WO2012063936A1 - 液晶表示装置、及び、液晶表示装置の製造方法 - Google Patents

液晶表示装置、及び、液晶表示装置の製造方法 Download PDF

Info

Publication number
WO2012063936A1
WO2012063936A1 PCT/JP2011/076057 JP2011076057W WO2012063936A1 WO 2012063936 A1 WO2012063936 A1 WO 2012063936A1 JP 2011076057 W JP2011076057 W JP 2011076057W WO 2012063936 A1 WO2012063936 A1 WO 2012063936A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display device
alignment
crystal display
group
Prior art date
Application number
PCT/JP2011/076057
Other languages
English (en)
French (fr)
Inventor
健史 野間
真伸 水▲崎▼
仲西 洋平
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012063936A1 publication Critical patent/WO2012063936A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy

Definitions

  • the present invention relates to a liquid crystal display device and a method for manufacturing the liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device in which a polymer layer is formed on an alignment film in order to increase the alignment regulating force of liquid crystal, and a method for manufacturing a liquid crystal display device that can suitably form a polymer layer.
  • a liquid crystal display device is a display panel that controls light transmission / blocking (display on / off) by controlling the orientation of liquid crystal molecules having birefringence.
  • a technique for aligning liquid crystal molecules for example, a rubbing method is used in which after an alignment film material is applied, grooves are formed by a roller or the like to form an alignment film.
  • alignment control structures such as a bank-like protrusion formed of a dielectric provided on the electrode and a slit provided on the electrode
  • an alignment film material having a photo-alignment functional group instead of rubbing treatment, such as a method for controlling the alignment of liquid crystal molecules using UV and UV 2 A (Ultraviolet induced multi-domain Vertical Alignment) technology
  • UV and UV 2 A Ultraviolet induced multi-domain Vertical Alignment
  • liquid crystal molecules are aligned perpendicular to the substrate surface when no voltage is applied.
  • the liquid crystal molecules become a voltage. It is tilted and oriented at an appropriate angle.
  • a plurality of regions (domains) in which the directions in which the liquid crystal molecules fall are different from each other are formed in one pixel by slits or bank-like protrusions provided on the electrodes.
  • FIG. 8 is a diagram showing the relationship between relative luminance and gradation in a conventional liquid crystal display device.
  • FIG. 8 shows the relationship between relative luminance and gradation when the screen is viewed from the front (viewing angle 0 °) and obliquely (viewing angles 30 ° and 60 °).
  • the relative luminance is higher when viewed from an oblique direction than when the screen is viewed from the front.
  • MPD Multi-Pixel-Drive
  • a liquid crystal material containing a monomer is injected between substrates, the monomer is polymerized in a state where a voltage is applied, and a polymer in which the direction in which the liquid crystal molecules fall is memorized is stored.
  • PSA Polymer Sustained Alignment
  • FIG. 9 is a schematic cross-sectional view of the liquid crystal display device according to Patent Document 1 before the polymerization process
  • FIG. 10 is a schematic cross-sectional view of the liquid crystal display device according to Patent Document 1 after the polymerization process.
  • the array substrate 110 has a protrusion 115.
  • the monomer 105 is present in the liquid crystal layer 130 before the polymerization step.
  • the liquid crystal layer 130 is irradiated with ultraviolet light from the side of the array substrate 110 on which the light shielding mask 125 is formed while a predetermined voltage is applied to the liquid crystal layer 130 through the electrodes 113 and 123, and the polymerization of the monomer 105 is performed. Be started.
  • the light shielding mask 125 is formed on the array substrate 110 so as to cover approximately half of one pixel.
  • the monomer 105 present in the region not shielded by the light shielding mask 125 is polymerized. Thereafter, the light shielding mask 125 is removed, the entire surface of the liquid crystal panel is irradiated with ultraviolet light, and the monomer 105 remaining in the liquid crystal layer 130 is polymerized.
  • the first polymer 126 having a strong binding force on the liquid crystal molecules is formed in the region not exposed to light shielding by the light shielding mask 125 (exposure region), while the region shielded by the light shielding mask 125 (light shielding region) is formed.
  • the second polymer 127 having a weak binding force on the liquid crystal molecules is formed.
  • a region having a strong binding force on the liquid crystal molecules that is, a region having a high threshold voltage
  • a region having a low binding force on the liquid crystal molecules that is, a region having a low threshold voltage
  • the above-described method for improving white spots may cause an increase in manufacturing cost and a decrease in display characteristics.
  • MPD technology requires a structure for changing the voltage applied in the dot. For this reason, there are disadvantages in that the manufacturing cost increases and the aperture ratio decreases due to an increase in wiring and the like.
  • the protrusion is used, but it is difficult to use the region where the protrusion is disposed for display. For this reason, there was room for improvement in terms of increasing the aperture ratio and improving the luminance. Moreover, since the alignment of the liquid crystal molecules is affected by the protrusions not only in the region where the protrusions are disposed but also in the vicinity thereof, it is difficult to control the alignment to a desired orientation. For this reason, there was room for improvement in terms of improving contrast. Moreover, in the liquid crystal display device according to Patent Document 1, since a voltage is applied when polymerization is performed, there is room for improvement in that the manufacturing cost is increased.
  • the present invention has been made in view of the above situation, and viewed the screen obliquely in a halftone while suppressing deterioration of other display characteristics conventionally seen such as a decrease in aperture ratio and a decrease in contrast ratio.
  • An object of the present invention is to provide a liquid crystal display device capable of suppressing the occurrence of a so-called white spot phenomenon in which the brightness at the time is higher than the brightness when the screen is viewed from the front, and a method for manufacturing the liquid crystal display device Is.
  • the present inventors paid attention to the PSA technology as a method for suppressing the white spot phenomenon, and conducted intensive studies on monomers used in the PSA technology. As a result, it has been found that by forming a polymer layer using a bifunctional monomer on the vertical alignment film, it is possible to adjust the threshold voltage of a region whose orientation is controlled by the polymer layer. Then, the inventors have arrived at the present invention by conceiving that the above problem can be solved by changing the threshold voltage between the region controlled by the polymer layer and the region not controlled by the polymer layer. is there.
  • one aspect of the present invention is a liquid crystal display device including a pair of substrates and a liquid crystal layer sandwiched between the pair of substrates, the liquid crystal layer having negative dielectric anisotropy. And at least one of the pair of substrates is a main surface on the liquid crystal layer side of the alignment film by polymerization of an electrode, an alignment film for vertically aligning adjacent liquid crystal molecules, and at least one bifunctional monomer.
  • the first alignment region and the second alignment region have different threshold voltages.
  • a bifunctional monomer is used as a material for the polymer layer.
  • the bifunctional monomer is not particularly limited as long as it is a monomer having two reactive functional groups.
  • the reactive functional group include a functional group containing an unsaturated bond such as a double bond.
  • a polymer layer using a bifunctional monomer (1) can maintain a sufficient pretilt angle, and thus has high reliability, and (2) a polymerization rate.
  • photopolymerization is excellent in that the exposure time can be shortened, productivity can be improved, and / or manufacturing cost can be reduced.
  • the bifunctional monomer is superior in solubility in liquid crystal as compared with a polyfunctional monomer having three or more reactive functional groups, and it is easy to form a polymer layer.
  • the alignment film whose vertical alignment is controlled means an alignment film capable of realizing a liquid crystal display in a vertical alignment mode, and the liquid crystal molecules are only aligned perpendicularly to the film surface, that is, an alignment film that controls the alignment at 90 °. And an alignment film that controls the alignment of liquid crystal molecules substantially perpendicular to the film surface.
  • Substantially perpendicular means 80 ° or more, preferably 85 ° or more.
  • the threshold voltage means a voltage value that generates an electric field that causes an optical change in the liquid crystal layer and changes a display state in the liquid crystal display device.
  • the difference between the threshold voltage difference of the first alignment region and the threshold voltage of the second alignment region is preferably 0.1 V or more, and more preferably 0.5 V to 1.5 V. .
  • the pretilt angle of the liquid crystal molecules in each alignment region may be different.
  • the threshold voltage can be made different by changing the anchoring strength in each alignment region.
  • FIG. 11 is a diagram showing a change in a VT (voltage-transmittance) curve due to a difference in pretilt angle. As shown in FIG. 11, the threshold voltage increases as the pretilt angle increases.
  • the configuration of the liquid crystal display device is not particularly limited by other components as long as such components are essential.
  • the alignment film may be formed by irradiating polarized ultraviolet light to an alignment film material containing a photoreactive functional group (hereinafter, also referred to as a first embodiment). . Since the pretilt angle can be adjusted accurately by using polarized ultraviolet light, the liquid crystal display device of the first embodiment can be a photo-alignment type liquid crystal display device with excellent display quality.
  • the photoreactive functional group is preferably at least one selected from the group consisting of a chalcone group, a coumarin group, a cinnamate group, an azobenzene group, and a tolan group.
  • the orientation control can be performed with high accuracy. Therefore, the photoreactive functional group included in the group is aligned by irradiation with polarized ultraviolet light.
  • the liquid crystal display device including the alignment film to be processed can be particularly preferably used.
  • the pretilt angle of the liquid crystal molecules in the first alignment region and the pretilt angle of the liquid crystal molecules in the second alignment region are different from each other.
  • the threshold voltages of the respective alignment regions are different, thereby suppressing white spots. be able to.
  • the difference between the pretilt angle of the liquid crystal molecules in the first alignment region and the pretilt angle of the liquid crystal molecules in the second alignment region is preferably about 0.5 ° to 15 °. .
  • the pretilt angle of the liquid crystal molecules in the first alignment region is preferably 88.0 ° to 88.5 °, and the pretilt angle of the liquid crystal molecules in the second alignment region is 73.0 ° to 87. Preferably it is 5 °.
