WO2012057503A2 - 염료감응 태양전지 및 그 제조방법 - Google Patents

염료감응 태양전지 및 그 제조방법 Download PDF

Info

Publication number
WO2012057503A2
WO2012057503A2 PCT/KR2011/007991 KR2011007991W WO2012057503A2 WO 2012057503 A2 WO2012057503 A2 WO 2012057503A2 KR 2011007991 W KR2011007991 W KR 2011007991W WO 2012057503 A2 WO2012057503 A2 WO 2012057503A2
Authority
WO
WIPO (PCT)
Prior art keywords
dye
solar cell
sensitized solar
graphene
carbon black
Prior art date
Application number
PCT/KR2011/007991
Other languages
English (en)
French (fr)
Other versions
WO2012057503A3 (ko
Inventor
이종찬
박찬석
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to JP2013536507A priority Critical patent/JP2014500581A/ja
Priority to CN2011800515017A priority patent/CN103189995A/zh
Priority claimed from KR1020110109091A external-priority patent/KR20120043648A/ko
Publication of WO2012057503A2 publication Critical patent/WO2012057503A2/ko
Publication of WO2012057503A3 publication Critical patent/WO2012057503A3/ko
Priority to US13/871,733 priority patent/US20130233370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • H01G9/2063Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution comprising a mixture of two or more dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dye-sensitized solar cell and a method for manufacturing the same, and more specifically, a dye using carbon nanotubes (CNT), graphene (graphene) or carbon black (carbon black) as a light absorbing material. It relates to a sensitized solar cell and a method of manufacturing the same.
  • CNT carbon nanotubes
  • graphene graphene
  • carbon black carbon black
  • Dye-sensitized solar cells have the potential to replace conventional amorphous silicon solar cells because their manufacturing cost is significantly lower than conventional silicon-based solar cells.
  • dye-sensitized solar cells are photoelectrochemical solar cells whose main components are dye molecules capable of absorbing light to generate electron-hole pairs, and transition metal oxides for transferring generated electrons, unlike silicon solar cells.
  • 1 is a view for explaining the structure and development principle of a general dye-sensitized solar cell.
  • the dye-sensitized solar cell 10 includes transparent glass substrates 11 and 12 to which the transparent films 13 and 14 are attached, a catalyst counter electrode 15, nanoparticles TiO 2 , and the like.
  • a working electrode (16) or photoelectrode, a dye (17), an electrolyte (Electrolyte) 18, and an encapsulant 19 having a titanium dioxide structure may be included.
  • the dye-sensitized solar cell 10 has a nanoparticle-structured working electrode 16 and an electrolyte in which a specific dye 17 is adsorbed between two glass substrates 11 and 12 to which the transparent electrode films 13 and 14 are respectively attached. It is formed into a structure filled with (18).
  • the transparent electrode films 13 and 14 may be ATO, ITO or FTO, and are typically provided in a state formed on the glass substrates 11 and 12.
  • the dye-sensitized solar cell 10 is a cell having a concept similar to the principle of photosynthetic action of plants, and includes a photosensitive dye 17 which absorbs light and a working electrode which is a titania electrode having a nano structure supporting the dye 17. (16), an electrolyte 18 and a catalyst counter electrode 15 are solar cells.
  • Dye-sensitized solar cell 10 does not use p-type and n-type semiconductor junctions like conventional silicon solar cells or thin-film solar cells, but produces electricity by electrochemical principles, and is high in theoretical efficiency and environmentally friendly. It is expected to be the most suitable solar cell for green energy.
  • the dye 17 In the dye-sensitized solar cell 10, when the external light reaches the dye 17, the dye 17 generates electrons, and the electrons are received by the working electrode 16, which is a porous oxide semiconductor (mostly TiO 2 is used). Deliver to the outside. Thereafter, the electrons reach the counter electrode 15 while flowing in an external circuit. At this time, since electrons escaped from the dye 17 of the working electrode 16 to the outside, one electron is again supplied to the dye 16 from the ions inside the electrolyte 18, and the electrons returned from the outside to the counter electrode are returned again. The energy transfer process is continuously performed by being transferred to the ions in the electrolyte 18.
  • the working electrode 16 which is a porous oxide semiconductor (mostly TiO 2 is used). Deliver to the outside. Thereafter, the electrons reach the counter electrode 15 while flowing in an external circuit. At this time, since electrons escaped from the dye 17 of the working electrode 16 to the outside, one electron is again supplied to the dye 16 from the ions inside the electrolyte 18, and the electrons
  • the dye-sensitized solar cell module is provided in the form of a module in which a plurality of dye-sensitized solar cells 10 shown in Figure 1 are arranged in series or in parallel.
  • the light absorbing dye (17) mainly absorbs only the visible light region, so the efficiency is low, and the light absorbing dye is expensive, and the main cause of the increase in the manufacturing cost of the dye-sensitized solar cell is high. Accordingly, there is an urgent need for the development of various methods that can reduce the manufacturing cost while increasing the efficiency of the dye-sensitized solar cell.
  • the technical problem to be solved by the present invention for solving the above-mentioned problems is to increase the efficiency of the solar cell by extending the light absorption wavelength band, it is possible to significantly lower the manufacturing cost of the solar cell by using a low-cost light absorbing material It is to provide a dye-sensitized solar cell and a method of manufacturing the same.
  • the light absorbing material is carbon nanotubes (CNT), graphene (graphene) or carbon black (carbon It provides a dye-sensitized solar cell comprising a black).
  • the light absorbing material is characterized in that it comprises a) a light absorbing dye and b) carbon nanotubes (CNT), graphene (graphene) or carbon black (carbon black).
  • CNT carbon nanotubes
  • graphene graphene
  • carbon black carbon black
  • the present invention also provides a method for manufacturing a dye-sensitized solar cell comprising adsorbing a light absorbing material on a working electrode, wherein the light absorbing material is carbon nanotubes (CNT), graphene or carbon black. It provides a method for producing a dye-sensitized solar cell comprising a black).
