12 Transparent conductive thin film 13 Glass substrate 14 Spacer 20 Color liquid crystal display panel 30 Base film with an easily bonding layer 31 Hard coat layer 32 ITO layer (transparent conductive thin film) 40 conductive hard coat film

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

The objective of the present invention is to provide: a hard coating film that has improved flexibility and blocking after durability testing; and an image display device. The hard coating film has an easy-adhesion layer on both surfaces of a substrate film that is at least one film selected from an acrylic resin film, a polypropylene resin film, a cycloolefin resin film, and a polyester resin film, and a hard coating layer is layered onto at least one surface of the easy-adhesion layer. The hard coating film is characterized by the easy-adhesion layer containing at least one resin selected from polyester resin, acrylic resin, and urethane resin, and the hard coat layer containing an active-energy-ray-cured isocyanurate derivative.

Description

ハードコートフィルム及び画像表示装置Hard coat film and image display device
 本発明は、ハードコートフィルム及び画像表示装置に関し、耐久試験後のブロッキングと可とう性の改良を図ったハードコートフィルム及び画像表示装置に関する。 The present invention relates to a hard coat film and an image display device, and more particularly to a hard coat film and an image display device that are improved in blocking and flexibility after a durability test.
 近年、ディスプレイ、携帯電話や携帯ゲーム、タッチパネル等の表示装置には、傷つき防止の付与やCRT、PDPなどのガラス製ディスプレイ表面の飛散防止等のためにハードコートフィルムが用いられている。ハードコートフィルムの基材フィルムには、ポリカーボネート系フィルム、ポリプロピレン系フィルム、シクロオレフィン系フィルム、ポリエステル系フィルムが一般に用いられているが、なかでもポリエステル系フィルムの二軸延伸フィルムが、優れた機械的性質、耐燃性または耐薬品性等を有するために好適に用いられている。 In recent years, hard coat films have been used for display devices such as displays, mobile phones, mobile games, touch panels, etc. to prevent damage and to prevent scattering of glass display surfaces such as CRT and PDP. Polycarbonate films, polypropylene films, cycloolefin films, and polyester films are generally used as base films for hard coat films. Among these, biaxially stretched films of polyester films are superior in mechanical properties. It is suitably used because it has properties, flame resistance or chemical resistance.
 しかしながら、前述した基材フィルムにポリエステル系フィルムを用いる場合に、干渉色むらやハードコート層と基材フィルムとの層間密着で問題点があった。 However, when a polyester film is used for the base film described above, there are problems with uneven interference color and interlayer adhesion between the hard coat layer and the base film.
 干渉色むらは、ポリエステル系フィルムの面方向屈折率が一般的に1.66程度あり、ハードコートフィルムのハードコート層に好適に用いられる紫外線硬化型アクリル系樹脂層の屈折率が一般的に1.5程度であり、この屈折率差により、ポリエステル系フィルムと紫外線硬化型アクリル系樹脂層との界面で干渉が生じ、干渉による色ムラが発生する。この干渉色ムラは、ハードコートフィルムが透明で、太陽光や白熱灯より三波長蛍光灯という特殊な蛍光灯下で感知されるため、改良要望があった。更にハードコート層と基材フィルムとの層間密着性は、特に携帯電話などが用いられる浴室や高温多湿地域を想定した
耐湿条件で劣化が顕著であった。
The interference color unevenness generally has a refractive index in the plane direction of the polyester film of about 1.66, and the ultraviolet curable acrylic resin layer suitably used for the hard coat layer of the hard coat film generally has a refractive index of 1. This refractive index difference causes interference at the interface between the polyester film and the ultraviolet curable acrylic resin layer, resulting in color unevenness due to interference. This interference color unevenness has been requested to be improved because the hard coat film is transparent and is detected under a special fluorescent lamp such as a three-wavelength fluorescent lamp rather than sunlight or an incandescent lamp. Furthermore, the interlaminar adhesion between the hard coat layer and the substrate film was particularly markedly deteriorated under moisture-resistant conditions assuming a bathroom or a hot and humid area where a mobile phone or the like is used.
 これら問題を改善する技術については、ポリエステル系フィルム上に易接着層を設ける技術が、例えば特許文献1に開示されている。前記技術では、上記の課題は改善されるものの、ハードコートフィルムの製造後にロール状で巻き取って保管しておく際や、表示装置に貼り合わせて使用するために断裁してシート状にして重ねて置くとブロッキングが生じる問題が発生した。ブロッキングにより、ハードコートフィルムにブロッキングパターンが生じるため、表示装置にハードコートフィルムを使用する際に、著しく美観が損なわれる問題が発生した。 As a technique for improving these problems, for example, Patent Document 1 discloses a technique for providing an easy-adhesion layer on a polyester film. Although the above problems are improved in the above technique, when the hard coat film is produced by being wound up and stored in a roll form, or cut into a sheet form and laminated for use on a display device, the sheets are stacked. There was a problem that blocking would occur. Since the blocking pattern is generated in the hard coat film due to the blocking, there is a problem that the aesthetic appearance is remarkably impaired when the hard coat film is used in the display device.
 前記したブロッキングは、ハードコートフィルムの輸送や長期保管を想定した耐久試験後に顕著であった。また、表示装置にハードコートフィルムを使用する際の加工適正やタッチパネルの表面用フィルムとして使用する際、情報入力時にペンや指などで押し込んだりして使用される為、ハードコートフィルムには可とう性が求められるが、特に様々な使用環境を想定した耐久試験後に可とう性が劣化する問題もあった。 The blocking described above was remarkable after the durability test assuming transportation and long-term storage of the hard coat film. In addition, it is suitable for hard coat film because it is used by pressing with a pen or finger at the time of information input when used as a surface film for touch panel when processing a hard coat film in a display device. However, there is also a problem that flexibility is deteriorated after an endurance test assuming various use environments.
特開2007-253512号公報JP 2007-253512 A
 従って本発明の目的は、耐久試験後のブロッキングと可とう性の改良を図ったハードコートフィルム、及び画像表示装置を提供することにある。 Therefore, an object of the present invention is to provide a hard coat film and an image display device that are improved in blocking and flexibility after the durability test.
 本発明の上記目的は以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.アクリル樹脂系フィルム、ポリプロピレン樹脂系フィルム、シクロオレフィン樹脂系フィルム、及びポリエステル樹脂系フィルムから選択される少なくとも1種の基材フィルムの両面に易接着層を有し、該易接着層の少なくとも一方の面にハードコート層が積層されたハードコートフィルムにおいて、該易接着層がポリエステル系樹脂、アクリル系樹脂及びウレタン系樹脂から選択される少なくとも1種を含有し、かつ該ハードコート層が、活性エネルギー線硬化型イソシアヌレート誘導体を含有することを特徴とするハードコートフィルム。 1. It has an easy adhesion layer on both surfaces of at least one substrate film selected from an acrylic resin film, a polypropylene resin film, a cycloolefin resin film, and a polyester resin film, and at least one of the easy adhesion layers In the hard coat film having a hard coat layer laminated on the surface, the easy-adhesion layer contains at least one selected from a polyester resin, an acrylic resin, and a urethane resin, and the hard coat layer has active energy. A hard coat film comprising a line curable isocyanurate derivative.
 2.前記基材フィルムがポリエステル樹脂系フィルムであることを特徴とする前記1に記載のハードコートフィルム。 2. 2. The hard coat film as described in 1 above, wherein the base film is a polyester resin film.
 3.前記易接着層がポリエステル系樹脂からなることを特徴とする前記1または2に記載のハードコートフィルム。 3. 3. The hard coat film as described in 1 or 2 above, wherein the easy adhesion layer is made of a polyester resin.
 4.前記易接着層のポリエステル系樹脂がポリエステル樹脂(X)と(Y)の2成分を含み、かつ該ポリエステル樹脂(X)と(Y)が酸成分として各々下記酸を含有することを特徴とする前記1~3のいずれか1項に記載のハードコートフィルム。 4. The polyester resin of the easy-adhesion layer contains two components of polyester resins (X) and (Y), and the polyester resins (X) and (Y) each contain the following acids as acid components: 4. The hard coat film as described in any one of 1 to 3 above.
ポリエステル樹脂(X):酸成分にソディウム・スルホネート・イソフタル酸を含む。
ポリエステル樹脂(Y):酸成分にトリメリット酸を含む。
Polyester resin (X): Sodium, sulfonate, and isophthalic acid are included in the acid component.
Polyester resin (Y): Trimellitic acid is included in the acid component.
 5.前記ハードコート層が活性エネルギー線硬化型イソシアヌレート誘導体(A)とイソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂(B)を含有し、該活性エネルギー線硬化型のイソシアヌレート誘導体(A)と該イソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂(B)との含有質量比が、10:90~50:50であることを特徴とする前記1~4のいずれか1項に記載のハードコートフィルム。 5. The hard coat layer contains an active energy ray-curable isocyanurate derivative (A) and an active energy ray-curable resin (B) other than the isocyanurate derivative, the active energy ray-curable isocyanurate derivative (A) and the 5. The hard coat film as described in any one of 1 to 4 above, wherein the mass ratio of the active energy ray-curable resin (B) other than the isocyanurate derivative is 10:90 to 50:50 .
 6.前記ハードコート層が紫外線吸収剤を含有することを特徴とする前記1~5のいずれか1項に記載のハードコートフィルム。 6. 6. The hard coat film as described in any one of 1 to 5 above, wherein the hard coat layer contains an ultraviolet absorber.
 7.前記1~6のいずれか1項に記載のハードコートフィルムを含むことを特徴とする画像表示装置。 7. 7. An image display device comprising the hard coat film described in any one of 1 to 6 above.
 8.前記7に記載の画像表示装置がタッチパネルを含む液晶表示装置であって、該タッチパネルの構成部材に前記1~6のいずれか1項に記載のハードコートフィルムが用いられていることを特徴とする画像表示装置。 8. The image display device described in 7 is a liquid crystal display device including a touch panel, and the hard coat film described in any one of 1 to 6 is used as a constituent member of the touch panel. Image display device.
 本発明によれば、耐久試験後のブロッキングと可とう性の改良を図ったハードコートフィルム、及び画像表示装置を提供することができる。 According to the present invention, it is possible to provide a hard coat film and an image display device that are improved in blocking and flexibility after a durability test.
本発明のハードコートフィルムをタッチパネルに用いた場合の一例である。It is an example at the time of using the hard coat film of this invention for a touch panel. タッチパネルつき液晶表示装置の模式図である。It is a schematic diagram of a liquid crystal display device with a touch panel. 導電性ハードコートフィルムの模式図である。It is a schematic diagram of an electroconductive hard coat film. 抵抗膜方式タッチパネルの概略図である。It is the schematic of a resistive film type touch panel.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these.
 本発明者は前記課題に対して鋭意検討を重ね、ハードコート層と基材フィルムとの層間密着性や干渉色むら防止するのに、ハードコート層と基材フィルムの間に設けられる易接着層を特定の樹脂組成物で構成し、更にハードコート層に活性エネルギー線硬化型のイソシアヌレート誘導体を用いることで、易接着層とハードコート層の各表面エネルギーをコントロールし、易接着層とハードコート層とが親和性の低い状態を形成することで、耐久試験後のブロッキング性に良好な性能が得られること、更にハードコートフィルムを前記構成とすることで、耐久試験後もハードコートフィルムの弾性が劣化せずに、良好な可とう性が得られることを見出し本発明に至ったものである。 The present inventor has made extensive studies on the above problems, and is an easy-adhesion layer provided between the hard coat layer and the base film in order to prevent interlayer adhesion and interference color unevenness between the hard coat layer and the base film. By using an active energy ray curable isocyanurate derivative for the hard coat layer, the surface energy of the easy adhesive layer and the hard coat layer is controlled, and the easy adhesive layer and the hard coat By forming a state with a low affinity with the layer, it is possible to obtain good performance in blocking properties after the durability test, and further, by configuring the hard coat film as described above, the elasticity of the hard coat film even after the durability test. The present invention has been found that good flexibility can be obtained without deteriorating.
 以下、本発明を構成するハードコートフィルムの詳細を説明する。 Hereinafter, details of the hard coat film constituting the present invention will be described.
 <ハードコート層>
 先ず、ハードコート層に含有される本発明の特徴である活性エネルギー線硬化型イソシアヌレート誘導体について説明する。
<Hard coat layer>
First, the active energy ray-curable isocyanurate derivative that is a feature of the present invention and is contained in the hard coat layer will be described.
 なお、活性エネルギー線硬化型イソシアヌレート誘導体とイソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂とを合わせて記載する場合は、単に活性エネルギー線硬化型樹脂と記載する。 In addition, when describing active energy ray-curable isocyanurate derivatives and active energy ray-curable resins other than isocyanurate derivatives together, they are simply described as active energy ray-curable resins.
 (活性エネルギー線硬化型イソシアヌレート誘導体)
 活性エネルギー線硬化型とは、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂をいい、具体的にはエチレン性不飽和基を有する樹脂である。
(Active energy ray-curable isocyanurate derivatives)
The active energy ray curable type refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays or electron beams, and specifically, a resin having an ethylenically unsaturated group.
 活性エネルギー線硬化型のイソシアヌレート誘導体としては、イソシアヌル酸骨格に1個以上のエチレン性不飽和基が結合した構造を有する化合物であればよく、特に制限はないが、下記一般式(1)で示される同一分子内に3個以上のエチレン性不飽和基及び1個以上のイソシアヌレート環を有する化合物が本発明の目的効果の点から好ましい。エチレン性不飽和基の種類は、アクリロイル基、メタクリロイル基、スチリル基、ビニルエーテル基であり、より好ましくはメタクリロイル基又はアクリロイル基であり、特に好ましくはアクリロイル基である。 The active energy ray-curable isocyanurate derivative is not particularly limited as long as it is a compound having a structure in which one or more ethylenically unsaturated groups are bonded to an isocyanuric acid skeleton. A compound having three or more ethylenically unsaturated groups and one or more isocyanurate rings in the same molecule shown is preferable from the viewpoint of the object effect of the present invention. The kind of ethylenically unsaturated group is an acryloyl group, a methacryloyl group, a styryl group, and a vinyl ether group, more preferably a methacryloyl group or an acryloyl group, and particularly preferably an acryloyl group.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中Lは、2価の連結基であり、好ましくは、イソシアヌレート環に炭素原子が結合している置換又は無置換の炭素原子数4以下のアルキレンオキシ基またはポリアルキレンオキシ基であり、特に好ましくはアルキレンオキシ基であり、それぞれ同じであっても異なっていてもよい。Rは、水素原子またはメチル基を表し、それぞれ同じであっても異なっていてもよい。一般式(1)で示される具体的化合物を以下に示すが、これらに限られない。 In the formula, L 2 is a divalent linking group, preferably a substituted or unsubstituted alkyleneoxy group or polyalkyleneoxy group having 4 or less carbon atoms in which a carbon atom is bonded to the isocyanurate ring, Particularly preferred are alkyleneoxy groups, which may be the same or different. R 2 represents a hydrogen atom or a methyl group, and may be the same or different. Although the specific compound shown by General formula (1) is shown below, it is not restricted to these.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 その他の化合物としては、イソシアヌル酸ジアクリレート化合物が挙がられ、下記一般式(2)で表されるイソシアヌル酸エトキシ変性ジアクリレートが好ましい。 Other compounds include isocyanuric acid diacrylate compounds, and isocyanuric acid ethoxy-modified diacrylate represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 またその他として、ε-カプロラクトン変性の活性エネルギー線硬化型のイソシアヌレート誘導体を挙げることもでき、具体的には下記一般式(3)で表される化合物である。 Other examples include ε-caprolactone-modified active energy ray-curable isocyanurate derivatives, specifically, compounds represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記化学構造式のR~Rの一には、下記a,b,cで示される官能基が付くが、R~Rの少なくとも一つはbの官能基である。 One of R 1 to R 3 in the chemical structural formula is attached with a functional group represented by the following a, b, and c, and at least one of R 1 to R 3 is a functional group of b.
 a:-H、もしくは-(CH)n-OH(n=1~10、好ましくはn=2~6)
 b:-(CH)n-O-(COC10)m-COCH=CH(n=1~10、好ましくはn=2~6、m=2~8)
 c:-(CH)n-O-R(Rは(メタ)アクリロイル基、n=1~10、好ましくはn=2~6)
a: —H or — (CH 2 ) n—OH (n = 1 to 10, preferably n = 2 to 6)
b: — (CH 2 ) n—O— (COC 5 H 10 ) m-COCH═CH 2 (n = 1 to 10, preferably n = 2 to 6, m = 2 to 8)
c: — (CH 2 ) n—O—R (R is a (meth) acryloyl group, n = 1 to 10, preferably n = 2 to 6)
 一般式(3)で示される具体的化合物を以下に示すが、これらに限られない。 Specific compounds represented by the general formula (3) are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 イソシアヌル酸トリアクリレート化合物の市販品としては、例えば新中村化学工業株式会社製A-9300などが挙げられる。イソシアヌル酸ジアクリレート化合物の市販品としては、例えば東亞合成株式会社製アロニックスM-215などが挙げられる。イソシアヌル酸トリアクリレート化合物及びイソシアヌル酸ジアクリレート化合物の混合物としては、例えば東亞合成株式会社製アロニックスM-315、アロニックスM-313などが挙げられる。 Examples of commercially available isocyanuric acid triacrylate compounds include A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd. Examples of commercially available isocyanuric acid diacrylate compounds include Aronix M-215 manufactured by Toagosei Co., Ltd. Examples of the mixture of the isocyanuric acid triacrylate compound and the isocyanuric acid diacrylate compound include Aronix M-315 and Aronix M-313 manufactured by Toagosei Co., Ltd.
 ε-カプロラクトン変性の活性エネルギー線硬化型のイソシアヌレート誘導体としては、ε-カプロラクトン変性トリス-(アクリロキシエチル)イソシアヌレートである新中村化学工業株式会社製A-9300-1CL、東亞合成株式会社製アロニックスM-327などを挙げることが出来るが、これらに限定されない。 ε-Caprolactone-modified active energy ray-curable isocyanurate derivatives include ε-caprolactone-modified tris- (acryloxyethyl) isocyanurate, Shin-Nakamura Chemical Co., Ltd. A-9300-1CL, Toagosei Co., Ltd. Examples include Aronix M-327, but are not limited thereto.
 (イソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂)
 イソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂としては、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。
(Active energy ray-curable resins other than isocyanurate derivatives)
Active energy ray curable resins other than isocyanurate derivatives include UV curable urethane acrylate resins, UV curable polyester acrylate resins, UV curable epoxy acrylate resins, UV curable polyol acrylate resins, or UV curable resins. Epoxy resins and the like are preferably used. Of these, ultraviolet curable acrylate resins are preferred.
 紫外線硬化型アクリレート系樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、およびジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基またはメタクロイルオキシ基を有する化合物である。 As the ultraviolet curable acrylate resin, polyfunctional acrylate is preferable. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. Here, the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
 多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等が好ましく挙げられる。 Examples of the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate. , Tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaether Sri hexaacrylate, and the like preferably.
 イソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂としては単官能アクリレートを用いても良い。単官能アクリレートとしては、イソボロニルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、イソステアリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、テトラヒドロフルフリルアクリレート、ベヘニルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、シクロヘキシルアクリレートなどが挙げられる。単官能アクリレートとしては、新中村化学工業株式会社や大阪有機化学工業株式会社等から入手できる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。 Monofunctional acrylates may be used as active energy ray-curable resins other than isocyanurate derivatives. Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate. Monofunctional acrylates can be obtained from Shin Nakamura Chemical Co., Ltd., Osaka Organic Chemical Industry Co., Ltd., and the like. These compounds are used alone or in admixture of two or more.
 ハードコート層に活性エネルギー線硬化型イソシアヌレート誘導体とイソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂を併用して用いる場合には、活性エネルギー線硬化型イソシアヌレート誘導体(A)とイソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂(B)との含有質量比を、(A):(B)=10:90~50:50の範囲で用いることで、より過酷な耐候性試験後も本発明の目的効果をより発点から好ましい。 When an active energy ray-curable isocyanurate derivative and an active energy ray-curable resin other than an isocyanurate derivative are used in combination in the hard coat layer, other than the active energy ray-curable isocyanurate derivative (A) and the isocyanurate derivative By using the content ratio with the active energy ray-curable resin (B) in the range of (A) :( B) = 10: 90 to 50:50, the object of the present invention is achieved even after a more severe weather resistance test. The effect is more preferable from the starting point.
 (光重合開始剤)
 ハードコート層には活性エネルギー線硬化型樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤:活性エネルギー線硬化型樹脂=20:100~0.01:100で含有することが好ましい。
(Photopolymerization initiator)
The hard coat layer preferably contains a photopolymerization initiator to accelerate the curing of the active energy ray-curable resin. The amount of the photopolymerization initiator is preferably contained in a mass ratio of photopolymerization initiator: active energy ray-curable resin = 20: 100 to 0.01: 100.
 光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等および、これらの誘導体を挙げることができるが、特にこれらに限定されるものではない。 Specific examples of the photopolymerization initiator include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. .
 (製造方法)
 また、本発明に係るハードコート層は、前記した活性エネルギー線硬化型樹脂を溶剤などで希釈してハードコート層塗布組成物として、以下の方法でフィルム基材の易接着層上に塗布、乾燥、硬化して設けることが生産性の観点から好ましい。溶剤としては、アルコール類(メタノール、イソプロピルアルコール、1-メトキシ-2-プロパノールなど)、ケトン類(メチルエチルケトン、アセトン、メチルイソブチルケトンなど)または酢酸エステル(酢酸メチル、酢酸エチル、酢酸ブチルなど)を含む溶剤が好ましい。
(Production method)
In addition, the hard coat layer according to the present invention is applied on the easy-adhesion layer of the film substrate by the following method as a hard coat layer coating composition by diluting the above-described active energy ray-curable resin with a solvent or the like, and drying. From the viewpoint of productivity, it is preferable to provide a cured product. Solvents include alcohols (methanol, isopropyl alcohol, 1-methoxy-2-propanol, etc.), ketones (methyl ethyl ketone, acetone, methyl isobutyl ketone, etc.) or acetate esters (methyl acetate, ethyl acetate, butyl acetate, etc.) Solvents are preferred.
 また、塗布量はウェット膜厚として0.1~40μmが適当で、好ましくは、0.5~30μmである。また、ドライ膜厚としては平均膜厚0.1~30μm、好ましくは1~20μm、特に好ましくは6~15μmである。 Further, the coating amount is suitably 0.1 to 40 μm, preferably 0.5 to 30 μm, as the wet film thickness. The dry film thickness is from 0.1 to 30 μm, preferably from 1 to 20 μm, particularly preferably from 6 to 15 μm.
 塗布としては、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイ(押し出し)コーター、インクジェット法等公知の塗布方法を用いることができる。乾燥は、減率乾燥区間の温度を40℃以上の処理で行うことが、希釈溶剤がハードコート層中に残存しない点から好ましく、更に好ましくは減率乾燥区間の温度は80℃以上、130℃以下である。 As the coating, a known coating method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die (extrusion) coater, or an ink jet method can be used. Drying is preferably carried out at a temperature of 40 ° C. or more in the reduced rate drying section because the diluent solvent does not remain in the hard coat layer, and more preferably the temperature in the reduced rate drying zone is 80 ° C. or higher and 130 ° C. It is as follows.
 一般に乾燥プロセスは、乾燥が始まると、乾燥速度が一定の状態から徐々に減少する状態へと変化していくことが知られており、乾燥速度が一定の区間を恒率乾燥区間、乾燥速度が減少していく区間を減率乾燥区間と呼ぶ。 In general, it is known that the drying process changes from a constant state to a gradually decreasing state when drying starts. The decreasing section is called the decreasing rate drying section.
 硬化は、生産性の観点からUV硬化処理が一般的に用いられ、必要に応じて、UV硬化処理後に加熱処理を行う。UV硬化処理後の加熱処理温度としては、80℃以上が好ましく、更に好ましくは100℃以上であり、特に好ましくは120℃以上である。このような高温でUV硬化処理後の加熱処理を行うことで、ハードコート層の機械的膜強度(耐擦性、鉛筆硬度)に優れる。 For curing, UV curing treatment is generally used from the viewpoint of productivity, and heat treatment is performed after UV curing treatment as necessary. The heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. By performing the heat treatment after the UV curing treatment at such a high temperature, the mechanical film strength (abrasion resistance, pencil hardness) of the hard coat layer is excellent.
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。 As a light source for UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50~1000mJ/cm、好ましくは50~300mJ/cmである。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 50 to 1000 mJ / cm 2 , preferably 50 to 300 mJ / cm 2 .
