WO2012061909A1 - Composição combustível baseada em alcoóis de quatro átomos de carbono e aditivos para motores de ciclo diesel - Google Patents

Composição combustível baseada em alcoóis de quatro átomos de carbono e aditivos para motores de ciclo diesel Download PDF

Info

Publication number
WO2012061909A1
WO2012061909A1 PCT/BR2011/000284 BR2011000284W WO2012061909A1 WO 2012061909 A1 WO2012061909 A1 WO 2012061909A1 BR 2011000284 W BR2011000284 W BR 2011000284W WO 2012061909 A1 WO2012061909 A1 WO 2012061909A1
Authority
WO
WIPO (PCT)
Prior art keywords
butanol
diesel
mixture
fuel
compression
Prior art date
Application number
PCT/BR2011/000284
Other languages
English (en)
French (fr)
Inventor
Jose Antonio Fabre
Original Assignee
Falquete, Marco Antonio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BRPI1004630A priority Critical patent/BRPI1004630B1/pt
Application filed by Falquete, Marco Antonio filed Critical Falquete, Marco Antonio
Priority to US13/816,364 priority patent/US9315749B2/en
Priority to AP2013006723A priority patent/AP2013006723A0/xx
Priority to SE1350297A priority patent/SE1350297A1/sv
Publication of WO2012061909A1 publication Critical patent/WO2012061909A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/23Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites
    • C10L1/231Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites nitro compounds; nitrates; nitrites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/1811Organic compounds containing oxygen peroxides; ozonides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • C10L1/1883Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom polycarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • C10L1/2225(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2227Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond urea; derivatives thereof; urethane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • C10L1/233Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring containing nitrogen and oxygen in the ring, e.g. oxazoles
    • C10L1/2335Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring containing nitrogen and oxygen in the ring, e.g. oxazoles morpholino, and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to the compression-initiating liquid energy source for the purpose of providing a diesel cycle fuel that can be produced by biotechnology methods from a renewable biological source, including available sugar or material fermentation processes.
  • a diesel cycle fuel that can be produced by biotechnology methods from a renewable biological source, including available sugar or material fermentation processes.
  • the fuel obtained can be used conventionally as a diesel oil substitute in urban or road transport vehicles and be an alternative option to diesel oil used in sugarcane plants, which reduces fossil carbon emissions.
  • Diesel cycle engines are generally 30% more efficient at converting thermal energy to mechanical energy than Otto cycle engines of the same power. For this reason, they are widely used in trucks, buses, construction machinery, agricultural machinery, generators. electricity, irrigation motor pumps, automobiles, etc.
  • Modern diesel engines used mainly in passenger cars, have low emission of harmful gases. Compared to Otto engines of equivalent power, they have a reduction in carbon dioxide emissions, precisely due to the higher efficiency of energy conversion.
  • the vast majority of existing diesel engines use diesel fuel, a fossil fuel that contributes to the greenhouse effect and presents emissions of harmful and polluting products, mainly particulate matter, nitrogen oxides and sulfur derivatives.
  • biofuels which have a production cycle in which at least part of the carbon emitted during the burning of a biofuel is recovered by the biological growth process, usually by capture of atmospheric carbon in the photosynthesis process.
  • Production cycles add carbon at various stages of the biofuel manufacturing process, in particular through the consumption of fossil diesel in agricultural machinery, trucks, and irrigation motor pumps.
  • the production cycle of sugarcane ethanol for example, is one of the most efficient in carbon capture, but it uses diesel oil intensively. It is an object of this invention to provide a diesel cycle fuel that can be produced by biotechnology methods, including the fermentation processes of sugars or materials available in sugar and alcohol plants.
  • fuel may be an alternative option to diesel oil used in sugar and alcohol plants, which reduces the emission of fossil carbon in the sugar and alcohol production cycle.
  • Ethanol is used in engines with spark ignition (Otto cycle), either as a component mixed with gasoline or as a relatively pure fuel.
  • Ethanol has a high octane rating, ie suitable anti-detonator characteristic for spark ignition. In this way you can give the proper octane rating to gasoline in place of the toxic compound tetraethyl lead.
  • ethanol is anhydrous as the presence of water prevents stable mixing with gasoline.
  • ethanol is hydrated.
  • Ethanol is used in many countries mixed with gasoline, reaching in Europe and the United States representing 85% of the mixture with gasoline (E85). In Brazil, pure hydrated alcohol is widely used.
  • Another common technology is the blending with hydrous ethanol of additives capable of increasing the explosiveness of ethanol to allow its compression ignition.
  • 2-EHN and organic peroxides are conventionally used to increase the explosiveness of diesel oil, but not to add ethanol because their curves of added content x increased number of ketones tends to be asymptotic after 8% but not as high. ketones number of 42 required for proper ignition of diesel oil or hydrous ethanol.
  • nitrates have stability problems (acid or alkaline hydrolysis), especially in the presence of water. Hydrated ethanol, due to its water content, tends to hydrolyze, generating free acid that increases with the storage period. It presents corrosion of the injector nozzles. Even in nitrate-free media, durability is reduced by the presence of water vapor near the nozzle and exhaust valves. For this reason, maintenance of hydrous ethanol systems has reduced time compared to diesel oil systems. Scania Maintenance Manual for BEST Project Buses Indicates Change nozzles every 22,000 km, while nozzle changes in diesel systems occur every 120,000 km.
  • CN 101580743 discloses a diesel or gasoline fuel composed of a mixture of combustible materials, tar, and solvents derived from industrial or organic waste, 10-50% alcohols or mixtures which may include butanol, 10-15% butanol, isopropanol , d-tert-butyl-p-cresol or mixtures thereof, 10-25% ring-diene iron, or kerosene, solvent oil, mineral oil, lubricating oil, vegetable oil or mixtures thereof.
  • This patent does not substantially employ butanol as the main fuel.
  • CN 101402887 deals with a substantially ethanol (75 to 90%) compound to act as low temperature diesel oil, containing, among other compounds, 2 to 10% butanol or isobutanol. Butanol basically acts as a co-solvent for the various compounds.
  • CN 101376848 describes an ethanol-diesel mixture with a ratio of 60-85% diesel oil. Butanol is used at between 0.5 and 1.5% as a co-solvent to aid in the stability of the resulting emulsion.
  • US 2009013591 shows a fuel mixture comprising 15-95% gasoline or diesel oil, 5 to 85% alcohols, including butanol, characterized by the use of glycerine ethers as an additive.
  • Chinese patent CN 101235325 discloses a diesel-methanol mixture, with 23-50% diesel oil, 35-70% methanol, where two among several other constituents are: 0-3% isobutanol and 0-3% butanol.
  • Chinese patent CN 101215483 discloses a diesel-methanol mixture which comprises, among other components, 0.25 - 0.6% tert-butanol.
  • CN 1800313 discloses a gasoline emulsion with alcohols and dimethyl ether which may contain 2-3% 2-butanol.
  • CN 1730619 discloses an emulsion fuel containing methanol, petroleum, diesel oil, tert-butanol, sorbic alcohol fatty acid ester, polyoxyethylene, and monomethoxypolyethylene.
  • CN 1796513 discloses an additive to be added to diesel oil comprising ethanol, ketones, silicones, n-butanol, and benzyl alcohols.
  • Patent 1769398 shows a 65-80% methanol fuel which may contain, inter alia, 5-10% butanol.
  • CN 1590515 describes a fuel formed by the mixture of diesel oil, benzene, gasoline, butanol and fatty acid ammonium salt.
  • EP 0403516 discloses a polyalkylene glycol additive to be added to hydrous ethanol at a ratio of 12-20%, but the examples show suitable results at polyalkylene glycol contents greater than 17% for typical engines with typical compression ratio of 18: 1.
  • US 5,628,805 describes an ethoxylated polyol to be added to hydrated ethanol in a proportion of 5 to 10% v / v.
  • This technology is currently in use in the city of Swiss (Sweden) and is being tested in various cities around the world on Scania engines through the BEST project (BioEtanol for Sustainable Transportation).
  • an engine designed specifically for fuel is required, with a higher compression ratio than conventional diesel engines. While the compression ratio of conventional diesel engines is around 17: 1, the compression ratio of Scania ethanol-dedicated diesel cycle engines is around 24: 1.
  • US 2378466 discloses the use of organic nitrates such as ethyl nitrate, ethylene glycol dinitrate (DNMEG), triethylene glycol dinitrate (DNTEG), tetraethylene glycol dinitrate (DNTetraEG) as additives capable of increasing diesel oil ignition. .
  • organic nitrates such as ethyl nitrate, ethylene glycol dinitrate (DNMEG), triethylene glycol dinitrate (DNTEG), tetraethylene glycol dinitrate (DNTetraEG)
  • 4-carbon alcohols especially n-butanol and isobutanol
  • the conventional process for producing butanol by microbiological fermentation is the ABE (Acetone Butanol Ethanol) process, which employs fermentation of sugars by the bacteria Clostridium acetobutylicum.
  • a line of development currently employed is the genetic modification of bacteria of the genus Clostridium, which increases the productivity and selectivity of the ABE process to maximize butanol production.
  • Such a development line includes, as n-butanol production processes, US Patents 5,753,474, US 2010143996, US 2010136641, CA 2699378, WO 2010024715, WO 2010024714, GB 2462642, WO 2010017230, US 2010036174, RU 2375451, CN 101595218, US 2009009270, KR 2010086982, WO 20091425625 and JP 60172289.
  • Canadian patent CA 2548221 discloses a novel bacterium, Clostridium carboxidivorans, which can synthesize biofuels from CO, including ethanol, and catalyze acetate and butanol production. It can also directly ferment lignocellulose to produce ethanol or other substances.
  • US Patents 2009275787, and WO 2010031793 employ modified Clostridium bacteria to produce n-butanol from glycerin. This process is of particular interest, as large volumes of glycerine are obtained in the fatty acid transesterification process (biodiesel production), and there is no demand for the expected volume of glycerin that should enter the Brazilian market due to the increase in biodiesel content. in diesel oil.
  • US 2010093020 employs genetically modified Enterococcus bacteria for optimal butanol production.
  • WO 2009122192 employs, for butanol production, genetic modification of bacteria of the Bacillaceae family, preferably Geobacillus or Ureibacillus.
  • WO 2009082690 employs modification of the genetic code of diverse bacteria for butanol production.
  • US Patents 2010143985, US 2010129885, US 2010062505, WO 2009140159, WO 2009013159 disclose genetically modified yeasts for butanol production.
  • Yeast has the advantage normally used for ethanol production, making process adaptation of existing sugar and alcohol plants easier.
  • Canadian patent CA 2691998 employs genetic modification of bacteria or yeast for butanol production.
  • WO 2009105733 discloses a photosynthetic process using plants, algae, blue-green algae, which can produce butanol directly from CO2 and water. Thus, there is direct sequestration of carbon from the atmosphere, with better energy utilization of the process, and reduction of competition between the biofuel production process and food production.
  • KR 20090025221 shows a process that uses algae to generate biomass, and then turn it into alcohols or ketones, including butanol.
  • WO 200900346 discloses a process that converts CO2 into gases, and subsequently utilizes fermentation of these gases to obtain products, including butanol.
  • WO 2009103533, CA 2684860, WO 2009086423, and WO 2010037111 disclose modifications to yeast for isobutanol production.
  • WO 2009149240 discloses a process for producing isobutanol from fermentation of biomass by Escherichia coli bacteria.
  • WO 2009078973 discloses Genetic modifications in microorganisms to produce various valuable products, including butanol, from free fatty acids.
  • CN 101358187 provides for the use of gamma radiation to modify cells or protoplasts to increase the yield of butanol production.
  • Patents which disclose process changes include: NL 10355651, KR 100556322, WO 2010011769, CN 201367402, US 2008274524, WO 2010000649, US 20101051 15, WO 2009112335, WO 2009100434, CN 101475932, US 2009162912, WO 2009087680 WO 2009079362, CN 101418320, CN 101397236, CN 101429527, WO 2009062601, US 2009017514, CN 101363031, WO 2009021503, CN 101333545, WO 2009154301, CN 101302545, CN 101250561, WO1011234560, CN101 WO 2009079213.