  • the pretilt angle of the liquid crystal molecules in the first alignment region is preferably larger than the pretilt angle of the liquid crystal molecules in the second alignment region. Since the pretilt angle of the liquid crystal molecules in the first alignment region is close to 90 °, the pretilt angle of the liquid crystal molecules in the second alignment region is larger than the pretilt angle of the liquid crystal molecules in the first alignment region. Is too large, the difference between the pretilt angle of the liquid crystal molecules in the first alignment region and the pretilt angle of the liquid crystal molecules in the second alignment region cannot be taken sufficiently, and a desired threshold voltage difference is obtained. May not be obtained.
  • the area of the second alignment region is preferably larger than 30% and smaller than 70% compared to the sum of the area of the first alignment region and the area of the second alignment region. If the area of the second alignment region is 30% or less, the area of the first alignment region is too large compared to the area of the second alignment region, so that white spots can be sufficiently suppressed. There is a risk that it will not be possible. On the other hand, if the area of the second alignment region is 70% or more, the area of the first alignment region is too small compared to the area of the second alignment region. You may not be able to do it. More preferably, the area of the first alignment region and the area of the second alignment region are substantially equal. Specifically, the second alignment region includes the first alignment region and the first alignment region. More preferably, it is larger than 45% and smaller than 55% compared with the total with the second alignment region.
  • the bifunctional monomer is preferably represented by the following chemical structural formula.
  • P 1 -A 1- (Z 1 -A 2 ) n -P 2 (In the formula, P 1 and P 2 (reactive functional groups) each independently represent an acrylate group, a methacrylate group, a vinyl group, a vinyloxy group, or an epoxy group.
  • a 1 and A 2 are each independently Represents a 1,4-phenylene group, a naphthalene-2,6-diyl group, an anthracene-2,6-diyl group, or a phenanthrene-2,7-diyl group, and the hydrogen atom contained in the ring structure is halogen, Z 1 may be COO, OCO, O, CO, NHCO, CONH, S, or A, which may be substituted with a methyl group, an ethyl group, or a propyl group, and may be a heterocyclic structure. 1 and A 2 or A 2 and A 2 are directly bonded. N is 0, 1 or 2.)
  • the bifunctional monomer preferably has a dinaphthyl ether skeleton.
  • the dinaphthyl ether skeleton include dinaphthyl ether skeletons represented by the following chemical formulas (1) to (4), and dimethacryloxy dinaphthyl ether represented by the following chemical formula (4) is particularly preferable.
  • a polymer layer formed of a bifunctional monomer having a dinaphthyl ether skeleton can reduce the pretilt angle. Furthermore, the amount of change in the pretilt angle can be increased by increasing the concentration of the bifunctional monomer.
  • the threshold voltage of the second alignment region is different from the threshold voltage of the first alignment region. Therefore, it is possible to adjust so that white spots can be suitably suppressed.
  • Another aspect of the present invention is a method for manufacturing a liquid crystal display device comprising a pair of substrates and a liquid crystal layer having negative dielectric anisotropy sandwiched between the pair of substrates, the manufacturing method comprising: A step of forming an electrode on at least one of the pair of substrates, a step of forming an alignment film for controlling alignment of adjacent liquid crystal molecules vertically, and a part of a main surface on the liquid crystal side of the alignment film, Forming a polymer layer for controlling the alignment of adjacent liquid crystal molecules, wherein the polymer layer is formed by shielding a part of at least one of the pair of substrates by a light shielding member, In a state where the portion is not shielded from light, the bifunctional monomer added to the liquid crystal layer is polymerized by irradiating light, and the first alignment region where the alignment film and the liquid crystal molecule are in contact with each other, the polymer layer and the liquid crystal molecule A second alignment region in contact with the pixel A step of forming, wherein the first alignment
  • the light shielding member is formed on one substrate so as to cover a part of one pixel region, for example.
  • a region that is not shielded by the light shielding member and a region that is shielded from light are generated in one pixel region.
  • the bifunctional monomer is polymerized by light irradiation, and the polymer layer is formed on the alignment film.
  • a second alignment region in which the alignment of liquid crystal molecules is controlled by the polymer layer is formed in the pixel.
  • the bifunctional monomer is not substantially polymerized in the light shielding region.
  • the liquid crystal display device can be preferably manufactured.
  • the configuration of the manufacturing method of the liquid crystal display device is not particularly limited by other components and processes as long as such components and processes are formed as essential. A preferred embodiment of the method for manufacturing the liquid crystal display device will be described below.
  • the alignment film controls the pretilt angle of liquid crystal molecules, the light shielding member shields a part of the pixel, and the light irradiation is performed without applying a voltage to the liquid crystal layer.
  • performing photopolymerization of the bifunctional monomer to form the polymer layer wherein the pretilt angle of the liquid crystal molecules in the first alignment region is greater than the pretilt angle of the liquid crystal molecules in the second alignment region. Is preferably a large value.
  • voltage application is not necessary, so that an increase in manufacturing cost can be suppressed.
  • the difference between the pretilt angle of the liquid crystal molecules in the first alignment region and the pretilt angle of the liquid crystal molecules in the second alignment region is set to a desired value, and the difference in threshold voltage is set to a desired value. Becomes easy.
  • the region that is not shielded by the light shielding member is preferably larger than 30% and smaller than 70% compared to all the regions where the liquid crystal is orientation controlled. If the volume of the second alignment region is 30% or less, the volume of the first alignment region is too large compared to the volume of the second alignment region, so that white spots can be sufficiently suppressed. There is a risk that it will not be possible. On the contrary, when the volume of the second alignment region is 70% or more, the volume of the first alignment region is too small compared to the volume of the second alignment region, so that white spots are sufficiently suppressed. You may not be able to do it. More preferably, the volume of the first alignment region is substantially equal to the volume of the second alignment region. Specifically, it is more preferable that the second alignment region is larger than 45% and smaller than 55% as compared with the total of the first alignment region and the second alignment region.
  • the liquid crystal display device it is not necessary to form protrusions on the substrate, and it is not necessary to provide MPD wiring or the like, and the first alignment region and the second alignment region having different threshold voltages can be formed. Therefore, it is possible to obtain a liquid crystal display device that is low in cost and has a high aperture ratio while suppressing white spots.
  • FIG. 3 is a schematic cross-sectional view of the liquid crystal display device according to Embodiment 1 before the polymerization step.
  • FIG. 3 is a schematic cross-sectional view after the polymerization step of the liquid crystal display device according to the first embodiment.
  • FIG. 3 is a schematic plan view showing a state in which light shielding masks are arranged to overlap in one pixel region of the array substrate of the liquid crystal display device according to the first embodiment.
  • FIG. 6 is a diagram showing measurement results of pretilt angles in Test Examples 1 to 3 and Comparative Example 1. 6 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 2 before a polymerization process.
  • FIG. 6 is a schematic cross-sectional view after a polymerization process of a liquid crystal display device according to Embodiment 2. It is a figure which shows the measurement result of the pretilt angle in Test Examples 2, 4, and 5. It is a figure which shows the relationship between the relative brightness
  • VT voltage-transmittance
  • Embodiment 1 In Embodiment 1, one type of bifunctional monomer is used to form the polymer layer.
  • the polymer layer is also referred to as a PSA (Polymer Sustained Alignment) film.
  • PSA Polymer Sustained Alignment
  • Examples of the bifunctional monomer used to form the PSA film in Embodiment 1 include those represented by the above chemical formulas (1) to (4).
  • FIG. 1 is a schematic cross-sectional view of the liquid crystal display device according to Embodiment 1 before the polymerization step
  • FIG. 2 is a schematic cross-sectional view of the liquid crystal display device according to Embodiment 1 after the polymerization step.
  • 1 and 2 are also schematic cross-sectional views of one pixel region of the liquid crystal display device.
  • FIG. 3 is a schematic plan view showing a state in which light shielding masks are arranged to overlap in one pixel region of the array substrate of the liquid crystal display device according to the first embodiment. As shown in FIGS.
  • the liquid crystal display device of Embodiment 1 is a liquid crystal cell in which an array substrate 10, a liquid crystal layer 30, and a color filter substrate 20 are arranged from the back side of the liquid crystal display device toward the observation surface side. It has.
  • the liquid crystal layer 30 sandwiched between a pair of substrates including the array substrate 10 and the color filter substrate 20 has negative dielectric anisotropy.
  • a linear polarizing plate is provided on the back side of the array substrate 10 and the observation surface side of the color filter substrate 20. For these linearly polarizing plates, a retardation plate may be further arranged to form a circularly polarizing plate.
  • the array substrate 10 includes various wirings, a thin film transistor (TFT) 44 and the like on an insulating transparent substrate 11 made of glass or the like.
  • the array substrate 10 includes a plurality of gate wirings 45 and auxiliary capacitance (Cs) wirings 43.
  • the plurality of gate lines 45 and the auxiliary capacitance (Cs) lines 43 extend in parallel to each other.
  • the array substrate 10 further includes a plurality of source lines 42 that intersect with the gate lines 45 and the auxiliary capacitance (Cs) lines 43 and extend in parallel to each other, and are provided in the vicinity of each intersection of the gate lines 45 and the source lines 42. TFT 44 is provided.
  • a pixel electrode 13 having a substantially rectangular shape is arranged in each pixel (pixel region).
  • the color filter substrate 20 includes an insulating transparent substrate 21 made of glass or the like, and a common electrode 23, a color filter, a black matrix, and the like formed on the transparent substrate 21.
  • Examples of the method for forming the pixel electrode 13 and the common electrode 23 include a sputtering method, a chemical vapor deposition (CVD) method, and a vapor deposition method.
  • the pixel electrode 13 can be patterned into a shape having a slit or a comb shape by using a photolithography method, but the pixel electrode 13 is not patterned into a shape having a slit or a comb shape, It may be a flat plate electrode formed in the pixel region.
  • a transparent metal oxide film such as indium tin oxide (ITO: Indium ⁇ ⁇ Tin Oxide) is preferably used.
  • the array substrate 10 includes an alignment film 12, and the color filter substrate 20 also includes an alignment film 22.
  • the alignment films 12 and 22 are vertical alignment films, and can preliminarily align (initially tilt) liquid crystal molecules in the vertical direction.
