WO2012057005A1 - Film mirror for solar power generation purposes, process for manufacturing film mirror for solar power generation purposes, and reflection device for solar power generation purposes - Google Patents

Film mirror for solar power generation purposes, process for manufacturing film mirror for solar power generation purposes, and reflection device for solar power generation purposes Download PDF

Info

Publication number
WO2012057005A1
WO2012057005A1 PCT/JP2011/074227 JP2011074227W WO2012057005A1 WO 2012057005 A1 WO2012057005 A1 WO 2012057005A1 JP 2011074227 W JP2011074227 W JP 2011074227W WO 2012057005 A1 WO2012057005 A1 WO 2012057005A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
solar power
film
layer
film mirror
Prior art date
Application number
PCT/JP2011/074227
Other languages
French (fr)
Japanese (ja)
Inventor
丈範 熊谷
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012540816A priority Critical patent/JPWO2012057005A1/en
Publication of WO2012057005A1 publication Critical patent/WO2012057005A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a film mirror for solar power generation, a method for manufacturing a film mirror for solar power generation, and a reflector for solar power generation using the film mirror for solar power generation.
  • solar thermal power generation in which heat generated by collecting sunlight is used as a medium, has attracted attention. If this method is used, it is possible to generate power regardless of day and night, and from the long-term perspective, it is considered that the power generation efficiency is higher than that of the solar cell, so that sunlight can be used effectively.
  • mirrors based on glass are used as reflectors for solar thermal power generation, but there are problems such as large mass, large volume, high transportation costs, difficult installation, and easy breakage. Therefore, if a mirror made of resin is used as an alternative to glass, the weight can be reduced and the problem of cracking does not occur. Therefore, a film mirror, which is a product in which the mirror is made into a film, has attracted attention.
  • the problem is different from glass mirrors.
  • the glass mirror since the surface is sealed with glass, the glass mirror is hardly deteriorated by water vapor or ultraviolet rays existing in the atmosphere.
  • the resin layer deteriorates due to ultraviolet rays, and the functional layer of the film mirror deteriorates due to external factors.
  • a film mirror currently used outdoors can be a side mirror of a vehicle.
  • an aluminum vapor deposition layer is used as the reflective layer.
  • Aluminum is a metal that is less susceptible to deterioration than silver, so no special protective layer is required.
  • the total light average reflectance is 85% or less, a clear reflected image cannot be obtained. It is done. Therefore, development of a film mirror having high reflectivity without being deteriorated even when used outdoors for a long time is required.
  • Non-Patent Document 1 the surface hardness of the mirror is also required (see Non-Patent Document 1). That is, as a current problem of film mirrors, it is necessary that the outermost surface has both hard coat and antifouling functions.
  • the surface is hydrophilic, it is said that the water spreads and the dirt attached to the surface is washed away, but since the dirt contains insoluble components, the sand remains on the surface even after washing with water, A film of sand remains. If this continues for a long period of time, a thick sand film is formed, the hydrophilic function of the surface is covered with sand, hydrophilicity cannot be expressed, and the antifouling property is lost. On the other hand, in the case of water repellency, even if the sand adheres or the dew condensation water that occurs in the morning occurs, the sand rolls down while entraining the sand. It is thought that there is.
  • the water-repellent surface has a higher antifouling property in the desert and can maintain a high reflectivity for a long period of time with less cleaning costs, thus improving the power generation efficiency of the plant. It is thought that it can be improved.
  • Patent Document 1 reports a film mirror for solar power generation. However, since an acrylic layer having a relatively low hardness is provided on the outermost layer, the film mirror is easily damaged.
  • Patent Document 2 an antifouling layer composed of a silicon-containing fluorine-based compound is proposed on a hard coat having a hydrophilic group, but nothing has been done to improve the weather resistance.
  • Patent Document 3 an ultraviolet absorber is added to an ultraviolet curable polyfunctional acrylic resin hard coat to improve weather resistance.
  • the resin system originally has low durability against ultraviolet rays, and sufficient antifouling properties are obtained. It is considered impossible.
  • Film mirrors for solar power generation are lightweight and flexible, and have the feature that they can reduce the manufacturing cost and increase the area and mass production. However, like the desert, the film mirror surface is heavily polluted by the dust, and there is almost no rain. If it is installed in an environment where it does not fall for a long time, the regular reflectance will decrease. In such a case, the regular reflectance is partially recovered by washing away the contamination with a brush or the like, but the surface is scratched by the cleaning, and the regular reflectance is lowered from the initial state.
  • the purpose of the present invention is excellent in weather resistance and antifouling property, and can maintain good regular reflectance for sunlight for a long period of time even when installed in a harsh environment for a long period of time. It is providing the film mirror for electric power generation, the manufacturing method of the film mirror for solar power generation, and the reflective apparatus for solar power generation using the film mirror for solar power generation.
  • a chemisorption monomolecule comprising a compound having at least an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group in the outermost layer on the light incident side
  • a film mirror for solar power generation wherein a film antifouling layer is provided.
  • A represents an alkyl group.
  • K represents 10 to 50000, l represents 1 to 1000, m represents 1 to 1000, and n represents an integer of 1 to 100.
  • A represents an alkyl group.
  • Z represents a linear functional group (CH 2 ) m , O (CH 2 ) m , or (CH 2 ) 2 O (CH 2 ) m O (CH 2 ).
  • K represents 10 to 50000, l represents 1 to 1000, m represents 1 to 1000, and n represents an integer of 1 to 100.
  • a solar power generation reflector comprising the film mirror for solar power generation according to any one of 1 to 10 attached to a base material for a reflector through an adhesive layer.
  • the present invention is excellent in scratch resistance and antifouling property, and has excellent weather resistance for solar power generation that can maintain a good regular reflectance for sunlight for a long time even when installed in a harsh environment for a long time.
  • the manufacturing method of the film mirror, the film mirror for solar power generation, and the solar power generation reflective apparatus using the film mirror for solar power generation were able to be provided.
  • FIG. 1 An example of a layer structure of a reflecting mirror.
  • the film mirror for solar power generation is the film mirror for solar power generation having a reflective layer on a resin base material, and at least an organic fluorine-containing ether group or an organic fluorine-containing polyether in the outermost layer on the light incident side.
  • An antifouling layer of a chemisorption monomolecular film containing a compound having an alkoxysilyl group is provided.
  • Such structural features are the main technical features common to the inventions according to claims 1 to 12.
  • the film mirror for solar power generation is in the form of a back mirror and a front mirror.
  • the back mirror is a form having a resin substrate of 10 ⁇ m or more between the sunlight incident side and the silver reflecting layer
  • the front mirror has a resin substrate of 10 ⁇ m or more between the sunlight incident side and the silver reflecting layer. It is a form that does not.
  • the outermost layer of the film mirror for solar power generation needs to have three functions of antifouling property, scratch resistance and weather resistance.
  • high antifouling property and weather resistance can be obtained by using a chemisorbed monomolecule containing a compound having an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group.
  • a chemisorbed monomolecule containing a compound having an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group is considered that high antifouling property and weather resistance are obtained for the following reasons.
  • the term “chemically adsorbed monomolecular compound” as used in this patent refers to a molecule that is divided into a functional site, a chain site, and a reactive site in one molecule, and forms a chemical bond with the underlying functional group so that the functional site is oriented on the film surface. The film surface functionality is demonstrated.
  • the film Since a chemical bond is formed only in the vicinity of the base, the film is formed only with a thickness (several nm) for one molecule.
  • a very thin antifouling layer is formed, and damage due to ultraviolet rays can be minimized.
  • this molecule reacts with a hydroxyl group on the surface of the hard coat to form a silanol bond which is hardly damaged by ultraviolet rays, the damage caused by ultraviolet rays is very small.
  • a very dense antifouling film is formed by applying a treatment that generates many hydroxyl groups on the hard coat surface and further promotes silanol bonding. Since it can form, high antifouling property is obtained.
  • the hard coat preferably has a hydrophilic surface with a water contact angle of 70 ° or less, more preferably a water contact angle of 35 ° or less.
  • an inorganic hard coat is preferable as a constitution because it is easy to form the chemical adsorption monomolecular antifouling film because it has high hardness and weather resistance and is hydrophilic.
  • the hard coat preferably contains an ultraviolet absorber, and further preferably contains an antioxidant.
  • the corrosion prevention layer preferably contains a silver adsorptive corrosion inhibitor (a corrosion inhibitor having an adsorptive group for silver). It is also preferred that the corrosion inhibitor is an antioxidant.
  • a gas barrier layer is provided on the surface side (light incident side) of the corrosion prevention layer.
  • the surface of the anticorrosion layer has an ultraviolet absorber layer, or any one of the constituent layers provided on the surface of the silver reflective layer may contain an ultraviolet absorber. preferable.
  • the production method is an embodiment having a step of forming the silver reflective layer by silver vapor deposition.
  • FIG. 2A and FIG. 2B An example of the structure of the reflective film which is a structural member of the film mirror for solar power generation of this invention is demonstrated using FIG. 2A and FIG. 2B.
  • the reflective film 10 is a film in which the silver reflective layer 3 is provided on the resin substrate 1, and it is also a preferable aspect that the ultraviolet absorbing layer 5, the corrosion preventing layer 4, and the corrosion preventing layer 2 are provided as constituent layers. . More preferably, the gas barrier layer 6 is preferably formed on the ultraviolet absorbing layer 5.
  • FIG. 2A shows an example of the configuration of a surface mirror, which is related to a solar power generation film mirror, and shows a configuration in which a thick resin layer of 10 ⁇ m or more does not exist between a sunlight incident surface and a silver reflecting surface.
  • FIG. 2B shows an example of the configuration of the back mirror, showing a configuration in which a thick resin layer of 10 ⁇ m or more exists between the sunlight incident surface and the silver reflecting surface.
  • resin base material 1 ' shows the resin layer of thickness 10 micrometers, for example.
  • the configuration of the present invention is effective for both the front and back mirrors.
  • This film mirror for solar power generation includes a hard coat layer 7, and an antifouling layer 8 is provided on the outermost layer on the light incident side.
  • the antifouling layer according to the present invention comprises a compound having an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group (hereinafter also referred to as a chemical adsorption monomolecular compound). It is characterized by having a chemisorbed single molecule containing.
  • Examples of the chemisorbed monomolecular compound include KBM7803 (heptadecatrifluorodecyltrimethoxysilane), KBM7103 (trifluoropropyltrimethoxysilane), OPTOOL (manufactured by Daikin Industries), FG manufactured by Fluoro Technology, Inc. -5020 can be listed as a commercial product.
  • the fluoroalkyl group in the silane compound is bonded to Si atoms at a ratio of 1 or less to one Si atom, and the rest is a hydrolyzable group or siloxane bond.
  • a silane compound as a group is preferred.
  • the hydrolyzable group is, for example, a group such as an alkoxy group, and becomes a hydroxyl group by hydrolysis, whereby the chemisorbed monomolecular compound forms a polycondensate.
  • the silane compound is reacted with water (in the presence of an acid catalyst if necessary), usually in the range of room temperature to 100 ° C. while distilling off by-product alcohol.
  • the alkoxysilane is (partially) hydrolyzed to cause a partial condensation reaction, and can be obtained as a hydrolyzate having a hydroxyl group.
  • the degree of hydrolysis and condensation can be adjusted as appropriate depending on the amount of water to be reacted.
  • water is not positively added to the silane compound solution used for the antifouling treatment. It is preferable to dilute and use the solid content concentration of the solution in order to cause a hydrolysis reaction with moisture in the air during drying.
  • the chemical adsorption monomolecular compound as a composition for forming an antifouling layer, this is applied onto a substrate film, and hydrolysis and polycondensation are allowed to proceed on the substrate, thereby providing a water repellent property.
  • the antifouling layer according to the present invention applied to the surface of the material film can be formed on the substrate.
  • the method of coating the chemical adsorption monomolecular compound is not particularly limited, such as spin coating, dip coating, extrusion coating, roll coating coating spray coating, gravure coating, wire bar coating, air knife coating, etc., but silane coupling
  • a dip coating method in which the agent is diluted with a solvent and the resin or the resin laminate is dipped and applied therein is simple and preferable.
  • the monomolecular film referred to in this patent is a substance typified by a self-assembled monomolecular film ((Self-Assembled Monolayer (SAM)), and one functional group in the molecule forms a chemical bond with the substrate.
  • SAM Self-Assembled Monolayer
  • the other parts do not form chemical bonds between molecules, and only a film having a thickness of one molecule is formed.
  • the chemisorption monomolecular compound having the organic fluorine-containing ether group or organic fluorine-containing polyether group and the alkoxysilyl group is represented by the following general formula (A) or general formula ( It is preferable that it is a compound represented by B).
  • A represents an alkyl group.
  • K represents 10 to 50000, l represents 1 to 1000, m represents 1 to 1000, and n represents an integer of 1 to 100.
  • A represents an alkyl group.
  • Z represents a linear functional group (CH 2 ) m , O (CH 2 ) m , or (CH 2 ) 2 O (CH 2 ) m O (CH 2 ).
  • K represents 10 to 50000, l represents 1 to 1000, m represents 1 to 1000, and n represents an integer of 1 to 100.
  • A is preferably an alkyl group having 3 or less carbon atoms and consisting only of carbon and hydrogen, for example, a group such as methyl, ethyl, isopropyl and the like.
  • chemisorbed monomolecular compounds preferably used in the present invention include CF 3 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CH 2 ) 2 Si (OC 2 H 5 ) 3 , CF 3 (CH 2 ) 2 Si (OC 3 H 7 ) 3 , CF 3 (CH 2 ) 2 Si (OC 4 H 9 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 3 H 7 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF
  • the pH is preferably in the range of 1.5 to 5.0. If the pH is 1.5 or less, the acidity of the solution is too strong, which may damage the container or the pipe. If the pH is 5 or more, the reaction does not proceed easily.
  • the pH is preferably in the range of 2.0 to 4.0.
  • water is not actively added to the silane compound solution used for the antifouling treatment, and after the preparation, a hydrolysis reaction is caused by moisture in the air mainly at the time of drying. Therefore, it is used when the solid content concentration of the solution is diluted. If too much water is added to the treatment liquid, the pot life is shortened accordingly.
  • sulfuric acid hydrochloric acid, nitric acid, hypochlorous acid, boric acid, hydrofluoric acid.
  • organic acids having sulfo groups also referred to as sulfonic acid groups
  • carboxyl groups such as acetic acid, polyacrylic acid, benzenesulfonic acid, paratoluenesulfonic acid, methylsulfonic acid, etc. Is used.
  • the organic acid is more preferably a compound having a hydroxyl group and a carboxyl group in one molecule.
  • a hydroxydicarboxylic acid such as citric acid or tartaric acid
  • the organic acid is more preferably a water-soluble acid.
  • levulinic acid formic acid, propionic acid, malic acid, succinic acid, methyl succinic acid, fumaric acid, oxaloacetic acid, pyruvin.
  • Acid, 2-oxoglutaric acid, glycolic acid, D-glyceric acid, D-gluconic acid, malonic acid, maleic acid, oxalic acid, isocitric acid, lactic acid and the like are preferably used.
  • benzoic acid, hydroxybenzoic acid, atorvaic acid and the like can be used as appropriate.
  • the added amount is 0.1 to 10 parts by mass, preferably 0.2 to 5 parts by mass, with respect to 100 parts by mass of the partial hydrolyzate of the silane compound. Further, the amount of water added is not less than the amount that the partial hydrolyzate can theoretically hydrolyze to 100%, and the amount equivalent to 100% to 300%, preferably the amount equivalent to 100% to 200% is added. Good.
  • the coating composition for the antifouling layer thus obtained is extremely stable.
  • the antifouling layer coating composition thus obtained is uniformly applied onto a substrate film to form an antifouling layer.
  • a coating method any method may be used, and a method using a normal dip coater, gravure coater, reverse roll coater, extrusion coater, etc. may be mentioned.
  • ultraviolet irradiation, heat treatment, plasma treatment, and the like may be performed.
  • the organosilicon compound is sufficiently cross-linked by hydrolysis and condensation, and the resulting film has excellent properties.
  • Aging may be performed by dissolving the chemical adsorption monomolecular compound, adjusting the pH, and leaving the prepared coating composition solution.
  • the standing time is a time for which the above-mentioned crosslinking proceeds sufficiently to obtain desired film characteristics. Specifically, although depending on the type of catalyst used, nitric acid requires 1 hour or more at room temperature, acetic acid for several hours or more, and 8 hours to 1 week is sufficient, usually about 3 days.
  • the ripening temperature affects the ripening time, and it may be better to take a means of heating to around 20 ° C. in extremely cold regions. In general, ripening proceeds faster at high temperatures, but when heated to 100 ° C. or higher, gelation occurs, so heating up to 50 to 60 ° C. is appropriate at best.
  • a fluorine-containing silane compound By applying a fluorine-containing silane compound to the base film, it is not only preferable in terms of lowering the refractive index of the antifouling layer and imparting water and oil repellency, but also has high scratch resistance, and particularly for blocking between films. There is an effect that it is excellent.
  • composition obtained by further adding an alkoxysilane or an alkylalkoxysilane to the chemical adsorption monomolecular compound and an organic solvent solution containing no fluorine it is more preferable to use a composition obtained by further adding an alkoxysilane or an alkylalkoxysilane to the chemical adsorption monomolecular compound and an organic solvent solution containing no fluorine.
  • any known silane compound may be used, but typical examples are given below.
  • Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), dialkyldialkoxysilane, and the like.
  • alkoxysilanes and alkylalkoxysilanes are mixed in the range of 0.01 to 15% by mass in addition to the fluorine-containing silane compound when preparing the coating composition for the antifouling layer.
  • hydrolysis and condensation can be performed in the same manner to form an integral film which is polycondensed with the fluorine-containing silane compound.
  • alkoxysilanes and alkylalkoxysilanes are used in combination with the fluorine-containing silane compound, so that the film strength is increased, and there are further effects in scratch resistance and prevention of blocking when stacked.
  • Hard coat layer In the present invention, it is preferable to have a hard coat layer as the second layer from the light incident side. As described above, it is possible to react with the chemically adsorbed monomolecular compound and the hydroxyl group on the hard coat surface to form a very dense antifouling film.
  • the material for forming the hard coat layer is not particularly limited as long as it has a hydrophilic group and has transparency, appropriate hardness, and mechanical strength. Resins that can be cured by irradiation with electron beams or ultraviolet rays, thermosetting resins, etc. can be used, especially thermosetting silicone hard coats made of partially hydrolyzed oligomers of alkoxysilane compounds, and thermosetting polysiloxane resins. It is preferably an ultraviolet curable acrylic hard coat or a thermosetting inorganic material made of an acrylic compound having a hard coat or an unsaturated group.
  • the hard coat layer preferably contains an antioxidant described later.
  • an aqueous colloidal silica-containing acrylic resin Japanese Patent Laid-Open No. 2005-66824
  • a polyurethane resin composition Japanese Patent Laid-Open No. 2005-110918
  • an aqueous silicone compound are used as a binder.
  • Resin film Japanese Patent Laid-Open No. 2004-142161
  • photocatalytic oxide-containing silica film or alumina such as titanium oxide
  • photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio
  • the hard coat having a hydrophilic surface is easier to form the antifouling layer and is advantageous from the viewpoint of antifouling properties and weather resistance. Therefore, the hard coat layer is preferably composed of an inorganic substance. .
  • a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used for the thermosetting silicone hard coat layer.
  • An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-product alcohol at room temperature to 80 ° C. React.
  • the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction.
  • a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid.
  • the setting of the curing temperature below the heat distortion temperature of the plastic molded product is a prerequisite.
  • examples of the acrylic compound having an unsaturated group include pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and tetramethyloltetra.
  • a polyfunctional (meth) acrylate mixture such as (meth) acrylate can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, or benzophenone is blended and used. And this is apply
  • hydrophilicity by surface treatment of the hard coat.
  • corona treatment JP-A-11-1720278
  • plasma surface treatment ultraviolet / ozone treatment
  • surface projection formation 2009-226613
  • surface fine processing treatment and the like can be mentioned.
  • a conventionally known coating method such as a gravure coating method, a reverse coating method, or a die coating method can be used.
  • the hard coat layer is made of an inorganic material, for example, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, etc.
  • the hard coat layer can be formed by a vacuum film forming method.
  • the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
  • the hard coat layer is an inorganic substance, it is preferably made of a film obtained by coating polysilazane and heat-curing it.
  • the precursor contains polysilazane
  • a solution containing a catalyst as necessary in the polysilazane represented by the following formula (I) and an organic solvent is applied and removed by evaporating the solvent.
  • a polysilazane layer having a layer thickness of 0.05 to 3.0 ⁇ m is left on the resin substrate, and the above-described polysilazane layer is present in an atmosphere containing water vapor in the presence of oxygen, active oxygen, and optionally nitrogen. It is preferable to employ a method of forming a glass-like transparent film on the resin substrate by locally heating.
  • R 1 , R 2 , and R 3 are the same or different and are independently of each other hydrogen, or optionally substituted alkyl group, aryl group, vinyl group, or (trialkoxysilyl) alkyl group.
  • n is an integer and n is defined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • catalysts preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used. .
  • the catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
  • a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is used.
  • the coating according to the invention comprises at least one polysilazane of the formula (II) Formula (II): — (SiR 1 R 2 —NR 3 ) n — (SiR 4 R 5 —NR 6 ) p —
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other hydrogen, or optionally substituted alkyl, aryl, vinyl, or (trialkoxysilyl) Represents an alkyl group, where n and p are integers, and n is determined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 and R 5 represent methyl, R 1 , R 3 and R 6 represent hydrogen and R 2 , A compound in which R 4 represents methyl and R 5 represents vinyl, R 1 , R 3 , R 4 and R 6 represent hydrogen and R 2 and R 5 represent methyl.
  • a solution containing at least one polysilazane represented by the following formula (III) is also preferable.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of one another hydrogen or optionally substituted alkyl group
  • R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 , R 5 and R 8 represent methyl, R 9 represents (triethoxysilyl) propyl and R 7 Is a compound in which represents alkyl or hydrogen.
  • the proportion of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.
  • an aprotic solvent which does not contain water and a reactive group (for example, hydroxyl group or amine group) and is inert to polysilazane, preferably an aprotic solvent is suitable.
  • aprotic solvent which includes, for example, aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters such as ethyl acetate or butyl acetate, ketones such as acetone or methyl ethyl ketone, ethers such as tetrahydrofuran or dibutyl ether, and mono- and polyalkylene glycol dialkyl ethers (Diglymes) or a mixture of these solvents.
  • the additional component of the polysilazane solution can be a further binder such as those conventionally used in the manufacture of paints.
  • cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
  • the polysilazane further components of the formulation, for example, the viscosity of the formulation, wetting the underlying film-forming property, additives influencing the lubrication or exhaust resistance, or inorganic nanoparticles, for example SiO 2, TiO 2, It can be ZnO, ZrO 2 or Al 2 O 3 .
  • the thickness of the film to be formed is preferably in the range of 10 nm to 2 ⁇ m.
  • the polysilazane hard coat used in this way can also be used as an oxygen and water vapor barrier film.
  • the hard coat layer is preferably flexible and does not warp.
  • the outermost layer may form a dense cross-linked structure, in which case the film may bend or bend, and may be easily cracked, making handling difficult. In such a case, it is preferable to design so as to provide flexibility and flatness by adjusting the amount of the inorganic substance in the composition.
  • the gas barrier layer is intended to prevent the deterioration of humidity, in particular, deterioration of the resin base material and various functional elements protected by the resin base material due to high humidity, but has a special function and application. As long as the above characteristics are maintained, various types of gas barrier layers can be provided. In the present invention, it is preferable to provide a gas barrier layer on the surface side of the corrosion prevention layer.
  • the water vapor permeability at 40 ° C. and 90% RH is 1 g / m 2 ⁇ day or less, preferably 0.5 g / m 2 ⁇ day or less, more preferably 0.2 g / m 2.
  • -It is preferable to adjust the moisture-proof property of the gas barrier layer so as to be not more than day.
  • the oxygen permeability is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
  • the gas barrier layer according to the present invention is not particularly limited in its formation method, but there is a method of forming an inorganic oxide film by applying an inorganic oxide precursor and then heating and / or irradiating ultraviolet rays. Preferably used.
  • the inorganic oxide is formed by local heating from a sol using the organometallic compound as a raw material. Therefore, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound, It is an oxide of an element such as tin (Sn) or niobium (Nb).
  • silicon oxide aluminum oxide, zirconium oxide and the like. Of these, silicon oxide is preferable.
  • the inorganic oxide As a method for forming the inorganic oxide, it is preferable to use a so-called sol-gel method or a polysilazane method.
  • the sol-gel method is a method of forming an inorganic oxide from an organometallic compound that is a precursor of an inorganic oxide
  • the polysilazane method is a method of forming an inorganic oxide from a polysilazane that is a precursor of an inorganic oxide.
  • the gas barrier layer can be formed by applying a general heating method after applying a precursor for forming an inorganic oxide by heating, but is preferably formed by local heating.
  • the precursor is preferably a sol-shaped organometallic compound or polysilazane.
  • the organometallic compound includes silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), and indium (In). , Tin (Sn), lanthanum (La), yttrium (Y), and niobium (Nb).
  • the organometallic compound is at least one element of silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba). It is preferable to contain. Furthermore, it is preferable to contain at least one element of silicon (Si), aluminum (Al), and lithium (Li).
  • the organometallic compound is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include metal alkoxides.
  • the metal alkoxide is represented by the following formula (IV).
  • M represents a metal having an oxidation number n.
  • R 1 and R 2 each independently represents an alkyl group.
  • m represents an integer of 0 to (n ⁇ 1).
  • R 1 and R 2 may be the same or different.
  • an alkyl group having 4 or less carbon atoms is preferable.
  • a methyl group CH 3 (hereinafter represented by Me), an ethyl group C 2 H 5 (hereinafter represented by Et), a propyl group C 3 H 7 (hereinafter represented by Pr), isopropyl group i-C 3 H 7 (hereinafter represented by i-Pr), butyl group C 4 H 9 (hereinafter represented by Bu), isobutyl group i- A lower alkyl group such as C 4 H 9 (hereinafter referred to as i-Bu) is more preferred.
  • Examples of the metal alkoxide represented by the formula (IV) include lithium ethoxide LiOEt, niobium ethoxide Nb (OEt) 5 , magnesium isopropoxide Mg (OPr-i) 2 , aluminum isopropoxide Al (OPr— i) 3 , zinc propoxide Zn (OPr) 2 , tetraethoxysilane Si (OEt) 4 , titanium isopropoxide Ti (OPr-i) 4 , barium ethoxide Ba (OEt) 2 , barium isopropoxide Ba (OPr) -I) 2 , triethoxyborane B (OEt) 3 , zirconium propoxide Zn (OPr) 4 , lanthanum propoxide La (OPr) 3 , yttrium propoxide Y (OPr) 3 , lead isopropoxide Pb (OPr-i 2 etc. are mentioned suitably. All of these metal alkoxides are
  • the “sol-gel method” is to obtain a hydroxide sol by hydrolyzing an organometallic compound, etc., dehydrate it into a gel, and further heat-treat the gel. It refers to a method for preparing a metal oxide glass having a certain shape (film, particle, fiber, etc.).
  • a multi-component metal oxide glass can be obtained by a method of mixing a plurality of different sol solutions, a method of adding other metal ions, or the like.
  • an inorganic oxide by a sol-gel method having the following steps.
  • the organometallic compound in a reaction solution containing at least water and an organic solvent, is hydrolyzed and dehydrated and condensed while adjusting the pH to 4.5 to 5.0 using a halogen ion as a catalyst in the presence of boron ion.
  • Generation of fine pores due to high-temperature heat treatment is produced by a sol-gel method having a step of obtaining a reaction product by heating and vitrifying the reaction product at a temperature of 200 ° C. or less. And is particularly preferable from the viewpoint that no deterioration of the film occurs.
  • the organometallic compound used as a raw material is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include the metal alkoxides. .
  • the organometallic compound may be used for the reaction as it is, but it is preferably diluted with a solvent for easy control of the reaction.
  • the solvent for dilution is not particularly limited as long as it can dissolve the organometallic compound and can be uniformly mixed with water.
  • Preferred examples of such a solvent for dilution include aliphatic lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, propylene glycol, and mixtures thereof.
  • a mixed solvent of butanol, cellosolve, and butyl cellosolve or a mixed solvent of xylol, cellosolve acetate, methyl isobutyl ketone, and cyclohexane may be used.
  • the metal when the metal is Ca, Mg, Al or the like, it reacts with water in the reaction solution to form a hydroxide, or when carbonate ion CO 3 2- is present, a carbonate is formed. Therefore, it is preferable to add an alcohol solution of triethanolamine as a masking agent to the reaction solution.
  • the concentration of the organometallic compound when mixed and dissolved in a solvent is preferably 70% by mass or less, and more preferably diluted to a range of 5 to 70% by mass.
  • the reaction solution used in the sol-gel method contains at least water and an organic solvent.
  • the organic solvent is not particularly limited as long as it can form a uniform solution with water, acid, and alkali, and usually the same aliphatic lower alcohols used for diluting the organometallic compound are preferably used.
  • the aliphatic lower alcohols propanol, isopropanol, butanol, and isobutanol having a larger number of carbon atoms are preferable to methanol and ethanol. This is because the growth of the metal oxide glass film to be generated is stable.
  • the water ratio is preferably in the range of 0.2 to 50 mol / L as the concentration of water.
  • an organometallic compound is hydrolyzed in the reaction solution in the presence of boron ions using a halogen ion as a catalyst.
  • Preferred examples of the compound that gives the boron ion B 3+ include trialkoxyborane B (OR) 3 . Among these, triethoxyborane B (OEt) 3 is more preferable.
  • the B 3+ ion concentration in the reaction solution is preferably in the range of 1.0 to 10.0 mol / L.
  • halogen ion a fluorine ion and / or a chlorine ion are mentioned suitably. That is, fluorine ions alone, chlorine ions alone or a mixture thereof may be used.
  • the compound to be used may be any compound that generates fluorine ions and / or chlorine ions in the reaction solution.
  • the fluorine ion source ammonium hydrogen fluoride NH 4 HF ⁇ HF, sodium fluoride NaF, or the like is preferable.
  • Preferred examples of the chlorine ion source include ammonium chloride NH 4 Cl.
  • the concentration of the halogen ions in the reaction solution varies depending on the film thickness of an inorganic composition having an inorganic matrix to be produced and other conditions, but generally the reaction solution containing a catalyst. Is preferably in the range of 0.001 to 2 mol / kg, particularly 0.002 to 0.3 mol / kg. If the halogen ion concentration is lower than 0.001 mol / kg, hydrolysis of the organometallic compound does not proceed sufficiently, and film formation becomes difficult. Alternatively, when the concentration of the rogen ion exceeds 2 mol / kg, the generated inorganic matrix (metal oxide glass) tends to be non-uniform, which is not preferable.
  • boron used during the reaction, if to be contained as a B 2 O 3 component in the design the composition of the resulting inorganic matrix, by leaving product was added calculated amount of organic boron compound in accordance with the content of
  • boron can be removed by evaporation as boron methyl ester by heating after film formation in the presence of methanol as a solvent or by immersing in methanol.
  • a main agent solution in which a predetermined amount of the organometallic compound is usually mixed and dissolved in a mixed solvent containing a predetermined amount of water and an organic solvent,
  • a predetermined amount of the reaction solution containing a predetermined amount of the above-mentioned halogen ions is mixed at a predetermined ratio and sufficiently stirred to obtain a uniform reaction solution, and then the pH of the reaction solution is adjusted to a desired value with acid or alkali
  • the reaction product is obtained by aging for several hours.
  • a predetermined amount of the boron compound is mixed and dissolved in advance in the main agent solution or reaction solution. Further, when alkoxyborane is used, it is advantageous to dissolve it in the main agent solution together with other organometallic compounds.
  • the pH of the reaction solution is selected depending on the purpose, and for the purpose of forming a film (film) made of an inorganic composition having an inorganic matrix (metal oxide glass), for example, the pH is adjusted using an acid such as hydrochloric acid. It is preferable to ripen the mixture by adjusting it to the range of 4.5 to 5. In this case, for example, it is convenient to use a mixture of methyl red and bromocresol green as an indicator.
  • the main component solution having the same concentration of the same component and the reaction solution including B 3+ and halogen ions
  • the reaction product can also be produced simply and continuously.
  • the concentration of the reaction solution is in the range of ⁇ 50% by mass
  • the concentration of water (including acid or alkali) is in the range of ⁇ 30% by mass
  • the concentration of halogen ions is in the range of ⁇ 30% by mass. Can be changed.
  • reaction product reaction solution after aging
  • reaction solution after aging reaction solution after aging
  • the temperature is raised gradually while paying particular attention to a temperature range of 50 to 70 ° C., followed by a preliminary drying (solvent volatilization) step and further raising the temperature.
  • This drying is important for forming a non-porous film in the case of film formation.
  • the temperature for heating and drying after the preliminary drying step is preferably 70 to 150 ° C, more preferably 80 to 130 ° C.
  • the reflective layer according to the present invention is a layer made of metal or the like having a function of reflecting sunlight.
  • the surface reflectance of the reflective layer is preferably 80% or more, more preferably 90% or more.
  • the reflective layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au.
  • Al or Ag is a main component from the viewpoint of reflectance and corrosion resistance, and two or more such metal thin films may be formed.
  • Both the wet method and the dry method can be used as the method for forming the silver reflective layer.
  • the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method is a general term for a vacuum film-forming method.
  • Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method.
  • sputtering method a vapor deposition method capable of a roll-to-roll method for continuously forming a film. That is, the manufacturing method of the film mirror for solar power generation is preferably a manufacturing method in which the silver reflective layer is formed by silver vapor deposition.
  • the thickness of the silver reflective layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
  • the silver reflective layer may be on the light incident side (front side) or on the opposite side (back side), but since the base material is a resin, for the purpose of preventing resin degradation due to light rays, It is preferable to be positioned on the light incident side.
  • resin base material various publicly known resin films can be used.
  • polyester film or an acrylic film it is preferable to use a polyester film or an acrylic film, and it may be a film manufactured by melt casting or a film manufactured by solution casting.
  • the thickness of the resin base material is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 ⁇ m. The thickness is preferably 20 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the adhesive layer is not particularly limited as long as it has a function of enhancing the adhesion between the silver reflective layer or a metal layer described later and the resin base material. Therefore, the adhesive layer has adhesiveness for closely adhering the resin base material to the silver reflective layer or the metal layer, heat resistance that can withstand heat when the silver reflective layer or the metal layer is formed by a vacuum deposition method, and the like. Smoothness is required to bring out the high reflection performance inherent in the reflective layer.
  • the thickness of the adhesive layer is preferably from 0.01 to 3 ⁇ m, more preferably from 0.1 to 1 ⁇ m, from the viewpoints of adhesion, smoothness, reflectivity of the reflecting material, and the like.
  • the resin is not particularly limited as long as it satisfies the above adhesiveness, heat resistance, and smoothness conditions.
  • a polyester resin, an acrylic resin, a melamine resin, Epoxy resins, polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc. can be used alone or mixed resins thereof. From the viewpoint of weather resistance, polyester resins and melamine resins are preferred. It is more preferable to use a thermosetting resin in which a curing agent such as isocyanate is further mixed.
  • a method for forming the adhesive layer conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the adhesive layer is a metal oxide
  • it can be formed by various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride.
  • various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride.
  • the corrosion prevention layer is preferably provided adjacent to the silver reflection layer, more preferably provided adjacent to the light incident side of the reflection layer, and contains a corrosion inhibitor for silver having a corrosion prevention layer.
  • a corrosion inhibitor having an adsorptive group for silver and a corrosion inhibitor having an antioxidant ability are preferably used.
  • corrosion refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
  • the film mirror for solar power generation is an embodiment in which the corrosion prevention layer contains a corrosion inhibitor or an antioxidant having an adsorptive group for silver.
  • the optimum amount of the corrosion inhibitor varies depending on the compound to be used, but generally it is preferably within the range of 0.1 to 1.0 / m 2 .
  • Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, indazole It is desirable to select from a compound having a ring, a copper chelate compound, a thiourea, a compound having a mercapto group, at least one kind of naphthalene, or a mixture thereof.
  • amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite , Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylamine
  • Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, N-phenyl-3, 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy3'5'-di-tert-butylphenyl) benzotriazole, 2-
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
  • Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
  • Compounds having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl.
  • Imidazole 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5 dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4- Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc. These mixtures are mentioned.
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
  • copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
  • thioureas examples include thiourea, guanylthiourea, and the like, or a mixture thereof.
  • mercaptoacetic acid thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto
  • naphthalene-based compounds examples include thionalide.
  • an antioxidant can also be used.
  • the antioxidant it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.
  • phenolic antioxidants examples include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propi , Triethylene glycol bis [3- (3-
  • thiol-based antioxidant examples include distearyl-3,3'-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), and the like.
  • phosphite antioxidant examples include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol.
  • Diphosphite bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene-diphosphonite 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
  • the antioxidant and the following light stabilizer can be used in combination.
  • hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,2,
  • a hindered amine light stabilizer containing only a tertiary amine is preferable.
  • bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable.
  • a condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferred.
  • a nickel-based UV stabilizer can also be used as the light stabilizer.
  • the nickel-based UV stabilizer [2,2′-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel ( II), nickel complex-3,5-di-t-butyl-4-hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate and the like.
  • Metal layer Since the metal layer in the present invention has a sacrificial anticorrosion function for silver, it is necessary to use a metal that is adjacent to silver and has a higher ionization tendency than silver.
  • a metal that is adjacent to silver and has a higher ionization tendency than silver For example, lithium, cesium, rubidium, potassium, barium, strontium, calcium, sodium, magnesium, aluminum, manganese, tantalum, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, etc. Can be mentioned.
  • aluminum, zinc, iron, tin, and copper are preferable.
  • the method for producing the metal layer may be formed by a wet method generally referred to as a plating method, and it is preferable to use the vacuum film forming method, although the above-described vacuum film forming method is used.
  • the film thickness of the metal layer is in the range of 10 ⁇ m to 500 ⁇ m in consideration of the sacrificial anticorrosive function of silver.
  • the thickness is preferably 50 to 300 ⁇ m, more preferably 100 to 200 ⁇ m.
  • a layer to which an ultraviolet absorber is added can be provided for the purpose of preventing deterioration due to sunlight or ultraviolet rays. It is preferable that any one of the constituent layers provided on the resin substrate contains an ultraviolet absorber or an ultraviolet absorber layer is provided on the surface side of the corrosion prevention layer. Preferably, the hard coat layer contains an ultraviolet absorber.
  • ultraviolet absorber examples include benzophenone, benzotriazole, phenyl salicylate, triazine, and the like as organic materials, and titanium oxide, zinc oxide, cerium oxide, iron oxide, and the like as inorganic materials.
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
  • benzotriazole ultraviolet absorber examples include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole and the like.
  • phenyl salicylate ultraviolet absorber examples include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • hindered amine ultraviolet absorbers include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-) Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxy
  • the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers that act as light energy conversion agents, called quenchers, can be used in combination. However, when using the above-mentioned ultraviolet absorber, it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator.
  • the amount of the ultraviolet absorber used is 0.1 to 20% by mass, preferably 1 to 15% by mass, and more preferably 3 to 10% by mass. When the amount is more than 20% by mass, the adhesion is deteriorated.
  • the total thickness of the film mirror according to the present invention is preferably 75 to 250 ⁇ m, more preferably 90 to 230 ⁇ m, and still more preferably 100 to 220 ⁇ m, from the viewpoints of prevention of deflection of the mirror, regular reflectance, handling properties, and the like.
  • the solar power generation film mirror is bonded to another substrate, particularly a metal support, via an adhesive layer.
  • the structure of the pressure-sensitive adhesive layer according to the present invention is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, a pressure-sensitive adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 ⁇ m from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like.
  • the other substrate to be bonded to the solar power generation film mirror of the present invention may be any material that can impart protection of the silver reflective layer, such as an acrylic film or sheet, a polycarbonate film or sheet, and a polyarylate film. Or a sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film or sheet, a plastic film or sheet such as a fluorine film, or a resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc. A resin film or sheet coated with a resin and subjected to surface processing such as metal deposition is used.
  • the thickness of the laminated film or sheet is not particularly limited, but is usually preferably in the range of 12 to 250 ⁇ m.
  • these other base materials may be bonded after providing recesses or projections before being bonded to the solar power generation film mirror of the present invention.
  • the bonding and the molding so as to have a concave portion or a convex portion may be performed at the same time.
  • Metal support used in the solar power generation reflector of the present invention, a steel plate, a copper plate, an aluminum plate, an aluminum plated steel plate, an aluminum alloy plated steel plate, a copper plated steel plate, a tin plated steel plate, A metal material having a high thermal conductivity such as a chrome-plated steel plate or a stainless steel plate can be used.
  • a plated steel plate In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate or the like having good corrosion resistance.
  • the solar power generation reflection device of the present invention is formed by attaching a solar power generation film mirror to a base material (for example, a metal support) for the reflection device via an adhesive layer.
  • the film mirror for solar power generation can be preferably used for the purpose of collecting sunlight.
  • the reflecting device When used as a solar power generation reflecting device, the reflecting device is shaped like a bowl (semi-cylindrical), and a cylindrical member having fluid inside is provided at the center of the semicircle, and sunlight is condensed on the cylindrical member.
  • the form which heats an internal fluid by this, converts the heat energy, and generates electric power is mentioned as one form.
  • flat reflectors were installed at multiple locations, and the sunlight reflected by each reflector was collected on one reflector (central reflector) and reflected by the reflector.
  • the film mirror for solar power generation of the present invention is particularly preferably used.
  • a biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 ⁇ m) was used as the resin substrate 1.
  • a polyester resin Polyyester SP-181, manufactured by Nippon Synthetic Chemical Co., Ltd.
  • TDI tolylene diisocyanate
  • 2,4-tolylene diisocyanate 2,4-tolylene diisocyanate
  • methyl ethyl ketone was added as a solvent, and an amount prepared to be 10% by mass of glycol dimercaptoacetate (manufactured by Wako Pure Chemical Industries, Ltd.) as a corrosion inhibitor was mixed and coated by a gravure coating method to have a thickness of 60 nm.
  • a corrosion inhibitor layer 2 was obtained.
  • the silver reflective layer 3 was formed to 80 nm by vacuum deposition.
  • a corrosion inhibitor layer 4 was prepared in the same manner except that Tinuvin 234 (manufactured by Ciba Japan) was used instead of the glycol dimercaptoacetate of the corrosion inhibitor layer 2. Formed.
  • UV absorbing polymer “New Coat UVA-204W” manufactured by Shin-Nakamura Chemical Co., Ltd. was coated to a thickness of 5 ⁇ m by a gravure coating method to form UV absorbing layer 5.
  • an alumina layer having a thickness of 100 nm was formed by a vacuum deposition method, a gas barrier layer 6 was formed, and a reflective film 10a similar to that shown in FIG.
  • FIG. 3A shows the configuration of Comparative Example 1.
  • An adhesive layer (9a in FIG. 3A) is prepared by coating the reflective film with an adhesive TBS-730 (Dainippon Ink Co., Ltd.) by a gravure coating method so as to have a thickness of 5 ⁇ m.
  • Chemical S001 (75 ⁇ m) was bonded by a roll method.
  • NN320 manufactured by AZ Electronic Materials in which 20% by mass of polysilazane is dispersed in dibutyl ether is extruded to a thickness of 7 ⁇ m, dried at 70 ° C. and 90% RH for 30 minutes, and heated at 70 ° C. for 24 hours.
  • a hard coat layer 1 (7a in FIG. 3A) was formed, and Comparative Example 1 was produced.
  • FIG. 3B shows the configuration of Comparative Example 2.
  • ZX-007-c and the TDI-based isocyanate were mixed at a ratio of 10: 1 on the sample obtained in Comparative Example 1, diluted with methyl ethyl ketone to a solid content of 10%, and then coated by gravure coating.
  • the film was cured by heating at 70 ° C. for 30 minutes to form a 0.3 ⁇ m-thick antifouling layer 1 (8a in FIG. 3B), and Comparative Example 2 was prepared.
  • 4A to 4G show the configurations of Examples 1 to 7, respectively.
  • Example 1 An adhesive TBS-730 (Dainippon Ink Co., Ltd.) is coated on the reflective film 10a by a gravure coating method so as to have a thickness of 5 ⁇ m, and acrylic resin Sumitomo Chemical S001 (75 ⁇ m) is pasted thereon by a roll method. Combined. Next, the surface of the acrylic resin was subjected to corona treatment, and Optwo DSX (manufactured by Daikin Industries) was dip-coated to form an antifouling layer 2 (8b in FIG. 4A).
  • Example 2 Bar coating is applied to a solution obtained by mixing 69% by mass of acrylate-based resin with 30% by mass of amorphous silica and 3% by mass of a photoinitiator on the acrylic resin of the sample of Example 1 so that the dry film thickness becomes 3 ⁇ m. Then, after pre-drying at 75 ° C., the hard coat layer 2 (7b in FIG. 4B) is formed by UV curing, and then the antifouling layer 2 (8b in FIG. 4B) is formed in the same manner as in the example. Example 2 was created.
  • Example 3 instead of the hard coat layer 2 of Example 2 (7b in FIG. 4B), it was prepared in the same manner except that the hard coat layer 3 (7c in FIG. 4C) having a film thickness of 1 ⁇ m was used by vacuum deposition of alumina. Example 3 was created.
  • Example 4 instead of the hard coat layer 3 of Example 3 (7c in FIG. 4C), NN320 (manufactured by AZ Electronic Materials) in which 20% by mass of polysilazane was dispersed in dibutyl ether was extruded and applied to a thickness of 7 ⁇ m.
  • Example 4 was prepared by drying at 70 ° C. and 90% RH for 30 minutes, and heating and curing at 70 ° C. for 24 hours to form the hard coat layer 1 (7a in FIG. 4D).
  • Example 5 In Example 4, Irganox 176 (manufactured by Ciba Japan) was added to the adhesive layer on the reflective film 10a as an ultraviolet absorber so as to be 0.01 g / m 2 (9b in FIG. 4E). Example 5 was prepared.
  • Example 6 In Example 5, hard coat layer 4 (7d in FIG. 4F) containing Irganox 176 (manufactured by Ciba Japan) as 0.01 g / m 2 as an ultraviolet absorber in hard coat layer 1 was contained. Example 6 was prepared in the same manner as above.
  • Example 7 In Example 6, 0.01 g / m 2 of 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (manufactured by Ciba Japan) was used as an antioxidant in the hard coat layer 4.
  • Example 7 was prepared by forming the hard coat layer 5 (7e in FIG. 4G) and making the others in the same manner.
  • ⁇ Contact angle test> Based on JIS-R3257, 3 ⁇ L of water was dropped and the contact angle of the surface of the film mirror was measured using a contact angle meter DM300 (Kyowa Interface Chemistry). A larger contact angle is preferable because of high water repellency, excellent antifouling property, and less stain.
  • ⁇ Tumble angle> A sliding method kit DM-SA01 was attached to a contact angle meter DM501 (Kyowa Interface Chemistry), and 50 ⁇ l of water was dropped to measure the falling angle of the surface of the film mirror. A smaller rolling angle is preferable because it easily removes dirt and has excellent antifouling properties.
  • Comparative Example 1 had no antifouling layer, so the surface was dirty and the reflectance was lowered.
  • Comparative Example 2 since a relatively thick resin antifouling agent was used as the antifouling layer, the weather resistance was low, and the reflectance was greatly reduced after washing.
  • Example 1 there is no hard coat layer, but the reflectivity is not relatively lowered due to the hardness of the underlying acrylic and the influence of the monomolecular chemical adsorption antifouling layer.
  • Examples 3 to 7 using the inorganic hard coat maintain high performance and maintain long-term weather resistance, antifouling property and scratch resistance. That is, the above-described means of the present invention prevents a decrease in regular reflectance due to deterioration of the reflective layer, and is lightweight and flexible, and can be manufactured in a large area and mass-produced at a reduced manufacturing cost.
  • a film mirror for solar power generation and a solar power generation reflection device with excellent weather resistance that can maintain good regular reflectance for sunlight for a long time even if installed in a harsh environment for a long period of time. It can be seen that can be provided.
  • the present invention is configured as described above, it can be used as a solar power generation film mirror, a method for manufacturing a solar power generation film mirror, and a solar power generation reflector using the solar power generation film mirror.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

A film mirror for solar power generation purposes, comprising a resin base and a reflective layer arranged on the resin base, and characterized in that a stain-proof layer is provided as the outermost layer on the light incident side of the film mirror, wherein the stain-proof layer is composed of a chemically adsorptive monomolecular film which comprises a compound having at least an organic fluorinated ether group or an organic fluorinated polyether group and an alkoxysilyl group.

Description

太陽熱発電用フィルムミラー、太陽熱発電用フィルムミラーの製造方法および太陽熱発電用反射装置Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
 本発明は、太陽熱発電用フィルムミラー、太陽熱発電用フィルムミラーの製造方法および太陽熱発電用フィルムミラーを用いた太陽熱発電用反射装置に関する。 The present invention relates to a film mirror for solar power generation, a method for manufacturing a film mirror for solar power generation, and a reflector for solar power generation using the film mirror for solar power generation.
 近年、石油、天然ガス等の化石燃料エネルギーの代替エネルギーとして、自然エネルギーの利用が検討されている。その中でも、化石燃料の代替エネルギーとして最も安定しており、エネルギー量の多い太陽エネルギーが注目されている。 In recent years, the use of natural energy has been studied as an alternative energy to fossil fuel energy such as oil and natural gas. Among them, solar energy, which is the most stable alternative energy for fossil fuels and has a large amount of energy, is attracting attention.
 しかしながら、太陽エネルギーは非常に有力な代替エネルギーであるものの、これを活用する観点からは、(1)太陽エネルギーのエネルギー密度が低いこと、並びに(2)太陽エネルギーの貯蔵及び移送が困難であることが、問題となると考えられる。 However, although solar energy is a very powerful alternative energy, from the viewpoint of utilizing this, (1) the energy density of solar energy is low, and (2) it is difficult to store and transfer solar energy. However, this is considered a problem.
 現在では、太陽電池の研究・開発が盛んに行われており、太陽光の利用効率も上昇してきているが、未だ十分な回収効率に達していないのが現状である。 At present, research and development of solar cells are actively carried out, and the use efficiency of solar light is increasing, but the current situation is that the recovery efficiency has not yet been reached.
 太陽光をエネルギーに変換する別方式として、太陽光を集めて得られた熱を媒体として発電する、太陽熱発電が注目されている。この方式を用いれば、昼夜を問わず、発電が可能である上、長期視野でみれば、発電効率は太陽電池より高いと考えられるため、太陽光を有効に利用できる。 As another method for converting sunlight into energy, solar thermal power generation, in which heat generated by collecting sunlight is used as a medium, has attracted attention. If this method is used, it is possible to generate power regardless of day and night, and from the long-term perspective, it is considered that the power generation efficiency is higher than that of the solar cell, so that sunlight can be used effectively.
 現在、太陽熱発電の反射鏡には、ガラスを基材としたミラーが用いられているが、質量が大きい、体積が大きい、輸送コストがかかる、設置が難しい、割れやすい等の問題がある。そこで、ガラスの代替として樹脂を用いた鏡を用いれば、軽量化することができる上、割れる等の問題も発生しないため、鏡をフィルム化した製品であるフィルムミラーが注目されている。 Currently, mirrors based on glass are used as reflectors for solar thermal power generation, but there are problems such as large mass, large volume, high transportation costs, difficult installation, and easy breakage. Therefore, if a mirror made of resin is used as an alternative to glass, the weight can be reduced and the problem of cracking does not occur. Therefore, a film mirror, which is a product in which the mirror is made into a film, has attracted attention.
 屋外でフィルムミラーを用いる場合、ガラスミラーとは違った問題が露になる。ガラスミラーでは、ガラスで表面を封止しているため、大気中に存在する水蒸気や紫外線により劣化することはほとんど無い。しかし、フィルムミラーの場合、表面を薄い樹脂層で封止しているため、紫外線により樹脂層が劣化する上、外部因子によりフィルムミラーの機能層が劣化することが問題となる。現在屋外で利用されているフィルムミラーとしては、車両のサイドミラーが挙げられるが、この場合、この反射層として、アルミ蒸着層が用いられている。アルミは銀に比べて劣化しにくい金属であるため、特別な保護層は必要にならないが、全光平均反射率が85%以下であるため、鮮明な反射像が得られないことが問題として挙げられる。そこで、長期間屋外で使用しても劣化することなく、高い反射率をもったフィルムミラーの開発が求められている。 When using film mirrors outdoors, the problem is different from glass mirrors. In the glass mirror, since the surface is sealed with glass, the glass mirror is hardly deteriorated by water vapor or ultraviolet rays existing in the atmosphere. However, in the case of a film mirror, since the surface is sealed with a thin resin layer, the resin layer deteriorates due to ultraviolet rays, and the functional layer of the film mirror deteriorates due to external factors. A film mirror currently used outdoors can be a side mirror of a vehicle. In this case, an aluminum vapor deposition layer is used as the reflective layer. Aluminum is a metal that is less susceptible to deterioration than silver, so no special protective layer is required. However, because the total light average reflectance is 85% or less, a clear reflected image cannot be obtained. It is done. Therefore, development of a film mirror having high reflectivity without being deteriorated even when used outdoors for a long time is required.
 一方、太陽熱発電は砂漠地帯に建設されることが多いため、ミラー表面に砂埃が付着して反射率が低下する。そして結果的に発電効率が低下するため、ミラーの汚れが大きな問題として認識されている。実際、カルフォルニアにある太陽熱発電プラントでは、ミラーの反射率が1ヵ月で20%以上も落ちたことが観測されている。また、ミラーの反射率が1%低下すると$185,000/yearの損失を生むことが報告されている。現状では2週間~2ヵ月に1回程度の頻度で、ミラーにイオン交換水を吹き付けて洗浄しているが、1回の洗浄コストが$0.01/m程度とすると、プラント全体のミラーを洗浄する場合、$1,000~$20,000と莫大な費用がかかる。また、これに加えて、年に数回ブラシでミラーを擦り洗いするため、ミラーの表面硬度も要求される(非特許文献1参照)。つまり、フィルムミラーの現状の課題として、最表面にハードコート性と防汚性の両方の機能を備えていることが必要とされている。 On the other hand, since solar thermal power generation is often constructed in desert areas, the dust adheres to the mirror surface and the reflectance decreases. As a result, the power generation efficiency is lowered, so that the contamination of the mirror is recognized as a big problem. In fact, in solar power plants in California, it has been observed that mirror reflectivity has dropped by more than 20% in a month. It has also been reported that a loss of $ 185,000 / year occurs when the mirror reflectivity is reduced by 1%. At present, cleaning is performed by spraying ion-exchanged water on the mirror about once every two weeks to two months, but if the cleaning cost is about $ 0.01 / m 2 , the mirror for the entire plant Is expensive, $ 1,000 to $ 20,000. In addition to this, since the mirror is scrubbed with a brush several times a year, the surface hardness of the mirror is also required (see Non-Patent Document 1). That is, as a current problem of film mirrors, it is necessary that the outermost surface has both hard coat and antifouling functions.
 そこで、砂漠で汚れが付着する原因を我々が調査した。砂漠の汚れは、通常の汚れとは異なり、強固な砂の膜を形成することが分かった。これは、砂がミラー表面に大量に降り積もり、さらに朝と夜の温度差が大きいことから発生する結露がミラー表面に付着し、砂粒子同士が水分中で凝集し、さらに大気中の汚染物質と反応して、不溶性の塩を生成することで、砂の膜を形成すると考えられる。このような結果から、汚れの付着は水分が大きく関与していることが分かる。以上のことを踏まえて、表面を親水性もしくは撥水性にする防汚法が考えられる。表面が親水性であれば、水が濡れ広がり、表面に付着した汚れが洗い流されるといわれているが、汚れには不溶性成分が含まれるため、水で洗浄した後でも、砂が表面に残り、砂の膜を残る。これが長期間続くと、厚い砂の膜が形成され、表面の親水機能が砂で覆われて、親水性が発現できず、防汚性が失われると考えられる。一方、撥水性の場合、砂が付着しても、朝方に発生する結露水が発生しても、砂を巻き込みながら転がり落ちるため、砂の水に対する溶解性に関わらず、ゴミを巻き込んで落とす機能があると考えられる。つまり、フィルムミラーの表面防汚膜として、撥水表面の方が、砂漠における防汚性は高く、少ない洗浄コストで、反射率が高い状態を長期間維持することができ、プラントの発電効率を向上させることができると考えられる。 Therefore, we investigated the cause of dirt in the desert. Desert dirt was found to form a strong sand film, unlike normal dirt. This is because a large amount of sand accumulates on the mirror surface, and the condensation that occurs due to the large temperature difference between morning and night adheres to the mirror surface, sand particles agglomerate in the water, and pollutants in the atmosphere. It is thought that a sand film is formed by reacting to produce an insoluble salt. From these results, it is understood that moisture is greatly involved in the adhesion of dirt. Based on the above, an antifouling method for making the surface hydrophilic or water repellent is conceivable. If the surface is hydrophilic, it is said that the water spreads and the dirt attached to the surface is washed away, but since the dirt contains insoluble components, the sand remains on the surface even after washing with water, A film of sand remains. If this continues for a long period of time, a thick sand film is formed, the hydrophilic function of the surface is covered with sand, hydrophilicity cannot be expressed, and the antifouling property is lost. On the other hand, in the case of water repellency, even if the sand adheres or the dew condensation water that occurs in the morning occurs, the sand rolls down while entraining the sand. It is thought that there is. In other words, as a surface antifouling film for film mirrors, the water-repellent surface has a higher antifouling property in the desert and can maintain a high reflectivity for a long period of time with less cleaning costs, thus improving the power generation efficiency of the plant. It is thought that it can be improved.
 特許文献1では、太陽熱発電用フィルムミラーを報告しているが、最表層に比較的硬度の低いアクリル層を設けているため、傷つきやすい構成になっている。
 特許文献2では、親水基を有するハードコートにケイ素含有フッ素系化合物から構成される防汚層が提案されているが、特に耐候性が向上させるような工夫は何もされていない。
 特許文献3では、紫外線硬化型多官能アクリル樹脂系ハードコートに紫外線吸収剤を添加して耐候性を向上させているが、樹脂系はもともと紫外線に対する耐久性が低く、十分な防汚性は得られないと考えられる。
Patent Document 1 reports a film mirror for solar power generation. However, since an acrylic layer having a relatively low hardness is provided on the outermost layer, the film mirror is easily damaged.
In Patent Document 2, an antifouling layer composed of a silicon-containing fluorine-based compound is proposed on a hard coat having a hydrophilic group, but nothing has been done to improve the weather resistance.
In Patent Document 3, an ultraviolet absorber is added to an ultraviolet curable polyfunctional acrylic resin hard coat to improve weather resistance. However, the resin system originally has low durability against ultraviolet rays, and sufficient antifouling properties are obtained. It is considered impossible.
特表2009-520174号公報Special table 2009-520174 特開2004-250474号公報JP 2004-250474 A 特開2010-106061号公報JP 2010-106061 A
 太陽熱発電用フィルムミラーは、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することができる特徴があるが、砂漠のように砂塵によるフィルムミラー表面の汚染が激しく、ほとんど雨が降らない環境に長期間設置すると、正反射率が低下する。このような場合は、汚染をブラシなどで洗い流すことにより正反射率が一部回復するが、洗浄により表面に傷が付き、初期の状態より正反射率が低下する。
 本発明の目的は、耐傷性、防汚性に優れ、過酷な環境に長期間設置しても、太陽光に対して良好な正反射率を長期間保ち続けることができる耐候性の優れた太陽熱発電用フィルムミラー、太陽熱発電用フィルムミラーの製造方法、および太陽熱発電用フィルムミラーを用いた太陽熱発電用反射装置を提供することである。
Film mirrors for solar power generation are lightweight and flexible, and have the feature that they can reduce the manufacturing cost and increase the area and mass production. However, like the desert, the film mirror surface is heavily polluted by the dust, and there is almost no rain. If it is installed in an environment where it does not fall for a long time, the regular reflectance will decrease. In such a case, the regular reflectance is partially recovered by washing away the contamination with a brush or the like, but the surface is scratched by the cleaning, and the regular reflectance is lowered from the initial state.
The purpose of the present invention is excellent in weather resistance and antifouling property, and can maintain good regular reflectance for sunlight for a long period of time even when installed in a harsh environment for a long period of time. It is providing the film mirror for electric power generation, the manufacturing method of the film mirror for solar power generation, and the reflective apparatus for solar power generation using the film mirror for solar power generation.
 本発明の上記目的は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.樹脂基材上に反射層を有する太陽熱発電用フィルムミラーにおいて、光入射側の最外層に少なくとも有機含フッ素エーテル基または有機含フッ素ポリエーテル基とアルコキシシリル基とを有する化合物を含む化学吸着単分子膜の防汚層が設けられていることを特徴とする太陽熱発電用フィルムミラー。 1. In a film mirror for solar power generation having a reflective layer on a resin substrate, a chemisorption monomolecule comprising a compound having at least an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group in the outermost layer on the light incident side A film mirror for solar power generation, wherein a film antifouling layer is provided.
 2.前記有機含フッ素エーテル基または有機含フッ素ポリエーテル基とアルコキシシリル基とを有する化合物が、下記一般式(A)または(B)であることを特徴とする前記1に記載の太陽熱発電用フィルムミラー。 2. 2. The film mirror for solar power generation according to 1 above, wherein the compound having the organic fluorine-containing ether group or the organic fluorine-containing polyether group and the alkoxysilyl group is represented by the following general formula (A) or (B): .
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
 (式中、Aはアルキル基を表す。kは10~50000、lは1~1000、mは1~1000、nは1~100の整数を表す。) (In the formula, A represents an alkyl group. K represents 10 to 50000, l represents 1 to 1000, m represents 1 to 1000, and n represents an integer of 1 to 100.)
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
 (式中、Aはアルキル基を表す。Zは直鎖状の官能基で(CH、O(CH、または(CHO(CHO(CH)を表し、kは10~50000、lは1~1000、mは1~1000、nは1~100の整数を表す。) (In the formula, A represents an alkyl group. Z represents a linear functional group (CH 2 ) m , O (CH 2 ) m , or (CH 2 ) 2 O (CH 2 ) m O (CH 2 ). K represents 10 to 50000, l represents 1 to 1000, m represents 1 to 1000, and n represents an integer of 1 to 100.)
 3.光入射側から2層目の層としてハードコート層を有することを特徴とする前記1又は2に記載の太陽熱発電用フィルムミラー。 3. 3. The film mirror for solar power generation according to 1 or 2 above, wherein a hard coat layer is provided as a second layer from the light incident side.
 4.前記ハードコート層が無機物から構成されることを特徴とする前記3に記載の太陽熱発電用フィルムミラー。 4. 4. The film mirror for solar power generation as described in 3 above, wherein the hard coat layer is made of an inorganic material.
 5.前記ハードコート層がポリシラザンを塗布製膜し、加熱硬化した膜からなることを特徴とする前記3又は4に記載の太陽熱発電用フィルムミラー。 5. 5. The film mirror for solar power generation as described in 3 or 4 above, wherein the hard coat layer comprises a film obtained by coating polysilazane and heat-curing it.
 6.光入射面から前記反射層の間の層中に紫外線吸収剤を含有することを特徴とする前記1~5の何れか一項に記載の太陽熱発電用フィルムミラー。 6. 6. The film mirror for solar power generation according to any one of 1 to 5, wherein an ultraviolet absorber is contained in a layer between the light incident surface and the reflective layer.
 7.前記ハードコート層に紫外線吸収剤を含有することを特徴とする前記3~6の何れか一項に記載の太陽熱発電用フィルムミラー。 7. 7. The film mirror for solar power generation according to any one of 3 to 6, wherein the hard coat layer contains an ultraviolet absorber.
 8.前記ハードコート層に酸化防止剤を含有することを特徴とする前記3~7の何れか一項に記載の太陽熱発電用フィルムミラー。 8. The film mirror for solar power generation according to any one of 3 to 7, wherein the hard coat layer contains an antioxidant.
 9.前記反射層が銀で形成されていることを特徴とする前記1~8の何れか一項に記載の太陽熱発電用フィルムミラー。 9. 9. The film mirror for solar power generation according to any one of 1 to 8, wherein the reflective layer is made of silver.
 10.前記反射層の光入射側に、腐蝕防止層を有することを特徴とする前記1~9の何れか一項に記載の太陽熱発電用フィルムミラー。 10. 10. The film mirror for solar power generation according to any one of 1 to 9, wherein a corrosion preventing layer is provided on the light incident side of the reflective layer.
 11.前記1~10の何れか一項に記載の太陽熱発電用フィルムミラーを製造する製造方法であって、前記銀反射層を蒸着によって形成することを特徴とする太陽熱発電用フィルムミラーの製造方法。 11. 11. A method for producing a solar power generation film mirror according to claim 1, wherein the silver reflective layer is formed by vapor deposition.
 12.前記1~10の何れか一項に記載の太陽熱発電用フィルムミラーを、粘着層を介し反射装置用の基材に貼りつけて形成したことを特徴とする太陽熱発電用反射装置。 12. 11. A solar power generation reflector, comprising the film mirror for solar power generation according to any one of 1 to 10 attached to a base material for a reflector through an adhesive layer.
 本発明により、耐傷性、防汚性に優れ、過酷な環境に長期間設置しても、太陽光に対して良好な正反射率を長期間保ち続けることができる耐候性の優れた太陽熱発電用フィルムミラー、太陽熱発電用フィルムミラーの製造方法および太陽熱発電用フィルムミラーを用いた太陽熱発電用反射装置を提供することができた。 According to the present invention, it is excellent in scratch resistance and antifouling property, and has excellent weather resistance for solar power generation that can maintain a good regular reflectance for sunlight for a long time even when installed in a harsh environment for a long time. The manufacturing method of the film mirror, the film mirror for solar power generation, and the solar power generation reflective apparatus using the film mirror for solar power generation were able to be provided.
反射鏡の層構成の一例。An example of a layer structure of a reflecting mirror. 表面鏡の層構成の一例。An example of a layer structure of a surface mirror. 裏面鏡の層構成の一例。An example of a layer structure of a back mirror. 比較例1の太陽熱発電用フィルムミラーの層構成。The layer structure of the film mirror for solar power generation of the comparative example 1. FIG. 比較例2の太陽熱発電用フィルムミラーの層構成。The layer structure of the film mirror for solar power generation of the comparative example 2. FIG. 実施例1の太陽熱発電用フィルムミラーの層構成。The layer structure of the film mirror for solar power generation of Example 1. FIG. 実施例2の太陽熱発電用フィルムミラーの層構成。The layer structure of the film mirror for solar power generation of Example 2. FIG. 実施例3の太陽熱発電用フィルムミラーの層構成。The layer structure of the film mirror for solar power generation of Example 3. FIG. 実施例4の太陽熱発電用フィルムミラーの層構成。The layer structure of the film mirror for solar power generation of Example 4. FIG. 実施例5の太陽熱発電用フィルムミラーの層構成。The layer structure of the film mirror for solar power generation of Example 5. FIG. 実施例6の太陽熱発電用フィルムミラーの層構成。The layer structure of the film mirror for solar power generation of Example 6. FIG. 実施例7の太陽熱発電用フィルムミラーの層構成。The layer structure of the film mirror for solar power generation of Example 7. FIG.
 本発明の一態様にかかる太陽熱発電用フィルムミラーは、樹脂基材上に反射層を有する太陽熱発電用フィルムミラーにおいて、光入射側の最外層に少なくとも有機含フッ素エーテル基または有機含フッ素ポリエーテルとアルコキシシリル基とを有する化合物を含む化学吸着単分子膜の防汚層が設けられていることを特徴とする。このような構成上の特徴は、請求項1から請求項12までの請求項に係る発明に共通する主な技術的特徴である。なお、前記太陽熱発電用フィルムミラーは、裏面鏡と表面鏡の形態がある。裏面鏡は、太陽光入射側と銀反射層の間に10μm以上の樹脂基材を有する形態であり、表面鏡は、太陽光入射側と銀反射層の間に10μm以上の樹脂基材を有しない形態である。 The film mirror for solar power generation according to one embodiment of the present invention is the film mirror for solar power generation having a reflective layer on a resin base material, and at least an organic fluorine-containing ether group or an organic fluorine-containing polyether in the outermost layer on the light incident side. An antifouling layer of a chemisorption monomolecular film containing a compound having an alkoxysilyl group is provided. Such structural features are the main technical features common to the inventions according to claims 1 to 12. The film mirror for solar power generation is in the form of a back mirror and a front mirror. The back mirror is a form having a resin substrate of 10 μm or more between the sunlight incident side and the silver reflecting layer, and the front mirror has a resin substrate of 10 μm or more between the sunlight incident side and the silver reflecting layer. It is a form that does not.
 砂漠では、通常の地域で観察されるような汚れとは異なり、砂の付着による汚れが大きい。また、昼夜の温度差が大きいことで発生する結露水により砂汚れが水中で凝集反応を促進し、さらに不溶性の塩が生成し、強固にミラー表面に付着する。このような現象から太陽熱発電用フィルムミラーには、表面に砂汚れが付着しにくくなる防汚処理が必要である。防汚膜として、表面が親水性と撥水性を示すものがあるが、我々が鋭意研究を重ねた結果、長期砂漠地域に放置した場合、表面が親水性だと結露水が防汚層全体を覆い、それが日中にかけて乾燥すると、水中に溶け込んでいた砂が、薄い膜が形成し、表面の防汚層を覆い、親水性防汚層が発現しにくくなることが分かった。それに対して、表面が撥水性であれば、発生した結露水が表面から転がり落ちる中で、付着した砂汚れを巻き込み、取り去る効果がある。そのため、砂漠のような地域で防汚層を付与する場合は、表面が撥水性を示す方が効果的であることが分かった。また、表面が撥水性を示すだけでは、長期間高い反射率を維持することができない。定期的にミラー表面を水やブラシで洗浄する必要があり、表面に耐傷性を備えている必要がある。さらに、長期間太陽光に暴露されること、フィルムの各層の中でも太陽光に最も近く位置すること、反射層があるため、太陽光が倍の行程を通ること等の理由により、高い耐候性が必要とされる。つまり、太陽熱発電用フィルムミラーの最表層には、防汚性・耐傷性・耐候性の3機能を併せ持つ必要があると考えられる。 In the desert, unlike the dirt observed in normal areas, the dirt due to sand adhesion is large. In addition, dew water generated due to a large temperature difference between day and night accelerates the agglomeration reaction in the water due to dew condensation, and further insoluble salts are generated and firmly adhere to the mirror surface. Because of this phenomenon, the film mirror for solar power generation requires antifouling treatment that makes it difficult for sand dirt to adhere to the surface. Some antifouling films exhibit hydrophilicity and water repellency. However, as a result of our extensive research, when left in a long-term desert area, if the surface is hydrophilic, dewed water will cover the entire antifouling layer. It was found that when it was covered and dried over the day, the sand that had dissolved in the water formed a thin film, covering the antifouling layer on the surface and making it difficult to develop a hydrophilic antifouling layer. On the other hand, if the surface is water-repellent, it has the effect of entraining and removing the adhering sand dirt while the generated condensed water rolls off the surface. Therefore, it was found that it is more effective that the surface exhibits water repellency when an antifouling layer is applied in an area such as a desert. Further, high reflectivity cannot be maintained for a long time only by the surface exhibiting water repellency. It is necessary to periodically clean the mirror surface with water or a brush, and the surface must be scratch resistant. Furthermore, it has high weather resistance because it is exposed to sunlight for a long period of time, is located closest to sunlight among the layers of the film, and has a reflective layer, so that sunlight passes through a double process. Needed. In other words, it is considered that the outermost layer of the film mirror for solar power generation needs to have three functions of antifouling property, scratch resistance and weather resistance.
 本発明では、有機含フッ素エーテル基または有機含フッ素ポリエーテル基とアルコキシシリル基とを有する化合物を含む化学吸着単分子を用いることによって、高い防汚性と耐候性が得られる。これは、以下の理由により高い防汚性と耐候性が得られると考えられる。本特許でいう化学吸着単分子化合物とは、一分子中に機能部位、鎖部位、反応部位に分かれた分子で、下地の官能基と化学結合を形成し、機能部位が膜表面に配向するような膜を形成し、膜表面の機能性を発揮する。下地近傍においてのみ、化学結合が形成されるため、膜は一分子分の厚さ(数nm)しか形成されない。このような分子で防汚膜を形成した場合、非常に薄い防汚層が形成されるため、紫外線によるダメージを最小限まで抑えられる。また、本分子がハードコート表面の水酸基と反応し、紫外線による傷害のほとんどないシラノール結合を形成するため、紫外線によるダメージが非常に小さい。また、防汚層の下にハードコート層を有する好ましい態様においては、ハードコート表面の水酸基を多く生成し、さらにシラノール結合を促進するような処理を施すことによって、非常に密な防汚膜を形成することができるため、高い防汚性が得られる。 In the present invention, high antifouling property and weather resistance can be obtained by using a chemisorbed monomolecule containing a compound having an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group. This is considered that high antifouling property and weather resistance are obtained for the following reasons. The term “chemically adsorbed monomolecular compound” as used in this patent refers to a molecule that is divided into a functional site, a chain site, and a reactive site in one molecule, and forms a chemical bond with the underlying functional group so that the functional site is oriented on the film surface. The film surface functionality is demonstrated. Since a chemical bond is formed only in the vicinity of the base, the film is formed only with a thickness (several nm) for one molecule. When an antifouling film is formed with such molecules, a very thin antifouling layer is formed, and damage due to ultraviolet rays can be minimized. In addition, since this molecule reacts with a hydroxyl group on the surface of the hard coat to form a silanol bond which is hardly damaged by ultraviolet rays, the damage caused by ultraviolet rays is very small. Further, in a preferred embodiment having a hard coat layer under the antifouling layer, a very dense antifouling film is formed by applying a treatment that generates many hydroxyl groups on the hard coat surface and further promotes silanol bonding. Since it can form, high antifouling property is obtained.
 前記ハードコートとして、表面が水の接触角70°以下の親水性を示すものが好ましく、より好ましくは、水の接触角35°以下が好ましい。また、無機ハードコートであれば、硬度、耐候性が高い上に、親水性であることから、前記化学吸着単分子防汚膜を形成しやすく、構成として好ましい。より好ましくは、ハードコート中に紫外線吸収剤を含有することが好ましく、さらに酸化防止剤を含有すればなお好ましい。 The hard coat preferably has a hydrophilic surface with a water contact angle of 70 ° or less, more preferably a water contact angle of 35 ° or less. In addition, an inorganic hard coat is preferable as a constitution because it is easy to form the chemical adsorption monomolecular antifouling film because it has high hardness and weather resistance and is hydrophilic. More preferably, the hard coat preferably contains an ultraviolet absorber, and further preferably contains an antioxidant.
 また、前記腐蝕防止層が、銀吸着性腐蝕防止剤(銀に対する吸着性基を有する腐蝕防止剤)を含有することが好ましい。また、該腐蝕防止剤が、酸化防止剤であることも好ましい。 In addition, the corrosion prevention layer preferably contains a silver adsorptive corrosion inhibitor (a corrosion inhibitor having an adsorptive group for silver). It is also preferred that the corrosion inhibitor is an antioxidant.
 前記腐蝕防止層の表面側(光入射側)に、ガスバリア層を有する構成とすることが好ましい。さらに前記腐蝕防止層の表面側に、紫外線吸収剤層を有する構成とするか、又は前記銀反射層の表面側に設けられた構成層のうちいずれか一層に、紫外線吸収剤を含有することが好ましい。 It is preferable that a gas barrier layer is provided on the surface side (light incident side) of the corrosion prevention layer. Further, the surface of the anticorrosion layer has an ultraviolet absorber layer, or any one of the constituent layers provided on the surface of the silver reflective layer may contain an ultraviolet absorber. preferable.
 前記太陽熱発電用フィルムミラーを製造するフィルムミラーの製造方法としては、前記銀反射層を銀蒸着によって形成する工程を有する態様の製造方法であることが好ましい。 As a method for producing a film mirror for producing the film mirror for solar thermal power generation, it is preferable that the production method is an embodiment having a step of forming the silver reflective layer by silver vapor deposition.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail.
 (太陽熱発電用フィルムミラーの構成概要)
 本発明の太陽熱発電用フィルムミラーの構成部材である反射フィルムの構成の一例を図1を用いて説明する。また、太陽熱発電用フィルムミラーの構成概要を図2A、図2Bを用いて説明する。
(Outline of configuration of film mirror for solar power generation)
An example of the structure of the reflective film which is a structural member of the film mirror for solar power generation of this invention is demonstrated using FIG. Moreover, the structure outline | summary of the film mirror for solar power generation is demonstrated using FIG. 2A and FIG. 2B.
 反射フィルム10は、樹脂基材1上に銀反射層3が設けられたフィルムであって、構成層として、紫外線吸収層5、腐蝕防止層4、腐蝕防止層2を設けることも好ましい態様である。より好ましくは、ガスバリア層6が紫外線吸収層5上に形成されることが好ましい。 The reflective film 10 is a film in which the silver reflective layer 3 is provided on the resin substrate 1, and it is also a preferable aspect that the ultraviolet absorbing layer 5, the corrosion preventing layer 4, and the corrosion preventing layer 2 are provided as constituent layers. . More preferably, the gas barrier layer 6 is preferably formed on the ultraviolet absorbing layer 5.
 太陽熱発電用フィルムミラーに関し、図2Aは表面鏡の構成の一例を示し、太陽光入射面と銀反射面の間に10μm以上の厚い樹脂層が存在しない構成を示す。図2Bは裏面鏡の構成の一例を示し、太陽光入射面と銀反射面の間に10μm以上の厚い樹脂層が存在する構成を示す。図2Bにおいて、樹脂基材1’は例えば10μmの厚さの樹脂層を示す。本発明の構成は、表面鏡および裏面鏡のどちらでも有効である。
 この太陽熱発電用フィルムミラーは、ハードコート層7を備え、光入射側の最外層には、防汚層8が設けられている。
FIG. 2A shows an example of the configuration of a surface mirror, which is related to a solar power generation film mirror, and shows a configuration in which a thick resin layer of 10 μm or more does not exist between a sunlight incident surface and a silver reflecting surface. FIG. 2B shows an example of the configuration of the back mirror, showing a configuration in which a thick resin layer of 10 μm or more exists between the sunlight incident surface and the silver reflecting surface. In FIG. 2B, resin base material 1 'shows the resin layer of thickness 10 micrometers, for example. The configuration of the present invention is effective for both the front and back mirrors.
This film mirror for solar power generation includes a hard coat layer 7, and an antifouling layer 8 is provided on the outermost layer on the light incident side.
 (防汚層)
 本発明に係る防汚層は、請求項1に記載のように、有機含フッ素エーテル基または有機含フッ素ポリエーテル基とアルコキシシリル基とを有する化合物(以下、化学吸着単分子化合物ともいう)を含む化学吸着単分子を有することを特徴とする。
(Anti-fouling layer)
As described in claim 1, the antifouling layer according to the present invention comprises a compound having an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group (hereinafter also referred to as a chemical adsorption monomolecular compound). It is characterized by having a chemisorbed single molecule containing.
 上記化学吸着単分子化合物としては、例えば、信越化学社製KBM7803(ヘプタデカトリフルオロデシルトリメトキシシラン)、KBM7103(トリフルオロプロピルトリメトキシシラン)、オプツール(ダイキン工業社製)、フロロテクノロジー社製FG-5020などが市販品として挙げることができる。 Examples of the chemisorbed monomolecular compound include KBM7803 (heptadecatrifluorodecyltrimethoxysilane), KBM7103 (trifluoropropyltrimethoxysilane), OPTOOL (manufactured by Daikin Industries), FG manufactured by Fluoro Technology, Inc. -5020 can be listed as a commercial product.
 また、前記化学吸着単分子化合物の中でも、シラン化合物中のフルオロアルキル基が、Si原子1つに対し、1つ以下の割合でSi原子と結合されており、残りは加水分解性基もしくはシロキサン結合基であるシラン化合物が好ましい。 Among the chemisorbed monomolecular compounds, the fluoroalkyl group in the silane compound is bonded to Si atoms at a ratio of 1 or less to one Si atom, and the rest is a hydrolyzable group or siloxane bond. A silane compound as a group is preferred.
 ここでいう加水分解性の基としては、例えばアルコキシ基等の基であり、加水分解によりヒドロキシル基となり、それにより化学吸着単分子化合物は重縮合物を形成する。 Here, the hydrolyzable group is, for example, a group such as an alkoxy group, and becomes a hydroxyl group by hydrolysis, whereby the chemisorbed monomolecular compound forms a polycondensate.
 例えば、上記シラン化合物は水と(必要なら酸触媒の存在下)、副生するアルコールを留去しながら、通常、室温~100℃の範囲で反応させる。これによりアルコキシシランは(部分的に)加水分解し、一部縮合反応が起こり、ヒドロキシル基を有する加水分解物として得ることができる。加水分解、縮合の程度は、反応させる水の量により適宜調節することができるが、本発明においては、防汚処理に用いるシラン化合物溶液に積極的には水を添加せず、調製後、主として乾燥時に、空気中の水分等により加水分解反応を起こさせるため溶液の固形分濃度を薄く希釈して用いることが好ましい。 For example, the silane compound is reacted with water (in the presence of an acid catalyst if necessary), usually in the range of room temperature to 100 ° C. while distilling off by-product alcohol. As a result, the alkoxysilane is (partially) hydrolyzed to cause a partial condensation reaction, and can be obtained as a hydrolyzate having a hydroxyl group. The degree of hydrolysis and condensation can be adjusted as appropriate depending on the amount of water to be reacted. However, in the present invention, water is not positively added to the silane compound solution used for the antifouling treatment. It is preferable to dilute and use the solid content concentration of the solution in order to cause a hydrolysis reaction with moisture in the air during drying.
 上記化学吸着単分子化合物を、防汚層形成用組成物として用いて、これを基材フィルム上に塗布し、加水分解、重縮合を基材上で進行させることで、撥水性の性質を基材フィルム表面に付与する、本発明に係わる防汚層を基材上に形成することができる。 Using the chemical adsorption monomolecular compound as a composition for forming an antifouling layer, this is applied onto a substrate film, and hydrolysis and polycondensation are allowed to proceed on the substrate, thereby providing a water repellent property. The antifouling layer according to the present invention applied to the surface of the material film can be formed on the substrate.
 上記化学吸着単分子化合物の塗設する方法としては、スピンコート塗布、ディップ塗布、エクストルージョン塗布、ロールコート塗布スプレー塗布、グラビア塗布、ワイヤーバー塗布、エアナイフ塗布等、特に制限されないが、シランカップリング剤を溶剤で希釈し、その中に樹脂もしくは樹脂積層体を浸漬して塗布するディップコート法が簡便であり好ましい。 The method of coating the chemical adsorption monomolecular compound is not particularly limited, such as spin coating, dip coating, extrusion coating, roll coating coating spray coating, gravure coating, wire bar coating, air knife coating, etc., but silane coupling A dip coating method in which the agent is diluted with a solvent and the resin or the resin laminate is dipped and applied therein is simple and preferable.
 本特許でいう単分子膜とは、自己組織化単分子膜((Self-Assembled Monolayer(SAM))に代表されるような物質であり、分子中の一官能基が基板と化学結合を形成し,その他の部分は分子間で化学結合を形成せず、一分子分の厚みの膜しか形成されないものである。 The monomolecular film referred to in this patent is a substance typified by a self-assembled monomolecular film ((Self-Assembled Monolayer (SAM)), and one functional group in the molecule forms a chemical bond with the substrate. The other parts do not form chemical bonds between molecules, and only a film having a thickness of one molecule is formed.
 好ましくは、前記防汚層形成用組成物において、前記有機含フッ素エーテル基または有機含フッ素ポリエーテル基とアルコキシシリル基とを有する化学吸着単分子化合物は、下記一般式(A)または一般式(B)で表される化合物であることが好ましい。 Preferably, in the antifouling layer forming composition, the chemisorption monomolecular compound having the organic fluorine-containing ether group or organic fluorine-containing polyether group and the alkoxysilyl group is represented by the following general formula (A) or general formula ( It is preferable that it is a compound represented by B).
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
 (式中、Aはアルキル基を表す。kは10~50000、lは1~1000、mは1~1000、nは1~100の整数を表す。) (In the formula, A represents an alkyl group. K represents 10 to 50000, l represents 1 to 1000, m represents 1 to 1000, and n represents an integer of 1 to 100.)
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
 (式中、Aはアルキル基を表す。Zは直鎖状の官能基で(CH、O(CH、または(CHO(CHO(CH)を表し、kは10~50000、lは1~1000、mは1~1000、nは1~100の整数を表す。)
 前記一般式(A)で表される化合物中、Aは炭素原子数3つ以下であり炭素と水素のみからなるアルキル基、例えば、メチル、エチル、イソプロピル等の基が好ましい。
(In the formula, A represents an alkyl group. Z represents a linear functional group (CH 2 ) m , O (CH 2 ) m , or (CH 2 ) 2 O (CH 2 ) m O (CH 2 ). K represents 10 to 50000, l represents 1 to 1000, m represents 1 to 1000, and n represents an integer of 1 to 100.)
In the compound represented by the general formula (A), A is preferably an alkyl group having 3 or less carbon atoms and consisting only of carbon and hydrogen, for example, a group such as methyl, ethyl, isopropyl and the like.
 これら本発明において好ましく用いられる化学吸着単分子化合物としては、CF(CHSi(OCH、CF(CHSi(OC、CF(CHSi(OC、CF(CHSi(OC、CF(CF(CHSi(OCH、CF(CF(CHSi(OC、CF(CF(CHSi(OC、CF(CF(CHSi(OCH、CF(CF(CHSi(OC、CF(CF(CHSi(OC、CF(CF(CHSi(OCH)(OC、CF(CF(CHSi(OCHOC、CF(CF(CHSiCH(OCH、CF(CF(CHSiCH(OC、CF(CF(CHSiCH(OC、(CFCF(CF(CHSi(OCH、C15CONH(CHSi(OC、C17SONH(CHSi(OC、C17(CHOCONH(CHSi(OCH、CF(CF(CHSi(CH)(OCH、CF(CF(CHSi(CH)(OC、CF(CF(CHSi(CH)(OC、CF(CF(CHSi(C)(OCH、CF(CF(CH)2Si(C)(OC、CF(CHSi(CH)(OCH、CF(CHSi(CH)(OC、CF(CHSi(CH)(OC、CF(CF(CHSi(CH)(OCH、CF(CF)5(CHSi(CH)(OC、CF(CFO(CF(CHSi(OC)、C15CHO(CHSi(OC、C17SOO(CHSi(OC、C17(CHOCHO(CHSi(OCHなどが挙げられるが、この限りでない。 These chemisorbed monomolecular compounds preferably used in the present invention include CF 3 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CH 2 ) 2 Si (OC 2 H 5 ) 3 , CF 3 (CH 2 ) 2 Si (OC 3 H 7 ) 3 , CF 3 (CH 2 ) 2 Si (OC 4 H 9 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 3 H 7 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 3 H 7 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) (OC 3 H 7 ) 2 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 2 OC 3 H 7 , CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCH 3 ( OCH 3) 2, CF 3 ( CF 2) 7 (CH 2) 2 SiCH 3 (OC 2 H 5) 2, CF 3 (CF 2) 7 (CH 2) 2 SiCH 3 (OC 3 H 7) 2, ( CF 3) 2 CF (CF 2 ) 8 (CH 2) 2 Si (OCH 3) 3, C 7 F 15 CONH (CH 2) 3 Si (OC 2 H 5) 3, C 8 F 17 SO 2 NH (CH 2 ) 3 Si (OC 2 H 5 ) 3 , C 8 F 17 (CH 2 ) 2 OCONH (CH 2 ) 3 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) ) (OCH 3) 2, CF 3 ( F 2) 7 (CH 2) 2 Si (CH 3) (OC 2 H 5) 2, CF 3 (CF 2) 7 (CH 2) 2 Si (CH 3) (OC 3 H 7) 2, CF 3 ( CF 2) 7 (CH 2) 2 Si (C 2 H 5) (OCH 3) 2, CF 3 (CF 2) 7 (CH 2) 2Si (C 2 H 5) (OC 3 H 7) 2, CF 3 (CH 2) 2 Si (CH 3) (OCH 3) 2, CF 3 (CH 2) 2 Si (CH 3) (OC 2 H 5) 2, CF 3 (CH 2) 2 Si (CH 3) (OC 3 H 7) 2, CF 3 (CF 2) 5 (CH 2) 2 Si (CH 3) (OCH 3) 2, CF 3 (CF 2) 5 (CH 2) 2 Si (CH 3) (OC 3 H 7 ) 2 , CF 3 (CF 2 ) 2 O (CF 2 ) 3 (CH 2 ) 2 Si (O C 3 H 7), C 7 F 15 CH 2 O (CH 2) 3 Si (OC 2 H 5) 3, C 8 F 17 SO 2 O (CH 2) 3 Si (OC 2 H 5) 3, C 8 Examples include, but are not limited to, F 17 (CH 2 ) 2 OCHO (CH 2 ) 3 Si (OCH 3 ) 3 .
 本発明の防汚層形成用組成物においては、酸を添加してpHを5.0以下に調整し用いることが好ましい。酸は前記シラン化合物の加水分解を促し、重縮合反応の触媒として作用するので、基材表面にシラン化合物の重縮合膜の形成を容易にし、防汚性を高めることができる。pHは1.5~5.0の範囲が良く、1.5以下では溶液の酸性が強すぎて、容器や配管をいためる恐れがあり、5以上では反応が進行しにくい。好ましくはpH2.0~4.0の範囲である。 In the composition for forming an antifouling layer of the present invention, it is preferable to adjust the pH to 5.0 or less by adding an acid. Since the acid promotes hydrolysis of the silane compound and acts as a catalyst for the polycondensation reaction, the polycondensation film of the silane compound can be easily formed on the surface of the substrate, and the antifouling property can be enhanced. The pH is preferably in the range of 1.5 to 5.0. If the pH is 1.5 or less, the acidity of the solution is too strong, which may damage the container or the pipe. If the pH is 5 or more, the reaction does not proceed easily. The pH is preferably in the range of 2.0 to 4.0.
 本発明においては、防汚処理に用いるシラン化合物溶液に積極的には水を添加せず、調製後、主として乾燥時に、空気中の水分等により加水分解反応を起こさせる。そのために溶液の固形分濃度を希釈したところで用いる。処理液に水を添加しすぎると、その分ポットライフが短くなる。 In the present invention, water is not actively added to the silane compound solution used for the antifouling treatment, and after the preparation, a hydrolysis reaction is caused by moisture in the air mainly at the time of drying. Therefore, it is used when the solid content concentration of the solution is diluted. If too much water is added to the treatment liquid, the pot life is shortened accordingly.
 本発明においては硫酸、塩酸、硝酸、次亜塩素酸、ホウ酸、フッ酸。好ましくは塩酸、硝酸等の無機酸のほか、スルホ基(スルホン酸基ともいう)またはカルボキシル基を有する有機酸、例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、メチルスルホン酸等が用いられる。有機酸は1分子内に水酸基とカルボキシル基を有する化合物であればいっそう好ましく、例えば、クエン酸または酒石酸等のヒドロキシジカルボン酸が用いられる。また、有機酸は水溶性の酸であることが更に好ましく、例えば上記クエン酸や酒石酸の他に、レブリン酸、ギ酸、プロピオン酸、リンゴ酸、コハク酸、メチルコハク酸、フマル酸、オキサロ酢酸、ピルビン酸、2-オキソグルタル酸、グリコール酸、D-グリセリン酸、D-グルコン酸、マロン酸、マレイン酸、シュウ酸、イソクエン酸、乳酸等が好ましく用いられる。また、安息香酸、ヒドロキシ安息香酸、アトロバ酸等も適宜用いることができる。 In the present invention, sulfuric acid, hydrochloric acid, nitric acid, hypochlorous acid, boric acid, hydrofluoric acid. Preferably, in addition to inorganic acids such as hydrochloric acid and nitric acid, organic acids having sulfo groups (also referred to as sulfonic acid groups) or carboxyl groups, such as acetic acid, polyacrylic acid, benzenesulfonic acid, paratoluenesulfonic acid, methylsulfonic acid, etc. Is used. The organic acid is more preferably a compound having a hydroxyl group and a carboxyl group in one molecule. For example, a hydroxydicarboxylic acid such as citric acid or tartaric acid is used. The organic acid is more preferably a water-soluble acid. For example, in addition to the citric acid and tartaric acid, levulinic acid, formic acid, propionic acid, malic acid, succinic acid, methyl succinic acid, fumaric acid, oxaloacetic acid, pyruvin. Acid, 2-oxoglutaric acid, glycolic acid, D-glyceric acid, D-gluconic acid, malonic acid, maleic acid, oxalic acid, isocitric acid, lactic acid and the like are preferably used. Also, benzoic acid, hydroxybenzoic acid, atorvaic acid and the like can be used as appropriate.
 添加量は、前記シラン化合物の部分加水分解物100質量部に対して0.1質量部~10質量部、好ましくは0.2質量部~5質量部がよい。また、水の添加量については部分加水分解物が理論上100%加水分解し得る量以上であればよく、100%~300%相当量、好ましくは100%~200%相当量を添加するのがよい。 The added amount is 0.1 to 10 parts by mass, preferably 0.2 to 5 parts by mass, with respect to 100 parts by mass of the partial hydrolyzate of the silane compound. Further, the amount of water added is not less than the amount that the partial hydrolyzate can theoretically hydrolyze to 100%, and the amount equivalent to 100% to 300%, preferably the amount equivalent to 100% to 200% is added. Good.
 このようにして得られた防汚層用の塗布組成物は極めて安定である。 The coating composition for the antifouling layer thus obtained is extremely stable.
 本発明に係わる防汚処理方法においては、このように得られた前記防汚層用の塗布組成物を基材フィルム上に均一に塗布して、防汚層を形成する。塗布方法としては、何れの方法でもよく、通常のディップコーター、グラビアコーター、リバースロールコーター、押し出しコーター等を用いる方法が挙げられる。また、より防汚層の防汚機能や膜付き、その他の物性をより良好なものにするために、紫外線照射、加熱処理、プラズマ処理等を行ってもよい。 In the antifouling treatment method according to the present invention, the antifouling layer coating composition thus obtained is uniformly applied onto a substrate film to form an antifouling layer. As a coating method, any method may be used, and a method using a normal dip coater, gravure coater, reverse roll coater, extrusion coater, etc. may be mentioned. Further, in order to further improve the antifouling function of the antifouling layer, with a film, and other physical properties, ultraviolet irradiation, heat treatment, plasma treatment, and the like may be performed.
 また、防汚層用の塗布組成物調製後、熟成工程を設けることより、有機珪素化合物の加水分解、縮合による架橋が充分に進み、得られた被膜の特性が優れたものとなる。熟成は、前記化学吸着単分子化合物を溶解し、pH等を調整して、調製した塗布組成物溶液を放置すればよい。放置する時間は、上述の架橋が所望の膜特性を得るのに充分な程度進行する時間である。具体的には用いる触媒の種類にもよるが、硝酸では室温で1時間以上、酢酸では数時間以上、8時間~1週間程度で充分であり、通常3日前後である。熟成温度は熟成時間に影響を与え、極寒地では20℃付近まで加熱する手段をとった方がよいこともある。一般に高温では熟成が早く進むが、100℃以上に加熱するとゲル化が起こるので、せいぜい50~60℃までの加熱が適切である。 Moreover, by providing a aging step after preparing the coating composition for the antifouling layer, the organosilicon compound is sufficiently cross-linked by hydrolysis and condensation, and the resulting film has excellent properties. Aging may be performed by dissolving the chemical adsorption monomolecular compound, adjusting the pH, and leaving the prepared coating composition solution. The standing time is a time for which the above-mentioned crosslinking proceeds sufficiently to obtain desired film characteristics. Specifically, although depending on the type of catalyst used, nitric acid requires 1 hour or more at room temperature, acetic acid for several hours or more, and 8 hours to 1 week is sufficient, usually about 3 days. The ripening temperature affects the ripening time, and it may be better to take a means of heating to around 20 ° C. in extremely cold regions. In general, ripening proceeds faster at high temperatures, but when heated to 100 ° C. or higher, gelation occurs, so heating up to 50 to 60 ° C. is appropriate at best.
 フッ素含有のシラン化合物を基材フィルムに適用することによって、防汚層の低屈折率化及び撥水・撥油性付与の点で好ましいのみでなく、耐傷性が高く、またフィルム同士のブロッキングに特に優れるという効果がある。 By applying a fluorine-containing silane compound to the base film, it is not only preferable in terms of lowering the refractive index of the antifouling layer and imparting water and oil repellency, but also has high scratch resistance, and particularly for blocking between films. There is an effect that it is excellent.
 本発明においては、前記化学吸着単分子化合物、フッ素を含まない有機溶媒溶液に、更に、アルコキシシラン、アルキルアルコキシシランを添加して成した組成物を用いると更に好ましい。 In the present invention, it is more preferable to use a composition obtained by further adding an alkoxysilane or an alkylalkoxysilane to the chemical adsorption monomolecular compound and an organic solvent solution containing no fluorine.
 これらのフッ素を含有しないアルコキシシラン、アルキルアルコキシシランの例としては、公知のいずれのシラン化合物でもよいが、代表的な例を以下に挙げる。 As examples of these alkoxysilanes and alkylalkoxysilanes that do not contain fluorine, any known silane compound may be used, but typical examples are given below.
 これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、ジアルキルジアルコキシシラン等が挙げられる。 Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), dialkyldialkoxysilane, and the like.
 これらのアルコキシシラン、アルキルアルコキシシラン類は、前記防汚層用の塗布組成物調製の際に、前記フッ素を含有のシラン化合物に加えて、前記0.01~15質量%の範囲で混合して用いればよく、同様に加水分解、縮合することで、前記フッ素を含有のシラン化合物と共に重縮合した一体となった膜を形成する。 These alkoxysilanes and alkylalkoxysilanes are mixed in the range of 0.01 to 15% by mass in addition to the fluorine-containing silane compound when preparing the coating composition for the antifouling layer. Similarly, hydrolysis and condensation can be performed in the same manner to form an integral film which is polycondensed with the fluorine-containing silane compound.
 これらのアルコキシシラン、アルキルアルコキシシラン類を前記フッ素を含有のシラン化合物と混合して用いることで、膜強度を高め、耐傷性や重ねたときのブロッキン防止に更に効果がある。 These alkoxysilanes and alkylalkoxysilanes are used in combination with the fluorine-containing silane compound, so that the film strength is increased, and there are further effects in scratch resistance and prevention of blocking when stacked.
 <接触角試験>
 JIS-R3257に基づいて、接触角計DM300(協和界面化学)を用いて測定した。水を3μL滴下してフィルムミラーの(防汚層の)表面の接触角を測定した。
<Contact angle test>
Based on JIS-R3257, it was measured using a contact angle meter DM300 (Kyowa Interface Chemistry). 3 μL of water was dropped to measure the contact angle of the surface of the film mirror (of the antifouling layer).
 (ハードコート層)
 本発明においては、光入射側から2層目にハードコート層を有することが好ましい。前述したように、化学吸着単分子化合物とハードコート表面の水酸基と反応し、非常に緻密な防汚膜を形成することができる。
(Hard coat layer)
In the present invention, it is preferable to have a hard coat layer as the second layer from the light incident side. As described above, it is possible to react with the chemically adsorbed monomolecular compound and the hydroxyl group on the hard coat surface to form a very dense antifouling film.
 ハードコート層の形成材料としては、親水性基を有し、かつ、透明性と適度な硬度と機械的強度とがあれば、特に限定されるものではない。電子線や紫外線の照射により硬化する樹脂や熱硬化性の樹脂等を使用でき、特にアルコキシシラン系化合物の部分加水分解オリゴマーからなる熱硬化型シリコン系ハードコート、熱硬化型のポリシロキサン樹脂からなるハードコート又は不飽和基を有するアクリル系化合物からなる紫外線硬化型アクリル系ハードコート、熱硬化型無機材料であることが好ましい。また、ハードコート層には、後述する酸化防止剤を含有することが好ましい。 The material for forming the hard coat layer is not particularly limited as long as it has a hydrophilic group and has transparency, appropriate hardness, and mechanical strength. Resins that can be cured by irradiation with electron beams or ultraviolet rays, thermosetting resins, etc. can be used, especially thermosetting silicone hard coats made of partially hydrolyzed oligomers of alkoxysilane compounds, and thermosetting polysiloxane resins. It is preferably an ultraviolet curable acrylic hard coat or a thermosetting inorganic material made of an acrylic compound having a hard coat or an unsaturated group. The hard coat layer preferably contains an antioxidant described later.
 該ハードコート層として用いることができる材料として、水性コロイダルシリカ含有アクリル樹脂(特開2005-66824号公報)、ポリウレタン系樹脂組成物(特開2005-110918号公報)、水性シリコーン化合物をバインダーとして用いた樹脂膜(特開2004-142161号公報)、酸化チタン等の光触媒性酸化物含有シリカ膜もしくはアルミナ、アスペクト比の高い酸化チタンもしくは酸化ニオブなどの光触媒膜(特開2009-62216)、光触媒含有フッ素樹脂コーティング(ピアレックス・テクノロジーズ社)、有機/無機ポリシラザン膜、有機/無機ポリシラザンに親水化促進剤(AZエレクトロニクス社)を用いた膜、等が挙げられる。この中でも、表面が親水性を示すハードコートの方が、該防汚層を形成しやすく、防汚性・耐候性の観点から有利であるため、ハードコート層が無機物から構成されることが好ましい。 As materials that can be used as the hard coat layer, an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane resin composition (Japanese Patent Laid-Open No. 2005-110918), and an aqueous silicone compound are used as a binder. Resin film (Japanese Patent Laid-Open No. 2004-142161), photocatalytic oxide-containing silica film or alumina such as titanium oxide, photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio (Japanese Patent Laid-Open No. 2009-62216), containing photocatalyst Examples thereof include a fluororesin coating (Pierex Technologies), an organic / inorganic polysilazane film, and a film using a hydrophilization accelerator (AZ Electronics) on organic / inorganic polysilazane. Among these, the hard coat having a hydrophilic surface is easier to form the antifouling layer and is advantageous from the viewpoint of antifouling properties and weather resistance. Therefore, the hard coat layer is preferably composed of an inorganic substance. .
 熱硬化型シリコン系ハードコート層には公知の方法によって合成したアルコキシシラン化合物の部分加水分解オリゴマーを使用できる。その合成方法の1例は以下の通りである。まずアルコキシシラン化合物としてテトラメトキシシラン、又はテトラエトキシシランを用い、これを塩酸、硝酸等の酸触媒の存在下に所定量の水を加えて、副生するアルコールを除去しながら室温から80℃で反応させる。この反応によりアルコキシシランは加水分解し、更に縮合反応により一分子中にシラノール基又はアルコキシ基を2個以上有し、平均重合度4~8のアルコキシシラン化合物の部分加水分解オリゴマーが得られる。次にこれに酢酸、マレイン酸等の硬化触媒を添加し、アルコール、グリコールエーテル系の有機溶剤に溶解させて熱硬化型シリコン系ハードコート液が得られる。そしてこれを通常の塗料における塗装方法により透明プラスチック成型品の外面に塗布し、80~140℃の温度で加熱硬化することによってハードコート塗膜を形成させる。但しこの場合、プラスチック成型品の熱変形温度以下での硬化温度の設定が前提となる。 A partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used for the thermosetting silicone hard coat layer. An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-product alcohol at room temperature to 80 ° C. React. By this reaction, the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction. Next, a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply | coated to the outer surface of a transparent plastic molding by the coating method in a normal coating material, and a hard-coat coating film is formed by heat-hardening at the temperature of 80-140 degreeC. However, in this case, the setting of the curing temperature below the heat distortion temperature of the plastic molded product is a prerequisite.
 上記のテトラアルコキシシランの代わりにジ(アルキルまたはアリール)ジアルコキシシラン、並びに/或いはモノ(アルキルまたはアリール)トリアルコキシシランを使用することにより、同様にポリシロキサン系ハードコートを製造することが可能である。 By using di (alkyl or aryl) dialkoxysilane and / or mono (alkyl or aryl) trialkoxysilane instead of the above tetraalkoxysilane, it is possible to produce a polysiloxane hard coat in the same manner. is there.
 紫外線硬化型アクリル系ハードコート塗膜には、不飽和基を有するアクリル系化合物として、例えばペンタエリスリトールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールテトラ(メタ)アクリレート等の多官能(メタ)アクリレート混合物等を使用することができ、これにベンゾイン、ベンゾインメチルエーテル、ベンゾフェノン等の光重合開始剤を配合して用いる。そしてこれを透明プラスチック成型品の外面に塗布し、紫外線硬化することによってハードコート塗膜が形成される。 For UV-curable acrylic hard coat coatings, examples of the acrylic compound having an unsaturated group include pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and tetramethyloltetra. A polyfunctional (meth) acrylate mixture such as (meth) acrylate can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, or benzophenone is blended and used. And this is apply | coated to the outer surface of a transparent plastic molding, and a hard-coat coating film is formed by carrying out ultraviolet curing.
 該ハードコートの表面処理によって、親水性を促すことは好ましい。例えば、コロナ処理(特開平11-172028)、プラズマ表面処理、紫外線・オゾン処理、表面突起物形成(2009-226613)、表面微細加工処理などを挙げることができる。 It is preferable to promote hydrophilicity by surface treatment of the hard coat. For example, corona treatment (JP-A-11-172028), plasma surface treatment, ultraviolet / ozone treatment, surface projection formation (2009-226613), surface fine processing treatment, and the like can be mentioned.
 作製方法としては、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 As a production method, a conventionally known coating method such as a gravure coating method, a reverse coating method, or a die coating method can be used.
 該ハードコート層が無機物からなる場合、例えば酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化ランタン、窒化ランタン等の場合は、真空製膜法により製膜することができる。該真空製膜法としては、例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。 When the hard coat layer is made of an inorganic material, for example, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, etc., the hard coat layer can be formed by a vacuum film forming method. Examples of the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
 該ハードコート層が無機物の場合、ポリシラザンを塗布製膜し、加熱硬化した膜からなることが好ましい。前記前駆体が、ポリシラザンを含有する場合は、下記式(I)で表されるポリシラザン及び有機溶剤中に必要に応じて触媒を含む溶液を塗布し、この溶剤を蒸発させて除去し、それによって樹脂基材上に0.05~3.0μmの層厚を有するポリシラザン層を残し、そして、水蒸気を含む雰囲気中で酸素、活性酸素、場合によっては、及び窒素の存在下に、上記のポリシラザン層を、局所的加熱することによって、当該樹脂基材上にガラス様の透明な被膜を形成する方法を採用することが好ましい。 When the hard coat layer is an inorganic substance, it is preferably made of a film obtained by coating polysilazane and heat-curing it. When the precursor contains polysilazane, a solution containing a catalyst as necessary in the polysilazane represented by the following formula (I) and an organic solvent is applied and removed by evaporating the solvent. A polysilazane layer having a layer thickness of 0.05 to 3.0 μm is left on the resin substrate, and the above-described polysilazane layer is present in an atmosphere containing water vapor in the presence of oxygen, active oxygen, and optionally nitrogen. It is preferable to employ a method of forming a glass-like transparent film on the resin substrate by locally heating.
 式(I): -(SiR-NR
 (式中、R、R、及びRは、同一か又は異なり、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基、好ましくは水素、メチル、エチル、プロピル、iso-プロピル、ブチル、iso-ブチル、tert-ブチル、フェニル、ビニル又は3-(トリエトキシシリル)プロピル、3-(トリメトキシシリルプロピル)からなる群から選択される基を表し、この際、nは整数であり、そしてnは、当該ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。)
 触媒としては、好ましくは、塩基性触媒、特にN,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン又はN-複素環式化合物が使用される。触媒濃度は、ポリシラザンを基準にして通常0.1~10モル%、好ましくは0.5~7モル%の範囲である。
Formula (I):-(SiR 1 R 2 -NR 3 ) n-
Wherein R 1 , R 2 , and R 3 are the same or different and are independently of each other hydrogen, or optionally substituted alkyl group, aryl group, vinyl group, or (trialkoxysilyl) alkyl group. Preferably from hydrogen, methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, phenyl, vinyl or 3- (triethoxysilyl) propyl, 3- (trimethoxysilylpropyl) Represents a selected group, where n is an integer and n is defined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.)
As catalysts, preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used. . The catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
 好ましい態様の一つでは、R、R及びRのすべてが水素原子であるパーヒドロポリシラザンを含む溶液が使用される。 In one of the preferred embodiments, a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is used.
 さらに別の好ましい態様の一つでは、本発明によるコーティングは、次式(II)の少なくとも一種のポリシラザンを含む。
式(II):-(SiR-NR-(SiR-NR
 式中、R、R、R、R、R及びRは、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表し、この際、n及びpは整数であり、そしてnは、当該ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
In yet another preferred embodiment, the coating according to the invention comprises at least one polysilazane of the formula (II)
Formula (II): — (SiR 1 R 2 —NR 3 ) n — (SiR 4 R 5 —NR 6 ) p
In which R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other hydrogen, or optionally substituted alkyl, aryl, vinyl, or (trialkoxysilyl) Represents an alkyl group, where n and p are integers, and n is determined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
 特に好ましいものは、R、R及びRが水素を表し、そしてR、R及びRがメチルを表す化合物、R、R及びRが水素を表し、そしてR、Rがメチルを表し、そしてRがビニルを表す化合物、R、R、R及びRが水素を表し、そしてR及びRがメチルを表す化合物である。 Particularly preferred are compounds wherein R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 and R 5 represent methyl, R 1 , R 3 and R 6 represent hydrogen and R 2 , A compound in which R 4 represents methyl and R 5 represents vinyl, R 1 , R 3 , R 4 and R 6 represent hydrogen and R 2 and R 5 represent methyl.
 また、次式(III)の少なくとも一種のポリシラザンを含む溶液も同様に好ましい。
式(III):-(SiR-NR-(SiR-NR-(SiR-NR
 上記式中、R、R、R、R、R、R、R、R及びRは、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表し、この際、n、p及びqは整数であり、そしてnは、当該ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
A solution containing at least one polysilazane represented by the following formula (III) is also preferable.
Formula (III): — (SiR 1 R 2 —NR 3 ) n — (SiR 4 R 5 —NR 6 ) p — (SiR 7 R 8 —NR 9 ) q
In the above formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of one another hydrogen or optionally substituted alkyl group, aryl Represents a group, vinyl group or (trialkoxysilyl) alkyl group, where n, p and q are integers, and n is such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol. Determined.
 特に好ましいものは、R、R及びRが水素を表し、そしてR、R、R及びRがメチルを表し、Rが(トリエトキシシリル)プロピルを表し、そしてRがアルキル又は水素を表す化合物である。 Particularly preferred are R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 , R 5 and R 8 represent methyl, R 9 represents (triethoxysilyl) propyl and R 7 Is a compound in which represents alkyl or hydrogen.
 溶剤中のポリシラザンの割合は、一般的には、ポリシラザン1~80質量%、好ましくは5~50質量%、特に好ましくは10~40質量%である。 The proportion of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.
 溶剤としては、特に、水及び反応性基(例えばヒドロキシル基又はアミン基)を含まずそしてポリシラザンに対して不活性の有機系で好ましくは非プロトン性の溶剤が好適である。これは、例えば、脂肪族又は芳香族炭化水素、ハロゲン炭化水素、エステル、例えば酢酸エチル又は酢酸ブチル、ケトン、例えばアセトン又はメチルエチルケトン、エーテル、例えばテトラヒドロフラン又はジブチルエーテル、並びにモノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)又はこれらの溶剤からなる混合物である。 As the solvent, in particular, an aprotic solvent which does not contain water and a reactive group (for example, hydroxyl group or amine group) and is inert to polysilazane, preferably an aprotic solvent is suitable. This includes, for example, aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters such as ethyl acetate or butyl acetate, ketones such as acetone or methyl ethyl ketone, ethers such as tetrahydrofuran or dibutyl ether, and mono- and polyalkylene glycol dialkyl ethers (Diglymes) or a mixture of these solvents.
 上記ポリシラザン溶液の追加の成分は、塗料の製造に慣用されているもののような更に別のバインダーであることができる。これは、例えば、セルロースエーテル及びセルロースエステル、例えばエチルセルロース、ニトロセルロース、セルロースアセテート又はセルロースアセトブチレート、天然樹脂、例えばゴムもしくはロジン樹脂、又は合成樹脂、例えば重合樹脂もしくは縮合樹脂、例えばアミノプラスト、特に尿素樹脂及びメラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、又はポリシロキサンである。 The additional component of the polysilazane solution can be a further binder such as those conventionally used in the manufacture of paints. For example, cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
 当該ポリシラザン調合物の更に別の成分は、例えば、調合物の粘度、下地の濡れ、成膜性、潤滑作用又は排気性に影響を与える添加剤、あるいは無機ナノ粒子、例えばSiO、TiO、ZnO、ZrO又はAlであることができる。 The polysilazane further components of the formulation, for example, the viscosity of the formulation, wetting the underlying film-forming property, additives influencing the lubrication or exhaust resistance, or inorganic nanoparticles, for example SiO 2, TiO 2, It can be ZnO, ZrO 2 or Al 2 O 3 .
 形成される被膜の厚さは、10nm~2μmの範囲内にすることが好ましい。 The thickness of the film to be formed is preferably in the range of 10 nm to 2 μm.
 このようにして用いたポリシラザンハードコートは、酸素、水蒸気バリア膜としても用いることができる。 The polysilazane hard coat used in this way can also be used as an oxygen and water vapor barrier film.
 前記ハードコート層は、屈曲性があり、反りが生じないことが好ましい。上記最表層は、密な架橋構造を形成する場合があり、その場合フィルムが反り曲がる場合や屈曲性がなく、クラックが入りやすいような場合があり、取り扱いが困難になる。このような場合、組成中の無機物の量を調整するなどで、柔軟性があり、平面性が得られるように設計することが好ましい。 The hard coat layer is preferably flexible and does not warp. The outermost layer may form a dense cross-linked structure, in which case the film may bend or bend, and may be easily cracked, making handling difficult. In such a case, it is preferable to design so as to provide flexibility and flatness by adjusting the amount of the inorganic substance in the composition.
 (ガスバリア層)
 前記ガスバリア層は、湿度の変動、特に高湿度による樹脂基材及び当該樹脂基材で保護される各種機能素子等の劣化を防止するためのものであるが、特別の機能・用途を持たせたものであっても良く、上記特徴を維持する限りにおいて、種々の態様のガスバリア層を設けることができる。本発明においては、前記腐蝕防止層の表面側に、ガスバリア層を設けることが好ましい。
(Gas barrier layer)
The gas barrier layer is intended to prevent the deterioration of humidity, in particular, deterioration of the resin base material and various functional elements protected by the resin base material due to high humidity, but has a special function and application. As long as the above characteristics are maintained, various types of gas barrier layers can be provided. In the present invention, it is preferable to provide a gas barrier layer on the surface side of the corrosion prevention layer.
 当該ガスバリア層の防湿性としては、40℃、90%RHにおける水蒸気透過度が、1g/m・day以下、好ましくは0.5g/m・day以下、更に好ましくは0.2g/m・day以下となるように当該ガスバリア層の防湿性を調整することが好ましい。また。酸素透過度としては、測定温度23℃、湿度90%RHの条件下で、0.6ml/m/day/atm以下であることが好ましい。 As the moisture barrier property of the gas barrier layer, the water vapor permeability at 40 ° C. and 90% RH is 1 g / m 2 · day or less, preferably 0.5 g / m 2 · day or less, more preferably 0.2 g / m 2. -It is preferable to adjust the moisture-proof property of the gas barrier layer so as to be not more than day. Also. The oxygen permeability is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
 本発明に係るガスバリア層に関しては、その形成方法において特に制約は無いが、無機酸化物の前駆体を塗布した後に、塗布膜を加熱及び/又は紫外線照射により、無機酸化物膜を形成する方法が好ましく用いられる。 The gas barrier layer according to the present invention is not particularly limited in its formation method, but there is a method of forming an inorganic oxide film by applying an inorganic oxide precursor and then heating and / or irradiating ultraviolet rays. Preferably used.
 〈無機酸化物〉
 前記無機酸化物は、前記有機金属化合物を原料とするゾルから局所的加熱により形成されたものであることを特徴とする。したがって、有機金属化合物に含有されているケイ素(Si)、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ニオブ(Nb)等の元素の酸化物であることを特徴とする。
<Inorganic oxide>
The inorganic oxide is formed by local heating from a sol using the organometallic compound as a raw material. Therefore, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound, It is an oxide of an element such as tin (Sn) or niobium (Nb).
 例えば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等である。これらのうち、好ましくは、酸化ケイ素である。 For example, silicon oxide, aluminum oxide, zirconium oxide and the like. Of these, silicon oxide is preferable.
 本発明において、無機酸化物を形成する方法としては、いわゆるゾル-ゲル法またはポリシラザン法を用いることが好ましい。該ゾルゲル法は無機酸化物の前駆体である有機金属化合物から無機酸化物を形成する方法であり、ポリシラザン法は無機酸化物の前駆体であるポリシラザンから無機酸化物を形成する方法である。 In the present invention, as a method for forming the inorganic oxide, it is preferable to use a so-called sol-gel method or a polysilazane method. The sol-gel method is a method of forming an inorganic oxide from an organometallic compound that is a precursor of an inorganic oxide, and the polysilazane method is a method of forming an inorganic oxide from a polysilazane that is a precursor of an inorganic oxide.
 〈無機酸化物の前駆体〉
 前記ガスバリア層は、加熱により無機酸化物を形成する前駆体を塗布した後に、一般的な加熱方法が適用して形成することできるが、局所的加熱により形成することが好ましい。該前駆体は、ゾル状の有機金属化合物又はポリシラザンが好ましい。
<Inorganic oxide precursor>
The gas barrier layer can be formed by applying a general heating method after applying a precursor for forming an inorganic oxide by heating, but is preferably formed by local heating. The precursor is preferably a sol-shaped organometallic compound or polysilazane.
 〈有機金属化合物〉
 前記有機金属化合物は、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ランタン(La)、イットリウム(Y)、及びニオブ(Nb)のうちの少なくとも一つの元素を含有することが好ましい。特に、当該有機金属化合物が、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、亜鉛(Zn)、及びバリウム(Ba)のうちの少なくとも一つの元素を含有することが好ましい。さらに、ケイ素(Si)、アルミニウム(Al)、及びリチウム(Li)のうちの少なくとも一つの元素を含有することが好ましい。
<Organic metal compound>
The organometallic compound includes silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), and indium (In). , Tin (Sn), lanthanum (La), yttrium (Y), and niobium (Nb). In particular, the organometallic compound is at least one element of silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba). It is preferable to contain. Furthermore, it is preferable to contain at least one element of silicon (Si), aluminum (Al), and lithium (Li).
 該有機金属化合物としては、加水分解が可能なものであればよく、特に限定されるものではないが、好ましい有機金属化合物としては、金属アルコキシドが挙げられる。 The organometallic compound is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include metal alkoxides.
 前記金属アルコキシドは、下記式(IV)で表される。 The metal alkoxide is represented by the following formula (IV).
 式(IV):MR (ORn-m
 前記式(IV)において、Mは、酸化数nの金属を表す。R及びRは、各々独立に、アルキル基を表す。mは、0~(n-1)の整数を表す。R及びRは、同一でもよく、異なっていてもよい。R及びRとしては、炭素原子4個以下のアルキル基が好ましく、例えば、メチル基CH(以下、Meで表す。)、エチル基C(以下、Etで表す)、プロピル基C(以下、Prで表す。)、イソプロピル基i-C(以下、i-Prで表す。)、ブチル基C(以下、Buで表す)、イソブチル基i-C(以下、i-Buで表す)等の低級アルキル基がより好ましい。
Formula (IV): MR 2 m (OR 1 ) nm
In the formula (IV), M represents a metal having an oxidation number n. R 1 and R 2 each independently represents an alkyl group. m represents an integer of 0 to (n−1). R 1 and R 2 may be the same or different. As R 1 and R 2 , an alkyl group having 4 or less carbon atoms is preferable. For example, a methyl group CH 3 (hereinafter represented by Me), an ethyl group C 2 H 5 (hereinafter represented by Et), a propyl group C 3 H 7 (hereinafter represented by Pr), isopropyl group i-C 3 H 7 (hereinafter represented by i-Pr), butyl group C 4 H 9 (hereinafter represented by Bu), isobutyl group i- A lower alkyl group such as C 4 H 9 (hereinafter referred to as i-Bu) is more preferred.
 前記式(IV)で表される金属アルコキシドとしては、例えば、リチウムエトキシドLiOEt、ニオブエトキシドNb(OEt)、マグネシウムイソプロポキシドMg(OPr-i)、アルミニウムイソプロポキシドAl(OPr-i)、亜鉛プロポキシドZn(OPr)、テトラエトキシシランSi(OEt)、チタンイソプロポキシドTi(OPr-i)、バリウムエトキシドBa(OEt)、バリウムイソプロポキシドBa(OPr-i)、トリエトキシボランB(OEt)、ジルコニウムプロポキシドZn(OPr)、ランタンプロポキシドLa(OPr)、イットリウムプロポキシドY(OPr)、鉛イソプロポキシドPb(OPr-i)等が好適に挙げられる。これらの金属アルコキシドは何れも市販品があり、容易に入手することができる。また、金属アルコキシドは、部分的に加水分解して得られる低縮合物も市販されており、これを原料として使用することも可能である。 Examples of the metal alkoxide represented by the formula (IV) include lithium ethoxide LiOEt, niobium ethoxide Nb (OEt) 5 , magnesium isopropoxide Mg (OPr-i) 2 , aluminum isopropoxide Al (OPr— i) 3 , zinc propoxide Zn (OPr) 2 , tetraethoxysilane Si (OEt) 4 , titanium isopropoxide Ti (OPr-i) 4 , barium ethoxide Ba (OEt) 2 , barium isopropoxide Ba (OPr) -I) 2 , triethoxyborane B (OEt) 3 , zirconium propoxide Zn (OPr) 4 , lanthanum propoxide La (OPr) 3 , yttrium propoxide Y (OPr) 3 , lead isopropoxide Pb (OPr-i 2 etc. are mentioned suitably. All of these metal alkoxides are commercially available and can be easily obtained. Moreover, the metal alkoxide is also commercially available as a low condensate obtained by partial hydrolysis, and it can be used as a raw material.
 〈ゾル-ゲル法〉
 ここで、「ゾル-ゲル法」とは、有機金属化合物を加水分解すること等により、水酸化物のゾルを得て、脱水処理してゲルとし、さらにこのゲルを加熱処理することで、ある一定の形状(フィルム状、粒子状、繊維状等)の金属酸化物ガラスを調製する方法をいう。異なる複数のゾル溶液を混合する方法、他の金属イオンを添加する方法等により、多成分系の金属酸化物ガラスを得ることも可能である。
<Sol-gel method>
Here, the “sol-gel method” is to obtain a hydroxide sol by hydrolyzing an organometallic compound, etc., dehydrate it into a gel, and further heat-treat the gel. It refers to a method for preparing a metal oxide glass having a certain shape (film, particle, fiber, etc.). A multi-component metal oxide glass can be obtained by a method of mixing a plurality of different sol solutions, a method of adding other metal ions, or the like.
 具体的には、下記工程を有するゾル-ゲル法で、無機酸化物を製造することが好ましい。 Specifically, it is preferable to produce an inorganic oxide by a sol-gel method having the following steps.
 すなわち、少なくとも水及び有機溶媒を含有する反応液中で、ホウ素イオン存在下にてハロゲンイオンを触媒として、pHを4.5~5.0に調整しながら、有機金属化合物を加水分解及び脱水縮合して反応生成物を得る工程、及び該反応生成物を200℃以下の温度で加熱してガラス化する工程、を有するゾル-ゲル法により製造されてなることが、高温熱処理による微細孔の発生や膜の劣化等が発生しないという観点から、特に好ましい。 That is, in a reaction solution containing at least water and an organic solvent, the organometallic compound is hydrolyzed and dehydrated and condensed while adjusting the pH to 4.5 to 5.0 using a halogen ion as a catalyst in the presence of boron ion. Generation of fine pores due to high-temperature heat treatment is produced by a sol-gel method having a step of obtaining a reaction product by heating and vitrifying the reaction product at a temperature of 200 ° C. or less. And is particularly preferable from the viewpoint that no deterioration of the film occurs.
 前記ゾル-ゲル法において、原料として用いられる有機金属化合物としては、加水分解が可能なものであればよく、特に限定されるものではないが、好ましい有機金属化合物としては、前記金属アルコキシドが挙げられる。 In the sol-gel method, the organometallic compound used as a raw material is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include the metal alkoxides. .
 上記ゾル-ゲル法において、前記有機金属化合物は、そのまま反応に用いてもよいが、反応の制御を容易にするため溶媒で希釈して用いることが好ましい。希釈用溶媒は、前記有機金属化合物を溶解することができ、かつ水と均一に混合することができるものであればよい。そのような希釈用溶媒としては、脂肪族の低級アルコール、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、エチレングリコール、プロピレングリコール、及びそれらの混合物が好適に挙げられる。また、ブタノールとセロソルブとブチルセロソルブの混合溶媒、あるいはキシロールとセロソルブアセテートとメチルイソブチルケトンとシクロヘキサンの混合溶媒などを使用することもできる。 In the sol-gel method, the organometallic compound may be used for the reaction as it is, but it is preferably diluted with a solvent for easy control of the reaction. The solvent for dilution is not particularly limited as long as it can dissolve the organometallic compound and can be uniformly mixed with water. Preferred examples of such a solvent for dilution include aliphatic lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, propylene glycol, and mixtures thereof. Further, a mixed solvent of butanol, cellosolve, and butyl cellosolve, or a mixed solvent of xylol, cellosolve acetate, methyl isobutyl ketone, and cyclohexane may be used.
 前記有機金属化合物において、金属がCa、Mg、Al等である場合には、反応液中の水と反応して水酸化物を生成したり、炭酸イオンCO 2-が存在すると炭酸塩を生成して沈殿を生ずるため、反応液に隠蔽剤としてトリエタノールアミンのアルコール溶液を添加することが好ましい。溶媒に混合溶解するときの前記有機金属化合物の濃度としては、70質量%以下が好ましく、5~70質量%の範囲に希釈して使用することがより好ましい。 In the organometallic compound, when the metal is Ca, Mg, Al or the like, it reacts with water in the reaction solution to form a hydroxide, or when carbonate ion CO 3 2- is present, a carbonate is formed. Therefore, it is preferable to add an alcohol solution of triethanolamine as a masking agent to the reaction solution. The concentration of the organometallic compound when mixed and dissolved in a solvent is preferably 70% by mass or less, and more preferably diluted to a range of 5 to 70% by mass.
 前記ゾル-ゲル法において用いられる反応液は、少なくとも水及び有機溶媒を含有する。前記有機溶媒としては、水及び酸、アルカリと均一な溶液をつくるものであればよく、通常、前記有機金属化合物の希釈に用いる脂肪族の低級アルコール類と同様のものが好適に挙げられる。前記脂肪族の低級アルコール類の中でも、メタノール、エタノールより、炭素数の多いプロパノール、イソプロパノール、ブタノール、及びイソブタノールが好ましい。これは、生成する金属酸化物ガラスの膜の成長が安定であるためである。前記反応液において、水の割合としては、水の濃度として0.2~50mol/Lの範囲が好ましい。 The reaction solution used in the sol-gel method contains at least water and an organic solvent. The organic solvent is not particularly limited as long as it can form a uniform solution with water, acid, and alkali, and usually the same aliphatic lower alcohols used for diluting the organometallic compound are preferably used. Among the aliphatic lower alcohols, propanol, isopropanol, butanol, and isobutanol having a larger number of carbon atoms are preferable to methanol and ethanol. This is because the growth of the metal oxide glass film to be generated is stable. In the reaction solution, the water ratio is preferably in the range of 0.2 to 50 mol / L as the concentration of water.
 前記ゾル-ゲル法においては、前記反応液中において、ホウ素イオンの存在下にて、ハロゲンイオンを触媒として、有機金属化合物を加水分解する。前記ホウ素イオンB3+を与える化合物としては、トリアルコキシボランB(OR)が好適に挙げられる。その中でも、トリエトキシボランB(OEt)がより好ましい。また、前記反応液中のB3+イオン濃度としては、1.0~10.0mol/Lの範囲が好ましい。 In the sol-gel method, an organometallic compound is hydrolyzed in the reaction solution in the presence of boron ions using a halogen ion as a catalyst. Preferred examples of the compound that gives the boron ion B 3+ include trialkoxyborane B (OR) 3 . Among these, triethoxyborane B (OEt) 3 is more preferable. The B 3+ ion concentration in the reaction solution is preferably in the range of 1.0 to 10.0 mol / L.
 前記ハロゲンイオンとしては、フッ素イオン及び/又は塩素イオンが好適に挙げられる。即ち、フッ素イオン単独、塩素イオン単独でもよく、これらの混合物でもよい。用いる化合物としては、上記反応液中でフッ素イオン及び/又は塩素イオンを生ずるものであればよく、例えば、フッ素イオン源として、フッ化水素アンモニウムNHHF・HF、フッ化ナトリウムNaF等が好適に挙げられ、塩素イオン源として、塩化アンモニウムNHCl等が好適に挙げられる。 As said halogen ion, a fluorine ion and / or a chlorine ion are mentioned suitably. That is, fluorine ions alone, chlorine ions alone or a mixture thereof may be used. The compound to be used may be any compound that generates fluorine ions and / or chlorine ions in the reaction solution. For example, as the fluorine ion source, ammonium hydrogen fluoride NH 4 HF · HF, sodium fluoride NaF, or the like is preferable. Preferred examples of the chlorine ion source include ammonium chloride NH 4 Cl.
 前記反応液中の前記ハロゲンイオンの濃度としては、製造しようとする無機マトリックスを有する無機組成物からなるフィルムの膜厚や、その他の条件によって異なるが、一般的には、触媒を含む前記反応液の合計質量に対して、0.001~2mol/kg、特に0.002~0.3mol/kgの範囲が好ましい。ハロゲンイオンの濃度が0.001mol/kgより低いと、有機金属化合物の加水分解が十分に進行し難くなり、膜の形成が困難となる。又はロゲンイオンの濃度が2mol/kgを超えると、生成する無機マトリックス(金属酸化物ガラス)が不均一になり易いため、いずれも好ましくない。 The concentration of the halogen ions in the reaction solution varies depending on the film thickness of an inorganic composition having an inorganic matrix to be produced and other conditions, but generally the reaction solution containing a catalyst. Is preferably in the range of 0.001 to 2 mol / kg, particularly 0.002 to 0.3 mol / kg. If the halogen ion concentration is lower than 0.001 mol / kg, hydrolysis of the organometallic compound does not proceed sufficiently, and film formation becomes difficult. Alternatively, when the concentration of the rogen ion exceeds 2 mol / kg, the generated inorganic matrix (metal oxide glass) tends to be non-uniform, which is not preferable.
 なお、反応時に使用したホウ素に関しては、得られる無機マトリックスの設計組成中にB成分として含有させる場合は、その含有量に応じた有機ホウ素化合物の計算量を添加したまま生成物とすればよく、またホウ素を除去したいときは、成膜後、溶媒としてのメタノールの存在下、又はメタノールに浸漬して加熱すればホウ素はホウ素メチルエステルとして蒸発させて除去することができる。 With respect to the boron used during the reaction, if to be contained as a B 2 O 3 component in the design the composition of the resulting inorganic matrix, by leaving product was added calculated amount of organic boron compound in accordance with the content of In addition, when it is desired to remove boron, boron can be removed by evaporation as boron methyl ester by heating after film formation in the presence of methanol as a solvent or by immersing in methanol.
 前記有機金属化合物を、加水分解及び脱水縮合して反応生成物を得る工程においては、通常所定量の前記有機金属化合物を所定量の水及び有機溶媒を含有する混合溶媒に混合溶解した主剤溶液、ならびに所定量の前記ハロゲンイオンを含有する所定量の反応液を、所定の比で混合し十分に攪拌して均一な反応溶液とした後、酸又はアルカリで反応溶液のpHを希望の値に調整し、数時間熟成することにより進行させて反応生成物を得る。前記ホウ素化合物は、主剤溶液又は反応液に予め所定量を混合溶解しておく。また、アルコキシボランを用いる場合は、他の有機金属化合物と共に主剤溶液に溶解するのが有利である。 In the step of hydrolyzing and dehydrating and condensing the organometallic compound to obtain a reaction product, a main agent solution in which a predetermined amount of the organometallic compound is usually mixed and dissolved in a mixed solvent containing a predetermined amount of water and an organic solvent, In addition, a predetermined amount of the reaction solution containing a predetermined amount of the above-mentioned halogen ions is mixed at a predetermined ratio and sufficiently stirred to obtain a uniform reaction solution, and then the pH of the reaction solution is adjusted to a desired value with acid or alkali The reaction product is obtained by aging for several hours. A predetermined amount of the boron compound is mixed and dissolved in advance in the main agent solution or reaction solution. Further, when alkoxyborane is used, it is advantageous to dissolve it in the main agent solution together with other organometallic compounds.
 前記反応溶液のpHは、目的によって選択され、無機マトリックス(金属酸化物ガラス)を有する無機組成物からなる膜(フィルム)の形成を目的とするときは、例えば、塩酸等の酸を用いてpHを4.5~5の範囲に調整して熟成するのが好ましい。この場合は、例えば、指示薬としてメチルレッドとブロモクレゾールグリーンとを混合したもの等を用いると便利である。 The pH of the reaction solution is selected depending on the purpose, and for the purpose of forming a film (film) made of an inorganic composition having an inorganic matrix (metal oxide glass), for example, the pH is adjusted using an acid such as hydrochloric acid. It is preferable to ripen the mixture by adjusting it to the range of 4.5 to 5. In this case, for example, it is convenient to use a mixture of methyl red and bromocresol green as an indicator.
 なお、前記ゾル-ゲル法においては、同一成分の同一濃度の主剤溶液、及び反応液(B3+及びハロゲンイオンを含む。)を所定のpHに調整しながら、逐次同一割合で追加添加することにより簡単に継続して、反応生成物を製造することもできる。なお、前記反応溶液の濃度は±50質量%の範囲で、水(酸又はアルカリを含む。)の濃度は、±30質量%の範囲で、及びハロゲンイオンの濃度は±30質量%の範囲で変化させることができる。 In the sol-gel method, the main component solution having the same concentration of the same component and the reaction solution (including B 3+ and halogen ions) are successively added at the same ratio while being adjusted to a predetermined pH. The reaction product can also be produced simply and continuously. The concentration of the reaction solution is in the range of ± 50% by mass, the concentration of water (including acid or alkali) is in the range of ± 30% by mass, and the concentration of halogen ions is in the range of ± 30% by mass. Can be changed.
 次に、前工程で得られた反応生成物(熟成後の反応溶液)を、200℃以下の温度に加熱して乾燥しガラス化させる。加熱にあたって、特に50~70℃の温度区間を注意して徐々に昇温して、予備乾燥(溶媒揮散)工程を経た後さらに昇温することが好ましい。この乾燥は、膜形成の場合、無孔化膜とするために重要である。予備乾燥工程後、加熱し乾燥する温度としては、70~150℃が好ましく、80~130℃がより好ましい。 Next, the reaction product (reaction solution after aging) obtained in the previous step is heated to a temperature of 200 ° C. or lower, dried and vitrified. In heating, it is preferable that the temperature is raised gradually while paying particular attention to a temperature range of 50 to 70 ° C., followed by a preliminary drying (solvent volatilization) step and further raising the temperature. This drying is important for forming a non-porous film in the case of film formation. The temperature for heating and drying after the preliminary drying step is preferably 70 to 150 ° C, more preferably 80 to 130 ° C.
 (反射層)
 本発明に係る反射層は、太陽光を反射する機能を有する金属等からなる層である。反射層の表面反射率は好ましくは80%以上、さらに好ましくは90%以上である。反射層は、Al、Ag、Cr、Cu、Ni、Ti、Mg、Rh、Pt及びAuからなる元素群の中から選ばれるいずれかの元素を含む材料により形成されることが好ましい。中でも、反射率、耐食性の観点からAlまたはAgを主成分としていることが好ましく、このような金属の薄膜を二層以上形成するようにしてもよい。本発明においては、特に銀を主成分とする銀反射層とすることが好ましい。
(Reflective layer)
The reflective layer according to the present invention is a layer made of metal or the like having a function of reflecting sunlight. The surface reflectance of the reflective layer is preferably 80% or more, more preferably 90% or more. The reflective layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au. Among these, it is preferable that Al or Ag is a main component from the viewpoint of reflectance and corrosion resistance, and two or more such metal thin films may be formed. In the present invention, it is particularly preferable to use a silver reflective layer mainly composed of silver.
 前記銀反射層の形成法としては、湿式法及び乾式法のどちらも使用することができる。 Both the wet method and the dry method can be used as the method for forming the silver reflective layer.
 湿式法とは、めっき法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例をあげるとすれば、銀鏡反応などがある。 The wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
 一方、乾式法とは、真空製膜法の総称であり、具体的に例示するとすれば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。とりわけ、本発明には連続的に製膜するロールツーロール方式が可能な蒸着法が好ましく用いられる。すなわち、前記太陽熱発電用フィルムミラーの製造方法としては、前記銀反射層を銀蒸着によって形成する製造方法であることが好ましい。 On the other hand, the dry method is a general term for a vacuum film-forming method. Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method. And sputtering method. In particular, a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. That is, the manufacturing method of the film mirror for solar power generation is preferably a manufacturing method in which the silver reflective layer is formed by silver vapor deposition.
 前記銀反射層の厚さは、反射率等の観点から、10~200nmが好ましく、より好ましくは30~150nmである。 The thickness of the silver reflective layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
 前記銀反射層は光線入射側(表面側)にあっても、その反対側(裏面側)にあっても良いが、基材が樹脂であることから、光線による樹脂劣化を防止する目的から、光線入射側に位置する方が好ましい。 The silver reflective layer may be on the light incident side (front side) or on the opposite side (back side), but since the base material is a resin, for the purpose of preventing resin degradation due to light rays, It is preferable to be positioned on the light incident side.
 (樹脂基材)
 前記樹脂基材としては、従来公地の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルム、アクリルフィルムが好ましい。
(Resin base material)
As the resin base material, various publicly known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, polycarbonate films, polyester films, norbornene resin films, cellulose ester films, and acrylic films are preferable.
 特にポリエステル系フィルム、アクリルフィルムを用いることが好ましく、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。 In particular, it is preferable to use a polyester film or an acrylic film, and it may be a film manufactured by melt casting or a film manufactured by solution casting.
 当該樹脂基材の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10~300μmの範囲内である。好ましくは20~200μm、更に好ましくは30~100μmである。 The thickness of the resin base material is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 μm. The thickness is preferably 20 to 200 μm, more preferably 30 to 100 μm.
 (接着層)
 前記接着層は、前記銀反射層または後述する金属層と前記樹脂基材との接着性を高める機能があるものであれば特に限定はない。従って、該接着層は、樹脂基材と銀反射層または金属層とを密着する密着性、銀反射層または金属層を真空蒸着法等で形成する時の熱にも耐え得る耐熱性、及び銀反射層が本来有する高い反射性能を引き出すための平滑性が必要である。
(Adhesive layer)
The adhesive layer is not particularly limited as long as it has a function of enhancing the adhesion between the silver reflective layer or a metal layer described later and the resin base material. Therefore, the adhesive layer has adhesiveness for closely adhering the resin base material to the silver reflective layer or the metal layer, heat resistance that can withstand heat when the silver reflective layer or the metal layer is formed by a vacuum deposition method, and the like. Smoothness is required to bring out the high reflection performance inherent in the reflective layer.
 該接着層の厚さは、密着性、平滑性、反射材の反射率等の観点から、0.01~3μmが好ましく、より好ましくは0.1~1μmである。 The thickness of the adhesive layer is preferably from 0.01 to 3 μm, more preferably from 0.1 to 1 μm, from the viewpoints of adhesion, smoothness, reflectivity of the reflecting material, and the like.
 該接着層が樹脂である場合、前記樹脂として、上記の密着性、耐熱性、及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。該接着層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 When the adhesive layer is a resin, the resin is not particularly limited as long as it satisfies the above adhesiveness, heat resistance, and smoothness conditions. A polyester resin, an acrylic resin, a melamine resin, Epoxy resins, polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc. can be used alone or mixed resins thereof. From the viewpoint of weather resistance, polyester resins and melamine resins are preferred. It is more preferable to use a thermosetting resin in which a curing agent such as isocyanate is further mixed. As the method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 該接着層が金属酸化物である場合、例えば酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化ランタン、窒化ランタン等、各種真空製膜法により製膜することができる。例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。 When the adhesive layer is a metal oxide, it can be formed by various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride. For example, there are a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
 (腐蝕防止層)
 前記腐蝕防止層は前記銀反射層に隣接して設けられることが好ましく、より好ましくは反射層の光入射側に隣接して設けられており、腐蝕防止層を有する銀に対する腐蝕防止剤を含有する。該腐蝕防止剤としては、大別して、銀に対する吸着性基を有する腐蝕防止剤と酸化防止能を有する腐蝕防止剤(酸化防止剤とも言う)が好ましく用いられる。
(Anti-corrosion layer)
The corrosion prevention layer is preferably provided adjacent to the silver reflection layer, more preferably provided adjacent to the light incident side of the reflection layer, and contains a corrosion inhibitor for silver having a corrosion prevention layer. . As the corrosion inhibitor, broadly classified, a corrosion inhibitor having an adsorptive group for silver and a corrosion inhibitor having an antioxidant ability (also referred to as an antioxidant) are preferably used.
 ここで、「腐蝕」とは、金属(銀)がそれをとり囲む環境物質によって、化学的または電気化学的に浸食されるか若しくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。 Here, “corrosion” refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
 前記太陽熱発電用フィルムミラーは、前記腐蝕防止層が銀に対する吸着性基を有する腐蝕防止剤または酸化防止剤を含有している態様であることが好ましい。 It is preferable that the film mirror for solar power generation is an embodiment in which the corrosion prevention layer contains a corrosion inhibitor or an antioxidant having an adsorptive group for silver.
 なお、腐蝕防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には、0.1~1.0/mの範囲内であることが好ましい。 The optimum amount of the corrosion inhibitor varies depending on the compound to be used, but generally it is preferably within the range of 0.1 to 1.0 / m 2 .
 〈銀に対する吸着性基を有する腐蝕防止剤〉
 銀に対する吸着性基を有する腐蝕防止剤としては、アミン類およびその誘導体、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系の少なくとも一種またはこれらの混合物から選ばれることが望ましい。
<Corrosion inhibitor with adsorptive group for silver>
Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, indazole It is desirable to select from a compound having a ring, a copper chelate compound, a thiourea, a compound having a mercapto group, at least one kind of naphthalene, or a mixture thereof.
 アミン類およびその誘導体としては、エチルアミン、ラウリルアミン、トリ-n-ブチルアミン、O-トルイジン、ジフェニルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2N-ジメチルエタノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール、アセトアミド、アクリルアミド、ベンズアミド、p-エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート等、あるいはこれらの混合物が挙げられる。 Examples of amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite , Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexane carboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate, or mixtures thereof.
 ピロール環を有する物としては、N-ブチル-2,5-ジメチルピロール,N-フェニル-2,5ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール,N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, N-phenyl-3, 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
 トリアゾール環を有する化合物としては、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ3’5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy3'5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) benzotriazole Or a mixture thereof.
 ピラゾール環を有する化合物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
 チアゾール環を有する化合物としては、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2-N,N-ジエチルチオベンゾチアゾール、P-ジメチルアミノベンザルロダニン、2-メルカプトベンゾチアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
 イミダゾール環を有する化合物としては、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロメチルイミダゾール、2-フェニル-4,5ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。 Compounds having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl. Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5 dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4- Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc. These mixtures are mentioned.
 インダゾール環を有する化合物としては、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
 銅キレート化合物類としては、アセチルアセトン銅、エチレンジアミン銅、フタロシアニン銅、エチレンジアミンテトラアセテート銅、ヒドロキシキノリン銅等、あるいはこれらの混合物が挙げられる。 Examples of copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
 チオ尿素類としては、チオ尿素、グアニルチオ尿素等、あるいはこれらの混合物が挙げられる。 Examples of thioureas include thiourea, guanylthiourea, and the like, or a mixture thereof.
 メルカプト基を有する化合物としては、すでに上記に記載した材料も加えれば、メルカプト酢酸、チオフェノール、1,2-エタンジオール、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、グリコールジメルカプトアセテート、3-メルカプトプロピルトリメトキシシラン等、あるいはこれらの混合物が挙げられる。 As a compound having a mercapto group, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto can be used by adding the above-described materials. -1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, etc., or a mixture thereof.
 ナフタレン系としては、チオナリド等が挙げられる。 Examples of naphthalene-based compounds include thionalide.
 〈酸化防止剤〉
 前記腐蝕防止層に含有される腐蝕防止剤としては、酸化防止剤を用いることもできる。
<Antioxidant>
As the corrosion inhibitor contained in the corrosion prevention layer, an antioxidant can also be used.
 酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤およびホスファイト系酸化防止剤を使用することが好ましい。 As the antioxidant, it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.
 フェノール系酸化防止剤としては、例えば、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、テトラキス-〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、2,6-ジ-t-ブチル-p-クレゾール、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネー〕、3,9-ビス[1,1-ジ-メチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル]-2,4,8,10-テトラオキオキサスピロ〔5,5〕ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。 Examples of phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propi , Triethylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis [1,1-di-methyl-2- [β- (3- t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4 And 6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene. In particular, the phenolic antioxidant preferably has a molecular weight of 550 or more.
 チオール系酸化防止剤としては、例えば、ジステアリル-3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)等を挙げられる。 Examples of the thiol-based antioxidant include distearyl-3,3'-thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thiopropionate), and the like.
 ホスファイト系酸化防止剤としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス-(2,6-ジ-t-ブチル-4-メチルフェニル)-ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレン-ジホスホナイト、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト等が挙げられる。 Examples of the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol. Diphosphite, bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene-diphosphonite 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
 なお、本発明においては、前記酸化防止剤と下記の光安定剤を併用することもできる。 In the present invention, the antioxidant and the following light stabilizer can be used in combination.
 ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、1-メチル-8-(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、1-[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、トリエチレンジアミン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4,5]デカン-2,4-ジオン等が挙げられる。 Examples of hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, triethylenediamine, 8-acetyl-3-dodecyl-7,7,9 , 9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4-dione.
 特にヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的には、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、または1,2,2,6,6-ペンタメチル-4-ピペリジノール/トリデシルアルコールと1,2,3,4-ブタンテトラカルボン酸との縮合物が好ましい。 In particular, as the hindered amine light stabilizer, a hindered amine light stabilizer containing only a tertiary amine is preferable. Specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable. Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate, or A condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferred.
 その他、前記光安定剤としてニッケル系紫外線安定剤も使用可能であり、該ニッケル系紫外線安定剤として、〔2,2’-チオビス(4-t-オクチルフェノレート)〕-2-エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス-3,5-ジ-t-ブチル-4-ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル-ジチオカーバメート等が挙げられる。 In addition, a nickel-based UV stabilizer can also be used as the light stabilizer. As the nickel-based UV stabilizer, [2,2′-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel ( II), nickel complex-3,5-di-t-butyl-4-hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate and the like.
 (金属層)
 本発明における金属層は、銀の犠牲防食機能を有するものであるため、銀に隣接した形態で、銀よりもイオン化傾向が高い金属を使用する必要がある。例えば、リチウム、セシウム、ルビジウム、カリウム、バリウム、ストロンチウム、カルシウム、ナトリウム、マグネシウム、アルミニウム、マンガン、タンタル、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀等を挙げることができる。特にアルミニウム、亜鉛、鉄、スズ、銅であることが好ましい。
(Metal layer)
Since the metal layer in the present invention has a sacrificial anticorrosion function for silver, it is necessary to use a metal that is adjacent to silver and has a higher ionization tendency than silver. For example, lithium, cesium, rubidium, potassium, barium, strontium, calcium, sodium, magnesium, aluminum, manganese, tantalum, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, etc. Can be mentioned. In particular, aluminum, zinc, iron, tin, and copper are preferable.
 該金属層の製造方法はめっき法で総称される湿式法で形成してもよく、前述の真空製膜法を用いてもが、真空製膜法を用いることが好ましい。 The method for producing the metal layer may be formed by a wet method generally referred to as a plating method, and it is preferable to use the vacuum film forming method, although the above-described vacuum film forming method is used.
 該金属層の膜厚は、銀の犠牲防食機能を有することを考慮して、10μm~500μmで範囲内である。好ましくは50~300μm、更に好ましくは100~200μmである。 The film thickness of the metal layer is in the range of 10 μm to 500 μm in consideration of the sacrificial anticorrosive function of silver. The thickness is preferably 50 to 300 μm, more preferably 100 to 200 μm.
 (紫外線吸収層)
 本発明においては、太陽光や紫外線による劣化防止の目的で、紫外線吸収剤を添加した層を設けることができる。前記樹脂基材上に設けられた構成層のうちいずれか一層に、紫外線吸収剤を含有するか、前記腐蝕防止層の表面側に紫外線吸収剤層を設けることが好ましい。好ましくは前記ハードコート層に紫外線吸収剤を含有することである。
(UV absorbing layer)
In the present invention, a layer to which an ultraviolet absorber is added can be provided for the purpose of preventing deterioration due to sunlight or ultraviolet rays. It is preferable that any one of the constituent layers provided on the resin substrate contains an ultraviolet absorber or an ultraviolet absorber layer is provided on the surface side of the corrosion prevention layer. Preferably, the hard coat layer contains an ultraviolet absorber.
 紫外線吸収剤としては、有機系として、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系等が挙げられ、また無機系として酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄等が挙げられる。 Examples of the ultraviolet absorber include benzophenone, benzotriazole, phenyl salicylate, triazine, and the like as organic materials, and titanium oxide, zinc oxide, cerium oxide, iron oxide, and the like as inorganic materials.
 ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-ベンゾフェノン、2,2’,4,4’-テトラヒドロキシ-ベンゾフェノン等が挙げられる。 Examples of the benzophenone ultraviolet absorber include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
 ベンゾトリアゾール系紫外線吸収剤としては、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)ベンゾトリアゾール等が挙げられる。 Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole and the like.
 サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。 Examples of the phenyl salicylate ultraviolet absorber include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like. Examples of hindered amine ultraviolet absorbers include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
 トリアジン系紫外線吸収剤としては、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン等が挙げられる。 Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-) Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine and the like.
 紫外線吸収剤としては、上記以外に紫外線の保有するエネルギーを、分子内で振動エネルギーに変換し、その振動エネルギーを、熱エネルギー等として放出する機能を有する化合物が含まれる。さらに、酸化防止剤あるいは着色剤等との併用で効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。但し、上記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。 In addition to the above, the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers that act as light energy conversion agents, called quenchers, can be used in combination. However, when using the above-mentioned ultraviolet absorber, it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator.
 通常の紫外線防止剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。 In the case of using an ordinary ultraviolet light inhibitor, it is effective to use a photopolymerization initiator that generates radicals with visible light.
 紫外線吸収剤の使用量は、0.1~20質量%、好ましくは1~15質量%、さらに好ましくは3~10質量%である。20質量%よりも多いと密着性が悪くなり、0.1質量%より少ないと耐候性改良効果が小さい。 The amount of the ultraviolet absorber used is 0.1 to 20% by mass, preferably 1 to 15% by mass, and more preferably 3 to 10% by mass. When the amount is more than 20% by mass, the adhesion is deteriorated.
 (フィルムミラー全体の厚さ)
 本発明に係るフィルムミラー全体の厚さは、ミラーがたわみ防止、正反射率、取り扱い性等の観点から、75~250μmが好ましく、更に好ましくは90~230μm、更に好ましくは100~220μmである。
(Thickness of the entire film mirror)
The total thickness of the film mirror according to the present invention is preferably 75 to 250 μm, more preferably 90 to 230 μm, and still more preferably 100 to 220 μm, from the viewpoints of prevention of deflection of the mirror, regular reflectance, handling properties, and the like.
 (粘着層)
 本発明の太陽熱発電用反射装置は、太陽熱発電用フィルムミラーを他の基材、特に金属支持体上に粘着層を介して貼り合せる。
(Adhesive layer)
In the solar power generation reflecting device of the present invention, the solar power generation film mirror is bonded to another substrate, particularly a metal support, via an adhesive layer.
 本発明に係る粘着層の構成としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。粘着剤としては、例えば、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴム等が用いられる。 The structure of the pressure-sensitive adhesive layer according to the present invention is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, a pressure-sensitive adhesive, a heat seal agent, a hot melt agent, and the like is used. As the adhesive, for example, a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used.
 ラミネート法は、特に制限されず、例えば、ロール式で連続的に行うのが経済性及び生産性の点から好ましい。 The laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
 粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~100μm程度の範囲であることが好ましい。 The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 μm from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like.
 本発明の太陽熱発電用フィルムミラーと貼り合せられる他の基材としては、銀反射層層の保護性を付与できるものであればよく、例えば、アクリルフィルムまたはシート、ポリカーボネートフィルムまたはシート、ポリアリレートフィルムまたはシート、ポリエチレンナフタレートフィルムまたはシート、ポリエチレンテレフタレートフィルムまたはシート、フッ素フィルム等のプラスチックフィルムまたはシート、または酸化チタン、シリカ、アルミニウム粉、銅粉等を練り込んだ樹脂フィルムまたはシート、これらを練り込んだ樹脂をコーティングして金属蒸着等の表面加工を施した樹脂フィルムまたはシートが用いられる。 The other substrate to be bonded to the solar power generation film mirror of the present invention may be any material that can impart protection of the silver reflective layer, such as an acrylic film or sheet, a polycarbonate film or sheet, and a polyarylate film. Or a sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film or sheet, a plastic film or sheet such as a fluorine film, or a resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc. A resin film or sheet coated with a resin and subjected to surface processing such as metal deposition is used.
 貼り合わせフィルムまたはシートの厚さは、特に制限はないが通常12~250μmの範囲であることが好ましい。 The thickness of the laminated film or sheet is not particularly limited, but is usually preferably in the range of 12 to 250 μm.
 また、これらの他基材は本発明の太陽熱発電用フィルムミラーと貼り合わせる前に凹部や凸部を設けてから貼り合せてもよく、貼り合せた後で凹部や凸部を有するように成形してもよく、貼り合わせと凹部や凸部を有するように成形することを同時にしてもよいものである。 In addition, these other base materials may be bonded after providing recesses or projections before being bonded to the solar power generation film mirror of the present invention. Alternatively, the bonding and the molding so as to have a concave portion or a convex portion may be performed at the same time.
 〈金属支持体〉
 本発明の太陽熱発電用反射装置に用いられる金属支持体(反射装置用の基材)としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板など熱伝導率の高い金属材料を用いることができる。
<Metal support>
As the metal support (base material for the reflector) used in the solar power generation reflector of the present invention, a steel plate, a copper plate, an aluminum plate, an aluminum plated steel plate, an aluminum alloy plated steel plate, a copper plated steel plate, a tin plated steel plate, A metal material having a high thermal conductivity such as a chrome-plated steel plate or a stainless steel plate can be used.
 本発明においては、特に耐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板などにすることが好ましい。 In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate or the like having good corrosion resistance.
 〔太陽熱発電用反射装置〕
 本発明の太陽熱発電用反射装置は太陽熱発電用フィルムミラーを、粘着層を介し反射装置用の基材(例えば、金属支持体)に貼りつけて形成されたものである。太陽熱発電用フィルムミラーは、太陽光を集光する目的において、好ましく使用できる。
[Reflector for solar thermal power generation]
The solar power generation reflection device of the present invention is formed by attaching a solar power generation film mirror to a base material (for example, a metal support) for the reflection device via an adhesive layer. The film mirror for solar power generation can be preferably used for the purpose of collecting sunlight.
 太陽熱発電用反射装置として用いる場合、反射装置の形状を樋状(半円筒状)として、半円の中心部分に内部に流体を有する筒状部材を設け、筒状部材に太陽光を集光させることで内部の流体を加熱し、その熱エネルギーを変換して発電する形態が一形態として挙げられる。また、平板状の反射装置を複数個所に設置し、それぞれの反射装置で反射された太陽光を一枚の反射鏡(中央反射鏡)に集光させて、反射鏡により反射して得られた熱エネルギーを発電部で変換することで発電する形態も一形態として挙げられる。特に後者の形態においては、用いられる反射装置に高い正反射率が求められる為、本発明の太陽熱発電用フィルムミラーが特に好適に用いられる。 When used as a solar power generation reflecting device, the reflecting device is shaped like a bowl (semi-cylindrical), and a cylindrical member having fluid inside is provided at the center of the semicircle, and sunlight is condensed on the cylindrical member. The form which heats an internal fluid by this, converts the heat energy, and generates electric power is mentioned as one form. In addition, flat reflectors were installed at multiple locations, and the sunlight reflected by each reflector was collected on one reflector (central reflector) and reflected by the reflector. The form which generate | occur | produces electricity by converting a thermal energy in a power generation part is also mentioned as one form. In particular, in the latter form, since a high regular reflectance is required for the reflection device used, the film mirror for solar power generation of the present invention is particularly preferably used.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 以下、本発明について図1~図4Gを参照し、実施例および比較例を用いて具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to FIGS. 1 to 4G using examples and comparative examples.
 [反射フィルムの作成方法]
 樹脂基材1として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ25μm)を用いた。前記ポリエステルフィルムの片面に、ポリエステル系樹脂(ポリエスター SP-181、日本合成化学社製)とTDI(トリレンジイソシアネート)系イソシアネート(2,4-トリレンジイソシアネート)を樹脂固形分比率で10:2に混合し、溶媒としてメチルエチルケトンを加え、更に腐蝕防止剤としてグリコールジメルカプトアセテート(和光純薬製)10質量%となるよう調製した量を混合し、グラビアコート法によりコーティングして、厚さ60nmの腐食防止剤層2を得た。
[How to create a reflective film]
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 μm) was used as the resin substrate 1. On one side of the polyester film, a polyester resin (Polyester SP-181, manufactured by Nippon Synthetic Chemical Co., Ltd.) and TDI (tolylene diisocyanate) isocyanate (2,4-tolylene diisocyanate) in a resin solid content ratio of 10: 2 In addition, methyl ethyl ketone was added as a solvent, and an amount prepared to be 10% by mass of glycol dimercaptoacetate (manufactured by Wako Pure Chemical Industries, Ltd.) as a corrosion inhibitor was mixed and coated by a gravure coating method to have a thickness of 60 nm. A corrosion inhibitor layer 2 was obtained.
 続いて真空蒸着により銀反射層3を80nmになるように製膜した。次に金属(銀)反射層上に、前記腐食防止剤層2のグリコールジメルカプトアセテートの代わりにTinuvin234(チバ・ジャパン社製)を用いた以外は同じように作成し、腐蝕防止剤層4を形成した。 Subsequently, the silver reflective layer 3 was formed to 80 nm by vacuum deposition. Next, on the metal (silver) reflective layer, a corrosion inhibitor layer 4 was prepared in the same manner except that Tinuvin 234 (manufactured by Ciba Japan) was used instead of the glycol dimercaptoacetate of the corrosion inhibitor layer 2. Formed.
 紫外線吸収ポリマー「ニューコートUVA-204W」(新中村化学製)を厚さ5μmになるようにグラビアコート法によりコーティングして、紫外線吸収層5を形成した。 UV absorbing polymer “New Coat UVA-204W” (manufactured by Shin-Nakamura Chemical Co., Ltd.) was coated to a thickness of 5 μm by a gravure coating method to form UV absorbing layer 5.
 次に真空蒸着法により100nmのアルミナ層を形成し、ガスバリア層6を形成し、図1と同様の反射フィルム10aを作成した。 Next, an alumina layer having a thickness of 100 nm was formed by a vacuum deposition method, a gas barrier layer 6 was formed, and a reflective film 10a similar to that shown in FIG.
 [比較例1]
 図3Aに比較例1の構成を示す。
[Comparative Example 1]
FIG. 3A shows the configuration of Comparative Example 1.
 前記反射フィルム上に接着剤TBS-730(大日本インキ社製)を厚さ5μmになるようにグラビアコート法によりコーティングして接着層(図3Aの9a)を作成し、その上からアクリル樹脂住友化学S001(75μm)をロール方式により貼り合わせた。ジブチルエーテル中にポリシラザン20質量%を分散させたNN320(AZ Electronic Materials製)を7μmの厚さになるように押し出し塗布し、70℃、90%RHで30分間燥させ、70℃、24時間加熱硬化させて、ハードコート層1(図3Aの7a)を形成し、比較例1を作製した。 An adhesive layer (9a in FIG. 3A) is prepared by coating the reflective film with an adhesive TBS-730 (Dainippon Ink Co., Ltd.) by a gravure coating method so as to have a thickness of 5 μm. Chemical S001 (75 μm) was bonded by a roll method. NN320 (manufactured by AZ Electronic Materials) in which 20% by mass of polysilazane is dispersed in dibutyl ether is extruded to a thickness of 7 μm, dried at 70 ° C. and 90% RH for 30 minutes, and heated at 70 ° C. for 24 hours. By curing, a hard coat layer 1 (7a in FIG. 3A) was formed, and Comparative Example 1 was produced.
 [比較例2]
 図3Bに比較例2の構成を示す。
[Comparative Example 2]
FIG. 3B shows the configuration of Comparative Example 2.
 比較例1で得られたサンプル上にZX-007-cと前記TDI系イソシアネートを10:1の割合で混合し、メチルエチルケトンで固形分10%になるまで希釈した後、グラビアコート法によりコーティングして、70℃で30分加熱硬化させて、厚さ0.3μmの防汚層1(図3Bの8a)を形成し、比較例2を作成した。 ZX-007-c and the TDI-based isocyanate were mixed at a ratio of 10: 1 on the sample obtained in Comparative Example 1, diluted with methyl ethyl ketone to a solid content of 10%, and then coated by gravure coating. The film was cured by heating at 70 ° C. for 30 minutes to form a 0.3 μm-thick antifouling layer 1 (8a in FIG. 3B), and Comparative Example 2 was prepared.
 図4A~図4Gはそれぞれ実施例1~7の構成を示す。 4A to 4G show the configurations of Examples 1 to 7, respectively.
 [実施例1]
 前記反射フィルム10a上に接着剤TBS-730(大日本インキ社製)を厚さ5μmになるようにグラビアコート法によりコーティングして、その上からアクリル樹脂住友化学S001(75μm)をロール方式により貼り合わせた。次にアクリル樹脂表面をコロナ処理を施し、オプツーDSX(ダイキン工業社製)をディップコートし、防汚層2(図4Aの8b)を形成し、実施例1を作成した。
[Example 1]
An adhesive TBS-730 (Dainippon Ink Co., Ltd.) is coated on the reflective film 10a by a gravure coating method so as to have a thickness of 5 μm, and acrylic resin Sumitomo Chemical S001 (75 μm) is pasted thereon by a roll method. Combined. Next, the surface of the acrylic resin was subjected to corona treatment, and Optwo DSX (manufactured by Daikin Industries) was dip-coated to form an antifouling layer 2 (8b in FIG. 4A).
 [実施例2]
 実施例1のサンプルのアクリル樹脂上に、69質量%のアクリレート系樹脂に30質量%のアモルファスシリカ、3質量%の光開始剤を混合した溶液を、乾燥膜厚が3μmになるようにバーコーティングし、75℃でプレ乾燥させた後、紫外線硬化させることで、ハードコート層2(図4Bの7b)を形成し、その後実施例と同様の方法により、防汚層2(図4Bの8b)を形成し、実施例2を作成した。
[Example 2]
Bar coating is applied to a solution obtained by mixing 69% by mass of acrylate-based resin with 30% by mass of amorphous silica and 3% by mass of a photoinitiator on the acrylic resin of the sample of Example 1 so that the dry film thickness becomes 3 μm. Then, after pre-drying at 75 ° C., the hard coat layer 2 (7b in FIG. 4B) is formed by UV curing, and then the antifouling layer 2 (8b in FIG. 4B) is formed in the same manner as in the example. Example 2 was created.
 [実施例3]
 実施例2のハードコート層2(図4Bの7b)の代わりに、アルミナを真空蒸着により膜厚1μmのハードコート層3(図4Cの7c)を用いた以外は、同様にして作成し、実施例3を作成した。
[Example 3]
Instead of the hard coat layer 2 of Example 2 (7b in FIG. 4B), it was prepared in the same manner except that the hard coat layer 3 (7c in FIG. 4C) having a film thickness of 1 μm was used by vacuum deposition of alumina. Example 3 was created.
 [実施例4]
 実施例3のハードコート層3(図4Cの7c)の代わりに、ジブチルエーテル中にポリシラザン20質量%を分散させたNN320(AZ Electronic Materials製)を7μmの厚さになるように押し出し塗布し、70℃、90%RHで30分間燥させ、70℃、24時間加熱硬化させて、ハードコート層1(図4Dの7a)を形成し、実施例4を作成した。
[Example 4]
Instead of the hard coat layer 3 of Example 3 (7c in FIG. 4C), NN320 (manufactured by AZ Electronic Materials) in which 20% by mass of polysilazane was dispersed in dibutyl ether was extruded and applied to a thickness of 7 μm. Example 4 was prepared by drying at 70 ° C. and 90% RH for 30 minutes, and heating and curing at 70 ° C. for 24 hours to form the hard coat layer 1 (7a in FIG. 4D).
 [実施例5]
 実施例4において、反射フィルム10a上の接着層に紫外線吸収剤としてイルガノックス176(チバジャパン社製)を0.01g/mとなるように含有させ(図4Eの9b)、他は同様にして作成し、実施例5を作成した。
[Example 5]
In Example 4, Irganox 176 (manufactured by Ciba Japan) was added to the adhesive layer on the reflective film 10a as an ultraviolet absorber so as to be 0.01 g / m 2 (9b in FIG. 4E). Example 5 was prepared.
 [実施例6]
 実施例5において、ハードコート層1中に紫外線吸収剤として、イルガノックス176(チバジャパン社製)を0.01g/mとなるように含有させてハードコート層4(図4Fの7d)を形成し、他は同様にして作成し、実施例6を作成した。
[Example 6]
In Example 5, hard coat layer 4 (7d in FIG. 4F) containing Irganox 176 (manufactured by Ciba Japan) as 0.01 g / m 2 as an ultraviolet absorber in hard coat layer 1 was contained. Example 6 was prepared in the same manner as above.
 [実施例7]
 実施例6において、ハードコート層4中に酸化防止剤として、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト(チバジャパン社製)を0.01g/mとなるように含有させ、ハードコート層5(図4Gの7e)を形成し、他は同様にして作成し、実施例7を作成した。
[Example 7]
In Example 6, 0.01 g / m 2 of 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (manufactured by Ciba Japan) was used as an antioxidant in the hard coat layer 4. Example 7 was prepared by forming the hard coat layer 5 (7e in FIG. 4G) and making the others in the same manner.
 [評価]
 上記で得たフィルムミラーについて、下記の方法により正反射率及び耐候性、紫外線耐性、耐傷性の試験としてスチールウール試験、及び防汚性の尺度として接触角、転落角の測定をそれぞれ行った。
[Evaluation]
The film mirror obtained above was measured for the steel wool test as a test for regular reflectance and weather resistance, UV resistance and scratch resistance, and the contact angle and the fall angle as a measure of antifouling, respectively, by the following methods.
 <正反射率の測定>
 島津製作所社製の分光光度計「U-4000」を用いて、反射面の法線に対して、入射光の入射角を5°の正反射率を測定した。評価は、250nmから2500nmまでの平均反射率として測定した。
<Measurement of regular reflectance>
Using a spectrophotometer “U-4000” manufactured by Shimadzu Corporation, the regular reflectance at an incident angle of 5 ° with respect to the normal of the reflecting surface was measured. Evaluation was measured as an average reflectance from 250 nm to 2500 nm.
 <スチールウール試験>
 耐傷性の試験として、往復摩耗試験機(新東科学(株)製HEIDON-14DR)に摩耗材としてスチールウール(#0000)を取り付け、荷重500g/cmの条件で各撥水・防汚性物品の表面を速度10mm/secで10回往復させた。その時の傷本数を評価した。また、キセノンランプ照射(UV照射)下、温度75℃、湿度85%RHの条件で3カ月間放置後の耐傷性を、前記同様スチールウール試験で測定し、その時の傷本数を評価した。
<Steel wool test>
As a scratch resistance test, steel wool (# 0000) was attached as a wear material to a reciprocating wear tester (HEIDON-14DR manufactured by Shinto Kagaku Co., Ltd.), and each water-repellent and antifouling property was applied under a load of 500 g / cm 2 . The surface of the article was reciprocated 10 times at a speed of 10 mm / sec. The number of scratches at that time was evaluated. Further, the scratch resistance after standing for 3 months under the conditions of a temperature of 75 ° C. and a humidity of 85% RH under xenon lamp irradiation (UV irradiation) was measured by the steel wool test, and the number of scratches at that time was evaluated.
 <接触角試験>
 JIS-R3257に基づいて、水3μL滴下してフィルムミラーの表面の接触角を接触角計DM300(協和界面化学)を用いて測定した。接触角の大きい方が、撥水性が高く、防汚性に優れ、汚れが付きにくく好ましい。
<Contact angle test>
Based on JIS-R3257, 3 μL of water was dropped and the contact angle of the surface of the film mirror was measured using a contact angle meter DM300 (Kyowa Interface Chemistry). A larger contact angle is preferable because of high water repellency, excellent antifouling property, and less stain.
 <転落角>
 接触角計DM501(協和界面化学)に滑落法キット DM-SA01を取り付けて、水50μl滴下してフィルムミラーの表面の転落角を測定した。転落角の小さい方が汚れが落ちやすく防汚性に優れ好ましい。
<Tumble angle>
A sliding method kit DM-SA01 was attached to a contact angle meter DM501 (Kyowa Interface Chemistry), and 50 μl of water was dropped to measure the falling angle of the surface of the film mirror. A smaller rolling angle is preferable because it easily removes dirt and has excellent antifouling properties.
 <屋外暴露試験>
 実施例にて作成したサンプルをアルミ基材に貼り付けて太陽熱発電用反射装置を作製し、サハラ砂漠に地面との角度が45度となるように設置し、1年間放置し、上記条件で正反射率を測定した。また、所定のブラシと水でフィルム最表面を洗浄した後の同様に測定した。
<Outdoor exposure test>
The sample created in the example was attached to an aluminum base material to produce a solar power generation reflector, installed in the Sahara desert at an angle of 45 degrees with the ground, left for one year, and corrected under the above conditions. The reflectance was measured. Moreover, it measured similarly after wash | cleaning the film outermost surface with a predetermined brush and water.
 得られた各種特性を評価した結果を下記表1に示す。 The results of evaluating the various characteristics obtained are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 表1に示した評価結果から明らかなように本発明に係る実施例の各種特性は、比較例に対して優れていることが分かる。特に屋外放置サンプルを洗浄した後の結果について、比較例1は、防汚層がないため、表面が汚れ、反射率が低下してしまった。比較例2に関しては、防汚層として比較的厚めの樹脂防汚剤を用いているため、耐候性が低く、洗浄後に反射率が大きく低下した。実施例1では、ハードコート層はないが、下地のアクリルの硬度と単分子化学吸着防汚層の影響で、比較的反射率が低下していない。無機ハードコートを用いた実施例3~7は高い性能を維持しており、長期間の耐候性、防汚性、耐傷性を維持できていることが分かる。すなわち、本発明の上記手段により、反射層の劣化による正反射率の低下を防止するとともに、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することのでき、耐傷性、防汚性に優れ、過酷な環境に長期間設置しても、太陽光に対して良好な正反射率を長期間保ち続けることができる耐候性の優れた太陽熱発電用フィルムミラー、太陽熱発電用反射装置を提供することができることが分かる。 As is apparent from the evaluation results shown in Table 1, it can be seen that the various characteristics of the examples according to the present invention are superior to the comparative examples. In particular, with respect to the result after washing a sample left outdoors, Comparative Example 1 had no antifouling layer, so the surface was dirty and the reflectance was lowered. Regarding Comparative Example 2, since a relatively thick resin antifouling agent was used as the antifouling layer, the weather resistance was low, and the reflectance was greatly reduced after washing. In Example 1, there is no hard coat layer, but the reflectivity is not relatively lowered due to the hardness of the underlying acrylic and the influence of the monomolecular chemical adsorption antifouling layer. It can be seen that Examples 3 to 7 using the inorganic hard coat maintain high performance and maintain long-term weather resistance, antifouling property and scratch resistance. That is, the above-described means of the present invention prevents a decrease in regular reflectance due to deterioration of the reflective layer, and is lightweight and flexible, and can be manufactured in a large area and mass-produced at a reduced manufacturing cost. A film mirror for solar power generation and a solar power generation reflection device with excellent weather resistance that can maintain good regular reflectance for sunlight for a long time even if installed in a harsh environment for a long period of time. It can be seen that can be provided.
 本発明は、以上のように構成されていることから、太陽熱発電用フィルムミラー、太陽熱発電用フィルムミラーの製造方法およびその太陽熱発電用フィルムミラーを用いた太陽熱発電用反射装置として利用できる。 Since the present invention is configured as described above, it can be used as a solar power generation film mirror, a method for manufacturing a solar power generation film mirror, and a solar power generation reflector using the solar power generation film mirror.
 1、1’、1a 樹脂基材
 2、4 腐蝕防止層
 3 反射層
 5 紫外線吸収層
 6 ガスバリア層
 7、7a、7b、7c、7d、7e ハードコート層
 8、8a、8b 防汚層
 9、9a、9b 接着層
 10、10a 反射フィルム
 A 光入射側
DESCRIPTION OF SYMBOLS 1, 1 ', 1a Resin base material 2, 4 Corrosion prevention layer 3 Reflective layer 5 Ultraviolet absorption layer 6 Gas barrier layer 7, 7a, 7b, 7c, 7d, 7e Hard- coat layer 8, 8a, 8b Antifouling layer 9, 9a 9b Adhesive layer 10, 10a Reflective film A Light incident side

Claims (12)

  1.  樹脂基材上に反射層を有する太陽熱発電用フィルムミラーにおいて、光入射側の最外層に少なくとも有機含フッ素エーテル基または有機含フッ素ポリエーテル基とアルコキシシリル基とを有する化合物を含む化学吸着単分子膜の防汚層が設けられていることを特徴とする太陽熱発電用フィルムミラー。 In a film mirror for solar power generation having a reflective layer on a resin substrate, a chemisorption monomolecule comprising a compound having at least an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group in the outermost layer on the light incident side A film mirror for solar power generation, wherein a film antifouling layer is provided.
  2.  前記有機含フッ素エーテル基または有機含フッ素ポリエーテル基とアルコキシシリル基とを有する化合物が、下記一般式(A)または(B)であることを特徴とする請求項1に記載の太陽熱発電用フィルムミラー。
    Figure JPOXMLDOC01-appb-C000001
     
     (式中、Aはアルキル基を表す。kは10~50000、lは1~1000、mは1~1000、nは1~100の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
     
     (式中、Aはアルキル基を表す。Zは直鎖状の官能基で(CH、O(CH、または(CHO(CHO(CH)を表し、kは10~50000、lは1~1000、mは1~1000、nは1~100の整数を表す。)
    The film for solar power generation according to claim 1, wherein the compound having an organic fluorine-containing ether group or organic fluorine-containing polyether group and an alkoxysilyl group is represented by the following general formula (A) or (B): mirror.
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, A represents an alkyl group. K represents 10 to 50000, l represents 1 to 1000, m represents 1 to 1000, and n represents an integer of 1 to 100.)
    Figure JPOXMLDOC01-appb-C000002

    (In the formula, A represents an alkyl group. Z represents a linear functional group (CH 2 ) m , O (CH 2 ) m , or (CH 2 ) 2 O (CH 2 ) m O (CH 2 ). K represents 10 to 50000, l represents 1 to 1000, m represents 1 to 1000, and n represents an integer of 1 to 100.)
  3.  光入射側から2層目の層としてハードコート層を有することを特徴とする請求項1又は2に記載の太陽熱発電用フィルムミラー。 The film mirror for solar power generation according to claim 1 or 2, further comprising a hard coat layer as a second layer from the light incident side.
  4.  前記ハードコート層が無機物から構成されることを特徴とする請求項3に記載の太陽熱発電用フィルムミラー。 The film mirror for solar power generation according to claim 3, wherein the hard coat layer is made of an inorganic substance.
  5.  前記ハードコート層がポリシラザンを塗布製膜し、加熱硬化した膜からなることを特徴とする請求項3又は4に記載の太陽熱発電用フィルムミラー。 The film mirror for solar power generation according to claim 3 or 4, wherein the hard coat layer comprises a film obtained by coating polysilazane and heat-curing it.
  6.  光入射面から前記反射層の間の層中に紫外線吸収剤を含有することを特徴とする請求項1~5の何れか一項に記載の太陽熱発電用フィルムミラー。 The film mirror for solar power generation according to any one of claims 1 to 5, further comprising an ultraviolet absorber in a layer between the light incident surface and the reflective layer.
  7.  前記ハードコート層に紫外線吸収剤を含有することを特徴とする請求項3~6の何れか一項に記載の太陽熱発電用フィルムミラー。 The film mirror for solar power generation according to any one of claims 3 to 6, wherein the hard coat layer contains an ultraviolet absorber.
  8.  前記ハードコート層に酸化防止剤を含有することを特徴とする請求項3~7の何れか一項に記載の太陽熱発電用フィルムミラー。 The film mirror for solar power generation according to any one of claims 3 to 7, wherein the hard coat layer contains an antioxidant.
  9.  前記反射層が銀で形成されていることを特徴とする請求項1~8の何れか一項に記載の太陽熱発電用フィルムミラー。 The film mirror for solar power generation according to any one of claims 1 to 8, wherein the reflective layer is made of silver.
  10.  前記反射層の光入射側に、腐蝕防止層を有することを特徴とする請求項1~9の何れか一項に記載の太陽熱発電用フィルムミラー。 The film mirror for solar power generation according to any one of claims 1 to 9, further comprising a corrosion prevention layer on a light incident side of the reflective layer.
  11.  請求項1~10の何れか一項に記載の太陽熱発電用フィルムミラーを製造する製造方法であって、前記銀反射層を蒸着によって形成することを特徴とする太陽熱発電用フィルムミラーの製造方法。 A method for producing a film mirror for solar power generation according to any one of claims 1 to 10, wherein the silver reflective layer is formed by vapor deposition.
  12.  請求項1~10の何れか一項に記載の太陽熱発電用フィルムミラーを、粘着層を介し反射装置用の基材に貼りつけて形成したことを特徴とする太陽熱発電用反射装置。 A solar power generation reflecting device, wherein the solar power generation film mirror according to any one of claims 1 to 10 is attached to a base material for a reflecting device through an adhesive layer.
PCT/JP2011/074227 2010-10-27 2011-10-20 Film mirror for solar power generation purposes, process for manufacturing film mirror for solar power generation purposes, and reflection device for solar power generation purposes WO2012057005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012540816A JPWO2012057005A1 (en) 2010-10-27 2011-10-20 Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010240516 2010-10-27
JP2010-240516 2010-10-27

Publications (1)

Publication Number Publication Date
WO2012057005A1 true WO2012057005A1 (en) 2012-05-03

Family

ID=45993717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074227 WO2012057005A1 (en) 2010-10-27 2011-10-20 Film mirror for solar power generation purposes, process for manufacturing film mirror for solar power generation purposes, and reflection device for solar power generation purposes

Country Status (2)

Country Link
JP (1) JPWO2012057005A1 (en)
WO (1) WO2012057005A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156468A (en) * 2012-01-31 2013-08-15 Stanley Electric Co Ltd Resin product having hard coat film
WO2014168235A1 (en) * 2013-04-12 2014-10-16 株式会社クラレ Optical element, design method and light concentrating solar power generation device
JPWO2013153923A1 (en) * 2012-04-12 2015-12-17 Jfeスチール株式会社 Sunlight reflector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127098A (en) * 1994-11-02 1996-05-21 Mitsui Toatsu Chem Inc Reflector
JP2004258348A (en) * 2003-02-26 2004-09-16 Konica Minolta Holdings Inc Optical film subjected to antistaining treatment and image display device having the film on its surface
JP2009520174A (en) * 2005-12-16 2009-05-21 ミッドウエスト リサーチ インスティテュート A new UV-resistant silver mirror for use in solar reflectors
WO2010106844A1 (en) * 2009-03-18 2010-09-23 コニカミノルタオプト株式会社 Reflector for solar thermal power generator
JP2010237415A (en) * 2009-03-31 2010-10-21 Konica Minolta Opto Inc Film mirror having ultraviolet ray reflection film

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016901A (en) * 2002-06-14 2004-01-22 Hitachi Housetec Co Ltd Method for curing cured film forming material on surface of base material and apparatus for curing coating film
KR101074948B1 (en) * 2003-12-17 2011-10-18 가부시키가이샤 브리지스톤 Antireflection film, electromagnetic wave shielding light transmitting window material, gas discharge type light emitting panel, flat display panel, show window material and solar cell module
JP2007017667A (en) * 2005-07-07 2007-01-25 Konica Minolta Holdings Inc Optical film and image display element using the same
JP2008008940A (en) * 2006-06-27 2008-01-17 Seiko Epson Corp Method for producing optical product
JP2008062460A (en) * 2006-09-06 2008-03-21 Konica Minolta Holdings Inc Optical film and image display element using it
JP4851953B2 (en) * 2007-02-07 2012-01-11 株式会社日立製作所 Optical member
JPWO2008114627A1 (en) * 2007-03-16 2010-07-01 コニカミノルタホールディングス株式会社 Antifouling laminate and display front plate
JP4881208B2 (en) * 2007-03-30 2012-02-22 リンテック株式会社 Solar radiation shielding film adhesive and solar radiation shielding film
JP2009109611A (en) * 2007-10-29 2009-05-21 Seiko Epson Corp Plastic spectacle lens with protective coat film
JP2009109612A (en) * 2007-10-29 2009-05-21 Seiko Epson Corp Method of forming protective coat film
JP2009106826A (en) * 2007-10-29 2009-05-21 Seiko Epson Corp Method of forming protective coating film
JP5583988B2 (en) * 2008-12-09 2014-09-03 デクセリアルズ株式会社 Optical body and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127098A (en) * 1994-11-02 1996-05-21 Mitsui Toatsu Chem Inc Reflector
JP2004258348A (en) * 2003-02-26 2004-09-16 Konica Minolta Holdings Inc Optical film subjected to antistaining treatment and image display device having the film on its surface
JP2009520174A (en) * 2005-12-16 2009-05-21 ミッドウエスト リサーチ インスティテュート A new UV-resistant silver mirror for use in solar reflectors
WO2010106844A1 (en) * 2009-03-18 2010-09-23 コニカミノルタオプト株式会社 Reflector for solar thermal power generator
JP2010237415A (en) * 2009-03-31 2010-10-21 Konica Minolta Opto Inc Film mirror having ultraviolet ray reflection film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156468A (en) * 2012-01-31 2013-08-15 Stanley Electric Co Ltd Resin product having hard coat film
JPWO2013153923A1 (en) * 2012-04-12 2015-12-17 Jfeスチール株式会社 Sunlight reflector
US9594191B2 (en) 2012-04-12 2017-03-14 Jfe Steel Corporation Solar reflector plate
WO2014168235A1 (en) * 2013-04-12 2014-10-16 株式会社クラレ Optical element, design method and light concentrating solar power generation device

Also Published As

Publication number Publication date
JPWO2012057005A1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
EP2667226B1 (en) Film mirror and reflecting apparatus for solar power generation
JP5747823B2 (en) Film mirror, film mirror for solar power generation and reflector for solar power generation
JP5742726B2 (en) Film mirror, method for manufacturing the same, and mirror for reflecting sunlight
WO2013015112A1 (en) Mirror for solar light reflection, reflection device for solar-heat power generation, functional film, and electrostatic charge preventing composition for outdoor use
WO2011078024A1 (en) Film mirror and process for production thereof, and reflection device for generation of solar power
WO2012057004A1 (en) Film mirror, process for manufacturing film mirror, and reflection device for solar power generation purposes
JP2013231744A (en) Film mirror, manufacturing method of the same, and sunlight reflecting mirror using the same
JP2015121806A (en) Film mirror, film mirror manufacturing method, and film mirror for sunlight collection
JP2012047861A (en) Film mirror, manufacturing method thereof, and film mirror for condensing solar light
JP5516603B2 (en) FILM MIRROR, METHOD FOR MANUFACTURING THE SAME, AND REFLECTOR FOR SOLAR THERMAL POWER GENERATION
WO2011078156A1 (en) Film mirror, method for producing same, and reflecting device for solar thermal power generator using said film mirror
JP5660051B2 (en) FILM MIRROR, MANUFACTURING METHOD THEREOF, AND SOLAR POWER GENERATOR REFLECTOR USING THE SAME
WO2012057005A1 (en) Film mirror for solar power generation purposes, process for manufacturing film mirror for solar power generation purposes, and reflection device for solar power generation purposes
WO2011078157A1 (en) Film mirror, method for producing same, and reflecting device for solar thermal power generator
JP2011203553A (en) Film mirror, method of producing the same and solar light reflecting mirror
WO2013094577A1 (en) Film mirror, method for producing film mirror, and reflection device for solar thermal power generation
JP2013245849A (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflecting device for solar power generation
JP2014214986A (en) Mirror for solar thermal power generation and reflection device for solar thermal power generation equipped with the same
JP2015161826A (en) Film mirror and reflection device for solar thermal power generation
JP2012048006A (en) Method for manufacturing film mirror and solar light reflecting mirror
JP2016009034A (en) Light reflection film
JP2016080948A (en) Light reflection film, light reflection body having the same, and solar light reflection device
WO2015022877A1 (en) Film mirror and reflective device for solar thermal power generation
WO2015093403A1 (en) Sunlight-reflecting mirror unit, solar thermal power generation device, and method for cleaning sunlight-reflecting mirror

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540816

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836141

Country of ref document: EP

Kind code of ref document: A1