  • CN 101165188 demonstrates the production of butanol from ground cassava or cassava starch.
  • US 2010087687 discloses a process for harnessing plant, animal or municipal waste biomass which includes butanol among the products.
  • MX 2009006782 shows a process for producing biofuels including biobutanol from enzymes.
  • WO 2009128644 shows a metabolic network model for analyzing metabolic characteristics of butanol producing microorganisms, and methods for selecting or modifying microorganisms to obtain metabolic products with high efficiency.
  • WO 2005108593 discloses an enzymatic catalyst for producing 2-butanol from 2-butanone.
  • KR 20080106516 discloses a process of producing butanol from butene.
  • MX 2009008416 discloses a process for producing various alcohols, including n-butanol and isobutanol.
  • US 2010005709 discloses a mixture of ethanol, isopropanol, and sec- or tert-butanol, not more than 3% methanol and no more than 15% C5 or greater.
  • the procurement process is a Fischer-Tropsch petrochemical process (obtaining alkanes from carbon monoxide and hydrogen), and the mixture is used as fuel for Otto cycle engines (gasoline).
  • US 2009277079 discloses a mixture for use as a gasoline with good cold start butanol isomers.
  • WO 2009120042 shows a process for chemically producing butyl butyrate from butyric acid and butanol from fermentation.
  • the ester can be used as biodiesel.
  • WO 2009114752 discloses a process for using xenobiotic materials that are carbon sources, to produce biomass and / or biogas from microorganisms that degrade carbon sources, and then to use microorganisms to synthesize biofuels.
  • One of the biofuels cited is butanol.
  • WO 2009106647 discloses a compression ignition engine comprising two injection systems, where one system injects diesel or biodiesel, and the other injects a more volatile fuel than diesel, such as hydrogen, LPG, natural gas, ethanol, propanol or butanol.
  • a more volatile fuel than diesel such as hydrogen, LPG, natural gas, ethanol, propanol or butanol.
  • Such dual-fuel hybrid systems have recently been introduced to the market by several companies, always with a fuel-to-fuel ratio of close to 50% / 50%, with some disadvantages: need for two fuel tanks, separate transport / supply logistics for two fuels, a sophisticated variable fuel injection control system according to the required power load, and user purchase of an injection system modification kit.
  • US Patent 2009151232 discloses a light diesel oil composition containing between 9 and 20% butanol, 0.4 to 4% butyl nitrate or nitrite, and the rest of the base for light diesel oil, ie it employs a substantial amount (between 90.6 and 76%) from petroleum-derived diesel oil.
  • CN 101402888 discloses an additive compound and a methanol diesel fuel containing, among others, 1 to 10% n-butanol.
  • N-butanol acts as a co-solvent, but substantially the fuel is composed of methanol, which has low calorific value and is extremely toxic.
  • KR 20090003146 discloses a gasoline replacement mixture (Otto cycle engines), consisting mainly of ethanol or methanol, containing 5 to 8% butanol.
  • CN 101240199 shows an alcohol-ether mixture (65 to 70%), where the alcohol is a mixture of methanol, butanol and acetone, and the ether is a mixture of any 2 ethers comprising dimethyl ether, isopropyl ether or methyl tertiary. -butyl ether (MTBE).
  • alcohol is a mixture of methanol, butanol and acetone
  • ether is a mixture of any 2 ethers comprising dimethyl ether, isopropyl ether or methyl tertiary. -butyl ether (MTBE).
  • US 2010005709 discloses a process for producing alternative fuels, which includes obtaining synthesis gas from renewable sources, converting this gas to substantially C2 to C4 chain olefins, and hydrolyzing these olefins.
  • the resulting alcohol mixture contains butanol and must be mixed with gasoline.
  • MX 2007010015 discloses a mixture of C1 to C5 or Cl to C8 alcohols, with more ethanol than methanol, with higher octane than ethanol, that is, to replace gasoline.
  • CN 101085938 discloses a synthetic biofuel with 10-50% petroleum derived fuel such as naphtha, dimethyl ether and gasoline 4.5-10% of one or more of list that includes ether, acetone, or butanol.
  • CN 1884440 deals with the production of tert-butyl fatty acid ester (biodiesel) using tert-butanol as the transesterification reagent.
  • JP 2004285346 comprises a gasoline substituting fuel composed of ethanol and at least two compounds of the group consisting of diisopropyl ether, methyl tert-butyl ether, ethyl tert-butyl ether, dipropyl ether, tert-butanol, dibutyl ether and diethyl ether.
  • KR 20040044677 discloses an alternative fuel composed of 50-80% mixed liquid coal extract extracted from bituminous coal, 10-20% ethanol or methanol from coal liquefaction, 5-15% n-butanol extracted from liquefaction. coal, and 5-10% toluene extracted from coal liquefaction.
  • KR 20020009543 discloses an alcohol-based fuel to replace gasoline composed of, among others, 5-15% butanol.
  • KR 20030006529 comprises an Otto-cycle internal combustion engine fuel composed of, but not limited to, 3-7% butanol.
  • RU 2148075 discloses diesel oil-based compositions containing 0.0065-0.0075% oligoethyl siloxane and 0.0025-0.0035% by weight butanol.
  • WO 9324593 discloses a diesel fuel containing between 10 and 35% ethanol in admixture with diesel oil, also containing butanol and an alkyl peroxide.
  • KR 930011071 deals with an emulsion fuel of 1000 parts of petroleum (gasoline?), 15-70 parts of siloxane or oxosilane, 100-300 parts butanol, 3-7 parts methanol, 10-20 parts polyethylene glycol, and 1-3 parts nonionic surfactant.
  • JP 2022388 discloses an emulsion fuel of an alcohol (methanol, ethanol, or butanol), benzene, toluene or xylene, and an aromatic rich fraction derived from the distillation of petroleum refining catalytic cracking fluid.
  • EP 0171440 discloses a motor fuel based on a hydrocarbon-based fuel which additionally contains alcohols, and optionally ethers, ketones, aromatics, additives and lead compounds and may contain 0-10% butanol.
  • CA 1221539 describes a stable gasoline and ethanol composition containing an additional alcohol which may be, but is not limited to, n-butanol and isobutanol.
  • US 4526586 comprises microemulsions from vegetable oil, a C1-C3 alcohol, water and 1-butanol as a nonionic surfactant.
  • GB 2090612 shows a mixture for use as diesel oil containing between 10 and 60% by volume of diesel, 10-60% of a C1-C8 alkyl ester of a Cl 2-22 fatty acid, and 10-50% of a mixture containing at least n-butanol and acetone.
  • US 4398920 deals with a blend fuel containing: (a) a gasoline, a diesel, or a fuel oil, (b) a mixture of butanol and acetone, optionally containing isopropanol and / or ethanol; and (c) methanol, wherein the butanol / acetone mixture (b) is prepared by fermentation by suitable organisms such as bacteria or fungi.
  • US 4368056 discloses a fuel formed by the mixture of fermentation butanol and fermentation glycerides, where the substrates are industrial tailings such as cheese yeast, corn cobs, wood chips, etc.
  • US 4,300,912 describes a synthetic fuel composed of long chain macromolecules formed by distilling bonds of methanol, butanol and a kerosene-like oil with a colloidal stabilizer.
  • butanol, isobutanol or other butanol isomeric alcohol alone does not have characteristics similar to diesel oil, which are required to function properly in diesel cycle engines, as shown below:
  • Butanol and its isomers have a high octane rating, ie, resistance to compression detonation, which is very desirable in Otto cycle engine fuels, but opposed to the desirable characteristic for diesel engine fuels.
  • diesel fuels must have a high number of ketones, ie higher explosiveness when initiated by compression.
  • the specifications of diesel oil used in Brazil require a ketone number of 42 or higher in accordance with ASTM D 613 single cylinder type CFR engine) or ASTM D 6890 (constant volume combustion chamber ignition delay measurement type IQT). Low ketone numbers make it difficult to start the engine cold, or even not to ignite the fuel under compression, with full engine shutdown and unburned liquid fuel accumulating inside the engine cylinder.
  • Butanol and its isomers despite having similar viscosity to diesel oil, do not have comparable lubricity to diesel oil, especially to those types of high sulfur diesel oil.
  • Low lubricity erodes injection systems, especially common rail injection pump impellers where frictional pressures and forces are too high, locking exhaust valves, causing premature wear and ring fluttering, that is, a series of deleterious effects on injection system components and engines.
  • diesel oil must have a maximum wear of 460 um in HFRR (High Frequency Reciprocating Rig) lubricity test according to ASTM D 6079.
  • the fuel of the present invention is capable of replacing diesel oil, is based on substantial proportions of 4-carbon alcohol such as n-butanol, isobutanol, sec-butanol and tert-butanol and is an alternative from renewable sources produced in sugar and alcohol plants, and can remove the fossil fuel used in large quantities in the sugar and ethanol production cycle, in irrigation motor pumps, tractors, cane transport trucks, cane harvesters, tractors and support trucks.
  • Another interesting application will be as urban bus fuel, as environmental laws in several states and municipalities in Brazil include ambitious targets for reducing the use of fossil fuels.
  • Test I Number of Ketane Derived (DCN) in Advanced Engine Technology (AET) Ignition Quality Tester (IQT) equipment according to ASTM D 6890;
  • Test II Cold start and point adjustment test: The test consisted of determining whether the engine starts after a maximum of 10 turns of the crankshaft. If the match occurs, the result is noted “OK”, otherwise it is noted “does not occur”.
  • Test III Wear Scar Diameter in steel ball for lubricity assessment on HFRR (High Frequency Reciprocating Rig) equipment according to ASTM D 6079;
  • Test IV Nozzle Corrosion Test: The nozzle is the item most susceptible to corrosion and premature wear in diesel cycle engine injection systems. This test consists of dipping a Bosch DLLA 134 P 422 multi-nozzle nozzle, made of DIN 18CrNi8 steel, into the fuel under test, kept in an oven at 75 ° C for two weeks.
  • Test V Free acidity of the mixture after 2 weeks at 75 ° C: The free acidity of the fuel mixture was measured by ASTM D 974 "Standard Test Method for Acid and Base Number by Color-Indicator Titration" immediately before and after exposure. nozzle to fuel for 2 weeks at 75 ° C as per test IV above.
  • Test VI Positron / Eaton electric motor dynamometer test, model 8121, maximum power 500 hp, maximum speed 5000 rpm: the test consisted of obtaining the power x rotation curve on a model turbocharged turbocharged Mercedes-Benz model OM 352A for 5 points.
  • Test VII Average fuel consumption test: During the dynamometric test, the average fuel consumption is measured for each revolution, once the dynamometric curve is adjusted so that the fuel under test has the same power as diesel oil in the same rotation. Consumption was measured by the mass of fuel consumed in a timed period of 5 minutes, by the difference in fuel mass contained in a bombona over a scale.
  • Test VIII injector pump durability test: The test consisted of pumping the test fuel through a Bosch type VE rotary injection pump, model 0-460-424-369, closed circuit, using the rated pump flow for a total of 1,000 h at room temperature. After the 1,000 h test, the pump is disassembled, and its components evaluated for wear.
  • the tests were performed comparatively to diesel oil and hydrous ethanol, in order to select the optimal efficiency levels for the tested additives.
  • n-butanol 98% Non-start Dinitrate 32 occurred with tetraethylene glycol ease, point (DNTetraEG) 2 with 12% advance 0 over diesel point.
  • n-butanol 97.5% 36 Departure OK, DNTetraEG 2.5 point at 14 wt.
  • NDP 16-isopropyl nitrate
  • additives capable of increasing butanol explosiveness such as:
  • NTHF tetrahydrofurfuryl nitrate
  • NPEG polyethylene glycol nitrate
  • NIA isoamyl nitrate
  • NIP isopropyl nitrate
  • organic peroxides or. 2% to 15% ethoxylated glycerine
  • ethoxylated glycerine nitrate 10% to 60% fatty acid esters. . 0.005% to 1.0% of one or more commercially available lubricity enhancing additives or friction modifiers such as Kerokorr 99C carboxylic acid mixture and Kerocom 3561 amine and oleic acid mixture, both from BASF AG; mixing the ethoxylated amine base Ultrazol 9525 and the mixture of carboxylic acid ester-based Ultrazol 9555, both from the Lubrizol Corporation; Tolad 9185 or Tolad 9165 carboxylic acid ester mixtures, Tolad 9101 or Tolad 9113 carboxylic acid mixtures and Tolad 9137 or Tolad 9141R amide based mixtures, all from Baker Hughes, Inc .; polyethylene glycol, polypropylene glycol; or other commercially available compounds with the same function.
  • lubricity enhancing additives or friction modifiers such as Kerokorr 99C carboxylic acid mixture and Kerocom 3561 amine and ole
  • a stabilizing additive such as ethanolamines, diphenylamine, diphenylureas (such as ethyl centralite), morpholine, or other weakly alkaline compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

"COMPOSIÇÃO COMBUSTÍVEL LIQUIDA CONSTITUÍDA POR ALCOÓIS DE QUATRO ÁTOMOS DE CARBONO E ADITIVOS COM INICIAÇÃO POR COMPRESSÃO." Refere-se a patente de invenção a um combustível líquido constituído por álcoois de quatro átomos de carbono com aditivos, com ignição por compressão para um motor do ciclo diesel, que seja possível produzir por métodos de biotecnologia a partir dè fonte biológica renovável incluindo os processos de fermentação de açucares ou materiais disponíveis em plantas sucroalcooleiras, e, deste modo, o combustível obtido poderá ser utilizado de forma convencional como substituto de óleo diesel em veículos de transporte urbano ou de estradas, sendo opção alternativa ao óleo diesel: A composição pode ser empregada sozinha ou misturada ao diesel petroquímico no motor.

Description

COMPOSIÇÃO COMBUSTÍVEL BASEADA EM ÁLCOOIS DE QUATRO ÁTOMOS DE CARBONO E ADITIVOS PARA MOTORES DE CICLO DIESEL.
A presente patente de invenção refere-se a fonte energética líquida com iniciação por compressão com objetivo de prover um combustível para ciclo diesel que seja possível produzir por métodos de biotecnologia a partir de fonte biológica renovável, incluindo os processos de fermentação de açucares ou materiais disponíveis em plantas sucroalcooleiras, deste modo, o combustível obtido poderá ser utilizado de forma convencional como substituto de óleo diesel em veículos de transporte urbano ou de estradas e ser uma opção alternativa ao óleo diesel empregado nas plantas sucroalcooleiras, o que reduz a emissão de carbono fóssil no ciclo de produção de açúcar e álcool, com vantagens de substituição das fontes fósseis, redução da emissão de compostos de carbono, consumo adequado, custo compatível, manutenção da vida útil dos componentes do sistema, maior segurança e reduzidas perdas por evaporação.
Motores de combustão interna com ignição por compressão (motores de ciclo diesel) são conhecidos desde o trabalho pioneiro de Rudolph Diesel, que demonstrou a possibilidade e a adequação de máquinas térmicas nas quais a ignição do combustível ocorre pelo aquecimento da mistura ar-combustível causado somente pela compressão da mistura na câmara de combustão, sem necessidade de utilizar uma fagulha gerada por um sistema elétrico, como ocorre em motores de ignição por fagulha (motores de ciclo Otto).
Motores de ciclo diesel são em geral 30% mais eficientes na conversão de energia térmica em energia mecânica que os motores de ciclo Otto de mesma potência. Por esta razão, são amplamente utilizados em caminhões, ônibus, máquinas de construção civil, máquinas agrícolas, geradores de eletricidade, motobombas de irrigação, automóveis, etc. Motores diesel modernos, utilizados principalmente em automóveis de passeio, apresentam baixa emissão de gases nocivos. Quando comparados com motores Otto de potência equivalente, apresentam uma redução de emissões de dióxido de carbono, justamente pela maior eficiência de conversão de energia. No entanto, a grande maioria dos motores diesel existentes emprega óleo diesel, combustível de origem fóssil que contribui para o efeito estufa e apresenta emissão de produtos nocivos e poluentes, principalmente material particulado, óxidos de nitrogénio e derivados de enxofre.
Atualmente, há uma tendência clara para o desenvolvimento de combustíveis de origem biológica (biocombustíveis), os quais apresentam um ciclo de produção no qual ao menos parte do carbono emitido durante a queima de um biocombustível é recuperada pelo processo de crescimento biológico, em geral pela captura de carbono atmosférico no processo de fotossíntese. Os ciclos de produção, no entanto, acrescentam carbono em diversas fases do processo de manufatura de biocombustíveis, em particular pelo consumo de óleo diesel de origem fóssil nas máquinas agrícolas, caminhões, e motobombas de irrigação. O ciclo de produção do etanol a partir de cana-de-açúcar, por exemplo, é um dos mais eficientes na captura de carbono, porém emprega óleo diesel de maneira intensiva. Um dos objetivos desta invenção é prover um combustível para ciclo diesel que seja possível produzir por métodos de biotecnologia, incluindo os processos de fermentação de açucares ou materiais disponíveis em plantas sucroalcooleiras. Deste modo, o combustível poderá ser uma opção alternativa ao óleo diesel empregado nas plantas sucroalcooleiras, o que reduz a emissão de carbono fóssil no ciclo de produção de açúcar e álcool.
Dentre os biocombustíveis, o mais amplamente empregado é o etanol, em motores com ignição por fagulha (ciclo Otto), seja como componente misturado à gasolina, seja como combustível relativamente puro. O etanol apresenta uma alta octanagem, ou seja, característica anti- detonante adequada para ignição por fagulha. Deste modo, pode conferir a octanagem adequada à gasolina, em substituição ao chumbo tetraetila, composto tóxico. Quando utilizado em mistura com gasolina, o etanol é anidro, já que a presença de água impede uma mistura estável à gasolina. Quando utilizado sem outra mistura em motores ciclo Otto, o etanol é hidratado. Etanol é utilizado em diversos países misturado à gasolina, chegando na Europa e Estados Unidos a representar 85 % da mistura com gasolina (E85). No Brasil, é amplamente utilizado álcool hidratado puro.
No entanto, o etanol possui algumas desvantagens inerentes:
- O etanol apresenta um baixo poder calorífico em relação à gasolina. Em média, o conteúdo energético do etanol hidratado é de apenas 70 % do conteúdo energético da gasolina com 22 % de etanol (mistura fornecida ao mercado brasileiro).
- O etanol hidratado apresenta uma maior corrosividade, quando comparado à gasolina.
Tecnologias que permitem a utilização de etanol ou álcoois em motores de ignição por compressão (ciclo diesel) incluem misturas e emulsões de etanol e/ou outros álcoois em óleo diesel ou frações de petróleo. Frequentemente, tais misturas ou emulsões empregam butanol ou isobutanol como co-solvente, um auxiliar com caráter polar intermediário entre o etanol e os hidrocarbonetos, de modo a aumentar a estabilidade da mistura.
As misturas tentadas e levadas ao mercado apresentam problemas de estabilidade, pois o etanol e o óleo diesel são pouco miscíveis entre si. Muitas apresentam problemas de separação algum tempo após a mistura, problemas estes agravados por condições ambientais tais como baixas temperaturas, umidade do ar, etc. Problemas de degradação de superfícies por cavitação e corrosão ocorrem com frequência, devido à separação física entre os componentes provocada pelos esforços de atrito e diferenças de pressão dinâmica encontrados nos sistemas de bombeamento e injeção de combustível. Além disto, estas misturas ainda não representam um combustível totalmente renovável, pois empregam combustíveis fósseis em grande proporção.
Uma outra tecnologia corrente é a mistura ao etanol hidratado de aditivos capazes de aumentar a explosividade do etanol, de modo a permitir sua ignição por compressão.
O 2-EHN e os peróxidos orgânicos são utilizados convencionalmente para aumentar a explosividade do óleo diesel, porém não para aditivar o etanol, pois suas curvas de teor adicionado x aumento do número de cetanos tende a uma assíntota após 8 %, mas não atinge o número de cetanos de 42 necessário para uma ignição adequada do óleo diesel ou do etanol hidratado.
Todos os nitratos apresentam problemas de estabilidade (hidrólise ácida ou alcalina), principalmente em presença de água. O etanol hidratado, pelo seu conteúdo de água, apresenta a tendência de hidrolisar, gerando ácido livre que aumenta com o período de armazenagem, Apresenta corrosão dos bicos injetores. Mesmo em meios sem nitratos, a durabilidade é reduzida pela presença de vapor d'água junto ao bico injetor e válvulas de escape. Por esta razão, a manutenção dos sistemas a etanol hidratado tem tempo reduzido em comparação com sistemas a óleo diesel. O manual de manutenção da Scania para os ônibus do projeto BEST indica troca de bico injetor a cada 22.000 km, enquanto a troca de bicos em sistemas com óleo diesel ocorre a cada 120.000 km.
Além dos problemas de durabilidade inerentes ao etanol hidratado, devido à grande diferença de poder calorífico do etanol em relação ao diesel, ocorre um aumento do consumo em L/h na razão L/h de etanol/ L/h de diesel entre 1,5 e 2,0. Este maior consumo, aliado ao custo dos aditivos, tende a inviabilizar economicamente projetos de etanol, que são muito importantes do ponto de vista ambiental.
Uma outra tecnologia para emprego de etanol em motores de veículos e equipamentos convencionalmente operando em ciclo diesel consiste na assim chamada "ottolização", isto é, transformação de motores originalmente funcionando em ciclo diesel para rodar em ciclo Otto, pela adaptação de uma vela de ignição em um cabeçote de cilindro de motor diesel. Tal conversão, além de implicar em custo e tempo para ser efetuada, sendo de difícil reversão, implica em aumentos da razão de consumo L/h etanol / L/h diesel acima de 2,0, já que o ciclo Otto tem uma eficiência de conversão de energia cerca de 30 % inferior àquela do ciclo diesel de potência equivalente.
Fazendo-se buscas nos bancos de patentes brasileiro e internacionais encontramos as seguintes revelações:
Patentes chinesas com número de publicação CN 101602968 e CN101434875 revelam opções destas misturas de hidrocarbonetos com etanol.
A patente CN 101580743 revela um combustível diesel ou gasolina composto de uma mistura de materiais combustíveis, alcatrão, e solventes derivados de resíduos industriais ou orgânicos, 10-50 % de álcoois ou misturas que podem incluir butanol, 10-15 % de butanol, isopropanol, d-terc-butyl-p-cresol ou misturas dos mesmos, 10-25 % de ferro anel-dieno, ou querosene, óleo solvente, óleo mineral, óleo lubrificante, óleo vegetal ou misturas dos mesmos. Esta patente não emprega substancialmente butanol como combustível principal.
A patente CN 101402887 trata de um composto substancialmente de etanol (75 a 90 %) para atuar como óleo diesel para baixas temperaturas, contendo, entre outros compostos, 2 a 10 % de butanol ou isobutanol. O butanol atua basicamente como co-solvente para os diversos compostos.
A patente CN 101376848 descreve uma mistura etanol-diesel, com proporção entre 60-85 % de óleo diesel. O butanol é utilizado no teor entre 0,5 e 1,5 %, como co-solvente para auxiliar na estabilidade da emulsão resultante.
A patente americana US 2009013591 mostra uma mistura de combustíveis que inclui 15-95 % de gasolina ou óleo diesel, de 5 a 85 % de álcoois, entre eles o butanol, caracterizada pelo uso de éteres de glicerina como aditivo.