 また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30~300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、または2軸方向に張力を付与してもよい。これによって更に平面性の優れたフィルムを得ることができる。 Further, when irradiating active rays, it is preferably performed while applying tension in the film transport direction, more preferably while applying tension in the width direction. The tension to be applied is preferably 30 to 300 N / m. The method for applying tension is not particularly limited, and tension may be applied in the transport direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
 ハードコート層は1層でも複数の層でもよい。ハードコート層のハードコート性、ヘイズ、算術表面粗さRaを制御し易くする為に、2層以上に分割して設けても良い。また、ハードコート層は易接着層の片面に設けてもよいし、両面に設けることもできる。 The hard coat layer may be a single layer or a plurality of layers. In order to easily control the hard coat properties, haze, and arithmetic surface roughness Ra of the hard coat layer, the hard coat layer may be divided into two or more layers. Moreover, a hard-coat layer may be provided in the single side | surface of an easily bonding layer, and can also be provided in both surfaces.
 2層以上設ける場合の最上層の膜厚は、0.05~2μmの範囲であることが好ましい。2層以上の積層は同時重層で形成しても良い。同時重層とは、乾燥工程を経ずに基材上に2層以上のハードコート層をwet on wet(湿式塗布法)で塗布して、ハードコート層を形成することである。第1ハードコート層の上に乾燥工程を経ずに、第2ハードコート層をwet on wetで積層するには、押し出しコーターにより逐次重層するか、若しくは複数のスリットを有するスロットダイにて同時重層を行えばよい。 The thickness of the uppermost layer when two or more layers are provided is preferably in the range of 0.05 to 2 μm. Two or more layers may be formed as a simultaneous multilayer. The simultaneous multi-layer is to form a hard coat layer by applying two or more hard coat layers on a base material by a wet on wet (wet coating method) without passing through a drying step. In order to laminate the second hard coat layer on the first hard coat layer without using a drying process, the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
 (その他添加剤)
 またハードコート層には、紫外線吸収剤を含有することが本発明の目的効果及び密着性の点から好ましい。紫外線吸収剤とは、波長370nm以下の紫外線の吸収能に優れ、かつ波長400nm以上の可視光の吸収が少ない化合物のことである。具体例としては、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。ベンゾトリアゾール系紫外線吸収剤としては以下の具体例を挙げるが、本発明はこれらに限定されない。
(Other additives)
Further, the hard coat layer preferably contains an ultraviolet absorber from the viewpoint of the object effect and adhesiveness of the present invention. The ultraviolet absorber is a compound that has an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less and has little absorption of visible light having a wavelength of 400 nm or more. Specific examples include, but are not limited to, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, and the like. Although the following specific examples are given as a benzotriazole type ultraviolet absorber, this invention is not limited to these.
UV-1:2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール
UV-2:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール
UV-3:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール
UV-4:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール
UV-5:2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール
UV-6:2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)
UV-7:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール
UV-8:2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール(TINUVIN171、BASFジャパン製)
UV-9:オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物(TINUVIN109、BASFジャパン製)
UV-1: 2- (2'-hydroxy-5'-methylphenyl) benzotriazole UV-2: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole UV-3 : 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole UV-4: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-chlorobenzotriazole UV-5: 2- (2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole UV-6: 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
UV-7: 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole UV-8: 2- (2H-benzotriazol-2-yl) -6- (Linear and side chain dodecyl) -4-methylphenol (TINUVIN171, manufactured by BASF Japan)
UV-9: Octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl- Mixture of 4-hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate (TINUVIN109, manufactured by BASF Japan)
 ベンゾフェノン系紫外線吸収剤としては以下の具体例を示すが、本発明はこれらに限定されない。 Examples of the benzophenone-based ultraviolet absorber are shown below, but the present invention is not limited to these.
UV-10:2,4-ジヒドロキシベンゾフェノン
UV-11:2,2′-ジヒドロキシ-4-メトキシベンゾフェノン
UV-12:2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン
UV-13:ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)
UV-10: 2,4-dihydroxybenzophenone UV-11: 2,2'-dihydroxy-4-methoxybenzophenone UV-12: 2-hydroxy-4-methoxy-5-sulfobenzophenone UV-13: bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
 上記紫外線吸収剤は、ハードコート層の透明性が優れる点から、ベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましい。また高分子紫外線吸収剤として、PUVA-30M(大塚化学(株)製)等の市販品も使用できる。紫外線吸収剤を含有する構成としては、単層のハードコート層に含有させても良いが、ハードコート層が2層以上で構成され、かつ易接着層基と接するハードコート層に紫外線吸収剤を含有する構成なども挙げられる。ハードコート層が、紫外線吸収剤を含有することで、本発明の目的効果が良好に発揮される点から好ましい。含有量としては質量比で、紫外線吸収剤:ハードコート層構成樹脂=0.01:100~10:100で含有することが好ましい。2層以上設ける場合、基材フィルムと接するハードコート層の膜厚は、0.05~2μmの範囲であることが好ましい。2層以上の積層は同時重層で形成しても良い。同時重層とは、乾燥工程を経ずに基材上に2層以上のハードコート層をwet on wetで塗布して、ハードコート層を形成することである。第1ハードコート層の上に乾燥工程を経ずに、第2ハードコート層をwet on wetで積層するには、押し出しコーターにより逐次重層するか、若しくは複数のスリットを有するスロットダイにて同時重層を行えばよい。 The above ultraviolet absorber is preferably a benzotriazole ultraviolet absorber or a benzophenone ultraviolet absorber because the transparency of the hard coat layer is excellent. Commercially available products such as PUVA-30M (manufactured by Otsuka Chemical Co., Ltd.) can also be used as the polymer ultraviolet absorber. As a constitution containing an ultraviolet absorber, it may be contained in a single hard coat layer, but the hard coat layer is composed of two or more layers, and an ultraviolet absorber is added to the hard coat layer in contact with the easily adhesive layer group. The composition to contain is also mentioned. It is preferable that the hard coat layer contains an ultraviolet absorber from the viewpoint that the object and effects of the present invention are satisfactorily exhibited. The content is preferably a mass ratio of ultraviolet absorber: hard coat layer constituting resin = 0.01: 100 to 10: 100. When two or more layers are provided, the thickness of the hard coat layer in contact with the base film is preferably in the range of 0.05 to 2 μm. Two or more layers may be formed as a simultaneous multilayer. The simultaneous multi-layering is to form a hard coat layer by applying two or more hard coat layers on a base material without going through a drying step. In order to laminate the second hard coat layer on the first hard coat layer without using a drying process, the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
 またハードコート層には、帯電防止性を付与するために導電剤を含んでも良く、好ましい導電剤としては、金属酸化物粒子またはπ共役系導電性ポリマーが挙げられる。また、イオン液体も導電性化合物として好ましく用いられる。またハードコート層には、塗布性の観点、及び微粒子の均一な分散性の観点から、シリコーン系界面活性剤、フッ素系界面活性剤或いはポリオキシエーテル等の非イオン性界面活性剤、アニオン界面活性剤、及びフッ素-シロキサングラフトポリマーを含有しても良い。フッ素-シロキサングラフトポリマーとは、少なくともフッ素系樹脂に、シロキサン及び/またはオルガノシロキサン単体を含むポリシロキサン及び/またはオルガノポリシロキサンをグラフト化させて得られる共重合体のポリマーをいう。市販品としては、富士化成工業株式会社製のZX-022H、ZX-007C、ZX-049、ZX-047-D等を挙げることができる。またこれら成分は、塗布液中の固形分成分に対し、0.01~3質量%の範囲で添加することが好ましい。ハードコート層には必要に応じて無機微粒子や有機微粒子を含有しても良い。 In addition, the hard coat layer may contain a conductive agent in order to impart antistatic properties, and preferred conductive agents include metal oxide particles or π-conjugated conductive polymers. An ionic liquid is also preferably used as the conductive compound. In addition, the hard coat layer has a nonionic surfactant such as a silicone surfactant, a fluorosurfactant or a polyoxyether, an anionic surfactant, from the viewpoint of coating properties and the uniform dispersibility of fine particles. And a fluorine-siloxane graft polymer. The fluorine-siloxane graft polymer refers to a copolymer polymer obtained by grafting polysiloxane containing siloxane and / or organosiloxane alone and / or organopolysiloxane to at least a fluorine resin. Examples of commercially available products include ZX-022H, ZX-007C, ZX-049, ZX-047-D manufactured by Fuji Kasei Kogyo Co., Ltd. These components are preferably added in a range of 0.01 to 3% by mass with respect to the solid component in the coating solution. The hard coat layer may contain inorganic fine particles and organic fine particles as necessary.
 無機微粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等が好ましく用いられる。これら無機微粒子は、ハードコートフィルムの透明性を維持しつつ耐擦傷性が向上することから、表面の一部に反応性官能基を有する有機成分が被覆されたものが好ましい。表面の一部に反応性官能基を有する有機成分を被覆する方法としては、例えば、金属酸化物微粒子の表面に存在する水酸基にシランカップリング剤等の有機成分を含む化合物が反応して、表面の一部に有機成分が結合した態様、金属酸化物微粒子の表面に存在する水酸基に水素結合等の相互作用により有機成分を付着させた態様や、ポリマー粒子中に1個又は2個以上の無機微粒子を含有する態様などが挙げられる。また、有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等を添加することができる。好ましい微粒子は、架橋ポリスチレン粒子(例えば、綜研化学製SX-130H、SX-200H、SX-350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)、フッ素含有アクリル樹脂微粒子が挙げられる。フッ素含有アクリル樹脂微粒子としては、例えば日本ペイント製:FS-701等の市販品が挙げられる。また、アクリル粒子として、例えば日本ペイント製:S-4000、アクリル-スチレン粒子として、例えば日本ペイント製:S-1200、MG-251等が挙げられる。これらの微粒子粉末の平均粒子径は特に制限されないが、0.01~5μmが好ましく、更には、0.01~1.0μmであることが特に好ましい。また、粒径の異なる2種以上の微粒子を含有しても良い。微粒子の平均粒子径は、例えばレーザー回折式粒度分布測定装置により測定することができる。 As inorganic fine particles, silicon oxide, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated silicic acid Mention may be made of calcium, aluminum silicate, magnesium silicate and calcium phosphate. In particular, silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used. These inorganic fine particles are preferably coated with an organic component having a reactive functional group on a part of the surface because the scratch resistance is improved while maintaining the transparency of the hard coat film. As a method for coating an organic component having a reactive functional group on a part of the surface, for example, a compound containing an organic component such as a silane coupling agent reacts with a hydroxyl group present on the surface of the metal oxide fine particles, and the surface A mode in which an organic component is bonded to a part of the metal particle, a mode in which an organic component is attached to a hydroxyl group present on the surface of a metal oxide fine particle by an interaction such as a hydrogen bond, or one or more inorganic particles in a polymer particle The aspect containing microparticles | fine-particles etc. are mentioned. Organic particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, and melamine resin. Powder, polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, polyfluoroethylene resin powder, or the like can be added. Preferred fine particles include crosslinked polystyrene particles (for example, SX-130H, SX-200H, SX-350H manufactured by Soken Chemical), polymethyl methacrylate-based particles (for example, MX150 and MX300 manufactured by Soken Chemical), and fluorine-containing acrylic resin fine particles. . Examples of the fluorine-containing acrylic resin fine particles include commercially available products such as FS-701 manufactured by Nippon Paint. Examples of the acrylic particles include Nippon Paint: S-4000, and examples of the acrylic-styrene particles include Nippon Paint: S-1200, MG-251. The average particle diameter of these fine particle powders is not particularly limited, but is preferably 0.01 to 5 μm, and more preferably 0.01 to 1.0 μm. Moreover, you may contain 2 or more types of microparticles | fine-particles from which a particle size differs. The average particle diameter of the fine particles can be measured by, for example, a laser diffraction particle size distribution measuring device.
 紫外線硬化樹脂組成物と微粒子の割合は、樹脂組成物100質量部に対して、10~400質量部となるように配合することが望ましく、更に望ましくは、50~200質量部である。 The ratio of the ultraviolet curable resin composition and the fine particles is desirably 10 to 400 parts by mass, more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the resin composition.
 (硬度)
 本発明のハードコートフィルムは、硬度の指標で有る鉛筆硬度がH以上であり、より好ましくは3H以上である。3H以上であれば、表示装置で使用する場合に、傷が付きにくいばかりではなく、屋外用途で用いられることが多い、大型の液晶表示装置や、デジタルサイネージ用液晶表示装置の表面保護フィルムとして用いた際も優れた膜強度を示す。鉛筆硬度は、作製したハードコートフィルムを温度23℃、相対湿度55%の条件で2時間以上調湿した後、JIS S 6006が規定する試験用鉛筆を用いて、JISK5400が規定する鉛筆硬度評価方法に従い測定した値である。
(hardness)
The hard coat film of the present invention has a pencil hardness, which is an index of hardness, of H or higher, more preferably 3H or higher. If it is 3H or more, it is not only difficult to be damaged when used in a display device, but is also used as a surface protection film for large-sized liquid crystal display devices and digital signage liquid crystal display devices that are often used outdoors. Excellent film strength even when exposed. The pencil hardness is evaluated by the pencil hardness evaluation method specified by JISK5400 using the test pencil specified by JIS S 6006 after the prepared hard coat film is conditioned at a temperature of 23 ° C. and a relative humidity of 55% for 2 hours or more. It is the value measured according to.
 (表面形状)
 ハードコート層は、前述した無機や有機微粒子の添加により表面凹凸を形成する方法、ピノーダル分解による相分離を利用して表面凹凸を形成する方法、或いは鋳型を押し当てて表面に突起を形成させる方法などで、防眩性を付与しても良い。鋳型ロールとしては、凹凸が細かいもの、粗いものまで、適宜選択して適用でき、模様、マット状、レンチキュラーレンズ状、球状の凹凸が規則正しく、もしくはランダムに配列されたものが使用できる。防眩性とは、表面に反射した像の輪郭をぼかすことによって反射像の視認性を低下させて、表示装置等の使用時に反射像や光の映り込みが気にならないようにするものである。
(Surface shape)
The hard coat layer is a method of forming surface irregularities by adding inorganic or organic fine particles as described above, a method of forming surface irregularities using phase separation by pinodal decomposition, or a method of forming protrusions on the surface by pressing a mold. For example, the antiglare property may be imparted. As the mold roll, those having fine irregularities and coarse ones can be appropriately selected and applied, and patterns, mats, lenticular lenses, and spherical irregularities arranged regularly or randomly can be used. Anti-glare is to reduce the visibility of the reflected image by blurring the outline of the image reflected on the surface so that the reflected image or light reflection is not an issue when using a display device or the like. .
 ハードコート層の表面凹凸の算術平均粗さRa(JIS B0601:1994)は、1~300nmが好ましい。前記算術平均粗さRaとするため突起形状の高さは10nm~4μm、が好ましい。また突起形状の幅は50nm~300μm、好ましくは、50nm~100μmである。また、10点平均粗さRzは、中心線平均粗さRaの10倍以下、平均山谷距離Smは5~150μmが好ましく、より好ましくは20~100μm、凹凸最深部からの凸部高さの標準偏差は0.5μm以下、中心線を基準とした平均山谷距離Smの標準偏差が20μm以下、傾斜角0~5度の面は10%以上が好ましい。このように設計することで、白呆け抑制効果が得られやすい。前記した算術平均粗さRa、Sm、Rzは、JIS B0601:1994に準じて光学干渉式表面粗さ計(たとえば、RST/PLUS、WYKO社製)で測定した値である。尖度(Rku)は3以下が好ましい。尖度(Rku)とは、表面凹凸形状の凸状部分の形状を規定するパラメータであり、この尖度(Rku)の値が大きい程、表面凹凸形状の凸状部分の形状は、針のように尖った形状であることとなる。尖度(Rku)3を超えるものは、白ボケが発生しやすい。防眩層の尖度(Rku)は、更に好ましくは1.5~2.8である。また、表面の歪度(Rsk)の絶対値は1以下であることが好ましい。前記歪度(Rsk)は、凹凸形状の平均面に対する凸状部分と凹状部分との割合を示すパラメータであり、凹凸形状が、平均面に対して凸状部分が多いとプラスに大きな値となり、平均面に対して凹状部分が多いとマイナスに大きな値となる。歪度(Rsk)の絶対値が1を超えるものは、白ボケが発生しやすい。歪度(Rsk)の絶対値は、好ましくは0.01~0.5である。なお、尖度(Rku)及び歪度(Rsk)は、上記光学干渉式表面粗さ計を用いて計測できる。また、JIS-K7105に準じた像鮮明性(透過写像性)は、光学くし幅0.5mmで測定したときに5%~90%が好ましい。 The arithmetic average roughness Ra (JIS B0601: 1994) of the surface irregularities of the hard coat layer is preferably 1 to 300 nm. In order to obtain the arithmetic average roughness Ra, the height of the protrusion shape is preferably 10 nm to 4 μm. The width of the protrusion shape is 50 nm to 300 μm, preferably 50 nm to 100 μm. The 10-point average roughness Rz is 10 times or less the centerline average roughness Ra, and the average mountain valley distance Sm is preferably 5 to 150 μm, more preferably 20 to 100 μm. It is preferable that the deviation is 0.5 μm or less, the standard deviation of the average valley distance Sm with respect to the center line is 20 μm or less, and the surface having an inclination angle of 0 to 5 degrees is 10% or more. By designing in this way, it is easy to obtain an effect of suppressing white blurring. The arithmetic average roughness Ra, Sm, Rz described above is a value measured with an optical interference surface roughness meter (for example, RST / PLUS, manufactured by WYKO) according to JIS B0601: 1994. The kurtosis (Rku) is preferably 3 or less. The kurtosis (Rku) is a parameter that defines the shape of the convex portion of the surface uneven shape. The larger the value of this kurtosis (Rku), the more the shape of the convex portion of the surface uneven shape is like a needle. It will be a pointed shape. If the kurtosis (Rku) exceeds 3, white blurring tends to occur. The kurtosis (Rku) of the antiglare layer is more preferably 1.5 to 2.8. Further, the absolute value of the degree of distortion (Rsk) of the surface is preferably 1 or less. The skewness (Rsk) is a parameter indicating the ratio of the convex portion and the concave portion to the average surface of the concavo-convex shape, and the concavo-convex shape becomes a positively large value when there are many convex portions with respect to the average surface, If there are many concave portions with respect to the average surface, the value becomes negatively large. When the absolute value of the skewness (Rsk) exceeds 1, white blur tends to occur. The absolute value of the skewness (Rsk) is preferably 0.01 to 0.5. The kurtosis (Rku) and the skewness (Rsk) can be measured using the optical interference type surface roughness meter. Further, the image sharpness (transmission image clarity) according to JIS-K7105 is preferably 5% to 90% when measured with an optical comb width of 0.5 mm.
 <基材フィルム>
 基材フィルムは、製造が容易であること、透明性及び易接着層との密着性に優れることから、アクリル樹脂系フィルム、ポリカーボネート樹脂系フィルム、ポリプロピレン樹脂系フィルム、シクロオレフィン樹脂系フィルム、及びポリエステル樹脂系フィルムから選択される少なくとも1種であることを一つの特徴としている。
<Base film>
Since the base film is easy to manufacture and has excellent transparency and adhesion to the easy-adhesion layer, an acrylic resin film, a polycarbonate resin film, a polypropylene resin film, a cycloolefin resin film, and a polyester One feature is that it is at least one selected from resin-based films.
 先ずはアクリル系樹脂フィルムについて説明する。アクリル系樹脂フィルムは、アクリル酸又はメタクリル酸に由来する骨格を有する樹脂を含有するフィルムである。アクリル系樹脂の例としては、特に限定されないが、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体)などが挙げられる。これらのアクリル系樹脂の中でも、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1-6アルキルが好ましく、メタクリル酸メチル系樹脂がより好ましい。アクリル樹脂の市販品としてはデルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル樹脂は2種以上を併用することもできる。 First, the acrylic resin film will be described. The acrylic resin film is a film containing a resin having a skeleton derived from acrylic acid or methacrylic acid. Examples of the acrylic resin include, but are not limited to, poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester Copolymer, methyl methacrylate-acrylic acid ester- (meth) acrylic acid copolymer, methyl (meth) acrylate-styrene copolymer, polymer having an alicyclic hydrocarbon group (for example, methyl methacrylate- Cyclohexyl methacrylate copolymer, methyl methacrylate- (meth) acrylate norbornyl copolymer), and the like. Among these acrylic resins, poly (meth) acrylate C1-6 alkyl such as poly (meth) methyl acrylate is preferable, and methyl methacrylate resin is more preferable. Commercially available acrylic resins include Delpet 60N, 80N (Asahi Kasei Chemicals Corporation), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) ) And the like. Two or more acrylic resins can be used in combination.
 ポリカーボネート樹脂系フィルムについて説明する。ポリカーボネート樹脂系フィルムとしては、ポリ-4,4′-イソプロピリデン-ジフェニルカーボネートと称される化合物から構成される樹脂を含有するフィルムである。このポリカーボネート系樹脂は、界面重縮合法ではビスフェノールAと塩化カルボニルから製造され、エステル交換法ではビスフェノールAとジフェニルカーボネートから製造できる。ポリプロピレン系樹脂は、プロピレンに由来する骨格を有する樹脂を含有するフィルムである。ポリプロピレン系樹脂の例としては、特に限定されないが、プロピレンの単独重合体、または、プロピレンと、エチレンおよび炭素数4-12のα-オレフィンからなる群から選択される1種以上のモノマーとの共重合体などが挙げられる。 The polycarbonate resin film will be described. The polycarbonate resin film is a film containing a resin composed of a compound called poly-4,4′-isopropylidene-diphenyl carbonate. This polycarbonate resin can be produced from bisphenol A and carbonyl chloride in the interfacial polycondensation method, and can be produced from bisphenol A and diphenyl carbonate in the transesterification method. A polypropylene resin is a film containing a resin having a skeleton derived from propylene. An example of the polypropylene resin is not particularly limited, but is a homopolymer of propylene or a copolymer of propylene and one or more monomers selected from the group consisting of ethylene and an α-olefin having 4 to 12 carbon atoms. A polymer etc. are mentioned.
 シクロオレフィン樹脂系フィルムとしては、シクロオレフィンに由来する骨格を有する樹脂を含有するフィルムである。シクロオレフィン系樹脂の例としては、特に限定されないが、ノルボルネン系モノマーの開環(共)重合体を必要に応じてマレイン酸付加、シクロペンタジエン付加のようなポリマー変性を行った後に水素添加した樹脂、ノルボルネン系モノマーを付加重合させた樹脂、ノルボルネン系モノマーとエチレン及びα-オレフィンなどのオレフィン系モノマーを付加重合させた樹脂などを挙げることができる。 The cycloolefin resin film is a film containing a resin having a skeleton derived from cycloolefin. Examples of cycloolefin resins include, but are not limited to, resins obtained by subjecting a ring-opening (co) polymer of norbornene monomers to polymer modification such as maleic acid addition or cyclopentadiene addition as necessary. Examples thereof include resins obtained by addition polymerization of norbornene monomers and resins obtained by addition polymerization of norbornene monomers and olefin monomers such as ethylene and α-olefin.
 ノルボルネン系モノマーの開環(共)重合体を得るために用いられるノルボルネン系単量体としては、例えば、ノルボルネン、2-ノルボルネン、5-メチル-2-ノルボルネン、5,5-ジメチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-メトキシカルボニル-2-ノルボルネン、5-シアノ-2-ノルボルネン、5-メチル-5-メトキシカルボニル-2-ノルボルネン、5-フェニル-2-ノルボルネン、5-フェニル-5-メチル-ノルボルネンなどが挙げられる。この開環重合に用いられる重合触媒としては、メタセシス重合触媒と呼ばれるタングステン、モリブデン、クロム系触媒が好ましく利用される。また、シクロオレフィン樹脂系フィルムの市販品としては、ゼオノアフィルム(日本ゼオン(株)製)、アートンフィルム(JSR(株)製)等が挙げられる。 Examples of norbornene monomers used for obtaining a ring-opening (co) polymer of norbornene monomers include, for example, norbornene, 2-norbornene, 5-methyl-2-norbornene, 5,5-dimethyl-2-norbornene 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-ethylidene-2-norbornene, 5-methoxycarbonyl-2-norbornene, 5-cyano-2-norbornene, 5-methyl-5-methoxycarbonyl Examples include -2-norbornene, 5-phenyl-2-norbornene, 5-phenyl-5-methyl-norbornene. As the polymerization catalyst used for the ring-opening polymerization, a tungsten, molybdenum, or chromium catalyst called a metathesis polymerization catalyst is preferably used. Moreover, as a commercial item of a cycloolefin resin-type film, a zeonore film (made by Nippon Zeon Co., Ltd.), an arton film (made by JSR Co., Ltd.), etc. are mentioned.
