WO2012063582A1 - Electrolyzed water producing device - Google Patents

Electrolyzed water producing device Download PDF

Info

Publication number
WO2012063582A1
WO2012063582A1 PCT/JP2011/073214 JP2011073214W WO2012063582A1 WO 2012063582 A1 WO2012063582 A1 WO 2012063582A1 JP 2011073214 W JP2011073214 W JP 2011073214W WO 2012063582 A1 WO2012063582 A1 WO 2012063582A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
flow rate
replacement time
electrolyzed water
mode
Prior art date
Application number
PCT/JP2011/073214
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 桑原
実 並松
裕二 平石
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012063582A1 publication Critical patent/WO2012063582A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention relates to an electrolyzed water generating device that generates raw water by electrolyzing raw water in an electrolytic cell.
  • Electrolyzed water generating devices that generate alkaline ionized water and acidic ionized water by electrolyzing raw water such as tap water in the electrolytic bath with the growing interest in safe water and health in recent years are widely used in general households It has become widespread.
  • a prefilter and a reverse osmosis membrane are provided in the inflow side of an electrolytic vessel, and pure water is obtained from tap water by making these pass through. After adding sodium chloride to the pure water to raise the conductivity, it is electrolyzed to obtain alkali ion water and acid ion water. Thereby, it is possible to generate the electrolyzed water after removing the organic matter and the colloid particles that become the cause of the deterioration of the electrolytic performance.
  • the present invention was made in order to solve the above-mentioned subject, and the object is to provide an electrolyzed water generating device which can prolong the life of a filtration part.
  • the electrolyzed water generating apparatus is an electrolyzed water generating apparatus for producing electrolytic water by electrolyzing it in an electrolytic cell after filtering water in a filtering section, and passing through the filtering section It has a bypass water channel for avoiding water, and a switching valve for switching the water channel to the filter side or the bypass water channel side according to the mode of use.
  • the electrolyzed water generating apparatus is an electrolyzed water generating apparatus for electrolyzing water in an electrolytic cell to generate electrolyzed water, and a bypass water channel for avoiding water flow to the electrolytic cell And a switching valve for switching the water channel to the electrolytic cell side or the bypass water channel side according to the mode of use.
  • generation apparatus which concerns on the 3rd aspect of this invention was provided with the backflow prevention valve which prevents the backflow to the said electrolytic vessel side from the connection part of the said bypass water channel and a water discharge port, It is characterized by the above-mentioned.
  • the electrolyzed water generating apparatus is characterized by comprising: a selection unit that selects the use mode; and a control unit that switches the switching valve based on the use mode selected by the selection unit. I assume.
  • An electrolyzed water generating apparatus comprises: a flow rate detection unit for detecting a flow rate during use; and a replacement time determination unit for determining replacement time of filter media based on the flow rate detected by the flow rate detection unit. And a replacement time display unit for displaying a replacement time according to the determination result of the replacement time determination unit.
  • the electrolyzed water generating apparatus includes an initial value storage unit for storing the flow rate detected by the flow rate detection unit at the time of initial water flow, and the replacement timing determination unit stores the initial value storage. The replacement time is determined by comparing the flow rate stored in the unit with the flow rate detected by the flow rate detection unit.
  • FIG. 1 is a block diagram of the electrolyzed water generating apparatus in 1st Embodiment, Comprising: (a) is a figure which shows the case of hand-washing mode, (b) is a figure which shows the case of electrolyzed water mode.
  • FIG. 2 is a block diagram of the electrolyzed water generating apparatus in 1st Embodiment, Comprising: (a) is a figure which shows the case of the purified water mode, (b) is a figure which shows the case of the electrolyzed water mode.
  • FIG. 1 is a block diagram of the electrolyzed water generating apparatus in 1st Embodiment, Comprising: (a) is a figure which shows the case of the purified water mode, (b) is a figure which shows the case of the electrolyzed water mode.
  • FIG. 1 is a block diagram of the electrolyzed water generating apparatus in 1st Embodiment, Comprising: (a) is a figure which shows the case
  • FIG. 3 is a block diagram of the electrolyzed water generating apparatus in 1st Embodiment, Comprising: (a) is a figure which shows the case of a soft water mode, (b) is a figure which shows the case of an electrolyzed water mode.
  • FIG. 4 is a diagram showing the correspondence between the switching valve installation place and the switching mode in the first embodiment.
  • FIG. 5 is a block diagram of the electrolyzed water generating apparatus in 2nd Embodiment.
  • FIG. 6 is a diagram for explaining the backflow prevention valve in the second embodiment, wherein (a) shows the time of forward water flow and (b) shows the time of reverse water flow.
  • FIG. 7 is a block diagram of the electrolyzed water generating apparatus in 3rd Embodiment.
  • FIG. 8 is a block diagram of an electrolyzed water generating apparatus according to a third embodiment.
  • FIG. 9 is a block diagram of the electrolyzed water generating apparatus in 3rd Embodiment.
  • FIG. 10 is a block diagram of an electrolyzed water generating apparatus according to a third embodiment.
  • FIG. 11 is a diagram for explaining control contents of the control unit in the third embodiment.
  • FIG. 12 is a block diagram of an electrolyzed water generating apparatus according to a fourth embodiment.
  • FIG. 13: is a block diagram of the electrolyzed water generating apparatus in 4th Embodiment.
  • FIG. 14 is a block diagram of an electrolyzed water generating apparatus according to a fourth embodiment.
  • FIG. 15 is a flowchart showing the replacement time determination procedure in the fourth embodiment.
  • FIG. 16 is a view showing a filter medium which can be used to determine the replacement time in the fourth embodiment.
  • FIG. 17 is a flowchart showing the replacement time determination procedure in the fourth embodiment.
  • FIG. 18A is a flowchart showing a replacement time determination procedure in the fourth embodiment.
  • FIG. 18B is a flowchart showing a replacement time determination procedure in the fourth embodiment.
  • FIG. 19 is a block diagram of the electrolyzed water generating apparatus in 5th Embodiment.
  • FIG. 20A is a flowchart showing a replacement time determination procedure in the fifth embodiment.
  • FIG. 20B is a flowchart showing a replacement time determination procedure in the fifth embodiment.
  • FIG.1, FIG.2, FIG.3 is a block diagram of the electrolyzed water generating apparatus in 1st Embodiment.
  • the electrolyzed water generating apparatus is an apparatus for electrolyzing water in an electrolytic cell to generate electrolyzed water, and the pre-filter 20 and the membrane filtration cartridge 30 (hereinafter collectively referred to as "filtering portion") are electrolyzed cells. It is equipped on the 40 inflow side.
  • the prefilter 20 is made of activated carbon, a hollow fiber membrane or the like.
  • the membrane filtration cartridge 30 internally comprises a reverse osmosis membrane or a nanofiltration membrane.
  • the electrolytic cell 40 is divided into two by a diaphragm 43 into a cathode chamber provided with a cathode 41 and an anode chamber provided with an anode 42.
  • Alkaline ionized water is produced as electrolytic water in the cathode chamber and acidic ionized water is produced in the anode chamber.
  • the electrolyzed water generating apparatus includes a bypass water passage 61 for avoiding water flow to the electrolytic cell 40 and the filtration unit, and the water passage is switched by the switching valve in accordance with the use mode.
  • the installation location of the switching valve is (1) between the raw water inlet 10 and the pre-filter 20, (2) between the pre-filter 20 and the membrane filtration cartridge 30, (3) the membrane filtration cartridge 30, and It may be at least one of the electrolytic cells 40.
  • a switching valve 74 is also installed in the connecting portion of the spout 50 and the bypass water channel 61.
  • the switching valve 71 is installed between the raw water inlet 10 and the prefilter 20.
  • the switching valve 71 is switched to the bypass water channel 61 side.
  • the raw water introduced from the raw water inlet 10 can be obtained from the water outlet 50.
  • the waterways indicated by stripes in the figure mean that there is no water flow (the same applies hereinafter).
  • the use mode is the electrolyzed water mode, as shown in FIG. 1B
  • the switching valve 71 is switched to the pre-filter 20 side.
  • the raw water introduced from the raw water inlet 10 can be filtered by the prefilter 20 and the membrane filtration cartridge 30 and electrolyzed in the electrolytic tank 40 to obtain electrolytic water from the water outlet 50.
  • the switching valve 72 is installed between the pre-filter 20 and the membrane filtration cartridge 30.
  • the use mode is the water purification mode
  • the switching valve 72 is switched to the bypass water channel 61 side.
  • the raw water introduced from the raw water inlet 10 can be filtered by the prefilter 20, and the purified water can be obtained from the water outlet 50.
  • the use mode is the electrolyzed water mode
  • the switching valve 72 is switched to the membrane filtration cartridge 30 side.
  • the raw water introduced from the raw water inlet 10 can be filtered by the prefilter 20 and the membrane filtration cartridge 30 and electrolyzed in the electrolytic tank 40 to obtain electrolytic water from the water outlet 50.
  • the switching valve 73 is installed between the membrane filtration cartridge 30 and the electrolytic cell 40.
  • the switching valve 73 is switched to the bypass water channel 61 side.
  • the raw water introduced from the raw water inlet 10 can be filtered by the prefilter 20 and the membrane filtration cartridge 30, and soft water can be obtained from the water outlet 50.
  • the switching valve 73 is switched to the electrolytic cell 40 side.
  • the raw water introduced from the raw water inlet 10 can be filtered by the prefilter 20 and the membrane filtration cartridge 30 and electrolyzed in the electrolytic tank 40 to obtain electrolytic water from the water outlet 50.
  • FIG. 5 is a block diagram of the electrolyzed water generating apparatus in 2nd Embodiment.
  • This electrolyzed water generating device is provided with a backflow prevention valve 75 for preventing backflow from the connection portion of the bypass water channel 61 and the water discharge port 50 to the electrolytic cell 40 side.
  • the other points are the same as in the first embodiment.
  • the non-return valve 75 for example, a spring type can be employed. At the time of forward water flow, as shown in FIG. 6A, the water channel opens and water flows by the spring 76 being contracted. On the other hand, when water flows in the reverse direction, as shown in FIG. 6 (b), the water channel is closed by water pressure and water does not flow. Thereby, it is possible to prevent the water passing through the bypass water channel 61 from flowing out to the electrolytic bath 40 side in the case of the hand washing mode etc., and the switching valve 74 is provided at the connection portion of the water outlet 50 and the bypass water channel 61. It is not necessary.
  • the backflow prevention valve 75 for preventing the backflow from the connection portion between the bypass water passage 61 and the water discharge port 50 to the electrolytic cell 40 side is provided. It is not necessary to provide the switching valve 74 in the connection part of the water port 50 and the bypass water channel 61, and the switching operation is also unnecessary.
  • the electrolyzed water generating apparatus includes a selection unit 81 which selects a use mode, and a control unit 82 which switches the switching valve based on the use mode selected by the selection unit 81.
  • the other points are the same as in the first embodiment.
  • the selection unit 81 is a button group or a display unit for selecting a use mode.
  • the "hand wash mode” is selected in FIG. 7, the "clean water mode” in FIG. 8, the “soft water mode” in FIG. 9, and the “electrolyzed water mode” in FIG.
  • the control unit 82 is a microprocessor or the like provided with a CPU, a program ROM, a work RAM, and an input / output interface.
  • the main control of the control unit 82 is realized by the CPU executing a program stored in the program ROM.
  • FIG. 11 is a diagram for explaining control contents of the control unit 82.