A patente chinesa CN 101235325 revela uma mistura óleo diesel-metanol, sendo óleo diesel 23-50 %, metanol 35-70 %, onde dois entre diversos outros constituintes são: isobutanol 0-3 % e butanol 0-3 %.
A patente chinesa CN 101215483 apresenta uma mistura diesel-metanol que compreende, entre outros componentes, 0,25 - 0,6 % de terc-butanol.
A patente CN 1800313 revela uma emulsão de gasolina com álcoois e dimetil éter que pode conter 2-3 % de 2-butanol.
A patente CN 1730619 apresenta um combustível em emulsão que contém metanol, petróleo, óleo diesel, terc- butanol, éster de ácido graxo do álcool sórbico, polioxietileno, e monometóxipolietileno.
A patente CN 1796513 descreve um aditivo para ser adicionado ao óleo diesel, compreendendo etanol, cetonas, silicones, n- butanol, e álcoois benzílicos.
A patente CN 1769398 mostra um combustível com 65-80 % de metanol, que pode conter, entre outros, 5-10 % de butanol.
A patente CN 1590515 descreve um combustível formado pela mistura de óleo diesel, benzeno, gasolina, butanol e sal de amónio de ácido graxo.
A patente EP 0403516 revela um aditivo de polialquileno glicóis a ser adicionado ao etanol hidratado na proporção entre 12-20 %, porém os exemplos mostram resultados adequados em teores de polialquileno glicóis superiores a 17 % para motores convencionais com taxa de compressão típicas de 18:1.
A patente US 5628805 descreve um poliol etoxilado, a ser acrescentado ao etanol hidratado na proporção entre 5 e 10 % v/v. Esta tecnologia está em uso atualmente na cidade de Estocolmo (Suécia), e em teste em diversas cidades do mundo, aplicado em motores da Scania, através do projeto BEST (BioEtanol for Sustainable Transportation). No entanto, para ser utilizado na proporção de 5 %, é necessário um motor projetado especialmente para o combustível, com uma taxa de compressão mais alta que aquela empregada em motores diesel convencionais. Enquanto a taxa de compressão de motores diesel convencionais está em torno de 17:1, a taxa de compressão dos motores Scania de ciclo diesel dedicados a etanol está em torno de 24:1. Isto limita seu uso aos motores dedicados, e impede que a tecnologia seja do tipo "flexfuel", isto é, nem o combustível assim formulado pode ser utilizado na ampla base de motores convencionais existentes, nem os motores dedicados a etanol podem ser utilizados com os combustíveis diesel adequados a taxas de compressão convencionais (óleo diesel, biodiesel, óleo vegetal, etc).
A patente US 2378466 revela o uso de nitratos orgânicos tais como nitrato de etila, dinitrato de etileno glicol (DNMEG), dinitrato de trietileno glicol (DNTEG), dinitrato de tetraetileno glicol (DNTetraEG), como aditivos capazes de aumentar a ignição de óleo diesel.
Recentemente, surgiram opções de substitutos ao etanol originados de fontes renováveis. Dentre as opções, os álcoois de 4 carbonos, principalmente o n-butanol e o isobutanol, podem ser produzidos por processos renováveis de biotecnologia, com vantagens tais como um poder calorífico pouco menor que o da gasolina, maior solubilidade em hidrocarbonetos, menor corrosividade, maiores pontos de fulgor e ebulição, o que torna o manuseio e armazenagem do combustível mais seguros e reduz as perdas por evaporação. O processo convencional para produção de butanol por fermentação microbiológica é o processo ABE (Acetona Butanol Etanol), que emprega fermentação de açúcares pela bactéria Clostridium acetobutylicum. Introduzido no início do século XX pelo químico industrial, líder do movimento sionista e primeiro presidente do Estado de Israel Chaim Weizmann, o processo teve como foco a produção de acetona empregada em larga escala para obtenção do explosivo Cordite (uma pólvora de base dupla). Posteriormente, o processo foi suplantado em termos de viabilidade económica pelos processos petroquímicos e caiu em desuso.
Uma linha de desenvolvimento bastante empregada atualmente é a modificação genética de bactérias do género Clostridium, que aumenta a produtividade e seletividade do processo ABE para maximizar a produção de butanol. Tal linha de desenvolvimento inclui, como processos de produção de n-butanol, as patentes US 5.753.474, US 2010143996, US 2010136641, CA 2699378,WO 2010024715, WO 2010024714, GB 2462642, WO 2010017230, US 2010036174, RU 2375451, CN 101595218, WO 2009149270, KR 2010019127, US 2010086982, WO 2009142541, GB 2459756, CN 101423815, CN 101250496, e JP 60172289.
A patente canadense CA 2548221 revela uma nova bactéria, Clostridium carboxidivorans, a qual pode sintetizar biocombustíveis a partir de CO, incluindo etanol, e catalisar a produção de acetato e butanol. Também pode fermentar diretamente lignocelulose para produzir etanol ou outras substâncias.
As patentes US 2009275787, e WO 2010031793 empregam bactérias Clostridium modificadas para produzir n- butanol a partir da glicerina. Este processo tem particular interesse, pois grandes volumes de glicerina são obtidos no processo de transesterificação de ácidos graxos (produção de biodiesel), e não existe demanda para o volume previsto de glicerina que deve entrar no mercado brasileiro em função do aumento do teor de biodiesel no óleo diesel.
A patente US 2010093020 emprega bactéria do género Enterococcus modificada geneticamente para produção otimizada de butanol.
A patente WO 2009122192 emprega, para produção de butanol, modificação genética de bactérias da família Bacillaceae, preferentemente Geobacillus ou Ureibacillus.
A patente WO 2009082690 emprega modificação do código genético de bactérias diversas para produção de butanol.
As patentes US 2010143985, US 2010129885, US 2010062505, WO 2009140159, WO 2009013159 revelam, para produção de butanol, leveduras modificadas geneticamente. As leveduras têm a vantagem de serem empregadas normalmente para produção de etanol, tornando a adaptação de processo de plantas sucroalcooleiras existentes mais fácil.
A patente canadense CA 2691998 emprega modificação genética de bactéria ou levedura para produção de butanol.
A patente WO 2009105733 revela um processo fotossintético que utiliza plantas, algas, algas azuis- verdes, que podem produzir butanol diretamente de C02 e água. Deste modo, existe o sequestro direto de carbono da atmosfera, com melhor aproveitamento energético do processo, e redução da concorrência entre o processo de produção de biocombustíveis e a produção de alimentos.
A patente KR 20090025221 mostra um processo que utiliza algas para gerar biomassa, e então transformá-la em álcoois ou cetonas, incluindo butanol.
A patente WO 200900346 revela um processo que converte C02 em gases, e posteriormente utiliza fermentação destes gases para obtenção de produtos, incluindo butanol.
As patentes WO 2009103533, CA 2684860, WO 2009086423, e WO 2010037111 revelam modificações em leveduras para produção de isobutanol.
A patente WO 2009149240 revela um processo para produção de isobutanol a partir de fermentação de biomassa por bactérias da espécie Escherichia coli.
As seguintes patentes revelam células não especificadas modificadas para produção de butanol e etanol: WO 2009013160, US 2009176288, WO 2009082148, WO 2008124523, WO 2009059254, e WO 2008143704.
A patente WO 2009078973 apresenta modificações genéticas em microorganismos para produção de diversos produtos de valor, incluindo butanol, a partir de ácidos graxos livres.
A patente CN 101358187 prevê utilizar radiação gama para modificar células ou protoplastos para aumentar o rendimento da produção de butanol.
Diversos processos empregam microorganismos convencionais dos processos de fermentação sem modificação genética, porém otimizam o rendimento do processo industrial de obtenção do butanol, ou o processo de separação do butanol do caldo de fermentação, o que aumenta o rendimento, pois mesmo teores baixos de butanol tornam o meio fermentativo tóxico para os microorganismos produtores do álcool.
Como patentes que revelam mudanças de processo podemos citar: NL 10355651, KR 100556322, WO 2010011769, CN 201367402, US 2008274524, WO 2010000649, US 20101051 15, WO 2009106835, WO 2009112335, WO 2009100434, CN 101475932, US 2009162912, WO 2009087680, WO 2009079362, CN 101418320, CN 101397236, CN 101429527, WO 2009062601, US 2009017514, CN 101363031, WO 2009021503, CN 101333545, WO 2009008616, WO 2008154301, CN 101302545, CN 101250561, WO 2008124490, CN 101333545, CN101457238, DE 102006060610 e WO 2009079213.
A patente CN 101165188 demonstra a produção de butanol a partir de mandioca moída ou amido de mandioca.
A patente US 2010087687 revela um processo para aproveitar biomassa vegetal, animal ou despejos municipais, que inclui o butanol entre os produtos.
A patente MX 2009006782 mostra um processo para produzir biocombustíveis, que inclui o biobutanol, a partir de enzimas.
A patente WO 2009128644 mostra um modelo de rede metabólica para análise de características metabólicas de microorganismos produtores de butanol, e métodos para selecionar ou modificar microorganismos visando obter produtos metabólicos com alta eficiência.
As patentes US 2010058654, JP 2009220105, WO 2009097312, KR 20090009330, JP 2008088140, e RU 2191769 apresentam catalisadores para processos que podem converter etanol produzido de fontes renováveis em butanol.
Apesar de ser desejável que o butanol torne-se um combustível economicamente viável produzido por fontes renováveis e biológicas (assim denominado biobutanol), ainda são patenteadas soluções para processos petroquímicos de obtenção de butanol: a patente US 2010048960 revela um processo para produzir butanol a partir de butano.
A patente US 2009239275 mostra um processo para produzir por via petroquímica o 2-butanol.
A patente WO 2005108593 revela um catalisador enzimático para produção do 2-butanol a partir da 2-butanona.
A patente KR 20080106516 revela um processo de produção de butanol a partir do buteno.
A patente MX 2009008416 revela um processo para produção de diversos álcoois, incluindo n-butanol e isobutanol.
As seguintes patentes revelam combustíveis que empregam o butanol como parte de sua composição:
A patente US 2010005709 demonstra uma mistura de etanol, isopropanol, e sec- ou terc-butanol, não mais que 3 % metanol e não mais que 15 % C5 ou maiores. O processo de obtenção é um processo petroquímico do tipo Fischer-Tropsch (obtenção de alcanos a partir de monóxido de carbono e hidrogénio), e a mistura é utilizada como combustível para motores ciclo Otto (gasolina).
A patente US 2009277079 revela uma mistura para ser usada como gasolina de isômeros de butanol com boa partida a frio.