  • the alignment film material for forming the alignment films 12 and 22 is not particularly limited.
  • a material obtained by dissolving a polymer material in a solvent is used.
  • the polymer material include polyimide, polyamide, polyvinyl, polysiloxane, and the like.
  • the polymer material preferably contains a photoreactive functional group. Examples of the photoreactive functional group include a chalcone group, a coumarin group, a cinnamate group, an azobenzene group, and a tolan group.
  • Examples of a method for forming the alignment films 12 and 22 include a rubbing method in which grooves are formed by a roller or the like after applying an alignment film material to form an alignment film. Moreover, after apply
  • the type of light irradiated at this time is not particularly limited as long as the photoreactive functional group can be reacted to develop the alignment function. For example, polarized ultraviolet rays are suitable.
  • the bifunctional monomer 5 is present in the liquid crystal layer 30 before the bifunctional monomer polymerization step.
  • a light shielding mask 25 is provided on the outer side of the transparent substrate 21 (opposite the liquid crystal side), and shields about half of one pixel region.
  • non-polarized ultraviolet rays are irradiated from the normal direction of the transparent substrate 21.
  • a voltage may be applied to the liquid crystal layer 30 via the pixel electrode 13 and the common electrode 23, but it is preferable that no voltage is applied from the viewpoint of reducing manufacturing costs.
  • the bifunctional monomer 5 starts to be polymerized, and as shown in FIG.
  • a PSA layer 26 is formed on the alignment films 12 and 22 in a region not shielded from light.
  • the light shielding mask 25 shields the light, the PSA layer 26 is not formed, the region where the alignment films 12 and 22 and the liquid crystal layer 30 are in contact (the first alignment region 40), and the PSA layer 26 are formed.
  • a region where the liquid crystal layer 30 is in contact with the liquid crystal layer 30 (second alignment region 41) is formed. Since the PSA layer 26 changes the alignment regulating force of the alignment films 12 and 22, the first alignment region 40 and the second alignment region 41 have different alignment regulating forces. The voltages will be different from each other. In the liquid crystal display device shown in FIGS. 1 and 2, no voltage is applied, and the liquid crystal molecules are aligned substantially vertically.
  • the threshold voltage in the first alignment region is preferably larger than the threshold voltage in the second alignment region.
  • the pretilt angle of the liquid crystal molecules in the first alignment region is larger than the pretilt angle of the liquid crystal molecules in the second alignment region. It is preferable to do.
  • the threshold voltage in the first alignment region is made larger than the threshold voltage in the second alignment region. can do.
  • a preferable range of the threshold voltage in the first alignment region is 2.0V to 2.5V.
  • a preferable range of the threshold voltage in the second alignment region is 0.5V to 2.0V.
  • the light shielding mask 25 may be formed in close contact with the transparent substrate 21 or may be formed apart from the transparent substrate 21.
  • the light shielding mask 25 is not particularly limited as long as it shields light.
  • the light shielding mask 25 may be formed of a metal such as Cr or Al, or may be formed of a resin.
  • first alignment region and the second alignment region will be described in detail with reference to FIG.
  • the light shielding mask 25 is formed so as to cover approximately half of one pixel region. At this time, if the direction in which the liquid crystal molecules are aligned is divided into two in the longitudinal direction of the pixels in one pixel region before the second alignment region is formed, the second alignment region is formed. Thus, the alignment direction of the liquid crystal molecules is divided into four within one pixel.
  • the shape of the light shielding mask 25 is not limited to the example of FIG. 3, and may be, for example, a shape that bisects the longitudinal direction of one pixel region, or is arranged in a checkered pattern in one pixel region. Such a shape may be used.
  • the liquid crystal cell was shaken, the retardation was measured by the Senarmont method, and the pretilt angle was calculated by fitting using the crystal rotation method.
  • OMS-AF2 manufactured by Chuo Seiki Co., Ltd. was used.
  • a He—Ne laser irradiation device was used as a light source, and linearly polarized He—Ne laser light (wavelength 632.8 nm, output 2 mW) was irradiated.
  • the spot diameter was 1 mm and the temperature was 25 ° C.
  • Test example 1 An electrode was formed on the entire principal surface on one side of a pair of glass substrates, and an alignment film material containing polyimide having a cinnamate group that is a photoreactive functional group and an imidization ratio of 50% was applied by spin coating.
  • each glass substrate was irradiated with polarized ultraviolet rays as an alignment treatment to form a vertical alignment film.
  • the pretilt angle of the vertical alignment film was 88.1 ° to 88.5 °.
  • the two glass substrates are bonded together, and the bonded glass substrates are subjected to a pressure of 0.5 kgf / cm 2 . While being pressurized, the seal was cured by heating at 200 ° C. for 60 minutes in a nitrogen purged furnace.
  • a liquid crystal exhibiting negative dielectric anisotropy was injected into the cell produced by the above method.
  • 2,2 ′′ -dimethacryloxydinaphthyl ether which is a bifunctional monomer, was added so as to be 0.3 wt% of the entire liquid crystal composition.
  • non-polarized UV (0.33 mW / cm 2 ) was irradiated for 4 hours from the normal direction of the main surface of the glass substrate to polymerize the bifunctional monomer.
  • Test example 2 A liquid crystal cell was prepared in the same manner as in Test Example 1, except that 2,2 ′′ -dimethacryloxydinaphthyl ether, which is a bifunctional monomer, was added to the liquid crystal so as to be 0.6 wt% of the total liquid crystal composition. Was made.
  • Test example 3 Instead of adding 2,2 ′′ -dimethacryloxydinaphthyl ether to the liquid crystal so as to be 0.3 wt% of the entire liquid crystal composition, 4,4′-dimethacryloxybiphenyl was added to the liquid crystal composition.
  • a liquid crystal cell was produced in the same manner as in Test Example 1 except that it was added so as to be 0.3 wt% of the whole.
  • Comparative Example 1 A liquid crystal cell was produced in the same manner as in Test Example 1 except that the bifunctional monomer was not added to the liquid crystal and that the non-polarized UV was not irradiated.
  • Table 1 shows monomer conditions and non-polarized ultraviolet irradiation conditions in the liquid crystal display devices according to Test Examples 1 to 3 and Comparative Example 1.
  • FIG. 4 is a diagram showing measurement results of pretilt angles in Test Examples 1 to 3 and Comparative Example 1. As shown in FIG. 4, in Comparative Example 1 in which no bifunctional monomer was added, the pretilt angle was 88.3 °. On the other hand, in Test Example 1 in which 0.3 wt% of 2,2 ′′ -dimethacryloxydinaphthyl ether which is a bifunctional monomer was added, the pretilt angle was 86.5 °. In Test Example 2 in which 0.6 wt% of 2,2 ′′ -dimethacryloxydinaphthyl ether was added, the pretilt angle was 82.6 °.
  • the PSA layer formed by polymerizing 2,2 ′′ -dimethacryloxydinaphthyl ether can have a smaller pretilt angle than the alignment film. It has been found that the pretilt angle can be further reduced by increasing the concentration of oxydinaphthyl ether. That is, it was found that by adjusting the concentration of 2,2 ′′ -dimethacryloxydinaphthyl ether, the pretilt angle in the second alignment region can be controlled and the threshold voltage in the second alignment region can be adjusted. Accordingly, white spots can be suitably suppressed and contrast can be improved even if the voltage applied to all pixels is constant without changing the voltage applied to each pixel as in MPD.
  • Embodiment 2 In Embodiment 2, two types of bifunctional monomers are used to form a PSA film.
  • Examples of the photopolymerizable monomer used to form the PSA film in Embodiment 2 include those represented by the following chemical formula (5) in addition to those represented by the above chemical formulas (1) to (4). .
  • FIG. 5 is a schematic cross-sectional view of the liquid crystal display device according to the second embodiment before the polymerization step
  • FIG. 6 is a schematic cross-sectional view of the liquid crystal display device according to the second embodiment after the polymerization step.
  • the liquid crystal display device of Embodiment 2 is the same as the bifunctional monomer 5 except that the bifunctional monomer 6 is added to form the PSA layer 27 in addition to the bifunctional monomer 5. This is the same as the liquid crystal display device according to the first embodiment.
  • Test example 4 In addition to adding 2,2 ′′ -dimethacryloxydinaphthyl ether to the liquid crystal so as to be 0.6 wt% of the total liquid crystal composition, 4,4′-dimethacryloxybiphenyl was added to the liquid crystal composition. The same liquid crystal cell as in Test Example 2 was produced, except that it was added so as to be 0.1 wt% of the whole.
  • Test Example 5 In addition to adding 2,2 ′′ -dimethacryloxydinaphthyl ether to the liquid crystal so as to be 0.6 wt% of the total liquid crystal composition, 4,4′-dimethacryloxybiphenyl was added to the liquid crystal composition. The same liquid crystal cell as in Test Example 2 was produced except that it was added so as to be 0.3 wt% of the whole. 4,4′-Dimethacryloxybiphenyl was manufactured by Merck & Co., Inc.
  • Table 2 shows the monomer conditions and the non-polarized ultraviolet irradiation conditions in the liquid crystal display devices according to Test Examples 2, 4 and 5.
  • the measurement results of the pretilt angle in Test Examples 2, 4, and 5 are shown in FIG.
  • the pretilt angle in the second alignment region is controlled with high accuracy, It has been found that the threshold voltage of the second alignment region can be adjusted precisely. As a result, white spots can be suitably suppressed and contrast can be improved even if the voltage applied to all the pixels is constant without changing the voltage applied to each pixel as in MPD. As a result, the cost can be reduced and the aperture ratio can be increased.
  • the pretilt angle decreases according to the dose of unpolarized ultraviolet light.
  • the pretilt angle did not become 84 ° or less.
  • the liquid crystal display device according to the first and second embodiments may be any of a transmission type, a reflection type, and a reflection / transmission type. If it is a transmission type or a reflection / transmission type, the liquid crystal display device of Embodiment 1 further includes a backlight. The backlight is disposed on the back side of the liquid crystal cell, and is disposed such that light is transmitted through the array substrate 10, the liquid crystal layer 30, and the color filter substrate 20 in this order. In the case of a reflection type or a reflection / transmission type, the array substrate 10 includes a reflection plate for reflecting external light. Further, at least in a region where reflected light is used as a display, the polarizing plate of the color filter substrate 20 needs to be a circularly polarizing plate.
  • the liquid crystal display device may be in the form of a color filter on array (Color Filter On Array) including color filters on the array substrate 10.
  • the liquid crystal display device may be a monochrome display. In that case, the color filter does not need to be arranged.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、開口率の低下、コントラスト比の低下等の表示特性の悪化を抑制しつつ、白抜け現象が発生することを抑制できる液晶表示装置を提供する。本発明の一側面は、一対の基板と、該一対の基板間に挟持された液晶層とを備える液晶表示装置であって、前記液晶層は、負の誘電率異方性を有し、前記一対の基板のうち少なくとも一方は、電極と、近接する液晶分子を垂直に配向制御する配向膜と、少なくとも1種類の2官能モノマーの重合によって、前記配向膜の液晶層側の主面の一部に形成され、近接する液晶分子を配向制御するポリマー層とを有し、前記配向膜と液晶分子とが接する第1の配向領域と、前記ポリマー層と液晶分子とが接する第2の配向領域とを画素内に有し、前記第1の配向領域と前記第2の配向領域とは、閾値電圧が互いに異なる液晶表示装置である。

