WO2012057330A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2012057330A1
WO2012057330A1 PCT/JP2011/074960 JP2011074960W WO2012057330A1 WO 2012057330 A1 WO2012057330 A1 WO 2012057330A1 JP 2011074960 W JP2011074960 W JP 2011074960W WO 2012057330 A1 WO2012057330 A1 WO 2012057330A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
light emitting
emitting device
emitting element
Prior art date
Application number
PCT/JP2011/074960
Other languages
English (en)
French (fr)
Inventor
青木 和夫
渡邊 誠
島村 清史
ビジョラ エンカルナシオン アントニア ガルシア
Original Assignee
株式会社光波
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社光波, 独立行政法人物質・材料研究機構 filed Critical 株式会社光波
Priority to JP2012540979A priority Critical patent/JP6369774B2/ja
Priority to EP11836463.7A priority patent/EP2634234B1/en
Priority to US13/882,037 priority patent/US9112123B2/en
Publication of WO2012057330A1 publication Critical patent/WO2012057330A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Definitions

  • the present invention relates to a light emitting device.
  • a light emitting element composed of a light emitting diode (LED) that emits blue light and a phosphor that emits yellow light when excited by receiving the light from the light emitting element are mixed.
  • LED light emitting diode
  • a light emitting device that emits light is known (see, for example, Patent Document 1).
  • the light-emitting device described in Patent Document 1 includes a granular phosphor contained in an epoxy resin and arranged around a light-emitting element that emits blue light.
  • the light emitted from the light-emitting element itself and yellow light emitted from the phosphor Is configured to emit white light.
  • the binder such as an epoxy resin for fixing the granular phosphor
  • the light transmittance is lowered and the light emission efficiency is lowered. Resulting in.
  • the smaller the particle size the larger the surface area of the phosphor relative to the volume of the phosphor. It is easily affected by the external environment, and the non-light emitting region is relatively large due to the non-uniform composition and low crystallinity near the surface. It will decline.
  • an object of the present invention is to provide a light emitting device capable of suppressing a decrease in light emission efficiency due to long-term use as compared with a case where a granular phosphor is used.
  • a light-emitting device including a light-emitting element that emits blue light and a phosphor made of a single single crystal that emits yellow light using the light from the light-emitting element as excitation light.
  • the phosphor, Y 3-xy Gd x M y L V N 5-V O 12-w (L is at least one element selected Sc, from Lu, M is, Ce, Tb, One or more elements selected from the group consisting of Eu, Yb, Pr, Tm, Sm, Nd, Dy, Ho, Er, and N is at least one element selected from the group consisting of Ga, In, Al
  • FIG. 1A is a cross-sectional view of a light emitting device 1 according to a first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of the light-emitting element 10 constituting the light-emitting device 1 shown in FIG. 1A and its peripheral portion.
  • a light emitting device 1 includes a light emitting element 10 made of an LED, a phosphor 2 made of a single single crystal provided so as to cover a light emitting surface of the light emitting element 10, and the light emitting element 10. It comprises a ceramic substrate 3 such as Al 2 O 3 to be supported, a main body 4 made of white resin, and a transparent resin 8 that seals the light emitting element 10 and the phosphor 2.
  • the ceramic substrate 3 has wiring portions 31 and 32 patterned with a metal such as tungsten.
  • the wiring portions 31 and 32 are electrically connected to the n-side electrode 15A and the p-side electrode 15B (described later) of the light emitting element 10.
  • the main body 4 is formed on the ceramic substrate 3, and an opening 4A is formed at the center thereof.
  • the opening 4A is formed in a taper shape in which the opening width gradually increases from the ceramic substrate 3 side toward the outside.
  • the inner surface of the opening 4A is a reflecting surface 40 that reflects the light emitted from the light emitting element 10 toward the outside.
  • the light emitting element 10 is mounted on the ceramic substrate 3 with the n-side electrode 15 ⁇ / b> A and the p-side electrode 15 ⁇ / b> B connected to the wiring portions 31 and 32 of the ceramic substrate 3 by bumps 16 and 16. .
  • the light-emitting element 10 is, for example, a flip chip type using a GaN-based semiconductor compound, and emits blue light having a light amount peak at a wavelength of, for example, 380 to 490 nm.
  • an n-type GaN layer 12, a light emitting layer 13, and a p-type GaN layer 14 are formed in this order on a first main surface 11a of an element substrate 11 made of sapphire or the like.
  • An n-side electrode 15A is formed on the exposed portion of the n-type GaN layer 12, and a p-side electrode 15B is formed on the surface of the p-type GaN layer 14, respectively.
  • the light emitting layer 13 emits blue light when carriers are injected from the n-type GaN layer 12 and the p-type GaN layer 14.
  • the emitted light passes through the n-type GaN layer 12 and the element substrate 11 and is emitted from the second main surface 11 b of the element substrate 11. That is, the second main surface 11 b of the element substrate 11 is a light emitting surface of the light emitting element 10.
  • the phosphor 2 is arranged on the second main surface 11b side of the element substrate 11 so as to cover the entire second main surface 11b.
  • the entire phosphor 2 has a flat plate shape made of a single single crystal.
  • the single single crystal means one having a size equal to or larger than that of the second main surface 11b and being substantially regarded as one single crystal as a whole.
  • the phosphor 2 is in direct contact with the element substrate 11 without interposing another member between the first surface 2a facing the element substrate 11 and the second main surface 11b of the element substrate 11. Yes.
  • the phosphor 2 and the element substrate 11 are bonded by intermolecular force.
  • the phosphor 2 is made of a YAG (yttrium, aluminum, garnet) phosphor. More specifically, the phosphor 2, the Y 3 Al 5 O 12 as a base, Y 3-xy L x M y Al 5-Z N Z O 12-w (L is, Gd or Lu, M is One or more elements selected from the group consisting of Ce, Tb, Eu, Yb, Pr, Tm, and Sm, N is Ga or In, 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 5 , ⁇ 0.2 ⁇ w ⁇ 0.2).
  • L is a component that does not serve as an emission center for replacing Y.
  • M is a component (activator) that can serve as a luminescent center for substituting Y.
  • N is a component that substitutes for Al.
  • the phosphor 2 may be a TSLAG (terbium / scandium / lutetium / aluminum / garnet) phosphor. More specifically, Tb 3 (Sc, Lu) and 2 Al 3 O 12 as a base, Tb 3-x - y Gd x M y (Sc, Lu) 2-Z Al 3-W N Z + W O 12 -V (M is one or more elements selected from the group consisting of Ce, Eu, Yb, Pr, Tm, Sm, N is Ga or In, 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 2, 0 ⁇ w ⁇ 3, ⁇ 0.2 ⁇ v ⁇ 0.2).
  • M is a component (activator) that can be a luminescent center that substitutes for Tb.
  • N is a component that substitutes for Al, Sc, or Lu.
  • z is 0.5 ⁇ z ⁇ 2, it is easier to suppress the formation of defects such as cracks during single crystal production, which is more preferable.
  • the phosphor 2, Tb 3-xy Gd x M y Al 5-Zv (Sc, Lu) v N Z O 12-w (L is, Gd or Lu, M is, Ce, Tb, Eu, Yb,
  • One or more elements selected from the group consisting of Pr, Tm, Sm, N is Ga or In, 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 5, 0 ⁇ v ⁇ 2, ⁇
  • a phosphor having a composition represented by 0.2 ⁇ w ⁇ 0.2) may be used.
  • the concentration of the activator represented by y is preferably 0.003 or more and 0.2 or less, and 0.01 or more and 0.2 or less. It is more desirable. By setting the activator concentration within this range, the thickness t of the phosphor 2 can be set within a suitable range, and concentration quenching can be suppressed.
  • the phosphor 2, Tb 3-xy Gd x M y (Sc, Lu) v N 5-v O 12-w M is, Ce, Eu, Yb, Pr , Tm, Sm, Nd, Dy, Ho , Er, at least one element selected from the group consisting of Er, N is at least one element selected from the group consisting of Ga, In, Al, 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 1,
  • a phosphor having a composition represented by 0 ⁇ v ⁇ 5 and ⁇ 0.2 ⁇ w ⁇ 0.2) may be used.
  • v is 0.5 ⁇ v ⁇ 2
  • formation of defects such as cracks during the production of a single crystal can be easily suppressed, which is more preferable.
  • the phosphor 2, Y 3-xy Gd x M y L v N 5-v O 12-w (L is one or more elements selected Sc, from Lu, M is, Ce, Tb, Eu, At least one element selected from the group consisting of Yb, Pr, Tm, Sm, Nd, Dy, Ho, Er, and N is at least one element selected from the group consisting of Ga, In, Al , 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 1, 0 ⁇ v ⁇ 5, ⁇ 0.2 ⁇ w ⁇ 0.2).
  • v is 0.5 ⁇ v ⁇ 2
  • formation of defects such as cracks during the production of a single crystal can be easily suppressed, which is more preferable.
  • composition of the phosphor 2 described above some atoms may occupy different positions on the crystal structure.
  • the concentration of the activator represented by y is preferably 0.003 or more and 0.2 or less. This is because when the concentration of the activator is less than 0.003, the thickness t of the phosphor 2 necessary for obtaining the necessary fluorescence increases (for example, t> 3 mm), so that the number of phosphors 2 taken decreases. It is because it ends. Further, if the concentration of the activator exceeds 0.2, it is necessary to make the phosphor 2 thin (for example, t ⁇ 0.1 mm). This is because chipping or the like easily occurs and concentration quenching can occur.
  • Concentration quenching refers to the intensity of the fluorescence depending on the concentration of the activator due to the fact that energy transfer between adjacent molecules occurs and the original energy is not sufficiently emitted as fluorescence (non-luminescent transition). This is a phenomenon that does not increase.
  • the concentration of the activator represented by y is 0.01 or more and 0.2 or less.
  • the phosphor 2 can have an appropriate thickness (for example, t ⁇ 2 mm). That is, the thickness t (mm) of the phosphor 2 is preferably 0.1 ⁇ t ⁇ 3.0, and more preferably 0.1 ⁇ t ⁇ 2.0.
  • the phosphor 2 is formed by a liquid phase growth method such as a CZ method (Czochralski Method), an EFG method (Edge Defined Film Fed Growth Method), an FZ method (Floating Zone Method), a CVD method (Chemical Vapor Deposition Method), or the like. It can be obtained by a phase growth method or a solid phase reaction of a sintered body.
  • a CZ method for example, a YAG single crystal is manufactured by pulling up a seed crystal at a growth rate of 1 mm / h in the ⁇ 111> direction in a nitrogen gas atmosphere, and this is used as the second substrate of the element substrate 11 of the light emitting element 10.
  • the phosphor 2 can be created by cutting out to a size corresponding to the main surface 11b (light emitting surface) of the light source.
  • FIG. 2 is a schematic diagram showing a manufacturing process for manufacturing a YAG single crystal by the CZ method together with a cross-sectional view of a crystal growth apparatus.
  • the crystal growth apparatus 80 includes an iridium crucible 81, a ceramic cylindrical container 82 that houses the crucible 81, and a high-frequency coil 83 that is wound around the cylindrical container 82. Mainly prepared.
  • the high frequency coil 83 generates an induced current in the crucible 81 and heats the crucible 81.
  • a YAG single crystal is obtained, for example, as follows using the crystal growth apparatus 80. First, Y 2 O 3 powder (purity 99.99%), Al 2 O 3 powder (purity 99.99%), Gd 2 O 3 powder (purity 99.99%), and CeO 2 powder (purity 99.99%). %) Is prepared, and these powders are dry-mixed to obtain a mixed powder.
  • the blending ratios of Gd 2 O 3 powder and CeO 2 powder are, for example, 36.6 mol%, 62.3 mol%, 0.363 mol%, and 0.737 mol%, respectively.
  • the mixed powder is packed in a cylindrical crucible 81 having a diameter of 50 mm and a depth of 50 mm.
  • an electric current is applied to the high-frequency coil 83 to heat the crucible 81 and melt the mixed powder to obtain a melt 90.
  • a 3 ⁇ 3 ⁇ 70 mm square bar-shaped seed crystal 91 made of YAG (yttrium, aluminium, garnet) was prepared, and the seed crystal 91 was immersed in the melt 90, and then the seed crystal 91 was placed at 10 rpm. It is pulled up at a pulling speed of 1 mm per hour while rotating at a rotation speed of.
  • the light emitting element 10 When the light emitting element 10 configured as described above is energized, electrons are injected into the light emitting layer 13 through the wiring portion 31, the n-side electrode 15A, and the n-type GaN layer 12, and the wiring portion 32 and the p-side electrode 15B. Then, holes are injected into the light emitting layer 13 through the p-type GaN layer 14, and the light emitting layer 13 emits light.
  • the blue emitted light of the light emitting layer 13 passes through the n-type GaN layer 12 and the element substrate 11, is emitted from the second main surface 11 b of the element substrate 11, and enters the first surface 2 a of the phosphor 2.
  • the phosphor 2 absorbs part of the blue light from the light emitting element 10 and converts the absorbed light into yellow light having a light intensity peak at a wavelength of, for example, 500 to 630 nm.
  • a part of the blue light incident on the phosphor 2 is absorbed by the phosphor 2 and converted in wavelength, and is emitted from the second surface 2b of the phosphor 2 as yellow light. Further, the remaining part of the light incident on the phosphor 2 is not absorbed by the phosphor 2 and is emitted from the second surface 2 b of the phosphor 2. Since blue and yellow are in a complementary color relationship, the light emitting device 1 emits white light in which blue light and yellow light are mixed.
  • the color temperature of the white light emitted from the light emitting device 1 is desirably 3800 to 7000K.
  • a more preferable color temperature of white light of the light emitting device 1 is 4000 to 5500K.
  • the color temperature of white light can be adjusted by the activator concentration and thickness of the phosphor 2.
  • a YAG single crystal is used as the phosphor, blue light can be efficiently absorbed to emit yellow light, and white light can be efficiently obtained.
  • the activator concentration of the phosphor 2 is set to 0.003 or more and 0.2 or less, more preferably 0.01 or more and 0.2 or less, the thickness of the phosphor 2 is suitable for processing and assembly. The thickness can be reduced and concentration quenching can be suppressed.
  • FIGS. 3A to 3C are cross-sectional views of the light-emitting device 1A according to the present embodiment
  • FIG. 3B is a cross-sectional view of the light-emitting element 10A constituting the light-emitting device 1A and its periphery
  • FIG. 3C is a plan view of the light-emitting element 10A. .
  • the light-emitting device 1A according to the present embodiment is common in the light-emitting device 1 according to the first embodiment with a configuration in which the light emitted from the light-emitting element is incident on a phosphor made of a single single crystal to convert the wavelength.
  • the configuration of the light emitting element and the arrangement position of the phosphor with respect to the light emitting element are different from those of the first embodiment.
  • the constituent elements of the light emitting device 1A having the same functions and configurations as those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the light-emitting device 1A is arranged so that the element substrate 11 of the light-emitting element 10A faces the ceramic substrate 3 side. Further, a phosphor 21 made of a single single crystal of YAG system is joined to the opening 4A side of the light emitting element 10A. Also. As the phosphor 21, those having the respective compositions described in the first embodiment can be used.
  • the light-emitting element 10A includes an element substrate 11, an n-type GaN layer 12, a light-emitting layer 13, and a p-type GaN layer 14, and ITO (Indium) on the p-type GaN layer 14. It has a transparent electrode 140 made of Tin Oxide. A p-side electrode 15B is formed on the transparent electrode 140. The transparent electrode 140 diffuses the carriers injected from the p-side electrode 15B and injects them into the p-type GaN layer 14.
  • the phosphor 21 is formed in a substantially square shape having a notch in a portion corresponding to the p-side electrode 15B and the n-side electrode 15A formed on the n-type GaN layer 12. Further, in the phosphor 21, the first surface 21 a on the transparent electrode 140 side is bonded to the surface 140 b of the transparent electrode 140 by intermolecular force.
  • the composition of the phosphor 21 is the same as the composition of the phosphor 2 in the first embodiment.
  • the n-side electrode 15A of the light emitting element 10A is connected to the wiring portion 31 of the ceramic substrate 3 by a bonding wire 311. Further, the p-side electrode 15 ⁇ / b> B of the light emitting element 10 ⁇ / b> A is connected to the wiring part 32 of the ceramic substrate 3 by a bonding wire 321.
  • the light emitting element 10A configured as described above When the light emitting element 10A configured as described above is energized, electrons are injected into the light emitting layer 13 through the wiring portion 31, the n-side electrode 15A, and the n-type GaN layer 12, and the wiring portion 32 and the p-side electrode 15B. Then, holes are injected into the light emitting layer 13 through the transparent electrode 140 and the p-type GaN layer 14, and the light emitting layer 13 emits light.
  • Blue light emitted from the light emitting layer 13 is transmitted through the p-type GaN layer 14 and the transparent electrode 140 and is emitted from the surface 140 b of the transparent electrode 140. That is, the surface 140b of the transparent electrode 140 is a light emitting surface of the light emitting element 10A. The light emitted from the surface 140 b of the transparent electrode 140 is incident on the first surface 21 a of the phosphor 21.
  • the phosphor 21 absorbs part of the blue light from the light emitting element 10A, and wavelength-converts the absorbed light into mainly yellow light. More specifically, the phosphor 21 is excited by blue light having a light intensity peak at a wavelength of 380 to 490 nm from the light emitting element 10A and emits yellow light having a light intensity peak at a wavelength of 500 to 630 nm. To emit.
  • part of the blue light incident on the phosphor 21 is absorbed by the phosphor 21 and converted in wavelength, and is emitted from the second surface 21b of the phosphor 21 as yellow light. Further, the remaining part of the blue light incident on the phosphor 21 is not absorbed by the phosphor 21 but is emitted from the second surface 21 b of the phosphor 21 as it is. Since blue and yellow are in a complementary color relationship, the light emitting device 1A emits white light in which blue light and yellow light are mixed.
  • FIG. 4 is a cross-sectional view of the light emitting device 1B according to the present embodiment.
  • the light-emitting device 1B according to the present embodiment is common in the light-emitting device 1 according to the first embodiment with a configuration in which the light emitted from the light-emitting element is incident on a phosphor made of a single single crystal to convert the wavelength.
  • the arrangement position of the phosphor is different from that of the first embodiment.
  • the constituent elements of the light emitting device 1B having the same functions and configurations as those described in the first or second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the light-emitting device 1B includes a light-emitting element 10 having the same configuration as that of the first embodiment on a ceramic substrate 3.
  • the light emitting element 10 emits blue light from the second main surface 11b of the element substrate 11 (see FIG. 1B) located on the opening 4A side of the main body 4 toward the opening 4A side of the main body 4.
  • the phosphor 22 is joined to the main body 4 so as to cover the opening 4A.
  • the phosphor 22 is formed in a flat plate shape, and is bonded to the upper surface 4b of the main body 4 with an adhesive or the like.
  • the phosphor 22 those having the respective compositions described in the first embodiment can be used.
  • the phosphor 22 is larger than the light emitting element 10 and is substantially a single crystal as a whole.
  • the light emitting element 10 When the light emitting device 1B configured as described above is energized, the light emitting element 10 emits light and emits blue light from the second main surface 11b toward the phosphor 22.
  • the phosphor 22 receives blue light emitted from the light emitting element 10 from the first surface 22a facing the emission surface of the light emitting element 10, and emits yellow light excited by the emitted light from the second surface 22b to the outside. Radiate.
  • the light emitting device 1B emits white light in which blue light and yellow light are mixed.
  • the same operation and effect as described in the first embodiment can be obtained. Further, since the light emitting element 10 and the phosphor 22 are separated from each other, the large phosphor 22 can be used as compared with the case where the phosphor is bonded to the emission surface of the light emitting element 10, and the light emitting device 1B is assembled. The ease of is increased.
  • FIG. 5 is a cross-sectional view of the light emitting device 1C according to the present embodiment.
  • the positional relationship between the light emitting element, the substrate on which the light emitting element is mounted, and the phosphor is different from that in the third embodiment.
  • the constituent elements of the light emitting device 1C having the same functions and configurations as those described in the first, second, or third embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the light emitting device 1C covers the main body 5 made of white resin, the transparent substrate 6 held by the slit-like holding portion 51 formed in the main body 5, and the opening 5A of the main body 5.
  • the phosphor 22 made of a single YAG-based single crystal, the light emitting element 10A mounted on the surface of the transparent substrate 6 opposite to the surface on the phosphor 22 side, and the light emitting element 10A. Wiring portions 61 and 62.
  • the composition of the phosphor 22 is the same as that of the phosphor 2 according to the first embodiment.
  • the main body 5 has a concave portion on the curved surface at the center, and the surface of the concave portion serves as a reflecting surface 50 that reflects the light emitted from the light emitting element 10A toward the phosphor 220.
  • the transparent substrate 6 is made of, for example, a resin having translucency such as a silicone resin, an acrylic resin, or PET, or a translucent member made of a single crystal or polycrystal such as a glassy substance, sapphire, ceramics, quartz, etc. It has translucency and insulation properties to transmit 10A emission light.
  • a part of the wiring portions 61 and 62 is bonded to the transparent substrate 6.
  • the p-side electrode and the n-side electrode of the light emitting element 10 ⁇ / b> A and one end portions of the wiring portions 61 and 62 are electrically connected by bonding wires 611 and 612.
  • the other end portions of the wiring portions 61 and 62 are drawn out of the main body 5.
  • the light emitting element 10A When the light emitting device 1C configured as described above is energized, the light emitting element 10A emits light, and part of the emitted light passes through the transparent substrate 6 and enters the first surface 22a of the phosphor 22. Further, another part of the light emitting element 10 ⁇ / b> A is reflected by the reflection surface 50 of the main body 5, passes through the transparent substrate 6, and enters the first surface 22 a of the phosphor 22.
  • the light emitting device 1C emits white light in which the blue light emitted from the light emitting element 10A and the yellow light wavelength-converted by the phosphor 22 are mixed.
  • This modification also has the same effect as the effect of the third embodiment described above. Further, the light emitted from the light emitting element 10A to the side opposite to the phosphor 220 side is reflected by the reflecting surface 50, passes through the transparent substrate 6, and enters the phosphor 220, so that the light extraction efficiency of the light emitting device 1C is high. Become.
  • FIGS. 6A and 6B are cross-sectional views of the light-emitting device 1D according to the present embodiment
  • FIG. 6B is a cross-sectional view of the light-emitting element 7 constituting the light-emitting device 1D.
  • the configuration and arrangement of the light emitting elements are different from those in the third embodiment.
  • constituent elements of the light-emitting device 1D having the same functions and configurations as those described in the first, second, or third embodiment are denoted by common reference numerals, and description thereof is omitted.
  • the light emitting element 7 is disposed on the wiring part 32 provided on the ceramic substrate 3.
  • the light-emitting element 7 includes a Ga 2 O 3 substrate 70, a buffer layer 71, a Si-doped n + -GaN layer 72, a Si-doped n-AlGaN layer 73, and an MQW (Multiple-Quantum Well) layer.
  • an Mg-doped p-AlGaN layer 75, an Mg-doped p + -GaN layer 76, and a p-electrode 77 are laminated in this order.
  • An n electrode 78 is provided on the surface of the Ga 2 O 3 substrate 70 opposite to the buffer layer 71.
  • the Ga 2 O 3 substrate 70 is made of ⁇ -Ga 2 O 3 exhibiting n-type conductivity.
  • the MQW layer 74 is a light emitting layer having an InGaN / GaN multiple quantum well structure.
  • the p electrode 77 is a transparent electrode made of ITO (Indium Tin Oxide) and is electrically connected to the wiring part 31.
  • the n electrode 78 is connected to the wiring part 32 of the ceramic substrate 3 by a bonding wire 321. Note that SiC may be used as the element substrate instead of ⁇ -Ga 2 O 3 .
  • the light emitting element 7 When the light emitting element 7 configured as described above is energized, electrons are transferred to the MQW layer 74 through the n electrode 78, the Ga 2 O 3 substrate 70, the buffer layer 71, the n + -GaN layer 72, and the n-AlGaN layer 73. In addition, holes are injected into the MQW layer 74 through the p electrode 77, the p + -GaN layer 76, and the p-AlGaN layer 75, and blue light is emitted. The blue light emission passes through the Ga 2 O 3 substrate 70 and the like, is emitted from the emission surface 7 a of the light emitting element 7, and enters the first surface 22 a of the phosphor 22.
  • the phosphor 22 receives the blue light emitted from the light emitting element 10 from the first surface 22a facing the emission surface of the light emitting element 7, and the yellow light excited by the light emitted from the second surface 22b to the outside. Radiates to.
  • the light emitting device 1D emits white light in which blue light and yellow light are mixed.
  • the light emitting element and the phosphor may be sealed with a so-called bullet-type resin.
  • One light-emitting device may have a plurality of light-emitting elements.
  • a phosphor composed of a single single crystal that emits yellow light using the light of a light emitting element that emits blue light as excitation light, and a single single crystal that emits light of a color tone different from that of the phosphor.
  • a light emitting device may be configured by combining a plurality of phosphors made of a single crystal such as a phosphor.

Abstract

【課題】長期の使用による発光効率の低下を抑制することが可能な発光装置を提供する。 【解決手段】発光装置1は、青色系の光を発する発光素子10と、発光素子10の光を励起光として、黄色系の光を発する単一の単結晶からなる蛍光体2とを有する。これにより、粒状の多数の蛍光体を備える場合に比較して、蛍光体同士を結合させる結合剤が不要となるので、結合剤の劣化等による発光効率の低下を抑制できる。

Description

発光装置
 本発明は、発光装置に関する。
 従来、青色の光を発するLED(Light Emitting Diode)からなる発光素子と、この発光素子の光を受けて励起され、黄色の光を発する蛍光体とを備え、これらの発光色の混合により白色光を放射する発光装置が知られている(例えば、特許文献1参照)。
 特許文献1に記載の発光装置は、粒状の蛍光体をエポキシ樹脂に含ませて青色の光を発する発光素子の周囲に配置し、この発光素子自体の発光光と、蛍光体が発する黄色光との混合により白色光を放射するように構成されている。
特開2010-155891号公報
 上記のように構成された発光装置では、粒状の蛍光体を固定するためのエポキシ樹脂等の結合剤(バインダー)が長期の使用等により劣化すると、光の透過率が低くなって発光効率が低下してしまう。また、発光色のむらを抑制するためには個々の蛍光体の粒を小さくすることが望ましいが、粒径を小さくするほど、蛍光体の体積に対する蛍光体の表面積が大きくなるので、例えば水分等の外部環境の影響を受けやすく、また組成の不均一や表面付近での結晶性の低さによって非発光領域が相対的に大きくなるため、蛍光体の励起効率が低くなり、発光装置の発光効率が低下してしまう。
 そこで、本発明は、粒状の蛍光体を用いた場合に比較して、長期の使用による発光効率の低下を抑制することが可能な発光装置を提供することを課題とする。
[1]青色系の光を発する発光素子と、前記発光素子の光を励起光として、黄色系の光を発する単一の単結晶からなる蛍光体とを備えた発光装置。
[2]前記蛍光体は、Y3-x-yxyAl5-ZZ12-w(Lは、Gd又はLu、Mは、Ce,Tb,Eu,Yb,Pr,Tm,Smからなる群から選択される1種類以上の元素、Nは、Ga又はIn、0≦x<3、0<y≦1、0≦z≦5、-0.2≦w≦0.2)で表される組成を有する前記[1]に記載の発光装置。
[3]前記蛍光体は、Tb3-xyGdxy(Sc,Lu)2-ZAl3-WZ+W12-V(Mは、Ce,Eu,Yb,Pr,Tm,Smからなる群から選択される1種類以上の元素、Nは、Ga又はIn、0≦x<3、0<y≦1、0≦z<2、0<w<3、-0.2≦v≦0.2)で表される組成を有する前記[1]に記載の発光装置。
[4]前記蛍光体は、前記zが0.5≦z≦2である前記[3]に記載の発光装置。
[5]前記蛍光体は、Tb3-x-yGdxy(Sc,Lu)V5-V12-w(Mは、Ce,Eu,Yb,Pr,Tm,Sm、Nd,Dy,Ho,Erからなる群より選択される1種類以上の元素、Nは、Ga、In、Alからなる群より選択される少なくとも1種類以上の元素、0≦x<3、0<y≦1、0≦v≦5、-0.2≦w≦0.2)で表される組成を有する前記[1]に記載の発光装置。
[6]前記蛍光体は、Y3-x-yGdxyV5-V12-w(LはSc、Luより選択される少なくとも1種類以上の元素、Mは、Ce,Tb,Eu,Yb,Pr,Tm,Sm、Nd,Dy,Ho,Erからなる群から選択される1種類以上の元素、Nは、Ga、In、Alからなる群より選択される少なくとも1種類以上の元素、0≦x<3、0<y≦1、0≦v≦5、-0.2≦w≦0.2)で表される組成を有する前記[1]に記載の発光装置。
[7]前記蛍光体は、前記vが0.5≦v≦2である、前記[5]又は[6]に記載の発光装置。
[8]前記蛍光体は、前記yが0.003≦y≦0.2である前記[2]~[7]の何れかに記載の発光装置。
[9]前記蛍光体は、前記yが0.01≦y≦0.2である前記[2]~[7]の何れかに記載の発光装置。
 本発明によれば、粒状の蛍光体を用いた場合に比較して、長期の使用による発光効率の低下を抑制することが可能となる。
本発明の第1の実施の形態に係る発光装置の断面図である。 図1Aに示す発光装置を構成する発光素子及びその周辺部の断面図である。 CZ法によってYAG単結晶を製造する製造工程を結晶育成装置の断面図と共に示す模式図である。 本発明の第2の実施の形態に係る発光装置の断面図である。 図3Aに示す発光装置を構成する発光素子及びその周辺部の断面図である。 図3Aに示す発光装置を構成する発光素子の平面図である。 本発明の第3の実施の形態に係る発光装置の断面図である。 本発明の第4の実施の形態に係る発光装置の断面図である。 本発明の第5の実施の形態に係る発光装置の断面図である。 図6Aに示す発光装置を構成する発光素子及びその周辺部の断面図である。
[第1の実施の形態]
 本発明の第1の実施の形態について、図1A及び図1Bを参照して説明する。
図1Aは、本発明の第1の実施の形態に係る発光装置1の断面図である。図1Bは、図1Aに示す発光装置1を構成する発光素子10及びその周辺部の断面図である。
 図1Aに示すように、発光装置1は、LEDからなる発光素子10と、発光素子10の光出射面を覆うように設けられた単一の単結晶からなる蛍光体2と、発光素子10を支持するAl23等のセラミック基板3と、白色の樹脂からなる本体4と、発光素子10及び蛍光体2を封止する透明樹脂8とを備えて構成されている。
 セラミック基板3は、例えばタングステン等の金属によってパターン形成された配線部31,32を有している。配線部31,32は、発光素子10のn側電極15A及びp側電極15B(後述)に電気的に接続されている。
 本体4は、セラミック基板3上に形成され、その中央部に開口部4Aが形成されている。開口部4Aは、セラミック基板3側から外部に向かって徐々に開口幅が大きくなるテーパ状に形成されている。開口部4Aの内面は、発光素子10の発光光を外部に向かって反射する反射面40となっている。
 図1Bに示すように、発光素子10は、そのn側電極15A及びp側電極15Bがセラミック基板3の配線部31,32にバンプ16,16によって接続されて、セラミック基板3に実装されている。
 発光素子10は、例えばGaN系半導体化合物を用いたフリップチップ型であり、例えば380~490nmの波長に光量のピークを有する青色系の光を発光する。この発光素子10は、サファイア等からなる素子基板11の第1の主面11aに、n型GaN層12、発光層13、及びp型GaN層14がこの順に形成されている。n型GaN層12の露出部分にはn側電極15Aが、p型GaN層14の表面にはp側電極15Bが、それぞれ形成されている。
 発光層13は、n型GaN層12及びp型GaN層14からキャリアが注入されることにより、青色系の光を発する。この発光光は、n型GaN層12及び素子基板11を透過して、素子基板11の第2の主面11bから出射される。すなわち、素子基板11の第2の主面11bは発光素子10の光出射面である。
 また、素子基板11の第2の主面11b側には、第2の主面11bの全体を覆うように、蛍光体2が配置されている。蛍光体2は、その全体が単一の単結晶からなる平板状である。ここで、単一の単結晶とは、第2の主面11bと同等もしくはそれ以上の大きさを有し、実質的に全体が一つの単結晶とみなせるものをいう。また、蛍光体2は、素子基板11に対向する第1の面2aが、素子基板11の第2の主面11bとの間に他の部材を介することなく、素子基板11に直接接触している。蛍光体2と素子基板11とは、分子間力によって接合されている。
 また、本実施の形態では、蛍光体2がYAG(イットリウム・アルミニウム・ガーネット)系蛍光体からなる。より具体的には、蛍光体2は、Y3Al512をベースとし、Y3-x-yxyAl5-ZZ12-w(Lは、Gd又はLu、Mは、Ce,Tb,Eu,Yb,Pr,Tm,Smからなる群から選択される1種類以上の元素、Nは、Ga又はIn、0≦x<3、0<y≦1、0≦z≦5、-0.2≦w≦0.2)で表される組成を有する。ここで、Lは、Yを置換する発光中心とならない成分である。Mは、Yを置換する発光中心となり得る成分(付活剤)である。また、NはAlを置換する成分である。
 また、蛍光体2は、TSLAG(テルビウム・スカンジウム・ルテチウム・アルミニウム・ガーネット)系蛍光体であってもよい。より具体的には、Tb3(Sc,Lu)2Al312をベースとし、Tb3-xyGdxy(Sc,Lu)2-ZAl3-WZ+W12-V(Mは、Ce,Eu,Yb,Pr,Tm,Smからなる群から選択される1種類以上の元素、Nは、Ga又はIn、0≦x<3、0<y≦1、0≦z<2、0<w<3、-0.2≦v≦0.2)で表される組成を有する蛍光体2であってもよい。ここで、Mは、Tbを置換する発光中心となり得る成分(付活剤)である。また、NはAlまたはSc、Luを置換する成分である。ここで、zは0.5≦z≦2であれば、単結晶作製時のクラックなどの欠陥形成を抑制しやすくなり、より好ましい。
 また、蛍光体2は、Tb3-x-yGdxyAl5-Z-v(Sc,Lu)vZ12-w(Lは、Gd又はLu、Mは、Ce,Tb,Eu,Yb,Pr,Tm,Smからなる群から選択される1種類以上の元素、Nは、Ga又はIn、0≦x<3、0<y≦1、0≦z<5、0<v<2、-0.2≦w≦0.2)で表される組成を有する蛍光体であってもよい。
 なお、このTSLAG系蛍光体を用いた場合でも、上記yで表される付活剤の濃度は、0.003以上かつ0.2以下であることが望ましく、0.01以上かつ0.2以下であるとより望ましい。付活剤濃度をこの範囲とすることにより、蛍光体2の厚みtを好適な範囲に設定することができ、また濃度消光を抑制することができる。
 また、蛍光体2は、Tb3-x-yGdxy(Sc,Lu)v5-v12-w(Mは、Ce,Eu,Yb,Pr,Tm,Sm、Nd,Dy,Ho,Erからなる群より選択される少なくとも1種類以上の元素、Nは、Ga、In、Alからなる群より選択される少なくとも1種類以上の元素、0≦x<3、0<y≦1、0≦v≦5、-0.2≦w≦0.2)で表される組成を有する蛍光体であってもよい。ここで、vは0.5≦v≦2であれば、単結晶作製時のクラックなどの欠陥形成を抑制しやすくなり、より好ましい。
 また、蛍光体2は、Y3-x-yGdxyv5-v12-w(LはSc、Luより選択される1種類以上の元素、Mは、Ce,Tb,Eu,Yb,Pr,Tm,Sm、Nd,Dy,Ho,Erからなる群から選択される少なくとも1種類以上の元素、Nは、Ga、In、Alよりなる群から選択される少なくとも1種類以上の元素、0≦x<3、0<y≦1、0≦v≦5、-0.2≦w≦0.2)で表される組成を有する蛍光体であってもよい。ここで、vは0.5≦v≦2であれば、単結晶作製時のクラックなどの欠陥形成を抑制しやすくなり、より好ましい。
 なお、上記の蛍光体2の組成のうち、一部の原子は結晶構造上の異なる位置を占めることがある。
 上記yで表される付活剤の濃度は、0.003以上かつ0.2以下であるとよい。これは、付活剤濃度が0.003未満では、必要な蛍光を得るために必要な蛍光体2の厚みtが厚くなるため(例えばt>3mm)、蛍光体2の取り数が減少してしまうためである。また、付活剤の濃度が0.2を超えると、蛍光体2を薄くする必要があるため(例えばt<0.1mm)、蛍光体2の機械的強度の低下により蛍光体2に割れや欠け等が発生しやすくなるとともに、濃度消光が発生し得るためである。なお、濃度消光とは、隣接分子間のエネルギー移動が発生して本来のエネルギーが十分に蛍光として外部に放射されないこと(非発光遷移)等により、付活剤の高濃度化に応じて蛍光強度が増大しなくなる現象である。
 また、さらに好適には、上記yで表される付活剤の濃度は、0.01以上かつ0.2以下であるとよい。y≧0.01とすることで、蛍光体2を適切な厚み(例えば、t≦2mm)とすることができる。つまり、蛍光体2の厚みt(mm)は、0.1≦t≦3.0とすることが好適であり、0.1≦t≦2.0であることがさらに望ましい。
 この蛍光体2は、例えばCZ法(Czochralski Method)、EFG法(Edge Defined Film Fed Growth Method)、FZ法(Floating Zone Method)等の液相成長法、CVD法(Chemical Vapor Deposition Method)等の気相成長法、又は焼結体の固相反応等によって得ることができる。CZ法による場合、例えば窒素ガス雰囲気中にて、<111>方向に1mm/hの育成速度で種結晶を引き上げることによりYAG単結晶を製造し、これを発光素子10の素子基板11の第2の主面11b(光出射面)に対応する大きさに切り出すことによって蛍光体2を作成することができる。
 図2は、CZ法によってYAG単結晶を製造する製造工程を結晶育成装置の断面図と共に示す模式図である。
 図2に示すように、結晶育成装置80は、イリジウム製のルツボ81と、ルツボ81を収容するセラミックス製の筒状容器82と、筒状容器82の周囲に巻回される高周波コイル83とを主として備えている。高周波コイル83は、ルツボ81に誘導電流を生じさせ、ルツボ81を加熱する。
 YAG単結晶は、結晶育成装置80を用いて、例えば次にように得られる。まず、Y23粉末(純度99.99%)、Al23粉末(純度99.99%)、Gd23粉末(純度99.99%)、及びCeO2粉末(純度99.99%)を用意し、これらの粉末を乾式混合し、混合粉末を得る。このとき、Y23粉末、Al23粉末、Gd23粉末、及びCeO2粉末の合計モル数を基準(100モル%)としたY23粉末、Al23粉末、Gd23粉末、及びCeO2粉末の配合率はそれぞれ、例えば36.6モル%、62.3モル%、0.363モル%、及び0.737モル%である。
 続いて、上記混合粉末を、直径50mm、深さ50mmの筒状ルツボ81に詰める。次に、高周波コイル83に電流を印加してルツボ81を加熱して混合粉末を溶融させ、融液90を得る。続いて、YAG(イットリウム・アルニミウム・ガーネット)からなる3×3×70mmの角棒状の種結晶91を用意し、その種結晶90の先端を融液90に漬けた後、種結晶91を、10rpmの回転数で回転させながら、毎時1mmの引き上げ速度で引き上げる。このとき、筒状容器82内に毎分2Lの流量で窒素を流し込み、大気圧下、窒素雰囲気で種結晶91の引き上げを行う。こうして直径約2.5cm、長さ約5cmの透明なYAG単結晶92が得られる。
 以上のように構成された発光素子10に通電すると、配線部31、n側電極15A、及びn型GaN層12を介して電子が発光層13に注入され、また配線部32、p側電極15B、及びp型GaN層14を介して正孔が発光層13に注入されて、発光層13が発光する。発光層13の青色の発光光は、n型GaN層12及び素子基板11を透過して素子基板11の第2の主面11bから出射され、蛍光体2の第1の面2aに入射する。
 第1の面2aから入射した光の一部は、励起光として蛍光体2を励起する。蛍光体2は、発光素子10からの青色系の光の一部を吸収し、吸収した光を例えば500~630nmの波長に光量のピークを有する黄色系の光に波長変換する。
 蛍光体2に入射した青色系の光のうちの一部は蛍光体2に吸収されて波長変換され、黄色系の光として蛍光体2の第2の面2bから出射される。また、蛍光体2に入射した光のうちの残りの一部は蛍光体2に吸収されずに蛍光体2の第2の面2bから出射される。青色と黄色は補色関係にあるので、発光装置1は、青色光と黄色光とを混合した白色光を放射する。
 また、発光装置1が発する白色光の色温度は、3800~7000Kであることが望ましい。より望ましい発光装置1の白色光の色温度は、4000~5500Kである。白色光の色温度は、蛍光体2の付活剤濃度や厚み等によって調整することができる。
(第1の実施の形態の効果)
 本実施の形態によれば、粒状の多数の蛍光体を結合して保持するための結合剤(バインダー)を用いる必要がないので、結合剤の劣化による発光効率の低下を抑制することができる。また、粒状の多数の蛍光体を結合した場合に比較して、蛍光体全体の表面積を小さくすることができるので、外部環境の影響による蛍光剤の特性劣化を抑制できるとともに、蛍光体の組成の均一性及び結晶性を高めることができるので、発光装置の発光効率を高めることができる。また、高出力の励起光の照射に対して、樹脂の劣化による効率の低下や蛍光体の劣化が起こりにくい効果が期待できる。
 また、蛍光体としてYAG系の単結晶を用いたので、青色系の光を効率よく吸収して黄色系の光を発光し、効率的に白色光を得ることができる。
 またさらに、蛍光体2の付活剤濃度を0.003以上かつ0.2以下、より好ましくは0.01以上かつ0.2以下としたので、蛍光体2の厚みを加工及び組付けに適切な厚みとすることができるとともに、濃度消光を抑制することができる。
[第2の実施の形態]
 次に、本発明の第2の実施の形態について、図3A~図3Cを参照して説明する。
 図3Aは、本実施の形態に係る発光装置1Aの断面図、図3Bは、発光装置1Aを構成する発光素子10A及びその周辺部の断面図、図3Cは、発光素子10Aの平面図である。
 本実施の形態に係る発光装置1Aは、発光素子の発光光を単一の単結晶からなる蛍光体に入射して波長変換する構成は第1の実施の形態に係る発光装置1と共通するが、発光素子の構成及び発光素子に対する蛍光体の配置位置が第1の実施の形態とは異なっている。以下、第1の実施の形態について説明したものと同一の機能及び構成を有する発光装置1Aの構成要素については共通する符号を付して説明を省略する。
 図3A及び図3Bに示すように、発光装置1Aは、発光素子10Aの素子基板11がセラミック基板3側を向くように配置されている。また、発光素子10Aの開口部4A側に、YAG系の単一の単結晶からなる蛍光体21が接合されている。また。蛍光体21としては、第1の実施の形態において記載した各組成のものを用いることができる。
 図3B及び図3Cに示すように、発光素子10Aは、素子基板11、n型GaN層12、発光層13、p型GaN層14を有し、さらにp型GaN層14の上にITO(Indium Tin Oxide:酸化インジウムスズ)からなる透明電極140を有している。透明電極140の上にはp側電極15Bが形成されている。透明電極140は、p側電極15Bから注入されたキャリアを拡散してp型GaN層14に注入する。
 蛍光体21は、図3Cに示すように、p側電極15B、及びn型GaN層12上に形成されたn側電極15Aに対応する部分に切り欠きを有する略四角形状に形成されている。また、蛍光体21は、透明電極140側の第1の面21aが透明電極140の表面140bに分子間力によって接合されている。蛍光体21の組成は、第1の実施の形態における蛍光体2の組成と同様である。
 図3Aに示すように、発光素子10Aのn側電極15Aは、ボンディングワイヤ311によってセラミック基板3の配線部31に接続されている。また、発光素子10Aのp側電極15Bは、ボンディングワイヤ321によってセラミック基板3の配線部32に接続されている。
 以上のように構成された発光素子10Aに通電すると、配線部31、n側電極15A、及びn型GaN層12を介して電子が発光層13に注入され、また配線部32、p側電極15B、透明電極140、及びp型GaN層14を介して正孔が発光層13に注入されて、発光層13が発光する。
 発光層13の青色の発光光は、p型GaN層14及び透明電極140を透過して透明電極140の表面140bから出射される。すなわち、透明電極140の表面140bは発光素子10Aの光出射面である。透明電極140の表面140bから出射された光は、蛍光体21の第1の面21aに入射する。
 第1の面21aから蛍光体21に入射した光の一部は、励起光として蛍光体21を励起する。蛍光体21は、発光素子10Aからの青色光の一部を吸収し、吸収した光を主として黄色光に波長変換する。より詳細には、蛍光体21は、発光素子10Aからの380~490nmの波長に光量のピークを有する青色系の光で励起されて500~630nmの波長に光量のピークを有する黄色系の光を発する。
 このように、蛍光体21に入射した青色光のうちの一部は蛍光体21に吸収されて波長変換され、黄色光として蛍光体21の第2の面21bから出射される。また、蛍光体21に入射した青色光のうちの残りの一部は蛍光体21に吸収されずにそのまま蛍光体21の第2の面21bから出射される。青色と黄色は補色関係にあるので、発光装置1Aは、青色光と黄色光とを混合した白色光を放射する。
 本実施の形態によっても、第1の実施の形態について説明したのと同様の作用及び効果が得られる。
[第3の実施の形態]
 次に、本発明の第3の実施の形態について、図4を参照して説明する。
 図4は、本実施の形態に係る発光装置1Bの断面図である。
 本実施の形態に係る発光装置1Bは、発光素子の発光光を単一の単結晶からなる蛍光体に入射して波長変換する構成は第1の実施の形態に係る発光装置1と共通するが、蛍光体の配置位置が第1の実施の形態とは異なっている。以下、第1又は第2の実施の形態について説明したものと同一の機能及び構成を有する発光装置1Bの構成要素については共通する符号を付して説明を省略する。
 図4に示すように、発光装置1Bは、セラミック基板3上に、第1の実施の形態と同様の構成を有する発光素子10を備えている。発光素子10は、本体4の開口部4A側に位置する素子基板11(図1B参照)の第2の主面11bから本体4の開口部4A側に向かって青色光を出射する。
 本体4には、その開口部4Aを覆うように、蛍光体22が接合されている。蛍光体22は平板状に形成され、本体4の上面4bに接着剤等により結合されている。蛍光体22としては、第1の実施の形態において記載した各組成のものを用いることができる。また、蛍光体22は、発光素子10よりも大きく、全体が実質的に一つの単結晶である。
 以上のように構成された発光装置1Bに通電すると、発光素子10が発光し、第2の主面11bから蛍光体22に向かって青色光を出射する。蛍光体22は、発光素子10の出射面に面した第1の面22aから発光素子10の青色の発光光を入射し、この発光光によって励起された黄色光を第2の面22bから外部に放射する。
 このように、蛍光体22に入射した青色光のうちの一部は蛍光体22に吸収されて波長変換され、黄色光として蛍光体22の第2の面22bから出射される。また、蛍光体22に入射した青色光のうちの残りの一部は蛍光体22に吸収されずに蛍光体22の第2の面22bから出射される。青色と黄色は補色関係にあるので、発光装置1Bは、青色光と黄色光とを混合した白色光を放射する。
 本実施の形態によっても、第1の実施の形態について説明したのと同様の作用及び効果が得られる。また、発光素子10と蛍光体22とが離間しているので、発光素子10の出射面に蛍光体を接合する場合に比較して大型の蛍光体22を用いることができ、発光装置1Bの組み付けの容易性が高まる。
[第4の実施の形態]
 次に、本発明の第4の実施の形態について、図5を参照して説明する。
 図5は、本実施の形態に係る発光装置1Cの断面図である。図5に示すように、本実施の形態では、発光素子と、発光素子が実装される基板及び蛍光体との位置関係が第3の実施の形態とは異なっている。以下、第1、第2又は第3の実施の形態について説明したものと同一の機能及び構成を有する発光装置1Cの構成要素については共通する符号を付して説明を省略する。
 本変形例に係る発光装置1Cは、白色の樹脂からなる本体5と、本体5に形成されたスリット状の保持部51に保持された透明基板6と、本体5の開口部5Aを覆うように配置されたYAG系の単一の単結晶からなる蛍光体22と、透明基板6の蛍光体22側の面とは反対側の面に実装された発光素子10Aと、発光素子10Aに通電するための配線部61,62とを備えて構成されている。蛍光体22の組成は、第1の実施の形態に係る蛍光体2と同様である。
 本体5は、その中心部に曲面上の凹部が形成され、この凹部の表面が発光素子10Aの発光光を蛍光体220側に反射する反射面50となっている。
 透明基板6は、例えばシリコーン樹脂やアクリル樹脂、PET等透光性をもつ樹脂、又はガラス状物質、サファイア、セラミックス、石英等単結晶若しくは多結晶からなる透光性をもつ部材からなり、発光素子10Aの発光光を透過させる透光性及び絶縁性を有している。また、透明基板6には、配線部61,62の一部が接合されている。発光素子10Aのp側電極及びn側電極と配線部61,62の一端部との間は、ボンディングワイヤ611,612により電気的に接続されている。配線部61,62の他端部は、本体5の外部に引き出されている。
 以上のように構成された発光装置1Cに通電すると、発光素子10Aが発光し、発光光の一部は透明基板6を透過して蛍光体22の第1の面22aに入射する。また、発光素子10Aの他の一部は本体5の反射面50で反射して透明基板6を透過し、蛍光体22の第1の面22aに入射する。
 蛍光体22に入射した光のうちの一部は蛍光体22に吸収されて波長変換され、残りの一部は蛍光体22に吸収されずに蛍光体22の第2の面22bから出射される。このように、発光装置1Cは、発光素子10Aが発した青色光と蛍光体22で波長変換された黄色光とを混合した白色光を放射する。
 本変形例によっても、上記した第3の実施の形態の効果と同様の効果がある。また、発光素子10Aから蛍光体220側とは反対側に出射した光が反射面50で反射して透明基板6を透過し、蛍光体220に入射するので、発光装置1Cの光取り出し効率が高くなる。
[第5の実施の形態]
 次に、本発明の第5の実施の形態について、図6A及び図6Bを参照して説明する。
 図6Aは、本実施の形態に係る発光装置1Dの断面図、図6Bは、発光装置1Dを構成する発光素子7の断面図である。図6Aに示すように、本実施の形態では、発光素子の構成及びその配置が第3の実施の形態とは異なっている。以下、第1、第2又は第3の実施の形態について説明したものと同一の機能及び構成を有する発光装置1Dの構成要素については共通する符号を付して説明を省略する。
 発光装置1Dには、セラミック基板3に設けられた配線部32上に、発光素子7が配置されている。発光素子7は、図6Bに示すように、Ga23基板70、バッファ層71、Siドープのn+-GaN層72、Siドープのn-AlGaN層73、MQW(Multiple-Quantum Well)層74、Mgドープのp-AlGaN層75、Mgドープのp+-GaN層76、p電極77をこの順に積層して形成されている。また、Ga23基板70のバッファ層71と反対側の面には、n電極78が設けられている。
 Ga23基板70は、n型の導電型を示すβ-Ga23からなる。MQW層74は、InGaN/GaNの多重量子井戸構造を有する発光層である。p電極77は、ITO(Indium Tin Oxide)からなる透明電極であり、配線部31と電気的に接続されている。n電極78は、ボンディングワイヤ321によってセラミック基板3の配線部32に接続されている。なお、素子基板としては、β-Ga23に替えて、SiCを用いてもよい。
 以上のように構成された発光素子7に通電すると、n電極78、Ga23基板70、バッファ層71、n+-GaN層72、及びn-AlGaN層73を介して電子がMQW層74に注入され、またp電極77、p+-GaN層76、p-AlGaN層75を介して正孔がMQW層74に注入されて、青色系の光を発する。この青色系の発光光は、Ga23基板70等を透過して発光素子7の出射面7aから出射され、蛍光体22の第1の面22aに入射する。
 蛍光体22は、発光素子7の出射面に面した第1の面22aから発光素子10の青色系の発光光を入射し、この発光光によって励起された黄色光を第2の面22bから外部に放射する。
 このように、蛍光体22に入射した青色光のうちの一部は蛍光体22に吸収されて波長変換され、黄色光として蛍光体22の第2の面22bから出射される。また、蛍光体22に入射した青色光のうちの残りの一部は蛍光体22に吸収されずに蛍光体22の第2の面22bから出射される。青色と黄色は補色関係にあるので、発光装置1Dは、青色光と黄色光とを混合した白色光を放射する。
 本実施の形態によっても、第3の実施の形態について説明したのと同様の作用及び効果が得られる。
 以上の説明からも明らかなように、本発明は、上記実施の形態及び図示例に限定されるものではなく、各請求項に記載した範囲内で様々に設計変更が可能である。例えば、発光素子及び蛍光体をいわゆる砲弾型の樹脂により封止してもよい。また、一つの発光装置が複数の発光素子を有する構成としてもよい。またさらに、青色系の光を発する発光素子の光を励起光として黄色系の光を発する単一の単結晶からなる蛍光体と、前記蛍光体と異なる色調の光を発する単一の単結晶からなる蛍光体など複数の単一の単結晶からなる蛍光体を組み合わせて発光装置を構成してもよい。
1,1A,1B,1C,1D…発光装置、2,21,22…蛍光体、3…セラミック基板、2a,21a,22a…第1の面、2b,21b,22b…第2の面、4,5…本体、51…保持部、4A,5A…開口部、4b…上面、6…透明基板、10,10A,7…発光素子、11…素子基板、11a…第1の主面、11b…第2の主面、12…n型GaN層、13…発光層、14…p型GaN層、15A…n側電極、15B…p側電極、16…バンプ、31,32,61,62…配線部、311,321,611,612…ボンディングワイヤ、40,50…反射面、140…透明電極、140b…表面、70…Ga23基板、71…バッファ層、72…n+-GaN層、73…n-AlGaN層、74…MQW層、75…p-AlGaN層、76…p+-GaN層、77…p電極、78…n電極、80…結晶育成装置、81…ルツボ、82…筒状容器、83…高周波コイル、90…融液、91…種結晶、92…YAG単結晶

Claims (9)

  1.  青色系の光を発する発光素子と、
     前記発光素子の光を励起光として、黄色系の光を発する単一の単結晶からなる蛍光体と
     を備えた発光装置。
  2.  前記蛍光体は、Y3-x-yxyAl5-ZZ12-w(Lは、Gd又はLu、Mは、Ce,Tb,Eu,Yb,Pr,Tm,Smからなる群から選択される1種類以上の元素、Nは、Ga又はIn、0≦x<3、0<y≦1、0≦z≦5、-0.2≦w≦0.2)で表される組成を有する請求項1に記載の発光装置。
  3.  前記蛍光体は、Tb3-xyGdxy(Sc,Lu)2-ZAl3-WZ+W12-V(Mは、Ce,Eu,Yb,Pr,Tm,Smからなる群から選択される1種類以上の元素、Nは、Ga又はIn、0≦x<3、0<y≦1、0≦z<2、0<w<3、-0.2≦v≦0.2)で表される組成を有する請求項1に記載の発光装置。
  4.  前記蛍光体は、前記zが0.5≦z≦2である請求項3に記載の発光装置。
  5.  前記蛍光体は、Tb3-x-yGdxy(Sc,Lu)v5-v12-w(Mは、Ce,Eu,Yb,Pr,Tm,Sm、Nd,Dy,Ho,Erからなる群より選択される少なくとも1種類以上の元素、Nは、Ga、In、Alからなる群より選択される少なくとも1種類以上の元素、0≦x<3、0<y≦1、0≦v≦5、-0.2≦w≦0.2)で表される組成を有する請求項1に記載の発光装置。
  6.  前記蛍光体は、Y3-x-yGdxyv5-v12-w(LはSc,Luより選択される少なくとも1種類以上の元素、Mは、Ce,Tb,Eu,Yb,Pr,Tm,Sm、Nd,Dy,Ho,Erからなる群から選択される1種類以上の元素、Nは、Ga、In、Alより選択される少なくとも1種類以上の元素、0≦x<3、0<y≦1、0≦v≦5、-0.2≦w≦0.2)で表される組成を有する請求項1に記載の発光装置。
  7.  前記蛍光体は、前記vが0.5≦v≦2である請求項5又は6に記載の発光装置。
  8.  前記蛍光体は、前記yが0.003≦y≦0.2である請求項2乃至7の何れか1項に記載の発光装置。
  9.  前記蛍光体は、前記yが0.01≦y≦0.2である請求項2乃至7の何れか1項に記載の発光装置。
PCT/JP2011/074960 2010-10-29 2011-10-28 発光装置 WO2012057330A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012540979A JP6369774B2 (ja) 2010-10-29 2011-10-28 発光装置
EP11836463.7A EP2634234B1 (en) 2010-10-29 2011-10-28 Light-emitting device
US13/882,037 US9112123B2 (en) 2010-10-29 2011-10-28 Light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-243079 2010-10-29
JP2010243079 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012057330A1 true WO2012057330A1 (ja) 2012-05-03

Family

ID=45994032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074960 WO2012057330A1 (ja) 2010-10-29 2011-10-28 発光装置

Country Status (4)

Country Link
US (1) US9112123B2 (ja)
EP (1) EP2634234B1 (ja)
JP (1) JP6369774B2 (ja)
WO (1) WO2012057330A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097802A1 (ja) * 2012-12-21 2014-06-26 電気化学工業株式会社 蛍光体、発光装置及び照明装置
WO2015020205A1 (ja) 2013-08-09 2015-02-12 株式会社光波 発光装置
JP2015081314A (ja) * 2013-10-23 2015-04-27 株式会社光波 単結晶蛍光体及び発光装置
US20160056347A1 (en) * 2013-04-22 2016-02-25 Crytur, Spol. S.R.O. White light emitting diode with single crystal phosphor and the manner of production
JP2016084376A (ja) * 2014-10-23 2016-05-19 国立研究開発法人物質・材料研究機構 単結晶蛍光体及び発光装置
US20170179346A1 (en) * 2013-10-23 2017-06-22 Koha Co., Ltd. Single crystal phosphor, phosphor-containing member and light-emitting device
JP2018191006A (ja) * 2013-10-23 2018-11-29 株式会社光波 発光装置
JP2019208037A (ja) * 2019-07-11 2019-12-05 株式会社光波 発光装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161683A1 (ja) * 2012-04-24 2013-10-31 株式会社光波 蛍光体及びその製造方法、並びに発光装置
KR20200032598A (ko) 2018-09-18 2020-03-26 삼성전자주식회사 발광 장치
CH717559A1 (de) * 2020-06-22 2021-12-30 Brevalor Sarl Lichtdurchlässiges nachleuchtend lumineszierendes Objekt und dessen Anwendung.