A patente WO 2009120042 mostra um processo para produzir quimicamente butirato de butila a partir de ácido butírico e butanol provenientes de fermentação. O éster pode ser usado como biodiesel.
A patente WO 2009114752 apresenta um processo para utilizar materiais xenobióticos que são fontes de carbono, para produzir biomassa e/ou biogás proveniente de microorganismos que degradam fontes de carbono, e em seguida utilizar microorganismos para sintetizar biocombustíveis. Um dos biocombustíveis citados é o butanol.
A patente WO 2009106647 revela um motor com ignição por compressão compreendendo dois sistemas de injeção, onde um sistema injeta diesel ou biodiesel, e o outro injeta um combustível mais volátil que o diesel, tal como hidrogénio, GLP, gás natural, etanol, propanol ou butanol. Tais sistemas híbridos bicombustíveis têm sido apresentados ao mercado recentemente por diversas empresas, sempre com uma relação de utilização entre os dois combustíveis próxima dos 50%/50%, com algumas desvantagens: necessidade de dois tanques de combustível, de logística de transporte/abastecimento separada para dois combustíveis, de um sofisticado sistema de controle de injeção de combustível variável conforme a carga de potência requerida, e de compra por parte do usuário de um kit de modificação do sistema de injeção.
A patente US 2009151232 revela uma composição de óleo diesel leve contendo entre 9 e 20 % de butanol, 0,4 a 4 % de nitrato ou nitrito de butila, e o restante de base para óleo diesel leve, ou seja, emprega uma quantidade substancial (entre 90,6 e 76 %) de óleo diesel derivado de petróleo.
A patente CN 101402888 apresenta um composto aditivo e um combustível diesel de metanol, contendo, entre outros, 1 a 10 % de n-butanol. O n-butanol age como co-solvente, mas substancialmente o combustível é composto de metanol, o qual possui baixo poder calorífico e é extremamente tóxico.
A patente KR 20090003146 demonstra uma mistura para substituir a gasolina (motores de ciclo Otto), composta principalmente de etanol ou metanol, contendo entre outros 5 a 8 % de butanol.
A patente CN 101240199 mostra uma mistura de álcool-éter (65 a 70 %), onde o álcool é uma mistura de metanol, butanol e acetona, e o éter é a mistura de quaisquer 2 éteres compreendendo dimetil éter, isopropil éter ou metil terc-butil éter (MTBE).
A patente US 2010005709 revela um processo para produzir combustíveis alternativos, que inclui obter gás de síntese a partir de fontes renováveis, converter este gás em olefinas com cadeia substancialmente entre C2 e C4, e hidrolizar estas olefinas. A mistura de alcoóis resultante contém butanol, e deve ser misturada à gasolina.
A patente MX 2007010015 apresenta uma mistura de alcoóis de Cl a C5 ou Cl a C8, com mais etanol que metanol, com octanagem mais alta que o etanol, ou seja, para substituir a gasolina.
A patente CN 101085938 revela um combustível biológico sintético com 10-50 % de combustível derivado de petróleo, tal como nafta, dimetil éter e gasolina, 4,5-10 % de um ou mais de lista que inclui éter, acetona, ou butanol.
A patente CN 1884440 trata da produção de éster de ácido graxo (biodiesel) de terc-butila, utilizando terc-butanol como reagente de transesterificação.
A patente JP 2004285346 compreende um combustível para substituir a gasolina, composto de etanol, e pelo menos dois compostos do grupo que consiste em diisopropil éter, metil-terc-butil éter, etil- terc-butil éter, dipropil éter, terc-butanol, dibutil éter e dietil éter.
A patente KR 20040044677 revela um combustível alternativo composto de 50-80 % de extrato líquido misto de carvão extraído de carvão betuminoso, 10-20 % de etanol ou metanol provindos da liquefação do carvão, 5-15 % de n-butanol extraído da liquefação do carvão, e 5-10 % de tolueno extraído da liquefação do carvão.
A patente KR 20020009543 apresenta um combustível à base de álcool para substituir a gasolina composto de, entre outros, 5-15 % de butanol.
A patente KR 20030006529 compreende um combustível para motores de combustão interna, de ciclo Otto, composto, entre outros, de 3-7 % de butanol.
A patente RU 2148075 mostra composições a base de óleo diesel, contendo 0,0065-0,0075 % de oligoetilhidreto siloxano e 0,0025-0,0035 % em peso de butanol.
A patente WO 9324593 revela um combustível diesel contendo entre 10 e 35 % de etanol em mistura com óleo diesel, contendo também butanol e um peróxido de alquila.
A patente KR 930011071 trata de um combustível em emulsão de 1000 partes de petróleo (gasolina?), 15-70 partes de siloxano ou oxosilano, 100-300 partes de butanol, 3-7 partes de metanol, 10-20 partes de polietileno glicol, e 1-3 partes de surfactante não-iônico.
A patente JP 2022388 apresenta um combustível em forma de emulsão de um álcool (metanol, etanol, ou butanol), benzeno, tolueno ou xileno, e uma fração rica em aromáticos proveniente da destilação de fluido de craqueamento catalítico de refinaria de petróleo.
A patente européia EP 0171440 revela um combustível para motores baseado em um combustível composto basicamente de hidrocarbonetos, que adicionalmente contém álcoois, e opcionalmente éteres, cetonas, aromáticos, aditivos e compostos de chumbo, podendo conter 0-10 % de butanol.
A patente CA 1221539 descreve uma composição estável de gasolina e etanol, contendo um álcool adicional, que pode ser, entre outros, n-butanol e isobutanol.
A patente US 4526586 compreende microemulsões a partir de óleo vegetal, um álcool C1-C3, água e 1 -butanol como tensoativo não-iônico.
A patente GB 2090612 mostra uma mistura para uso como óleo diesel contendo entre 10 e 60 % em volume de gasóleo, 10- 60 % de um éster de alquila C1-C8 de um ácido graxo Cl 2-22, e 10-50 % de uma mistura contendo ao menos n-butanol e acetona.
A patente US 4398920 trata de um combustível por mistura contendo: (a) uma gasolina, um gasóleo, ou um óleo combustível, (b) uma mistura de butanol e acetona, opcionalmente contendo isopropanol e/ou etanol; e (c) metanol, onde a mistura butanol/acetona (b) é preparada por fermentação por organismos adequados tais como bactérias ou fungos. A patente US 4368056 revela um combustível formado pela mistura de butanol obtido por fermentação e glicerídeos obtidos por fermentação, onde os substratos são rejeitos industriais, tais como levedura de queijo, sabugos de milho, "chips" de madeira, etc.
A patente US 4300912 descreve um combustível sintético composto por macromoléculas de cadeia longa formada por ligações por destilação de metanol, butanol e um óleo tipo querosene com um estabilizador coloidal.
Em todas estas patentes que revelam combustíveis que empregam o butanol como parte de sua composição, são revelados o uso de álcoois isômeros de butanol como combustível para motores do ciclo Otto, ou seja, adequados para ignição por fagulha, ou misturas combustíveis para motores do ciclo diesel que eventualmente possuem butanol ou seus álcoois isômeros, porém nunca com butanol e álcoois isômeros como combustíveis principais.
O butanol, o isobutanol ou outro álcool isômero do butanol, por si só, não possui características semelhantes ao óleo diesel, que são necessárias para funcionar adequadamente em motores do ciclo diesel, conforme demonstrado a seguir:
O butanol e seus isômeros possuem alta octanagem, isto é, resistência à detonação por compressão, característica esta que é muito desejável em combustíveis para motores de ciclo Otto, porém oposta à característica desejável para combustíveis para motores de ciclo diesel. Ao contrário, os combustíveis diesel devem apresentar um alto número de cetanos, ou seja, uma maior explosividade quando iniciados por compressão. As especificações do óleo diesel utilizado no Brasil exigem um número de cetanos igual ou superior a 42, de acordo com as normas ASTM D 613 (medição em motor monocilíndrico tipo CFR) ou ASTM D 6890 (medição de atraso de ignição em câmara de combustão de volume constante tipo IQT). Números de cetanos baixos implicam em dificuldade de partida a frio do motor, ou mesmo na não ignição do combustível sob compressão, com total parada do motor e acúmulo de combustível líquido não queimado no interior do cilindro do motor.
O butanol e seus isômeros, apesar de apresentarem viscosidade similar ao óleo diesel, não possuem lubricidade comparável ao óleo diesel, principalmente àqueles tipos de óleo diesel com alto teor de enxofre. A baixa lubricidade desgasta os sistemas de injeção, em especial os rotores de bombas de injeção do tipo "common rail", onde as pressões e esforços de atrito são muito grandes, trava válvulas de escape, provoca desgaste prematuro e "fluttering" de anéis, ou seja, uma série de efeitos deletérios sobre os componentes dos sistemas de injeção e sobre os motores. De acordo com as normas brasileiras, o óleo diesel deve apresentar desgaste máximo de 460 um em teste de lubricidade HFRR (High Frequency Reciprocating Rig), de acordo com a norma ASTM D 6079.
Os álcoois, apesar de o butanol e seus isômeros apresentarem uma menor agressividade corrosiva quando comparados ao etanol hidratado, apresentam uma maior corrosão de materiais quando comparados ao óleo diesel, gerando problemas de desgaste aos materiais do sistema de injeção.
Os álcoois isômeros de butanol sofrem oxidação pelo oxigénio do ar durante seu armazenamento, gerando ácidos butíricos, os quais possuem um odor extremamente desagradável, o que pode ser resolvido pela adição de um aditivo antioxidante.
" FONTE ENERGÉTICA LÍQUIDA COM INICIAÇÃO POR COMPRESSÃO ", objeto da presente patente, foi desenvolvida para oferecer uma alternativa de fornecimento de energia para sistemas iniciados por compressão, a partir de fonte biológica renovável, com vantagens de substituição das fontes fósseis, redução da emissão de compostos de carbono, consumo adequado, custo compatível, manutenção da vida útil dos componentes do sistema, maior segurança e reduzidas perdas por evaporação. O combustível da presente patente é capaz de substituir o óleo diesel, é baseado em proporções substanciais de álcool de 4 carbonos, tais como n-butanol, isobutanol, sec-butanol e terc-butanol e é uma alternativa vinda de fontes renováveis, produzida em plantas de açúcar e álcool, e pode retirar o combustível fóssil utilizado em grande quantidade no ciclo de produção de açúcar e etanol, em motobombas de irrigação, tratores, caminhões de transporte de cana, colheitadeiras de cana, tratores e caminhões de apoio. Outra aplicação interessante será como combustível de ônibus urbanos, pois as leis ambientais de diversos estados e municípios do Brasil incluem metas ambiciosas de redução do uso de combustíveis fósseis.
Na busca da formulação otimizada do combustível da presente patente foram realizadas pesquisas exaustivas de misturas possíveis e realizados testes práticos de utilização dos combustíveis formulados, que são apresentados nas tabelas I e II, com descrição dos testes que comprovam a adequação do combustível, conforme descritos a seguir:
Teste I: Número de cetanos derivado (DCN) em equipamento IQT (Ignition Quality Tester) da AET (Advanced Engine Technology), de acordo com a norma ASTM D 6890;
Teste II: Teste de partida a frio e ajuste de ponto: o teste consistiu em determinar se o motor dá partida após um máximo de 10 voltas do eixo-manivela. Caso a partida ocorra, o resultado é anotado "OK", do contrário, é anotado "não ocorre".
Teste III: Diâmetro de cicatriz de desgaste em esfera de aço para avaliação de lubricidade em equipamento HFRR (High Frequency Reciprocating Rig), de acordo com norma ASTM D 6079;
Teste IV: Teste de corrosão de bico injetor: o bico injetor é o item de maior suscetibilidade à corrosão e desgaste prematuro nos sistemas de injeção de motores de ciclo diesel. Este teste consiste em mergulhar um bico injetor de múltiplos furos modelo Bosch DLLA 134 P 422, produzido em aço DIN 18CrNi8, no combustível em teste, mantido em estufa a 75 °C por duas semanas.
Teste V: Acidez livre da mistura após 2 semanas a 75 °C: a acidez livre da mistura combustível foi medida pelo método ASTM D 974 "Standard Test Method for Acid and Base Number by Color- Indicator Titration", imediatamente antes e após a exposição do bico injetor ao combustível por 2 semanas a 75 °C, conforme o teste IV acima.
Teste VI: Teste em motor e dinamômetro elétrico Positron/Eaton, modelo 8121, potência máxima 500 CV, rotação máxima 5000 rpm: o teste consistiu na obtenção da curva potência x rotação em motor Mercedes-Benz modelo OM 352A turboalimentado com turbina Lacombe para 5 pontos.
Teste VII: Teste de consumo médio: durante o teste dinamométrico, o consumo médio é medido para cada rotação, uma vez ajustada a curva dinamométrica para que o combustível em teste tenha a mesma potência que o óleo diesel na mesma rotação. O consumo foi medido pela massa de combustível consumida em um período cronometrado de 5 minutos, pela diferença de massa de combustível contido em uma bombona sobre uma balança.
Teste VIII: teste de durabilidade de bomba injetora: o teste consistiu em bombear o combustível em prova através de uma bomba de injeção Bosch tipo VE rotativa, modelo 0-460-424-369, em circuito fechado, utilizando a vazão nominal da bomba, por um total de 1.000 h, à temperatura ambiente. Após o teste de 1.000 h, a bomba é desmontada, e seus componentes avaliados quanto ao desgaste.
Os testes foram realizados comparativamente ao óleo diesel, e a etanol hidratado, de modo a selecionar as faixas de teores otimizadas em eficiência para os aditivos testados.
Tabela I: Resultados de testes de eficiência de ignição:
N° do Composição 5 DCN, IQT Teste de partida a Teste v/v frio e ajuste de ponto
1 Oleo diesel 44 Partida OK, ponto metropolitano nominal do diesel
2 n-butanol Falha na
ignição pelo
equipamento
3 n-butanol 98 % Partida não dinitrato de ocorreu com trietilenoglicol 31,72 facilidade, ponto (DNTEG) 2 % com avanço de 12
° em relação ao ponto do diesel.
4 n-butanol 97,6 % Partida OK, ponto
DNTEG 2,4 % 34,81 com avanço de 14
0 em relação ao ponto do diesel.
n-butanol 97 % Partida OK, ponto DNTEG 3,0 % 36,4 com avanço de 14
° em relação ao ponto do diesel. n-butanol 98 % Partida não Dinitrato de 32 ocorreu com tetraetilenoglicol facilidade, ponto (DNTetraEG) 2 com avanço de 12 % 0 em relação ao ponto do diesel. n-butanol 97,5 % 36 Partida OK, ponto DNTetraEG 2,5 com avanço de 14
% ° em relação ao ponto do diesel. n-butanol 94 %
nitrato de 16 - isopropila (NIP)
6 %
n-butanol 95,1 %
nitrato de 17,62 - isoamila (NIA)
4,9 %
n-butanol 94,4 %
nitrato de 2-etil
hexanol (2- 22 - EHN) 5,434 %
lubrificante
Ultrazol 9525
0,135 %
n-butanol 90,72
% 29,31
2-EHN 9,1495
%
lubrificante
Ultrazol 9525
0,13 %
n-butanol 88,85 Partida OK, ponto
% 34 com avanço de 16
2-EHN 1 1,01 % 0 em relação ao lubrificante ponto do diesel.
Ultrazol 9525
0,13 %
n-butanol 94 %
glicerina Partida OK, ponto etoxilada com 35 com avanço de 16 média de 10 ° em relação ao unidades de ponto do diesel. óxido de etileno
por unidade de
gliceriol
(Glycereth 10
EO) 6 %
n-butanol 97 % 34 Partida OK, ponto nitrato de com avanço de 16 glicerina graus em relação etoxilada com ao ponto do óleo média de 10 diesel
unidades
molares de óxido
de etileno por
unidade molar de
glicerina (nitrato
de glycereth 10
EO) 3%
DCN (IQT) teste
de partida a frio
n-butanol 85 %
éster metílico de
óleo de palma 21 - (biodiesel
metílico de
palma. BMP) 15
%
n-butanol 75 % 32 Partida OK, ponto BMP 25 % com avanço de 16
° em relação ao ponto do diesel.
Isobutanol 98 % 32 Partida OK, ponto v/v com avanço de 16
DNTEG 2,4 % 0 em relação ao v/v ponto do diesel.
97,393 %
isobutanol 2,482 32,61 Partida OK, ponto % DNTEG com avanço de 14 0,125 % ° em relação ao lubrificante ponto do diesel. Ultrazol 9525 A
da Lubrizol
isobutanol 97,6 35 Partida OK, ponto % v/v com avanço de 14
DNTetraEG 2,4 0 em relação ao % ponto do diesel. isobutanol 89 % 35 Partida OK, ponto v/v com avanço de 14
2-EHN 11 % ° em relação ao ponto do diesel.
Tabela II: Resultados de testes de lubricidade, corrosividade,
dinamométrica e durabilidade:
CompoDiâmeCorrosiCurva poAcidez Consumo Durabisição tro vidade tência X total limédio lidade de rotação vre antes bomba (v/v) HFRR, bico L/h
e após l .OOOh μπι injetor exposição a
75 °C
mg
KOH/g
Oleo 400 nenhuma RPM - CV RPM -L/h nenhum diesel alteração 1200 - 52 1000 - 13 desgaste metropoobserva1500 - 95 1300 - 17
litano do
1800 - 132 1500- 19,5
2000 - 40 1800 - 23
Etanol 844 Corrosão 0,016
hidratado generaliantes
zada,
pre0,156
sença de após
ferrugem
em todo
o bico
n-butanol 822 Corrosão 0,012
leve, antes
indicada
por al0,07
após
guns
pontos
de ferrugem
2,505 % 644 Sem 0,013
sinais de DNTEG, corrosão, antes
0,106 % porém a 0,081
mistura
lubrificant após
ficou lee Ultrazol vemente
9525A da amarelada
Lubrizol e
97,389 %
n-butanol
2,502 % 473 Sem siRPM-CV 0,011 RPM -L/h nenhum
DNTEG, nais de 1200 - 50 antes 1000- 15 desgaste corrosão, observa¬
0,106% 1500-96 0,06 1300- 19,4
mistura do lubrificant límpida 1800- 134 após 1500-23
e Kerokorr
2000 - 36 1800-26
LA99C
da BASF
0,102 %
anticorrosivo
Keropur
MFlex
3651 da
BASF,
97,29 % e
n-butanol
2,494 % 501
DNTEG,
0,094 % modificador de fricção
Kerocom
3561 da
BASF,
0,041 % anticorrosivo Kerokorr
3232 da
BASF,
97,371 % n- butanol
2,51 % 467
DNTEG,
0,102 % lubrificante
Kerokorr LA
99C da
BASF,
0,061 % anticorrosivo Kerokorr
3232 da
BASF
97,327 %
isobu-tanol I 2,506 % 398 Sem antes DNTEG sinais de 0,012 corrosão,
0,212 % % após mistura 0,010 lubrificante límpida
Kerokorr LA
99C da
BASF,
0,1121 %
anticorrosivo Keropur
MFlex 3651
da BASF e
97,1699 %
n-butanol
Surpreendentemente, misturas baseadas em butanol e isobutanol com número de cetanos derivado de aproximadamente 35, portanto abaixo da especificação adequada para o óleo diesel 42, apresentaram boa partida a frio, e bom desempenho da curva de potência x torque. Também de maneira surpreendente, os teores de aditivos foram relativamente baixos, o que permite que as alternativas sejam económicas. O consumo médio foi, em geral, na faixa de 15 % superior ao consumo do óleo diesel, o que também foi surpreendente, já que a razão entre os poderes caloríficos inferiores do butanol e do óleo diesel é aproximadamente 1,32 (38,6 MJ/L / 29,2 MJ/L).A ausência de teores significativos de água, bem como a proteção de filme adsorvido de aditivo anticorrosivo sobre a superfície metálica do bico injetor, podem explicar a baixa corrosividade e a grande estabilidade da acidez livre da mistura após períodos de exposição à alta temperatura.Baseando-se nas pesquisas e testes realizados obteve-se a formulação otimizada da presente patente, que é constituída do seguinte:
- 50 a 99 % de combustível formado por um ou mais álcoois de 4 carbonos, tais como n-butanol, isobutanol, sec-butanol e terc- butanol;
- um ou mais aditivos capazes de aumentar a explosividade do butanol, tais como:
. 0,5 % a 5 % de dinitrato de trietileno glicol
(DNTEG); ou
. 0,5 % a 5 % de dinitrato de tetraetileno glicol
(DNTtetraEG); ou
. 2 % a 15 % de nitrato de 2-etilhexanol (2-
EHN); ou
. 2 % a 15 % de nitrato de tetrahidrofurfurila (NTHF); ou
. 0,5 % a 15 % de nitrato de polietileno glicol (NPEG); ou
. 2 % a 15 % de nitrato de isoamila (NIA); ou . 2 % a 15 % de nitrato de isopropila (NIP); ou . 2 % a 15 % de peróxidos orgânicos; ou . 2 % a 15 % de glicerina etoxilada; ou
- 2% a 15% de nitrato de glicerina etoxilada . 10 % a 60 % de ésteres de ácidos graxos. . 0,005 % a 1,0 % de um ou mais aditivos comercialmente disponíveis para aumento de lubricidade ou modificadores de fricção, tais como mistura de ácidos carboxílicos Kerokorr 99C e mistura de amina e ácido oléico Kerocom 3561, ambos da BASF AG; mistura à base de amina etoxilada Ultrazol 9525a e mistura à base de éster de ácido carboxílico Ultrazol 9555, ambos da Lubrizol Corporation; misturas à base de éster de ácido carboxílico Tolad 9185 ou Tolad 9165, misturas à base de ácidos carboxílicos Tolad 9101 ou Tolad 9113 e misturas à base de amida Tolad 9137 ou Tolad 9141R, todos da Baker Hughes, Inc.; polietileno glicol, polipropileno glicol; ou outros compostos com mesma função disponíveis comercialmente.
- 0,0005 a 1,0 % de um aditivo estabilizador (controlador da hidrólise de nitratos) tais como: etanolaminas, difenilamina, difeniluréias (tais como etil centralite), morfolina, ou outros compostos de caráter fracamente alcalino.
- 0,0005 e 1,0 % de um ou mais aditivos anticorrosivos que atuam por formação de filme adsorvido nas superfícies metálicas, disponíveis comercialmente, tais como: mistura à base de poliéter Keropur MFlex 3651, mistura à base de amida de ácido carboxílico KeroKorr 3232, ambos da BASF AG; Tolad 3224 ou Tolad 3222, ambos da Baker Hughes; ou outros compostos disponíveis comercialmente.
Outros aditivos com conhecidas ou alegadas características de modificar as propriedades do butanol e seus álcoois isômeros como indicado nesta patente, poderão ser utilizados nas faixas indicadas na mesma não limitando o campo inventivo da presente patente.
Será prontamente reconhecido como uma vantagem adicional, por um técnico da área de combustíveis que, uma vez que o combustível objeto desta patente apresenta solubilidade no óleo diesel convencional de origem fóssil, misturas do combustível objeto desta patente com óleo diesel podem ser realizadas com resultados efetivos, sem prejuízo dos ensinamentos decorrentes desta patente.

Claims

REIVINDICAÇÕES
1. " FONTE ENERGÉTICA LÍQUIDA COM INICIAÇÃO POR COMPRESSÃO ", com formulação otimizada, caracterizada por, seguinte composição:
- 50 a 99 % de combustível formado por um ou mais álcoois de 4 carbonos dentre: n-butanol, isobutanol, sec-butanol ou terc-butanol;
- 0,5 a 5,0 % de um ou mais aditivos capazes de aumentar a explosividade do butanol compostos pelo dinitrato de tríetileno glicol (DNTEG) ou pelo dinitrato de tetraetileno glicol (DNTtetraEG) ou a mistura dos dois;
- 0,005 % a 1,0 % de um ou mais aditivos para aumento de lubricidade ou modificadores de fricção dentre: mistura de ácidos carboxílicos, mistura de amina e ácido oléico, mistura à base de amina etoxilada, mistura à base de éster de ácido carboxílico, misturas à base de amida, polietileno glicol, ou polipropileno glicol;
- 0,0005 a 1 ,0 % de um aditivo estabilizador dentre: etanolaminas, difenilamina, difeniluréias ou morfolina; e
- 0,0005 e 1,0 % de um ou mais aditivos anti-corrosivos dentre: mistura à base de poliéter, mistura à base de amida de ácido carboxílico;
2. " FONTE ENERGÉTICA LÍQUIDA COM INICIAÇÃO POR COMPRESSÃO ", de acordo com a reivindicação 1, caracterizada por, alternativamente os aditivos capazes de aumentar a explosividade do butanol serem o nitrato de 2-etilhexanol (2- EHN) ou o nitrato de tetrahidrofurfurila (NTHF), ou o nitrato de isoamila (NIA), ou nitrato de isopropila (NIP) ou a mistura deles e utilizado com 2 % a 15 % na fórmula.
3. FONTE ENERGÉTICA LÍQUIDA
COM INICIAÇÃO POR COMPRESSÃO ", de acordo com a reivindicação 1, caracterizada por, alternativamente o nitrato orgânico ser o nitrato de polietileno glicol (NPEG) e utilizado com 0,5 a 15 % na fórmula.
054. " FONTE ENERGÉTICA LÍQUIDA
COM INICIAÇÃO POR COMPRESSÃO de acordo com a reivindicação 1 , caracterizada por, alternativamente os aditivos capazes de aumentar a explosividade do butanol serem os peróxidos orgânicos ou a glicerina etoxilada ou a mistura dos dois e utilizado com 2 % a 15 % na
10 fórmula;
5. " FONTE ENERGÉTICA LÍQUIDA COM INICIAÇÃO POR COMPRESSÃO ", de acordo com a reivindicação 1 , caracterizada por, alternativamente os aditivos capazes de aumentar a explosividade do butanol serem os nitratos de glicerina
15 etoxilada e utilizados com 2 % a 15 % na fórmula;
6. " FONTE ENERGÉTICA LÍQUIDA COM INICIAÇÃO POR COMPRESSÃO de acordo com a reivindicação 1, caracterizada por, alternativamente os aditivos capazes de aumentar a explosividade do butanol serem os ésteres de ácidos graxos e
20utilizado com 10 a 60 % na fórmula.
7. FONTE ENERGÉTICA LÍQUIDA
COM INICIAÇÃO POR COMPRESSÃO ", de acordo com a reivindicação 1 a 6, caracterizada por, a fonte energética líquida ser utilizada pura ou em mistura ao óleo diesel de origem fóssil;
PCT/BR2011/000284 2010-11-12 2011-08-11 Composição combustível baseada em alcoóis de quatro átomos de carbono e aditivos para motores de ciclo diesel WO2012061909A1 (pt)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI1004630A BRPI1004630B1 (pt) 2010-11-12 2010-11-12 fonte energética líquida com iniciação por compressão
US13/816,364 US9315749B2 (en) 2010-11-12 2011-08-11 Liquid fuel composition with alcohols of four carbon atoms and additives, with ignition by compression
AP2013006723A AP2013006723A0 (en) 2010-11-12 2011-08-11 A fuel composition based on four-carbon-atom alcohols and additives for diesel-cycle motors
SE1350297A SE1350297A1 (sv) 2010-11-12 2011-08-11 En sammansättning av flytande bränslen bestående av alkoholer med fyra kolatomer och tillsatsämnen, för tändning via kompression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1004630-5 2010-11-12
BRPI1004630A BRPI1004630B1 (pt) 2010-11-12 2010-11-12 fonte energética líquida com iniciação por compressão