 ポリエステル樹脂系フィルムについて説明する。ポリエステル樹脂系フィルムは、熱的および機械的安定性から、二軸延伸のポリエステル樹脂系フィルムが好ましい。二軸延伸ポリエステルフィルムとは、二方向に延伸、必要に応じて熱処理したポリエステル樹脂系フィルムのことである。ポリエステル樹脂に用いられるジカルボン酸類としては、テレフタル酸、ナフタレンジカルボン酸、イソフタル酸、ジフェニルカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホンジカルボン酸、フタル酸などの芳香族ジカルボン酸や、シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸などの脂肪族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、パラオキシ安息香酸などのオキシカルボン酸などが使用できる。また、ポリエステル樹脂に用いられるグリコール類としては、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコールなどの脂肪族グリコールや、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどのポリオキシアルキレングリコール、シクロヘキサンジメタノールなどの脂環族グリコール、ビスフェノールA、ビスフェノールSなどの芳香族グリコールなどが使用できる。機械的強度、耐候性や耐化学薬品性、透明性などを考慮すると、ジカルボン酸類としては、テレフタル酸もしくはナフタレンジカルボン酸を、グリコール類としては、エチレングリコールを用いることが好ましい。 The polyester resin film will be described. The polyester resin film is preferably a biaxially stretched polyester resin film from the viewpoint of thermal and mechanical stability. A biaxially stretched polyester film is a polyester resin film that has been stretched in two directions and heat-treated as necessary. Dicarboxylic acids used in the polyester resin include aromatic dicarboxylic acids such as terephthalic acid, naphthalene dicarboxylic acid, isophthalic acid, diphenyl carboxylic acid, diphenyl sulfone dicarboxylic acid, diphenoxyethane dicarboxylic acid, 5-sodium sulfone dicarboxylic acid, and phthalic acid. And oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid, fumaric acid and other aliphatic dicarboxylic acids, cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids, and paraoxybenzoic acid and other oxycarboxylic acids. Can be used. The glycols used in the polyester resin include aliphatic glycols such as ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, and neopentylglycol, and polyoxyalkylene glycols such as diethylene glycol, polyethylene glycol, and polypropylene glycol. In addition, alicyclic glycols such as cyclohexanedimethanol, aromatic glycols such as bisphenol A and bisphenol S can be used. In consideration of mechanical strength, weather resistance, chemical resistance, transparency and the like, it is preferable to use terephthalic acid or naphthalenedicarboxylic acid as the dicarboxylic acid, and ethylene glycol as the glycol.
 具体的なポリエステル樹脂系フィルムとしては、ポリエチレンテレフタレートフィルムなどが挙げられる。 Specific examples of the polyester resin film include a polyethylene terephthalate film.
 また、重合時の触媒として、アルカリ土類金属化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物などを使用することが好ましい。これらのジカルボン酸類、グリコール類、触媒は、それぞれ2種以上を併用してもよい。 Further, it is preferable to use an alkaline earth metal compound, a manganese compound, a cobalt compound, an aluminum compound, an antimony compound, a titanium compound, a germanium compound or the like as a catalyst during polymerization. Two or more of these dicarboxylic acids, glycols, and catalysts may be used in combination.
 前記した基材フィルムの中では、耐熱性や機械強度、寸法安定性、及び本発明の目的効果がより良好に発揮される点から、ポリエステル樹脂系フィルムが好ましい。 Among the above-mentioned base film, a polyester resin film is preferable from the viewpoint that heat resistance, mechanical strength, dimensional stability, and the object effect of the present invention are more satisfactorily exhibited.
 (基材フィルムの物性)
 基材フィルムの厚みは、10μm以上350μm以下が好ましく、より好ましくは20μm以上、200μm以下である。基材フィルムの厚みを10μm以上とすることで、適度な強度、剛性が得られ、安定かつ容易にフィルム製造を行うことが可能となり、易接着層を形成するときの取扱性も良好となる。また、基材フィルムの厚みを350μm以下とすることで、製造時のライン速度、生産性、コントロール性等が高められる。
(Physical properties of base film)
The thickness of the base film is preferably 10 μm or more and 350 μm or less, more preferably 20 μm or more and 200 μm or less. By setting the thickness of the base film to 10 μm or more, moderate strength and rigidity can be obtained, film production can be performed stably and easily, and handleability when forming an easily adhesive layer is also improved. Moreover, the line speed at the time of manufacture, productivity, controllability, etc. are improved because the thickness of a base film shall be 350 micrometers or less.
 基材フィルムの幅は、1~4mのものが用いられる。4mを超えると搬送が困難となる。また、基材フィルの長さは、500~10000mが好ましく、より好ましくは1000m~7000mである。前記長さの範囲とすることで、塗布における加工適正や基材フィルム自体のハンドリング性に優れる。 The base film having a width of 1 to 4 m is used. If it exceeds 4 m, conveyance becomes difficult. The length of the substrate film is preferably 500 to 10,000 m, more preferably 1000 m to 7000 m. By setting it as the range of the said length, it is excellent in the processability in application | coating and the handleability of the base film itself.
 (マット処理)
 基材フィルムは通常、算術平均表面粗さ(Ra)が2nm~10nm、より好ましくは2nm~6nmである。
(Matte treatment)
The base film usually has an arithmetic average surface roughness (Ra) of 2 nm to 10 nm, more preferably 2 nm to 6 nm.
 また、基材フィルムは、必要に応じてマット処理を行うことができる。マット処理を施すことで、フィルム基材製造後の処理における傷付き防止性や取扱い性が向上する。 Further, the base film can be subjected to mat treatment as necessary. By performing the mat treatment, scratch resistance and handling in the treatment after the production of the film base material is improved.
 このようなマット処理を施した基材フィルムの算術平均表面粗さ(Ra)は、好ましくは2nm以上、2μm以下、さらに好ましくは2nm以上、1μ以下である。マット処理するために添加される微粒子としては、平均粒径0.005~3μmが好ましい。微粒子としては二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などを挙げる事が出来る。中でも二酸化ケイ素が、取り扱い性や基材フィルムのヘイズ上昇を抑制できる点から好ましく用いられる。 The arithmetic average surface roughness (Ra) of the base film subjected to such a mat treatment is preferably 2 nm or more and 2 μm or less, more preferably 2 nm or more and 1 μ or less. The fine particles added for the mat treatment preferably have an average particle size of 0.005 to 3 μm. Fine particles include inorganic particles such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, and crosslinked polymers. And so on. Among these, silicon dioxide is preferably used from the viewpoint that handling properties and haze increase of the base film can be suppressed.
 (光学特性)
 基材フィルムは、全光線透過率が90%以上であることが好ましく、より好ましくは92%以上である。また、現実的な上限としては、99%程度である。また、ヘイズ値は2%以下が好ましく、より好ましくは1.5%以下である。全光線透過率、ヘイズ値はJIS K7361及びJIS K7136に準じて測定することができる。
(optical properties)
The base film preferably has a total light transmittance of 90% or more, more preferably 92% or more. Moreover, as a realistic upper limit, it is about 99%. Further, the haze value is preferably 2% or less, more preferably 1.5% or less. The total light transmittance and haze value can be measured according to JIS K7361 and JIS K7136.
 基材フィルムにおいて、前記ヘイズ値や全光線透過率の優れた透明性を達成するには、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。 In order to achieve excellent transparency with the above-mentioned haze value and total light transmittance in a base film, it is effective to remove foreign substances in the polymer by high-accuracy filtration and reduce the diffusion and absorption of light inside the film. It is.
 また、基材フィルムの面内リターデーションRoは0~200nm、厚み方向のリターデーションRthが-150~150nmの範囲が好ましい。光学リターデーションのRo及びRthは下記式(I)及び(II)で定義される値である。 The in-plane retardation Ro of the base film is preferably in the range of 0 to 200 nm and the retardation Rth in the thickness direction is in the range of −150 to 150 nm. In the optical retardation, Ro and Rth are values defined by the following formulas (I) and (II).
 式(I) Ro=(nx-ny)×d
 式(II) Rth={(nx+ny)/2-nz}×d
(式中、nxはフィルム面内の遅相軸方向の屈折率であり、nyは基材フィルム面内で遅相軸に直交する方向の屈折率であり、nzはフィルムの厚み方向の屈折率であり、dはフィルムの厚さ(nm)である。)
Formula (I) Ro = (nx−ny) × d
Formula (II) Rth = {(nx + ny) / 2−nz} × d
(Where nx is the refractive index in the slow axis direction in the film plane, ny is the refractive index in the direction perpendicular to the slow axis in the substrate film plane, and nz is the refractive index in the thickness direction of the film) And d is the film thickness (nm).)
 上記リターデーションは、例えばKOBRA-21ADH(王子計測機器(株))を用いて、23℃、55%RHの環境下で、波長が590nmで求めることができる。 The retardation can be determined at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH using, for example, KOBRA-21ADH (Oji Scientific Instruments).
 基材フィルムが、前記リターデーションを有することで、液晶表示装置に使用した場合に、透過光線の偏光方向の変換作用を抑制し、偏光子の透過軸方向への偏光の最適化及び制御性に優れる。 When the substrate film has the retardation, when used in a liquid crystal display device, it suppresses the conversion action of the polarization direction of the transmitted light, and optimizes and controls the polarization in the transmission axis direction of the polarizer. Excellent.
 (製造方法)
 基材フィルムの製造方法は、特に限定されないが、例えば、合成樹脂のフレーク原料、及び可塑剤等の添加剤を公知の混合方法にて混合し、予め熱可塑性樹脂組成物としてから、作製することができる。
(Production method)
The method for producing the base film is not particularly limited. For example, the raw material for flakes of synthetic resin and additives such as a plasticizer are mixed by a known mixing method to prepare a thermoplastic resin composition in advance. Can do.
 この熱可塑性樹脂組成物は、例えば、オムニミキサー等の混合機でプレブレンドした後、得られた混合物を押出混練することによって得られる。この場合、押出混練に用いる混練機は、特に限定されるものではなく、例えば、単軸押出機、二軸押出機等の押出機や加圧ニーダー等の公知の混練機を用いることができる。 This thermoplastic resin composition can be obtained by, for example, pre-blending with a mixer such as an omni mixer and then extruding and kneading the obtained mixture. In this case, the kneader used for extrusion kneading is not particularly limited, and for example, a known kneader such as an extruder such as a single screw extruder or a twin screw extruder or a pressure kneader can be used.
 基材フィルムに成形する方法は、例えば溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法など公知の方法を用いる事が出来る。これらの中でも、溶液キャスト法(溶液流延法)、溶融押出法が生産性の点から好ましい。 As a method of forming the base film, a known method such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, or a compression molding method can be used. Among these, the solution casting method (solution casting method) and the melt extrusion method are preferable from the viewpoint of productivity.
 フィルム成形する際、予め押出し混練した熱可塑性樹脂組成物を用いてもよいし、合成樹脂と可塑剤等の他の添加剤を、別々に溶媒に溶解して均一な混合液とした後、溶液キャスト法(溶液流延法)や溶融押出法により成形してもよい。 When forming a film, a thermoplastic resin composition extruded and kneaded in advance may be used, or other additives such as a synthetic resin and a plasticizer are separately dissolved in a solvent to obtain a uniform mixed solution, and then a solution. It may be formed by a casting method (solution casting method) or a melt extrusion method.
 溶液キャスト法(溶液流延法)に用いられる溶媒としては、例えば、クロロホルム、ジクロロメタンなどの塩素系溶媒;トルエン、キシレン、ベンゼン、及びこれらの混合溶媒などの芳香族系溶媒;メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノールなどのアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、酢酸エチル、ジエチルエーテル;などが挙げられる。これら溶媒は1種のみ用いてもよいし、2種以上を併用してもよい。溶液キャスト法(溶液流延法)を行うための装置としては、例えば、ドラム式キャスティングマシン、バンド式キャスティングマシン、スピンコーターなどが挙げられる。 Solvents used in the solution casting method (solution casting method) include, for example, chlorinated solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; methanol, ethanol, and isopropanol Alcohol solvents such as n-butanol and 2-butanol; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether, etc. It is done. These solvents may be used alone or in combination of two or more. Examples of the apparatus for performing the solution casting method (solution casting method) include a drum casting machine, a band casting machine, and a spin coater.
 溶融押出法としては、Tダイ法、インフレーション法などが挙げられる。熔融押出の際のフィルムの成形温度は、好ましくは150℃以上350℃以下、より好ましくは200℃以上300℃以下である。 Examples of the melt extrusion method include a T-die method and an inflation method. The molding temperature of the film during melt extrusion is preferably 150 ° C. or higher and 350 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C. or lower.
 Tダイ法でフィルム成形する場合は、公知の単軸押出機や2軸押出機の先端部にTダイを取り付け、フィルム状に押出してフィルムを巻取り、ロール状の状態でフィルムを得ることができる。この際、巻取ロールの温度を適宜調整して、押出方向に延伸を加えることによって、一軸延伸工程とすることも可能である。また、押出方向と垂直な方向にフィルムを延伸する工程を加えることによって、逐次二軸延伸、同時二軸延伸などの工程を加えることも可能である。 When forming a film by the T-die method, a T-die is attached to the tip of a known single-screw extruder or twin-screw extruder, the film is extruded and wound up, and the film is obtained in a roll state. it can. Under the present circumstances, it is also possible to set it as a uniaxial stretching process by adjusting the temperature of a winding roll suitably, and adding extending | stretching to an extrusion direction. It is also possible to add steps such as sequential biaxial stretching and simultaneous biaxial stretching by adding a step of stretching the film in a direction perpendicular to the extrusion direction.
 基材フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸する場合は、一軸延伸フィルムでもよいし、2軸延伸フィルムでもよい。2軸延伸フィルムとする場合は、同時2軸延伸したものでもよいし、逐次2軸延伸したものでもよい。2軸延伸した場合は、機械強度が向上しフィルム性能が向上する。 The base film may be an unstretched film or a stretched film. When extending | stretching, a uniaxially stretched film may be sufficient and a biaxially stretched film may be sufficient. When a biaxially stretched film is used, it may be biaxially stretched simultaneously or sequentially biaxially stretched. In the case of biaxial stretching, the mechanical strength is improved and the film performance is improved.
 延伸工程を行う場合の延伸温度は、フィルム原料の熱可塑樹脂組成物のガラス転移温度近辺で行うことが好ましく、具体的には(ガラス転移温度-30)℃~(ガラス転移温度+100)℃で行うことが好ましく、より好ましくは(ガラス転移温度-20)℃~(ガラス転移温度+80)℃である。延伸温度が(ガラス転移温度-30)℃よりも低いと、十分な延伸倍率が得られないために好ましくない。延伸温度が(ガラス転移温度+100)℃よりも高いと、樹脂の流動(フロー)が起こり安定な延伸が行えなくなるために好ましくない。面積比で定義される延伸倍率は、好ましくは1.1倍以上25倍以下の範囲、より好ましくは1.3倍以上10倍以下の範囲とすることができる。延伸倍率が1.1倍よりも小さいと、延伸に伴う靭性の向上につながらないために好ましくない。延伸倍率が25倍よりも大きいと、延伸倍率を上げるだけの効果が認められない。延伸速度(一方向)としては、好ましくは10~20000%/分の範囲、より好ましくは100~10000%/分の範囲である。10%/分よりも遅いと、十分な延伸倍率を得るために時間がかかり、製造コストが高くなるために好ましくない。20000%/分よりも早いと、延伸フィルムの破断等が起こるおそれがあるために好ましくない。さらに、基材フィルムの光学等方性や力学特性を安定化させるため、延伸処理後に熱処理(アニーリング)などを行うこともできる。 The stretching temperature when performing the stretching step is preferably near the glass transition temperature of the thermoplastic resin composition of the film raw material, specifically, (glass transition temperature-30) ° C. to (glass transition temperature + 100) ° C. It is preferably carried out, more preferably (glass transition temperature−20) ° C. to (glass transition temperature + 80) ° C. If the stretching temperature is lower than (glass transition temperature −30) ° C., a sufficient stretching ratio cannot be obtained, which is not preferable. If the stretching temperature is higher than (glass transition temperature + 100) ° C., resin flow occurs, and stable stretching cannot be performed. The draw ratio defined by the area ratio can be preferably in the range of 1.1 to 25 times, more preferably in the range of 1.3 to 10 times. If the draw ratio is less than 1.1, it is not preferable because it does not lead to an improvement in toughness accompanying the drawing. When the draw ratio is larger than 25, the effect of increasing the draw ratio is not recognized. The stretching speed (one direction) is preferably in the range of 10 to 20000% / min, more preferably in the range of 100 to 10,000% / min. If it is slower than 10% / min, it takes time to obtain a sufficient draw ratio, and the production cost is increased, which is not preferable. If it is faster than 20000% / min, the stretched film may be broken, which is not preferable. Furthermore, in order to stabilize the optical isotropy and mechanical properties of the base film, a heat treatment (annealing) can be performed after the stretching treatment.
 また、延伸時や熱処理(アニーリング)にかかってくる熱量を、後述する易接着層を水系塗料として塗布した後、乾燥させるのに利用してもよい。 Further, the amount of heat applied during stretching or heat treatment (annealing) may be used for drying after applying an easy-adhesion layer described later as a water-based paint.
 製造されたフィルム基材の原反の巻取りを行う際には、フィルムの幅方向の両端をエンボス加工(ナーリング処理)してブロッキング防止をしても良い。フィルムにナーリング処理を行った場合、フィルムの両端の処理箇所は使用できなくなるため、その部分は一般的に裁断・廃棄される。また、フィルムの巻取り作業においては、傷付きを防止するために保護フィルムによってマスキングを行っても良い。 When the raw film of the manufactured film base material is wound, both ends in the width direction of the film may be embossed (knurled) to prevent blocking. When the knurling process is performed on the film, the processing portions at both ends of the film cannot be used, and the portions are generally cut and discarded. In the film winding operation, masking may be performed with a protective film in order to prevent scratching.
 (その他の添加剤)
 フィルム基材を形成する樹脂組成物には、組成物の流動性や柔軟性を向上するために、必要に応じて可塑剤を添加しても良い。可塑剤としては、特に限定されないが、基材フィルムのヘイズを発生させたり、又は基材フィルムからブリードアウトあるいは揮発しないように、合成樹脂と水素結合等によって相互作用可能である官能基を有している化合物が好ましい。このような可塑剤の例としては、特に限定されないが、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、多価アルコール系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、カルボン酸エステル系可塑剤、ポリエステル系可塑剤、糖エステル化物(特にフラノース構造及び/又はピラノース構造を有する化合物が好ましい)などが挙げられる。これらの可塑剤は併用して用いても良い。可塑剤は基材フィルム100質量部に対して、0.5~30質量部を添加するのが好ましい。基材フィルムは、ハードコート層に記載した紫外線吸収剤を含有してもよい。ここで、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤が、高沸点で揮発しにくく、高温成形時にも飛散しにくいため好ましい。更に、基材フィルムには、成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また帯電防止剤を加えてもよい。基材フィルムは、リン系難燃剤を添加してもよい。リン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。
(Other additives)
In order to improve the fluidity and flexibility of the composition, a plasticizer may be added to the resin composition forming the film base as necessary. The plasticizer is not particularly limited, but has a functional group capable of interacting with a synthetic resin by hydrogen bonding or the like so as not to cause haze of the base film or bleed out or volatilize from the base film. Are preferred. Examples of such plasticizers include, but are not limited to, phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, polyhydric alcohol plasticizers. Glycolate plasticizers, citrate ester plasticizers, fatty acid ester plasticizers, carboxylic ester plasticizers, polyester plasticizers, sugar esterified products (particularly compounds having a furanose structure and / or a pyranose structure are preferred) Etc. These plasticizers may be used in combination. The plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the base film. A base film may contain the ultraviolet absorber described in the hard-coat layer. Here, among the ultraviolet absorbers, an ultraviolet absorber having a molecular weight of 400 or more is preferable because it is difficult to volatilize at a high boiling point and hardly scatters during high temperature molding. Furthermore, various antioxidants can also be added to the base film in order to improve the thermal decomposability and thermal colorability during molding. An antistatic agent may be added. A phosphorus-based flame retardant may be added to the base film. Phosphorus flame retardants include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, condensed aryl phosphate ester, halogenated alkyl phosphate ester, halogen-containing condensed phosphate ester, halogen-containing phosphorous phosphorus One type selected from acid esters or a mixture of two or more types can be mentioned.
 (欠点)
 基材フィルムは、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。また、基材フィルムは、JIS-K7127-1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。
(Disadvantage)
The base film preferably has a defect of 5 μm or more in diameter in the film plane of 1 piece / 10 cm square or less. When the number of defects is greater than 1/10 cm square, for example, when the film is tensioned during processing in a later process, the film may break with the defects as a starting point, and productivity may decrease. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise. Further, the base film preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more, in the measurement based on JIS-K7127-1999.
 破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。 The upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
 <易接着層>
 (樹脂)
 次に易接着層について説明する。本発明に係る易接着層は、基材フィルムとハードコート層との層間密着を向上させる為に設けられる層を表しており、具体的には、基材フィルムとハードコート層が直接接着した場合よりもJISK 5400(JIS K5600)に準拠するクロスカット法で定義される密着評価での密着性を向上させるという機能を有する層を表し、ポリエステル系樹脂、アクリル系樹脂及びウレタン系樹脂からなる群から選択される樹脂を少なくとも1種含有することを特徴としている。
<Easily adhesive layer>
(resin)
Next, an easily bonding layer is demonstrated. The easy-adhesion layer according to the present invention represents a layer provided in order to improve interlayer adhesion between the base film and the hard coat layer, and specifically, when the base film and the hard coat layer are directly bonded. Represents a layer having a function of improving the adhesion in the adhesion evaluation defined by the crosscut method based on JISK 5400 (JIS K5600), from the group consisting of polyester resin, acrylic resin and urethane resin It is characterized by containing at least one selected resin.
 これら樹脂の中では、本発明の目的効果が発揮されやすい点から、ポリエステル系樹脂が好ましく、易接着層を構成する成分に対して50質量%以上ポリエステル系樹脂を用いることが好ましい。次に各樹脂について説明する。ポリエステル系樹脂は、ポリエステル系樹脂は公知の方法に従い、ジカルボン酸とジオールとをエステル化(エステル交換)し、重縮合させることによって製造される。ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、ナフタリンジカルボン酸のような芳香族ジカルボン酸またはそのエステルや、アジピン酸、コハク酸、セバチン酸、ドデカン二酸のような脂肪族ジカルボン酸、ヒドロキシ安息香酸のようなヒドロキシカルボン酸またはこれらのエステルを用いることができる。また、ジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ビスフェノール類等を用いることができる。ポリエステル系樹脂としては、上記のジカルボン酸及びジオールに加え、親水性基を有する成分を共重合させて、親水性を付与しても良い。このような親水性基を有する成分の例としては、5-ナトリウムスルホイソフタル酸等のジカルボン酸成分や、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール等のジオール成分が挙げられる。ポリエステル樹脂の中でも、本発明の目的効果や加熱によるオリゴマーの析出防止の観点からガラス転移点が異なる2成分以上の樹脂を併用して用いる事が好ましい。具体的には、ガラス転移点Tgが105℃以上、135℃未満のポリエステル樹脂(X)とガラス転移点Tgが65℃以上、95℃未満のポリエステル樹脂(Y)を併用するのが好ましい。ガラス転移点Tgが105℃以上、135℃未満のポリエステル樹脂(X)としては、酸性分に2,6-ナフタレンジカルボン酸及び/またはソディウム・スルホネート・イソフタル酸を用いたものが好ましい。更に好ましくは、酸性分にソディウム・スルホネート・イソフタル酸を用いたものが好ましい。また、ソディウム・スルホネート・イソフタル酸の含有モル比率としては、ポリエステル樹脂(X)の酸性分全体を50とした場合、15/50以下が好ましく、更に好ましくは10/50以下である。 Among these resins, polyester resins are preferable from the viewpoint that the objective effect of the present invention is easily exerted, and it is preferable to use 50% by mass or more of polyester resins with respect to the components constituting the easy-adhesion layer. Next, each resin will be described. The polyester resin is produced by esterifying (transesterifying) a dicarboxylic acid and a diol and polycondensing the polyester resin according to a known method. Examples of the dicarboxylic acid include aromatic dicarboxylic acids or esters such as terephthalic acid, isophthalic acid, phthalic acid, and naphthalene dicarboxylic acid, and aliphatic dicarboxylic acids such as adipic acid, succinic acid, sebacic acid, and dodecanedioic acid. Hydroxycarboxylic acids such as hydroxybenzoic acid or their esters can be used. Examples of the diol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, bisphenols, and the like. As a polyester-type resin, in addition to said dicarboxylic acid and diol, the component which has a hydrophilic group may be copolymerized and hydrophilicity may be provided. Examples of such a component having a hydrophilic group include dicarboxylic acid components such as 5-sodium sulfoisophthalic acid, and diol components such as ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol. Among the polyester resins, it is preferable to use in combination two or more resins having different glass transition points from the viewpoint of the object effect of the present invention and prevention of oligomer precipitation by heating. Specifically, it is preferable to use together a polyester resin (X) having a glass transition point Tg of 105 ° C. or more and less than 135 ° C. and a polyester resin (Y) having a glass transition point Tg of 65 ° C. or more and less than 95 ° C. As the polyester resin (X) having a glass transition point Tg of 105 ° C. or higher and lower than 135 ° C., those using 2,6-naphthalenedicarboxylic acid and / or sodium sulfonate / isophthalic acid as the acidic component are preferable. More preferably, an acidic component using sodium, sulfonate, or isophthalic acid is preferable. The content molar ratio of sodium sulfonate / isophthalic acid is preferably 15/50 or less, more preferably 10/50 or less, when the total acidic content of the polyester resin (X) is 50.