  • CNT carbon nanotubes
  • the light absorbing material is characterized in that it comprises a) a light absorbing dye and b) carbon nanotubes (CNT), graphene (graphene) or carbon black (carbon black).
  • CNT carbon nanotubes
  • graphene graphene
  • carbon black carbon black
  • CNT carbon nanotubes
  • graphene graphene
  • carbon black carbon black
  • 1 is a view for explaining the structure and development principle of a general dye-sensitized solar cell.
  • FIG. 2 is a view for explaining the principle of power generation of the dye-sensitized solar cell according to an embodiment of the present invention.
  • J sc short-circuit photocurrent density
  • the present invention is a dye-sensitized solar cell comprising a light absorbing material, characterized in that the light absorbing material comprises carbon nanotubes (CNT), graphene (graphene) or carbon black (carbon black).
  • the light absorbing material comprises carbon nanotubes (CNTs), and more preferably single wall carbon nanotubes (CNTs).
  • the dye-sensitized solar cell except for the light absorbing material, such as carbon nanotubes (CNT), graphene, or carbon black, are known dye-sensitizing agents using only dye as a conventional light absorbing material.
  • CNT carbon nanotubes
  • graphene graphene
  • carbon black known dye-sensitizing agents using only dye as a conventional light absorbing material.
  • a dye-sensitized solar cell module as shown in Figure 1 is a provided with a light absorbing material adsorbed porous oxide semiconductor layer (typically, a porous TiO 2) a working electrode (photoelectrode) A working electrode substrate formed on the first transparent glass substrate; A counter electrode substrate laminated with the working electrode substrate and having a catalytic counter electrode formed on a second transparent glass substrate; And an electrolyte injected into the laminated counter electrode substrate and the working electrode substrate. It may also further comprise a light scattering layer on the working electrode.
  • a well known dye-sensitized solar cell dye such as ruthenium-based dyes or organic dyes may be used.
  • the carbon nanotube (CNT), graphene (graphene) or carbon black (carbon black) absorbs light and transfers electrons to a working electrode, thereby providing a mechanism similar to that of a light-absorbing dye of a conventional dye-sensitized solar cell. Indicates.
  • the carbon nanotubes (CNT), graphene (graphene) or carbon black (carbon black) in the present invention is preferably a particle size of 0.01-100 nm.
  • carbon nanotubes (CNT), graphene, or carbon black may generate electrons by absorbing light from the ultraviolet region to the infrared region of the dye-sensitized solar cell. The smaller it can absorb light of a short wavelength band (ultraviolet region), and the larger the particle diameter can absorb light of a long wavelength band (infrared region). Therefore, carbon nanotubes (CNT), graphene (graphene) or carbon black (carbon black) is preferably adsorbed by varying the size distribution of the particle size when adsorbed on the porous oxide semiconductor.
  • the carbon nanotubes (CNT), graphene (graphene) or carbon black (carbon black) adsorbed on the working electrode may be a chemical bond or a physical bond, the chemical bond may be applied to the wet coating
  • the physical bonding may be a known method such as chemical vapor deposition (CVD) or atomic layer deposition (ALD).
  • carbon nanotubes (CNT), graphene (graphene) or carbon black (carbon black) for the chemical bonding can be adsorbed by attaching an anchoring group at the end group, specific examples of the anchoring group has the following structural formula Can be used.
  • one carbon nanotube (CNT), graphene (graphene) or carbon black (carbon black) may have 1-100 anchoring groups.
  • the carbon nanotubes (CNT), graphene (graphene) or carbon black (carbon black) of the present invention may further include an electron group or light absorber at the end, in this case
  • the efficiency of the dye-sensitized solar cell can be further improved.
  • the electron group or the light absorption pendent may be a known electron group or a light absorption pendent, and in particular, C6-C50 may be substituted or unsubstituted.
  • An aryl group or a substituted or unsubstituted C1-C30 alkyl group may be used.
  • one carbon nanotube (CNT), graphene or carbon black may have various numbers (for example, 1-100) of electron groups or light absorption pendents. Can have
  • the light absorbing material adsorbed on the porous oxide semiconductor in the dye-sensitized solar cell of the present invention may be a) light absorbing dye and b) carbon nanotubes (CNT), graphene (carbonene) or carbon black (carbon black).
  • 2 is a view showing the principle of the dye-sensitized solar cell of the present invention.
  • the light absorbing dye in the visible region, a) the light absorbing dye may absorb light, and in the ultraviolet and infrared regions, b) carbon nanotubes (CNT), graphene, or carbon black may absorb the light. .
  • the amount of a) light-absorbing dye and b) carbon nanotubes (CNT), graphene (carbonene) or carbon black (carbon black) adsorbed on the porous oxide semiconductor is optionally adjustable, for example, the light absorbing material is a A) 30-70% by weight of a light absorbing dye and b) 30-70% by weight of carbon nanotubes (CNT), graphene or carbon black.
  • a) light-absorbing dye can be applied to a variety of dyes that can be used as a light-absorbing material in the dye-sensitized solar cell, of course, all known ruthenium-based, organic dyes and the like can be applied.
  • the present invention is a carbon nanotube (CNT), graphene (carbonene) or carbon black of all or part of the expensive light-absorbing dye of the dye-sensitized solar cell using only the light-absorbing dye as a conventional light-absorbing material )
  • CNT carbon nanotube
  • carbonene carbonene
  • carbon black carbon black
  • the present invention also provides a method for manufacturing a dye-sensitized solar cell comprising adsorbing a light absorbing material on a working electrode, wherein the light absorbing material is carbon nanotubes (CNT), graphene or carbon black. It provides a method for producing a dye-sensitized solar cell comprising a black).
  • the light absorbing material is carbon nanotubes (CNTs), and more preferably single wall carbon nanotubes (CNTs).
  • steps of the dye-sensitized solar cell manufacturing method except the adsorption of the light absorbing material to the working electrode in the present invention can be used a known method of manufacturing a dye-sensitized solar cell using a conventional dye, as a specific example a Manufacturing a working electrode substrate on which a working electrode including a porous oxide semiconductor layer on which a light absorbing material is adsorbed is formed on a first transparent glass substrate; b) fabricating a counter electrode substrate having a catalytic counter electrode formed on a second transparent glass substrate; c) laminating the counter electrode substrate and the working electrode substrate; And d) injecting an electrolyte into the laminated counter electrode substrate and the working electrode substrate.
  • the manufacturing of the working electrode substrate of step a) may include a-1) forming a first transparent electrode on the first transparent glass substrate; a-2) forming a porous oxide semiconductor layer on the first transparent electrode; a-3) adsorbing a light absorbing material to the porous oxide semiconductor layer. It may also further comprise a light scattering layer on the working electrode.
  • CNT carbon nanotubes
  • the carbon nanotube (CNT), graphene (graphene) or carbon black (carbon black) to adsorb on the working electrode may be a chemical bond or a physical bond, the physical bond is CVD (chemical vapor) Known methods such as deposition) or ALD (atomic layer deposition) can be applied.
  • Carbon nanotube (CNT), graphene (graphene) or carbon black (carbon black) for the chemical bonding may be adsorbed by attaching an anchoring group to the end group.
  • the carbon nanotubes (CNT), graphene (graphene) or carbon black (carbon black) of the present invention may further include an electron group or light absorber at the end, in this case The efficiency of the dye-sensitized solar cell can be further improved.
  • the light absorbing material adsorbed on the porous oxide semiconductor is a) light absorbing dyes such as ruthenium-based dyes or organic dyes and b) carbon nanotubes (CNT) and graphene Or carbon black.
  • the amount of a) light-absorbing dye and b) carbon nanotubes (CNT), graphene, or carbon black, which are adsorbed on the porous oxide semiconductor can be arbitrarily controlled.
  • the light-absorbing material is a A) 30-70% by weight of a light absorbing dye and b) 30-70% by weight of carbon nanotubes (CNT), graphene or carbon black.
  • light-absorbing dye can be applied to a variety of dyes that can be used as a light-absorbing material in the dye-sensitized solar cell, as well as ruthenium-based, organic dyes are all applied.
  • the adsorption method and order of a) light-absorbing dye and b) carbon nanotubes (CNT), graphene, or carbon black (carbon black) adsorbed on the porous oxide semiconductor may be arbitrarily controlled.
  • the light absorbing dye may be first adsorbed, and then carbon nanotubes may be adsorbed; Carbon nanotubes or the like may be adsorbed first and then the light absorbing dye may be adsorbed;
  • carbon nanotubes having a large particle diameter may be adsorbed first, followed by adsorption of the light absorbing dye, and carbon nanotubes having a small particle diameter may be adsorbed.
  • the chemical bonds or physical bonds can be selected appropriately, and preferably, the carbon nanotubes after adsorption of the light absorbing dye.
  • the adsorption through chemical bonding is good for the efficiency and stability of the adsorption.
  • Dye-sensitized solar cell according to the present invention is a dye-sensitized solar cell by replacing all or part of the expensive light-absorbing dye with low-cost carbon nanotubes (CNT), graphene (carbonene) or carbon black (carbon black) There is an advantage that can significantly lower the manufacturing cost of.
  • CNT carbon nanotubes
  • carbonene carbonene
  • carbon black carbon black
  • the photoelectrode was a solar cell using a 12 ⁇ m TiO 2 transparent layer.
  • a TiO 2 paste (Solaronix, 13 nm paste) was screen printed to prepare an 8 ⁇ m thick TiO 2 transparent layer, and the dye was adsorbed onto the TiO 2 transparent layer by impregnating the dye solution in which 0.5% of ruthenium-based dye was dissolved in ethanol.
  • SWCNT single wall CNT substituted with COOH at the end was prepared at a concentration of 0.01 mM using dimethylformamide as a solvent, and SWCNT was adsorbed onto a TiO 2 transparent layer adsorbed with ruthenium-based dyes.
  • the sealed sandwich cell was assembled by heating a hot melt film (Surlyn 1702, 25 ⁇ m thick) as a spacer between the dye-swept TiO 2 electrode and SWCNT-adsorbed platinum-electrode.
  • a hot melt film As electrolyte solution, 1-methyl-3-propylimidazolium iodide (MPII, 0.8 M), I 2 (0.04 M), guanidium thiocyanate dissolved in 3-methoxypropionitrile (MPN)
  • a mixed solution of (GSCN, 0.05 M) and tert -butylpyridine (TBP, 0.5 M) was used.
  • Example 2 instead of SWCNT (single wall CNT) in which the terminal was substituted with COOH, graphene having the terminal replaced with COOH was prepared at a concentration of 0.01 mM using dimethylformamide as a solvent, and TiO adsorbed with ruthenium-based dyes. 2 A dye-sensitized solar cell was manufactured in the same manner as in Example 1, except that graphene was adsorbed on the transparent layer.
  • Example 1 carbon black having a terminal substituted with COOH instead of SWCNT (single wall CNT) substituted with COOH was prepared at a concentration of 0.01 mM using dimethylformamide as a solvent. 2 A dye-sensitized solar cell was prepared in the same manner as in Example 1 except that carbon black was adsorbed on the transparent layer.
  • a dye-sensitized solar cell was manufactured in the same manner as in Example 1, except that SWCNT (single wall CNT) in which the terminal was replaced with COOH was not used.
  • Example 1 using the carbon nanotubes as the light absorbing material showed a particularly high J sc value compared to the comparative example without using the carbon nanotubes as the light absorbing material, It was confirmed that the improvement.
  • the efficiency of the dye-sensitized solar cells prepared in Examples 2 and 3 also showed 6.14% and 6.03%, respectively, resulting in an efficiency improvement of at least 5% over the dye-sensitized solar cells not using graphene or carbon black. I could confirm it.
  • CNT carbon nanotubes
  • graphene graphene
  • carbon black carbon black