Description

液晶表示装置、及び、液晶表示装置の製造方法
本発明は、液晶表示装置、及び、液晶表示装置の製造方法に関する。より詳しくは、液晶の配向規制力を高めるために配向膜上にポリマー層が形成された液晶表示装置、及び、好適にポリマー層を形成することができる液晶表示装置の製造方法に関するものである。
液晶表示装置は、複屈折性を有する液晶分子の配向を制御することにより光の透過/遮断(表示のオン/オフ)を制御する表示パネルである。液晶分子を配向させる技術としては、例えば、配向膜材料を塗布した後に、ローラ等により溝を形成させ、配向膜を形成するラビング法が用いられている。
また、マルチドメイン垂直配向(MVA:Multi-domain Vertical Alignment)モードのように、電極の上に設けられた誘電体からなる土手状の突起物、電極に設けられたスリット等の配向制御用構造物を用いて液晶分子の配向を制御する方法や、UVA(Ultraviolet induced multi-domain Vertical Alignment)技術のように、ラビング処理の代わりに、光配向性官能基を有する配向膜材料を塗布した後に、光照射を行い、配向膜を形成する方法等も知られている。
MVAモードの液晶表示装置では、電圧を印加していない状態では液晶分子が基板面に対して垂直に配向しており、画素電極と共通電極との間に電圧を印加すると、液晶分子は電圧に応じた角度で傾斜して配向する。このとき、電極に設けられたスリットや土手状の突起物により、液晶分子の倒れる方向が相互に異なる領域(ドメイン)が1画素内に複数形成される。このように1画素内に複数のドメインを形成することにより、良好な表示特性を得ることができる。
しかし、従来のMVAモードの液晶表示装置や、UVA技術を適用した液晶表示装置においては、中間調において、画面を斜め方向から見たときに白っぽく見える現象(以下、「白抜け」ともいう。)が発生するおそれがある。図8は、従来の液晶表示装置における相対輝度と階調との関係を示す図である。図8には、画面を正面(視野角0°)、及び、斜め方向(視野角30°及び60°)から見たときの相対輝度と階調との関係とが示されている。図8に示される通り、中間調においては、画面を正面から見たときに比べ、斜め方向から見たとき、相対輝度が高くなる。その結果、中間調において、画面を斜め方向から見たとき白抜けが生じる。これは、斜め方向から見た場合と正面方向から見た場合でのVT(電圧-透過率)特性が異なることに起因するものであり、斜め方向から見た場合の透過率が正面方向からの透過率よりも高くなることに起因する。
この白抜けを改善する方法としては、1画素を構成するRGBの各々のドットを更に2分割したセル単位で階調表現をコントロールする技術(以下、「MPD(Multi Pixel Drive)技術」ともいう。)が知られている。
上記のMPD技術以外に、白抜けを改善する方法としては、モノマーを含む液晶材料を基板間に注入し、電圧を印加した状態でモノマーを重合させて、液晶分子の倒れる方向を記憶させたポリマーを配向膜上に形成する技術(「PSA(Polymer Sustained Alignment)技術」)が知られている(例えば、特許文献1参照。)。
図9は特許文献1に係る液晶表示装置の重合工程前の断面模式図であり、図10は特許文献1に係る液晶表示装置の重合工程後の断面模式図である。図9に示すように、アレイ基板110は、突起115を有している。重合工程前において液晶層130中には、モノマー105が存在している。そして、光照射工程において、液晶層130には電極113、123を介して所定の電圧が印加されながら、遮光マスク125が形成されたアレイ基板110側から紫外光が照射され、モノマー105の重合が開始される。遮光マスク125は、1画素のおよそ半分を覆うようにアレイ基板110上に形成される。遮光マスク125によって遮光されなかった領域に存在するモノマー105が重合される。その後、遮光マスク125が除去され、液晶パネルの全面に紫外光が照射され、液晶層130に残存するモノマー105が重合される。その結果、遮光マスク125により遮光されなかった領域(露光領域)には、液晶分子に対する拘束力が強い第1のポリマー126が形成され、一方、遮光マスク125により遮光された領域(遮光領域)には、液晶分子に対する拘束力が弱い第2のポリマー127が形成される。その結果、1画素内に液晶分子に対する拘束力が強い領域(すなわち、閾値電圧が高い領域)と液晶分子に対する拘束力が弱い領域(すなわち、閾値電圧が低い領域)とが形成され、白抜けを抑制することができる。
特開2006-267689号公報
しかし、上記の白抜けを改善する方法は、製造コストの上昇、表示特性の低下を引き起こすおそれがあった。例えば、MPD技術は、ドット内に印加する電圧を変えるための構造を必要とする。このため、製造コストが高くなり、又、配線の増加等により開口率が減少するという点で不利な面があった。
また、上記の特許文献1に係る液晶表示装置においては、突起物が用いられているが、突起物が配置された領域は表示に用いることが困難であった。このため、開口率を高め、輝度を向上させる点で工夫の余地があった。また、突起物が配置された領域だけでなく、その近傍においても、液晶分子の配向が突起物の影響を受けるため、所望の配向に制御することが困難であった。このため、コントラストを向上させる点で工夫の余地があった。また、上記の特許文献1に係る液晶表示装置においては、重合を行う際に電圧が印加されているため、製造コストが高くなってしまうという点でも工夫の余地があった。
本発明は、上記現状に鑑みてなされたものであり、開口率の低下、コントラスト比の低下といった従来見られた他の表示特性の悪化を抑制しつつ、中間調において、斜めから画面を見たときの輝度が、正面から画面を見たときの輝度よりも高くなる、いわゆる白抜け現象が発生することを抑制できる液晶表示装置、及び、液晶表示装置の製造方法を提供することを目的とするものである。
本発明者らは、白抜け現象を抑制する方法としてPSA技術に着目し、PSA技術に用いられるモノマーについて鋭意検討を行った。その結果、垂直配向膜上に2官能モノマーを用いてポリマー層を形成することにより、該ポリマー層により配向制御される領域の閾値電圧を調整することが可能であることを見出した。そして、前記ポリマー層により配向制御される領域と前記ポリマー層により配向制御されない領域とで閾値電圧を違えることにより、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一側面は、一対の基板と、該一対の基板間に挟持された液晶層とを備える液晶表示装置であって、前記液晶層は、負の誘電率異方性を有し、前記一対の基板のうち少なくとも一方は、電極と、近接する液晶分子を垂直に配向させる配向膜と、少なくとも1種類の2官能モノマーの重合によって、前記配向膜の液晶層側の主面の一部に形成され、近接する液晶分子を配向制御するポリマー層とを有し、前記配向膜と液晶分子とが接する第1の配向領域と、前記ポリマー層と液晶分子とが接する第2の配向領域とが設けられた複数の画素を有し、前記第1の配向領域と前記第2の配向領域とは、閾値電圧が互いに異なる液晶表示装置である。
前記液晶表示装置においては、ポリマー層の材料として2官能モノマーを用いる。上記2官能モノマーとは、2つの反応性の官能基を有するモノマーであれば特に限定されない。反応性の官能基としては、二重結合等の不飽和結合を含む官能基が挙げられる。2官能モノマーを用いたポリマー層は、単官能モノマーを用いたポリマー層と比べて、(1)プレチルト角を充分に保持することができるので高い信頼性が得られる点、(2)重合速度を早くすることができるので、例えば光重合であれば露光時間を短くでき、生産性の向上、及び/又は、製造コストの低減が可能である点で優れている。また、2官能モノマーは、3つ以上の反応性の官能基を有する多官能モノマーと比べて、液晶への溶解性に優れており、ポリマー層を形成することが容易である。
前記垂直に配向制御させる配向膜とは、垂直配向モードの液晶表示を実現可能な配向膜を意味し、液晶分子を膜面に対して完全に垂直、すなわち90°に配向制御する配向膜だけでなく、液晶分子を膜面に対して実質的に垂直に配向制御する配向膜をも含む。実質的に垂直とは、80°以上を意味し、好ましくは85°以上を意味する。
前記閾値電圧とは、液晶層が光学的な変化を起こし、液晶表示装置において表示状態が変化することになる電場を生じる電圧値を意味する。
前記第1の配向領域の閾値電圧の差と、前記第2の配向領域の閾値電圧との差は、0.1V以上であることが好ましく、0.5V~1.5Vであることがより好ましい。
前記第1の配向領域と前記第2の配向領域とで閾値電圧を異ならせるためには、それぞれの配向領域における液晶分子のプレチルト角を異ならせることが挙げられる。また、それぞれの配向領域において、アンカリング強度を異ならせることによっても閾値電圧を異ならせることができる。図11は、プレチルト角の違いによるVT(電圧-透過率)曲線の変化を示す図である。図11に示す通り、プレチルト角が大きくなる程、閾値電圧は高くなる。