  • the control unit 82 sets the switching valve 71 to the bypass channel 61 side, the switching valve 72 to the membrane filtration cartridge 30 side, and the switching valve 73 to the electrolytic bath 40.
  • the switching valve 74 is switched to the bypass water channel 61 side.
  • the switching valve 71 is on the prefilter 20 side
  • the switching valve 72 is on the bypass water channel 61
  • the switching valve 73 is on the electrolytic tank 40
  • the switching valve 74 is on the bypass water channel 61.
  • the switching valve 71 is on the prefilter 20 side, the switching valve 72 on the membrane filtration cartridge 30 side, the switching valve 73 on the bypass water channel 61, and the switching valve 74 on the bypass water channel 61. Switch to the side.
  • the switching valve 71 is on the prefilter 20 side, the switching valve 72 on the membrane filtration cartridge 30 side, the switching valve 73 on the electrolytic cell 40 side, and the switching valve 74 on the electrolytic cell Switch to the 40 side.
  • the switching valve installed at the place where the water does not flow is switched to the direction other than the bypass water passage 61, the backflow of water can be prevented.
  • the switching valve 72 is switched to the membrane filtration cartridge 30 side and the switching valve 73 is switched to the electrolytic cell 40 side. ing.
  • the control unit 82 switches the switching valve based on the use mode selected by the selecting unit 81, so that the switching valve is automatically switched to an appropriate direction. be able to.
  • the switching valve installed at the place where the water does not flow is switched to a direction other than the bypass water passage 61, it is possible to prevent the backflow of water.
  • FIG.12, FIG.13, FIG.14 is a block diagram of the electrolyzed water generating apparatus in 4th Embodiment.
  • the electrolyzed water generating apparatus includes a flow rate detection unit 90 that detects a flow rate during use, a replacement time determination unit 83 that determines a filter medium replacement time based on the flow rate detected by the flow rate detection unit 90, and a replacement time determination unit 83 And a replacement time display unit 84 for displaying a replacement time in accordance with the determination result of the above.
  • the other points are the same as in the third embodiment.
  • One flow rate detector 90 may be provided downstream of the prefilter 20 as shown in FIG. 12, or one flow rate detector 90 may be provided downstream of the switching valve 74 as shown in FIG. Alternatively, as shown in FIG. 14, it may be provided in two places, the rear stage of the pre-filter 20 and the rear stage of the membrane filtration cartridge 30.
  • the flow rate detector 90 provided downstream of the prefilter 20 is referred to as a “flow rate detector 91”
  • the flow rate detector 90 provided downstream of the membrane filtration cartridge 30 is referred to as a flow rate detector 92.
  • the replacement time determination unit 83 holds in advance a determination value for determining the replacement time of each filter medium.
  • the replacement time determination unit 83 determines the replacement time by comparing the stored replacement time determination value with the flow rate detected by the flow rate detection unit 90 (hereinafter referred to as "detection value"), and the determination result Is displayed on the replacement time display section 84.
  • FIG. 15 is a flowchart showing the replacement timing determination procedure in the case where one flow rate detector 90 for detecting the instantaneous flow rate is provided.
  • the flow rate detection unit 90 is one, a filter medium for determining the replacement time is determined for the use mode, and the replacement time is determined by comparing the detected value with the replacement time determination value. Specifically, when in the water purification mode, the replacement time of the prefilter 20 is determined, and when in the soft water mode and the electrolyzed water mode, the replacement time of the membrane filtration cartridge 30 is determined (see FIG. 16).
  • step S1 when the water flow is started, the usage mode is confirmed, and in the case of the hand washing mode, the replacement time is not determined (step S1 ⁇ S2 ⁇ S21 ⁇ S22).
  • the detection value Q2 of the flow rate detection unit 90 is compared with the replacement timing judgment value B of the prefilter 20 (steps S3 ⁇ S13 ⁇ S14 ⁇ S15).
  • step S15 ⁇ S19 ⁇ S20 when the detected value Q2 is larger than the replacement time determination value B, it is determined that it is not replacement time (step S15 ⁇ S19 ⁇ S20), conversely, when the detected value Q2 is smaller than the replacement time determination value B It is determined that it is time to replace the filter 20, and a message to that effect is displayed on the replacement time display section 84 (steps S15 ⁇ S16 ⁇ S17 ⁇ S18). Furthermore, in the case of the soft water mode and the electrolyzed water mode, the detection value Q1 of the flow rate detection unit 90 is compared with the replacement timing determination value A of the membrane filtration cartridge 30 (steps S4 ⁇ S5 ⁇ S6 ⁇ S7).
  • step S7 ⁇ S11 ⁇ S12 when the detected value Q1 is larger than the replacement time determination value A, it is determined that it is not replacement time (steps S7 ⁇ S11 ⁇ S12), conversely, when the detected value Q1 is smaller than the replacement time determination value A It is determined that it is time to replace the filtration cartridge 30, and a message to that effect is displayed on the replacement time display section 84 (steps S7 ⁇ S8 ⁇ S9 ⁇ S10).
  • how to determine the replacement time determination values A and B is not particularly limited. For example, if the flow rate is lowered when the soft water mode or the electrolytic water mode is selected as compared with the water purification mode, it can be considered that the membrane filtration cartridge 30 is clogged. Therefore, even if the replacement timing determination value A of the membrane filtration cartridge 30 is determined based on the difference between the detection value Q2 of the flow rate detection unit 90 in the clean water mode and the detection value Q1 of the flow rate detection unit 90 in the soft water mode or the electrolyzed water mode. Good.
  • FIG. 17 is a flowchart showing the replacement time determination procedure in the case where one flow rate detection unit 90 for detecting the integrated flow rate is provided.
  • the integrated flow rate L2 of the prefilter 20 is detected in the water purification mode (step S44). Then, when integrated flow rate L2 is smaller than replacement time judgment value B of prefilter 20, it is judged that it is not replacement time (step S45 ⁇ S49), conversely, when integrated flow rate L2 is larger than replacement time judgment value B It is determined that it is time to replace the prefilter 20 (steps S45 to S46).
  • the integrated flow rate L1 of the prefilter 20 and the membrane filtration cartridge 30 is detected (step S36).
  • step S37 ⁇ S41 when the integrated flow rate L1 is smaller than the replacement time determination value A of the membrane filtration cartridge 30, it is determined that it is not the replacement time (step S37 ⁇ S41), conversely, the integrated flow rate L1 is larger than the replacement time determination value A It is determined that it is time to replace the membrane filtration cartridge 30 (step S37 ⁇ S38).
  • step S37 ⁇ S38 the other points are the same as in the case of detecting the instantaneous flow rate.
  • FIG. 18A and FIG. 18B are flowcharts showing a replacement timing determination procedure in the case where two flow rate detection units 90 for detecting the integrated flow rate are provided. If there are a plurality of flow rate detection units 90, filter media for determining the replacement time are determined for each flow rate detection unit 90, and the replacement time is determined by comparing each detected value with the replacement time determination value. The following description will be given on the assumption that the flow rate detection unit 90 is provided at two places, the rear stage of the prefilter 20 and the rear stage of the membrane filtration cartridge 30 (see FIG. 14).
  • the integrated flow rate L1 of the flow rate detection unit 91 is compared with the replacement time judgment value A of the prefilter 20 without judging the replacement time of the membrane filtration cartridge 30 (steps S63 ⁇ S78 ⁇ S79 ⁇ S80) . Then, when integrated flow rate L1 is smaller than replacement time judgment value A, it is judged that it is not replacement time (step S80 ⁇ S84), conversely, when integrated flow rate L1 is larger than replacement time judgment value A, pre-filter 20 It is judged that it is the replacement time of, and that effect is displayed on the replacement time display section 84 (steps S80 ⁇ S81 ⁇ S82).
  • the replacement time of the pre-filter 20 is determined in the same procedure as in the case of the water purification mode (steps S64 ⁇ S65 ⁇ S66 ⁇ S67).
  • the integrated flow rate L2 of the flow rate detection unit 92 is compared with the replacement time judgment value B of the membrane filtration cartridge 30 (step S69 ⁇ S70).
  • step S70 ⁇ S74 membrane filtration cartridge It is determined that it is time to replace the T.30, and a message to that effect is displayed on the replacement time display section 84 (steps S70 ⁇ S71 ⁇ S72).
  • the filter medium replacement time is determined based on the flow rate and the determination result is displayed. Therefore, the filter medium replacement time can be appropriately determined. It can notify the user automatically.
  • FIG. 19 is a block diagram of the electrolyzed water generating apparatus in 5th Embodiment.
  • the electrolyzed water generating device includes an initial value storage unit 85 that stores the flow rate detected by the flow rate detection unit 90 at the time of initial water flow.
  • the replacement time determination unit 83 compares the flow rate stored in the initial value storage unit 85 with the flow rate detected by the flow rate detection unit 90 to determine the replacement time.
  • the other points are the same as in the fourth embodiment.
  • the initial value storage unit 85 stores the flow rate (hereinafter referred to as "initial value") detected by the flow rate detection unit 90 at the time of initial water flow in each use mode. Since it is necessary to carry out the initial water flow under certain conditions, it is carried out by opening and closing the solenoid valve instead of the valve which the user can operate arbitrarily. It is the same as the fourth embodiment in that the replacement timing determination unit 83 holds in advance the replacement timing determination value (for example, when the flow rate is halved). After initial water flow, use normally.
  • FIGS. 20A and 20B are flowcharts showing a replacement timing determination procedure in the case where two flow rate detection units 90 for detecting an instantaneous flow rate are provided. The following description will be given on the assumption that the flow rate detection units 90 are provided at two positions, the rear stage of the prefilter 20 and the rear stage of the membrane filtration cartridge 30 (see FIG. 19).
  • the detection value Q1 of the flow rate detection unit 91 is compared with the replacement timing determination value A of the prefilter 20 (step S93 ⁇ S106) ⁇ S107 ⁇ S108). Then, when the detected value Q1 is larger than the replacement time determination value A, it is determined that it is not replacement time (step S108 ⁇ S112), conversely, when the detected value Q1 is smaller than the replacement time determination value A, the prefilter 20 is selected. It is judged that it is the replacement time of and the effect is displayed on the replacement time display section 84 (steps S108 ⁇ S109 ⁇ S110).
  • step S93 ⁇ S94 ⁇ S95 ⁇ S96 the detection value Q2 of the flow rate detection unit 92 and the replacement timing determination value B of the membrane filtration cartridge 30
  • step S96 ⁇ S100 it is determined that it is not replacement time
  • step S96 ⁇ S100 the membrane filtration cartridge It is determined that it is time to replace the T.30, and a message to that effect is displayed on the replacement time display section 84 (steps S96 ⁇ S97 ⁇ S98).
  • the filter medium replacement time is determined based on the flow rate detected at the time of initial water passage, and the determination result is displayed.
  • the timing of replacement can be determined in consideration of the influence of the environment (water pressure etc.).
  • the storage method of the initial value is not limited to this.
  • a mode for setting an initial value may be provided, and the value set by the user in this initial value setting mode may be stored in the initial value storage unit 85.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the integrated prefilter has been illustrated, when a plurality of prefilters are provided, a plurality of switching valves and bypass channels 61 can be provided accordingly.
  • the present invention is usefully applied to an electrolyzed water generating apparatus that requires prolonging the life of the filtration part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

This electrolyzed water producing device produces electrolyzed water by electrolyzing water in an electrolysis tank (40) after filtering by a filter unit, and is provided with: a bypass duct (61) for avoiding the passage of water to the filter unit; and a switch valve (71) that switches the water pathway to the bypass duct (61) side or the filter unit side in accordance with usage mode.

Description

電解水生成装置Electrolyzed water generator
 本発明は、原水を電解槽で電気分解して電解水を生成する電解水生成装置に関する。 TECHNICAL FIELD The present invention relates to an electrolyzed water generating device that generates raw water by electrolyzing raw water in an electrolytic cell.
 近年の安全な水や健康に対する関心の高まりに伴って、水道水等の原水を電解槽内で電気分解することでアルカリイオン水と酸性イオン水を生成する電解水生成装置が一般家庭にも広く普及するに至っている。例えば、特許文献1に開示される電解水生成装置では、電解槽の流入側にプレフィルタと逆浸透膜を設け、これらを経由させることで水道水から純水を得る。その純水に食塩を添加して導電率をUPさせた後、電気分解してアルカリイオン水と酸性イオン水を得る。これにより、電解性能低下の要因となる有機物やコロイド粒子を除去したうえで電解水を生成することが可能である。 Electrolyzed water generating devices that generate alkaline ionized water and acidic ionized water by electrolyzing raw water such as tap water in the electrolytic bath with the growing interest in safe water and health in recent years are widely used in general households It has become widespread. For example, in the electrolyzed water generating apparatus disclosed by patent document 1, a prefilter and a reverse osmosis membrane are provided in the inflow side of an electrolytic vessel, and pure water is obtained from tap water by making these pass through. After adding sodium chloride to the pure water to raise the conductivity, it is electrolyzed to obtain alkali ion water and acid ion water. Thereby, it is possible to generate the electrolyzed water after removing the organic matter and the colloid particles that become the cause of the deterioration of the electrolytic performance.
特開平7-284772号公報Japanese Patent Application Laid-Open No. 7-284772
 しかしながら、特許文献1に開示される電解水生成装置では、飲用に使用しないモード等においても水が全水路を通過するため、濾過部の寿命が短期化される問題があった。 However, in the electrolyzed water production | generation apparatus disclosed by patent document 1, since water passes all the waterways also in the mode etc. which are not used for drinking, there existed a problem by which the lifetime of a filtration part was shortened.
 本発明は上記課題を解決するためになされたものであり、その目的は、濾過部の寿命を長期化することのできる電解水生成装置を提供することである。 The present invention was made in order to solve the above-mentioned subject, and the object is to provide an electrolyzed water generating device which can prolong the life of a filtration part.
 本発明の第一の態様に係る電解水生成装置は、水を濾過部にて濾過後、電解槽で電気分解して電解水を生成する電解水生成装置であって、前記濾過部への通水を避けるためのバイパス水路と、使用モードに応じて前記濾過部側または前記バイパス水路側に水路を切り替える切替弁とを備える。 The electrolyzed water generating apparatus according to the first aspect of the present invention is an electrolyzed water generating apparatus for producing electrolytic water by electrolyzing it in an electrolytic cell after filtering water in a filtering section, and passing through the filtering section It has a bypass water channel for avoiding water, and a switching valve for switching the water channel to the filter side or the bypass water channel side according to the mode of use.
 本発明の第二の態様に係る電解水生成装置は、水を電解槽で電気分解して電解水を生成する電解水生成装置であって、前記電解槽への通水を避けるためのバイパス水路と、使用モードに応じて前記電解槽側または前記バイパス水路側に水路を切り替える切替弁とを備える。 The electrolyzed water generating apparatus according to the second aspect of the present invention is an electrolyzed water generating apparatus for electrolyzing water in an electrolytic cell to generate electrolyzed water, and a bypass water channel for avoiding water flow to the electrolytic cell And a switching valve for switching the water channel to the electrolytic cell side or the bypass water channel side according to the mode of use.
 本発明の第三の態様に係る電解水生成装置は、前記バイパス水路と吐水口の連結部から前記電解槽側への逆流を防止する逆流防止弁を備えたことを特徴とする。 The electrolyzed water production | generation apparatus which concerns on the 3rd aspect of this invention was provided with the backflow prevention valve which prevents the backflow to the said electrolytic vessel side from the connection part of the said bypass water channel and a water discharge port, It is characterized by the above-mentioned.
 本発明の第四の態様に係る電解水生成装置は、前記使用モードを選択する選択部と、前記選択部により選択された使用モードに基づき前記切替弁を切り替える制御部とを備えたことを特徴とする。 The electrolyzed water generating apparatus according to the fourth aspect of the present invention is characterized by comprising: a selection unit that selects the use mode; and a control unit that switches the switching valve based on the use mode selected by the selection unit. I assume.
 本発明の第五の態様に係る電解水生成装置は、使用時における流量を検出する流量検出部と、前記流量検出部により検出された流量に基づき濾材の交換時期を判断する交換時期判断部と、前記交換時期判断部の判断結果に対応して交換時期を表示する交換時期表示部とを備えたことを特徴とする。 An electrolyzed water generating apparatus according to a fifth aspect of the present invention comprises: a flow rate detection unit for detecting a flow rate during use; and a replacement time determination unit for determining replacement time of filter media based on the flow rate detected by the flow rate detection unit. And a replacement time display unit for displaying a replacement time according to the determination result of the replacement time determination unit.
 本発明の第六の態様に係る電解水生成装置は、初期通水時において前記流量検出部により検出された流量を記憶する初期値記憶部を備え、前記交換時期判断部が、前記初期値記憶部に記憶された流量と前記流量検出部により検出された流量とを比較して交換時期を判断することを特徴とする。 The electrolyzed water generating apparatus according to the sixth aspect of the present invention includes an initial value storage unit for storing the flow rate detected by the flow rate detection unit at the time of initial water flow, and the replacement timing determination unit stores the initial value storage. The replacement time is determined by comparing the flow rate stored in the unit with the flow rate detected by the flow rate detection unit.
図1は、第1実施形態における電解水生成装置の構成図であって、(a)は手洗いモードの場合を示す図、(b)は電解水モードの場合を示す図である。FIG. 1: is a block diagram of the electrolyzed water generating apparatus in 1st Embodiment, Comprising: (a) is a figure which shows the case of hand-washing mode, (b) is a figure which shows the case of electrolyzed water mode. 図2は、第1実施形態における電解水生成装置の構成図であって、(a)は浄水モードの場合を示す図、(b)は電解水モードの場合を示す図である。FIG. 2: is a block diagram of the electrolyzed water generating apparatus in 1st Embodiment, Comprising: (a) is a figure which shows the case of the purified water mode, (b) is a figure which shows the case of the electrolyzed water mode. 図3は、第1実施形態における電解水生成装置の構成図であって、(a)は軟水モードの場合を示す図、(b)は電解水モードの場合を示す図である。FIG. 3: is a block diagram of the electrolyzed water generating apparatus in 1st Embodiment, Comprising: (a) is a figure which shows the case of a soft water mode, (b) is a figure which shows the case of an electrolyzed water mode. 図4は、第1実施形態における切替弁設置場所と切替モードとの対応を示す図である。FIG. 4 is a diagram showing the correspondence between the switching valve installation place and the switching mode in the first embodiment. 図5は、第2実施形態における電解水生成装置の構成図である。FIG. 5: is a block diagram of the electrolyzed water generating apparatus in 2nd Embodiment. 図6は、第2実施形態における逆流防止弁を説明するための図であって、(a)は順方向通水時を示す図、(b)は逆方向通水時を示す図である。FIG. 6 is a diagram for explaining the backflow prevention valve in the second embodiment, wherein (a) shows the time of forward water flow and (b) shows the time of reverse water flow. 図7は、第3実施形態における電解水生成装置の構成図である。FIG. 7 is a block diagram of the electrolyzed water generating apparatus in 3rd Embodiment. 図8は、第3実施形態における電解水生成装置の構成図である。FIG. 8 is a block diagram of an electrolyzed water generating apparatus according to a third embodiment. 図9は、第3実施形態における電解水生成装置の構成図である。FIG. 9 is a block diagram of the electrolyzed water generating apparatus in 3rd Embodiment. 図10は、第3実施形態における電解水生成装置の構成図である。FIG. 10 is a block diagram of an electrolyzed water generating apparatus according to a third embodiment. 図11は、第3実施形態における制御部の制御内容を説明するための図である。FIG. 11 is a diagram for explaining control contents of the control unit in the third embodiment. 図12は、第4実施形態における電解水生成装置の構成図である。FIG. 12 is a block diagram of an electrolyzed water generating apparatus according to a fourth embodiment. 図13は、第4実施形態における電解水生成装置の構成図である。FIG. 13: is a block diagram of the electrolyzed water generating apparatus in 4th Embodiment. 図14は、第4実施形態における電解水生成装置の構成図である。FIG. 14 is a block diagram of an electrolyzed water generating apparatus according to a fourth embodiment. 図15は、第4実施形態における交換時期判断手順を示すフローチャートである。FIG. 15 is a flowchart showing the replacement time determination procedure in the fourth embodiment. 図16は、第4実施形態において交換時期判断できる濾材を示す図である。FIG. 16 is a view showing a filter medium which can be used to determine the replacement time in the fourth embodiment. 図17は、第4実施形態における交換時期判断手順を示すフローチャートである。FIG. 17 is a flowchart showing the replacement time determination procedure in the fourth embodiment. 図18Aは、第4実施形態における交換時期判断手順を示すフローチャートである。FIG. 18A is a flowchart showing a replacement time determination procedure in the fourth embodiment. 図18Bは、第4実施形態における交換時期判断手順を示すフローチャートである。FIG. 18B is a flowchart showing a replacement time determination procedure in the fourth embodiment. 図19は、第5実施形態における電解水生成装置の構成図である。FIG. 19 is a block diagram of the electrolyzed water generating apparatus in 5th Embodiment. 図20Aは、第5実施形態における交換時期判断手順を示すフローチャートである。FIG. 20A is a flowchart showing a replacement time determination procedure in the fifth embodiment. 図20Bは、第5実施形態における交換時期判断手順を示すフローチャートである。FIG. 20B is a flowchart showing a replacement time determination procedure in the fifth embodiment.
 以下、本発明の実施形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (第1実施形態)
 図1、図2、図3は、第1実施形態における電解水生成装置の構成図である。この電解水生成装置は、水を電解槽で電気分解して電解水を生成する装置であって、プレフィルタ20と膜濾過カートリッジ30(以下、一括して「濾過部」という。)を電解槽40の流入側に備えている。プレフィルタ20は、活性炭や中空糸膜等で構成されている。膜濾過カートリッジ30は、逆浸透膜またはナノ濾過膜を内部に備えている。電解槽40は、陰極41を備えた陰極室と陽極42を備えた陽極室とに隔膜43で2分されている。陰極室にはアルカリイオン水が、陽極室には酸性イオン水がそれぞれ電解水として生成される。ここで、本電解水生成装置は、電解槽40や濾過部への通水を避けるためのバイパス水路61を備え、使用モードに応じて切替弁で水路を切り替えるようになっている。切替弁の設置場所は、図4に示すように、(1)原水導入口10とプレフィルタ20の間、(2)プレフィルタ20と膜濾過カートリッジ30の間、(3)膜濾過カートリッジ30と電解槽40の間のうちの少なくとも1つであればよい。吐水口50とバイパス水路61の連結部分にも切替弁74を設置しておく。
First Embodiment
FIG.1, FIG.2, FIG.3 is a block diagram of the electrolyzed water generating apparatus in 1st Embodiment. The electrolyzed water generating apparatus is an apparatus for electrolyzing water in an electrolytic cell to generate electrolyzed water, and the pre-filter 20 and the membrane filtration cartridge 30 (hereinafter collectively referred to as "filtering portion") are electrolyzed cells. It is equipped on the 40 inflow side. The prefilter 20 is made of activated carbon, a hollow fiber membrane or the like. The membrane filtration cartridge 30 internally comprises a reverse osmosis membrane or a nanofiltration membrane. The electrolytic cell 40 is divided into two by a diaphragm 43 into a cathode chamber provided with a cathode 41 and an anode chamber provided with an anode 42. Alkaline ionized water is produced as electrolytic water in the cathode chamber and acidic ionized water is produced in the anode chamber. Here, the electrolyzed water generating apparatus includes a bypass water passage 61 for avoiding water flow to the electrolytic cell 40 and the filtration unit, and the water passage is switched by the switching valve in accordance with the use mode. The installation location of the switching valve is (1) between the raw water inlet 10 and the pre-filter 20, (2) between the pre-filter 20 and the membrane filtration cartridge 30, (3) the membrane filtration cartridge 30, and It may be at least one of the electrolytic cells 40. A switching valve 74 is also installed in the connecting portion of the spout 50 and the bypass water channel 61.
 まず、図1を用いて、(1)原水導入口10とプレフィルタ20の間に切替弁71を設置した場合について説明する。この場合、使用モードが手洗いモードのときは、図1(a)に示すように、切替弁71をバイパス水路61側に切り替える。これにより、原水導入口10から導入した原水を吐水口50から得ることができる。図中に縞模様で示す水路は通水がないことを意味している(以下、同様)。一方、使用モードが電解水モードのときは、図1(b)に示すように、切替弁71をプレフィルタ20側に切り替える。これにより、原水導入口10から導入した原水をプレフィルタ20と膜濾過カートリッジ30で濾過し、電解槽40で電気分解して吐水口50から電解水を得ることができる。 First, the case where the switching valve 71 is installed between the raw water inlet 10 and the prefilter 20 will be described with reference to FIG. In this case, when the use mode is the hand wash mode, as shown in FIG. 1A, the switching valve 71 is switched to the bypass water channel 61 side. Thereby, the raw water introduced from the raw water inlet 10 can be obtained from the water outlet 50. The waterways indicated by stripes in the figure mean that there is no water flow (the same applies hereinafter). On the other hand, when the use mode is the electrolyzed water mode, as shown in FIG. 1B, the switching valve 71 is switched to the pre-filter 20 side. As a result, the raw water introduced from the raw water inlet 10 can be filtered by the prefilter 20 and the membrane filtration cartridge 30 and electrolyzed in the electrolytic tank 40 to obtain electrolytic water from the water outlet 50.
 次に、図2を用いて、(2)プレフィルタ20と膜濾過カートリッジ30の間に切替弁72を設置した場合について説明する。この場合、使用モードが浄水モードのときは、図2(a)に示すように、切替弁72をバイパス水路61側に切り替える。これにより、原水導入口10から導入した原水をプレフィルタ20で濾過し、吐水口50から浄水を得ることができる。一方、使用モードが電解水モードのときは、図2(b)に示すように、切替弁72を膜濾過カートリッジ30側に切り替える。これにより、原水導入口10から導入した原水をプレフィルタ20と膜濾過カートリッジ30で濾過し、電解槽40で電気分解して吐水口50から電解水を得ることができる。 Next, the case where the switching valve 72 is installed between the pre-filter 20 and the membrane filtration cartridge 30 will be described with reference to FIG. In this case, when the use mode is the water purification mode, as shown in FIG. 2A, the switching valve 72 is switched to the bypass water channel 61 side. Thereby, the raw water introduced from the raw water inlet 10 can be filtered by the prefilter 20, and the purified water can be obtained from the water outlet 50. On the other hand, when the use mode is the electrolyzed water mode, as shown in FIG. 2B, the switching valve 72 is switched to the membrane filtration cartridge 30 side. As a result, the raw water introduced from the raw water inlet 10 can be filtered by the prefilter 20 and the membrane filtration cartridge 30 and electrolyzed in the electrolytic tank 40 to obtain electrolytic water from the water outlet 50.
 次に、図3を用いて、(3)膜濾過カートリッジ30と電解槽40の間に切替弁73を設置した場合について説明する。この場合、使用モードが軟水モードのときは、図3(a)に示すように、切替弁73をバイパス水路61側に切り替える。これにより、原水導入口10から導入した原水をプレフィルタ20と膜濾過カートリッジ30で濾過し、吐水口50から軟水を得ることができる。一方、使用モードが電解水モードのときは、図3(b)に示すように、切替弁73を電解槽40側に切り替える。これにより、原水導入口10から導入した原水をプレフィルタ20と膜濾過カートリッジ30で濾過し、電解槽40で電気分解して吐水口50から電解水を得ることができる。 Next, the case where the switching valve 73 is installed between the membrane filtration cartridge 30 and the electrolytic cell 40 will be described with reference to FIG. In this case, when the use mode is the soft water mode, as shown in FIG. 3A, the switching valve 73 is switched to the bypass water channel 61 side. Thereby, the raw water introduced from the raw water inlet 10 can be filtered by the prefilter 20 and the membrane filtration cartridge 30, and soft water can be obtained from the water outlet 50. On the other hand, when the use mode is the electrolyzed water mode, as shown in FIG. 3B, the switching valve 73 is switched to the electrolytic cell 40 side. As a result, the raw water introduced from the raw water inlet 10 can be filtered by the prefilter 20 and the membrane filtration cartridge 30 and electrolyzed in the electrolytic tank 40 to obtain electrolytic water from the water outlet 50.
 以上のように、第1実施形態における電解水生成装置によれば、使用モードに応じて濾過部への通水を避けることができるので、濾過部の寿命を長期化することができる。また、使用モードに応じて電解槽40への通水を避けることができるので、電解槽40の寿命も長期化することができる。 As mentioned above, according to the electrolyzed water generating apparatus in 1st Embodiment, since water flow to a filtration part can be avoided according to a use mode, lifetime of a filtration part can be prolonged. Moreover, since the water flow to the electrolytic cell 40 can be avoided according to a use mode, the lifetime of the electrolytic cell 40 can also be lengthened.
 (第2実施形態)
 図5は、第2実施形態における電解水生成装置の構成図である。この電解水生成装置は、バイパス水路61と吐水口50の連結部から電解槽40側への逆流を防止する逆流防止弁75を備えている。その他の点は第1実施形態と同様である。
Second Embodiment
FIG. 5: is a block diagram of the electrolyzed water generating apparatus in 2nd Embodiment. This electrolyzed water generating device is provided with a backflow prevention valve 75 for preventing backflow from the connection portion of the bypass water channel 61 and the water discharge port 50 to the electrolytic cell 40 side. The other points are the same as in the first embodiment.
 逆流防止弁75としては、例えばバネ式のものを採用することができる。順方向通水時は、図6(a)に示すように、バネ76が縮むことで水路が開き通水する。一方、逆方向通水時は、図6(b)に示すように、水圧で水路が閉鎖され、水が流れない。これにより、手洗いモード等の場合においてバイパス水路61を経由している水が電解槽40側へ流出することを防止することができ、吐水口50とバイパス水路61の連結部分に切替弁74を設けなくて済む。 As the non-return valve 75, for example, a spring type can be employed. At the time of forward water flow, as shown in FIG. 6A, the water channel opens and water flows by the spring 76 being contracted. On the other hand, when water flows in the reverse direction, as shown in FIG. 6 (b), the water channel is closed by water pressure and water does not flow. Thereby, it is possible to prevent the water passing through the bypass water channel 61 from flowing out to the electrolytic bath 40 side in the case of the hand washing mode etc., and the switching valve 74 is provided at the connection portion of the water outlet 50 and the bypass water channel 61. It is not necessary.
 以上のように、第2実施形態における電解水生成装置によれば、バイパス水路61と吐水口50の連結部から電解槽40側への逆流を防止する逆流防止弁75を備えているので、吐水口50とバイパス水路61の連結部分に切替弁74を設けなくて済み、切替操作も不要となる。 As described above, according to the electrolyzed water generating device in the second embodiment, the backflow prevention valve 75 for preventing the backflow from the connection portion between the bypass water passage 61 and the water discharge port 50 to the electrolytic cell 40 side is provided. It is not necessary to provide the switching valve 74 in the connection part of the water port 50 and the bypass water channel 61, and the switching operation is also unnecessary.
 (第3実施形態)
 図7、図8、図9、図10は、第3実施形態における電解水生成装置の構成図である。この電解水生成装置は、使用モードを選択する選択部81と、選択部81により選択された使用モードに基づき切替弁を切り替える制御部82とを備えている。その他の点は第1実施形態と同様である。
Third Embodiment
7, 8, 9 and 10 are configuration diagrams of the electrolyzed water generating device in the third embodiment. The electrolyzed water generating apparatus includes a selection unit 81 which selects a use mode, and a control unit 82 which switches the switching valve based on the use mode selected by the selection unit 81. The other points are the same as in the first embodiment.
 選択部81は、使用モードを選択するためのボタン群や表示部等である。図7では「手洗いモード」が、図8では「浄水モード」が、図9では「軟水モード」が、図10では「電解水モード」がそれぞれ選択されている。制御部82は、CPUとプログラムROMと作業用RAMと入出力インタフェースとを備えたマイクロプロセッサ等である。制御部82の主要な制御は、CPUがプログラムROMに格納されたプログラムを実行することにより実現される。 The selection unit 81 is a button group or a display unit for selecting a use mode. The "hand wash mode" is selected in FIG. 7, the "clean water mode" in FIG. 8, the "soft water mode" in FIG. 9, and the "electrolyzed water mode" in FIG. The control unit 82 is a microprocessor or the like provided with a CPU, a program ROM, a work RAM, and an input / output interface. The main control of the control unit 82 is realized by the CPU executing a program stored in the program ROM.
 図11は、制御部82の制御内容を説明するための図である。この図に示すように、制御部82は、「手洗いモード」が選択された場合、切替弁71をバイパス水路61側に、切替弁72を膜濾過カートリッジ30側に、切替弁73を電解槽40側に、切替弁74をバイパス水路61側に切り替える。また、「浄水モード」が選択された場合、切替弁71をプレフィルタ20側に、切替弁72をバイパス水路61側に、切替弁73を電解槽40側に、切替弁74をバイパス水路61側に切り替える。また、「軟水モード」が選択された場合、切替弁71をプレフィルタ20側に、切替弁72を膜濾過カートリッジ30側に、切替弁73をバイパス水路61側に、切替弁74をバイパス水路61側に切り替える。また、「電解水モード」が選択された場合、切替弁71をプレフィルタ20側に、切替弁72を膜濾過カートリッジ30側に、切替弁73を電解槽40側に、切替弁74を電解槽40側に切り替える。 FIG. 11 is a diagram for explaining control contents of the control unit 82. As shown in FIG. As shown in this figure, when the "hand wash mode" is selected, the control unit 82 sets the switching valve 71 to the bypass channel 61 side, the switching valve 72 to the membrane filtration cartridge 30 side, and the switching valve 73 to the electrolytic bath 40. On the other hand, the switching valve 74 is switched to the bypass water channel 61 side. When the “clean water mode” is selected, the switching valve 71 is on the prefilter 20 side, the switching valve 72 is on the bypass water channel 61, the switching valve 73 is on the electrolytic tank 40, and the switching valve 74 is on the bypass water channel 61. Switch to When the soft water mode is selected, the switching valve 71 is on the prefilter 20 side, the switching valve 72 on the membrane filtration cartridge 30 side, the switching valve 73 on the bypass water channel 61, and the switching valve 74 on the bypass water channel 61. Switch to the side. When the “electrolyzed water mode” is selected, the switching valve 71 is on the prefilter 20 side, the switching valve 72 on the membrane filtration cartridge 30 side, the switching valve 73 on the electrolytic cell 40 side, and the switching valve 74 on the electrolytic cell Switch to the 40 side.
 このように、水の流れない箇所に設置されている切替弁については、バイパス水路61ではない向きに切り替えるようにしているので水の逆流を防止することができる。例えば、「手洗いモード」では、切替弁72及び73が設置されている箇所は水が流れないが、切替弁72は膜濾過カートリッジ30側に、切替弁73は電解槽40側に切り替えるようになっている。 As described above, since the switching valve installed at the place where the water does not flow is switched to the direction other than the bypass water passage 61, the backflow of water can be prevented. For example, in the "hand wash mode", water does not flow through the locations where the switching valves 72 and 73 are installed, but the switching valve 72 is switched to the membrane filtration cartridge 30 side and the switching valve 73 is switched to the electrolytic cell 40 side. ing.
 以上のように、第3実施形態における電解水生成装置によれば、選択部81により選択された使用モードに基づき制御部82が切替弁を切り替えるので、切替弁を適切な向きへ自動的に切替えることができる。また、水の流れない箇所に設置されている切替弁については、バイパス水路61ではない向きに切り替えるようにしているので水の逆流を防止することができる。 As described above, according to the electrolyzed water generating apparatus in the third embodiment, the control unit 82 switches the switching valve based on the use mode selected by the selecting unit 81, so that the switching valve is automatically switched to an appropriate direction. be able to. In addition, since the switching valve installed at the place where the water does not flow is switched to a direction other than the bypass water passage 61, it is possible to prevent the backflow of water.
 (第4実施形態)
 図12、図13、図14は、第4実施形態における電解水生成装置の構成図である。この電解水生成装置は、使用時における流量を検出する流量検出部90と、流量検出部90により検出された流量に基づき濾材の交換時期を判断する交換時期判断部83と、交換時期判断部83の判断結果に対応して交換時期を表示する交換時期表示部84とを備えている。その他の点は第3実施形態と同様である。
Fourth Embodiment
FIG.12, FIG.13, FIG.14 is a block diagram of the electrolyzed water generating apparatus in 4th Embodiment. The electrolyzed water generating apparatus includes a flow rate detection unit 90 that detects a flow rate during use, a replacement time determination unit 83 that determines a filter medium replacement time based on the flow rate detected by the flow rate detection unit 90, and a replacement time determination unit 83 And a replacement time display unit 84 for displaying a replacement time in accordance with the determination result of the above. The other points are the same as in the third embodiment.
 流量検出部90は、図12に示すように、プレフィルタ20の後段に1個設けてもよいし、図13に示すように、切替弁74の後段に1個設けてもよい。あるいは、図14に示すように、プレフィルタ20の後段と膜濾過カートリッジ30の後段の2箇所に設けてもよい。以下の説明では、プレフィルタ20の後段に設けた流量検出部90を「流量検出部91」、膜濾過カートリッジ30の後段に設けた流量検出部90を「流量検出部92」という。交換時期判断部83は、各濾材の交換時期を判断するための判断値をあらかじめ保持している。この交換時期判断値としては、瞬時流量(L/分)や積算水量(L)等を採用することができる。交換時期判断部83は、保持している交換時期判断値と、流量検出部90により検出された流量(以下、「検出値」という。)とを比較して交換時期を判断し、その判断結果を交換時期表示部84に表示させる。 One flow rate detector 90 may be provided downstream of the prefilter 20 as shown in FIG. 12, or one flow rate detector 90 may be provided downstream of the switching valve 74 as shown in FIG. Alternatively, as shown in FIG. 14, it may be provided in two places, the rear stage of the pre-filter 20 and the rear stage of the membrane filtration cartridge 30. In the following description, the flow rate detector 90 provided downstream of the prefilter 20 is referred to as a “flow rate detector 91”, and the flow rate detector 90 provided downstream of the membrane filtration cartridge 30 is referred to as a flow rate detector 92. The replacement time determination unit 83 holds in advance a determination value for determining the replacement time of each filter medium. As the replacement time determination value, an instantaneous flow rate (L / min), an integrated water amount (L), or the like can be employed. The replacement time determination unit 83 determines the replacement time by comparing the stored replacement time determination value with the flow rate detected by the flow rate detection unit 90 (hereinafter referred to as "detection value"), and the determination result Is displayed on the replacement time display section 84.
 図15は、瞬時流量を検出する流量検出部90を1個設けた場合における交換時期判断手順を示すフローチャートである。流量検出部90が1個の場合は、使用モードに対して交換時期を判断する濾材を決め、検出値と交換時期判断値との比較により交換時期を判断する。具体的には、浄水モードのときはプレフィルタ20の交換時期を判断し、軟水モードと電解水モードのときは膜濾過カートリッジ30の交換時期を判断する(図16参照)。 FIG. 15 is a flowchart showing the replacement timing determination procedure in the case where one flow rate detector 90 for detecting the instantaneous flow rate is provided. When the flow rate detection unit 90 is one, a filter medium for determining the replacement time is determined for the use mode, and the replacement time is determined by comparing the detected value with the replacement time determination value. Specifically, when in the water purification mode, the replacement time of the prefilter 20 is determined, and when in the soft water mode and the electrolyzed water mode, the replacement time of the membrane filtration cartridge 30 is determined (see FIG. 16).
 まず、通水が開始されると使用モードを確認し、手洗いモードの場合は交換時期を判断しない(ステップS1→S2→S21→S22)。一方、浄水モードの場合は流量検出部90の検出値Q2とプレフィルタ20の交換時期判断値Bとを比較する(ステップS3→S13→S14→S15)。そして、検出値Q2が交換時期判断値Bよりも大きいときは交換時期ではないと判断し(ステップS15→S19→S20)、逆に、検出値Q2が交換時期判断値Bよりも小さいときはプレフィルタ20の交換時期であると判断して、その旨を交換時期表示部84に表示させる(ステップS15→S16→S17→S18)。さらに、軟水モードと電解水モードの場合は流量検出部90の検出値Q1と膜濾過カートリッジ30の交換時期判断値Aとを比較する(ステップS4→S5→S6→S7)。そして、検出値Q1が交換時期判断値Aよりも大きいときは交換時期ではないと判断し(ステップS7→S11→S12)、逆に、検出値Q1が交換時期判断値Aよりも小さいときは膜濾過カートリッジ30の交換時期であると判断して、その旨を交換時期表示部84に表示させる(ステップS7→S8→S9→S10)。 First, when the water flow is started, the usage mode is confirmed, and in the case of the hand washing mode, the replacement time is not determined (step S1 → S2 → S21 → S22). On the other hand, in the case of the water purification mode, the detection value Q2 of the flow rate detection unit 90 is compared with the replacement timing judgment value B of the prefilter 20 (steps S3 → S13 → S14 → S15). Then, when the detected value Q2 is larger than the replacement time determination value B, it is determined that it is not replacement time (step S15 → S19 → S20), conversely, when the detected value Q2 is smaller than the replacement time determination value B It is determined that it is time to replace the filter 20, and a message to that effect is displayed on the replacement time display section 84 (steps S15 → S16 → S17 → S18). Furthermore, in the case of the soft water mode and the electrolyzed water mode, the detection value Q1 of the flow rate detection unit 90 is compared with the replacement timing determination value A of the membrane filtration cartridge 30 (steps S4 → S5 → S6 → S7). Then, when the detected value Q1 is larger than the replacement time determination value A, it is determined that it is not replacement time (steps S7 → S11 → S12), conversely, when the detected value Q1 is smaller than the replacement time determination value A It is determined that it is time to replace the filtration cartridge 30, and a message to that effect is displayed on the replacement time display section 84 (steps S7 → S8 → S9 → S10).
 なお、交換時期判断値A、Bの決め方は特に限定されるものではない。例えば、浄水モードのときに比べて軟水モードや電解水モードにしたときに流量が低下すれば、膜濾過カートリッジ30の目詰まりが発生していると考えることができる。そこで、膜濾過カートリッジ30の交換時期判断値Aは、浄水モードにおける流量検出部90の検出値Q2と軟水モードや電解水モードにおける流量検出部90の検出値Q1との差分に基づいて決めてもよい。 Note that how to determine the replacement time determination values A and B is not particularly limited. For example, if the flow rate is lowered when the soft water mode or the electrolytic water mode is selected as compared with the water purification mode, it can be considered that the membrane filtration cartridge 30 is clogged. Therefore, even if the replacement timing determination value A of the membrane filtration cartridge 30 is determined based on the difference between the detection value Q2 of the flow rate detection unit 90 in the clean water mode and the detection value Q1 of the flow rate detection unit 90 in the soft water mode or the electrolyzed water mode. Good.
 図17は、積算流量を検出する流量検出部90を1個設けた場合における交換時期判断手順を示すフローチャートである。この場合、浄水モードではプレフィルタ20の積算流量L2を検出することになる(ステップS44)。そして、積算流量L2がプレフィルタ20の交換時期判断値Bよりも小さいときは交換時期ではないと判断し(ステップS45→S49)、逆に、積算流量L2が交換時期判断値Bよりも大きいときはプレフィルタ20の交換時期であると判断する(ステップS45→S46)。一方、軟水モードと電解水モードではプレフィルタ20及び膜濾過カートリッジ30の積算流量L1を検出することになる(ステップS36)。そして、積算流量L1が膜濾過カートリッジ30の交換時期判断値Aよりも小さいときは交換時期ではないと判断し(ステップS37→S41)、逆に、積算流量L1が交換時期判断値Aよりも大きいときは膜濾過カートリッジ30の交換時期であると判断する(ステップS37→S38)。その他の点は瞬時流量を検出する場合と同様である。 FIG. 17 is a flowchart showing the replacement time determination procedure in the case where one flow rate detection unit 90 for detecting the integrated flow rate is provided. In this case, the integrated flow rate L2 of the prefilter 20 is detected in the water purification mode (step S44). Then, when integrated flow rate L2 is smaller than replacement time judgment value B of prefilter 20, it is judged that it is not replacement time (step S45 → S49), conversely, when integrated flow rate L2 is larger than replacement time judgment value B It is determined that it is time to replace the prefilter 20 (steps S45 to S46). On the other hand, in the soft water mode and the electrolyzed water mode, the integrated flow rate L1 of the prefilter 20 and the membrane filtration cartridge 30 is detected (step S36). Then, when the integrated flow rate L1 is smaller than the replacement time determination value A of the membrane filtration cartridge 30, it is determined that it is not the replacement time (step S37 → S41), conversely, the integrated flow rate L1 is larger than the replacement time determination value A It is determined that it is time to replace the membrane filtration cartridge 30 (step S37 → S38). The other points are the same as in the case of detecting the instantaneous flow rate.
 図18A及び図18Bは、積算流量を検出する流量検出部90を2個設けた場合における交換時期判断手順を示すフローチャートである。流量検出部90が複数個の場合は、各々の流量検出部90に対して交換時期を判断する濾材を決め、それぞれの検出値と交換時期判断値との比較により交換時期を判断する。以下、プレフィルタ20の後段と膜濾過カートリッジ30の後段の2箇所に流量検出部90を設けた場合を想定して説明する(図14参照)。 FIG. 18A and FIG. 18B are flowcharts showing a replacement timing determination procedure in the case where two flow rate detection units 90 for detecting the integrated flow rate are provided. If there are a plurality of flow rate detection units 90, filter media for determining the replacement time are determined for each flow rate detection unit 90, and the replacement time is determined by comparing each detected value with the replacement time determination value. The following description will be given on the assumption that the flow rate detection unit 90 is provided at two places, the rear stage of the prefilter 20 and the rear stage of the membrane filtration cartridge 30 (see FIG. 14).
 浄水モードの場合は、膜濾過カートリッジ30の交換時期は判断せず、流量検出部91の積算流量L1とプレフィルタ20の交換時期判断値Aとを比較する(ステップS63→S78→S79→S80)。そして、積算流量L1が交換時期判断値Aよりも小さいときは交換時期ではないと判断し(ステップS80→S84)、逆に、積算流量L1が交換時期判断値Aよりも大きいときはプレフィルタ20の交換時期であると判断して、その旨を交換時期表示部84に表示させる(ステップS80→S81→S82)。 In the case of the water purification mode, the integrated flow rate L1 of the flow rate detection unit 91 is compared with the replacement time judgment value A of the prefilter 20 without judging the replacement time of the membrane filtration cartridge 30 (steps S63 → S78 → S79 → S80) . Then, when integrated flow rate L1 is smaller than replacement time judgment value A, it is judged that it is not replacement time (step S80 → S84), conversely, when integrated flow rate L1 is larger than replacement time judgment value A, pre-filter 20 It is judged that it is the replacement time of, and that effect is displayed on the replacement time display section 84 (steps S80 → S81 → S82).
 一方、軟水モードと電解水モードの場合は、浄水モードの場合と同様の手順でプレフィルタ20の交換時期を判断する(ステップS64→S65→S66→S67)。次いで、流量検出部92の積算流量L2と膜濾過カートリッジ30の交換時期判断値Bとを比較する(ステップS69→S70)。そして、積算流量L2が交換時期判断値Bよりも小さいときは交換時期ではないと判断し(ステップS70→S74)、逆に、積算流量L2が交換時期判断値Bよりも大きいときは膜濾過カートリッジ30の交換時期であると判断して、その旨を交換時期表示部84に表示させる(ステップS70→S71→S72)。 On the other hand, in the case of the soft water mode and the electrolyzed water mode, the replacement time of the pre-filter 20 is determined in the same procedure as in the case of the water purification mode (steps S64 → S65 → S66 → S67). Next, the integrated flow rate L2 of the flow rate detection unit 92 is compared with the replacement time judgment value B of the membrane filtration cartridge 30 (step S69 → S70). Then, when integrated flow rate L2 is smaller than replacement time judgment value B, it is judged that it is not replacement time (step S70 → S74), conversely, when integrated flow rate L2 is larger than replacement time judgment value B, membrane filtration cartridge It is determined that it is time to replace the T.30, and a message to that effect is displayed on the replacement time display section 84 (steps S70 → S71 → S72).
 以上のように、第4実施形態における電解水生成装置によれば、流量に基づき濾材の交換時期を判断してその判断結果を表示するようにしているので、適切なタイミングで濾材の交換時期を自動的に使用者へ知らせることができる。 As described above, according to the electrolyzed water generating apparatus of the fourth embodiment, the filter medium replacement time is determined based on the flow rate and the determination result is displayed. Therefore, the filter medium replacement time can be appropriately determined. It can notify the user automatically.
 (第5実施形態)
 図19は、第5実施形態における電解水生成装置の構成図である。この電解水生成装置は、初期通水時において流量検出部90により検出された流量を記憶する初期値記憶部85を備えている。交換時期判断部83は、初期値記憶部85に記憶された流量と流量検出部90により検出された流量とを比較して交換時期を判断する。その他の点は第4実施形態と同様である。
Fifth Embodiment
FIG. 19 is a block diagram of the electrolyzed water generating apparatus in 5th Embodiment. The electrolyzed water generating device includes an initial value storage unit 85 that stores the flow rate detected by the flow rate detection unit 90 at the time of initial water flow. The replacement time determination unit 83 compares the flow rate stored in the initial value storage unit 85 with the flow rate detected by the flow rate detection unit 90 to determine the replacement time. The other points are the same as in the fourth embodiment.
 初期値記憶部85は、各使用モードで初期通水時において流量検出部90により検出された流量(以下、「初期値」という。)を記憶する。初期通水は、一定の条件で行う必要があるため、使用者が任意に操作できるバルブではなく電磁弁の開閉等により行う。交換時期判断部83が交換時期判断値(例:流量が半分になったとき)をあらかじめ保持している点は第4実施形態と同様である。初期通水後は通常使用を行う。 The initial value storage unit 85 stores the flow rate (hereinafter referred to as "initial value") detected by the flow rate detection unit 90 at the time of initial water flow in each use mode. Since it is necessary to carry out the initial water flow under certain conditions, it is carried out by opening and closing the solenoid valve instead of the valve which the user can operate arbitrarily. It is the same as the fourth embodiment in that the replacement timing determination unit 83 holds in advance the replacement timing determination value (for example, when the flow rate is halved). After initial water flow, use normally.
 図20A及び図20Bは、瞬時流量を検出する流量検出部90を2個設けた場合における交換時期判断手順を示すフローチャートである。以下、プレフィルタ20の後段と膜濾過カートリッジ30の後段の2箇所に流量検出部90を設けた場合を想定して説明する(図19参照)。 FIGS. 20A and 20B are flowcharts showing a replacement timing determination procedure in the case where two flow rate detection units 90 for detecting an instantaneous flow rate are provided. The following description will be given on the assumption that the flow rate detection units 90 are provided at two positions, the rear stage of the prefilter 20 and the rear stage of the membrane filtration cartridge 30 (see FIG. 19).
 浄水モードの場合において、初期値記憶部85に初期値S1が記憶されているときは、流量検出部91の検出値Q1とプレフィルタ20の交換時期判断値Aとを比較する(ステップS93→S106→S107→S108)。そして、検出値Q1が交換時期判断値Aよりも大きいときは交換時期ではないと判断し(ステップS108→S112)、逆に、検出値Q1が交換時期判断値Aよりも小さいときはプレフィルタ20の交換時期であると判断して、その旨を交換時期表示部84に表示させる(ステップS108→S109→S110)。なお、初期値記憶部85に初期値S1が記憶されていないときは、検出値Q1を初期値S1として初期値記憶部85に記憶しておく(ステップS107→S114)。また、交換時期判断値Aを例えばA=S1÷2により算出して保持しておく(ステップS115)。 In the case of the water purification mode, when the initial value S1 is stored in the initial value storage unit 85, the detection value Q1 of the flow rate detection unit 91 is compared with the replacement timing determination value A of the prefilter 20 (step S93 → S106) → S107 → S108). Then, when the detected value Q1 is larger than the replacement time determination value A, it is determined that it is not replacement time (step S108 → S112), conversely, when the detected value Q1 is smaller than the replacement time determination value A, the prefilter 20 is selected. It is judged that it is the replacement time of and the effect is displayed on the replacement time display section 84 (steps S108 → S109 → S110). When the initial value S1 is not stored in the initial value storage unit 85, the detection value Q1 is stored in the initial value storage unit 85 as the initial value S1 (step S107 → S114). Further, the replacement time determination value A is calculated and held, for example, by A = S1 / 2 (step S115).
 一方、軟水モードと電解水モードの場合において、初期値記憶部85に初期値S2が記憶されているときは、流量検出部92の検出値Q2と膜濾過カートリッジ30の交換時期判断値Bとを比較する(ステップS93→S94→S95→S96)。そして、検出値Q2が交換時期判断値Bよりも大きいときは交換時期ではないと判断し(ステップS96→S100)、逆に、検出値Q2が交換時期判断値Bよりも小さいときは膜濾過カートリッジ30の交換時期であると判断して、その旨を交換時期表示部84に表示させる(ステップS96→S97→S98)。なお、初期値記憶部85に初期値S2が記憶されていないときは、検出値Q2を初期値S2として初期値記憶部85に記憶しておく(ステップS102)。また、交換時期判断値Bを例えばB=S2÷2により算出して保持しておく(ステップS103)。 On the other hand, when the initial value S2 is stored in the initial value storage unit 85 in the soft water mode and the electrolyzed water mode, the detection value Q2 of the flow rate detection unit 92 and the replacement timing determination value B of the membrane filtration cartridge 30 The comparison is made (steps S93 → S94 → S95 → S96). Then, when the detected value Q2 is larger than the replacement time determination value B, it is determined that it is not replacement time (step S96 → S100), conversely, when the detected value Q2 is smaller than the replacement time determination value B, the membrane filtration cartridge It is determined that it is time to replace the T.30, and a message to that effect is displayed on the replacement time display section 84 (steps S96 → S97 → S98). When the initial value S2 is not stored in the initial value storage unit 85, the detection value Q2 is stored in the initial value storage unit 85 as the initial value S2 (step S102). Further, the replacement time judgment value B is calculated and held, for example, by B = S2 / 2 (step S103).
 以上のように、第5実施形態における電解水生成装置によれば、初期通水時において検出された流量に基づき濾材の交換時期を判断してその判断結果を表示するようにしているので、使用環境(水圧等)の影響も考慮して交換時期を判断することができる。 As described above, according to the electrolyzed water generating apparatus of the fifth embodiment, the filter medium replacement time is determined based on the flow rate detected at the time of initial water passage, and the determination result is displayed. The timing of replacement can be determined in consideration of the influence of the environment (water pressure etc.).
 なお、ここでは、初期値が自動的に算出されて初期値記憶部85に記憶されることとしているが、初期値の記憶方法はこれに限定されるものではない。例えば、初期値を設定するためのモードを設け、この初期値設定モードにおいて使用者が設定した値を初期値記憶部85に記憶するようにしてもよい。 Here, although the initial value is automatically calculated and stored in the initial value storage unit 85, the storage method of the initial value is not limited to this. For example, a mode for setting an initial value may be provided, and the value set by the user in this initial value setting mode may be stored in the initial value storage unit 85.
 なお、以上では好適な実施形態について説明したが、本発明は前記実施形態に限定されず、種々の変形が可能である。例えば、一体型プレフィルタを例示したが、プレフィルタを複数設けた場合は、それに応じて切替弁やバイパス水路61を複数設けることもできる。 Although the preferred embodiment has been described above, the present invention is not limited to the above embodiment, and various modifications are possible. For example, although the integrated prefilter has been illustrated, when a plurality of prefilters are provided, a plurality of switching valves and bypass channels 61 can be provided accordingly.
 特願2010-251580号(出願日:2010年11月10日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2010-251580 (filing date: November 10, 2010) are incorporated herein by reference.
 本発明は、濾過部の寿命を長期化することが必要な電解水生成装置に適用するのが有用である。 The present invention is usefully applied to an electrolyzed water generating apparatus that requires prolonging the life of the filtration part.
 40 電解槽
 61 バイパス水路
 71、72、73、74 切替弁
 75 逆流防止弁
 81 選択部
 82 制御部
 83 交換時期判断部
 84 交換時期表示部
 85 初期値記憶部
 90、91、92 流量検出部
DESCRIPTION OF SYMBOLS 40 Electrolyzer 61 Bypass water channel 71, 72, 73, 74 Switching valve 75 Backflow prevention valve 81 Selection part 82 Control part 83 Replacement time judgment part 84 Replacement time display part 85 Initial value storage part 90, 91, 92 Flow rate detection part

Claims (6)

  1.  水を濾過部にて濾過後、電解槽で電気分解して電解水を生成する電解水生成装置であって、
     前記濾過部への通水を避けるためのバイパス水路と、
     使用モードに応じて前記濾過部側または前記バイパス水路側に水路を切り替える切替弁と、
     を備えたことを特徴とする電解水生成装置。
    It is an electrolyzed water generating apparatus which produces electrolyzed water by electrolyzing it in an electrolytic cell after filtering water in a filtration section,
    A bypass channel for avoiding water flow to the filter section;
    A switching valve that switches the water passage to the filter unit side or the bypass water passage side according to the mode of use;
    An electrolyzed water generating apparatus comprising:
  2.  水を電解槽で電気分解して電解水を生成する電解水生成装置であって、
     前記電解槽への通水を避けるためのバイパス水路と、
     使用モードに応じて前記電解槽側または前記バイパス水路側に水路を切り替える切替弁と、
     を備えたことを特徴とする電解水生成装置。
    An electrolyzed water generating apparatus that electrolyzes water in an electrolytic cell to produce electrolyzed water,
    A bypass channel to avoid water flow to the electrolytic cell;
    A switching valve for switching the water channel to the electrolytic bath side or the bypass water channel side according to the mode of use;
    An electrolyzed water generating apparatus comprising:
  3.  前記バイパス水路と吐水口の連結部から前記電解槽側への逆流を防止する逆流防止弁を備えたことを特徴とする請求項1または2に記載の電解水生成装置。 The backflow prevention valve which prevents the backflow to the said electrolytic vessel side from the connection part of the said bypass water channel and a water discharge port was provided, The electrolyzed water generating apparatus of Claim 1 or 2 characterized by the above-mentioned.
  4.  前記使用モードを選択する選択部と、前記選択部により選択された使用モードに基づき前記切替弁を切り替える制御部とを備えたことを特徴とする請求項1から3のいずれか一項に記載の電解水生成装置。 The control apparatus according to any one of claims 1 to 3, further comprising: a selection unit that selects the use mode; and a control unit that switches the switching valve based on the use mode selected by the selection unit. Electrolyzed water generator.
  5.  使用時における流量を検出する流量検出部と、前記流量検出部により検出された流量に基づき濾材の交換時期を判断する交換時期判断部と、前記交換時期判断部の判断結果に対応して交換時期を表示する交換時期表示部とを備えたことを特徴とする請求項1から4のいずれか一項に記載の電解水生成装置。 A flow rate detection unit that detects a flow rate during use, a replacement time determination unit that determines a filter medium replacement time based on the flow rate detected by the flow rate detection unit, and a replacement time according to the determination result of the replacement time determination unit The electrolyzed water production | generation apparatus as described in any one of Claim 1 to 4 provided with the replacement time display part which displays.
  6.  初期通水時において前記流量検出部により検出された流量を記憶する初期値記憶部を備え、
     前記交換時期判断部は、前記初期値記憶部に記憶された流量と前記流量検出部により検出された流量とを比較して交換時期を判断することを特徴とする請求項5に記載の電解水生成装置。
    It has an initial value storage unit that stores the flow rate detected by the flow rate detection unit at the time of initial water flow,
    The electrolyzed water according to claim 5, wherein the replacement time determination unit determines the replacement time by comparing the flow rate stored in the initial value storage unit with the flow rate detected by the flow rate detection unit. Generator.
PCT/JP2011/073214 2010-11-10 2011-10-07 Electrolyzed water producing device WO2012063582A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010251580A JP2012101173A (en) 2010-11-10 2010-11-10 Electrolyzed water producing device
JP2010-251580 2010-11-10

Publications (1)

Publication Number Publication Date
WO2012063582A1 true WO2012063582A1 (en) 2012-05-18

Family

ID=46050735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073214 WO2012063582A1 (en) 2010-11-10 2011-10-07 Electrolyzed water producing device

Country Status (3)

Country Link
JP (1) JP2012101173A (en)
TW (1) TW201219434A (en)
WO (1) WO2012063582A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008463A (en) * 2012-06-29 2014-01-20 Mitsubishi Rayon Co Ltd Water purification system
CN104649378B (en) 2013-11-18 2018-12-07 松下知识产权经营株式会社 Liquid handling device and method for treating liquids
KR101700932B1 (en) * 2015-05-08 2017-02-01 주식회사 금산 water purifier directiy connected to faucet
JP2017100108A (en) * 2015-12-04 2017-06-08 株式会社日本トリム Electrolytic water generator
JP2017176926A (en) * 2016-03-28 2017-10-05 株式会社日本トリム Electrolytic water generator
JP6769601B2 (en) * 2016-07-28 2020-10-14 株式会社ミヤサカ工業 Water purification equipment
JP7311352B2 (en) * 2019-08-08 2023-07-19 マクセル株式会社 Water supply device and water information collection system
WO2020255750A1 (en) * 2019-06-19 2020-12-24 マクセルホールディングス株式会社 Water purification cartridge, water supply device, water supply device management system, and water information collection system
JP7311351B2 (en) * 2019-08-08 2023-07-19 マクセル株式会社 Water supply equipment and water supply equipment management system
KR20230002857A (en) * 2020-06-10 2023-01-05 디아이씨 가부시끼가이샤 Resistivity value adjustment device and specific resistance value adjustment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574692U (en) * 1991-05-17 1993-10-12 エムケー精工株式会社 Water purifier
JPH09141248A (en) * 1995-11-20 1997-06-03 Brother Ind Ltd Water treating device
JPH1142473A (en) * 1997-07-25 1999-02-16 Brother Ind Ltd Water treating device
JP2002168522A (en) * 2000-11-29 2002-06-14 Noritz Corp High temperature hot water cleaning system
JP2005349302A (en) * 2004-06-10 2005-12-22 Hoshizaki Electric Co Ltd Electrolytic water generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574692U (en) * 1991-05-17 1993-10-12 エムケー精工株式会社 Water purifier
JPH09141248A (en) * 1995-11-20 1997-06-03 Brother Ind Ltd Water treating device
JPH1142473A (en) * 1997-07-25 1999-02-16 Brother Ind Ltd Water treating device
JP2002168522A (en) * 2000-11-29 2002-06-14 Noritz Corp High temperature hot water cleaning system
JP2005349302A (en) * 2004-06-10 2005-12-22 Hoshizaki Electric Co Ltd Electrolytic water generator

Also Published As

Publication number Publication date
JP2012101173A (en) 2012-05-31
TW201219434A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
WO2012063582A1 (en) Electrolyzed water producing device
CN105948176B (en) Electrolyzed water generation device
US7972493B2 (en) Filter wash for chloralkali process
JP5417301B2 (en) Water treatment equipment
CN104891699A (en) Water purifier with raw water utilization rate monitoring and filter element replacement alarming functions
KR20130142878A (en) Electrolyzed water generator
JP5135385B2 (en) Electrolyzed water generator
KR100687789B1 (en) Electrolytic cell, ion water purifier employing the same, and method for cleaning electrolytic cell
JP6126635B2 (en) Electrolyzed water generator
JP2010221127A (en) Electrolytic water generator having piping washing function
WO2013183141A1 (en) Electrolyzed water generator
CN107456872B (en) Reverse osmosis water purifier and reverse osmosis water purifier control method
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP5002681B2 (en) Electrolyzed water generator
JP2010119990A (en) Apparatus for generating electrolytic water
JP4590668B2 (en) Water reformer
JP5102553B2 (en) Electrolyzed water generator
JP5019422B2 (en) Domestic water supply method and apparatus
WO2012132600A1 (en) Electrolyzed water generation device
JP6276790B2 (en) Electrolyzed water generating device, dialysate preparation water manufacturing apparatus using the same, and electrolyzed water generating method
JP3991995B2 (en) Electrolyzed water generator
JP2008178771A (en) Electrolytic water generator
JP3991994B2 (en) Electrolyzed water generator
JPWO2017138048A1 (en) Electrolyzed water generator
JP3733476B2 (en) Cleaning method for continuous electrolyzed water generating device and continuous electrolyzed water generating device provided with mechanism for carrying out this method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840524

Country of ref document: EP

Kind code of ref document: A1