 ガラス転移点Tgが65℃以上、95℃未満のポリエステル樹脂(Y)としては、酸性分にテレフタル酸及び/またはトリメリット酸を用いたものが好ましく、更に好ましくはトリメリット酸を用いたものが好ましい。トリメリット酸の含有モル比率としては、ポリエステル樹脂(Y)の酸性分全体を50とした場合、20/50以下が好ましく、更に好ましくは15/50以下である。ポリエステル樹脂(X)及びポリエステル樹脂(Y)のジオール成分としては、いずれもエチレングリコールが好ましい。 As the polyester resin (Y) having a glass transition point Tg of 65 ° C. or higher and lower than 95 ° C., those using terephthalic acid and / or trimellitic acid as the acidic component are preferable, and those using trimellitic acid are more preferable. preferable. The molar ratio of trimellitic acid is preferably 20/50 or less, more preferably 15/50 or less, assuming that the total acidic content of the polyester resin (Y) is 50. As a diol component of the polyester resin (X) and the polyester resin (Y), ethylene glycol is preferred.
 アクリル系樹脂は、アクリル酸又はメタクリル酸に由来する骨格を有する反応性ポリマーを重合させることによって合成することができる。そのような反応性ポリマーの例としては、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシフェニルアクリレートなどのカルボキシル基を有するもの、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレートなどの水酸基を有するもの、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミドなどのアミド基を有するもの、グリシジル(メタ)アクリレートなどのグリシジル基を有するもの、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレートなどのアミノ基を有するものなどの他に、p-クロロスチレン、クロロメチルスチレン、ジビニルベンゼン、4-ビニルピリジン、ビニルオキサゾリン、無水マレイン酸などが挙げられる。 The acrylic resin can be synthesized by polymerizing a reactive polymer having a skeleton derived from acrylic acid or methacrylic acid. Examples of such reactive polymers include those having a carboxyl group such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxyphenyl acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxybutyl (meta ) Acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate and other hydroxyl groups, (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N, Those having an amide group such as N-dimethyl (meth) acrylamide, N-methylol (meth) acrylamide, those having a glycidyl group such as glycidyl (meth) acrylate, 7-amino-3,7-dimethyloctyl (meth) a In addition to those having amino groups such as relate and 2-dimethylaminoethyl (meth) acrylate, p-chlorostyrene, chloromethylstyrene, divinylbenzene, 4-vinylpyridine, vinyloxazoline, maleic anhydride and the like can be mentioned. .
 アクリル系樹脂を構成する上記以外の共重合成分としては、アクリル酸エステル系、メタクリル酸エステル系、プロピレン系、塩化ビニル系、セルロース系、エチレン系、エチレンイミン系、ビニルアルコール系、ペプチド系、ビニルピリジン系、ジエン系、フッ素系、アクリロニトリル系などが挙げられるが、汎用性、塗工性などの観点から、アクリル酸エステル系、メタクリル酸エステル系を含むことが好ましい。これらのアクリル系樹脂を構成する成分は、単独又は複数種のものを組み合わせて用いることができる。 Examples of copolymer components other than the above that constitute the acrylic resin include acrylic ester, methacrylic ester, propylene, vinyl chloride, cellulose, ethylene, ethyleneimine, vinyl alcohol, peptide, and vinyl. Pyridine-based, diene-based, fluorine-based, acrylonitrile-based, and the like can be mentioned. From the viewpoints of versatility and coating properties, it is preferable to include acrylate-based and methacrylic ester-based. The component which comprises these acrylic resins can be used individually or in combination of multiple types.
 ウレタン系樹脂は、公知の方法によって、ポリヒドロキシル化合物、ジイソシアネート及びジイソシアネートと反応する水素原子を少なくとも2個含有する低分子量の鎖伸長剤とから合成することができる。例えば、溶剤中で比較的高分子量のポリウレタンを合成した後、水を少しずつ加えて転相乳化し、減圧により溶剤を除く方法や、ポリマー中に親水性基としてポリエチレングリコールやカルボキシル基等を導入させたウレタンプレポリマーを水に溶解あるいは分散させた後、鎖伸長剤を添加して反応させる方法等がある。 The urethane resin can be synthesized from a polyhydroxyl compound, diisocyanate, and a low molecular weight chain extender containing at least two hydrogen atoms that react with the diisocyanate by a known method. For example, after synthesizing a relatively high molecular weight polyurethane in a solvent, water is added little by little to phase inversion emulsification, and the solvent is removed by decompression, or polyethylene glycol or carboxyl group is introduced as a hydrophilic group in the polymer. There is a method in which the urethane prepolymer dissolved or dispersed in water is added and reacted with a chain extender.
 ウレタン系樹脂の製造に用いられるポリヒドロキシル化合物の例としては、フタル酸、アジピン酸、二量化リノレイン酸、マレイン酸等のカルボン酸類;エチレングリコール、プロピレングリコール、ブチレングリコール、ジエチレングリコール等のグリコール類;トリメチロールプロパン、ヘキサントリオール、グリセリン、トリメチロールエタン、ペンタエリスリトールなどから脱水縮合反応によって得られるポリエステルポリオール類;ポリオキシプロピレングリコール、ポリオキシブチレングリコール、ポリテトラメチレングリコール、ポリオキシプロピレントリオール、ポリオキシエチレンポリオキシプロピレントリオール、ソルビトール、ペンタエリスリトール、シュクローズ、スターチ、リン酸などの無機酸を開始剤としたポリオキシプロピレンポリオール、ポリオキシプロピレンポリオキシエチレンポリオール等のポリエーテルポリオール;アクリルポリオール、ヒマシ油の誘導体、トール油誘導体、その他水酸基化合物等が挙げられる。これらのポリヒドロキシル化合物は、単独又は複数種のものを組み合わせて用いることができる。 Examples of polyhydroxyl compounds used in the production of urethane resins include carboxylic acids such as phthalic acid, adipic acid, dimerized linolenic acid and maleic acid; glycols such as ethylene glycol, propylene glycol, butylene glycol and diethylene glycol; Polyester polyols obtained by dehydration condensation reaction from methylolpropane, hexanetriol, glycerin, trimethylolethane, pentaerythritol, etc .; polyoxypropylene glycol, polyoxybutylene glycol, polytetramethylene glycol, polyoxypropylene triol, polyoxyethylene poly Initiators are inorganic acids such as oxypropylene triol, sorbitol, pentaerythritol, sucrose, starch and phosphoric acid Polyoxypropylene polyols, polyether polyols such as polyoxypropylene polyoxyethylene polyol, acrylic polyol, a derivative of castor oil, tall oil derivatives, other hydroxyl compounds. These polyhydroxyl compounds can be used alone or in combination of two or more.
 ウレタン系樹脂の製造に用いられるジイソシアネートの例としては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、4,4′-ジシクロヘキシルメタンジイソシネート、3,3′-ジメチル-4,4′-ビフェニレンジイソシアネート、3,3′-ジメトキシ-4,4′-ビフェニレンジイソシアネート、3,3′-ジクロロ-4,4′-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、1,5-テトラヒドロナフタレンジイソシアネート等が挙げられる。これらのジイソシアネートは、単独又は複数種のものを組み合わせて用いることができる。ウレタン系樹脂の製造に用いられる鎖伸長剤の例としては、エチレングリコール、1,4-ブタンジオール、トリメチロールプロパン、トリイソプロパノールアミン、N,N-ビス(2-ヒドロキシプロピル)アニリン、ヒドロキノン-ビス(β-ヒドロキシエチル)エーテル、レゾルシノール-ビス(β-ヒドロキシエチル)エーテル等のポリオール類、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、フェニレンジアミン、トリレンジアミン、ジフェニルジアミン、ジアミノジフェニルメタン、ジアミノジフェニルメタン、ジアミノジシクロヘキシルメタン、ピペラジン、イソホロンジアミン、ジエチレントリアミン、ジプロピレントリアミン等のポリアミン類、ヒドラジン類、及び水が挙げられる。これらの鎖伸長剤は、単独又は複数種のものを組み合わせて用いることができる。 Examples of diisocyanates used in the production of urethane resins include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, tetramethylene Diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, trimethylhexamethylene diisocyanate, 1,4-cyclohexylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 3,3'-dimethyl-4,4 '-Biphenylene diisocyanate, 3,3'-dimethoxy-4,4'-biphenylene diisocyanate, 3,3'-dichloro-4,4' Biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate. These diisocyanates can be used singly or in combination. Examples of chain extenders used in the production of urethane resins include ethylene glycol, 1,4-butanediol, trimethylolpropane, triisopropanolamine, N, N-bis (2-hydroxypropyl) aniline, hydroquinone-bis Polyols such as (β-hydroxyethyl) ether and resorcinol-bis (β-hydroxyethyl) ether, ethylenediamine, propylenediamine, hexamethylenediamine, phenylenediamine, tolylenediamine, diphenyldiamine, diaminodiphenylmethane, diaminodiphenylmethane, diaminodicyclohexyl Examples include methane, piperazine, isophoronediamine, polyamines such as diethylenetriamine and dipropylenetriamine, hydrazines, and water. These chain extenders can be used alone or in combination of two or more.
 ウレタン系樹脂の製造における合成反応は、有機錫化合物、有機ビスマス、アミン等の触媒の存在下で行うことができ、この中でも、有機錫化合物の存在下で行うのが特に好ましい。有機錫化合物の具体例としては、酢酸第一錫、オクタン酸第一錫、ラウリン酸第一錫、オレイン酸第一錫などのカルボン酸第一錫;ジブチル錫アセテート、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫ジ-2-エチルヘキソエート、ジラウリル錫ジアセテート、ジオクチル錫ジアセテートなどのカルボン酸のジアルキル錫塩;水酸化トリメチル錫、水酸化トリブチル錫、水酸化トリオクチル錫などの水酸化トリアルキル錫;酸化ジブチル錫、酸化ジオクチル錫、酸化ジラウリル錫などの酸化ジアルキル錫;二塩化ジブチル錫、二塩化ジオクチル錫などの塩化ジアルキル錫等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 The synthetic reaction in the production of the urethane-based resin can be performed in the presence of a catalyst such as an organic tin compound, organic bismuth, or amine, and among these, it is particularly preferable to perform in the presence of an organic tin compound. Specific examples of organic tin compounds include stannous acetate, stannous octoate, stannous laurate, stannous oleate and the like; dibutyltin acetate, dibutyltin dilaurate, dibutyltin maleate Dialkyltin salts of carboxylic acids such as dibutyltin di-2-ethylhexoate, dilauryltin diacetate, dioctyltin diacetate; trialkyl hydroxides such as trimethyltin hydroxide, tributyltin hydroxide, trioctyltin hydroxide Tin: Dialkyltin oxide such as dibutyltin oxide, dioctyltin oxide and dilauryltin oxide; Dialkyltin chloride such as dibutyltin dichloride and dioctyltin dichloride, etc., and these may be used alone. More than one species may be used in combination.
 (製造方法)
 易接着層は、ポリエステル系樹脂、アクリル系樹脂及びウレタン系樹脂から選択される樹脂を水系乳化物又は水溶液(以下「水系乳化物等」と称する)として、基材フィルムに塗布し、乾燥することによって形成することができる。また、基材フィルムに水系乳化物又は水溶液を塗布後、基材フィルムと共に延伸して、乾燥することによっても形成できる。
(Production method)
For the easy adhesion layer, a resin selected from a polyester resin, an acrylic resin, and a urethane resin is applied to a base film as an aqueous emulsion or an aqueous solution (hereinafter referred to as “aqueous emulsion etc.”) and dried. Can be formed. Moreover, after apply | coating a water-based emulsion or aqueous solution to a base film, it can also form by extending | stretching with a base film and drying.
 水系乳化物等の固形分は、通常10質量%以上50質量%以下である。水系乳化物等の主溶媒としては水が用いられるが、水と混和可能な有機溶媒を少量用いてもよい。このような有機溶媒の例として、低級アルコール類、多価アルコール類及びそのアルキルエーテルまたはアルキルエステル類などが挙げられる。水系乳化物等は、公知のディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法(ダイコート法)等を用いて、基材フィルムに塗布することができる。次いで、塗布された水系乳化物等を乾燥することにより、易接着層を形成することができる。 The solid content of the water-based emulsion is usually 10% by mass or more and 50% by mass or less. Water is used as the main solvent for the aqueous emulsion and the like, but a small amount of an organic solvent miscible with water may be used. Examples of such organic solvents include lower alcohols, polyhydric alcohols and alkyl ethers or alkyl esters thereof. Water-based emulsions, etc., are known as dip coating methods, air knife coating methods, curtain coating methods, roller coating methods, wire bar coating methods, gravure coating methods, extrusion coating methods (die coating methods), etc. Can be applied. Subsequently, an easily bonding layer can be formed by drying the applied water-based emulsion and the like.
 (その他添加剤)
 易接着層を形成するための水系乳化物等に、必要に応じて架橋剤を添加することが好ましい。架橋剤の例として、メラミン系、オキサゾリン系、アルデヒド、N-メチロール化合物、ジオキサン誘導体、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾール、ジアルデヒド澱粉、イソシアネート系化合物、シランカップリング剤を挙げることができる。これらの架橋剤は、単独で用いても2種類以上を併用してもよい。架橋剤の添加量は、親水性樹脂全量に対して0.1質量%以上20質量%以下が好ましく、0.5質量%以上15質量%以下がさらに好ましい。易接着層を形成するための水系乳化物等には、さらに、必要に応じて、アミノ基含有樹脂等の他の樹脂成分、界面活性剤、すべり剤、染料、紫外線吸収剤、マット剤(シリカ、コロイダルシリカなど、平均粒径は0.005~3μmが好ましい)、防腐剤、増粘剤、造膜助剤、帯電防止剤、抗酸化剤などを添加してもよい。
(Other additives)
It is preferable to add a crosslinking agent to the aqueous emulsion for forming the easy-adhesion layer, if necessary. Examples of the crosslinking agent include melamine, oxazoline, aldehyde, N-methylol compound, dioxane derivative, active vinyl compound, active halogen compound, isoxazole, dialdehyde starch, isocyanate compound, and silane coupling agent. . These crosslinking agents may be used alone or in combination of two or more. The addition amount of the crosslinking agent is preferably 0.1% by mass or more and 20% by mass or less, and more preferably 0.5% by mass or more and 15% by mass or less with respect to the total amount of the hydrophilic resin. For the water-based emulsion for forming an easy-adhesion layer, other resin components such as amino group-containing resins, surfactants, slipping agents, dyes, UV absorbers, matting agents (silica) , Colloidal silica, etc., preferably having an average particle size of 0.005 to 3 μm), preservatives, thickeners, film-forming aids, antistatic agents, antioxidants, and the like.
 (光学特性)
 易接着層を設けた基材フィルムの全光線透過率は90%以上が好ましく、より好ましくは91%以上である。易接着層を設けた基材フィルムのヘイズは2%以下が好ましく、より好ましくは1.5%以下である。全光線透過率が90%を下回ると、表示装置に用いた場合、輝度が低減したり、物品本来の色彩が暗く見えたりする。またヘイズが2%を大幅に越えると、表示装置に使用した場合、物品が白っぽく曇って見え、フラットパネルディスプレイの画像や家電など物品本来の外観を損なう可能性が生じるため好ましくない。
(optical properties)
The total light transmittance of the base film provided with the easy adhesion layer is preferably 90% or more, and more preferably 91% or more. The haze of the base film provided with the easy adhesion layer is preferably 2% or less, more preferably 1.5% or less. When the total light transmittance is less than 90%, when used in a display device, the luminance is reduced or the original color of the article looks dark. On the other hand, if the haze greatly exceeds 2%, the article appears whitish and cloudy when used in a display device, which may undesirably impair the original appearance of the article such as an image of a flat panel display or home appliances.
 <機能性層>
 本発明のハードコートフィルムには、反射防止層や透明導電性薄層等の機能性層を設けることができる。
<Functional layer>
The hard coat film of the present invention can be provided with a functional layer such as an antireflection layer or a transparent conductive thin layer.
 〈反射防止層〉
 本発明に係るハードコートフィルムは、ハードコート層の上層に反射防止層を塗設して、外光反射防止機能を有する反射防止フィルムとして用いることができる。
<Antireflection layer>
The hard coat film according to the present invention can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on the hard coat layer.
 反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体である保護フィルムよりも屈折率の低い低屈折率層、もしくは支持体である保護フィルムよりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。または、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。反射防止フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。 The antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference. The antireflection layer is composed of a low refractive index layer having a lower refractive index than the protective film as the support, or a combination of a high refractive index layer and a low refractive index layer having a higher refractive index than the protective film as the support. Preferably it is. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support). Are preferably laminated in the order of a layer having a lower refractive index) / a high refractive index layer / a low refractive index layer. Alternatively, an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used. As the layer structure of the antireflection film, the following structure is conceivable, but is not limited thereto.
 易接着層/基材フィルム/易接着層/ハードコート層/低屈折率層
 易接着層/基材フィルム/易接着層/ハードコート層/高屈折率層/低屈折率層
Easy Adhesive Layer / Base Film / Easi Adhesive Layer / Hard Coat Layer / Low Refractive Index Layer Easy Adhesive Layer / Base Film / Easi Adhesive Layer / Hard Coat Layer / High Refractive Index Layer / Low Refractive Index Layer
 <低屈折率層>
 低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、23℃、波長550nm測定で、1.30~1.45の範囲であることが好ましい。
<Low refractive index layer>
The low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm.
 低屈折率層の膜厚は、5nm~0.5μmであることが好ましく、10nm~0.3μmであることが更に好ましく、30nm~0.2μmであることが最も好ましい。 The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and most preferably 30 nm to 0.2 μm.
 低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質または空洞の粒子を少なくとも1種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質または空洞である粒子が、中空シリカ系微粒子であることが好ましい。 The composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles. In particular, the particles having the outer shell layer and having a porous or hollow interior are preferably hollow silica-based fine particles.
 なお、低屈折率層形成用組成物には、下記一般式(OSi-1)で表される有機珪素化合物もしくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。 Note that the composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
 一般式(OSi-1):Si(OR) General formula (OSi-1): Si (OR) 4
 前記一般式で表される有機珪素化合物は、式中、Rは炭素数1~4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。 In the organic silicon compound represented by the general formula, R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
 他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。またフッ素原子を35~80質量%の範囲で含み、且つ架橋性若しくは重合性の官能基を含む含フッ素化合物を主としてなる熱硬化性および/または光硬化性を有する化合物を含有しても良い。具体的には含フッ素ポリマー、あるいは含フッ素ゾルゲル化合物などである。含フッ素ポリマーとしては、例えばパーフルオロアルキル基含有シラン化合物〔例えば(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリエトキシシラン〕の加水分解物や脱水縮合物の他、含フッ素モノマー単位と架橋反応性単位とを構成単位とする含フッ素共重合体が挙げられる。その他、溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。 In addition, a solvent, and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added. Further, it may contain a thermosetting and / or photocurable compound mainly containing a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group. Specifically, a fluorine-containing polymer or a fluorine-containing sol-gel compound is used. Examples of the fluorine-containing polymer include hydrolysates and dehydration condensates of perfluoroalkyl group-containing silane compounds [eg (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], and fluorine-containing monomers. Examples thereof include fluorine-containing copolymers having units and cross-linking reactive units as constituent units. In addition, you may add a solvent, a silane coupling agent, a hardening | curing agent, surfactant, etc. as needed.
 <高屈折率層>
 高屈折率層の屈折率は、23℃、波長550nm測定で、屈折率を1.4~2.2の範囲に調整することが好ましい。また、高屈折率層の厚さは5nm~1μmが好ましく、10nm~0.2μmであることが更に好ましく、30nm~0.1μmであることが最も好ましい。屈折率を調整する手段は、金属酸化物微粒子等を添加することで達成できる。金属酸化また、用いる金属酸化物微粒子の屈折率は1.80~2.60であるものが好ましく、1.85~2.50であるものが更に好ましい。
<High refractive index layer>
The refractive index of the high refractive index layer is preferably adjusted to a range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm. The thickness of the high refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm. The means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like. Metal oxide The metal oxide fine particles used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
 金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム-スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。 The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used. In the present invention, at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium tin oxide (ITO), antimony doped tin oxide (ATO), and zinc antimonate is used. It is particularly preferable to use it as the main component. In particular, it is preferable to contain zinc antimonate particles.
 これら金属酸化物微粒子の一次粒子の平均粒子径は10nm~200nmの範囲であり、10~150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。 The average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, and is particularly preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
 金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%~5質量%、より好ましくは0.5質量%~3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でもシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。また高屈折率層は、π共役系導電性ポリマーを含有しても良い。π共役系導電性ポリマーとは、主鎖がπ共役系で構成されている有機高分子であれば使用することができる。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。 The metal oxide fine particles may be surface-treated with an organic compound. By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . Therefore, the amount of surface modification with a preferable organic compound is 0.1% by mass to 5% by mass, more preferably 0.5% by mass to 3% by mass with respect to the metal oxide particles. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined. The high refractive index layer may contain a π-conjugated conductive polymer. The π-conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a π-conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
 π共役系導電性ポリマーは、無置換のままでも十分な導電性やバインダー樹脂への溶解性が得られるが、導電性や溶解性をより高めるために、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導入してもよい。 The π-conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group. A functional group such as a group, a hydroxy group, or a cyano group may be introduced.
 また、イオン性化合物を含有しても良い。イオン性化合物としては、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF 、PF 等の無機イオン系、CFSO 、(CFSO、CFCO 等のフッ素系の陰イオンとからなる化合物等が挙げられる。該ポリマーとバインダーの比率はポリマー100質量部に対して、バインダーが10~400質量部が好ましく、特に好ましくは、ポリマー100質量部に対して、バインダーが100~200質量部である。 Moreover, you may contain an ionic compound. Examples of the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 and PF 6 , CF 3 SO 2 −, and the like. , (CF 3 SO 2 ) 2 N , CF 3 CO 2 —, etc. The ratio of the polymer to the binder is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the polymer, and particularly preferably 100 to 200 parts by mass of the binder with respect to 100 parts by mass of the polymer.
 <透明導電性薄層>
 ハードコートフィルムのハードコート層上に透明導電性薄層を形成しても良い。
<Transparent conductive thin layer>
A transparent conductive thin layer may be formed on the hard coat layer of the hard coat film.
 設けられる透明導電性薄層としては、一般的に広く知られた透明導電性材料を用いることができる。例えば、酸化インジウム、酸化錫、酸化インジウム錫、金、銀、パラジウム等の透明導電性物質を用いることができる。これらは、真空蒸着法、スパッタリング法、イオンプレーティング法、溶液塗布法等により、ハードコートフィルム上に薄膜として形成することができる。また、前記したπ共役系導電性ポリマーである有機導電性材料を用いて、透明導電性薄層を形成することも可能である。特に、透明性、導電性に優れ、比較的低コストに得られる酸化インジウム、酸化錫又は酸化インジウム錫のいずれかを主成分とした透明導電性材料を好適に使用することができる。透明導電性薄膜の厚みは、適用する材料によっても異なるため一概には言えないが、表面抵抗率で1000Ω以下、好ましくは500Ω以下になるような厚みであって、経済性をも考慮すると、10nm以上、好ましくは20nm以上、80nm以下、好ましくは70nm以下の範囲が好適である。このような薄膜においては透明導電性薄層の厚みムラに起因する可視光の干渉縞は発生しにくい。 As the transparent conductive thin layer provided, a generally widely known transparent conductive material can be used. For example, a transparent conductive material such as indium oxide, tin oxide, indium tin oxide, gold, silver, or palladium can be used. These can be formed as a thin film on the hard coat film by vacuum deposition, sputtering, ion plating, solution coating, or the like. Moreover, it is also possible to form a transparent conductive thin layer using the organic conductive material which is the above-described π-conjugated conductive polymer. In particular, a transparent conductive material that is excellent in transparency and electrical conductivity and is mainly composed of any one of indium oxide, tin oxide, and indium tin oxide, which can be obtained at a relatively low cost, can be suitably used. Although the thickness of the transparent conductive thin film varies depending on the material to be applied, it cannot be said unconditionally. However, the surface resistivity is 1000Ω or less, preferably 500Ω or less. A range of 20 nm or more and 80 nm or less, preferably 70 nm or less is preferable. In such a thin film, visible light interference fringes due to uneven thickness of the transparent conductive thin layer are unlikely to occur.