前記液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素によって特に限定されるものではない。
以下、前記液晶表示装置の好ましい形態について、更に詳しく説明する。
前記好ましい形態の一つとして、前記配向膜は、光反応性官能基を含む配向膜材料に偏光紫外光を照射することにより形成される形態が挙げられる(以下では、第一形態とも言う。)。偏光紫外光を用いることで、プレチルト角の調整を精度よく行うことができるため、第一形態の液晶表示装置を表示品位に優れた光配向タイプの液晶表示装置とすることができる。
第一形態において、前記光反応性官能基は、カルコン基、クマリン基、シンナメート基、アゾベンゼン基、及び、トラン基からなる群から選択された少なくとも1つであることが好ましい。このような光反応性官能基を有するモノマーを用いてポリマー層を形成すると、配向制御を精度よく行うことができるため、前記群に含まれる光反応性官能基は、偏光紫外光の照射により配向処理される配向膜を備える液晶表示装置に特に好適に用いることができる。
前記好ましい形態の一つとして、前記第1の配向領域中の液晶分子のプレチルト角と、前記第2の配向領域中の液晶分子のプレチルト角とが互いに異なる形態が挙げられる。前記第1の配向領域における液晶分子のプレチルト角と前記第2の配向領域における液晶分子のプレチルト角とを異ならせると、それぞれの配向領域の閾値電圧が異なることになるので、白抜けを抑制することができる。具体的には、前記第1の配向領域中の液晶分子のプレチルト角と、前記第2の配向領域中の液晶分子のプレチルト角との差が0.5°~15°程度であることが好ましい。また、第1の配向領域中の液晶分子のプレチルト角は、88.0°~88.5°であることが好ましく、第2の配向領域の液晶分子のプレチルト角は、73.0°~87.5°であることが好ましい。
前記第1の配向領域中の液晶分子のプレチルト角は、前記第2の配向領域中の液晶分子のプレチルト角よりも大きい値となることが好ましい。前記第1の配向領域中の液晶分子のプレチルト角は、90°に近いことから、前記第2の配向領域中の液晶分子のプレチルト角を前記第1の配向領域中の液晶分子のプレチルト角よりも大きくすると、前記第1の配向領域中の液晶分子のプレチルト角と、前記第2の配向領域中の液晶分子のプレチルト角との差を充分にとることができず、所望の閾値電圧の差が得られないおそれがある。
前記第2の配向領域の面積は、前記第1の配向領域の面積と前記第2の配向領域の面積との合計に比べ、30%より大きく、70%よりも小さいことが好ましい。前記第2の配向領域の面積が30%以下であると、前記第2の配向領域の面積に比べ、前記第1の配向領域の面積が大きくなりすぎるため、充分に白抜けを抑制することができなくなるおそれがある。逆に、前記第2の配向領域の面積が70%以上となると、前記第2の配向領域の面積に比べ、前記第1の配向領域の面積が小さくなりすぎるため、やはり充分に白抜けを抑制することができなくなるおそれがある。前記第1の配向領域の面積と前記第2の配向領域の面積とが実質的に等しくなることがより好ましく、具体的には、前記第2の配向領域は、前記第1の配向領域と前記第2の配向領域との合計に比べ、45%より大きく、55%よりも小さいことがより好ましい。
前記2官能モノマーは、以下の化学構造式で表されることが好ましい。
-A-(Z-A-P
(式中のP及びP(反応性の官能基)は、それぞれ独立に、アクリレート基、メタクリレート基、ビニル基、ビニロキシ基、又は、エポキシ基を表す。A及びAは、それぞれ独立に、1,4-フェニレン基、ナフタレン-2,6-ジイル基、アントラセン-2,6-ジイル基、又は、フェナントレン-2,7-ジイル基を表し、環構造に含まれる水素原子がハロゲン、メチル基、エチル基、又は、プロピル基で置換されていても良く、また複素環構造であっても良い。ZはCOO、OCO、O、CO、NHCO、CONH、若しくは、S、又は、AとA若しくはAとAとが直接結合していることを表す。nは0、1、又は、2である。)
前記2官能モノマーは、ジナフチルエーテル骨格を有するものであることが好ましい。ジナフチルエーテル骨格としては、下記化学式(1)~(4)で表されるようなジナフチルエーテル骨格が挙げられ、なかでも下記化学式(4)で表されるジメタクリルオキシジナフチルエーテルが好ましい。ジナフチルエーテル骨格を有する2官能モノマーにより形成されたポリマー層は、プレチルト角を小さくすることができる。更に、2官能モノマーの濃度を高くすることで、プレチルト角の変化量を大きくできる。その結果、白抜けを抑制するのに好適な角度に、第2の配向領域におけるプレチルト角を制御することが容易となり、第2の配向領域の閾値電圧を第1の配向領域の閾値電圧と異ならせ、白抜けを好適に抑制できるように調整することが可能となる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
本発明の他の側面は、一対の基板と、該一対の基板に挟持された負の誘電率異方性を有する液晶層とを備える液晶表示装置の製造方法であって、該製造方法は、前記一対の基板の少なくとも一方の基板に、電極を形成する工程と、近接する液晶分子を垂直に配向制御する配向膜を形成する工程と、前記配向膜の液晶側の主面の一部に、近接する液晶分子を配向制御するポリマー層を形成する工程とを有し、前記ポリマー層を形成する工程は、遮光部材により前記一対の基板の少なくとも一方の基板の一部を遮光し、かつ残りの部分を遮光しない状態で、光照射することで液晶層中に添加された2官能モノマーを重合させ、前記配向膜と液晶分子とが接する第1の配向領域と、前記ポリマー層と液晶分子とが接する第2の配向領域とを画素内に形成する工程であり、前記第1の配向領域と前記第2の配向領域とは、閾値電圧が互いに異なる液晶表示装置の製造方法でもある。
前記遮光部材は、例えば、1画素領域の一部を覆うように一方の基板上に形成される。前記遮光部材が形成された基板に向けて光が照射されることで、1画素領域において、前記遮光部材により遮光されない領域と、遮光される領域とが生じる。前記遮光されない領域において、光照射により2官能モノマーが重合され、前記ポリマー層が前記配向膜上に形成される。その結果、前記ポリマー層により液晶分子が配向制御される第2の配向領域が画素内に形成される。一方、前記遮光される領域においては、実質的に2官能モノマーは重合されない。その結果、前記配向膜により液晶分子が配向制御される第1の配向領域が形成される。前記ポリマー層、及び、前記配向膜の配向規制力はそれぞれ異なるため、前記第1の配向領域と前記第2の配向領域とは、閾値電圧が互いに異なることとなる。このように、前記液晶表示装置の製造方法によれば、前記液晶表示装置を好適に製造することができる。
前記液晶表示装置の製造方法の構成としては、このような構成要素及び工程を必須として形成されるものである限り、その他の構成要素及び工程により特に限定されるものではない。
前記液晶表示装置の製造方法における好ましい態様について以下に説明する。
前記2官能モノマーを重合させる工程は、前記配向膜で液晶分子のプレチルト角を制御し、遮光部材により画素内の一部を遮光し、かつ、前記液晶層に電圧を印加しない状態で光照射を行い、前記2官能モノマーを光重合させて前記ポリマー層を形成させる工程であり、前記第1の配向領域中の液晶分子のプレチルト角は、前記第2の配向領域中の液晶分子のプレチルト角よりも大きい値となるのが好ましい。この態様では、電圧印加が不要であるため、製造コストが高くなるのを抑制することができる。また、前記第1の配向領域中の液晶分子のプレチルト角と、前記第2の配向領域中の液晶分子のプレチルト角との差を所望の値とし、閾値電圧の差を所望の値とすることが容易となる。
前記遮光部材により遮光されない領域は、液晶が配向制御される全ての領域に比べ、30%より大きく、70%よりも小さいことが好ましい。前記第2の配向領域の体積が30%以下であると、前記第2の配向領域の体積に比べ、前記第1の配向領域の体積が大きくなりすぎるため、充分に白抜けを抑制することができなくなるおそれがある。逆に、前記第2の配向領域の体積が70%以上となると、前記第2の配向領域の体積に比べ、前記第1の配向領域の体積が小さくなりすぎるため、やはり充分に白抜けを抑制することができなくなるおそれがある。前記第1の配向領域の体積と前記第2の配向領域の体積とが実質的に等しくなることがより好ましい。具体的には、前記第2の配向領域は、前記第1の配向領域と前記第2の配向領域との合計に比べ、45%より大きく、55%よりも小さいことがより好ましい。
前記液晶表示装置によれば、基板に突起物を形成する必要がなく、MPDの配線等を設ける必要もなく、閾値電圧の異なる第1の配向領域と第2の配向領域とを形成することが可能であるため、白抜けを抑制しながら低コストでかつ高開口率である液晶表示装置を得ることができる。