Abstract

본 발명은 염료감응 태양전지 및 그 제조 방법에 관한 것으로, 고가의 광흡수성 염료의 전부 또는 일부를 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)으로 대체하여 염료감응 태양전지의 효율과 생산성을 동시에 증가시킬 수 있다.

Description

염료감응 태양전지 및 그 제조방법
본 발명은 염료감응 태양전지 및 그 제조방법에 관한 것으로, 보다 구체적으로, 광흡수물질로 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 사용하는 것을 특징으로 하는 염료감응 태양전지 및 그 제조 방법에 관한 것이다.
1991년도 스위스 로잔공대(EPFL)의 마이클 그라첼(Michael Gratzel) 연구팀에 의해 염료감응 나노입자 산화티타늄 태양전지가 개발된 이후, 이 분야에 관한 많은 연구가 진행되고 있다. 염료감응 태양전지는 기존의 실리콘계 태양전지에 비해 제조단가가 현저하게 낮기 때문에 기존의 비정질 실리콘 태양전지를 대체할 수 있는 가능성을 가지고 있다. 또한, 염료감응 태양전지는 실리콘 태양전지와 달리 광을 흡수하여 전자-홀 쌍을 생성할 수 있는 염료분자, 및 생성된 전자를 전달하는 전이금속 산화물을 주요 구성 재료로 하는 광전기화학적 태양전지이다.
도 1은 일반적인 염료감응 태양전지의 구조와 발전 원리를 설명하기 위한 도면이다.
도 1을 참조하면, 염료감응 태양전지(10)는 투명 필름(13, 14)이 각각 부착된 투명한 글래스 기판(11, 12), 촉매 상대전극(Counter Electrode: 15), 나노 입자(TiO2, 이산화티타늄) 구조의 작동전극(Working Electrode: 16) 또는 광전극, 염료(17), 전해질(Electrolyte: 18) 및 봉지재(19)를 포함할 수 있다.
우선 염료감응 태양전지(10)는 투명전극 필름(13, 14)을 각각 부착한 두 글래스 기판(11, 12) 사이에 특정 염료(17)를 흡착한 나노입자 구조의 작동전극(16)과 전해질(18)을 채운 구조로 형성된다. 여기서, 투명전극 필름(13, 14)은 ATO, ITO 또는 FTO일 수 있으며, 통상적으로 글래스 기판(11, 12) 상에 형성된 상태로 제공된다.
구체적으로, 염료감응 태양전지(10)는 식물의 광합성 작용원리와 유사한 개념의 전지로서, 광을 흡수하는 광감응성 염료(17), 이러한 염료(17)를 지지하는 나노 구조의 티타니아 전극인 작동전극(16), 전해질(18), 촉매 상대전극(15)으로 구성된 태양전지이다. 염료감응 태양전지(10)는 기존의 실리콘 태양전지나 박막 태양전지와 같이 p형과 n형 반도체의 접합을 사용하지 않고, 전기화학적 원리에 의해 전기를 생산하며, 이론 효율이 높고, 친환경적이어서 미래의 그린에너지로 가장 적합한 태양전지로 기대되고 있다.
염료감응 태양전지(10)는 외부의 광이 염료(17)에 닿으면 염료(17)는 전자를 발생하고, 이 전자를 다공질 산화물 반도체(주로 TiO2가 이용됨)인 작동전극(16)이 받아 외부로 전달한다. 이후, 전자는 외부회로를 타고 흐르면서 상대전극(15)에 도달하게 된다. 이때, 작동전극(16)의 염료(17)에서 전자가 외부로 빠져 나갔기 때문에 전해질(18) 내부의 이온에서 한 개의 전자가 다시 염료(16)로 공급되고, 외부에서 상대전극으로 돌아온 전자는 다시 전해질(18) 내부의 이온으로 전달됨으로써 에너지 전달 과정이 연속적으로 이루어지게 된다.
이러한 과정들은 주로 작동전극(16)과 전해질(18) 사이와 상대전극(15)과 전해질(18) 사이에서 이루어지는 전기화학 반응에 따르므로, 전극과 전해질이 닿는 면적이 넓을수록 많은 반응이 빠르게 진행될 수 있다. 아울러 작동전극(16)의 표면 면적이 넓을수록 많은 양의 염료(17)가 붙어 있을 수 있기 때문에 생산할 수 있는 전력의 양이 증가하게 된다. 따라서 각각의 전극(15, 16) 소재로 나노 입자를 사용하며, 동일 부피에서 물질의 표면적이 극단적으로 증가하기 때문에 많은 양의 염료를 표면에 부착할 수 있고, 전극(15, 16)과 전해질(18) 사이의 전기화학 반응의 속도를 증가시킬 수 있다. 이때, 염료감응 태양전지모듈은 도 1에 도시된 염료감응 태양전지(10)가 다수 개 직렬 또는 병렬로 배치된 모듈 형태로 제공된다.
그러나, 이와 같은 종래의 염료감응 태양전지에서 광흡수성 염료(17)는 주로 가시광선 영역만을 흡수하기 때문에 효율이 낮은 편이며, 또한 광흡수성 염료가 고가여서 염료감응 태양전지의 제조비용을 상승시키는 주원인이 되고 있으며, 이에 따라 염료감응 태양전지의 효율을 높이면서도 제조비용을 낮출 수 있는 다양한 방법의 개발이 절실히 요청되고 있다.
전술한 문제점을 해결하기 위한 본 발명이 이루고자 하는 기술적 과제는, 광흡수 파장대의 영역을 넓혀 태양전지의 효율을 높을 수 있으며, 저가의 광흡수물질을 사용함으로써 태양전지의 제조비용을 현저히 낮출 수 있는 염료감응 태양전지 및 그 제조 방법을 제공하기 위한 것이다.
전술한 기술적 과제를 달성하기 위한 수단으로서, 본 발명에 따른 광흡수물질을 포함하는 염료감응 태양전지에 있어서, 상기 광흡수물질이 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 포함하는 것을 특징으로 하는 염료감응 태양전지를 제공한다.
바람직하기로 상기 광흡수물질은 a) 광흡수성 염료 및 b) 탄소나노튜브 (CNT), 그래핀(graphene) 또는 카본블랙(carbon black)를 포함하는 것을 특징으로 한다.
또한 본 발명은 작동전극 상에 광흡수성 물질을 흡착시키는 단계를 포함하는 염료감응 태양전지의 제조방법에 있어서, 상기 광흡수물질이 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 포함하는 것을 특징으로 하는 염료감응 태양전지의 제조방법을 제공한다.
바람직하기로 상기 광흡수물질은 a) 광흡수성 염료 및 b) 탄소나노튜브 (CNT), 그래핀(graphene) 또는 카본블랙(carbon black)를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 광흡수물질로 사용함으로써 광흡수 파장대의 영역을 넓혀 태양전지의 효율을 높을 수 있으며, 저가의 광흡수물질을 사용함으로써 태양전지의 제조비용을 현저히 낮출 수 있다.
도 1은 일반적인 염료감응 태양전지의 구조와 발전 원리를 설명하기 위한 도면이다.
도 2는 본 발명의 일실시예에 따른 염료감응 태양전지의 발전 원리를 설명하는 도면이다.
도 3은 본 발명의 실시예 1 및 비교예에서 제조한 염료감응태양전지를 이용하여 측정한 단회로 광전류 밀도(short-circuit photocurrent density, Jsc) 그래프이다.
이하 본 발명을 상세히 설명한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명은 광흡수물질을 포함하는 염료감응 태양전지에 있어서, 상기 광흡수물질이 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 포함하는 것을 특징으로 한다. 바람직하기로 상기 광흡수물질은 탄소나노튜브(CNT)이며, 더욱 바람직하기로는 단일벽(single wall) 탄소나노튜브(CNT)이다.
본 발명에서 상기 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)인 광흡수물질을 제외한 염료감응 태양전지의 다른 요소는 종래 광흡수성 물질로 염료만을 사용하는 공지의 염료감응 태양전지의 구성요소를 사용할 수 있음은 물론이며, 구체적인 예로 도 1과 같이 염료감응 태양전지모듈은 광흡수성 물질이 흡착된 다공질 산화물 반도체층(통상 다공성 TiO2)이 구비된 작동전극(광전극)이 제1 투명 글래스 기판 상에 형성된 작동전극 기판; 상기 작동전극 기판과 합지되며, 촉매 상대전극이 제2 투명 글래스 기판 상에 형성된 상대전극 기판; 및 합지된 상기 상대전극 기판 및 작동전극 기판 내에 주입되는 전해질을 포함한 구조일 수도 있다. 또한 작동전극 상에 광산란층을 더욱 포함할 수도 있다. 상기에서 염료는 루테늄계 염료 또는 유기염료 등 공지의 염료감응태양전지 염료가 사용될 수 있음은 물론이다.
본 발명에서 상기 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)은 광을 흡수하여 전자를 작동전극으로 전달하여, 종래 염료감응 태양전지의 광흡수성 염료와 대등한 기작을 나타낸다.
바람직하기로는 본 발명에서 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)은 입경이 0.01-100 nm인 것이 좋다. 상기 범위 내인 경우 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)은 염료감응 태양전지의 자외선 영역부터 적외선 영역까지의 광을 흡수하여 전자를 발생시킬 수 있으며, 특히 입경이 작을수록 짧은 파장대(자외선 영역)의 빛을 흡수하고, 입경이 클수록 긴 파장대(적외선 영역)의 빛을 흡수할 수 있다. 따라서, 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 다공성 산화물 반도체 상에 흡착시 입경의 크기를 다양하게 분포시켜 흡착시키는 것이 바람직하다.
또한 본 발명에서 상기 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 작동전극 상에 흡착하는 것은 화학적 결합 또는 물리적 결합일 수 있으며, 상기 화학적 결합은 습식코팅을 적용할 수 있으며, 물리적 결합은 CVD(chemical vapor deposition) 또는 ALD(atomic layer deposition)등 공지의 방법이 적용될 수 있다. 또한 상기 화학적 결합을 위하여 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)은 말단기에 anchoring group을 붙여서 흡착될 수 있으며, anchoring group의 구체적인 예로는 하기와 같은 구조식을 갖는 것을 사용할 수 있다. 바람직하기로 한개의 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)는 1-100개의 anchoring group를 가질 수 있다.
[anchoring group]
Figure PCTKR2011007991-appb-I000001
또한 본 발명의 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)은 말단에 전자주개기(electron group) 또는 광흡수기(light absorption pendent)를 더욱 포함할 수 있으며, 이 경우 염료감응 태양전지의 효율을 더욱 향상시킬 수 있다. 상기 전자주개기(electron group) 또는 광흡수기(light absorption pendent)는 공지의 전자주개기(electron group) 또는 광흡수기(light absorption pendent)가 사용될 수 있으며, 구체적인 일예로 치환되거나 치환되지 않은 C6-C50의 아릴기 또는 치환되거나 치환되지 않은 C1-C30의 알킬기가 사용될 수 있다. 또한 한개의 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)는 다양한 개수(일예로 1-100개)의 전자주개기(electron group) 또는 광흡수기(light absorption pendent)를 가질 수 있다.
또한 본 발명의 염료감응 태양전지에서 다공성 산화물 반도체에 흡착된 광흡수물질은 a) 광흡수성 염료 및 b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)일 수 있다. 도 2는 본 발명의 염료감응 태양전지의 원리를 나타내는 도면이다. 이 경우 가시광선 영역은 a) 광흡수성 염료가 광을 흡수하고, 자외선 및 적외선 영역은 b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)이 광을 흡수할 수 있다. 상기에서 다공성 산화물 반도체에 흡착되는 a) 광흡수성 염료 및 b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)의 양은 임의로 조절가능하며, 일예로 상기 광흡수물질은 a) 광흡수성 염료 30-70 중량% 및 b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black) 30-70 중량%로 할 수 있다. 상기에서 바람직하기로는 흡착되는 b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black) 100 중량부에 대하여 0.01-2 nm의 입경을 가지는 것이 20-80 중량부, 2-100 nm의 입경을 가지는 것이 20-80 중량부가 되도록 하여 다양한 파장대의 광을 골고루 흡수할 수 있도록 하는 것이 좋다. 상기에서 a) 광흡수성 염료는 염료감응 태양전지에 광흡수성 물질로 사용될 수 있는 다양한 종류의 염료가 적용될 수 있음은 물론이며, 공지의 루테늄계, 유기염료 등이 모두 적용 가능하다.
상기와 같이 본 발명은 종래 광흡수성 물질로 광흡수성 염료만을 사용하던 염료감응 태양전지의 고가의 광흡수성 염료의 전부 또는 일부를 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)으로 대체하여 광흡수 파장대의 영역을 넓히고, 생산비를 대폭적으로 낮출 수 있는 장점이 있다.
또한 본 발명은 작동전극 상에 광흡수성 물질을 흡착시키는 단계를 포함하는 염료감응 태양전지의 제조방법에 있어서, 상기 광흡수물질이 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 포함하는 것을 특징으로 하는 염료감응 태양전지의 제조방법을 제공한다. 바람직하기로 상기 광흡수물질은 탄소나노튜브(CNT)이며, 더욱 바람직하기로는 단일벽(single wall) 탄소나노튜브(CNT)이다.
본 발명에서 상기 광흡수물질의 작동전극에의 흡착을 제외한 염료감응 태양전지 제조방법의 다른 단계는 종래 염료를 사용하는 공지의 염료감응 태양전지의 제조방법이 사용할 수 있음은 물론이며, 구체적인 예로 a) 광흡수성 물질이 흡착된 다공질 산화물 반도체층을 포함하는 작동전극이 제1 투명 글래스 기판 상에 형성되는 작동전극 기판을 제작하는 단계; b) 촉매 상대전극이 제2 투명 글래스 기판 상에 형성된 상대전극 기판을 제작하는 단계; c) 상기 상대전극 기판 및 작동전극 기판을 합지하는 단계; 및 d) 상기 합지된 상대전극 기판 및 작동전극 기판 내에 전해질을 주입하는 단계를 포함하여 이루어질 수 있다.
상기에서 a)단계의 작동전극 기판을 제작하는 단계는 a-1) 제1 투명 글래스 기판 상에 제1 투명 전극을 형성하는 단계; a-2) 상기 제1 투명 전극 상에 다공질 산화물 반도체층을 형성하는 단계; a-3) 상기 다공질 산화물 반도체층에 광흡수성 물질을 흡착시키는 단계를 포함하여 이루어질 수 있다. 또한 상기 작동전극 상에 광산란층을 더욱 포함할 수도 있다.
상기에서 흡착되는 b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black) 100 중량부에 대하여 0.01-2 nm의 입경을 가지는 것이 20-80 중량부, 2-100 nm의 입경을 가지는 것이 20-80 중량부가 되도록 하여 다양한 파장대의 광을 골고루 흡수할 수 있도록 하는 것이 좋다.
또한 본 발명에서 상기 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 작동전극 상에 흡착시키는 방법은 화학적 결합 또는 물리적 결합일 수 있으며, 상기 물리적 결합은 CVD(chemical vapor deposition) 또는 ALD(atomic layer deposition)등 공지의 방법이 적용될 수 있다. 상기 화학적 결합을 위하여 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)은 말단기에 anchoring group을 붙여서 흡착될 수 있다.
또한 본 발명의 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)은 말단에 전자주개기(electron group) 또는 광흡수기(light absorption pendent)를 더욱 포함할 수 있으며, 이 경우 염료감응 태양전지의 효율을 더욱 향상시킬 수 있다.
또한 본 발명의 염료감응 태양전지의 제조방법에서 다공성 산화물 반도체에 흡착되는 광흡수물질은 a) 루테늄계 염료 또는 유기염료 등의 광흡수성 염료 및 b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)일 수 있다. 이 경우 다공성 산화물 반도체에 흡착되는 a) 광흡수성 염료 및 b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)의 양은 임의로 조절가능하며, 구체적으로 상기 광흡수물질은 a) 광흡수성 염료 30-70 중량% 및 b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black) 30-70 중량%로 할 수 있다. 상기에서 바람직하기로는 흡착되는 b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black) 100 중량부에 대하여 0.01-2 nm의 입경을 가지는 것이 20-80 중량부, 2-100 nm의 입경을 가지는 것이 20-80 중량부가 되도록 하여 다양한 파장대의 광을 골고루 흡수할 수 있도록 하는 것이 좋다. 상기에서 a) 광흡수성 염료는 염료감응 태양전지에 광흡수성 물질로 사용될 수 있는 다양한 종류의 염료가 적용될 수 있음은 물론이며, 루테늄계, 유기염료 등이 모두 적용하다.
또한 다공성 산화물 반도체에 흡착되는 a) 광흡수성 염료 및 b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)의 흡착방법 및 순서는 임의로 조절할 수 있다. 일예로 광흡수성 염료를 먼저 흡착시킨 후, 탄소나노튜브 등을 흡착시킬 수 있으며; 탄소나노튜브 등을 먼저 흡착시킨 후, 광흡수성 염료를 흡착시킬 수도 있으며; 또한 입경이 큰 탄소나노튜브 등을 먼저 흡착시킨 후, 광흡수성 염료를 흡착시키고, 다시 입경이 작은 탄소나노튜브 등을 흡착시킬 수도 있다. 상기에서 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)를 흡착시 화학적 결합 또는 물리적결합은 적절히 선택할 수 있음은 물론이며, 바람직하기로는 광흡수성 염료의 흡착 후에 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)를 흡착시에는 화학적 결합을 통하여 흡착시키는 것이 흡착의 효율 및 안정성을 위하여 좋다.
본 발명에 따른 염료감응 태양전지의 제조방법은 고가의 광흡수성 염료의 전부 또는 일부를 저가의 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)로 대체함으로써 염료감응 태양전지의 제조단가를 현저히 낮출 수 있는 장점이 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
실시예 1 염료감응태양전지의 제조
광전극은 12 ㎛ TiO2 투명층을 이용하여 태양전지를 제조하였다. TiO2 페이스트(Solaronix, 13 nm 페이스트)를 스크린 프린팅하여 8 ㎛ 두께의 TiO2 투명층을 제조하였으며, 에탄올에 루테늄계 염료를 0.5 mM로 용해시킨 염료용액에 함침시켜 TiO2 투명층에 염료를 흡착시켰다.
이후 말단을 COOH로 치환한 SWCNT(single wall CNT)를 디메틸포름아미드를 용매로 하여 0.01 mM의 농도로 준비하여 루테늄계 염료가 흡착된 TiO2 투명층에 SWCNT를 흡착시켰다.
상기 염료와 SWCNT가 흡착된 TiO2 전극과 백금-대전극 사이에 스페이서로서 고온용융 필름(Surlyn 1702, 25 ㎛ 두께)을 놓고 가열하여 밀봉된 샌드위치 전지를 조합하였다. 전해질 용액으로는 3-메톡시프로피오니트릴(MPN)에 용해시킨 1-메틸-3-프로필이미다졸리움 아이오다이드(MPII, 0.8 M), I2(0.04 M), 구아니디움 티오시아네이트(GSCN, 0.05 M) 및 tert-부틸피리딘(TBP, 0.5 M)의 혼합용액을 사용하였다.
실시예 2 염료감응태양전지의 제조
상기 실시예 1에서 말단을 COOH로 치환한 SWCNT(single wall CNT)를 대신하여 말단을 COOH로 치환한 그래핀을 디메틸포름아미드를 용매로 하여 0.01 mM의 농도로 준비하여 루테늄계 염료가 흡착된 TiO2 투명층에 그래핀을 흡착시킨 것을 제외하고는 상기 실시예 1과 동일한 방법으로 염료감응태양전지를 제조하였다.
실시예 3 염료감응태양전지의 제조
상기 실시예 1에서 말단을 COOH로 치환한 SWCNT(single wall CNT)를 대신하여 말단을 COOH로 치환한 카본블랙을 디메틸포름아미드를 용매로 하여 0.01 mM의 농도로 준비하여 루테늄계 염료가 흡착된 TiO2 투명층에 카본블랙을 흡착시킨 것을 제외하고는 상기 실시예 1과 동일한 방법으로 염료감응태양전지를 제조하였다.
비교예 염료감응태양전지의 제조
상기 실시예 1에서 말단을 COOH로 치환한 SWCNT(single wall CNT)를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 염료감응태양전지를 제조하였다.
상기 제조된 실시예 1 및 비교예의 염료감응태양전지를 이용하여 단회로 광전류 밀도(short-circuit photocurrent density, Jsc), 오픈 회로 광전압(open circuit photovoltage, Voc), 충전 인자(fill factor, FF)를 측정하여 하기 표 1 및 도 3에 나타내었다.
표 1
염료 Jsc(mA/cm2) Voc(V) FF η(%)
비교예 12.25 0.74 0.63 5.72
실시예1 14.10 0.69 0.64 6.24
상기 표 1 및 도 3에 나타난 바와 같이 탄소나노튜브를 광흡수물질로 사용한 실시예 1은 탄소나노튜브를 광흡수물질로 사용하지 않은 비교예에 비하여 특히 높은 Jsc 값을 나타내었으며, 전체적인 효율에 있어서도 향상됨을 확인할 수 있었다.
또한 실시예 2 및 실시예 3에서 제조한 염료감응태양전지의 효율도 각각 6.14% 및 6.03%를 나타내어 그래핀 또는 카본블랙을 사용하지 않은 염료감응태양전지에 비하여 적어도 5% 이상의 효율향상을 가져옴을 확인할 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명에 따르면, 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 광흡수물질로 사용함으로써 광흡수 파장대의 영역을 넓혀 태양전지의 효율을 높을 수 있으며, 저가의 광흡수물질을 사용함으로써 태양전지의 제조비용을 현저히 낮출 수 있다.

Claims (13)

  1. 광흡수물질을 포함하는 염료감응 태양전지에 있어서,
    상기 광흡수물질이 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 포함하는 것을 특징으로 하는 염료감응 태양전지.
  2. 제1항에 있어서,
    상기 광흡수물질은 0.01-100 nm의 입경을 갖는 탄소나노튜브(single wall carbon nanotube)인 것을 특징으로 하는 염료감응 태양전지.
  3. 제1항에 있어서,
    상기 광흡수물질은
    a) 광흡수성 염료; 및
    b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black);
    를 포함하는 것을 특징으로 하는 염료감응 태양전지.
  4. 제3항에 있어서,
    상기 광흡수물질은
    a) 광흡수성 염료 30-70 중량%; 및
    b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black) 30-70 중량%;
    를 포함하는 것을 특징으로 하는 염료감응 태양전지.
  5. 제1항에 있어서,
    상기 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)은 anchoring group을 가지고 있는 것을 특징으로 하는 염료감응 태양전지.
  6. 제1항에 있어서,
    상기 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)은 전자주개기(electron donor group) 또는 광흡수기(light absorption pendent)를 가지고 있는 것을 특징으로 하는 염료감응 태양전지.
  7. 작동전극 상에 광흡수성 물질을 흡착시키는 단계를 포함하는 염료감응 태양전지의 제조방법에 있어서,
    상기 광흡수물질이 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)을 포함하는 것을 특징으로 하는 염료감응 태양전지의 제조방법.
  8. 제7항에 있어서,
    상기 광흡수물질은 0.01-100 nm의 입경을 갖는 탄소나노튜브(single wall carcon nanotube)인 것을 특징으로 하는 염료감응 태양전지의 제조방법.
  9. 제7항에 있어서,
    상기 광흡수물질은
    a) 광흡수성 염료; 및
    b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black);
    를 포함하는 것을 특징으로 하는 염료감응 태양전지의 제조방법.
  10. 제9항에 있어서,
    상기 광흡수물질은
    a) 광흡수성 염료 30-70 중량%; 및
    b) 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black) 30-70 중량%;
    를 포함하는 것을 특징으로 하는 염료감응 태양전지의 제조방법.
  11. 제7항에 있어서,
    상기 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)은 anchoring group을 가지고 있는 것을 특징으로 하는 염료감응 태양전지의 제조방법.
  12. 제7항에 있어서,
    상기 탄소나노튜브(CNT), 그래핀(graphene) 또는 카본블랙(carbon black)은 전자주개기(electron donor group) 또는 광흡수기(light absorption pendent)를 가지고 있는 것을 특징으로 하는 염료감응 태양전지.
  13. 제1항 내지 제7항 중 어느 한 항 기재의 염료감응 태양전지를 포함하는 염료감응 태양전지 모듈.
PCT/KR2011/007991 2010-10-26 2011-10-25 염료감응 태양전지 및 그 제조방법 WO2012057503A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013536507A JP2014500581A (ja) 2010-10-26 2011-10-25 染料感応太陽電池およびその製造方法
CN2011800515017A CN103189995A (zh) 2010-10-26 2011-10-25 染料敏化太阳能电池及其制造方法
US13/871,733 US20130233370A1 (en) 2010-10-26 2013-04-26 Dye-sensitized solar cell and method of preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0104881 2010-10-26
KR20100104881 2010-10-26
KR1020110109091A KR20120043648A (ko) 2010-10-26 2011-10-25 염료감응 태양전지 및 그 제조방법
KR10-2011-0109091 2011-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/871,733 Continuation US20130233370A1 (en) 2010-10-26 2013-04-26 Dye-sensitized solar cell and method of preparing the same

Publications (2)

Publication Number Publication Date
WO2012057503A2 true WO2012057503A2 (ko) 2012-05-03
WO2012057503A3 WO2012057503A3 (ko) 2012-07-26

Family

ID=45994542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007991 WO2012057503A2 (ko) 2010-10-26 2011-10-25 염료감응 태양전지 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2012057503A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887073A (zh) * 2014-03-31 2014-06-25 北京大学 一种基于表面等离子体增强原理的太阳能电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070029998A (ko) * 2005-09-12 2007-03-15 삼성전자주식회사 전기영동법으로 형성된 탄소나노튜브를 포함하는 태양 전지및 그 제조방법
KR20080029231A (ko) * 2006-09-28 2008-04-03 한국전자통신연구원 전도성 입자가 분산된 고분자 전해질을 포함하는 염료감응태양전지 및 그 제조 방법
KR20080044675A (ko) * 2006-11-17 2008-05-21 삼성에스디아이 주식회사 염료감응 태양전지용 전해질, 이를 포함하는 염료감응태양전지, 및 이의 제조방법
KR20080054971A (ko) * 2006-12-14 2008-06-19 삼성전자주식회사 염료감응형 태양전지 및 그 제조방법
KR20080090226A (ko) * 2007-04-04 2008-10-08 성균관대학교산학협력단 염료감응형 태양전지 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070029998A (ko) * 2005-09-12 2007-03-15 삼성전자주식회사 전기영동법으로 형성된 탄소나노튜브를 포함하는 태양 전지및 그 제조방법
KR20080029231A (ko) * 2006-09-28 2008-04-03 한국전자통신연구원 전도성 입자가 분산된 고분자 전해질을 포함하는 염료감응태양전지 및 그 제조 방법
KR20080044675A (ko) * 2006-11-17 2008-05-21 삼성에스디아이 주식회사 염료감응 태양전지용 전해질, 이를 포함하는 염료감응태양전지, 및 이의 제조방법
KR20080054971A (ko) * 2006-12-14 2008-06-19 삼성전자주식회사 염료감응형 태양전지 및 그 제조방법
KR20080090226A (ko) * 2007-04-04 2008-10-08 성균관대학교산학협력단 염료감응형 태양전지 및 이의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887073A (zh) * 2014-03-31 2014-06-25 北京大学 一种基于表面等离子体增强原理的太阳能电池及其制备方法

Also Published As

Publication number Publication date
WO2012057503A3 (ko) 2012-07-26

Similar Documents

Publication Publication Date Title
US10366842B2 (en) Dye-sensitized solar cell and method for manufacturing thereof
KR100658263B1 (ko) 적층형 광전변환소자 및 그의 제조방법
KR100722085B1 (ko) 전기영동법으로 형성된 탄소나노튜브를 포함하는 태양 전지및 그 제조방법
KR101117690B1 (ko) 코어쉘 구조의 금속 산화물을 포함하는 광흡수층 및 이를구비한 태양전지
KR20120043648A (ko) 염료감응 태양전지 및 그 제조방법
KR20070111609A (ko) 포스페이트를 포함하는 반도체 전극 및 이를 채용한태양전지
WO2014003294A1 (ko) 페로브스카이트 기반 메조다공 박막 태양전지 제조 기술
EP1667275A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
EP1780827A1 (en) Semiconductor electrode, fabrication method thereof and solar cell comprising the same
KR101045849B1 (ko) 고효율의 플렉시블 염료감응형 태양전지 및 이의 제조방법
KR20090065175A (ko) 염료감응 태양전지 및 그의 제조 방법
EP2272920B1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
KR101140784B1 (ko) 염료감응 태양전지 및 그 제조방법
KR101627161B1 (ko) 고분자 지지층을 포함하는 염료감응 태양전지, 및 이의 제조 방법
KR20120020938A (ko) 염료감응 태양전지용 광전극, 이의 제조방법 및 이를 포함하는 염료감응 태양전지
WO2012148213A2 (ko) 계층형 다공성 전이금속 산화물 구조체, 상기의 제조 방법, 상기를 포함하는 광전극, 및 상기 광전극을 포함하는 염료감응형 태양전지
KR101190002B1 (ko) 염료감응 태양전지용 반도체 전극, 이의 제조방법 및 이를 포함하는 염료감응 태양전지
KR101551074B1 (ko) 피리딘계 첨가제가 함유된 장기안정성 고체상 염료감응 태양전지
KR101088676B1 (ko) 요오드화피롤리디니움계 이온성 액체를 포함한 염료감응 태양전지용 전해질 용액, 이를 포함하는 염료감응 태양전지 및 염료감응 태양전지의 제조방법
WO2012057503A2 (ko) 염료감응 태양전지 및 그 제조방법
JP2011249019A (ja) 光電変換装置及びその製造方法
KR101088675B1 (ko) 요오드화피리디니움계 이온성 액체를 포함한 염료감응 태양전지용 전해질 용액, 이를 포함하는 염료감응 태양전지 및 염료감응 태양전지의 제조방법
JP2014186995A (ja) 透明色素増感太陽電池および色素増感太陽電池モジュール
KR101321645B1 (ko) 실란커플링 공흡착제를 구비한 염료감응 태양전지 및 이의 제조방법
JP2012204169A (ja) 色素増感型光電変換素子およびその製造方法ならびに金属酸化物半導体層の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836595

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013536507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836595

Country of ref document: EP

Kind code of ref document: A2