 <画像表示装置>
 本発明のハードコートフィルムは、画像表示装置に使用することで、視認性(クリア性)に優れた性能が発揮される点で好ましい。画像表示装置としては、反射型、透過型、半透過型液晶表示装置または、TN型、STN型、OCB型、VA型、IPS型、ECB型等の各種駆動方式の液晶表示装置、有機EL表示装置やプラズマディスプレイ等が挙げられる。これら画像表示装置の中でもタッチパネルを含む液晶表示装置のタッチパネル用部材に本発明のハードコートフィルムを用いた場合、高い視認性、及びペン入力に対する耐久性(摺動による傷等)に優れる点で好ましい。
<Image display device>
The hard coat film of this invention is preferable at the point by which the performance excellent in visibility (clearness) is exhibited by using it for an image display apparatus. As an image display device, a reflection type, a transmission type, a semi-transmission type liquid crystal display device, a liquid crystal display device of various driving methods such as a TN type, an STN type, an OCB type, a VA type, an IPS type and an ECB type, an organic EL display Examples thereof include a device and a plasma display. Among these image display devices, when the hard coat film of the present invention is used for a touch panel member of a liquid crystal display device including a touch panel, it is preferable in terms of excellent visibility and durability against pen input (such as scratches caused by sliding). .
 次に、タッチパネルに用いた場合の一例を図1に示す。本発明の透明ハードコートフィルム11上に透明導電性薄膜12を形成し、これを透明導電性薄膜15が形成されたガラス基板13と、透明導電性薄膜同士が向き合うように一定の間隔をあけて対向させることにより、抵抗膜方式のタッチパネル10を構成することができる。ハードコートフィルム11およびガラス基板13の端部には不図示の電極が配置されている。ユーザが、透明導電性薄膜12付きのハードコートフィルム11を指やペン等で押下することにより、透明導電性薄膜12が、ガラス基板13上の透明導電性薄膜15と接触する。この接触を端部の電極を介して電気的に検出することにより、押下された位置が検出される構成である。ガラス基板13の透明導電性薄膜15上には、必要に応じてドット状のスペーサ14が配置される。また、図2に示したように、図2のタッチパネル10をカラー液晶表示パネル20の上に搭載することにより、タッチパネルつき液晶表示装置を構成することができる。 Next, an example when used for a touch panel is shown in FIG. A transparent conductive thin film 12 is formed on the transparent hard coat film 11 of the present invention, and the glass substrate 13 on which the transparent conductive thin film 15 is formed is spaced apart from the transparent conductive thin film 15 with a certain distance therebetween. By making them face each other, the resistive touch panel 10 can be configured. Electrodes (not shown) are arranged at the ends of the hard coat film 11 and the glass substrate 13. When the user presses down the hard coat film 11 with the transparent conductive thin film 12 with a finger or a pen, the transparent conductive thin film 12 comes into contact with the transparent conductive thin film 15 on the glass substrate 13. The pressed position is detected by electrically detecting this contact through the electrode at the end. On the transparent conductive thin film 15 of the glass substrate 13, dot-shaped spacers 14 are arranged as necessary. Further, as shown in FIG. 2, a liquid crystal display device with a touch panel can be configured by mounting the touch panel 10 of FIG. 2 on the color liquid crystal display panel 20.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 <易接着層付き基材フィルム1の作製>
 フィラーを含まないポリエチレンテレフタレートを280℃で溶融押出し、静電印加された20℃のキャストドラム上にキャストし無延伸シートを作製した。このシートを100℃で予熱し、この温度にてロール延伸で長手方向に3倍延伸した。この後、濃度4.5%に調整した易接着層水系塗料1を上記のシート両面に塗布した。塗布後、120℃で幅方向に3.5倍延伸し、220℃で熱処理した。熱処理後、両端部に幅10mm、平均高さ5μmのナーリング加工を施して巻き取り、幅1.5m、長さ6000m、150nmの易接着層が両面に形成された厚み125μmのポリエチレンテレフタレートフィルムである易接着層付き基材フィルム1を得た。
Example 1
<Preparation of base film 1 with an easy adhesion layer>
Polyethylene terephthalate containing no filler was melt-extruded at 280 ° C., and cast on a 20 ° C. cast drum applied with an electrostatic force to produce an unstretched sheet. This sheet was preheated at 100 ° C., and stretched at a temperature of 3 times in the longitudinal direction by roll stretching. Thereafter, the easy-adhesion layer water-based paint 1 adjusted to a concentration of 4.5% was applied to both sides of the sheet. After coating, the film was stretched 3.5 times in the width direction at 120 ° C. and heat-treated at 220 ° C. After heat treatment, it is a polyethylene terephthalate film with a thickness of 125 μm in which an easy-adhesion layer with a width of 1.5 m, a length of 6000 m, and a thickness of 150 nm is formed on both sides by applying a knurling process with a width of 10 mm and an average height of 5 μm at both ends. The base film 1 with an easily bonding layer was obtained.
 (易接着層水系塗料1)
 下記材料を攪拌、混合し、純水で固形分濃度が4.5%となるように調整して、ポリエステル樹脂の水系乳化物を得た。
(Easily adhesive layer water-based paint 1)
The following materials were stirred and mixed, and adjusted with pure water so that the solid concentration was 4.5% to obtain an aqueous emulsion of a polyester resin.
 Tgが120℃、ソディウム・スルホネート・イソフタル酸のモル比率7/50のポリエステル樹脂(X)              19質量部
 Tgが80℃、トリメリット酸のモル比率12/50のポリエステル樹脂(Y)                          45質量部
 メラミン樹脂                      27質量部
 オキサゾリン基含有ポリマー(架橋剤、日本触媒社製)    7質量部
 粒径150nmのコロイダルシリカ             2質量部
Polyester resin (X) having a Tg of 120 ° C. and a sodium / sulfonate / isophthalic acid molar ratio of 7/50 19 parts by mass Polyester resin (Y) having a Tg of 80 ° C. and a trimellitic acid molar ratio of 12/50 45 parts by mass Melamine Resin 27 parts by mass Oxazoline group-containing polymer (crosslinking agent, manufactured by Nippon Shokubai Co., Ltd.) 7 parts by mass Colloidal silica with a particle size of 150 nm 2 parts by mass
 <易接着層付き基材フィルム2の作製>
 基材フィルム1の作製において、易接着層の膜厚が150nmとなるように易接着層水系塗料2の塗布量を調整し、更に易接着層水系塗料1を易接着層水系塗料2に変更した以外は同様にして、易接着層付き基材フィルム2を得た。
<Preparation of base film 2 with an easy adhesion layer>
In the production of the base film 1, the coating amount of the easy-adhesion layer aqueous paint 2 was adjusted so that the film thickness of the easy-adhesion layer was 150 nm, and the easy-adhesion layer aqueous paint 1 was changed to the easy-adhesion layer aqueous paint 2 The base film 2 with an easily bonding layer was obtained similarly except this.
 (易接着層水系塗料2)
 下記材料を攪拌、混合し、純水で固形分濃度が4.5%となるように調整して、ポリエステル樹脂の水系乳化物を得た。
(Easily adhesive layer water-based paint 2)
The following materials were stirred and mixed, and adjusted with pure water so that the solid concentration was 4.5% to obtain an aqueous emulsion of a polyester resin.
 Tgが110℃、ソディウム・スルホネート・イソフタルル酸の比率12/50のポリエステル樹脂(X)              15質量部
 Tgが70℃、トリメリット酸のモル比率16/50のポリエステル樹脂(Y)                          62質量部
 メラミン樹脂                      18質量部
 オキサゾリン基含有ポリマー(架橋剤、日本触媒社製)    3質量部
 粒径150nmのコロイダルシリカ             2質量部
15 parts by mass of a polyester resin (X) having a Tg of 110 ° C. and a ratio of sodium / sulfonate / isophthalic acid of 12/50 62 parts by mass of a polyester resin (Y) having a Tg of 70 ° C. and a molar ratio of trimellitic acid of 16/50 18 parts by mass Oxazoline group-containing polymer (crosslinking agent, manufactured by Nippon Shokubai Co., Ltd.) 3 parts by mass Colloidal silica with a particle size of 150 nm 2 parts by mass
<易接着層付き基材フィルム3の作製>
 基材フィルム1の作製において、易接着層の膜厚が150nmとなるように易接着層水系塗料3の塗布量を調整し、更に易接着層水系塗料1を易接着層水系塗料3に変更した以外は、同様にして易接着層付き基材フィルム3を得た。
<Preparation of base film 3 with an easy adhesion layer>
In the production of the base film 1, the coating amount of the easy-adhesion layer water-based paint 3 was adjusted so that the film thickness of the easy-adhesion layer was 150 nm, and the easy-adhesion layer water-based paint 1 was changed to the easy-adhesion layer water-based paint 3. Except for the above, a base film 3 with an easy adhesion layer was obtained in the same manner.
 (易接着層水系塗料3)
 下記材料を攪拌、混合し、純水で固形分濃度が4.5%となるように調整して、アクリル樹脂の水系乳化物を得た。
(Easily adhesive layer water-based paint 3)
The following materials were stirred and mixed, and adjusted with pure water so that the solid concentration was 4.5% to obtain an aqueous emulsion of an acrylic resin.
 2-ヒドロキシエチルアクリレート70質量%及びメチルアクリレート30質量%の共重合体                    30質量部
 ヒドロキシピバリン酸エステルネオペンチルグリコールのジアクリレート
                              3質量部
 ウレタンアクリレート系オリゴマー(日本化薬(株)製の「“KAYARAD”UX-4101」)
                              3質量部
 過酸化ベンゾイル                   0.3質量部
 イソシアネート化合物(住化バイエルウレタン(株)製の「スミジュールN-75」)                      1.5質量部
 粒径150nmのコロイダルシリカ             2質量部
Copolymer of 70% by mass of 2-hydroxyethyl acrylate and 30% by mass of methyl acrylate 30 parts by mass Diacrylate of hydroxypivalate ester neopentyl glycol 3 parts by mass Urethane acrylate oligomer (“KAYARAD manufactured by Nippon Kayaku Co., Ltd.) "UX-4101")
3 parts by mass Benzoyl peroxide 0.3 part by mass Isocyanate compound (“Sumidur N-75” manufactured by Sumika Bayer Urethane Co., Ltd.) 1.5 parts by mass Colloidal silica with a particle size of 150 nm 2 parts by mass
 <易接着層付き基材フィルム4の作製>
 基材フィルム1の作製において、易接着層の膜厚が150nmとなるように易接着層水系塗料4の塗布量を調整し、更に易接着層水系塗料1を易接着層水系塗料4に変更した以外は、同様にして易接着層付き基材フィルム4を得た。
<Preparation of base film 4 with an easy adhesion layer>
In the production of the base film 1, the coating amount of the easy-adhesion layer water-based paint 4 was adjusted so that the film thickness of the easy-adhesion layer was 150 nm, and the easy-adhesion layer water-based paint 1 was changed to the easy-adhesion layer water-based paint 4. Except for the above, a base film 4 with an easily adhesive layer was obtained in the same manner.
 (易接着層水系塗料4)
 下記材料を攪拌、混合し、純水で固形分濃度が4.5%となるように調整した後、約70℃で3時間反応させることによって、ウレタン樹脂の水系乳化物を得た。
(Easily adhesive layer water-based paint 4)
The following materials were stirred and mixed, adjusted to a solid content concentration of 4.5% with pure water, and then reacted at about 70 ° C. for 3 hours to obtain an aqueous emulsion of urethane resin.
 固形分40質量%の水性ウレタン(東亞合成化学工業社製の「アロンネオタンUE-1300」)                  25質量部
 メタクリル酸ヒドロキシエチル               5質量部
 過硫酸カリウム                    0.2質量部
 粒径150nmのコロイダルシリカ             2質量部
Aqueous urethane having a solid content of 40% by mass (“Aron Neotan UE-1300” manufactured by Toagosei Co., Ltd.) 25 parts by mass Hydroxyethyl methacrylate 5 parts by mass Potassium persulfate 0.2 parts by mass Colloidal silica having a particle size of 150 nm 2 parts by mass Part
 <易接着層付き基材フィルム5の作製>
 基材フィルム1の作製において、易接着層の膜厚が150nmとなるように易接着層水系塗料5の塗布量を調整し、更に易接着層水系塗料1を易接着層水系塗料5に変更した以外は、同様にして易接着層付き基材フィルム5を得た。
<Preparation of base film 5 with an easy adhesion layer>
In the production of the base film 1, the coating amount of the easy-adhesion layer water-based paint 5 was adjusted so that the film thickness of the easy-adhesion layer was 150 nm, and the easy-adhesion layer water-based paint 1 was changed to the easy-adhesion layer water-based paint 5. Except for the above, a base film 5 with an easy adhesion layer was obtained in the same manner.
 (易接着層水系塗料5)
 下記材料を攪拌、混合し、純水で固形分濃度が4.5%となるように調整して、エポキシ樹脂の水系乳化物を得た。
(Easily adhesive layer water-based paint 5)
The following materials were stirred and mixed, and adjusted with pure water so that the solid content concentration was 4.5% to obtain an aqueous emulsion of an epoxy resin.
 グリシジルアクリレート70質量%及びプロピオン酸ビニル30質量%の共重合体                         30質量部
 ヒドロキシピバリン酸エステルネオペンチルグリコールのジアクリレート
                              3質量部
 ウレタンアクリレート系オリゴマー(日本化薬(株)製の「“KAYARAD”UX-4101」)                  3質量部
 過酸化ベンゾイル                   0.3質量部
 イソシアネート化合物(住化バイエルウレタン(株)製の「スミジュールN-75」)                      1.5質量部
 粒径150nmのコロイダルシリカ             2質量部
Copolymer of 70% by mass of glycidyl acrylate and 30% by mass of vinyl propionate 30 parts by mass Diacrylate of hydroxypivalate ester neopentyl glycol 3 parts by mass Urethane acrylate oligomer (“KAYARAD” UX manufactured by Nippon Kayaku Co., Ltd. -4101 ") 3 parts by weight Benzoyl peroxide 0.3 parts by weight Isocyanate compound (" Sumidur N-75 "manufactured by Sumika Bayer Urethane Co., Ltd.) 1.5 parts by weight Colloidal silica with a particle size of 150 nm 2 parts by weight
<易接着層付き基材フィルム6の作製>
 ノルボルネン系重合体を合成し、以下の方法でノルボルネン環を有するシクロオレフィンフィルムを作製した。
<Preparation of base film 6 with an easy adhesion layer>
A norbornene-based polymer was synthesized, and a cycloolefin film having a norbornene ring was produced by the following method.
 (ノルボルネン系重合体1の合成)
 NBOAc:5-ノルボルネン-2-イルアセテート(ビシクロ[2.2.1]ヘプト-5-エン-2-イルアセテート)
 ノルボルネン(NB):ノルボルニレン又はビシクロ[2.2.1]ヘプト-5-エン)は、アルドリッチ社から購入したものを使用した。
(Synthesis of norbornene polymer 1)
NBOAc: 5-norbornen-2-yl acetate (bicyclo [2.2.1] hept-5-en-2-yl acetate)
Norbornene (NB): norbornylene or bicyclo [2.2.1] hept-5-ene) purchased from Aldrich was used.
 トルエン150質量部とNBOAc152質量部とを反応容器に入れた。次いでトルエン10質量部中に溶解したアリルパラジウムクロライドダイマー(東京化成社製)0.018質量部とトリシクロヘキシルホスフィン(ストレム社製)0.028質量部、塩化メチレン5質量部中に溶解したジメチルアニリニウム・テトラキスペンタフルオロフェニルボレート(ストレム社製)0.12質量部、さらにトルエン10質量部に溶解したアリルトリブチルスズ(アルドリッチ社製)0.33質量部を反応容器に投入した。加熱を開始し90℃に到達した時、トルエン20質量部に溶解したNB130質量部を1時間かけて滴下した。この混合物を90~100℃で6時間反応させた。なお、この間反応溶液の粘度の上昇とともに、トルエンを適宜追加した。1-ヘキセン(和光純薬社製)10質量部を滴下し、さらに1時間反応させた。得られた反応溶液を、過剰のメタノール中に投入し、重合体を沈殿させた。この沈殿を採取し、メタノールで洗浄し、110℃で6時間真空乾燥した。得られた重合体(ノルボルネン系重合体1)をテトラヒドロフランに溶解し、ゲルパーミエーションクロマトグラフによる分子量を測定した。質量平均分子量(Mw)を測定したところ、数平均分子量(Mn)は100200、質量平均分子量(Mw)は256300、分子量分布(Mw/Mn)は2.56であった。 150 parts by mass of toluene and 152 parts by mass of NBOAc were placed in a reaction vessel. Next, 0.018 parts by mass of allyl palladium chloride dimer (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 10 parts by mass of toluene, 0.028 parts by mass of tricyclohexylphosphine (manufactured by Strem Co.), and dimethylaniline dissolved in 5 parts by mass of methylene chloride. A reaction vessel was charged with 0.12 parts by mass of nium tetrakispentafluorophenylborate (manufactured by Strem) and 0.33 parts by mass of allyltributyltin (manufactured by Aldrich) dissolved in 10 parts by mass of toluene. When heating was started and the temperature reached 90 ° C., 130 parts by mass of NB dissolved in 20 parts by mass of toluene was added dropwise over 1 hour. The mixture was reacted at 90-100 ° C. for 6 hours. During this time, toluene was added as appropriate with an increase in the viscosity of the reaction solution. 10 parts by mass of 1-hexene (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise, and the mixture was further reacted for 1 hour. The obtained reaction solution was put into excess methanol to precipitate a polymer. The precipitate was collected, washed with methanol, and vacuum dried at 110 ° C. for 6 hours. The obtained polymer (norbornene polymer 1) was dissolved in tetrahydrofuran, and the molecular weight was measured by gel permeation chromatography. When the mass average molecular weight (Mw) was measured, the number average molecular weight (Mn) was 100200, the mass average molecular weight (Mw) was 256300, and the molecular weight distribution (Mw / Mn) was 2.56.
 (ノルボルネン・ドープ液の調製)
 下記の材料を、順次密閉容器中に投入し、容器内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行って、ノルボルネン系重合体1を完全に溶解した。酸化ケイ素微粒子は予め添加する溶媒と少量のセルロースエステルの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ノルボルネン・ドープ液を得た。
(Preparation of norbornene dope solution)
The following materials were sequentially put into a sealed container, the temperature in the container was raised from 20 ° C. to 80 ° C., and the mixture was stirred for 3 hours while maintaining the temperature at 80 ° C. to completely remove the norbornene polymer 1 Dissolved in. The silicon oxide fine particles were added dispersed in a solution of a solvent to be added in advance and a small amount of cellulose ester. This dope was filtered using filter paper (Azumi filter paper No. 244, manufactured by Azumi Filter Paper Co., Ltd.) to obtain a norbornene dope solution.
 (ノルボルネン・ドープ液)
 ノルボルネン系重合体1                100質量部
 酸化ケイ素微粒子(アエロジルR972V、日本アエロジル株式会社製)
                            0.1質量部
 メチレンクロライド                  400質量部
 エタノール                       40質量部
 ブタノール                        5質量部
(Norbornene dope solution)
Norbornene polymer 1 100 parts by mass Silicon oxide fine particles (Aerosil R972V, manufactured by Nippon Aerosil Co., Ltd.)
0.1 parts by mass Methylene chloride 400 parts by mass Ethanol 40 parts by mass Butanol 5 parts by mass
 上記材料を混合してドープ液を調製し、得られたドープ液を流延ダイより、ステンレス鋼製エンドレスベルトよりなる温度35℃の支持体上に流延して、ウェブを形成した。ついで、ウェブを支持体上で乾燥させ、ウェブの残留溶媒量が100質量%になった段階で、剥離ロールによりウェブを支持体から剥離した。次に、剥離したウェブに易接着層水系塗料1を易接着層の膜厚が150nmとなるように水系塗料の塗布量を調整して、ウェブの両面に塗布した。塗布後、120℃で乾燥させながら搬送し、続いてテンターでウェブ両端部を把持した後、150℃で幅方向(TD)に延伸前の1.4倍となるように延伸した。テンターでの延伸後、更に160℃で乾燥させた。乾燥後、両端部に幅10mm、平均高さ5μmのナーリング加工を施して巻き取り、幅1.5m、膜厚80μm、長さ6000mのノルボルネン環を有するシクロオレフィンフィルムである易接着層付き基材フィルム6得た。 The above materials were mixed to prepare a dope solution, and the obtained dope solution was cast from a casting die onto a support having a temperature of 35 ° C. made of a stainless steel endless belt to form a web. Next, the web was dried on the support, and the web was peeled from the support with a peeling roll when the residual solvent amount of the web reached 100% by mass. Next, the application amount of the water-based paint was adjusted to the peeled web so that the film thickness of the easy-adhesion layer was 150 nm and applied to both sides of the web. After coating, the film was transported while being dried at 120 ° C., and then held at both ends of the web with a tenter, and then stretched at 150 ° C. in the width direction (TD) so as to be 1.4 times that before stretching. After stretching with a tenter, the film was further dried at 160 ° C. After drying, the substrate with an easy-adhesion layer is a cycloolefin film having a norbornene ring having a width of 1.5 m, a film thickness of 80 μm, and a length of 6000 m, which is subjected to a knurling process of 10 mm width and 5 μm average height at both ends Film 6 was obtained.
 <易接着層付き基材フィルム7の作製>
 基材フィルム6の作製において、ノルボルネン・ドープ液を以下のアクリル・ドープ液に変更した以外は同様にして、基材フィルムがアクリルフィルムからなる易接着層付き基材フィルム7を作製した。
<Preparation of base film 7 with an easy adhesion layer>
In the production of the base film 6, a base film 7 with an easy-adhesion layer was produced in the same manner except that the norbornene dope liquid was changed to the following acrylic dope liquid.
 (アクリル・ドープ液)
 下記の材料を、順次密閉容器中に投入し、容器内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行って、メタクリル酸メチル/アクリル酸メチル共重合体を完全に溶解した。酸化ケイ素微粒子は、予め添加する溶媒と少量のセルロースエステルの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ドープ液2を得た。
(Acrylic dope solution)
The following materials are sequentially put into a sealed container, the temperature in the container is raised from 20 ° C. to 80 ° C., and the mixture is stirred for 3 hours while maintaining the temperature at 80 ° C. to obtain methyl methacrylate / methyl acrylate. The copolymer was completely dissolved. The silicon oxide fine particles were added dispersed in a solution of a solvent to be added in advance and a small amount of cellulose ester. The dope was filtered using a filter paper (Azumi filter paper No. 244, manufactured by Azumi Filter Paper Co., Ltd.) to obtain a dope solution 2.
 メタクリル酸メチル/アクリル酸メチル共重合体(モル比9:1)
                            100質量部
 〔2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)ベンゾトリアゾール〕
                              1質量部
 メチレンクロライド                  400質量部
 メタノール                      100質量部
 酸化ケイ素微粒子(アエロジルR972V、日本アエロジル株式会社製)
                            0.1質量部
Methyl methacrylate / methyl acrylate copolymer (9: 1 molar ratio)
100 parts by mass [2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole]
1 part by mass Methylene chloride 400 parts by mass Methanol 100 parts by mass Silicon oxide fine particles (Aerosil R972V, manufactured by Nippon Aerosil Co., Ltd.)
0.1 parts by mass
 <易接着層付き基材フィルム8の作製>
 エチレンユニットを約5%含むプロピレン/エチレンランダム共重合体(住友ノーブレンW151、住友化学(株)製)を240℃で溶融押出し、静電印可された20℃のキャストドラム上にキャストし無延伸シートとした。これを120℃で予熱し、この温度にてロール延伸で長手方向に2倍延伸した。この後、易接着層水系塗料1を上記のフィルム両面に塗布した。塗布後、130℃で幅方向に3.7倍延伸し、180℃で熱処理した。熱処理後、両端部に幅10mm、平均高さ5μmのナーリング加工を施して巻き取り、幅1.5m、長さ6000m、150nmの易接着層が両面に形成された厚み125μmのプロピレンフィルムである易接着層付き基材フィルム8を得た。
<Preparation of base film 8 with an easy adhesion layer>
Propylene / ethylene random copolymer (Sumitomo Noblen W151, manufactured by Sumitomo Chemical Co., Ltd.) containing about 5% ethylene unit is melt extruded at 240 ° C, cast onto a 20 ° C cast drum electrostatically applied, and unstretched sheet It was. This was preheated at 120 ° C., and stretched twice in the longitudinal direction by roll stretching at this temperature. Thereafter, the easy-adhesion layer water-based paint 1 was applied to both sides of the film. After coating, the film was stretched 3.7 times in the width direction at 130 ° C. and heat-treated at 180 ° C. After heat treatment, both ends are subjected to a knurling process with a width of 10 mm and an average height of 5 μm, wound up, and a 125 μm thick propylene film in which an easy adhesion layer having a width of 1.5 m, a length of 6000 m, and 150 nm is formed on both sides. A base film 8 with an adhesive layer was obtained.
 <基材フィルム9の作製>
 易接着層付き基材フィルム1の作製において、易接着層水系塗料1を設けなかった以外は同様にして、ポリエチレンテレフタレートフィルムを作製した。
<Preparation of base film 9>
A polyethylene terephthalate film was prepared in the same manner except that the easy-adhesion layer water-based paint 1 was not provided in the production of the base film 1 with an easy-adhesion layer.
 <ハードコートフィルム1の作製>
 上記作製した基材フィルム1上に、下記のハードコート層組成物1を孔径0.4μmのポリプロピレン製フィルターで濾過したものを、押し出しコーターを用いて塗布し、恒率乾燥区間温度80℃、減率乾燥区間温度80℃で乾燥の後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.3J/cmとして塗布層を硬化させ、ドライ膜厚8μmのハードコート層1を形成して巻き取り、ロール状のハードコートフィルム1を作製した。
<Preparation of hard coat film 1>
On the base film 1 prepared above, the following hard coat layer composition 1 filtered through a polypropylene filter having a pore size of 0.4 μm was applied using an extrusion coater, and the constant rate drying zone temperature was reduced to 80 ° C. After drying at a rate drying zone temperature of 80 ° C., while purging with nitrogen so that the oxygen concentration becomes 1.0% by volume or less, the illuminance of the irradiated part is 100 mW / cm 2 using an ultraviolet lamp and the irradiation amount is 0 The coating layer was cured at 3 J / cm 2 , a hard coat layer 1 having a dry film thickness of 8 μm was formed and wound up, and a roll-shaped hard coat film 1 was produced.
 (ハードコート層組成物1)
 下記材料を攪拌、混合しハードコート層塗布組成物1とした。
(Hard coat layer composition 1)
The following materials were stirred and mixed to obtain hard coat layer coating composition 1.
 ペンタエリスリトールトリ/テトラアクリレート      65質量部
 (NKエステルA-TMM-3L、新中村化学工業(株)製)
 トリス(2-アクリロイルオキシエチル)イソシアヌレート 35質量部
 (NKエステルA-9300、新中村化学工業(株)製)
 イルガキュア184(BASFジャパン(株)製)      5質量部
 ポリエーテル変性シリコーン(KF-614A、信越化学工業社製)
                              2質量部
 プロピレングリコールモノメチルエーテル         10質量部
 酢酸メチル                       20質量部
 メチルエチルケトン                   70質量部
65 parts by mass of pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
35 parts by mass of tris (2-acryloyloxyethyl) isocyanurate (NK ester A-9300, manufactured by Shin-Nakamura Chemical Co., Ltd.)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass Polyether-modified silicone (KF-614A, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass Propylene glycol monomethyl ether 10 parts by mass Methyl acetate 20 parts by mass Methyl ethyl ketone 70 parts by mass
 <ハードコートフィルム2の作製>
 上記作製した基材フィルム1上に、下記のハードコート層組成物2に変更した以外は同様にしてハードコートフィルム2を作製した。
<Preparation of hard coat film 2>
A hard coat film 2 was produced in the same manner except that the hard coat layer composition 2 was changed to the following on the produced base film 1.
 (ハードコート層組成物2)
 下記材料を攪拌、混合しハードコート層塗布組成物2とした。
(Hard coat layer composition 2)
The following materials were stirred and mixed to obtain hard coat layer coating composition 2.
 ペンタエリスリトールトリ/テトラアクリレート     100質量部
 (NKエステルA-TMM-3L、新中村化学工業(株)製)
 イルガキュア184(BASFジャパン(株)製)      5質量部
 ポリエーテル変性シリコーン(KF-614A、信越化学工業社製)
                              2質量部
 プロピレングリコールモノメチルエーテル         10質量部
 酢酸メチル                       20質量部
 メチルエチルケトン                   70質量部
100 parts by mass of pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass Polyether-modified silicone (KF-614A, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass Propylene glycol monomethyl ether 10 parts by mass Methyl acetate 20 parts by mass Methyl ethyl ketone 70 parts by mass
 <ハードコートフィルム3の作製>
 上記作製した基材フィルム1上に、下記のハードコート層塗布組成物3に変更した以外は同様にしてハードコートフィルム3を作製した。
<Preparation of hard coat film 3>
A hard coat film 3 was produced in the same manner except that the hard coat layer coating composition 3 was changed to the following on the produced base film 1.
 (ハードコート層組成物3)
 下記材料を攪拌、混合しハードコート層塗布組成物3とした。
(Hard coat layer composition 3)
The following materials were stirred and mixed to obtain hard coat layer coating composition 3.
 ペンタエリスリトールトリ/テトラアクリレート      65質量部
 (NKエステルA-TMM-3L、新中村化学工業(株)製)
 トリス(2-アクリロイルオキシエチル)イソシアヌレート 35質量部
 (アロニックスM-315、東亞合成(株)製)
 イルガキュア184(BASFジャパン(株)製)      5質量部
 ポリエーテル変性シリコーン(KF-614A、信越化学工業社製)
                              2質量部
 プロピレングリコールモノメチルエーテル         10質量部
 酢酸メチル                       20質量部
 メチルエチルケトン                   70質量部
65 parts by mass of pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
35 parts by mass of tris (2-acryloyloxyethyl) isocyanurate (Aronix M-315, manufactured by Toagosei Co., Ltd.)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass Polyether-modified silicone (KF-614A, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass Propylene glycol monomethyl ether 10 parts by mass Methyl acetate 20 parts by mass Methyl ethyl ketone 70 parts by mass
 <ハードコートフィルム4の作製>
 上記作製した基材フィルム1上に、下記のハードコート層塗布組成物4に変更した以外は同様にしてハードコートフィルム4を作製した。
<Preparation of hard coat film 4>
A hard coat film 4 was produced in the same manner except that the hard coat layer coating composition 4 was changed to the following on the produced base film 1.
 (ハードコート層組成物4)
 下記材料を攪拌、混合しハードコート層塗布組成物4とした。
(Hard coat layer composition 4)
The following materials were stirred and mixed to obtain hard coat layer coating composition 4.
 ペンタエリスリトールトリ/テトラアクリレート      65質量部
 (NKエステルA-TMM-3L、新中村化学工業(株)製)
 イソシアヌル酸エトキシ変性ジアクリレート        35質量部
 (アロニックスM-215、東亞合成(株)製)
 イルガキュア184(BASFジャパン(株)製)      5質量部
 ポリエーテル変性シリコーン(KF-614A、信越化学工業社製)
                              2質量部
 プロピレングリコールモノメチルエーテル         10質量部
 酢酸メチル                       20質量部
 メチルエチルケトン                   70質量部
65 parts by mass of pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
Isocyanuric acid ethoxy-modified diacrylate 35 parts by mass (Aronix M-215, manufactured by Toagosei Co., Ltd.)
Irgacure 184 (manufactured by BASF Japan) 5 parts by mass Polyether-modified silicone (KF-614A, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass Propylene glycol monomethyl ether 10 parts by mass Methyl acetate 20 parts by mass Methyl ethyl ketone 70 parts by mass
 <ハードコートフィルム5~14の作製>
 ハードコートフィルム1の作製において、ハードコート層塗布組成物と易接着層付き基材フィルムを表1に記載したように変更した以外は同様にして、ハードコートフィルム5~14を作製した。
<Preparation of hard coat films 5-14>
Hard coat films 5 to 14 were prepared in the same manner as in the preparation of hard coat film 1, except that the hard coat layer coating composition and the base film with an easy-adhesion layer were changed as shown in Table 1.
 《評価》
 上記作製したハードコートフィルム1~14について以下の内容について評価した。得られた結果を表1に示した。
<Evaluation>
The following contents were evaluated for the hard coat films 1 to 14 produced above. The obtained results are shown in Table 1.
 a.耐ブロッキング性
 上記作製したロール状ハードコートフィルム1~14を、アルミ防湿シートに包み、長期輸送を想定して60℃相対湿度80%の恒温槽で10日保存した。10日間保存後、アルミ防湿シートを剥がしてブロッキング性を表面からの目視観察にて、以下の基準で評価した。結果を表1に示す。
a. Blocking resistance The roll-shaped hard coat films 1 to 14 prepared above were wrapped in an aluminum moisture-proof sheet and stored for 10 days in a thermostatic bath at 60 ° C. and 80% relative humidity assuming long-term transportation. After storage for 10 days, the aluminum moisture-proof sheet was peeled off, and the blocking property was evaluated based on the following criteria by visual observation from the surface. The results are shown in Table 1.
 ◎:くっつき面積0%、ブロッキングは認められない
 ○:くっつき面積が2%未満、僅かにブロッキングが発生している
 △:くっつき面積が2%以上~10%未満、ブロッキングが発生しているものの、実用上問題ないレベル
 ×:くっつき面積が10%以上~40%未満、ブロッキングが発生
 ××:くっつき面積が40%以上、実用上極めて問題となる
◎: Sticking area 0%, no blocking observed ○: Sticking area less than 2%, slightly blocking △: Sticking area 2% to less than 10%, although blocking has occurred, No problem in practical use ×: Sticking area of 10% to less than 40%, blocking occurs XX: Sticking area of 40% or more, extremely problematic in practical use
 b.可とう性
 (耐久性試験)
 上記作製したハードコートフィルム1~14を、各10cm×10cmサイズで切り出し、屋外での使用を想定してサイクルサーモ(-40℃・30分放置、次いで85℃・30分放置を交互に500サイクル)に投入後、80℃相対湿度90%の恒温槽で500時間保存した。
b. Flexibility (durability test)
Each of the hard coat films 1 to 14 produced above is cut out in a size of 10 cm × 10 cm, and cycle thermostat (−40 ° C., 30 minutes, then 85 ° C., 30 minutes, 500 cycles alternately assuming outdoor use) ) And stored in a thermostatic bath at 80 ° C. and 90% relative humidity for 500 hours.
 耐久性試験後の各ハードコートフィルム1~14を23℃55%RHの雰囲気下で12時間調湿後、JIS K5600-5-1に準拠する方法で、タイプ1の試験装置を用いて円筒型マンドレル法により可とう性を評価した。マンドレルの直径の数値が低い程、可とう性に優れることを示す。 Each hard coat film 1 to 14 after the durability test is conditioned for 14 hours in an atmosphere of 23 ° C. and 55% RH, and is cylindrical using a type 1 test apparatus in accordance with JIS K5600-5-1. The flexibility was evaluated by the mandrel method. It shows that it is excellent in the flexibility, so that the numerical value of the diameter of a mandrel is low.
 なお、表1のハードコート層樹脂の活性エネルギー線硬化型イソシアヌレート誘導体である、トリス(2-アクリロイルオキシエチル)イソシアヌレートをTAIC、イソシアヌル酸エトキシ変性ジアクリレートをDAICと記載した。また易接着層及び基材フィルム略称は以下の通りである。 In addition, tris (2-acryloyloxyethyl) isocyanurate, which is an active energy ray-curable isocyanurate derivative of the hard coat layer resin in Table 1, is described as TAIC, and isocyanuric acid ethoxy-modified diacrylate is described as DAIC. Moreover, an easily bonding layer and a base film abbreviation are as follows.
 (易接着層)
 PES:ポリエステル樹脂
 ACP:アクリル樹脂
 PUP:ウレタン樹脂
 EPP:エポキシ樹脂
(Easily adhesive layer)
PES: Polyester resin ACP: Acrylic resin PUP: Urethane resin EPP: Epoxy resin
 (基材フィルム)
 PET:ポリエチレンテレフタレートフィルム
 COF:シクロオレフィンフィルム
 ACF:アクリルフィルム
 PP:プロピレンフィルム
(Base film)
PET: Polyethylene terephthalate film COF: Cycloolefin film ACF: Acrylic film PP: Propylene film
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から判るように、アクリル樹脂フィルム、ポリプロピレン樹脂フィルム、シクロオレフィン樹脂フィルム、及びポリエステル樹脂フィルムから選択される少なくとも1種の基材フィルムの両面にポリエステル樹脂、アクリル樹脂及びウレタン樹脂から選択される少なくとも1種の樹脂を含有する易接着層とハードコート層が活性エネルギー線硬化型イソシアヌレート誘導体を含有する構成からなる本発明のハードコートフィルムは、耐ブロッキング性及び可とう性に優れていることが判る。 As can be seen from the results in Table 1, polyester resin, acrylic resin and urethane resin are selected on both sides of at least one base film selected from acrylic resin film, polypropylene resin film, cycloolefin resin film, and polyester resin film. The hard-coating film of the present invention consisting of an easy-adhesion layer containing at least one resin and a hard-coating layer containing an active energy ray-curable isocyanurate derivative is excellent in blocking resistance and flexibility. I know that.
 本発明のハードコートフィルムの中でも基材フィルムが、ポリエステル樹脂フィルムからなり、易接着層がガラス転移点Tgが105℃以上、135℃未満であり、酸成分にソディウム・スルホネート・イソフタル酸を含むポリエステル樹脂(X)とガラス転移点Tgが65℃以上、95℃未満であり、酸成分にトリメリット酸を含むポリエステル樹脂(Y)から構成されるハードコートフィルムは、特に優れた耐ブロッキング性と可とう性を有するため、特に好ましい構成であることが判る。 Among the hard coat films of the present invention, the base film is made of a polyester resin film, the easy-adhesion layer has a glass transition point Tg of 105 ° C. or more and less than 135 ° C., and polyester containing sodium sulfonate / isophthalic acid as an acid component A hard coat film composed of a resin (X) and a polyester resin (Y) having a glass transition point Tg of 65 ° C. or higher and lower than 95 ° C. and containing trimellitic acid as an acid component is particularly excellent in blocking resistance. Since it has flexibility, it turns out that it is a particularly preferable structure.
 実施例2
 実施例1のハードコートフィルム1の作製において、ハードコート層塗布組成物1の活性エネルギー線硬化型イソシアヌレート誘導体であるとトリス(2-アクリロイルオキシエチル)イソシアヌレート(A)とイソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂(ペンタエリスリトールトリ/テトラアクリレート)(B)との含有質量比を表2に記載したように変化させたハードコート層塗布組成物5~8に変更した以外は、実施例1と同様にしてハードコートフィルム15~18を作製した。
Example 2
In the production of the hard coat film 1 of Example 1, the active energy ray-curable isocyanurate derivative of the hard coat layer coating composition 1 is not tris (2-acryloyloxyethyl) isocyanurate (A) or an isocyanurate derivative. Except that the mass ratio of the active energy ray-curable resin (pentaerythritol tri / tetraacrylate) (B) was changed to hard coat layer coating compositions 5 to 8 changed as shown in Table 2, Examples In the same manner as in Example 1, hard coat films 15 to 18 were produced.
 次に、得られたハードコートフィルム15~18及び実施例1で作製したハードコートフィルム1について、耐ブロッキング性の保存期間を15日に変更し、可とう性の耐久性試験の保存期間を750時間に変更した以外は実施例1と同様にして評価を行った。得られた結果を表2に示した。 Next, for the obtained hard coat films 15 to 18 and the hard coat film 1 produced in Example 1, the storage period of blocking resistance was changed to 15 days, and the storage period of the flexible durability test was set to 750. Evaluation was performed in the same manner as in Example 1 except that the time was changed. The obtained results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から判るように、耐久性試験がより過酷な条件では、活性エネルギー線硬化型イソシアヌレート誘導体であるトリス(2-アクリロイルオキシエチル)イソシアヌレート(A)とイソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂(ペンタエリスリトールトリ/テトラアクリレート)(B)との含有質量比を、(A):(B)=10:90~50:50とすることは、本発明の目的効果をより良く発揮するため好ましい。 As can be seen from the results in Table 2, under more severe durability tests, active energy other than the active energy ray-curable isocyanurate derivative tris (2-acryloyloxyethyl) isocyanurate (A) and the isocyanurate derivative By setting the content ratio of the mass to the linear curable resin (pentaerythritol tri / tetraacrylate) (B) to be (A) :( B) = 10: 90 to 50:50, the objective effect of the present invention is improved. It is preferable because it exhibits.
 実施例3
 <ハードコートフィルム19の作製>
 易接着層付き基材フィルム1上に、下記のハードコート層塗布組成物9を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液に調製し、押し出しコーターを用いて塗布し、80℃で乾燥の後、紫外線ランプを用いて、照射部の照度が80mW/cm、照射量を50mJ/cmとして塗布層を硬化させ、ドライ膜厚1μmのハードコート層1を形成した。連続して、ハードコート層1上に、前記ハードコート層塗布組成物1を押し出しコーターで塗布し、80℃にて乾燥し、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cm、照射量を0.3J/cmとして塗布層を硬化させ、ドライ膜厚7μmのハードコート層2を形成して巻き取り、ロール状のハードコートフィルム19を作製した。
Example 3
<Preparation of hard coat film 19>
On the base film 1 with an easy-adhesion layer, the following hard coat layer coating composition 9 is filtered through a polypropylene filter having a pore diameter of 0.4 μm to prepare a hard coat layer coating solution, which is applied using an extrusion coater, After drying at 80 ° C., a hard coat layer 1 having a dry film thickness of 1 μm was formed by curing the coating layer using an ultraviolet lamp at an irradiation part with an illuminance of 80 mW / cm 2 and an irradiation amount of 50 mJ / cm 2 . Continuously, the hard coat layer coating composition 1 is applied onto the hard coat layer 1 by an extrusion coater, dried at 80 ° C., and purged with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less. While using an ultraviolet lamp, the illuminance of the irradiated part is 100 mW / cm 2 , the irradiation amount is 0.3 J / cm 2 , the coating layer is cured, and the hard coat layer 2 having a dry film thickness of 7 μm is formed and wound up. A hard coat film 19 was produced.
 (ハードコート層塗布組成物9)
 下記材料を攪拌、混合しハードコート層塗布組成物9とした。
(Hardcoat layer coating composition 9)
The following materials were stirred and mixed to obtain hard coat layer coating composition 9.
 ペンタエリスリトールトリ/テトラアクリレート      50質量部
 (NKエステルA-TMM-3L、新中村化学工業(株)製)
 トリス(2-アクリロイルオキシエチル)イソシアヌレート 50質量部
 (NKエステルA-9300、新中村化学工業(株)製)
 紫外線吸収剤(TINUVIN 109)          3質量部
 イルガキュア184(BASFジャパン(株)製)      2質量部
 ポリエーテル変性シリコーン(KF-351A、信越化学工業社製)
                              1質量部
 シクロヘキサノン                    10質量部
 メチルエチルケトン                   93質量部
50 parts by mass of pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
50 parts by mass of tris (2-acryloyloxyethyl) isocyanurate (NK ester A-9300, manufactured by Shin-Nakamura Chemical Co., Ltd.)
UV absorber (TINUVIN 109) 3 parts by weight Irgacure 184 (manufactured by BASF Japan) 2 parts by weight Polyether-modified silicone (KF-351A, manufactured by Shin-Etsu Chemical Co., Ltd.)
1 part by weight cyclohexanone 10 parts by weight methyl ethyl ketone 93 parts by weight
 <ハードコートフィルム20の作製>
 ハードコートフィルム19の作製の作製において、ハードコート層塗布組成物9をハードコート層塗布組成物10に変更した以外は同様にしてハードコートフィルム20を作製した。
<Preparation of hard coat film 20>
A hard coat film 20 was produced in the same manner except that the hard coat layer coating composition 9 was changed to the hard coat layer coating composition 10 in the production of the hard coat film 19.
 (ハードコート層塗布組成物10)
 下記材料を攪拌、混合しハードコート層塗布組成物10とした。
(Hardcoat layer coating composition 10)
The following materials were stirred and mixed to obtain a hard coat layer coating composition 10.
 ペンタエリスリトールトリ/テトラアクリレート      50質量部
 (NKエステルA-TMM-3L、新中村化学工業(株)製)
 トリス(2-アクリロイルオキシエチル)イソシアヌレート 50質量部
 (NKエステルA-9300、新中村化学工業(株)製)
 紫外線吸収剤(TINUVIN 405)          3質量部
 イルガキュア184(BASFジャパン(株)製)      2質量部
 ポリエーテル変性シリコーン(KF-351A、信越化学工業社製)
                              1質量部
 シクロヘキサノン                    10質量部
 メチルエチルケトン                   93質量部
50 parts by mass of pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
50 parts by mass of tris (2-acryloyloxyethyl) isocyanurate (NK ester A-9300, manufactured by Shin-Nakamura Chemical Co., Ltd.)
Ultraviolet absorber (TINUVIN 405) 3 parts by mass Irgacure 184 (manufactured by BASF Japan Ltd.) 2 parts by mass Polyether-modified silicone (KF-351A, manufactured by Shin-Etsu Chemical Co., Ltd.)
1 part by weight cyclohexanone 10 parts by weight methyl ethyl ketone 93 parts by weight
 次に、得られたハードコートフィルム19と20、及び実施例1で作製したハードコートフィルム1について、耐ブロッキング性評価の保存期間を15日に変更し、可とう性の耐久性試験を以下の条件に変更し、更に密着評価を行った以外は実施例1と同様にして評価を行った。また、得られた結果を表3に示した。 Next, for the hard coat films 19 and 20 obtained and the hard coat film 1 produced in Example 1, the storage period for blocking resistance evaluation was changed to 15 days, and the flexibility durability test was performed as follows. Evaluation was performed in the same manner as in Example 1 except that the conditions were changed and the adhesion evaluation was further performed. The obtained results are shown in Table 3.
 b.可とう性
 (耐久性試験)
 ハードコートフィルム19と20、及び実施例1で作製したハードコートフィルム1を、各10cm×10cmサイズで切り出し、サイクルサーモ(-40℃・30分放置、次いで85℃・30分放置)、を交互に500サイクル)に投入後、80℃相対湿度90%の恒温槽で1000時間保存し、更に耐光試験機(アイスーパーUVテスター、岩崎電気株式会社製)にて、200時間光照射した。
b. Flexibility (durability test)
The hard coat films 19 and 20 and the hard coat film 1 produced in Example 1 were cut out in a size of 10 cm × 10 cm, and cycled thermostatic (−40 ° C./30 minutes, then 85 ° C./30 minutes) alternately The sample was stored in a constant temperature bath at 80 ° C. and 90% relative humidity for 1000 hours, and further irradiated with light for 200 hours using a light resistance tester (Isuper UV tester, manufactured by Iwasaki Electric Co., Ltd.).
 c.密着評価
 (耐候性試験)
 ハードコートフィルム19と20、及び実施例1で作製したハードコートフィルム1を、各10cm×10cmサイズのサンプルを切り出し、屋外での使用を想定してヒートショック試験(-40℃・30分放置、次いで85℃・30分放置を交互)に500サイクル投入後、耐光試験機(アイスーパーUVテスター、岩崎電気株式会社製)にて、168時間光照射した。
c. Adhesion evaluation (weather resistance test)
The hard coat films 19 and 20 and the hard coat film 1 produced in Example 1 were cut out for samples each having a size of 10 cm × 10 cm, and assumed to be used outdoors. Next, after 500 cycles were placed at 85 ° C. for 30 minutes alternately), the sample was irradiated with light for 168 hours with a light resistance tester (eye super UV tester, manufactured by Iwasaki Electric Co., Ltd.).
 耐候性試験後のハードコートフィルム19と20、及び実施例1で作製したハードコートフィルム1を23℃55%RHの雰囲気下で12時間調湿後、JISK5400に準拠する方法で、1mmの間隔で縦横に11本の切れ目を入れ、1mm角、100個の碁盤目を作製し、セロハンテープを貼り付けて90度の角度ですばやくはがし、剥れずに残っている碁盤目の数を数え、以下の基準で評価した。 After conditioning the hard coat films 19 and 20 after the weather resistance test and the hard coat film 1 prepared in Example 1 in an atmosphere of 23 ° C. and 55% RH for 12 hours, the method conforms to JISK5400 at intervals of 1 mm. Make 11 cuts vertically and horizontally, make 1 mm square, 100 grids, apply cellophane tape, peel off at 90 degrees, count the number of grids remaining without peeling, Evaluated by criteria.
 ◎:全く剥離されなかった
 ○:剥離された面積割合が5%未満であった
 △:剥離された面積割合が10%未満であった
 ×:剥離された面積割合が10%以上であった
A: Not peeled at all ○: The peeled area ratio was less than 5% Δ: The peeled area ratio was less than 10% ×: The peeled area ratio was 10% or more
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から判るように、本発明のハードコートフィルムは、ハードコート層に紫外線吸収剤を含有させる事で、更に過酷な耐久試験においても本発明の目的効果をより良く発揮し、更に優れた密着性を有するため好ましい。 As can be seen from the results shown in Table 3, the hard coat film of the present invention exhibits the objective effect of the present invention even in a more severe durability test by including an ultraviolet absorber in the hard coat layer, and is further excellent. It is preferable because it has excellent adhesion.
 実施例4
 <導電性ハードコートフィルム1の作製>
 ハードコートフィルム1の作製において、両面にハードコート層組成物1を塗布した以外は、同様にしてハードコートフィルムを作製した。前記作製したハードコートフィルムの片面に表面抵抗率が約400Ωである酸化インジウム錫(ITO)の透明導電性薄膜を、スパッタリング法を用いて設け、図3に示した導電性ハードコートフィルム1を作製した。
Example 4
<Preparation of conductive hard coat film 1>
In producing the hard coat film 1, a hard coat film was produced in the same manner except that the hard coat layer composition 1 was applied on both sides. A transparent conductive thin film of indium tin oxide (ITO) having a surface resistivity of about 400Ω is provided on one side of the produced hard coat film using a sputtering method, and the conductive hard coat film 1 shown in FIG. 3 is produced. did.
 <導電性ハードコートフィルム2の作製>
 ハードコートフィルム2の作製において、両面にハードコート層組成物2を塗布した以外は、同様にしてハードコートフィルムを作製した。前記作製したハードコートフィルムの片面に表面抵抗率が約400Ωである酸化インジウム錫(ITO)の透明導電性薄膜を、スパッタリング法を用いて設け、導電性ハードコートフィルム2を作製した。
<Preparation of conductive hard coat film 2>
In producing the hard coat film 2, a hard coat film was produced in the same manner except that the hard coat layer composition 2 was applied on both sides. A transparent conductive thin film of indium tin oxide (ITO) having a surface resistivity of about 400Ω was provided on one side of the prepared hard coat film using a sputtering method, and a conductive hard coat film 2 was prepared.
 <抵抗膜方式タッチパネル液晶表示装置1の作製>
 市販の抵抗膜方式タッチパネル液晶表示装置(型名:LCD-USB10XB-T、I-O DATA社製)の導電性ハードコートフィルムを剥がし、上記作製した導電性ハードコートフィルム1を図4のようにハードコート層が視認側となるように貼合して、抵抗膜方式タッチパネル液晶表示装置1を作製した。
<Preparation of resistive touch panel liquid crystal display device 1>
The conductive hard coat film of a commercially available resistive film type touch panel liquid crystal display device (model name: LCD-USB10XB-T, manufactured by IO DATA) is peeled off, and the produced conductive hard coat film 1 is as shown in FIG. The resistive film type touch panel liquid crystal display device 1 was produced by bonding so that the hard coat layer was on the viewing side.
 <抵抗膜方式タッチパネル液晶表示装置2の作製>
 抵抗膜方式タッチパネル液晶表示装置1の作製において導電性ハードコートフィルム1を導電性ハードコートフィルム2に変更した以外は同様にして抵抗膜方式タッチパネルの液晶表示装置2を作製し、以下項目について評価を行った。
<Preparation of resistive touch panel liquid crystal display device 2>
A resistive touch panel liquid crystal display device 2 was prepared in the same manner except that the conductive hard coat film 1 was changed to the conductive hard coat film 2 in the production of the resistive touch panel liquid crystal display device 1, and the following items were evaluated. went.
 《評価》
 a.視認性(クリア性)評価
 天井部に、昼色光直管蛍光灯(FLR40S・D/M-X パナソニック(株)製)40W×2本を1セットとして、1.5m間隔で10セット配置した室内で、抵抗膜方式タッチパネルの液晶表示装置を様々な角度から観察し、視認性を以下の基準で評価した。
<Evaluation>
a. Visibility (Clearness) Evaluation The room has 10 sets of 1.5W intervals, one set of 40W x 2 daylight direct fluorescent lamps (FLR40S · D / MX Panasonic Corporation) on the ceiling. Then, the liquid crystal display device of the resistive film type touch panel was observed from various angles, and the visibility was evaluated according to the following criteria.
○:蛍光灯が真っ直ぐに見える。
×:蛍光灯が曲がって見える。
○: The fluorescent lamp looks straight.
X: The fluorescent lamp looks bent.
 b.耐ペン摺動性
 抵抗膜方式タッチパネルの液晶表示装置に用いた各導電性ハードコートフィルムのハードコート層の表面上を先端部が0.08mmφのポリアセタール製のペンを使用し、荷重250g、ペン摺動速度100mm/秒で直線40mmを15万回往復後の摺動部におけるハードコート層の傷つきおよび剥れを目視により評価した。
b. Pen sliding resistance A polyacetal pen with a tip of 0.08 mmφ is used on the surface of the hard coat layer of each conductive hard coat film used in the liquid crystal display device of the resistance film type touch panel. The hard coat layer was scratched and peeled off visually at the sliding portion after reciprocating 150,000 times on a straight line of 40 mm at a moving speed of 100 mm / sec.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 評価の結果、本発明の導電性ハードコートフィルム1を使用した抵抗膜方式タッチパネルの液晶表示装置は視認性及び耐ペン摺動性共に良好であった。 As a result of the evaluation, the liquid crystal display device of the resistive film type touch panel using the conductive hard coat film 1 of the present invention was good in both visibility and pen sliding resistance.
 10 タッチパネル
 11 本発明のハードコートフィルム
 12 透明導電性薄膜
 13 ガラス基板
 14 スペーサ
 20 カラー液晶表示パネル
 30 易接着層付き基材フィルム
 31 ハードコート層
 32 ITO層(透明導電性薄膜)
 40 導電性ハードコートフィルム
DESCRIPTION OF SYMBOLS 10 Touch panel 11 Hard coat film of this invention 12 Transparent conductive thin film 13 Glass substrate 14 Spacer 20 Color liquid crystal display panel 30 Base film with an easily bonding layer 31 Hard coat layer 32 ITO layer (transparent conductive thin film)
40 conductive hard coat film

Claims (10)

  1.  アクリル樹脂系フィルム、ポリプロピレン樹脂系フィルム、シクロオレフィン樹脂系フィルム、及びポリエステル樹脂系フィルムから選択される少なくとも1種の基材フィルムの両面に易接着層を有し、該易接着層の少なくとも一方の面にハードコート層が積層されたハードコートフィルムにおいて、該易接着層がポリエステル系樹脂、アクリル系樹脂及びウレタン系樹脂から選択される少なくとも1種を含有し、かつ該ハードコート層が、活性エネルギー線硬化型イソシアヌレート誘導体を含有することを特徴とするハードコートフィルム。 It has an easy adhesion layer on both surfaces of at least one substrate film selected from an acrylic resin film, a polypropylene resin film, a cycloolefin resin film, and a polyester resin film, and at least one of the easy adhesion layers In the hard coat film having a hard coat layer laminated on the surface, the easy-adhesion layer contains at least one selected from a polyester resin, an acrylic resin, and a urethane resin, and the hard coat layer has active energy. A hard coat film comprising a line curable isocyanurate derivative.
  2.  前記基材フィルムがポリエステル樹脂系フィルムであることを特徴とする請求項1に記載のハードコートフィルム。 The hard coat film according to claim 1, wherein the base film is a polyester resin film.
  3.  前記易接着層がポリエステル系樹脂からなることを特徴とする請求項1または2に記載のハードコートフィルム。 3. The hard coat film according to claim 1, wherein the easy-adhesion layer is made of a polyester resin.
  4.  前記易接着層のポリエステル系樹脂が、ガラス転移点の異なる2種以上のポリエステル樹脂を含有することを特徴とする請求項1~3のいずれかに記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 3, wherein the polyester resin of the easy-adhesion layer contains two or more polyester resins having different glass transition points.
  5.  前記易接着層のポリエステル系樹脂が、少なくとも、ガラス転移点Tgが105℃以上、135℃未満のポリエステル樹脂(X)とガラス転移点Tgが65℃以上、95℃未満のポリエステル樹脂(Y)とを含有することを特徴とする請求項1~4のいずれかに記載のハードコートフィルム。 The polyester resin of the easy adhesion layer includes at least a polyester resin (X) having a glass transition point Tg of 105 ° C. or higher and lower than 135 ° C. and a polyester resin (Y) having a glass transition point Tg of 65 ° C. or higher and lower than 95 ° C. The hard coat film according to any one of claims 1 to 4, characterized by comprising:
  6.  前記ポリエステル樹脂(X)が酸成分にソディウム・スルホネート・イソフタル酸を含むポリエステル樹脂であり、かつ前記ポリエステル樹脂(Y)が酸成分にトリメリット酸を含むポリエステル樹脂であることを特徴とする請求項1~5のいずれかに記載のハードコートフィルム。 The polyester resin (X) is a polyester resin containing sodium sulfonate / isophthalic acid as an acid component, and the polyester resin (Y) is a polyester resin containing trimellitic acid as an acid component. The hard coat film according to any one of 1 to 5.
  7.  前記ハードコート層が活性エネルギー線硬化型イソシアヌレート誘導体(A)とイソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂(B)を含有し、該活性エネルギー線硬化型のイソシアヌレート誘導体(A)と該イソシアヌレート誘導体以外の活性エネルギー線硬化型樹脂(B)との含有質量比が、10:90~50:50であることを特徴とする請求項1~6のいずれか1項に記載のハードコートフィルム。 The hard coat layer contains an active energy ray-curable isocyanurate derivative (A) and an active energy ray-curable resin (B) other than the isocyanurate derivative, the active energy ray-curable isocyanurate derivative (A) and the The hard coat according to any one of claims 1 to 6, wherein the mass ratio of the active energy ray-curable resin (B) other than the isocyanurate derivative is 10:90 to 50:50 the film.
  8.  前記ハードコート層が紫外線吸収剤を含有することを特徴とする請求項1~7のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 7, wherein the hard coat layer contains an ultraviolet absorber.
  9.  請求項1~8のいずれか1項に記載のハードコートフィルムを含むことを特徴とする画像表示装置。 An image display device comprising the hard coat film according to any one of claims 1 to 8.
  10.  請求項9に記載の画像表示装置がタッチパネルを含む画像表示装置であって、該タッチパネルの構成部材に請求項1~8のいずれか1項に記載のハードコートフィルムが用いられていることを特徴とする画像表示装置。 The image display device according to claim 9 is an image display device including a touch panel, and the hard coat film according to any one of claims 1 to 8 is used as a constituent member of the touch panel. An image display device.
PCT/JP2011/006200 2010-11-15 2011-11-07 Hard coating film and image display device WO2012066743A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012544093A JP5783182B2 (en) 2010-11-15 2011-11-07 Hard coat film and image display device
KR1020137015338A KR101563794B1 (en) 2010-11-15 2011-11-07 Hard coating film and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-254508 2010-11-15
JP2010254508 2010-11-15

Publications (1)

Publication Number Publication Date
WO2012066743A1 true WO2012066743A1 (en) 2012-05-24

Family

ID=46083696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006200 WO2012066743A1 (en) 2010-11-15 2011-11-07 Hard coating film and image display device

Country Status (3)

Country Link
JP (1) JP5783182B2 (en)
KR (1) KR101563794B1 (en)
WO (1) WO2012066743A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048348A (en) * 2012-08-29 2014-03-17 Nippon Shokubai Co Ltd Optical film and use of the same
JP2015039845A (en) * 2013-08-22 2015-03-02 帝人デュポンフィルム株式会社 Film for transparent electrode
JP2015058550A (en) * 2013-09-17 2015-03-30 東レフィルム加工株式会社 Laminated film and transparent conductive film
JP2015527414A (en) * 2012-05-31 2015-09-17 エルジー・ケム・リミテッド Method for producing hard coating film
JP2015182290A (en) * 2014-03-24 2015-10-22 凸版印刷株式会社 Hard coat film, transparent conductive film and touch panel using the same, and hard coat coating liquid
JP2016107498A (en) * 2014-12-05 2016-06-20 大日本印刷株式会社 Surface protection film
CN106054302A (en) * 2015-04-10 2016-10-26 柯尼卡美能达株式会社 Polaroid protection film, polaroid therewith, and manufacturing method for polaroid protection film
JP2016187870A (en) * 2015-03-28 2016-11-04 日本製紙株式会社 Hard coat film
KR101751541B1 (en) 2009-09-16 2017-06-27 신에쓰 가가꾸 고교 가부시끼가이샤 Composition for encapsulating optical semiconductor element
US9778398B2 (en) 2012-05-31 2017-10-03 Lg Chem, Ltd. Hard coating film and preparation method thereof
US9926461B2 (en) 2012-05-31 2018-03-27 Lg Chem, Ltd. Hard coating film
JP2018069591A (en) * 2016-10-31 2018-05-10 三菱ケミカル株式会社 Hard coat film
US10000655B2 (en) 2012-08-23 2018-06-19 Lg Chem, Ltd. Hard coating composition
TWI630410B (en) * 2016-03-14 2018-07-21 南韓商Lg化學股份有限公司 Antireflection film and display device
WO2019054644A3 (en) * 2017-09-15 2019-05-09 주식회사 엘지화학 Hard coating film
WO2019146622A1 (en) * 2018-01-26 2019-08-01 日本製紙株式会社 Hard coating film and method for producing same
JP2019128545A (en) * 2018-01-26 2019-08-01 日本製紙株式会社 Hard coat film and manufacturing method therefor
JP2019128543A (en) * 2018-01-26 2019-08-01 日本製紙株式会社 Hard coat film and manufacturing method therefor
JP2019128544A (en) * 2018-01-26 2019-08-01 日本製紙株式会社 Hard coat film and manufacturing method therefor
JP2019128542A (en) * 2018-01-26 2019-08-01 日本製紙株式会社 Hard coat film and manufacturing method therefor
US10954409B2 (en) 2017-09-15 2021-03-23 Lg Chem, Ltd. Hard coating film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948821B1 (en) 2016-03-14 2019-02-15 주식회사 엘지화학 Anti-reflective film and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253512A (en) * 2006-03-24 2007-10-04 Toray Ind Inc Optical laminated biaxially stretched polyester film and hard coat film using it
WO2009090803A1 (en) * 2008-01-15 2009-07-23 Kimoto Co., Ltd. Curable composition, cured product and laminate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3684663B2 (en) * 1995-03-08 2005-08-17 東レ株式会社 Easy-adhesive film and method for producing the same
JP4657584B2 (en) * 2002-03-29 2011-03-23 三洋化成工業株式会社 Radiation curable resin composition for cellulose acetate film
JP2004141732A (en) * 2002-10-23 2004-05-20 Fuji Photo Film Co Ltd Curable composition, article hard-coated by using the same and picture display device
JP4500522B2 (en) * 2003-09-30 2010-07-14 大日本印刷株式会社 Laminate that suppresses curling of hard coat layer
JP5000933B2 (en) * 2006-06-16 2012-08-15 リケンテクノス株式会社 Antireflection film
JP5074726B2 (en) * 2006-09-07 2012-11-14 リケンテクノス株式会社 Hot wire cut film for glass
JP5380897B2 (en) * 2008-04-30 2014-01-08 東洋紡株式会社 Adhesive modified base film and hard coat film
JP5243343B2 (en) * 2009-02-03 2013-07-24 株式会社ジロオコーポレートプラン Polarizer outer surface protective film, polarizing plate, and liquid crystal display element
JP2010195979A (en) * 2009-02-26 2010-09-09 Lintec Corp Coating composition and light-resistant coated film
JP2010231212A (en) * 2010-04-05 2010-10-14 Toray Advanced Film Co Ltd Base film for optical film, and the optical film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253512A (en) * 2006-03-24 2007-10-04 Toray Ind Inc Optical laminated biaxially stretched polyester film and hard coat film using it
WO2009090803A1 (en) * 2008-01-15 2009-07-23 Kimoto Co., Ltd. Curable composition, cured product and laminate

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751541B1 (en) 2009-09-16 2017-06-27 신에쓰 가가꾸 고교 가부시끼가이샤 Composition for encapsulating optical semiconductor element
US9896597B2 (en) 2012-05-31 2018-02-20 Lg Chem, Ltd. Method of preparing hard coating film
US9884977B2 (en) 2012-05-31 2018-02-06 Lg Chem, Ltd. Hard coating composition
JP2015527414A (en) * 2012-05-31 2015-09-17 エルジー・ケム・リミテッド Method for producing hard coating film
US9926461B2 (en) 2012-05-31 2018-03-27 Lg Chem, Ltd. Hard coating film
US9701862B2 (en) 2012-05-31 2017-07-11 Lg Chem, Ltd. Method of preparing hard coating film
US10294387B2 (en) 2012-05-31 2019-05-21 Lg Chem, Ltd. Hard coating film
US9778398B2 (en) 2012-05-31 2017-10-03 Lg Chem, Ltd. Hard coating film and preparation method thereof
US10000655B2 (en) 2012-08-23 2018-06-19 Lg Chem, Ltd. Hard coating composition
JP2014048348A (en) * 2012-08-29 2014-03-17 Nippon Shokubai Co Ltd Optical film and use of the same
JP2015039845A (en) * 2013-08-22 2015-03-02 帝人デュポンフィルム株式会社 Film for transparent electrode
JP2015058550A (en) * 2013-09-17 2015-03-30 東レフィルム加工株式会社 Laminated film and transparent conductive film
JP2015182290A (en) * 2014-03-24 2015-10-22 凸版印刷株式会社 Hard coat film, transparent conductive film and touch panel using the same, and hard coat coating liquid
JP2016107498A (en) * 2014-12-05 2016-06-20 大日本印刷株式会社 Surface protection film
JP2016187870A (en) * 2015-03-28 2016-11-04 日本製紙株式会社 Hard coat film
CN106054302A (en) * 2015-04-10 2016-10-26 柯尼卡美能达株式会社 Polaroid protection film, polaroid therewith, and manufacturing method for polaroid protection film
TWI630410B (en) * 2016-03-14 2018-07-21 南韓商Lg化學股份有限公司 Antireflection film and display device
JP2018069591A (en) * 2016-10-31 2018-05-10 三菱ケミカル株式会社 Hard coat film
WO2019054644A3 (en) * 2017-09-15 2019-05-09 주식회사 엘지화학 Hard coating film
US10954409B2 (en) 2017-09-15 2021-03-23 Lg Chem, Ltd. Hard coating film
WO2019146622A1 (en) * 2018-01-26 2019-08-01 日本製紙株式会社 Hard coating film and method for producing same
JP2019128545A (en) * 2018-01-26 2019-08-01 日本製紙株式会社 Hard coat film and manufacturing method therefor
JP2019128543A (en) * 2018-01-26 2019-08-01 日本製紙株式会社 Hard coat film and manufacturing method therefor
JP2019128544A (en) * 2018-01-26 2019-08-01 日本製紙株式会社 Hard coat film and manufacturing method therefor
JP2019128542A (en) * 2018-01-26 2019-08-01 日本製紙株式会社 Hard coat film and manufacturing method therefor
JP7154681B2 (en) 2018-01-26 2022-10-18 日本製紙株式会社 Method for producing hard coat film
JP7154680B2 (en) 2018-01-26 2022-10-18 日本製紙株式会社 Method for producing hard coat film
JP7166057B2 (en) 2018-01-26 2022-11-07 日本製紙株式会社 Method for producing hard coat film
JP7166056B2 (en) 2018-01-26 2022-11-07 日本製紙株式会社 Method for producing hard coat film
US11718721B2 (en) 2018-01-26 2023-08-08 Nippon Paper Industries Co., Ltd. Hard coat film and method for producing same

Also Published As

Publication number Publication date
KR20130113484A (en) 2013-10-15
JP5783182B2 (en) 2015-09-24
JPWO2012066743A1 (en) 2014-05-12
KR101563794B1 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
JP5783182B2 (en) Hard coat film and image display device
KR101589883B1 (en) Display device with touch panel
KR102167630B1 (en) Protective Film for Polarizing Plate and Polarizing Plate Using the Same
TWI592303B (en) Optical laminate
CN109021478B (en) (meth) acrylic resin composition and (meth) acrylic resin film using same
JP5243343B2 (en) Polarizer outer surface protective film, polarizing plate, and liquid crystal display element
JP6957885B2 (en) Films and laminated sheets for organic electroluminescence display devices
KR101618423B1 (en) Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel
EP2479027A1 (en) Double-sided laminated polyester film
JP6048419B2 (en) Method for producing hard coat film and method for producing polarizing plate
JP2009163216A (en) Set of polarizing plate, and liquid crystal panel and liquid crystal display using the same
WO2012035849A1 (en) Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device
JP2011129110A (en) Half mirror tone touch sensor
JP2012091406A (en) Transparent conductive laminated film and touch panel
CN112272785B (en) Antiglare film, method for producing same, and use thereof
JP5971121B2 (en) Manufacturing method of optical film
KR101342183B1 (en) Polarizing plate and liquid crystal display device
JP2013064821A (en) Hard coat film, polarizing plate and image display apparatus
WO2012026192A1 (en) Hardcoat film, polarizing plate, and liquid crystal display device
JP2014133408A (en) Surface-treated laminate film and polarizing plate using the same
KR101888142B1 (en) Multilayer film
JP2015068996A (en) Screen protection base film and screen protection sheet using the same
KR20190106752A (en) Polarizing plate and image display device comprising the same
JP2013088438A (en) Optical film, production method of the same, and image display device
JP5726925B2 (en) Laminated polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544093

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137015338

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11841322

Country of ref document: EP

Kind code of ref document: A1