実施形態1に係る液晶表示装置の重合工程前の断面模式図である。 実施形態1に係る液晶表示装置の重合工程後の断面模式図である。 実施形態1に係る液晶表示装置のアレイ基板の1画素領域において、遮光マスクを重ねて配置した状態を示す平面模式図である。 試験例1~3及び比較例1におけるプレチルト角の測定結果を示す図である。 実施形態2に係る液晶表示装置の重合工程前の断面模式図である。 実施形態2に係る液晶表示装置の重合工程後の断面模式図である。 試験例2、4及び5におけるプレチルト角の測定結果を示す図である。 従来の液晶表示装置における相対輝度と階調との関係を示す図である。 特許文献1に係る液晶表示装置の重合工程前の断面模式図である。 特許文献1に係る液晶表示装置の重合工程後の断面模式図である。 プレチルト角の違いによるVT(電圧-透過率)曲線の変化を示す図である。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
実施形態1
実施形態1においては、ポリマー層を形成するために1種類の2官能モノマーが用いられる。前記ポリマー層を以下では、PSA(Polymer Sustained Alignment)膜ともいう。実施形態1においてPSA膜を形成するために用いられる2官能モノマーの例としては、上記化学式(1)~(4)で表されるものが挙げられる。
以下、実施形態1に係る液晶表示装置について詳述する。図1は実施形態1に係る液晶表示装置の重合工程前の断面模式図であり、図2は実施形態1に係る液晶表示装置の重合工程後の断面模式図である。また、図1及び図2は、液晶表示装置の1画素領域の断面模式図でもある。図3は、実施形態1に係る液晶表示装置のアレイ基板の1画素領域において、遮光マスクを重ねて配置した状態を示す平面模式図である。図1及び図2に示すように実施形態1の液晶表示装置は、アレイ基板10、液晶層30及びカラーフィルタ基板20が、液晶表示装置の背面側から観察面側に向かって配置された液晶セルを備えている。アレイ基板10及びカラーフィルタ基板20からなる一対の基板間に挟持された液晶層30は、負の誘電率異方性を有する。アレイ基板10の背面側、及び、カラーフィルタ基板20の観察面側には、直線偏光板が備え付けられている。これらの直線偏光板に対しては、更に位相差板が配置され、円偏光板が構成されていてもよい。
図3に示すように、実施形態1の液晶表示装置において、複数の画素がマトリクス状又はデルタ状に配置されて1つの表示面を構成する。アレイ基板10は、ガラス等を材料とする絶縁性の透明基板11上に各種配線、薄膜トランジスタ(TFT)44等を備える。具体的には、図3に示すように、アレイ基板10は、複数のゲート配線45と補助容量(Cs)配線43とを有する。複数のゲート配線45と補助容量(Cs)配線43とは、相互に平行に伸びる。アレイ基板10は、更に、ゲート配線45及び補助容量(Cs)配線43と交差し、かつ相互に平行に伸びる複数のソース配線42と、ゲート配線45とソース配線42との各交差部近傍に設けられたTFT44とを有する。各画素(画素領域)には、実質的に矩形の形状を有する画素電極13が配置されている。
カラーフィルタ基板20は、ガラス等を材料とする絶縁性の透明基板21、及び、透明基板21上に形成された、共通電極23、カラーフィルタ、ブラックマトリクス等を備える。
画素電極13及び共通電極23の形成方法としては、スパッタ法、化学的気相成長(CVD:Chemical Vapor Deposition)法、蒸着法等が挙げられる。画素電極13については更にフォトリソグラフィー法を用いることで、例えば、スリットを有する形状や櫛歯状にパターニングすることができるが、画素電極13は、スリットを有する形状や櫛歯状にパターニングされず、画素領域内に形成された平板電極であってもよい。画素電極13及び共通電極23の材料としては、インジウム酸化スズ(ITO:Indium Tin Oxide)等の透明な金属酸化膜が好適に用いられる。
また、アレイ基板10は配向膜12を備え、カラーフィルタ基板20もまた配向膜22を備える。配向膜12、22は、垂直配向膜であり、液晶分子を実質的に垂直方向にプレチルト配向(初期傾斜)させることができる。配向膜12、22を形成するための配向膜材料は特に限定されず、例えば、溶媒に高分子材料を溶かしたものが用いられる。高分子材料としては、例えば、ポリイミド、ポリアミド、ポリビニル、ポリシロキサン等が挙げられる。前記高分子材料は、光反応性官能基を含むものであることが好ましい。光反応性官能基には、例えば、カルコン基、クマリン基、シンナメート基、アゾベンゼン基、トラン基等が挙げられる。
配向膜12、22の形成方法としては、例えば、配向膜材料を塗布した後に、ローラ等により溝を形成させ、配向膜を形成するラビング法等が挙げられる。また、光反応性官能基を含む配向膜材料を塗布した後に、光を照射し、光配向膜を形成する形成方法が挙げられる。このとき照射される光の種類は、光反応性官能基を反応させて配向機能を発現させることができるものであれば、特に限定されないが、例えば、偏光紫外線が好適である。
図1に示すように、2官能モノマー重合工程前において液晶層30中には、2官能モノマー5が存在している。また、透明基板21の外部側(液晶側の反対側)には、遮光マスク25が設けられており、1画素領域のおよそ半分を遮光する。そして、2官能モノマー重合工程において、無偏光紫外線が透明基板21の法線方向から照射される。このとき、画素電極13及び共通電極23を介して、液晶層30に電圧が印加されていてもよいが、製造コストを抑制する観点から、電圧は印加されないことが好ましい。無偏光紫外線の照射により、2官能モノマー5は重合を開始し、図2に示すように、配向膜12、22上の遮光されなかった領域にPSA層26が形成される。その結果、遮光マスク25によって遮光され、PSA層26が形成されず、配向膜12、22と液晶層30とが接する領域(第1の配向領域40)と、PSA層26が形成され、PSA層26と液晶層30とが接する領域(第2の配向領域41)とが形成される。PSA層26は、配向膜12、22のもつ配向規制力を変化させることから、第1の配向領域40と第2の配向領域41とは、配向規制力が互いに異なることとなり、その結果、閾値電圧が互いに異なることとなる。図1及び図2に記載の液晶表示装置において、電圧は印加されておらず、液晶分子は、実質的に垂直に配向されている。
第1の配向領域における閾値電圧は、第2の配向領域における閾値電圧よりも大きいことが好ましい。上述の通り、プレチルト角が大きくなる程、閾値電圧は高くなることから、第1の配向領域中の液晶分子のプレチルト角が、第2の配向領域中の液晶分子のプレチルト角よりも大きい値とすることが好ましい。また、第1の配向領域のアンカリング強度を第2の配向領域のアンカリング強度よりも強くすることによっても、第1の配向領域における閾値電圧を、第2の配向領域における閾値電圧よりも大きくすることができる。第1の配向領域における閾値電圧の好ましい範囲は、2.0V~2.5Vである。第2の配向領域における閾値電圧の好ましい範囲は、0.5V~2.0Vである。
遮光マスク25は、透明基板21上に密着して形成されていてもよく、透明基板21と離れて形成されていてもよい。また、遮光マスク25は、光を遮光するものであれば、特に限定されず、例えば、Cr又はAl等の金属から形成されていてもよく、樹脂から形成されていてもよい。
更に、図3を用いて、第1の配向領域と第2の配向領域について詳述する。
図3に示すように、遮光マスク25は、1画素領域の約半分を覆うように形成される。このとき、第2の配向領域が形成される前に、1画素領域内で、画素の長手方向に液晶分子の配向される方向が2分割されていれば、第2の配向領域が形成されることで、1画素内で液晶分子の配向方向は4つに分割されることとなる。更に、遮光マスク25の形状は、図3の例に限定されず、例えば、1画素領域の長手方向を二分するような形状であってもよいし、1画素領域内に市松模様に配されるような形状であってもよい。
以下、実施形態1に係る液晶表示装置に基づいて、第2の配向領域のみを有する液晶セルを作製し、プレチルト角を測定した試験例を示す。
液晶セルを振ってセナルモン法(Senarmont Method)によりリタデーションを測定し、クリスタルローテーション法を用いてフィッティングすることでプレチルト角を算出した。測定装置は、中央精機株式会社製のOMS-AF2を使用した。光源には、He-Neレーザー照射装置を用い、直線偏光のHe-Neレーザー光(波長632.8nm、出力2mW)を照射した。スポット径は1mm、温度は25℃で測定を行った。
試験例1
一対のガラス基板の片側の主面全体に電極を形成し、光反応性官能基であるシンナメート基を有するイミド化率50%のポリイミドを含有する配向膜材料をスピンコート法により塗布した。
塗布後、90℃で1分間仮乾燥を行い、続いて200℃で60分間焼成を行った。
次に、各ガラス基板の表面に対し、配向処理として偏光紫外線を照射し、垂直配向膜を形成した。垂直配向膜のプレチルト角は、88.1°~88.5°となった。