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203383A (ja) * 1999-09-27 2001-07-27 Lumileds Lighting Us Llc 燐光変換を行う発光基板を有する発光ダイオードデバイス
JP2002141559A (ja) * 2000-10-31 2002-05-17 Sanken Electric Co Ltd 発光半導体チップ組立体及び発光半導体リードフレーム
JP2003204079A (ja) * 2001-11-05 2003-07-18 Nichia Chem Ind Ltd 付活剤を含有した基板を用いた窒化物半導体素子、及び成長方法
JP2003204080A (ja) * 2001-10-23 2003-07-18 Nichia Chem Ind Ltd 窒化物半導体素子及びその成長方法
JP2005005544A (ja) * 2003-06-13 2005-01-06 Sumitomo Electric Ind Ltd 白色発光素子
JP2005057239A (ja) * 2003-03-27 2005-03-03 Nichia Chem Ind Ltd 半導体発光素子およびその製造方法
JP2005146172A (ja) * 2003-11-18 2005-06-09 Nichia Chem Ind Ltd 発光装置および発光装置用蛍光体
JP2006265542A (ja) * 2005-02-28 2006-10-05 Mitsubishi Chemicals Corp 蛍光体及びその製造方法並びにそれを使用した発光装置
JP2007300134A (ja) * 2002-05-27 2007-11-15 Nichia Chem Ind Ltd 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置
JP2010155891A (ja) 2008-12-26 2010-07-15 Korea Inst Of Energy Research 窒化物赤色蛍光体及びこれを利用する白色発光ダイオード
JP2010272847A (ja) * 2009-04-20 2010-12-02 Nichia Corp 発光装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
US6596195B2 (en) * 2001-06-01 2003-07-22 General Electric Company Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
US7038370B2 (en) * 2003-03-17 2006-05-02 Lumileds Lighting, U.S., Llc Phosphor converted light emitting device
US20050006659A1 (en) * 2003-07-09 2005-01-13 Ng Kee Yean Light emitting diode utilizing a discrete wavelength-converting layer for color conversion
CN101128563B (zh) 2005-02-28 2012-05-23 三菱化学株式会社 荧光体、其制造方法及其应用
JP2007049019A (ja) * 2005-08-11 2007-02-22 Koha Co Ltd 発光装置
CN100389504C (zh) * 2005-12-19 2008-05-21 中山大学 一种yag晶片式白光发光二极管及其封装方法
WO2007148829A1 (ja) * 2006-06-22 2007-12-27 Ube Industries, Ltd. 光変換用複合体、それを用いた発光装置および色調制御方法
JP2008098486A (ja) * 2006-10-13 2008-04-24 Kyocera Corp 発光素子
US20080283864A1 (en) * 2007-05-16 2008-11-20 Letoquin Ronan P Single Crystal Phosphor Light Conversion Structures for Light Emitting Devices
JP5578597B2 (ja) * 2007-09-03 2014-08-27 独立行政法人物質・材料研究機構 蛍光体及びその製造方法、並びにそれを用いた発光装置
KR100924912B1 (ko) * 2008-07-29 2009-11-03 서울반도체 주식회사 웜화이트 발광장치 및 그것을 포함하는 백라이트 모듈
JP5243883B2 (ja) * 2008-08-06 2013-07-24 パナソニック株式会社 発光装置および照明器具
CN101872831A (zh) 2010-05-26 2010-10-27 上海嘉利莱实业有限公司 一种适用于白光led的单晶荧光材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203383A (ja) * 1999-09-27 2001-07-27 Lumileds Lighting Us Llc 燐光変換を行う発光基板を有する発光ダイオードデバイス
JP2002141559A (ja) * 2000-10-31 2002-05-17 Sanken Electric Co Ltd 発光半導体チップ組立体及び発光半導体リードフレーム
JP2003204080A (ja) * 2001-10-23 2003-07-18 Nichia Chem Ind Ltd 窒化物半導体素子及びその成長方法
JP2003204079A (ja) * 2001-11-05 2003-07-18 Nichia Chem Ind Ltd 付活剤を含有した基板を用いた窒化物半導体素子、及び成長方法
JP2007300134A (ja) * 2002-05-27 2007-11-15 Nichia Chem Ind Ltd 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置
JP2005057239A (ja) * 2003-03-27 2005-03-03 Nichia Chem Ind Ltd 半導体発光素子およびその製造方法
JP2005005544A (ja) * 2003-06-13 2005-01-06 Sumitomo Electric Ind Ltd 白色発光素子
JP2005146172A (ja) * 2003-11-18 2005-06-09 Nichia Chem Ind Ltd 発光装置および発光装置用蛍光体
JP2006265542A (ja) * 2005-02-28 2006-10-05 Mitsubishi Chemicals Corp 蛍光体及びその製造方法並びにそれを使用した発光装置
JP2010155891A (ja) 2008-12-26 2010-07-15 Korea Inst Of Energy Research 窒化物赤色蛍光体及びこれを利用する白色発光ダイオード
JP2010272847A (ja) * 2009-04-20 2010-12-02 Nichia Corp 発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634234A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014097802A1 (ja) * 2012-12-21 2017-01-12 デンカ株式会社 蛍光体、発光装置及び照明装置
WO2014097802A1 (ja) * 2012-12-21 2014-06-26 電気化学工業株式会社 蛍光体、発光装置及び照明装置
TWI609945B (zh) * 2012-12-21 2018-01-01 Denka Company Ltd 螢光體、發光裝置及照明裝置
US9985185B2 (en) * 2013-04-22 2018-05-29 Crytur, Spol. S.R.O. White light emitting diode with single crystal phosphor and the manner of production
JP2016524316A (ja) * 2013-04-22 2016-08-12 クライツール スポル.エス アール.オー.Crytur Spol.S R.O. 単結晶蛍光体を有する白色発光ダイオードとその製造方法
US20160056347A1 (en) * 2013-04-22 2016-02-25 Crytur, Spol. S.R.O. White light emitting diode with single crystal phosphor and the manner of production
KR101876757B1 (ko) * 2013-04-22 2018-07-10 크라이투르 스폴.에스 알.오. 단결정 인광체를 구비한 백색 발광 다이오드 및 제조 방법
WO2015020205A1 (ja) 2013-08-09 2015-02-12 株式会社光波 発光装置
US10340429B2 (en) 2013-08-09 2019-07-02 Koha Co., Ltd. Light emitting device
JPWO2015020205A1 (ja) * 2013-08-09 2017-03-02 株式会社タムラ製作所 発光装置
US9634216B2 (en) 2013-08-09 2017-04-25 Koha Co., Ltd. Light emitting device
WO2015060254A1 (ja) * 2013-10-23 2015-04-30 株式会社光波 単結晶蛍光体及び発光装置
JP2015081314A (ja) * 2013-10-23 2015-04-27 株式会社光波 単結晶蛍光体及び発光装置
US20170179346A1 (en) * 2013-10-23 2017-06-22 Koha Co., Ltd. Single crystal phosphor, phosphor-containing member and light-emitting device
CN108538991A (zh) * 2013-10-23 2018-09-14 株式会社光波 发光装置的CIE色度(x,y)的调整方法
JP2018191006A (ja) * 2013-10-23 2018-11-29 株式会社光波 発光装置
JP2016084376A (ja) * 2014-10-23 2016-05-19 国立研究開発法人物質・材料研究機構 単結晶蛍光体及び発光装置
JP2019208037A (ja) * 2019-07-11 2019-12-05 株式会社光波 発光装置

Also Published As

Publication number Publication date
EP2634234A1 (en) 2013-09-04
US20130256730A1 (en) 2013-10-03
EP2634234B1 (en) 2017-12-06
JP6369774B2 (ja) 2018-08-08
US9112123B2 (en) 2015-08-18
JPWO2012057330A1 (ja) 2014-05-12
EP2634234A4 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP6578588B2 (ja) 蛍光体部材及び発光装置
JP6369774B2 (ja) 発光装置
US20200220052A1 (en) Single-crystal phosphor and light-emitting device
JP5032043B2 (ja) フェラスメタルアルカリ土類金属ケイ酸塩混合結晶蛍光体およびこれを用いた発光装置
JP4417906B2 (ja) 発光装置及びその製造方法
WO2013190962A1 (ja) 半導体発光装置
JP5066786B2 (ja) 窒化物蛍光体及びそれを用いた発光装置
JP4892861B2 (ja) 窒化物蛍光体及びそれを用いた発光装置
JP5946036B2 (ja) 発光装置
JP6356573B2 (ja) 単結晶蛍光体及び発光装置
JP6029095B2 (ja) Uv光励起黄色発光材料、その製造方法及び発光装置
JP5360370B2 (ja) 発光装置
JP6955704B2 (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540979

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011836463

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13882037

Country of ref document: US