Publications (1)

Publication Number Publication Date
WO2012061909A1 true WO2012061909A1 (pt) 2012-05-18

Family

ID=46050257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2011/000284 WO2012061909A1 (pt) 2010-11-12 2011-08-11 Composição combustível baseada em alcoóis de quatro átomos de carbono e aditivos para motores de ciclo diesel

Country Status (5)

Country Link
US (1) US9315749B2 (pt)
AP (1) AP2013006723A0 (pt)
BR (1) BRPI1004630B1 (pt)
CO (1) CO6690764A2 (pt)
WO (1) WO2012061909A1 (pt)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9926245B2 (en) * 2013-09-30 2018-03-27 Pioneer Energy Fuels and chemicals from lower alkanes
WO2016026583A1 (en) * 2014-08-17 2016-02-25 Avocet Fuel Solutions Inc. Enhanced fuel and method of producing enhanced fuel for operating internal combustion engine
CN105238465B (zh) * 2015-10-27 2017-02-08 河南隆正生物能源有限公司 一种高清洁柴油十六烷值改进剂的制备方法
RU2641286C1 (ru) * 2016-07-08 2018-01-17 Акционерное общество "Ангарская нефтехимическая компания" Кислородсодержащая антидетонационная присадка к автомобильным бензинам
BR102021004001A2 (pt) * 2021-03-02 2022-09-13 Antonio Falquete Marco Formulação de combustível renovável aplicado em ciclo diesel e baseada em álcoois

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378466A (en) * 1941-11-28 1945-06-19 Carbide & Carbon Chem Corp Diesel fuel and method of improving diesel fuel ignition
EP0030429A2 (en) * 1979-12-11 1981-06-17 Aeci Limited Fuels and a method of running an engine using such fuels
GB2090612A (en) * 1980-12-30 1982-07-14 Inst Francais Du Petrole Combustible compositions containing gas oil, at least one fatty acid ester and an n-butane-base alcohol constituent which can be used in particular as diesel fuels
US4368056A (en) * 1981-05-20 1983-01-11 Pierce Sammy M Diesel fuel by fermentation of wastes
WO1993024593A1 (en) * 1992-06-02 1993-12-09 Greenbranch Enterprises, Inc. A phase stabilized alcohol based diesel fuel containing ignition additives
EP0716139A1 (de) * 1994-12-07 1996-06-12 Veba Oel Ag Kraftstoff für hochverdichtende selbstzündende Motoren
JP2006037064A (ja) * 2004-07-26 2006-02-09 Nabeshima Masao ディーゼル機関用燃料
CN101245267A (zh) * 2008-03-26 2008-08-20 刘振和 甲醇柴油添加剂制备方法
JP2008260819A (ja) * 2007-04-11 2008-10-30 National Institute Of Advanced Industrial & Technology バイオディーゼル燃料の製造方法
WO2010115578A2 (en) * 2009-04-03 2010-10-14 Eth Zurich Novel compounds suited as diesel supplements and diesel substitutes and routes for their synthesis
WO2011001285A1 (en) * 2009-07-01 2011-01-06 Saudi Arabian Oil Company Combustible mixed butanol fuels

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668245A (en) * 1986-10-22 1987-05-26 Bankamerica Corporation Fuel additive for use in alcohol fuels
KR20030006529A (ko) 2001-07-13 2003-01-23 김문덕 내연기관용 연료 조성물
KR100374257B1 (ko) 2001-12-12 2003-03-03 (주)프리.플라이트 알코올 연료 조성물
US20050160662A1 (en) * 2002-06-11 2005-07-28 Oryxe Energy International, Inc. Method and composition for using stabilized beta-carotene as cetane improver in hydrocarbonaceous diesel fuels
CR7573A (es) * 2004-11-11 2005-06-08 Araya Brenes Mario Composicion de un combustible y/o biocombustible a base de alcohol para sustituir gasolina, diesel o aceites combustibles en motores convencionales de combustion interna y metodo para su empleo
WO2008082916A1 (en) * 2006-12-28 2008-07-10 The Lubrizol Corporation Fuel additives for use in high level alcohol-gasoline blends
JP2009144085A (ja) 2007-12-17 2009-07-02 Honda Motor Co Ltd ディーゼル軽油組成物
US8734543B2 (en) 2008-05-08 2014-05-27 Butamax Advanced Biofuels Llc Oxygenated gasoline composition having good driveability performance
KR20130105649A (ko) * 2010-09-07 2013-09-25 부타맥스 어드밴스드 바이오퓨얼스 엘엘씨 피루베이트로부터 아세토락테이트로의 전환을 촉매작용시키는 폴리펩티드를 암호화하는 폴리뉴클레오티드의 통합

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378466A (en) * 1941-11-28 1945-06-19 Carbide & Carbon Chem Corp Diesel fuel and method of improving diesel fuel ignition
EP0030429A2 (en) * 1979-12-11 1981-06-17 Aeci Limited Fuels and a method of running an engine using such fuels
GB2090612A (en) * 1980-12-30 1982-07-14 Inst Francais Du Petrole Combustible compositions containing gas oil, at least one fatty acid ester and an n-butane-base alcohol constituent which can be used in particular as diesel fuels
US4368056A (en) * 1981-05-20 1983-01-11 Pierce Sammy M Diesel fuel by fermentation of wastes
WO1993024593A1 (en) * 1992-06-02 1993-12-09 Greenbranch Enterprises, Inc. A phase stabilized alcohol based diesel fuel containing ignition additives
EP0716139A1 (de) * 1994-12-07 1996-06-12 Veba Oel Ag Kraftstoff für hochverdichtende selbstzündende Motoren
JP2006037064A (ja) * 2004-07-26 2006-02-09 Nabeshima Masao ディーゼル機関用燃料
JP2008260819A (ja) * 2007-04-11 2008-10-30 National Institute Of Advanced Industrial & Technology バイオディーゼル燃料の製造方法
CN101245267A (zh) * 2008-03-26 2008-08-20 刘振和 甲醇柴油添加剂制备方法
WO2010115578A2 (en) * 2009-04-03 2010-10-14 Eth Zurich Novel compounds suited as diesel supplements and diesel substitutes and routes for their synthesis
WO2011001285A1 (en) * 2009-07-01 2011-01-06 Saudi Arabian Oil Company Combustible mixed butanol fuels

Also Published As

Publication number Publication date
US20130139430A1 (en) 2013-06-06
AP2013006723A0 (en) 2013-02-28
BRPI1004630B1 (pt) 2019-01-02
US9315749B2 (en) 2016-04-19
CO6690764A2 (es) 2013-06-17
BRPI1004630A2 (pt) 2012-06-26

Similar Documents

Publication Publication Date Title
Kumar et al. Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines
US9562498B2 (en) Biodegradable fuel performance additives
CN101531933B (zh) 用于均质充气压缩点火发动机的燃料
US20110023355A1 (en) Combustible Mixed Butanol Fuels
Demirbas Current advances in alternative motor fuels
WO2012061909A1 (pt) Composição combustível baseada em alcoóis de quatro átomos de carbono e aditivos para motores de ciclo diesel
Wibowo et al. The effect of bioethanol-varying gasoline blends on performance and emission of SI engine 150 CC
Klein Methanol: a future-proof fuel
US20110162261A1 (en) Fuel formulations
WO2022183262A1 (pt) Formulação de combustível renovável aplicado em ciclo diesel e baseada em álcoois
BR102022003667A2 (pt) Formulação de combustível renovável aplicado em ciclo diesel e baseada em álcoois
BRPI1002909A2 (pt) fonte energética lìquida com iniciação por compressão
US7429281B2 (en) Method for manufacturing bio-diesel oil containing alkane compounds
Kukoyi et al. Biomethane and Bioethanol as alternative transport fuels
Semakula et al. The influence of cetane number and oxygen content in the performance and emissions characteristics of a diesel engine using biodiesel blends
Apdulvahitoğlu Performance and exhaust emission characteristics of a CI engine fueled with synthesized fuel blends
Singh et al. Experimental studies on single cylinder CI engine using mahua oil and ethanol blends
Wysocka et al. The use of alcohols and their compounds as biofuel and gasoline blends
Mohsin et al. Effects of Multi-Variant Biofuel on Engine Performance and Exhaust Emission of DDF Engine System
RU2813456C1 (ru) Кислородсодержащее композиционное дизельное топливо
Sarıkoç Some of the Bio-fuels for Internal Combustion Engines: Alcohols and Biodiesel
WO2014046982A1 (en) Fuels and fuel additives comprising ester derivatives of 5-methyl-2-furoic acid
SE1350297A1 (sv) En sammansättning av flytande bränslen bestående av alkoholer med fyra kolatomer och tillsatsämnen, för tändning via kompression
US8679204B2 (en) Fuel formulations
Igbokwe et al. Characterization of Blends of Petrol and Bioethanol Synthesized from Nigerian Palm Bunch.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13816364

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 13050268

Country of ref document: CO

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839061

Country of ref document: EP

Kind code of ref document: A1