次に、一方のガラス基板にシールを塗布し、もう一方のガラス基板にビーズを散布した後、2枚のガラス基板の貼り合わせを行い、貼り合わせたガラス基板を0.5kgf/cmの圧力で加圧しながら、窒素パージした炉内において200℃で60分間加熱し、シールを硬化させた。
以上の方法で作製したセルに負の誘電率異方性を示す液晶を注入した。液晶中には、2官能モノマーである2,2’’-ジメタクリルオキシジナフチルエーテルを液晶組成物全体の0.3wt%となるように添加した。
次に、無偏光UV(0.33mW/cm)をガラス基板の主面の法線方向から4時間照射し、2官能モノマーの重合を行った。
試験例2
液晶中に、2官能モノマーである2,2’’-ジメタクリルオキシジナフチルエーテルを液晶組成物全体の0.6wt%となるように添加したこと以外は、試験例1と同様にして液晶セルを作製した。
試験例3
液晶中に、2,2’’-ジメタクリルオキシジナフチルエーテルを液晶組成物全体の0.3wt%となるように添加したことに替えて、4,4’-ジメタクリルオキシビフェニルを液晶組成物全体の0.3wt%となるように添加したこと以外は、試験例1と同様にして液晶セルを作製した。
比較例1
液晶中に、2官能モノマーを添加しなかったこと、及び、無偏光UVを照射しなかったこと以外は、試験例1と同様にして液晶セルを作製した。
試験例1~3及び比較例1に係る液晶表示装置におけるモノマー条件及び無偏光紫外線の照射条件を表1に示す。
Figure JPOXMLDOC01-appb-T000003
図4は、試験例1~3及び比較例1におけるプレチルト角の測定結果を示す図である。図4に示すように、2官能モノマーを添加しなかった比較例1においては、プレチルト角は、88.3°となった。一方、2官能モノマーである2,2’’-ジメタクリルオキシジナフチルエーテルを0.3wt%添加した試験例1においては、プレチルト角は、86.5°となった。また、2,2’’-ジメタクリルオキシジナフチルエーテルを0.6wt%添加した試験例2においては、プレチルト角は、82.6°となった。
以上から、2,2’’-ジメタクリルオキシジナフチルエーテルを重合させて形成されるPSA層は、配向膜に比べ、プレチルト角を小さくすることができ、更に、2,2’’-ジメタクリルオキシジナフチルエーテルの濃度を高くすることで、プレチルト角をより小さくできることが判明した。すなわち、2,2’’-ジメタクリルオキシジナフチルエーテルの濃度を調整することにより、第2の配向領域におけるプレチルト角を制御し、第2の配向領域の閾値電圧を調整できることが判明した。これにより、MPDのように画素毎に印加する電圧を変えることなく、全ての画素において印加する電圧を一定にしても、白抜けを好適に抑制し、コントラストを向上させることができる。その結果、コストを抑え、開口率を高めることが可能となる。
一方、4,4’-ジメタクリルオキシビフェニルのみを用いた試験例3においては、プレチルト角は、88.3°となり、0.3wt%程度添加した限りでは、比較例1と差は見られなかった。
実施形態2
実施形態2においては、PSA膜を形成するために2種類の2官能モノマーが用いられる。実施形態2においてPSA膜を形成するために用いられる光重合性モノマーの例としては、上記化学式(1)~(4)で表されるものの他、下記化学式(5)で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000004
以下、実施形態2に係る液晶表示装置について詳述する。実施形態1と共通する事項については、ここでの説明を省略する。図5は実施形態2に係る液晶表示装置の重合工程前の断面模式図であり、図6は実施形態2に係る液晶表示装置の重合工程後の断面模式図である。図5及び図6に示すように実施形態2の液晶表示装置は、2官能モノマーとして、2官能モノマー5に加え、更に、2官能モノマー6を添加し、PSA層27を形成すること以外は、実施形態1に係る液晶表示装置と同じである。
以下、実施形態2に係る液晶表示装置に基づいて、第2の配向領域のみを有する液晶セルを作製し、プレチルト角を測定した試験例を示す。
試験例4
液晶中に、2,2’’-ジメタクリルオキシジナフチルエーテルを液晶組成物全体の0.6wt%となるように添加したことに加えて、4,4’-ジメタクリルオキシビフェニルを液晶組成物全体の0.1wt%となるように添加したこと以外は、試験例2と同じ液晶セルを作製した。
試験例5
液晶中に、2,2’’-ジメタクリルオキシジナフチルエーテルを液晶組成物全体の0.6wt%となるように添加したことに加えて、4,4’-ジメタクリルオキシビフェニルを液晶組成物全体の0.3wt%となるように添加したこと以外は、試験例2と同じ液晶セルを作製した。4,4’-ジメタクリルオキシビフェニルは、メルク株式会社製のものを用いた。
試験例2、4及び5に係る液晶表示装置におけるモノマー条件及び無偏光紫外線の照射条件を表2に示す。試験例2、4及び5におけるプレチルト角の測定結果を図7に示す。
Figure JPOXMLDOC01-appb-T000005
図7に示すように、2,2’’-ジメタクリルオキシジナフチルエーテルのみを0.6wt%添加した試験例2においては、プレチルト角は、82.6°となった。一方、2,2’’-ジメタクリルオキシジナフチルエーテルを0.6wt%、4,4’-ジメタクリルオキシビフェニルを0.1wt%添加した試験例4においては、プレチルト角は、84.8°となった。また、2,2’’-ジメタクリルオキシジナフチルエーテルを0.6wt%、4,4’-ジメタクリルオキシビフェニルを0.3wt%添加した試験例5においては、プレチルト角は、88.0°となった。
試験例1及び2によれば、2,2’’-ジメタクリルオキシジナフチルエーテルの濃度を高くするほど、プレチルト角は小さくなった。一方、試験例4及び5によれば、2,2’’-ジメタクリルオキシジナフチルエーテルに加え、4,4’-ジメタクリルオキシビフェニルを添加すると、プレチルト角は大きくなり、90°に近くなった。4,4’-ジメタクリルオキシビフェニルの濃度を高くすることで、プレチルト角を90°に近づけることが可能となることが判明した。すなわち、2,2’’-ジメタクリルオキシジナフチルエーテル、及び、4,4’-ジメタクリルオキシビフェニルの濃度をそれぞれ調整することにより、第2の配向領域におけるプレチルト角を高精度で制御し、第2の配向領域の閾値電圧を精密に調整できることが判明した。これにより、MPDのように、画素毎に印加する電圧を変えることなく、全ての画素において印加する電圧を一定にしても、白抜けを好適に抑制し、コントラストを向上させることができる。その結果、コストを抑え、開口率を高めることが可能となる。
また、2,2’’-ジメタクリルオキシジナフチルエーテルのみを添加すると、無偏光紫外線の照射量に応じてプレチルト角は小さくなっていくが、2,2’’-ジメタクリルオキシジナフチルエーテルに加え、4,4’-ジメタクリルオキシビフェニルを添加するとプレチルト角が84°以下とならないことが判明した。これを利用してプレチルト角を好適に制御することが可能となる。
上述の各実施形態は、本発明の技術的思想を逸脱しない範囲でさまざまな変更が施されてもよい。以下に実施形態1及び2の変形例を示す。実施形態1及び2に係る液晶表示装置は、透過型、反射型及び反射透過両用型のいずれであってもよい。透過型又は反射透過両用型であれば、実施形態1の液晶表示装置は、更に、バックライトを備えている。バックライトは、液晶セルの背面側に配置され、アレイ基板10、液晶層30及びカラーフィルタ基板20の順に光が透過するように配置される。反射型又は反射透過両用型であれば、アレイ基板10は、外光を反射するための反射板を備える。また、少なくとも反射光を表示として用いる領域においては、カラーフィルタ基板20の偏光板は、円偏光板である必要がある。
実施形態1及び2に係る液晶表示装置は、カラーフィルタをアレイ基板10に備えるカラーフィルタオンアレイ(Color Filter On Array)の形態であってもよい。また、実施形態1及び2に係る液晶表示装置はモノクロディスプレイであってもよく、その場合、カラーフィルタは配置される必要はない。
なお、本願は、2010年11月11日に出願された日本国特許出願2010-253211号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。これらの出願の内容は、その全体が本願中に参照として組み込まれている。
4、104:液晶分子
5、6:2官能モノマー
10、110:アレイ基板
11、21:透明基板
12、22、112、122:配向膜
13:画素電極
23:共通電極
20、120:カラーフィルタ基板
25、125:遮光マスク
26、27:PSA層
30、130:液晶層
40:第1の配向領域
41:第2の配向領域
42:ソース配線
43:補助容量(CS)配線
44:TFT
45:ゲート配線
105:モノマー
113、123:電極
115:突起
126:第1のポリマー
127:第2のポリマー
 

Claims (12)

  1. 一対の基板と、該一対の基板間に挟持された液晶層とを備える液晶表示装置であって、
    前記液晶層は、負の誘電率異方性を有し、
    前記一対の基板のうち少なくとも一方は、電極と、近接する液晶分子を垂直に配向させる配向膜と、少なくとも1種類の2官能モノマーの重合によって、前記配向膜の液晶層側の主面の一部に形成され、近接する液晶分子を配向制御するポリマー層とを有し、
    前記配向膜と液晶分子とが接する第1の配向領域と、前記ポリマー層と液晶分子とが接する第2の配向領域とが設けられた複数の画素を有し、
    前記第1の配向領域と前記第2の配向領域とは、閾値電圧が互いに異なる
    ことを特徴とする液晶表示装置。
  2. 前記第1の配向領域中の液晶分子のプレチルト角と、前記第2の配向領域中の液晶分子のプレチルト角とが互いに異なることを特徴とする請求項1記載の液晶表示装置。
  3. 前記第1の配向領域中の液晶分子のプレチルト角は、前記第2の配向領域中の液晶分子のプレチルト角よりも大きい値となることを特徴とする請求項2記載の液晶表示装置。
  4. 前記配向膜は、光反応性官能基を含む配向膜材料に偏光紫外光を照射することにより形成されることを特徴とする請求項1~3のいずれかに記載の液晶表示装置。
  5. 前記光反応性官能基は、カルコン基、クマリン基、シンナメート基、アゾベンゼン基、及び、トラン基からなる群から選択された少なくとも1つであることを特徴とする請求項4記載の液晶表示装置。
  6. 前記第2の配向領域の面積は、前記第1の配向領域の面積と前記第2の配向領域の面積との合計に比べ、30%より大きく、70%よりも小さいことを特徴とする請求項1~5のいずれかに記載の液晶表示装置。
  7. 前記2官能モノマーは、以下の化学構造式で表されることを特徴とする請求項1~6のいずれかに記載の液晶表示装置。
    P1-A1-(Z1-A2)n-P2
    (式中のP1及びP2は、それぞれ独立に、アクリレート基、メタクリレート基、ビニル基、ビニロキシ基、又は、エポキシ基を表す。A1及びA2は、それぞれ独立に、1,4-フェニレン基、ナフタレン-2,6-ジイル基、アントラセン-2,6-ジイル基、又は、フェナントレン-2,7-ジイル基を表し、環構造に含まれる水素原子がハロゲン、メチル基、エチル基、又は、プロピル基で置換されていても良く、また複素環構造であっても良い。Z1はCOO、OCO、O、CO、NHCO、CONH、若しくは、S、又は、A1とA2若しくはA2とA2とが直接結合していることを表す。nは0、1、又は、2である。)
  8. 前記2官能モノマーは、ジナフチルエーテル骨格を有することを特徴とする請求項1~7のいずれかに記載の液晶表示装置。
  9. 前記2官能モノマーは、ジメタクリルオキシジナフチルエーテルであることを特徴とする請求項8記載の液晶表示装置。
  10. 一対の基板と、該一対の基板に挟持された負の誘電率異方性を有する液晶層とを備える液晶表示装置の製造方法であって、
    該製造方法は、前記一対の基板の少なくとも一方の基板に、電極を形成する工程と、近接する液晶分子を垂直に配向制御する配向膜を形成する工程と、前記配向膜の液晶側の主面の一部に、近接する液晶分子を配向制御するポリマー層を形成する工程とを有し、
    前記ポリマー層を形成する工程は、遮光部材により前記一対の基板の少なくとも一方の基板の一部を遮光し、かつ残りの部分を遮光しない状態で、光照射することで液晶層中に添加された2官能モノマーを重合させ、前記配向膜と液晶分子とが接する第1の配向領域と、前記ポリマー層と液晶分子とが接する第2の配向領域とを画素内に形成する工程であり、
    前記第1の配向領域と前記第2の配向領域とは、閾値電圧が互いに異なる
    ことを特徴とする液晶表示装置の製造方法。
  11. 前記2官能モノマーを重合させる工程は、前記配向膜で液晶分子のプレチルト角を制御し、遮光部材により画素内の一部を遮光し、かつ、前記液晶層に電圧を印加しない状態で光照射を行い、前記2官能モノマーを光重合させて前記ポリマー層を形成させる工程であり、
    前記第1の配向領域中の液晶分子のプレチルト角は、前記第2の配向領域中の液晶分子のプレチルト角よりも大きい値となることを特徴とする請求項10記載の液晶表示装置の製造方法。
  12. 前記遮光部材により遮光されない領域は、液晶が配向制御される全ての領域に比べ、30%より大きく、70%よりも小さいことを特徴とする請求項10又は11記載の液晶表示装置の製造方法。
PCT/JP2011/076057 2010-11-11 2011-11-11 液晶表示装置、及び、液晶表示装置の製造方法 WO2012063936A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010253211 2010-11-11
JP2010-253211 2010-11-11

Publications (1)

Publication Number Publication Date
WO2012063936A1 true WO2012063936A1 (ja) 2012-05-18

Family

ID=46051073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076057 WO2012063936A1 (ja) 2010-11-11 2011-11-11 液晶表示装置、及び、液晶表示装置の製造方法

Country Status (1)

Country Link
WO (1) WO2012063936A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626660A (zh) * 2012-08-23 2014-03-12 奇美电子股份有限公司 用于液晶层或配向层的感旋光性单体、使用其的液晶显示面板及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271900A (ja) * 1995-03-30 1996-10-18 Toshiba Corp 液晶表示装置
JP2002169161A (ja) * 2000-11-29 2002-06-14 Sharp Corp 液晶表示装置
JP2006267689A (ja) * 2005-03-24 2006-10-05 Sharp Corp 液晶表示装置の製造方法、及び液晶表示装置
JP2006343719A (ja) * 2005-06-08 2006-12-21 Au Optronics Corp 液晶ディスプレイパネルの製造方法
WO2010116565A1 (ja) * 2009-04-08 2010-10-14 シャープ株式会社 液晶表示装置、液晶表示装置の製造方法、光重合体膜形成用組成物、及び、液晶層形成用組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271900A (ja) * 1995-03-30 1996-10-18 Toshiba Corp 液晶表示装置
JP2002169161A (ja) * 2000-11-29 2002-06-14 Sharp Corp 液晶表示装置
JP2006267689A (ja) * 2005-03-24 2006-10-05 Sharp Corp 液晶表示装置の製造方法、及び液晶表示装置
JP2006343719A (ja) * 2005-06-08 2006-12-21 Au Optronics Corp 液晶ディスプレイパネルの製造方法
WO2010116565A1 (ja) * 2009-04-08 2010-10-14 シャープ株式会社 液晶表示装置、液晶表示装置の製造方法、光重合体膜形成用組成物、及び、液晶層形成用組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626660A (zh) * 2012-08-23 2014-03-12 奇美电子股份有限公司 用于液晶层或配向层的感旋光性单体、使用其的液晶显示面板及其制作方法

Similar Documents

Publication Publication Date Title
WO2010116565A1 (ja) 液晶表示装置、液晶表示装置の製造方法、光重合体膜形成用組成物、及び、液晶層形成用組成物
JP5184492B2 (ja) 液晶表示装置およびその製造方法
CN107037635B (zh) 液晶显示装置的制造方法
JP5198577B2 (ja) 配向膜、配向膜材料および配向膜を有する液晶表示装置ならびにその形成方法
TWI480651B (zh) 液晶顯示裝置及其製造方法
WO2010079703A1 (ja) 液晶表示装置及び液晶層形成用組成物
WO2010061491A1 (ja) 配向膜および配向膜を有する液晶表示装置ならびに配向膜の形成方法
JP5759565B2 (ja) 液晶表示装置
TWI519868B (zh) Liquid crystal display device
WO2007086474A1 (ja) 液晶表示装置の製造方法及び液晶表示装置
US20060250556A1 (en) Liquid crystal display device and manufacturing method therefor
JP2009139455A (ja) 垂直配向膜及びその製造方法、垂直配向基板及びその製造方法、並びに液晶表示素子
WO2012014803A1 (ja) 液晶表示装置およびその製造方法
JP2010032860A (ja) 配向膜及びその製造方法、配向基板及びその製造方法、並びに液晶表示素子
WO2012086715A1 (ja) 液晶配向剤、液晶表示装置、及び、液晶表示装置の製造方法
US11635660B2 (en) Liquid crystal display device and manufacturing method therefor
US10684513B2 (en) Liquid crystal display and production method therefor
WO2018101442A1 (ja) 液晶表示装置及びその製造方法
JP5323276B2 (ja) 液晶表示装置およびその製造方法
US20120013835A1 (en) Liquid crystal display apparatus
JP5107366B2 (ja) 液晶表示装置
JP4031658B2 (ja) 液晶表示装置
WO2021039219A1 (ja) 液晶表示装置
WO2012063936A1 (ja) 液晶表示装置、及び、液晶表示装置の製造方法
JP4553585B2 (ja) 表面の波状によって形成された多重領域効果を持つ液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP