WO2012053329A1 - Wiring sheet, solar battery cell having wiring sheet attached thereto, solar battery module, solar battery cell, process for manufacturing solar battery cell having wiring sheet attached thereto, and process for manufacturing solar battery module - Google Patents

Wiring sheet, solar battery cell having wiring sheet attached thereto, solar battery module, solar battery cell, process for manufacturing solar battery cell having wiring sheet attached thereto, and process for manufacturing solar battery module Download PDF

Info

Publication number
WO2012053329A1
WO2012053329A1 PCT/JP2011/072033 JP2011072033W WO2012053329A1 WO 2012053329 A1 WO2012053329 A1 WO 2012053329A1 JP 2011072033 W JP2011072033 W JP 2011072033W WO 2012053329 A1 WO2012053329 A1 WO 2012053329A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring sheet
wiring
solar battery
resin
battery cell
Prior art date
Application number
PCT/JP2011/072033
Other languages
French (fr)
Japanese (ja)
Inventor
義哉 安彦
康志 舩越
岡田 英生
安紀子 常深
泰史 道祖尾
塁 三上
亮 秋永
今瀧 智雄
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012053329A1 publication Critical patent/WO2012053329A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a wiring sheet, a solar cell with a wiring sheet, a solar cell module, a solar cell, a method for manufacturing a solar cell with a wiring sheet, and a method for manufacturing a solar cell module.
  • solar cells that convert solar energy into electrical energy have been rapidly expected as next-generation energy sources.
  • solar cells such as those using compound semiconductors and those using organic materials, but currently, solar cells using silicon crystals are the mainstream.
  • the most manufactured and sold solar cells have an n-electrode formed on the surface on which sunlight is incident (light-receiving surface), and a p-electrode on the surface opposite to the light-receiving surface (back surface). It is a double-sided electrode type solar cell having the formed structure.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-340362 discloses a back electrode type solar battery in which no electrode is formed on the light receiving surface of a solar battery cell, and an n electrode and a p electrode are formed only on the back face of the solar battery cell. A cell is disclosed.
  • Patent Document 1 discloses a technique for electrically connecting the electrode of the back electrode type solar cell and the wiring of the wiring sheet.
  • Patent Document 2 (WO2009 / 060753) discloses a technique of electrically connecting electrodes of a back electrode type solar battery cell and wiring of a wiring sheet by directly contacting them.
  • Patent Document 2 discloses a technique in which a back electrode type solar cell is temporarily fixed to a wiring sheet with a fixing tape and then sealed with a sealing material between a transparent substrate and a protective sheet.
  • Patent Document 2 the back electrode type solar cell and the wiring sheet are sealed with a sealing material, and the electrode of the back electrode type solar cell and the wiring of the wiring sheet are pressure-bonded by the fixing force of the sealing material. Direct contact.
  • Patent Document 1 development of a technique for connecting an electrode and a wiring with a conductive material such as solder has been advanced.
  • an insulating resin containing conductive particles such as solder applied to an electrode or wiring by heating an insulating resin containing conductive particles such as solder applied to an electrode or wiring, the conductive particles are melted and aggregated and then cooled and solidified.
  • the electrode and the wiring are electrically connected by the conductive material, and the insulating resin is applied to the region between the substrate region between the electrodes of the back electrode type solar battery cell and the insulating base material region between the wirings of the wiring sheet.
  • Development of a technique for mechanically connecting a back electrode type solar battery cell and a wiring sheet by extruding and curing is also in progress.
  • the electrode and the wiring can be electrically connected by the conductive material, and it is possible to suppress the direct application of stress to the electrode of the back electrode type solar battery cell and the wiring of the wiring sheet. . Therefore, this technique is attracting attention as a technique for connecting electrodes and wirings for solar cell modules that require a large current and high reliability.
  • a solar cell module produced by performing the following steps (1) to (5) in this order is a preferred mode solar cell module.
  • (1) A step of installing an insulating resin containing conductive particles on the electrode of the solar battery cell and / or the wiring of the wiring sheet.
  • (2) The process of aligning a photovoltaic cell and a wiring sheet so that the electrode of a photovoltaic cell faces the predetermined position of the wiring of a wiring sheet.
  • a fixing resin such as a fluid transparent resin or an ultraviolet curable resin between the solar cell and the wiring sheet, these resins are applied to the electrodes of the solar cell and the wiring of the wiring sheet.
  • the solar cells and the wiring sheet are sealed with a sealing material, and the conductive particles including the conductive particles installed between the solar cells and the wiring sheet are heated to melt the conductive particles. Then, the conductive material that is cooled and solidified after agglomeration aggregates between the electrode and the wiring to obtain an electrical connection, and the molten insulating resin is a wiring between the electrode of the solar battery cell and the wiring sheet
  • the fixing resin arranged in the step (3) flows and the fixing resin comes into contact with the insulating resin containing the conductive particles arranged in the step (1), the conductive resin contains the conductive particles. Since the insulating resin is also uncured, it is mixed with the fixing resin. For this reason, there is a problem that the conductive particles in the insulating resin flow out between the electrodes of the solar battery cell and / or between the wirings of the wiring sheet through the fixing resin and short-circuit between the electrodes and / or the wirings. It was. In this case, the stability of mechanical connection between the solar battery cell and the wiring sheet is also impaired.
  • the object of the present invention is to improve the stability of the mechanical connection between the solar cell and the wiring sheet, and to electrically connect the electrode of the solar cell and the wiring of the wiring sheet.
  • a wiring sheet a solar battery cell with a wiring sheet, a solar battery module, a solar battery cell, a manufacturing method of a solar battery cell with a wiring sheet, and a manufacturing method of a solar battery module that can improve the stability of simple connection is there.
  • the present invention is a wiring sheet including an insulating base material and wiring provided on at least one surface of the insulating base material, wherein the wiring faces a peripheral portion of a solar battery cell installed on the wiring sheet.
  • the wiring sheet has a depression in at least a part of the area of the wiring sheet.
  • the depression is preferably a region where the surface of the insulating substrate is exposed and surrounded by the wiring.
  • the present invention is installed between the above-described wiring sheet, a solar cell having the substrate and an electrode provided on at least one surface of the substrate, and the wiring of the wiring sheet and the electrode of the solar cell.
  • a conductive sheet, and a fixing resin that mechanically connects the wiring sheet and the solar battery cell, and the fixing resin is a solar with wiring sheet provided in a recess so as to contact the peripheral edge of the solar battery cell. It is a battery cell.
  • the fixing resin is preferably an insulating resin that is cured by at least one of ultraviolet irradiation and heating.
  • this invention is a solar cell module containing the said photovoltaic cell with a wiring sheet.
  • the present invention is a solar battery cell including a substrate and an electrode provided on at least one surface of the substrate, wherein the resin flows in at least a part of the region between the electrode and the peripheral edge of the solar battery cell. It is a solar cell provided with a blocking part.
  • the resin flow blocking portion is preferably formed of the same material as the electrode.
  • the present invention provides a wiring sheet having the above-described solar battery cell, an insulating base material, and a wiring provided on at least one surface of the insulating base material, wiring of the wiring sheet, and an electrode of the solar battery cell.
  • a fixing resin that mechanically connects the wiring sheet and the solar battery cell, and the fixing resin is positioned outside the resin flow blocking portion of the solar battery cell. It is a photovoltaic cell with a wiring sheet provided on the wiring sheet.
  • the fixing resin is preferably an insulating resin that is cured by at least one of ultraviolet irradiation and heating.
  • this invention is a solar cell module produced using said photovoltaic cell with a wiring sheet.
  • this invention has a photovoltaic cell which has a board
  • a solar cell with a wiring sheet comprising: a wiring sheet; a conductive material installed between the wiring of the wiring sheet and an electrode of the solar battery cell; and a fixing resin that mechanically connects the wiring sheet and the solar battery cell.
  • a method for manufacturing a cell comprising a step of installing a resin containing conductive particles between an electrode of a solar battery cell and a wiring of a wiring sheet, and between the electrode of the solar battery cell and the wiring of the wiring sheet
  • a step of installing a resin containing conductive particles on the substrate, a step of aligning the solar cell and the wiring sheet so that the electrode of the solar cell faces the wiring of the wiring sheet, and the peripheral portion of the solar cell At least one Between the region and the wiring sheet, a step of installing a fixing resin with a gap between the resin containing conductive particles, a step of curing the fixing resin, a step of curing the resin containing conductive particles, It is a manufacturing method of the photovoltaic cell with a wiring sheet containing this.
  • the conductive particles formed by solidifying after the conductive particles melt and aggregate in the step of curing the resin containing conductive particles, the conductive particles formed by solidifying after the conductive particles melt and aggregate. It is preferable that the electrode and the wiring are electrically connected by a substance.
  • the step of curing the fixing resin includes a step of curing the fixing resin by at least one of ultraviolet irradiation and heating.
  • the present invention includes a solar battery cell having a substrate and an electrode provided on at least one surface of the substrate, and a wiring provided on at least one surface of the insulating base material and the insulating base material.
  • wiring sheet including wiring sheet, conductive material installed between wiring of wiring sheet and electrode of solar battery cell, and fixing resin for mechanically connecting wiring sheet and solar battery cell
  • a method for producing a solar cell module in which solar cells are sealed with a sealing material the step of installing a resin containing conductive particles between the electrodes of the solar cells and the wiring of the wiring sheet; The step of aligning the solar cell and the wiring sheet so that the electrode of the solar cell faces the wiring of the wiring sheet, and between the wiring sheet and at least a partial region of the peripheral edge of the solar cell, Guidance
  • the solar cell temporarily fixed to the wiring sheet in the step of installing the fixing resin at intervals, the step of curing the fixing resin, and the step of curing the fixing resin is sealed with a sealing material.
  • the step of sealing with a sealing material is a method
  • the stability of the mechanical connection between the solar battery cell and the wiring sheet can be improved, and the stability of the electrical connection between the electrode of the solar battery cell and the wiring of the wiring sheet is improved.
  • a wiring sheet, a solar battery cell with a wiring sheet, a solar battery module, a solar battery cell, a method for manufacturing a solar battery cell with a wiring sheet, and a method for manufacturing a solar battery module can be provided.
  • FIG. (A)-(e) is typical sectional drawing illustrating the manufacturing method of the solar cell module of Embodiment 1.
  • FIG. (A)-(g) is typical sectional drawing illustrating about an example of the manufacturing method of the back electrode type photovoltaic cell used by this Embodiment. It is a typical enlarged plan view of the surface of the wiring installation side of the wiring sheet used by this Embodiment.
  • (A)-(d) is typical sectional drawing illustrated about an example of the manufacturing method of the wiring sheet used by this Embodiment.
  • FIG. 3 is a schematic enlarged plan view illustrating an example of an installation location of a fixing resin in the first embodiment.
  • (A)-(e) is typical sectional drawing illustrating the manufacturing method of the solar cell module of Embodiment 2.
  • FIG. It is a typical enlarged plan view of the back surface of the back electrode type solar cell used in the present embodiment.
  • FIG. 10 is a schematic enlarged plan view illustrating an example of an installation location of a fixing resin in
  • FIG. 1A a back electrode type solar cell 8 and a wiring sheet 10 are prepared and provided on the back surface of the substrate 1 which is at least one surface of the back electrode type solar cell 8. Insulating resin 20 containing conductive particles 21 is placed on n-type electrode 6 and p-type electrode 7.
  • a back electrode type photovoltaic cell is used as a photovoltaic cell is demonstrated, it is not limited to a back electrode type photovoltaic cell.
  • Examples of the installation method of the insulating resin 20 including the conductive particles 21 include screen printing, dispenser coating, and inkjet coating.
  • thermosetting and / or photocurable resin such as a conventionally known epoxy resin can be used, for example.
  • the insulating resin 20 may contain an additive such as a conventionally known curing agent.
  • solder particles containing at least one of tin and bismuth can be used.
  • the n-type electrode 6 and the p-type electrode 7 of the back electrode type solar cell 8 are respectively opposed to the n-type wiring 12 and the p-type wiring 13 provided on the insulating substrate 11 of the wiring sheet 10.
  • the peripheral edge portion 31 of the back electrode type solar cell 8 is opposed to the recess 32 provided in the connection wiring 14 of the wiring sheet 10.
  • the depression 32 is a region where the surface of the insulating base material 11 is exposed from the connection wiring 14 and is surrounded by the connection wiring 14.
  • the back electrode type solar cell 8 can be manufactured as follows, for example.
  • an example of a method for manufacturing the back electrode type solar cell 8 used in the present embodiment will be described with reference to the schematic cross-sectional views of FIGS.
  • a substrate 1 is prepared in which slice damage 1a is formed on the surface of the substrate 1, for example, by slicing from an ingot.
  • the substrate for example, a silicon substrate made of polycrystalline silicon, single crystal silicon, or the like having either n-type or p-type conductivity can be used.
  • the slice damage 1a on the surface of the substrate 1 is removed.
  • the removal of the slice damage 1a is performed, for example, when the substrate 1 is made of the above silicon substrate, the surface of the silicon substrate after the above slicing is mixed with an aqueous solution of hydrogen fluoride and nitric acid or an alkali such as sodium hydroxide. It can be performed by etching with an aqueous solution or the like.
  • the size and shape of the substrate 1 after removal of the slice damage 1a are not particularly limited, but the thickness of the substrate 1 can be set to, for example, 50 ⁇ m or more and 400 ⁇ m or less, and particularly preferably about 160 ⁇ m.
  • an n-type impurity diffusion region 2 and a p-type impurity diffusion region 3 are formed on the back surface of the substrate 1, respectively.
  • the n-type impurity diffusion region 2 can be formed, for example, by a method such as vapor phase diffusion using a gas containing n-type impurities
  • the p-type impurity diffusion region 3 uses, for example, a gas containing p-type impurities. It can be formed by a method such as vapor phase diffusion.
  • the n-type impurity diffusion region 2 and the p-type impurity diffusion region 3 are each formed in a strip shape extending to the front side and / or the back side of the paper surface of FIG. 2, and the n-type impurity diffusion region 2 and the p-type impurity diffusion region 3 Are alternately arranged at predetermined intervals on the back surface of the substrate 1.
  • the n-type impurity diffusion region 2 is not particularly limited as long as it includes an n-type impurity and exhibits n-type conductivity.
  • an n-type impurity such as phosphorus can be used.
  • the p-type impurity diffusion region 3 is not particularly limited as long as it includes a p-type impurity and exhibits p-type conductivity.
  • a p-type impurity such as boron or aluminum can be used.
  • n-type impurity a gas containing an n-type impurity such as phosphorus such as POCl 3 can be used.
  • a gas containing a p-type impurity a p-type such as boron such as BBr 3 is used.
  • a gas containing impurities can be used.
  • a passivation film 4 is formed on the back surface of the substrate 1.
  • the passivation film 4 can be formed by a method such as a thermal oxidation method or a plasma CVD (Chemical Vapor Deposition) method.
  • the passivation film 4 for example, a silicon oxide film, a silicon nitride film, or a stacked body of a silicon oxide film and a silicon nitride film can be used, but is not limited thereto.
  • the thickness of the passivation film 4 can be, for example, 0.05 ⁇ m or more and 1 ⁇ m or less, and particularly preferably about 0.2 ⁇ m.
  • an uneven structure such as a texture structure is formed on the entire light-receiving surface of the substrate 1, and then an antireflection film 5 is formed on the uneven structure.
  • the texture structure can be formed, for example, by etching the light receiving surface of the substrate 1.
  • the substrate 1 is a silicon substrate
  • the substrate 1 is used by using an etching solution obtained by heating a solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or more and 80 ° C. or less. It can be formed by etching the light receiving surface.
  • the antireflection film 5 can be formed by, for example, a plasma CVD method.
  • a silicon nitride film or the like can be used, but is not limited thereto.
  • a part of the passivation film 4 on the back surface of the substrate 1 is removed to form a contact hole 4a and a contact hole 4b.
  • the contact hole 4a is formed so as to expose at least part of the surface of the n-type impurity diffusion region 2, and the contact hole 4b exposes at least part of the surface of the p-type impurity diffusion region 3. Formed.
  • the contact hole 4a and the contact hole 4b are formed after a resist pattern having openings at portions corresponding to the formation positions of the contact hole 4a and the contact hole 4b is formed on the passivation film 4 by using, for example, photolithography technology.
  • a back electrode type solar battery cell 8 To form the back electrode type solar battery cell 8.
  • n-type electrode 6 and the p-type electrode 7 for example, electrodes made of metal such as silver can be used.
  • the n-type electrode 6 and the p-type electrode 7 are each formed in a strip shape extending to the front side and / or the back side of the paper surface of FIG. 2, and the n-type electrode 6 and the p-type electrode 7 are respectively formed on the passivation film 4.
  • the n-type impurity diffusion region 2 and the p-type impurity diffusion region 3 are respectively in contact with the n-type impurity diffusion region 2 and the p-type impurity diffusion region 3 on the back surface of the substrate 1. ing.
  • FIG. 3 the typical enlarged plan view of the surface at the side of wiring installation of the wiring sheet 10 used by this Embodiment is shown.
  • the n-type wiring 12 and the p-type wiring 13 are alternately formed in a band shape with a predetermined interval.
  • a connection wiring 14 is formed on the surface of the insulating base 11 of the wiring sheet 10, and the n-type wiring 12 and the p-type wiring 13 are electrically connected by the connection wiring 14.
  • connection wiring 14 At both ends of the connection wiring 14, recesses 32, which are regions where the surface of the insulating base material 11 is exposed from the connection wiring 14, are formed.
  • the n-type wiring 12 and the p-type wiring 13 that are adjacent in the longitudinal direction of the n-type wiring 12 and the p-type wiring 13 are connected by the connection wiring 14. Electrically connected. Therefore, the back electrode type solar cells 8 installed adjacent to each other in the longitudinal direction on the wiring sheet 10 are electrically connected to each other.
  • the wiring sheet 10 can be manufactured as follows, for example. Hereinafter, an example of a method for manufacturing the wiring sheet 10 used in the present embodiment will be described with reference to the schematic cross-sectional views of FIGS. 4 (a) to 4 (d).
  • a conductive layer 41 made of a conductive member is formed on the surface of the insulating substrate 11.
  • a substrate made of a resin such as polyester, polyethylene naphthalate, or polyimide can be used, but is not limited thereto.
  • the thickness of the insulating substrate 11 can be, for example, 10 ⁇ m or more and 200 ⁇ m or less, and particularly preferably about 25 ⁇ m.
  • a layer made of metal such as copper can be used, but is not limited thereto.
  • a resist pattern 42 is formed on the conductive layer 41 on the surface of the insulating substrate 11.
  • the resist pattern 42 is formed in a shape having an opening at a location other than the location where the n-type wiring 12, the p-type wiring 13 and the connection wiring 14 are formed.
  • a resist constituting the resist pattern 42 for example, a conventionally known resist can be used, and it is applied by a method such as screen printing, dispenser application or ink jet application. Needless to say, a resist opening is provided at a location corresponding to the location where the recess 32 is formed.
  • the conductive layer 41 is patterned by removing the conductive layer 41 exposed from the resist pattern 42 in the direction of the arrow 43, and the remaining portion of the conductive layer 41.
  • the n-type wiring 12, the p-type wiring 13 and the connection wiring 14 are formed, and a portion from which the conductive layer 41 constituting a part of the connection wiring 14 is removed is defined as a recess 32.
  • the conductive layer 41 can be removed by, for example, wet etching using an acid or alkali solution.
  • the wiring sheet 10 is produced by removing all the resist patterns 42 from the surfaces of the n-type wiring 12, the p-type wiring 13 and the connection wiring 14.
  • the n-type electrode 6 and the p-type electrode 7 of the back electrode type solar cell 8 are respectively provided on the insulating base material 11 of the wiring sheet 10.
  • the back electrode type solar cells 8 and the wiring sheet 10 are aligned so as to face the wiring 12 and the p-type wiring 13 via the insulating resin 20 containing the conductive particles 21.
  • the electrode of the back electrode type solar cell 8 with respect to the wiring (the n-type wiring 12 and the p-type wiring 13) of the wiring sheet 10 due to the flow of the insulating resin 20 The relative positions of the n-type electrode 6 and the p-type electrode 7 can be adjusted more finely.
  • the back electrode solar cell 8 and the wiring sheet 10 are aligned so that the recess 32 of the wiring sheet 10 is positioned at a position facing the peripheral edge 31 of the back electrode solar cell 8. It is.
  • uncured fixing resin 22a is installed in the dent 32 of the wiring sheet 10 so that it may touch at least one area
  • the fixing resin 22 a can be installed so as to straddle a part of the peripheral portion 31 of the back electrode type solar cell 8 and the recess 32 of the wiring sheet 10. .
  • the cross section taken along Ic-Ic in FIG. 5 corresponds to the cross section shown in FIG.
  • the insulating resin 20 including the conductive particles 21 is installed in a region inside the peripheral edge portion 31 of the back electrode type solar battery cell 8, and the insulating resin 20 including the conductive particles 21 and the fixing resin 22a. Are preferably located apart from each other. Therefore, the dent 32 of the wiring sheet 10 includes the insulating resin 20 including the conductive particles 21 installed in the back electrode solar cell 8 by the alignment of the back electrode solar cell 8 and the wiring sheet 10 described above. It is preferable to be provided in a region of the wiring sheet 10 that is not opposed.
  • the fixing resin 22a flows into the inner region of the back electrode type solar cell 8 due to the step of the connection wiring 14 constituting the depression 32 of the wiring sheet 10. It becomes difficult to do. Therefore, the uncured insulating resin 20 including the conductive particles 21 disposed in the inner region of the back electrode type solar cell 8 contacts the uncured fixing resin 22 a disposed in the recess 32 of the wiring sheet 10. Without mixing, the mixing of the insulating resin 20 and the fixing resin 22a can be suppressed.
  • thermosetting and / or photosetting resin such as a conventionally known epoxy resin
  • the fixing resin 22a may contain an additive such as a conventionally known curing agent.
  • the step of installing the fixing resin 22a may be before the step of aligning the back electrode type solar cell 8 and the wiring sheet 10.
  • uncured fixing resin in at least one part of the peripheral part of the electrode installation side surface of the back electrode type solar cell 8 and at least one of the depressions 32 provided on the wiring installation side of the wiring sheet 10.
  • the step of installing 22a and aligning the back electrode solar cell 8 and the wiring sheet 10 for example, as shown in FIG. 5, at least a part of the peripheral portion 31 of the back electrode solar cell 8 and the wiring What is necessary is just to straddle the hollow 32 of the sheet
  • an uncured fixed resin 22 a installed in the recess 32 of the wiring sheet 10 so as to be in contact with at least a partial region of the peripheral edge portion 31 of the back electrode type solar cell 8.
  • the step of curing is performed. Thereby, the uncured fixing resin 22 a is cured to become the fixing resin 22, and the back electrode type solar cells 8 are temporarily fixed to the wiring sheet 10 by the cured fixing resin 22.
  • the fixed resin 22a is cured to be the fixed resin 22 by, for example, being subjected to at least one of ultraviolet irradiation and heating.
  • the process of sealing with a sealing material includes a process of curing the uncured insulating resin 20 including the conductive particles 21.
  • the step of sealing with the sealing material includes, for example, a surface protective material such as glass provided with the sealing material 18 such as ethylene vinyl acetate on the wiring sheet 10 on which the back electrode type solar cells 8 are temporarily fixed with the fixing resin 22. 17 and a back surface protective material 19 such as a polyester film provided with a sealing material 18 such as ethylene vinyl acetate, and heating between the surface protective material 17 and the back surface protective material 19 while applying pressure. be able to.
  • the conductive particles 21 are melted and agglomerated between the electrodes of the back electrode type solar cells 8 and the wiring of the wiring sheet 10 by the pressurization and heating described above, and then cooled and solidified to form the conductive material 21a. It becomes.
  • this conductive material 21a the electrode (n-type electrode 6 and p-type electrode 7) of the back electrode type solar cell 8 and the wiring sheet 10 (n-type wiring 12 and p-type wiring 13) are connected. An electrical connection can be obtained.
  • the insulating resin 20 is pushed out of the conductive particles 21 by the aggregation of the conductive particles 21 after melting, and the region between the electrodes of the back electrode type solar cell 8 and the wiring of the wiring sheet 10. After spreading to harden. At this time, even if the expanded insulating resin 20 comes into contact with the fixing resin 22, there is no problem because the insulating resin 20 is an insulating resin.
  • the n-type electrode 6 and the p-type electrode 7 of the back electrode type solar battery cell 8 are electrically connected to the n-type wiring 12 and the p-type wiring 13 of the wiring sheet 10 by the conductive material 21a, respectively.
  • a solar cell with a wiring sheet having a configuration in which the region between the electrodes of the back electrode type solar cell 8 and the region between the wirings of the wiring sheet 10 are mechanically connected by the cured insulating resin 20 is obtained.
  • the solar cell module by which the photovoltaic cell with a wiring sheet was sealed with the sealing material 18 between the surface protection material 17 and the back surface protection material 19 is obtained.
  • the uncured fixing resin 22a is installed in the recess 32 of the wiring sheet 10, and the fixing resin 22a is located in the inner region of the back electrode type solar cell 8.
  • the fixed resin 22a is cured to be the fixed resin 22 in a state where it does not go around. Therefore, it can suppress that uncured fixing resin 22a mixes with the insulating resin 20 containing the electroconductive particle 21 installed in the area
  • the stability of the mechanical connection between the cell 8 and the wiring sheet 10 can be improved, and the back surface is formed by the conductive material 21a formed by cooling and solidifying after the conductive particles 21 are melted and aggregated.
  • the stability of the electrical connection between the electrode of the electrode type solar cell 8 and the wiring of the wiring sheet 10 can be improved.
  • a wiring sheet 10 wirings (n-type wiring 12 and p-type wiring 13) may be provided with an insulating resin 20 containing conductive particles 21, and the electrodes of the back electrode solar cell 8 and the wiring of the wiring sheet 10 You may install the insulating resin 20 containing the electroconductive particle 21 in each.
  • the step of curing the insulating resin 20 including the conductive particles 21 was performed in the step of sealing with the sealing material 18, but the conductive particles 21 were removed before the step of sealing with the sealing material 18. Even if a solar cell with a wiring sheet having the above-described configuration is produced by performing a curing step of the insulating resin 20 including the solar cell module, the solar cell with the wiring sheet is sealed with a sealing material 18 to produce a solar cell module. Good. However, from the viewpoint of improving the manufacturing efficiency of the solar cell module, it is preferable to perform a curing step of the insulating resin 20 including the conductive particles 21 in the step of sealing with the sealing material 18.
  • the depression 32 is formed by removing the conductive layer 41, but the method of forming the depression 32 is not particularly limited. However, as described above, by removing the conductive layer 41, it is preferable to form the depression 32 together with the n-type wiring 12, the p-type wiring 13, and the connection wiring 14 from the viewpoint that an additional step is unnecessary. .
  • Examples of the method for forming the recess 32 other than the removal of the conductive layer 41 include a method of reducing the thickness of the insulating base material 11, a method of deforming the insulating base material 11, or a method combining these methods. Can be mentioned.
  • the shape and size of the recess 32 are not particularly limited, and the surface of the insulating substrate 11 does not necessarily have to be exposed in the recess 32. However, in order to increase the level difference of the depression 32 depending on the thickness of the connection wiring 14 and effectively suppress the inflow of the fixing resin 22a into the inner region of the back electrode type solar cell 8, the depression 32 It is preferable that at least a part of the surface of the insulating substrate 11 is exposed.
  • the recess 32 has a shape extending from a region facing the peripheral edge 31 of the back electrode type solar cell 8 so as to enter a region facing the inside of the back electrode type solar cell 8.
  • the fixing resin 22 a can be installed between the back surface of the back electrode type solar cell 8 and the recess 32, the mechanical relationship between the back electrode type solar cell 8 and the wiring sheet 10 is achieved. It is possible to further improve the stability of connection.
  • the region of the depression 32 is formed at a position not facing the electrode formation region of the back electrode type solar cell 8, and the insulating base material 11 of the wiring sheet 10 has a thickness of 200 ⁇ m or less.
  • the electrode of the back electrode type solar battery cell 8 and the recess 32 of the wiring sheet 10 are formed in a shape separated by 1 mm or more. In this way, by connecting the electrode of the back surface electrode type solar battery cell 8 and the recess 32 of the wiring sheet 10 by an appropriate distance, the connection wiring 14 around the recess 32 is connected to the back electrode type solar cell 8. Since the space between the recess 32 and the electrode can be blocked by abutting against the region where the electrode on the back surface is not formed, the fixing resin 22a is more reliably prevented from being mixed with the insulating resin 20. be able to.
  • the concept of the back electrode type solar battery cell in the present invention only has a configuration in which both the n-type electrode and the p-type electrode are formed only on one surface side (back side) of the substrate described above.
  • so-called back contact type solar cells opposite to the light receiving surface side of the solar cells
  • MWT Metal Wrap Through
  • solar cells having a configuration in which a part of an electrode is arranged in a through hole provided in a substrate
  • All of the solar cells having a structure in which current is taken out from the back side of the side.
  • the concept of the solar cell with a wiring sheet in the present invention includes not only a configuration in which a plurality of back electrode type solar cells are installed on the wiring sheet, but also a single back electrode type solar cell on the wiring sheet.
  • the configuration installed in is also included.
  • FIGS. 6A to 6E are schematic cross-sectional views illustrating a method for manufacturing the solar cell module according to the second embodiment.
  • the present embodiment is characterized in that a back electrode type solar cell 8 having a protrusion 33 as an example of a resin flow blocking portion on the surface of the substrate 1 on the electrode forming side is used.
  • a back electrode type solar cell 8 and a wiring sheet 10 are prepared and provided on the back surface of the substrate 1 which is at least one surface of the back electrode type solar cell 8.
  • Insulating resin 20 containing conductive particles 21 is placed on n-type electrode 6 and p-type electrode 7. Note that the insulating resin 20 including the conductive particles 21 is not installed on the protrusion 33.
  • FIG. 7 shows a schematic plan view of the back surface of the back electrode type solar battery cell 8 used in the second embodiment.
  • the protrusion 33 is provided in a region between the formation region of the back electrode (the n-type electrode 6 and the p-type electrode 7) of the back electrode type solar cell 8 and the peripheral portion 31. It has been.
  • the back electrode type solar cell 8 in which the protrusion 33 is provided in a part of the region between the electrode forming region on the back surface of the back electrode type solar cell 8 and the peripheral portion 31 is provided.
  • the projection part 33 should just be provided in the at least one part of the area
  • the protrusion 33 protrudes outward from the back surface of the back electrode type solar cell 8.
  • the material of the protrusion 33 is not particularly limited, but the protrusion 33 is preferably formed of the same material as the electrode of the back electrode type solar cell 8. In this case, since the electrode on the back surface of the back electrode type solar cell 8 and the protrusion 33 can be formed at the same time, the manufacturing efficiency of the back electrode type solar cell 8 can be improved.
  • the back electrode type solar cell 8 having the protrusion 33 can be formed by the same method as that described in Embodiment 1 except that the protrusion 33 is formed.
  • the protrusion 33 is made of the same material as the electrode of the back electrode type solar cell 8, the protrusion 33 and the electrode (n-type electrode 6 and p-type electrode 7) are separated from each other. It is preferable to be formed.
  • the insulating resin 20 including the conductive particles 21 installed between the electrode of the back electrode type solar cell 8 and the wiring of the wiring sheet 10 exceeds the protrusion 33 and the back electrode type solar cell. 8 can be prevented from flowing out toward the peripheral edge 31 side.
  • a liquid-repellent coating may be provided on the back surface of the back electrode type solar battery cell 8 instead of the protruding portion 33.
  • the uncured insulating resin 20 containing the conductive particles 21 and the uncured fixing resin 22a are repelled together by the liquid-repellent coating, whereby the back surface of the back electrode type solar cell 8 is formed.
  • a portion where these resins cannot flow into can be formed. Therefore, also in this case, it is possible to more reliably prevent the insulating resin 20 including the conductive particles 21 and the fixing resin 22a from being mixed.
  • the liquid repellent coating can be used without particular limitation as long as it can repel the uncured insulating resin 20 and the uncured fixing resin 22a.
  • a protrusion 33 may be provided, and a liquid repellent coating may be provided in a region between the protrusion 33 on the back surface of the back electrode type solar cell 8 and the electrode.
  • the protrusion 33 can suppress the inflow of the fixed resin 22a into the back electrode solar cell 8 and the insulating resin 20 including the conductive particles 21 by the liquid repellent coating.
  • the outflow to the peripheral edge 31 side of the back electrode type solar cell 8 can be suppressed. Therefore, in this case, the synergistic effect of these effects can further reliably prevent the insulating resin 20 including the conductive particles 21 and the fixing resin 22a from being mixed.
  • a wiring sheet 10 similar to the wiring sheet 10 used in the first embodiment can be used except that the recess 32 is not formed.
  • the wiring sheet 10 used in the second embodiment the wiring sheet 10 having the recess 32 used in the first embodiment can also be used.
  • the resin flow blocking portion is preferably provided at a position facing the connection wiring 14 around the recess 32.
  • the n-type electrode 6 and the p-type electrode 7 of the back electrode type solar cell 8 are respectively provided on the insulating substrate 11 of the wiring sheet 10.
  • the back electrode type solar cells 8 and the wiring sheet 10 are aligned so as to face the wiring 12 and the p-type wiring 13 via the insulating resin 20 containing the conductive particles 21.
  • an uncured fixing resin 22 a is placed between at least a part of the peripheral edge portion 31 of the back electrode type solar cell 8 and the wiring sheet 10.
  • the fixing resin 22 a can be installed in a region outside the protruding portion 33 of the back electrode type solar cell 8.
  • a cross section taken along VIc-VIc in FIG. 8 corresponds to the cross section shown in FIG.
  • the insulating resin 20 including the conductive particles 21 is disposed in a region inside the protrusion 33 of the back electrode type solar cell 8, the insulating resin 20 including the conductive particles 21 and the fixing resin 22a is located away from each other.
  • the fixing resin 22a By installing the uncured fixing resin 22a as described above, the fixing resin 22a is placed in the inner region of the back electrode solar cell 8 due to the step formed by the protrusion 33 of the back electrode solar cell 8. It becomes difficult to flow in. Therefore, the uncured insulating resin 20 including the conductive particles 21 installed in the inner region of the back electrode solar cell 8 is installed outside the protrusion 33 of the back electrode solar cell 8. Mixing between the insulating resin 20 and the fixed resin 22a can be suppressed without contacting the uncured fixed resin 22a.
  • Step of curing the fixing resin a step of curing the uncured fixing resin 22 a installed outside the protrusion 33 of the back electrode type solar cell 8 is performed. Thereby, the uncured fixing resin 22 a is cured to become the fixing resin 22, and the back electrode type solar cell 8 is temporarily fixed to the wiring sheet 10 by the cured fixing resin 22.
  • the process of sealing with a sealing material includes a process of curing the uncured insulating resin 20 including the conductive particles 21.
  • the step of sealing with the sealing material includes, for example, the surface protective material 17 provided with the sealing material 18 on the wiring sheet 10 on which the back electrode type solar cells 8 are temporarily fixed with the fixing resin 22. And the back surface protective material 19 provided with the sealing material 18, and heating is performed while applying pressure between the front surface protective material 17 and the back surface protective material 19.
  • the conductive particles 21 are melted and agglomerated between the electrodes of the back electrode type solar cells 8 and the wiring of the wiring sheet 10 by the pressurization and heating described above, and then cooled and solidified to form the conductive material 21a. It becomes.
  • this conductive material 21a the electrode (n-type electrode 6 and p-type electrode 7) of the back electrode type solar cell 8 and the wiring sheet 10 (n-type wiring 12 and p-type wiring 13) are connected. An electrical connection can be obtained.
  • the insulating resin 20 is pushed out of the conductive particles 21 by the aggregation of the conductive particles 21 after melting, and the region between the electrodes of the back electrode type solar cell 8 and the wiring of the wiring sheet 10. After spreading to harden. At this time, even if the expanded insulating resin 20 comes into contact with the fixing resin 22, there is no problem because the insulating resin 20 is an insulating resin.
  • the n-type electrode 6 and the p-type electrode 7 of the back electrode type solar battery cell 8 are electrically connected to the n-type wiring 12 and the p-type wiring 13 of the wiring sheet 10 by the conductive material 21a, respectively.
  • a solar cell with a wiring sheet having a configuration in which the region between the electrodes of the back electrode type solar cell 8 and the region between the wirings of the wiring sheet 10 are mechanically connected by the cured insulating resin 20 is obtained.
  • the solar cell module by which the photovoltaic cell with a wiring sheet was sealed with the sealing material 18 between the surface protection material 17 and the back surface protection material 19 is obtained.
  • the uncured fixed resin 22a is installed outside the protrusion 33 of the back electrode type solar cell 8, and the fixed resin 22a is the back electrode type solar cell.
  • the fixed resin 22 a is cured to be the fixed resin 22 so as not to go around the area inside the battery cell 8. Therefore, it can suppress that uncured fixing resin 22a mixes with the insulating resin 20 containing the electroconductive particle 21 installed in the area
  • the stability of the mechanical connection between the cell 8 and the wiring sheet 10 can be improved, and the back electrode type solar cell is formed by the conductive material 21a that is cooled and solidified after the conductive particles 21 are melted and aggregated.
  • the stability of electrical connection between the eight electrodes and the wiring of the wiring sheet 10 can be improved.
  • the present invention can be suitably used for a wiring sheet, a solar battery cell with a wiring sheet, a solar battery module, a solar battery cell, a method for manufacturing a solar battery cell with a wiring sheet, and a method for manufacturing a solar battery module.
  • Electrode solar cell 10 wiring sheet, 11 insulating substrate, 12 n-type wiring, 13 p-type wiring, 14 connecting wiring, 20 insulating resin, 21 conductive particles, 21a conductive material, 22a, 22 fixed resin, 31 peripheral edge, 32 dent, 33 protrusion, 41 conductive layer, 42 resist, 43 arrow.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A wiring sheet (10) which faces a peripheral part of a solar battery cell (8) and has a depressed area (32) on at least a portion of the wiring sheet (10); a solar battery cell in which a resin flow-preventing section (33) is provided in at least a part of an area formed between electrodes (6, 7) and the peripheral part; and a solar battery cell having a wiring sheet attached thereto, a solar battery module, a process for manufacturing a solar battery cell having a wiring sheet attached thereto, and a process for manufacturing a solar battery module, each of which utilizes the wiring sheet (10) and/or the solar battery cell.

Description

配線シート、配線シート付き太陽電池セル、太陽電池モジュール、太陽電池セル、配線シート付き太陽電池セルの製造方法および太陽電池モジュールの製造方法Wiring sheet, solar cell with wiring sheet, solar cell module, solar cell, method for manufacturing solar cell with wiring sheet, and method for manufacturing solar cell module
 本発明は、配線シート、配線シート付き太陽電池セル、太陽電池モジュール、太陽電池セル、配線シート付き太陽電池セルの製造方法および太陽電池モジュールの製造方法に関する。 The present invention relates to a wiring sheet, a solar cell with a wiring sheet, a solar cell module, a solar cell, a method for manufacturing a solar cell with a wiring sheet, and a method for manufacturing a solar cell module.
 近年、特に地球環境の保護の観点から、太陽光エネルギを電気エネルギに変換する太陽電池セルは次世代のエネルギ源としての期待が急激に高まっている。太陽電池セルの種類には、化合物半導体を用いたものや有機材料を用いたものなどの様々なものがあるが、現在、シリコン結晶を用いた太陽電池セルが主流となっている。 In recent years, in particular, from the viewpoint of protecting the global environment, solar cells that convert solar energy into electrical energy have been rapidly expected as next-generation energy sources. There are various types of solar cells, such as those using compound semiconductors and those using organic materials, but currently, solar cells using silicon crystals are the mainstream.
 現在、最も多く製造および販売されている太陽電池セルは、太陽光が入射する側の面(受光面)にn電極が形成されており、受光面と反対側の面(裏面)にp電極が形成された構成の両面電極型太陽電池セルである。 Currently, the most manufactured and sold solar cells have an n-electrode formed on the surface on which sunlight is incident (light-receiving surface), and a p-electrode on the surface opposite to the light-receiving surface (back surface). It is a double-sided electrode type solar cell having the formed structure.
 たとえば特許文献1(特開2005-340362号公報)には、太陽電池セルの受光面には電極を形成せず、太陽電池セルの裏面のみにn電極およびp電極を形成した裏面電極型太陽電池セルが開示されている。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 2005-340362) discloses a back electrode type solar battery in which no electrode is formed on the light receiving surface of a solar battery cell, and an n electrode and a p electrode are formed only on the back face of the solar battery cell. A cell is disclosed.
 また、特許文献1には、裏面電極型太陽電池セルの電極と配線シートの配線とを電気的に接続する技術が開示されている。 Patent Document 1 discloses a technique for electrically connecting the electrode of the back electrode type solar cell and the wiring of the wiring sheet.
 特許文献2(WO2009/060753号公報)には、裏面電極型太陽電池セルの電極と配線シートの配線とを直接接触することによってこれらを電気的に接続する技術が開示されている。また、特許文献2には、固定テープによって裏面電極型太陽電池セルが配線シートに仮止めされた後に透明基板と保護シートとの間の封止材によって封止される技術が開示されている。 Patent Document 2 (WO2009 / 060753) discloses a technique of electrically connecting electrodes of a back electrode type solar battery cell and wiring of a wiring sheet by directly contacting them. Patent Document 2 discloses a technique in which a back electrode type solar cell is temporarily fixed to a wiring sheet with a fixing tape and then sealed with a sealing material between a transparent substrate and a protective sheet.
特開2005-340362号公報JP 2005-340362 A WO2009/060753号公報WO2009 / 060753
 特許文献2においては、裏面電極型太陽電池セルと配線シートとを封止材によって封止し、封止材の固定力によって裏面電極型太陽電池セルの電極と配線シートの配線とを圧着して直接接触させている。また、高変換効率および高信頼性を得るために、特許文献1に記載されているように、はんだなどの導電性材料で電極と配線とを接続する技術の開発も進められている。 In Patent Document 2, the back electrode type solar cell and the wiring sheet are sealed with a sealing material, and the electrode of the back electrode type solar cell and the wiring of the wiring sheet are pressure-bonded by the fixing force of the sealing material. Direct contact. In addition, in order to obtain high conversion efficiency and high reliability, as described in Patent Document 1, development of a technique for connecting an electrode and a wiring with a conductive material such as solder has been advanced.
 しかしながら、特許文献1に記載されている技術のように、電極と配線とをはんだによって接続しただけでは裏面電極型太陽電池セルと配線シートとの機械的な接続強度が十分ではないという問題があった。特に、裏面電極型太陽電池セルの電極に直接応力がかかった場合には、裏面電極型太陽電池セルの電極と配線シートの配線とが剥離して、これらの部材の電気的な接続が保持できなくなるという問題もあった。 However, as in the technique described in Patent Document 1, there is a problem that the mechanical connection strength between the back electrode type solar cell and the wiring sheet is not sufficient only by connecting the electrode and the wiring with solder. It was. In particular, when stress is directly applied to the electrode of the back electrode type solar cell, the electrode of the back electrode type solar cell and the wiring of the wiring sheet are peeled off, and the electrical connection of these members can be maintained. There was also a problem of disappearing.
 以上の問題を解決する手段として、はんだなどの導電性粒子を含む絶縁性樹脂を電極または配線に塗布した後に加熱することによって、導電性粒子が溶融して凝集した後に冷却されて固化してなる導電性物質により電極と配線とを電気的に接続するともに、絶縁性樹脂を裏面電極型太陽電池セルの電極間の基板領域と配線シートの配線間の絶縁性基材領域との間の領域に押し出して硬化することによって、裏面電極型太陽電池セルと配線シートとを機械的に接続する技術の開発も進められている。 As a means for solving the above problems, by heating an insulating resin containing conductive particles such as solder applied to an electrode or wiring, the conductive particles are melted and aggregated and then cooled and solidified. The electrode and the wiring are electrically connected by the conductive material, and the insulating resin is applied to the region between the substrate region between the electrodes of the back electrode type solar battery cell and the insulating base material region between the wirings of the wiring sheet. Development of a technique for mechanically connecting a back electrode type solar battery cell and a wiring sheet by extruding and curing is also in progress.
 この技術においては、導電性物質により電極と配線とを電気的に接続することができるとともに、裏面電極型太陽電池セルの電極および配線シートの配線にそれぞれ直接応力がかかることを抑制することができる。そのため、この技術は、大電流かつ高信頼性が要求される太陽電池モジュール用の電極と配線との接続技術として注目されている。 In this technique, the electrode and the wiring can be electrically connected by the conductive material, and it is possible to suppress the direct application of stress to the electrode of the back electrode type solar battery cell and the wiring of the wiring sheet. . Therefore, this technique is attracting attention as a technique for connecting electrodes and wirings for solar cell modules that require a large current and high reliability.
 また、特許文献2に記載されている技術に、導電性粒子を含む絶縁性樹脂を適用した場合には、裏面電極型太陽電池セルと配線シートとを封止材中に封止するための加熱の際に絶縁性樹脂を溶融させることによって、特許文献2に記載の効果を維持したまま、電極と配線との電気的な接続および裏面電極型太陽電池セルと配線シートとの機械的な接続をより確実に行なうことが可能となる。 In addition, when an insulating resin containing conductive particles is applied to the technique described in Patent Document 2, heating for sealing the back electrode type solar cell and the wiring sheet in a sealing material. In this case, by melting the insulating resin, the electrical connection between the electrode and the wiring and the mechanical connection between the back electrode type solar cell and the wiring sheet are maintained while maintaining the effect described in Patent Document 2. It becomes possible to carry out more reliably.
 この場合にも、特許文献2に記載されているように、裏面電極型太陽電池セルが配線シートに対して位置決めされた後に固定テープによって仮止めし、その状態で封止材によって封止されることが好ましい。しかしながら、この場合には、固定テープが太陽電池モジュールの受光面から見えてしまうことがあり、デザイン性を損ねるといった問題がある。また裏面電極型太陽電池セルを配線シートに位置合わせした場合でも、固定テープによって仮止めする際に裏面電極型太陽電池セルおよび/または配線シートに触れてしまうことで位置合わせがずれることがある。そのため、固定テープの代わりに透明樹脂または紫外線硬化型樹脂など流動性の樹脂を塗布して硬化することによって裏面電極型太陽電池セルと配線シートを固定する方法がより好ましい方法であると考えられる。 Also in this case, as described in Patent Document 2, after the back electrode type solar cell is positioned with respect to the wiring sheet, it is temporarily fixed with a fixing tape, and is then sealed with a sealing material in that state. It is preferable. However, in this case, there is a problem that the fixing tape may be visible from the light receiving surface of the solar cell module, which impairs the design. Even when the back electrode type solar cell is aligned with the wiring sheet, the alignment may be shifted by touching the back electrode type solar cell and / or the wiring sheet when temporarily fixed with the fixing tape. Therefore, a method of fixing the back electrode type solar cell and the wiring sheet by applying a fluid resin such as a transparent resin or an ultraviolet curable resin instead of the fixing tape and curing it is considered to be a more preferable method.
 以上の検討結果から、以下の工程(1)~(5)をこの順序で行なうことによって作製された太陽電池モジュールが好ましい態様の太陽電池モジュールであると考えられる。なお、以下の工程(3)を工程(2)よりも前に行ってもよい。
(1)太陽電池セルの電極および/または配線シートの配線に導電性粒子を含む絶縁性樹脂を設置する工程。
(2)太陽電池セルの電極が配線シートの配線の所定の位置に対向するように太陽電池セルと配線シートとの位置合わせを行なう工程。
(3)流動性の透明樹脂または紫外線硬化型樹脂などの固定樹脂を太陽電池セルと配線シートとの間に滴下する等の方法により、これらの樹脂を太陽電池セルの電極および配線シートの配線にそれぞれ直接触れないようにして配置する工程。
(4)固定樹脂を硬化して太陽電池セルと配線シートとを仮止めする工程。
(5)封止材によって太陽電池セルと配線シートとを封止するとともに、太陽電池セルと配線シートとの間に設置された導電性粒子を含む絶縁性樹脂を加熱して導電性粒子が溶融して凝集した後に冷却されて固化してなる導電性物質が電極と配線の間に凝集して電気的接続を得るとともに溶融した絶縁性樹脂が太陽電池セルの電極間の基板と配線シートの配線間の絶縁性基材の間に押し出された後に硬化することで太陽電池セルと配線シートとを機械的に接続する工程。
From the above examination results, it is considered that a solar cell module produced by performing the following steps (1) to (5) in this order is a preferred mode solar cell module. In addition, you may perform the following processes (3) before a process (2).
(1) A step of installing an insulating resin containing conductive particles on the electrode of the solar battery cell and / or the wiring of the wiring sheet.
(2) The process of aligning a photovoltaic cell and a wiring sheet so that the electrode of a photovoltaic cell faces the predetermined position of the wiring of a wiring sheet.
(3) By using a method such as dropping a fixing resin such as a fluid transparent resin or an ultraviolet curable resin between the solar cell and the wiring sheet, these resins are applied to the electrodes of the solar cell and the wiring of the wiring sheet. The process of arranging without touching each directly.
(4) A step of curing the fixing resin to temporarily fix the solar battery cell and the wiring sheet.
(5) The solar cells and the wiring sheet are sealed with a sealing material, and the conductive particles including the conductive particles installed between the solar cells and the wiring sheet are heated to melt the conductive particles. Then, the conductive material that is cooled and solidified after agglomeration aggregates between the electrode and the wiring to obtain an electrical connection, and the molten insulating resin is a wiring between the electrode of the solar battery cell and the wiring sheet A step of mechanically connecting the solar battery cell and the wiring sheet by curing after being extruded between the insulating base materials.
 しかしながら、上記の工程(3)において配置された固定樹脂が流動して、固定樹脂が工程(1)で配置された導電性粒子を含む絶縁性樹脂と接触した場合には、導電性粒子を含む絶縁性樹脂も未硬化のために固定樹脂と混ざってしまう。そのため、絶縁性樹脂中の導電性粒子が固定樹脂を介して太陽電池セルの電極間および/または配線シートの配線間に流出して電極間および/または配線間を短絡してしまうという問題があった。また、この場合には、太陽電池セルと配線シートとの機械的な接続の安定性も損なわれる。 However, when the fixing resin arranged in the step (3) flows and the fixing resin comes into contact with the insulating resin containing the conductive particles arranged in the step (1), the conductive resin contains the conductive particles. Since the insulating resin is also uncured, it is mixed with the fixing resin. For this reason, there is a problem that the conductive particles in the insulating resin flow out between the electrodes of the solar battery cell and / or between the wirings of the wiring sheet through the fixing resin and short-circuit between the electrodes and / or the wirings. It was. In this case, the stability of mechanical connection between the solar battery cell and the wiring sheet is also impaired.
 上記の事情に鑑みて、本発明の目的は、太陽電池セルと配線シートとの機械的な接続の安定性を向上することができるとともに、太陽電池セルの電極と配線シートの配線との電気的な接続の安定性を向上することができる配線シート、配線シート付き太陽電池セル、太陽電池モジュール、太陽電池セル、配線シート付き太陽電池セルの製造方法および太陽電池モジュールの製造方法を提供することにある。 In view of the above circumstances, the object of the present invention is to improve the stability of the mechanical connection between the solar cell and the wiring sheet, and to electrically connect the electrode of the solar cell and the wiring of the wiring sheet. To provide a wiring sheet, a solar battery cell with a wiring sheet, a solar battery module, a solar battery cell, a manufacturing method of a solar battery cell with a wiring sheet, and a manufacturing method of a solar battery module that can improve the stability of simple connection is there.
 本発明は、絶縁性基材と絶縁性基材の少なくとも一方の表面に設けられた配線とを含む配線シートであって、配線は配線シート上に設置される太陽電池セルの周縁部に対向する配線シートの領域の少なくとも一部に窪みを有している配線シートである。 The present invention is a wiring sheet including an insulating base material and wiring provided on at least one surface of the insulating base material, wherein the wiring faces a peripheral portion of a solar battery cell installed on the wiring sheet. The wiring sheet has a depression in at least a part of the area of the wiring sheet.
 ここで、本発明の配線シートにおいて、窪みは、絶縁性基材の表面が露出している領域であって、配線に囲まれている領域であることが好ましい。 Here, in the wiring sheet of the present invention, the depression is preferably a region where the surface of the insulating substrate is exposed and surrounded by the wiring.
 また、本発明は、上記の配線シートと、基板と基板の少なくとも一方の表面上に設けられた電極とを有する太陽電池セルと、配線シートの配線と太陽電池セルの電極との間に設置された導電性物質と、配線シートと太陽電池セルとを機械的に接続する固定樹脂と、を含み、固定樹脂は、太陽電池セルの周縁部に接するように窪みに設けられている配線シート付き太陽電池セルである。 In addition, the present invention is installed between the above-described wiring sheet, a solar cell having the substrate and an electrode provided on at least one surface of the substrate, and the wiring of the wiring sheet and the electrode of the solar cell. A conductive sheet, and a fixing resin that mechanically connects the wiring sheet and the solar battery cell, and the fixing resin is a solar with wiring sheet provided in a recess so as to contact the peripheral edge of the solar battery cell. It is a battery cell.
 ここで、本発明の配線シート付き太陽電池セルにおいて、固定樹脂は、紫外線の照射および加熱の少なくとも一方の処理によって硬化する絶縁性樹脂であることが好ましい。 Here, in the solar cell with a wiring sheet of the present invention, the fixing resin is preferably an insulating resin that is cured by at least one of ultraviolet irradiation and heating.
 また、本発明は、上記の配線シート付き太陽電池セルを含む太陽電池モジュールである。 Moreover, this invention is a solar cell module containing the said photovoltaic cell with a wiring sheet.
 また、本発明は、基板と基板の少なくとも一方の表面上に設けられた電極とを含む太陽電池セルであって、電極と太陽電池セルの周縁部との間の少なくとも一部の領域に樹脂流動阻止部が設けられた太陽電池セルである。 Further, the present invention is a solar battery cell including a substrate and an electrode provided on at least one surface of the substrate, wherein the resin flows in at least a part of the region between the electrode and the peripheral edge of the solar battery cell. It is a solar cell provided with a blocking part.
 ここで、本発明の太陽電池セルにおいて、樹脂流動阻止部は電極と同一の材質から形成されていることが好ましい。 Here, in the solar battery cell of the present invention, the resin flow blocking portion is preferably formed of the same material as the electrode.
 また、本発明は、上記の太陽電池セルと、絶縁性基材と絶縁性基材の少なくとも一方の表面に設けられた配線とを有する配線シートと、配線シートの配線と太陽電池セルの電極との間に設置された導電性物質と、配線シートと太陽電池セルとを機械的に接続する固定樹脂と、を含み、固定樹脂は太陽電池セルの樹脂流動阻止部よりも外側に位置するように配線シート上に設けられている配線シート付き太陽電池セルである。 In addition, the present invention provides a wiring sheet having the above-described solar battery cell, an insulating base material, and a wiring provided on at least one surface of the insulating base material, wiring of the wiring sheet, and an electrode of the solar battery cell. And a fixing resin that mechanically connects the wiring sheet and the solar battery cell, and the fixing resin is positioned outside the resin flow blocking portion of the solar battery cell. It is a photovoltaic cell with a wiring sheet provided on the wiring sheet.
 ここで、本発明の配線シート付き太陽電池セルにおいて、固定樹脂は、紫外線の照射および加熱の少なくとも一方の処理によって硬化する絶縁性樹脂であることが好ましい。 Here, in the solar cell with a wiring sheet of the present invention, the fixing resin is preferably an insulating resin that is cured by at least one of ultraviolet irradiation and heating.
 また、本発明は、上記の配線シート付き太陽電池セルを用いて作製された太陽電池モジュールである。 Moreover, this invention is a solar cell module produced using said photovoltaic cell with a wiring sheet.
 また、本発明は、基板と基板の少なくとも一方の表面上に設けられた電極とを有する太陽電池セルと、絶縁性基材と絶縁性基材の少なくとも一方の表面に設けられた配線とを有する配線シートと、配線シートの配線と太陽電池セルの電極との間に設置された導電性物質と、配線シートと太陽電池セルとを機械的に接続する固定樹脂と、を含む配線シート付き太陽電池セルを製造するための方法であって、太陽電池セルの電極と配線シートの配線との間に導電性粒子を含む樹脂を設置する工程と、太陽電池セルの電極と配線シートの配線との間に導電性粒子を含む樹脂を設置する工程と、太陽電池セルの電極が配線シートの配線と対向するように太陽電池セルと配線シートとの位置合わせをする工程と、太陽電池セルの周縁部の少なくとも一部の領域と配線シートとの間に、導電性粒子を含む樹脂とは間隔を空けて固定樹脂を設置する工程と、固定樹脂を硬化する工程と、導電性粒子を含む樹脂を硬化する工程と、を含む配線シート付き太陽電池セルの製造方法である。 Moreover, this invention has a photovoltaic cell which has a board | substrate and the electrode provided on at least one surface of the board | substrate, and the wiring provided in the at least one surface of the insulating base material and the insulating base material. A solar cell with a wiring sheet, comprising: a wiring sheet; a conductive material installed between the wiring of the wiring sheet and an electrode of the solar battery cell; and a fixing resin that mechanically connects the wiring sheet and the solar battery cell. A method for manufacturing a cell, comprising a step of installing a resin containing conductive particles between an electrode of a solar battery cell and a wiring of a wiring sheet, and between the electrode of the solar battery cell and the wiring of the wiring sheet A step of installing a resin containing conductive particles on the substrate, a step of aligning the solar cell and the wiring sheet so that the electrode of the solar cell faces the wiring of the wiring sheet, and the peripheral portion of the solar cell At least one Between the region and the wiring sheet, a step of installing a fixing resin with a gap between the resin containing conductive particles, a step of curing the fixing resin, a step of curing the resin containing conductive particles, It is a manufacturing method of the photovoltaic cell with a wiring sheet containing this.
 ここで、本発明の配線シート付き太陽電池セルの製造方法においては、導電性粒子を含む樹脂を硬化する工程においては、導電性粒子が溶融して凝集した後に固化することによって形成された導電性物質によって電極と配線とが電気的に接続されることが好ましい。 Here, in the method for producing a solar cell with a wiring sheet of the present invention, in the step of curing the resin containing conductive particles, the conductive particles formed by solidifying after the conductive particles melt and aggregate. It is preferable that the electrode and the wiring are electrically connected by a substance.
 また、本発明の配線シート付き太陽電池セルの製造方法において、固定樹脂を硬化する工程は、紫外線の照射および加熱の少なくとも一方の処理によって固定樹脂を硬化する工程を含むことが好ましい。 In the method for manufacturing a solar cell with a wiring sheet of the present invention, it is preferable that the step of curing the fixing resin includes a step of curing the fixing resin by at least one of ultraviolet irradiation and heating.
 さらに、本発明は、基板と基板の少なくとも一方の表面上に設けられた電極とを有する太陽電池セルと、絶縁性基材と絶縁性基材の少なくとも一方の表面に設けられた配線とを有する配線シートと、配線シートの配線と太陽電池セルの電極との間に設置された導電性物質と、配線シートと太陽電池セルとを機械的に接続するための固定樹脂と、を含む配線シート付き太陽電池セルを封止材によって封止した太陽電池モジュールを製造するための方法であって、太陽電池セルの電極と配線シートの配線との間に導電性粒子を含む樹脂を設置する工程と、太陽電池セルの電極が配線シートの配線と対向するように太陽電池セルと配線シートとの位置合わせをする工程と、太陽電池セルの周縁部の少なくとも一部の領域と配線シートとの間に、導電性粒子を含む樹脂とは間隔を空けて固定樹脂を設置する工程と、固定樹脂を硬化する工程と、固定樹脂を硬化する工程で配線シートに仮固定された太陽電池セルを封止材によって封止する工程と、を含み、封止材によって封止する工程は導電性粒子を含む樹脂を硬化する工程を含む太陽電池モジュールの製造方法である。 Furthermore, the present invention includes a solar battery cell having a substrate and an electrode provided on at least one surface of the substrate, and a wiring provided on at least one surface of the insulating base material and the insulating base material. With wiring sheet including wiring sheet, conductive material installed between wiring of wiring sheet and electrode of solar battery cell, and fixing resin for mechanically connecting wiring sheet and solar battery cell A method for producing a solar cell module in which solar cells are sealed with a sealing material, the step of installing a resin containing conductive particles between the electrodes of the solar cells and the wiring of the wiring sheet; The step of aligning the solar cell and the wiring sheet so that the electrode of the solar cell faces the wiring of the wiring sheet, and between the wiring sheet and at least a partial region of the peripheral edge of the solar cell, Guidance The solar cell temporarily fixed to the wiring sheet in the step of installing the fixing resin at intervals, the step of curing the fixing resin, and the step of curing the fixing resin is sealed with a sealing material. And the step of sealing with a sealing material is a method for manufacturing a solar cell module including a step of curing a resin containing conductive particles.
 本発明によれば、太陽電池セルと配線シートとの機械的な接続の安定性を向上することができるとともに、太陽電池セルの電極と配線シートの配線との電気的な接続の安定性を向上することができる配線シート、配線シート付き太陽電池セル、太陽電池モジュール、太陽電池セル、配線シート付き太陽電池セルの製造方法および太陽電池モジュールの製造方法を提供することができる。 According to the present invention, the stability of the mechanical connection between the solar battery cell and the wiring sheet can be improved, and the stability of the electrical connection between the electrode of the solar battery cell and the wiring of the wiring sheet is improved. A wiring sheet, a solar battery cell with a wiring sheet, a solar battery module, a solar battery cell, a method for manufacturing a solar battery cell with a wiring sheet, and a method for manufacturing a solar battery module can be provided.
(a)~(e)は、実施の形態1の太陽電池モジュールの製造方法を図解する模式的な断面図である。(A)-(e) is typical sectional drawing illustrating the manufacturing method of the solar cell module of Embodiment 1. FIG. (a)~(g)は、本実施の形態で用いられる裏面電極型太陽電池セルの製造方法の一例について図解する模式的な断面図である。(A)-(g) is typical sectional drawing illustrating about an example of the manufacturing method of the back electrode type photovoltaic cell used by this Embodiment. 本実施の形態で用いられる配線シートの配線設置側の表面の模式的な拡大平面図である。It is a typical enlarged plan view of the surface of the wiring installation side of the wiring sheet used by this Embodiment. (a)~(d)は、本実施の形態で用いられる配線シートの製造方法の一例について図解する模式的な断面図である。(A)-(d) is typical sectional drawing illustrated about an example of the manufacturing method of the wiring sheet used by this Embodiment. 実施の形態1における固定樹脂の設置箇所の一例を図解する模式的な拡大平面図である。FIG. 3 is a schematic enlarged plan view illustrating an example of an installation location of a fixing resin in the first embodiment. (a)~(e)は、実施の形態2の太陽電池モジュールの製造方法を図解する模式的な断面図である。(A)-(e) is typical sectional drawing illustrating the manufacturing method of the solar cell module of Embodiment 2. FIG. 本実施の形態で用いられる裏面電極型太陽電池セルの裏面の模式的な拡大平面図である。It is a typical enlarged plan view of the back surface of the back electrode type solar cell used in the present embodiment. 実施の形態2における固定樹脂の設置箇所の一例を図解する模式的な拡大平面図である。FIG. 10 is a schematic enlarged plan view illustrating an example of an installation location of a fixing resin in a second embodiment.
 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。また、後述する各工程の間にはその他の工程が含まれていてもよいことは言うまでもない。 Hereinafter, embodiments of the present invention will be described. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. Moreover, it cannot be overemphasized that another process may be contained between each process mentioned later.
 (実施の形態1)
 <導電性粒子を含む樹脂を設置する工程>
 図1(a)~(e)に、実施の形態1の太陽電池モジュールの製造方法を図解する模式的な断面図を示す。まず、図1(a)に示すように、裏面電極型太陽電池セル8と、配線シート10とを用意し、裏面電極型太陽電池セル8の少なくとも一方の表面である基板1の裏面に設けられたn型用電極6およびp型用電極7にそれぞれ導電性粒子21を含む絶縁性樹脂20を設置する。なお、本実施の形態においては、太陽電池セルとして裏面電極型太陽電池セルを用いる場合について説明するが、裏面電極型太陽電池セルに限定されない。
(Embodiment 1)
<Process of installing resin containing conductive particles>
1A to 1E are schematic cross-sectional views illustrating a method for manufacturing the solar cell module according to the first embodiment. First, as shown in FIG. 1A, a back electrode type solar cell 8 and a wiring sheet 10 are prepared and provided on the back surface of the substrate 1 which is at least one surface of the back electrode type solar cell 8. Insulating resin 20 containing conductive particles 21 is placed on n-type electrode 6 and p-type electrode 7. In addition, in this Embodiment, although the case where a back electrode type photovoltaic cell is used as a photovoltaic cell is demonstrated, it is not limited to a back electrode type photovoltaic cell.
 導電性粒子21を含む絶縁性樹脂20の設置方法としては、たとえば、スクリーン印刷、ディスペンサ塗布またはインクジェット塗布などの方法を挙げることができる。 Examples of the installation method of the insulating resin 20 including the conductive particles 21 include screen printing, dispenser coating, and inkjet coating.
 絶縁性樹脂20としては、たとえば従来から公知のエポキシ樹脂などの熱硬化性および/または光硬化性の樹脂を用いることができる。絶縁性樹脂20にはたとえば従来から公知の硬化剤などの添加剤が含まれていてもよい。 As the insulating resin 20, a thermosetting and / or photocurable resin such as a conventionally known epoxy resin can be used, for example. The insulating resin 20 may contain an additive such as a conventionally known curing agent.
 導電性粒子21としては、たとえば、錫およびビスマスの少なくとも一方を含む半田粒子などを用いることができる。 As the conductive particles 21, for example, solder particles containing at least one of tin and bismuth can be used.
 そして、裏面電極型太陽電池セル8のn型用電極6およびp型用電極7をそれぞれ配線シート10の絶縁性基材11上に設けられたn型用配線12およびp型用配線13に対向させるとともに、裏面電極型太陽電池セル8の周縁部31を配線シート10の接続用配線14に設けられた窪み32に対向させる。 Then, the n-type electrode 6 and the p-type electrode 7 of the back electrode type solar cell 8 are respectively opposed to the n-type wiring 12 and the p-type wiring 13 provided on the insulating substrate 11 of the wiring sheet 10. At the same time, the peripheral edge portion 31 of the back electrode type solar cell 8 is opposed to the recess 32 provided in the connection wiring 14 of the wiring sheet 10.
 窪み32は、接続用配線14から絶縁性基材11の表面が露出した領域であって、接続用配線14に囲まれている領域である。 The depression 32 is a region where the surface of the insulating base material 11 is exposed from the connection wiring 14 and is surrounded by the connection wiring 14.
 <裏面電極型太陽電池セル>
 裏面電極型太陽電池セル8は、たとえば以下のようにして製造することができる。以下、図2(a)~(g)の模式的断面図を参照して、本実施の形態で用いられる裏面電極型太陽電池セル8の製造方法の一例について説明する。
<Back electrode type solar cell>
The back electrode type solar cell 8 can be manufactured as follows, for example. Hereinafter, an example of a method for manufacturing the back electrode type solar cell 8 used in the present embodiment will be described with reference to the schematic cross-sectional views of FIGS.
 まず、図2(a)に示すように、たとえばインゴットからスライスすることなどによって、基板1の表面にスライスダメージ1aが形成された基板1を用意する。基板1としては、たとえば、n型またはp型のいずれかの導電型を有する多結晶シリコンまたは単結晶シリコンなどからなるシリコン基板を用いることができる。 First, as shown in FIG. 2A, a substrate 1 is prepared in which slice damage 1a is formed on the surface of the substrate 1, for example, by slicing from an ingot. As the substrate 1, for example, a silicon substrate made of polycrystalline silicon, single crystal silicon, or the like having either n-type or p-type conductivity can be used.
 次に、図2(b)に示すように、基板1の表面のスライスダメージ1aを除去する。ここで、スライスダメージ1aの除去は、たとえば基板1が上記のシリコン基板からなる場合には、上記のスライス後のシリコン基板の表面をフッ化水素水溶液と硝酸との混酸または水酸化ナトリウムなどのアルカリ水溶液などでエッチングすることなどによって行なうことができる。 Next, as shown in FIG. 2B, the slice damage 1a on the surface of the substrate 1 is removed. Here, the removal of the slice damage 1a is performed, for example, when the substrate 1 is made of the above silicon substrate, the surface of the silicon substrate after the above slicing is mixed with an aqueous solution of hydrogen fluoride and nitric acid or an alkali such as sodium hydroxide. It can be performed by etching with an aqueous solution or the like.
 スライスダメージ1aの除去後の基板1の大きさおよび形状も特に限定されないが、基板1の厚さをたとえば50μm以上400μm以下とすることができ、特に160μm程度とすることが好ましい。 The size and shape of the substrate 1 after removal of the slice damage 1a are not particularly limited, but the thickness of the substrate 1 can be set to, for example, 50 μm or more and 400 μm or less, and particularly preferably about 160 μm.
 次に、図2(c)に示すように、基板1の裏面に、n型不純物拡散領域2およびp型不純物拡散領域3をそれぞれ形成する。n型不純物拡散領域2は、たとえば、n型不純物を含むガスを用いた気相拡散などの方法により形成することができ、p型不純物拡散領域3は、たとえば、p型不純物を含むガスを用いた気相拡散などの方法により形成することができる。 Next, as shown in FIG. 2C, an n-type impurity diffusion region 2 and a p-type impurity diffusion region 3 are formed on the back surface of the substrate 1, respectively. The n-type impurity diffusion region 2 can be formed, for example, by a method such as vapor phase diffusion using a gas containing n-type impurities, and the p-type impurity diffusion region 3 uses, for example, a gas containing p-type impurities. It can be formed by a method such as vapor phase diffusion.
 n型不純物拡散領域2およびp型不純物拡散領域3はそれぞれ図2の紙面の表面側および/または裏面側に伸びる帯状に形成されており、n型不純物拡散領域2とp型不純物拡散領域3とは基板1の裏面において交互に所定の間隔をあけて配置されている。 The n-type impurity diffusion region 2 and the p-type impurity diffusion region 3 are each formed in a strip shape extending to the front side and / or the back side of the paper surface of FIG. 2, and the n-type impurity diffusion region 2 and the p-type impurity diffusion region 3 Are alternately arranged at predetermined intervals on the back surface of the substrate 1.
 n型不純物拡散領域2はn型不純物を含み、n型の導電型を示す領域であれば特に限定されない。なお、n型不純物としては、たとえばリンなどのn型不純物を用いることができる。 The n-type impurity diffusion region 2 is not particularly limited as long as it includes an n-type impurity and exhibits n-type conductivity. As the n-type impurity, for example, an n-type impurity such as phosphorus can be used.
 p型不純物拡散領域3はp型不純物を含み、p型の導電型を示す領域であれば特に限定されない。なお、p型不純物としては、たとえばボロンまたはアルミニウムなどのp型不純物を用いることができる。 The p-type impurity diffusion region 3 is not particularly limited as long as it includes a p-type impurity and exhibits p-type conductivity. As the p-type impurity, for example, a p-type impurity such as boron or aluminum can be used.
 n型不純物を含むガスとしては、たとえばPOCl3のようなリンなどのn型不純物を含むガスを用いることができ、p型不純物を含むガスとしては、たとえばBBr3のようなボロンなどのp型不純物を含むガスを用いることができる。 As the gas containing an n-type impurity, a gas containing an n-type impurity such as phosphorus such as POCl 3 can be used. As the gas containing a p-type impurity, a p-type such as boron such as BBr 3 is used. A gas containing impurities can be used.
 次に、図2(d)に示すように、基板1の裏面にパッシベーション膜4を形成する。ここで、パッシベーション膜4は、たとえば、熱酸化法またはプラズマCVD(Chemical Vapor Deposition)法などの方法により形成することができる。 Next, as shown in FIG. 2D, a passivation film 4 is formed on the back surface of the substrate 1. Here, the passivation film 4 can be formed by a method such as a thermal oxidation method or a plasma CVD (Chemical Vapor Deposition) method.
 パッシベーション膜4としては、たとえば、酸化シリコン膜、窒化シリコン膜、または酸化シリコン膜と窒化シリコン膜との積層体などを用いることができるが、これらに限定されるものではない。 As the passivation film 4, for example, a silicon oxide film, a silicon nitride film, or a stacked body of a silicon oxide film and a silicon nitride film can be used, but is not limited thereto.
 パッシベーション膜4の厚みは、たとえば0.05μm以上1μm以下とすることができ、特に0.2μm程度とすることが好ましい。 The thickness of the passivation film 4 can be, for example, 0.05 μm or more and 1 μm or less, and particularly preferably about 0.2 μm.
 次に、図2(e)に示すように、基板1の受光面の全面にテクスチャ構造などの凹凸構造を形成した後に、その凹凸構造上に反射防止膜5を形成する。 Next, as shown in FIG. 2E, an uneven structure such as a texture structure is formed on the entire light-receiving surface of the substrate 1, and then an antireflection film 5 is formed on the uneven structure.
 テクスチャ構造は、たとえば、基板1の受光面をエッチングすることにより形成することができる。たとえば、基板1がシリコン基板である場合には、たとえば水酸化ナトリウムまたは水酸化カリウムなどのアルカリ水溶液にイソプロピルアルコールを添加した液をたとえば70℃以上80℃以下に加熱したエッチング液を用いて基板1の受光面をエッチングすることによって形成することができる。 The texture structure can be formed, for example, by etching the light receiving surface of the substrate 1. For example, when the substrate 1 is a silicon substrate, for example, the substrate 1 is used by using an etching solution obtained by heating a solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or more and 80 ° C. or less. It can be formed by etching the light receiving surface.
 反射防止膜5は、たとえばプラズマCVD法などにより形成することができる。なお、反射防止膜5としては、たとえば、窒化シリコン膜などを用いることができるが、これに限定されるものではない。 The antireflection film 5 can be formed by, for example, a plasma CVD method. As the antireflection film 5, for example, a silicon nitride film or the like can be used, but is not limited thereto.
 次に、図2(f)に示すように、基板1の裏面のパッシベーション膜4の一部を除去することによってコンタクトホール4aおよびコンタクトホール4bを形成する。ここで、コンタクトホール4aは、n型不純物拡散領域2の表面の少なくとも一部を露出させるようにして形成され、コンタクトホール4bは、p型不純物拡散領域3の表面の少なくとも一部を露出させるようにして形成される。 Next, as shown in FIG. 2F, a part of the passivation film 4 on the back surface of the substrate 1 is removed to form a contact hole 4a and a contact hole 4b. Here, the contact hole 4a is formed so as to expose at least part of the surface of the n-type impurity diffusion region 2, and the contact hole 4b exposes at least part of the surface of the p-type impurity diffusion region 3. Formed.
 なお、コンタクトホール4aおよびコンタクトホール4bはそれぞれ、たとえば、フォトリソグラフィ技術を用いてコンタクトホール4aおよびコンタクトホール4bの形成箇所に対応する部分に開口を有するレジストパターンをパッシベーション膜4上に形成した後にレジストパターンの開口からパッシベーション膜4をエッチングなどにより除去する方法、またはコンタクトホール4aおよびコンタクトホール4bの形成箇所に対応するパッシベーション膜4の部分にエッチングペーストを塗布した後に加熱することによってパッシベーション膜4をエッチングして除去する方法などにより形成することができる。 The contact hole 4a and the contact hole 4b are formed after a resist pattern having openings at portions corresponding to the formation positions of the contact hole 4a and the contact hole 4b is formed on the passivation film 4 by using, for example, photolithography technology. The method of removing the passivation film 4 from the opening of the pattern by etching or the like, or etching the passivation film 4 by applying an etching paste to the portion of the passivation film 4 corresponding to the location where the contact hole 4a and the contact hole 4b are formed and then heating. Then, it can be formed by a removal method.
 次に、図2(g)に示すように、コンタクトホール4aを通してn型不純物拡散領域2に接するn型用電極6と、コンタクトホール4bを通してp型不純物拡散領域3に接するp型用電極7と、を形成することによって、裏面電極型太陽電池セル8を作製する。 Next, as shown in FIG. 2G, an n-type electrode 6 in contact with the n-type impurity diffusion region 2 through the contact hole 4a, and a p-type electrode 7 in contact with the p-type impurity diffusion region 3 through the contact hole 4b. , To form the back electrode type solar battery cell 8.
 n型用電極6およびp型用電極7としては、たとえば、銀などの金属からなる電極を用いることができる。n型用電極6およびp型用電極7はそれぞれ図2の紙面の表面側および/または裏面側に伸びる帯状に形成されており、n型用電極6およびp型用電極7はそれぞれパッシベーション膜4に設けられた開口部を通して、基板1の裏面のn型不純物拡散領域2およびp型不純物拡散領域3に沿って、n型不純物拡散領域2およびp型不純物拡散領域3にそれぞれ接するように形成されている。 As the n-type electrode 6 and the p-type electrode 7, for example, electrodes made of metal such as silver can be used. The n-type electrode 6 and the p-type electrode 7 are each formed in a strip shape extending to the front side and / or the back side of the paper surface of FIG. 2, and the n-type electrode 6 and the p-type electrode 7 are respectively formed on the passivation film 4. Through the opening provided in the substrate 1, the n-type impurity diffusion region 2 and the p-type impurity diffusion region 3 are respectively in contact with the n-type impurity diffusion region 2 and the p-type impurity diffusion region 3 on the back surface of the substrate 1. ing.
 <配線シート>
 図3に、本実施の形態で用いられる配線シート10の配線設置側の表面の模式的な拡大平面図を示す。配線シート10の絶縁性基板11の表面上において、n型用配線12およびp型用配線13はそれぞれ帯状に所定の間隔を空けて交互に形成されている。配線シート10の絶縁性基材11の表面上には接続用配線14が形成されており、接続用配線14によってn型用配線12とp型用配線13とが電気的に接続されている。
<Wiring sheet>
In FIG. 3, the typical enlarged plan view of the surface at the side of wiring installation of the wiring sheet 10 used by this Embodiment is shown. On the surface of the insulating substrate 11 of the wiring sheet 10, the n-type wiring 12 and the p-type wiring 13 are alternately formed in a band shape with a predetermined interval. A connection wiring 14 is formed on the surface of the insulating base 11 of the wiring sheet 10, and the n-type wiring 12 and the p-type wiring 13 are electrically connected by the connection wiring 14.
 接続用配線14の両端には、接続用配線14から絶縁性基材11の表面が露出した領域である窪み32が形成されている。 At both ends of the connection wiring 14, recesses 32, which are regions where the surface of the insulating base material 11 is exposed from the connection wiring 14, are formed.
 以上の構成を有する配線シート10においては、n型用配線12およびp型用配線13のそれぞれの長手方向において隣り合っているn型用配線12とp型用配線13とは接続用配線14によって電気的に接続されている。そのため、配線シート10上で上記の長手方向において隣り合って設置されている裏面電極型太陽電池セル8同士は互いに電気的に接続される。 In the wiring sheet 10 having the above configuration, the n-type wiring 12 and the p-type wiring 13 that are adjacent in the longitudinal direction of the n-type wiring 12 and the p-type wiring 13 are connected by the connection wiring 14. Electrically connected. Therefore, the back electrode type solar cells 8 installed adjacent to each other in the longitudinal direction on the wiring sheet 10 are electrically connected to each other.
 配線シート10は、たとえば以下のようにして製造することができる。以下、図4(a)~図4(d)の模式的断面図を参照して、本実施の形態で用いられる配線シート10の製造方法の一例について説明する。 The wiring sheet 10 can be manufactured as follows, for example. Hereinafter, an example of a method for manufacturing the wiring sheet 10 used in the present embodiment will be described with reference to the schematic cross-sectional views of FIGS. 4 (a) to 4 (d).
 まず、図4(a)に示すように、絶縁性基材11の表面上に導電性部材からなる導電層41を形成する。絶縁性基材11としては、たとえば、ポリエステル、ポリエチレンナフタレートまたはポリイミドなどの樹脂からなる基板を用いることができるが、これに限定されるものではない。 First, as shown in FIG. 4A, a conductive layer 41 made of a conductive member is formed on the surface of the insulating substrate 11. As the insulating base material 11, for example, a substrate made of a resin such as polyester, polyethylene naphthalate, or polyimide can be used, but is not limited thereto.
 絶縁性基材11の厚みは、たとえば10μm以上200μm以下とすることができ、特に25μm程度とすることが好ましい。 The thickness of the insulating substrate 11 can be, for example, 10 μm or more and 200 μm or less, and particularly preferably about 25 μm.
 導電層41としては、たとえば、銅などの金属からなる層を用いることができるが、これに限定されるものではない。 As the conductive layer 41, for example, a layer made of metal such as copper can be used, but is not limited thereto.
 次に、図4(b)に示すように、絶縁性基材11の表面の導電層41上にレジストパターン42を形成する。ここで、レジストパターン42は、n型用配線12、p型用配線13および接続用配線14の形成箇所以外の箇所に開口を有する形状に形成する。レジストパターン42を構成するレジストとしてはたとえば従来から公知のものを用いることができ、スクリーン印刷、ディスペンサ塗布またはインクジェット塗布などの方法によって塗布される。なお、窪み32の形成箇所に相当する箇所には、レジストの開口が設置されることは言うまでもない。 Next, as shown in FIG. 4B, a resist pattern 42 is formed on the conductive layer 41 on the surface of the insulating substrate 11. Here, the resist pattern 42 is formed in a shape having an opening at a location other than the location where the n-type wiring 12, the p-type wiring 13 and the connection wiring 14 are formed. As the resist constituting the resist pattern 42, for example, a conventionally known resist can be used, and it is applied by a method such as screen printing, dispenser application or ink jet application. Needless to say, a resist opening is provided at a location corresponding to the location where the recess 32 is formed.
 次に、図4(c)に示すように、レジストパターン42から露出している箇所の導電層41を矢印43の方向に除去することによって導電層41のパターンニングを行ない、導電層41の残部からn型用配線12、p型用配線13および接続用配線14を形成し、接続用配線14の一部を構成する導電層41が除去された部分が窪み32とされる。 Next, as shown in FIG. 4C, the conductive layer 41 is patterned by removing the conductive layer 41 exposed from the resist pattern 42 in the direction of the arrow 43, and the remaining portion of the conductive layer 41. The n-type wiring 12, the p-type wiring 13 and the connection wiring 14 are formed, and a portion from which the conductive layer 41 constituting a part of the connection wiring 14 is removed is defined as a recess 32.
 導電層41の除去は、たとえば、酸やアルカリの溶液を用いたウエットエッチングなどによって行なうことができる。 The conductive layer 41 can be removed by, for example, wet etching using an acid or alkali solution.
 次に、図4(d)に示すように、n型用配線12、p型用配線13および接続用配線14の表面からレジストパターン42をすべて除去することによって、配線シート10が作製される。 Next, as shown in FIG. 4D, the wiring sheet 10 is produced by removing all the resist patterns 42 from the surfaces of the n-type wiring 12, the p-type wiring 13 and the connection wiring 14.
 <太陽電池セルと配線シートとの位置合わせをする工程>
 次に、図1(b)に示すように、裏面電極型太陽電池セル8のn型用電極6およびp型用電極7がそれぞれ配線シート10の絶縁性基材11上に設けられたn型用配線12およびp型用配線13と導電性粒子21を含む絶縁性樹脂20を介して対向するように、裏面電極型太陽電池セル8と配線シート10との位置合わせを行なう。
<Process for aligning solar cells and wiring sheet>
Next, as shown in FIG. 1B, the n-type electrode 6 and the p-type electrode 7 of the back electrode type solar cell 8 are respectively provided on the insulating base material 11 of the wiring sheet 10. The back electrode type solar cells 8 and the wiring sheet 10 are aligned so as to face the wiring 12 and the p-type wiring 13 via the insulating resin 20 containing the conductive particles 21.
 この段階では絶縁性樹脂20は未硬化であるため、絶縁性樹脂20の流動によって、配線シート10の配線(n型用配線12およびp型用配線13)に対する裏面電極型太陽電池セル8の電極(n型用電極6およびp型用電極7)の相対的な位置をより微細に合わせることが可能となる。また、このとき、裏面電極型太陽電池セル8の周縁部31に対向する位置に配線シート10の窪み32が位置するように、裏面電極型太陽電池セル8と配線シート10との位置合わせが行なわれる。 At this stage, since the insulating resin 20 is uncured, the electrode of the back electrode type solar cell 8 with respect to the wiring (the n-type wiring 12 and the p-type wiring 13) of the wiring sheet 10 due to the flow of the insulating resin 20 The relative positions of the n-type electrode 6 and the p-type electrode 7 can be adjusted more finely. At this time, the back electrode solar cell 8 and the wiring sheet 10 are aligned so that the recess 32 of the wiring sheet 10 is positioned at a position facing the peripheral edge 31 of the back electrode solar cell 8. It is.
 <固定樹脂を設置する工程>
 次に、図1(c)に示すように、裏面電極型太陽電池セル8の周縁部31の少なくとも一部の領域に接するように、配線シート10の窪み32に未硬化の固定樹脂22aを設置する。固定樹脂22aは、図5の模式的拡大平面図に示すように、裏面電極型太陽電池セル8の周縁部31の一部と配線シート10の窪み32とに跨るようにして設置することができる。なお、図5のIc-Icに沿った断面が図1(c)に示される断面に相当する。
<Process for installing fixing resin>
Next, as shown in FIG.1 (c), uncured fixing resin 22a is installed in the dent 32 of the wiring sheet 10 so that it may touch at least one area | region of the peripheral part 31 of the back electrode type photovoltaic cell 8. As shown in FIG. To do. As shown in the schematic enlarged plan view of FIG. 5, the fixing resin 22 a can be installed so as to straddle a part of the peripheral portion 31 of the back electrode type solar cell 8 and the recess 32 of the wiring sheet 10. . Note that the cross section taken along Ic-Ic in FIG. 5 corresponds to the cross section shown in FIG.
 ここで、導電性粒子21を含む絶縁性樹脂20は裏面電極型太陽電池セル8の周縁部31よりも内側の領域に設置されており、導電性粒子21を含む絶縁性樹脂20と固定樹脂22aとは互いに離れて位置していることが好ましい。したがって、配線シート10の窪み32は、上記の裏面電極型太陽電池セル8と配線シート10との位置合わせによって裏面電極型太陽電池セル8に設置された導電性粒子21を含む絶縁性樹脂20と対向しない配線シート10の領域に設けられることが好ましい。 Here, the insulating resin 20 including the conductive particles 21 is installed in a region inside the peripheral edge portion 31 of the back electrode type solar battery cell 8, and the insulating resin 20 including the conductive particles 21 and the fixing resin 22a. Are preferably located apart from each other. Therefore, the dent 32 of the wiring sheet 10 includes the insulating resin 20 including the conductive particles 21 installed in the back electrode solar cell 8 by the alignment of the back electrode solar cell 8 and the wiring sheet 10 described above. It is preferable to be provided in a region of the wiring sheet 10 that is not opposed.
 上記のようにして未硬化の固定樹脂22aを設置することによって、配線シート10の窪み32を構成する接続用配線14の段差により固定樹脂22aが裏面電極型太陽電池セル8の内側の領域に流入しにくくなる。そのため、裏面電極型太陽電池セル8の内側の領域に設置された導電性粒子21を含む未硬化の絶縁性樹脂20は、配線シート10の窪み32に設置された未硬化の固定樹脂22aと接触せず、絶縁性樹脂20と固定樹脂22aとの混ざり合いを抑制することができる。 By installing the uncured fixing resin 22a as described above, the fixing resin 22a flows into the inner region of the back electrode type solar cell 8 due to the step of the connection wiring 14 constituting the depression 32 of the wiring sheet 10. It becomes difficult to do. Therefore, the uncured insulating resin 20 including the conductive particles 21 disposed in the inner region of the back electrode type solar cell 8 contacts the uncured fixing resin 22 a disposed in the recess 32 of the wiring sheet 10. Without mixing, the mixing of the insulating resin 20 and the fixing resin 22a can be suppressed.
 なお、固定樹脂22aとしては、たとえば従来から公知のエポキシ樹脂などの熱硬化性および/または光硬化性の樹脂を用いることができる。固定樹脂22aにはたとえば従来から公知の硬化剤などの添加剤が含まれていてもよい。 As the fixing resin 22a, for example, a thermosetting and / or photosetting resin such as a conventionally known epoxy resin can be used. The fixing resin 22a may contain an additive such as a conventionally known curing agent.
 固定樹脂22aを設置する工程は、裏面電極型太陽電池セル8と配線シート10との位置合わせをする工程の前であってもよい。この場合には、裏面電極型太陽電池セル8の電極の設置側の面の周縁部の少なくとも一部および配線シート10の配線の設置側に設けられた窪み32の少なくとも一方に未硬化の固定樹脂22aを設置し、裏面電極型太陽電池セル8と配線シート10との位置合わせをする工程において、たとえば図5に示すように、裏面電極型太陽電池セル8の周縁部31の少なくとも一部と配線シート10の窪み32とに跨るようにすればよい。 The step of installing the fixing resin 22a may be before the step of aligning the back electrode type solar cell 8 and the wiring sheet 10. In this case, uncured fixing resin in at least one part of the peripheral part of the electrode installation side surface of the back electrode type solar cell 8 and at least one of the depressions 32 provided on the wiring installation side of the wiring sheet 10. In the step of installing 22a and aligning the back electrode solar cell 8 and the wiring sheet 10, for example, as shown in FIG. 5, at least a part of the peripheral portion 31 of the back electrode solar cell 8 and the wiring What is necessary is just to straddle the hollow 32 of the sheet | seat 10.
 <固定樹脂を硬化する工程>
 次に、図1(d)に示すように、裏面電極型太陽電池セル8の周縁部31の少なくとも一部の領域に接するように配線シート10の窪み32に設置された未硬化の固定樹脂22aを硬化する工程が行なわれる。これにより、未硬化の固定樹脂22aが硬化することによって固定樹脂22となり、硬化後の固定樹脂22によって、裏面電極型太陽電池セル8が配線シート10に仮固定される。
<Step of curing the fixing resin>
Next, as shown in FIG. 1 (d), an uncured fixed resin 22 a installed in the recess 32 of the wiring sheet 10 so as to be in contact with at least a partial region of the peripheral edge portion 31 of the back electrode type solar cell 8. The step of curing is performed. Thereby, the uncured fixing resin 22 a is cured to become the fixing resin 22, and the back electrode type solar cells 8 are temporarily fixed to the wiring sheet 10 by the cured fixing resin 22.
 ここで、固定樹脂22aは、たとえば、紫外線の照射および加熱の少なくとも一方の処理をされることによって硬化して固定樹脂22となる。 Here, the fixed resin 22a is cured to be the fixed resin 22 by, for example, being subjected to at least one of ultraviolet irradiation and heating.
 <封止材によって封止する工程>
 次に、図1(e)に示すように、上記のように固定樹脂22によって配線シート10に仮固定された裏面電極型太陽電池セル8を表面保護材17と裏面保護材19との間の封止材18によって封止する工程が行なわれる。この封止材18によって封止する工程は、導電性粒子21を含む未硬化の絶縁性樹脂20を硬化する工程も含んでいる。
<The process of sealing with a sealing material>
Next, as shown in FIG. 1 (e), the back electrode type solar cell 8 temporarily fixed to the wiring sheet 10 by the fixing resin 22 as described above is placed between the surface protective material 17 and the back surface protective material 19. A step of sealing with the sealing material 18 is performed. The process of sealing with the sealing material 18 includes a process of curing the uncured insulating resin 20 including the conductive particles 21.
 封止材によって封止する工程は、たとえば、固定樹脂22によって裏面電極型太陽電池セル8が仮固定された配線シート10をエチレンビニルアセテートなどの封止材18を備えたガラスなどの表面保護材17と、エチレンビニルアセテートなどの封止材18を備えたポリエステルフィルムなどの裏面保護材19との間に挟み込み、表面保護材17と裏面保護材19との間を加圧しながら加熱することにより行なうことができる。 The step of sealing with the sealing material includes, for example, a surface protective material such as glass provided with the sealing material 18 such as ethylene vinyl acetate on the wiring sheet 10 on which the back electrode type solar cells 8 are temporarily fixed with the fixing resin 22. 17 and a back surface protective material 19 such as a polyester film provided with a sealing material 18 such as ethylene vinyl acetate, and heating between the surface protective material 17 and the back surface protective material 19 while applying pressure. be able to.
 導電性粒子21は、上記の加圧および加熱によって、裏面電極型太陽電池セル8の電極と配線シート10の配線との間で溶融して凝集した後に冷却されて固化することによって導電性物質21aとなる。この導電性物質21aにより、裏面電極型太陽電池セル8の電極(n型用電極6およびp型用電極7)と配線シート10の配線(n型用配線12およびp型用配線13)との電気的接続を得ることができる。 The conductive particles 21 are melted and agglomerated between the electrodes of the back electrode type solar cells 8 and the wiring of the wiring sheet 10 by the pressurization and heating described above, and then cooled and solidified to form the conductive material 21a. It becomes. By this conductive material 21a, the electrode (n-type electrode 6 and p-type electrode 7) of the back electrode type solar cell 8 and the wiring sheet 10 (n-type wiring 12 and p-type wiring 13) are connected. An electrical connection can be obtained.
 また、この溶融後の導電性粒子21の凝集によって絶縁性樹脂20が導電性粒子21の外側に押し出され、裏面電極型太陽電池セル8の電極間と配線シート10の配線間との間の領域に広がった後に硬化する。このとき、広がった絶縁性樹脂20が固定樹脂22と接触したとしても絶縁性樹脂同士であるため問題がない。 In addition, the insulating resin 20 is pushed out of the conductive particles 21 by the aggregation of the conductive particles 21 after melting, and the region between the electrodes of the back electrode type solar cell 8 and the wiring of the wiring sheet 10. After spreading to harden. At this time, even if the expanded insulating resin 20 comes into contact with the fixing resin 22, there is no problem because the insulating resin 20 is an insulating resin.
 以上により、裏面電極型太陽電池セル8のn型用電極6およびp型用電極7がそれぞれ配線シート10のn型用配線12およびp型用配線13と導電性物質21aによって電気的に接続され、裏面電極型太陽電池セル8の電極間の領域と配線シート10の配線間の領域とが硬化した絶縁性樹脂20によって機械的に接続された構成を有する配線シート付き太陽電池セルが得られる。また、その配線シート付き太陽電池セルが表面保護材17と裏面保護材19との間の封止材18によって封止された太陽電池モジュールが得られる。 Thus, the n-type electrode 6 and the p-type electrode 7 of the back electrode type solar battery cell 8 are electrically connected to the n-type wiring 12 and the p-type wiring 13 of the wiring sheet 10 by the conductive material 21a, respectively. Thus, a solar cell with a wiring sheet having a configuration in which the region between the electrodes of the back electrode type solar cell 8 and the region between the wirings of the wiring sheet 10 are mechanically connected by the cured insulating resin 20 is obtained. Moreover, the solar cell module by which the photovoltaic cell with a wiring sheet was sealed with the sealing material 18 between the surface protection material 17 and the back surface protection material 19 is obtained.
 以上の構成を有する配線シート付き太陽電池セルおよび太陽電池モジュールは、配線シート10の窪み32に未硬化の固定樹脂22aを設置し、固定樹脂22aが裏面電極型太陽電池セル8の内側の領域に回り込まないようにした状態で、固定樹脂22aを硬化して固定樹脂22としている。そのため、未硬化の固定樹脂22aが、裏面電極型太陽電池セル8の内側の領域に設置された導電性粒子21を含む絶縁性樹脂20と混ざり合うのを抑制することができる。これにより、溶融した導電性粒子21を裏面電極型太陽電池セル8の電極と配線シート10の配線との間により確実に凝集することができるため、硬化した絶縁性樹脂20により裏面電極型太陽電池セル8と配線シート10との機械的な接続の安定性を向上させることができるとともに、導電性粒子21が溶融して凝集した後に冷却されて固化することによって形成された導電性物質21aによって裏面電極型太陽電池セル8の電極と配線シート10の配線との電気的な接続の安定性を向上させることができる。 In the solar cell with a wiring sheet and the solar cell module having the above-described configuration, the uncured fixing resin 22a is installed in the recess 32 of the wiring sheet 10, and the fixing resin 22a is located in the inner region of the back electrode type solar cell 8. The fixed resin 22a is cured to be the fixed resin 22 in a state where it does not go around. Therefore, it can suppress that uncured fixing resin 22a mixes with the insulating resin 20 containing the electroconductive particle 21 installed in the area | region inside the back surface electrode type photovoltaic cell 8. FIG. Accordingly, the molten conductive particles 21 can be more reliably aggregated between the electrode of the back electrode type solar cell 8 and the wiring of the wiring sheet 10, so that the back electrode type solar cell is cured by the cured insulating resin 20. The stability of the mechanical connection between the cell 8 and the wiring sheet 10 can be improved, and the back surface is formed by the conductive material 21a formed by cooling and solidifying after the conductive particles 21 are melted and aggregated. The stability of the electrical connection between the electrode of the electrode type solar cell 8 and the wiring of the wiring sheet 10 can be improved.
 なお、上記においては、裏面電極型太陽電池セル8の電極(n型用電極6、p型用電極7)に導電性粒子21を含む絶縁性樹脂20を設置する場合について説明したが、配線シート10の配線(n型用配線12、p型用配線13)に導電性粒子21を含む絶縁性樹脂20を設置してもよく、裏面電極型太陽電池セル8の電極および配線シート10の配線のそれぞれに導電性粒子21を含む絶縁性樹脂20を設置してもよい。 In addition, in the above, although the case where the insulating resin 20 containing the electroconductive particle 21 was installed in the electrode (the electrode 6 for n types, the electrode 7 for p types) of the back electrode type photovoltaic cell 8 was demonstrated, a wiring sheet 10 wirings (n-type wiring 12 and p-type wiring 13) may be provided with an insulating resin 20 containing conductive particles 21, and the electrodes of the back electrode solar cell 8 and the wiring of the wiring sheet 10 You may install the insulating resin 20 containing the electroconductive particle 21 in each.
 上記においては、封止材18によって封止する工程において、導電性粒子21を含む絶縁性樹脂20の硬化工程を行なったが、封止材18によって封止する工程の前に導電性粒子21を含む絶縁性樹脂20の硬化工程を行なって上記構成を有する配線シート付き太陽電池セルを作製した後に、配線シート付き太陽電池セルを封止材18によって封止して太陽電池モジュールを作製してもよい。ただし、太陽電池モジュールの製造効率を向上させる観点からは、封止材18によって封止する工程において、導電性粒子21を含む絶縁性樹脂20の硬化工程を行なうことが好ましい。 In the above, the step of curing the insulating resin 20 including the conductive particles 21 was performed in the step of sealing with the sealing material 18, but the conductive particles 21 were removed before the step of sealing with the sealing material 18. Even if a solar cell with a wiring sheet having the above-described configuration is produced by performing a curing step of the insulating resin 20 including the solar cell module, the solar cell with the wiring sheet is sealed with a sealing material 18 to produce a solar cell module. Good. However, from the viewpoint of improving the manufacturing efficiency of the solar cell module, it is preferable to perform a curing step of the insulating resin 20 including the conductive particles 21 in the step of sealing with the sealing material 18.
 上記においては、導電層41を除去することによって窪み32を形成したが、窪み32の形成方法は特に限定されない。ただし、上述のように、導電層41を除去することによって、n型用配線12、p型用配線13および接続用配線14とともに窪み32を形成することが追加の工程が不要になる観点から好ましい。導電層41の除去以外の窪み32の形成方法としては、たとえば、絶縁性基材11の厚さを薄くする方法、絶縁性基材11を変形する方法、またはこれらの方法を組み合わせた方法などが挙げられる。 In the above, the depression 32 is formed by removing the conductive layer 41, but the method of forming the depression 32 is not particularly limited. However, as described above, by removing the conductive layer 41, it is preferable to form the depression 32 together with the n-type wiring 12, the p-type wiring 13, and the connection wiring 14 from the viewpoint that an additional step is unnecessary. . Examples of the method for forming the recess 32 other than the removal of the conductive layer 41 include a method of reducing the thickness of the insulating base material 11, a method of deforming the insulating base material 11, or a method combining these methods. Can be mentioned.
 窪み32の形状および大きさは特に限定されず、窪み32においては絶縁性基材11の表面が必ずしも露出している必要はない。ただし、接続用配線14の厚さによって窪み32の段差を大きくして、固定樹脂22aの裏面電極型太陽電池セル8の内側の領域への流入を効果的に抑止するためには、窪み32は絶縁性基材11の表面の少なくとも一部が露出している領域であることが好ましい。 The shape and size of the recess 32 are not particularly limited, and the surface of the insulating substrate 11 does not necessarily have to be exposed in the recess 32. However, in order to increase the level difference of the depression 32 depending on the thickness of the connection wiring 14 and effectively suppress the inflow of the fixing resin 22a into the inner region of the back electrode type solar cell 8, the depression 32 It is preferable that at least a part of the surface of the insulating substrate 11 is exposed.
 窪み32は、裏面電極型太陽電池セル8の周縁部31に対向する領域から裏面電極型太陽電池セル8の内側に対向する領域に入り込むように伸長する形状とされることが好ましい。この場合には、裏面電極型太陽電池セル8の裏面と窪み32との間に固定樹脂22aが入り込むように設置することができるため、裏面電極型太陽電池セル8と配線シート10との機械的な接続の安定性をさらに向上させることができる。この場合に、窪み32の領域が、裏面電極型太陽電池セル8の電極の形成領域と対向しない位置に形成されることがより好ましく、配線シート10の絶縁性基材11が200μm以下の厚さを有する樹脂から形成される場合には裏面電極型太陽電池セル8の電極と配線シート10の窪み32とが1mm以上離れる形状に形成されることがさらに好ましい。このように、裏面電極型太陽電池セル8の電極と配線シート10の窪み32とを適切な距離だけ離れて位置させることによって、窪み32の周囲の接続用配線14を裏面電極型太陽電池セル8の裏面の電極が形成されていない領域に当接させることで窪み32と電極との間の空間を遮ることができるため、固定樹脂22aが絶縁性樹脂20と混ざり合うのをより確実に抑止することができる。 It is preferable that the recess 32 has a shape extending from a region facing the peripheral edge 31 of the back electrode type solar cell 8 so as to enter a region facing the inside of the back electrode type solar cell 8. In this case, since the fixing resin 22 a can be installed between the back surface of the back electrode type solar cell 8 and the recess 32, the mechanical relationship between the back electrode type solar cell 8 and the wiring sheet 10 is achieved. It is possible to further improve the stability of connection. In this case, it is more preferable that the region of the depression 32 is formed at a position not facing the electrode formation region of the back electrode type solar cell 8, and the insulating base material 11 of the wiring sheet 10 has a thickness of 200 μm or less. In the case of being formed from a resin having a thickness, it is more preferable that the electrode of the back electrode type solar battery cell 8 and the recess 32 of the wiring sheet 10 are formed in a shape separated by 1 mm or more. In this way, by connecting the electrode of the back surface electrode type solar battery cell 8 and the recess 32 of the wiring sheet 10 by an appropriate distance, the connection wiring 14 around the recess 32 is connected to the back electrode type solar cell 8. Since the space between the recess 32 and the electrode can be blocked by abutting against the region where the electrode on the back surface is not formed, the fixing resin 22a is more reliably prevented from being mixed with the insulating resin 20. be able to.
 また、本発明における裏面電極型太陽電池セルの概念には、上述した基板の一方の表面側(裏面側)のみにn型用電極およびp型用電極の双方が形成された構成のものだけでなく、MWT(Metal Wrap Through)セル(基板に設けられた貫通孔に電極の一部を配置した構成の太陽電池セル)などのいわゆるバックコンタクト型太陽電池セル(太陽電池セルの受光面側と反対側の裏面側から電流を取り出す構造の太陽電池セル)のすべてが含まれる。 In addition, the concept of the back electrode type solar battery cell in the present invention only has a configuration in which both the n-type electrode and the p-type electrode are formed only on one surface side (back side) of the substrate described above. And so-called back contact type solar cells (opposite to the light receiving surface side of the solar cells) such as MWT (Metal Wrap Through) cells (solar cells having a configuration in which a part of an electrode is arranged in a through hole provided in a substrate) All of the solar cells having a structure in which current is taken out from the back side of the side.
 また、本発明における配線シート付き太陽電池セルの概念には、複数の裏面電極型太陽電池セルが配線シート上に設置されている構成のみならず、1つの裏面電極型太陽電池セルが配線シート上に設置されている構成も含まれる。 The concept of the solar cell with a wiring sheet in the present invention includes not only a configuration in which a plurality of back electrode type solar cells are installed on the wiring sheet, but also a single back electrode type solar cell on the wiring sheet. The configuration installed in is also included.
 (実施の形態2)
 <導電性粒子を含む樹脂を設置する工程>
 図6(a)~(e)に、実施の形態2の太陽電池モジュールの製造方法を図解する模式的な断面図を示す。本実施の形態においては、基板1の電極形成側の表面に樹脂流動阻止部の一例として突起部33を備えた裏面電極型太陽電池セル8を用いている点に特徴がある。
(Embodiment 2)
<Process of installing resin containing conductive particles>
FIGS. 6A to 6E are schematic cross-sectional views illustrating a method for manufacturing the solar cell module according to the second embodiment. The present embodiment is characterized in that a back electrode type solar cell 8 having a protrusion 33 as an example of a resin flow blocking portion on the surface of the substrate 1 on the electrode forming side is used.
 まず、図6(a)に示すように、裏面電極型太陽電池セル8と、配線シート10とを用意し、裏面電極型太陽電池セル8の少なくとも一方の表面である基板1の裏面に設けられたn型用電極6およびp型用電極7にそれぞれ導電性粒子21を含む絶縁性樹脂20を設置する。なお、突起部33には導電性粒子21を含む絶縁性樹脂20を設置しない。 First, as shown in FIG. 6A, a back electrode type solar cell 8 and a wiring sheet 10 are prepared and provided on the back surface of the substrate 1 which is at least one surface of the back electrode type solar cell 8. Insulating resin 20 containing conductive particles 21 is placed on n-type electrode 6 and p-type electrode 7. Note that the insulating resin 20 including the conductive particles 21 is not installed on the protrusion 33.
 図7に、実施の形態2で用いられる裏面電極型太陽電池セル8の裏面の模式的な平面図を示す。図7に示すように、突起部33は、裏面電極型太陽電池セル8の裏面の電極(n型用電極6、p型用電極7)の形成領域と周縁部31との間の領域に設けられている。なお、本実施の形態においては、裏面電極型太陽電池セル8の裏面の電極の形成領域と周縁部31との間の領域の一部に突起部33を設けた裏面電極型太陽電池セル8を用いる場合について説明するが、突起部33は、裏面電極型太陽電池セル8の裏面の電極の形成領域と周縁部31との間の領域の少なくとも一部に設けられていればよい。また、突起部33は裏面電極型太陽電池セル8の裏面から外側に突出している。 FIG. 7 shows a schematic plan view of the back surface of the back electrode type solar battery cell 8 used in the second embodiment. As shown in FIG. 7, the protrusion 33 is provided in a region between the formation region of the back electrode (the n-type electrode 6 and the p-type electrode 7) of the back electrode type solar cell 8 and the peripheral portion 31. It has been. In the present embodiment, the back electrode type solar cell 8 in which the protrusion 33 is provided in a part of the region between the electrode forming region on the back surface of the back electrode type solar cell 8 and the peripheral portion 31 is provided. Although the case where it uses is demonstrated, the projection part 33 should just be provided in the at least one part of the area | region between the electrode formation area of the back surface of the back electrode type photovoltaic cell 8, and the peripheral part 31. FIG. Further, the protrusion 33 protrudes outward from the back surface of the back electrode type solar cell 8.
 突起部33の材質は特に限定されないが、突起部33は裏面電極型太陽電池セル8の電極と同一の材質から形成されていることが好ましい。この場合には、裏面電極型太陽電池セル8の裏面の電極と突起部33とを同時に形成することができるため、裏面電極型太陽電池セル8の製造効率を向上させることができる。なお、突起部33を有する裏面電極型太陽電池セル8は、突起部33を形成すること以外は実施の形態1で説明した方法と同様の方法で形成することができる。 The material of the protrusion 33 is not particularly limited, but the protrusion 33 is preferably formed of the same material as the electrode of the back electrode type solar cell 8. In this case, since the electrode on the back surface of the back electrode type solar cell 8 and the protrusion 33 can be formed at the same time, the manufacturing efficiency of the back electrode type solar cell 8 can be improved. The back electrode type solar cell 8 having the protrusion 33 can be formed by the same method as that described in Embodiment 1 except that the protrusion 33 is formed.
 突起部33が裏面電極型太陽電池セル8の電極と同一の材質から形成されている場合には、突起部33と電極(n型用電極6およびp型用電極7)とは互いに離れた位置に形成されることが好ましい。この場合には、裏面電極型太陽電池セル8の電極と配線シート10の配線との間に設置された導電性粒子21を含む絶縁性樹脂20が突起部33を超えて裏面電極型太陽電池セル8の周縁部31側に流出するのを抑制することができる。 When the protrusion 33 is made of the same material as the electrode of the back electrode type solar cell 8, the protrusion 33 and the electrode (n-type electrode 6 and p-type electrode 7) are separated from each other. It is preferable to be formed. In this case, the insulating resin 20 including the conductive particles 21 installed between the electrode of the back electrode type solar cell 8 and the wiring of the wiring sheet 10 exceeds the protrusion 33 and the back electrode type solar cell. 8 can be prevented from flowing out toward the peripheral edge 31 side.
 樹脂流動阻止部としては、突起部33の代わりに、撥液性のコーティングを裏面電極型太陽電池セル8の裏面に設けてもよい。この場合には、導電性粒子21を含む未硬化の絶縁性樹脂20と、未硬化の固定樹脂22aと、が撥液性のコーティングによってともに弾かれることによって、裏面電極型太陽電池セル8の裏面にこれらの樹脂が流入できない箇所を形成することができる。そのため、この場合にも、導電性粒子21を含む絶縁性樹脂20と固定樹脂22aとが混ざり合うのをより確実に防止することができる。なお、撥液性のコーティングとしては、未硬化の絶縁性樹脂20と、未硬化の固定樹脂22aとを弾くことができるものであれば特に限定なく用いることができる。 As the resin flow blocking portion, a liquid-repellent coating may be provided on the back surface of the back electrode type solar battery cell 8 instead of the protruding portion 33. In this case, the uncured insulating resin 20 containing the conductive particles 21 and the uncured fixing resin 22a are repelled together by the liquid-repellent coating, whereby the back surface of the back electrode type solar cell 8 is formed. A portion where these resins cannot flow into can be formed. Therefore, also in this case, it is possible to more reliably prevent the insulating resin 20 including the conductive particles 21 and the fixing resin 22a from being mixed. The liquid repellent coating can be used without particular limitation as long as it can repel the uncured insulating resin 20 and the uncured fixing resin 22a.
 また、樹脂流動阻止部としては、突起部33を設けるとともに、裏面電極型太陽電池セル8の裏面の突起部33と電極との間の領域に撥液性のコーティングを設けてもよい。この場合には、突起部33によって固定樹脂22aの裏面電極型太陽電池セル8の内側への流入を抑制することができるとともに、撥液性のコーティングによって導電性粒子21を含む絶縁性樹脂20の裏面電極型太陽電池セル8の周縁部31側への流出を抑制することができる。そのため、この場合にはこれらの効果の相乗効果によって、導電性粒子21を含む絶縁性樹脂20と固定樹脂22aとが混ざり合うのをさらに確実に防止することができる。 Further, as the resin flow blocking portion, a protrusion 33 may be provided, and a liquid repellent coating may be provided in a region between the protrusion 33 on the back surface of the back electrode type solar cell 8 and the electrode. In this case, the protrusion 33 can suppress the inflow of the fixed resin 22a into the back electrode solar cell 8 and the insulating resin 20 including the conductive particles 21 by the liquid repellent coating. The outflow to the peripheral edge 31 side of the back electrode type solar cell 8 can be suppressed. Therefore, in this case, the synergistic effect of these effects can further reliably prevent the insulating resin 20 including the conductive particles 21 and the fixing resin 22a from being mixed.
 また、実施の形態2で用いられる配線シート10としては、窪み32を形成しないこと以外は実施の形態1で用いられた配線シート10と同様の配線シート10を用いることができる。 Also, as the wiring sheet 10 used in the second embodiment, a wiring sheet 10 similar to the wiring sheet 10 used in the first embodiment can be used except that the recess 32 is not formed.
 また、実施の形態2で用いられる配線シート10としては、実施の形態1で用いられた窪み32を有する配線シート10を用いることもできる。この場合には、樹脂流動阻止部を窪み32の周囲の接続用配線14に対向する位置に設けることが好ましい。これにより、窪み32の段差を構成する接続用配線14上に樹脂流動阻止部を位置させることができるため、固定樹脂22aの裏面電極型太陽電池セル8の内側の領域への流入経路を効果的に狭くすることができる。 Further, as the wiring sheet 10 used in the second embodiment, the wiring sheet 10 having the recess 32 used in the first embodiment can also be used. In this case, the resin flow blocking portion is preferably provided at a position facing the connection wiring 14 around the recess 32. Thereby, since the resin flow blocking portion can be positioned on the connection wiring 14 constituting the step of the depression 32, the inflow path to the inner region of the back electrode solar cell 8 of the fixed resin 22a is effective. Can be narrowed.
 <太陽電池セルと配線シートとの位置合わせをする工程>
 次に、図6(b)に示すように、裏面電極型太陽電池セル8のn型用電極6およびp型用電極7がそれぞれ配線シート10の絶縁性基材11上に設けられたn型用配線12およびp型用配線13と導電性粒子21を含む絶縁性樹脂20を介して対向するように、裏面電極型太陽電池セル8と配線シート10との位置合わせを行なう。
<Process for aligning solar cells and wiring sheet>
Next, as shown in FIG. 6B, the n-type electrode 6 and the p-type electrode 7 of the back electrode type solar cell 8 are respectively provided on the insulating substrate 11 of the wiring sheet 10. The back electrode type solar cells 8 and the wiring sheet 10 are aligned so as to face the wiring 12 and the p-type wiring 13 via the insulating resin 20 containing the conductive particles 21.
 このとき、裏面電極型太陽電池セル8の突起部33に対向する配線シート10の領域に絶縁性基材11の表面が位置するように、裏面電極型太陽電池セル8と配線シート10との位置合わせが行なわれる。 At this time, the positions of the back electrode type solar cells 8 and the wiring sheet 10 so that the surface of the insulating base material 11 is located in the region of the wiring sheet 10 facing the protrusions 33 of the back electrode type solar cells 8. Matching is done.
 <固定樹脂を設置する工程>
 次に、図6(c)に示すように、裏面電極型太陽電池セル8の周縁部31の少なくとも一部の領域と、配線シート10との間に未硬化の固定樹脂22aを設置する。固定樹脂22aは、図8の模式的拡大平面図に示すように、裏面電極型太陽電池セル8の突起部33よりも外側の領域に設置することができる。なお、図8のVIc-VIcに沿った断面が図6(c)に示される断面に相当する。
<Process for installing fixing resin>
Next, as shown in FIG. 6C, an uncured fixing resin 22 a is placed between at least a part of the peripheral edge portion 31 of the back electrode type solar cell 8 and the wiring sheet 10. As shown in the schematic enlarged plan view of FIG. 8, the fixing resin 22 a can be installed in a region outside the protruding portion 33 of the back electrode type solar cell 8. A cross section taken along VIc-VIc in FIG. 8 corresponds to the cross section shown in FIG.
 ここで、導電性粒子21を含む絶縁性樹脂20は裏面電極型太陽電池セル8の突起部33よりも内側の領域に設置されているため、導電性粒子21を含む絶縁性樹脂20と固定樹脂22aとは互いに離れて位置している。 Here, since the insulating resin 20 including the conductive particles 21 is disposed in a region inside the protrusion 33 of the back electrode type solar cell 8, the insulating resin 20 including the conductive particles 21 and the fixing resin 22a is located away from each other.
 上記のようにして未硬化の固定樹脂22aを設置することによって、裏面電極型太陽電池セル8の突起部33により形成される段差により固定樹脂22aが裏面電極型太陽電池セル8の内側の領域に流入しにくくなる。そのため、裏面電極型太陽電池セル8の内側の領域に設置された導電性粒子21を含む未硬化の絶縁性樹脂20は、裏面電極型太陽電池セル8の突起部33よりも外側に設置された未硬化の固定樹脂22aと接触せず、絶縁性樹脂20と固定樹脂22aとの混ざり合いを抑制することができる。 By installing the uncured fixing resin 22a as described above, the fixing resin 22a is placed in the inner region of the back electrode solar cell 8 due to the step formed by the protrusion 33 of the back electrode solar cell 8. It becomes difficult to flow in. Therefore, the uncured insulating resin 20 including the conductive particles 21 installed in the inner region of the back electrode solar cell 8 is installed outside the protrusion 33 of the back electrode solar cell 8. Mixing between the insulating resin 20 and the fixed resin 22a can be suppressed without contacting the uncured fixed resin 22a.
 <固定樹脂を硬化する工程>
 次に、図6(d)に示すように、裏面電極型太陽電池セル8の突起部33よりも外側に設置された未硬化の固定樹脂22aを硬化する工程が行なわれる。これにより、未硬化の固定樹脂22aが硬化することによって固定樹脂22となり、硬化後の固定樹脂22によって裏面電極型太陽電池セル8が配線シート10に仮固定される。
<Step of curing the fixing resin>
Next, as shown in FIG. 6 (d), a step of curing the uncured fixing resin 22 a installed outside the protrusion 33 of the back electrode type solar cell 8 is performed. Thereby, the uncured fixing resin 22 a is cured to become the fixing resin 22, and the back electrode type solar cell 8 is temporarily fixed to the wiring sheet 10 by the cured fixing resin 22.
 <封止材によって封止する工程>
 次に、図6(e)に示すように、上記のように固定樹脂22によって裏面電極型太陽電池セル8が配線シート10に仮固定された配線シート10を表面保護材17と裏面保護材19との間の封止材18によって封止する工程が行なわれる。この封止材18によって封止する工程は、導電性粒子21を含む未硬化の絶縁性樹脂20を硬化する工程も含んでいる。
<The process of sealing with a sealing material>
Next, as shown in FIG. 6 (e), the wiring sheet 10 in which the back electrode type solar cells 8 are temporarily fixed to the wiring sheet 10 by the fixing resin 22 as described above is used as the surface protective material 17 and the back surface protective material 19. The process of sealing with the sealing material 18 between is performed. The process of sealing with the sealing material 18 includes a process of curing the uncured insulating resin 20 including the conductive particles 21.
 実施の形態2においても、封止材によって封止する工程は、たとえば、固定樹脂22によって裏面電極型太陽電池セル8が仮固定された配線シート10を封止材18を備えた表面保護材17と、封止材18を備えた裏面保護材19との間に挟み込み、表面保護材17と裏面保護材19との間を加圧しながら加熱することにより行なうことができる。 Also in the second embodiment, the step of sealing with the sealing material includes, for example, the surface protective material 17 provided with the sealing material 18 on the wiring sheet 10 on which the back electrode type solar cells 8 are temporarily fixed with the fixing resin 22. And the back surface protective material 19 provided with the sealing material 18, and heating is performed while applying pressure between the front surface protective material 17 and the back surface protective material 19.
 導電性粒子21は、上記の加圧および加熱によって、裏面電極型太陽電池セル8の電極と配線シート10の配線との間で溶融して凝集した後に冷却されて固化することによって導電性物質21aとなる。この導電性物質21aにより、裏面電極型太陽電池セル8の電極(n型用電極6およびp型用電極7)と配線シート10の配線(n型用配線12およびp型用配線13)との電気的接続を得ることができる。 The conductive particles 21 are melted and agglomerated between the electrodes of the back electrode type solar cells 8 and the wiring of the wiring sheet 10 by the pressurization and heating described above, and then cooled and solidified to form the conductive material 21a. It becomes. By this conductive material 21a, the electrode (n-type electrode 6 and p-type electrode 7) of the back electrode type solar cell 8 and the wiring sheet 10 (n-type wiring 12 and p-type wiring 13) are connected. An electrical connection can be obtained.
 また、この溶融後の導電性粒子21の凝集によって絶縁性樹脂20が導電性粒子21の外側に押し出され、裏面電極型太陽電池セル8の電極間と配線シート10の配線間との間の領域に広がった後に硬化する。このとき、広がった絶縁性樹脂20が固定樹脂22と接触したとしても絶縁性樹脂同士であるため問題がない。 In addition, the insulating resin 20 is pushed out of the conductive particles 21 by the aggregation of the conductive particles 21 after melting, and the region between the electrodes of the back electrode type solar cell 8 and the wiring of the wiring sheet 10. After spreading to harden. At this time, even if the expanded insulating resin 20 comes into contact with the fixing resin 22, there is no problem because the insulating resin 20 is an insulating resin.
 以上により、裏面電極型太陽電池セル8のn型用電極6およびp型用電極7がそれぞれ配線シート10のn型用配線12およびp型用配線13と導電性物質21aによって電気的に接続され、裏面電極型太陽電池セル8の電極間の領域と配線シート10の配線間の領域とが硬化した絶縁性樹脂20によって機械的に接続された構成を有する配線シート付き太陽電池セルが得られる。また、その配線シート付き太陽電池セルが表面保護材17と裏面保護材19との間の封止材18によって封止された太陽電池モジュールが得られる。 Thus, the n-type electrode 6 and the p-type electrode 7 of the back electrode type solar battery cell 8 are electrically connected to the n-type wiring 12 and the p-type wiring 13 of the wiring sheet 10 by the conductive material 21a, respectively. Thus, a solar cell with a wiring sheet having a configuration in which the region between the electrodes of the back electrode type solar cell 8 and the region between the wirings of the wiring sheet 10 are mechanically connected by the cured insulating resin 20 is obtained. Moreover, the solar cell module by which the photovoltaic cell with a wiring sheet was sealed with the sealing material 18 between the surface protection material 17 and the back surface protection material 19 is obtained.
 以上の構成を有する配線シート付き太陽電池セルおよび太陽電池モジュールは、裏面電極型太陽電池セル8の突起部33よりも外側に未硬化の固定樹脂22aを設置し、固定樹脂22aが裏面電極型太陽電池セル8の内側の領域に回り込まないようにして、固定樹脂22aを硬化して固定樹脂22としている。そのため、未硬化の固定樹脂22aが裏面電極型太陽電池セル8の内側の領域に設置された導電性粒子21を含む絶縁性樹脂20と混ざり合うのを抑制することができる。これにより、溶融した導電性粒子21を裏面電極型太陽電池セル8の電極と配線シート10の配線との間により確実に凝集することができるため、硬化した絶縁性樹脂20により裏面電極型太陽電池セル8と配線シート10との機械的な接続の安定性を向上させることができるとともに、導電性粒子21が溶融して凝集した後に冷却されて固化した導電性物質21aによって裏面電極型太陽電池セル8の電極と配線シート10の配線との電気的な接続の安定性を向上させることができる。 In the solar cell with a wiring sheet and the solar cell module having the above-described configuration, the uncured fixed resin 22a is installed outside the protrusion 33 of the back electrode type solar cell 8, and the fixed resin 22a is the back electrode type solar cell. The fixed resin 22 a is cured to be the fixed resin 22 so as not to go around the area inside the battery cell 8. Therefore, it can suppress that uncured fixing resin 22a mixes with the insulating resin 20 containing the electroconductive particle 21 installed in the area | region inside the back surface electrode type photovoltaic cell 8. FIG. Accordingly, the molten conductive particles 21 can be more reliably aggregated between the electrode of the back electrode type solar cell 8 and the wiring of the wiring sheet 10, so that the back electrode type solar cell is cured by the cured insulating resin 20. The stability of the mechanical connection between the cell 8 and the wiring sheet 10 can be improved, and the back electrode type solar cell is formed by the conductive material 21a that is cooled and solidified after the conductive particles 21 are melted and aggregated. The stability of electrical connection between the eight electrodes and the wiring of the wiring sheet 10 can be improved.
 実施の形態2における上記以外の説明は実施の形態1と同様であるため、その説明についてはここでは省略する。 Since the description other than the above in the second embodiment is the same as that in the first embodiment, the description thereof is omitted here.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、配線シート、配線シート付き太陽電池セル、太陽電池モジュール、太陽電池セル、配線シート付き太陽電池セルの製造方法および太陽電池モジュールの製造方法に好適に利用することができる。 The present invention can be suitably used for a wiring sheet, a solar battery cell with a wiring sheet, a solar battery module, a solar battery cell, a method for manufacturing a solar battery cell with a wiring sheet, and a method for manufacturing a solar battery module.
 1 基板、1a ダメージ層、2 n型不純物拡散領域、3 p型不純物拡散領域、4 パッシベーション膜、4a,4b コンタクトホール、5 反射防止膜、6 n型用電極、7 p型用電極、8 裏面電極型太陽電池セル、10 配線シート、11 絶縁性基材、12 n型用配線、13 p型用配線、14 接続用配線、20 絶縁性樹脂、21 導電性粒子、21a 導電性物質、22a,22 固定樹脂、31 周縁部、32 窪み、33 突起部、41 導電層、42 レジスト、43 矢印。 1 substrate, 1a damage layer, 2 n-type impurity diffusion region, 3 p-type impurity diffusion region, 4 passivation film, 4a, 4b contact hole, 5 antireflection film, 6 n-type electrode, 7 p-type electrode, 8 back surface Electrode solar cell, 10 wiring sheet, 11 insulating substrate, 12 n-type wiring, 13 p-type wiring, 14 connecting wiring, 20 insulating resin, 21 conductive particles, 21a conductive material, 22a, 22 fixed resin, 31 peripheral edge, 32 dent, 33 protrusion, 41 conductive layer, 42 resist, 43 arrow.

Claims (14)

  1.  絶縁性基材(11)と、
     前記絶縁性基材(11)の少なくとも一方の表面に設けられた配線(12,13)と、を含む、配線シート(10)であって、
     前記配線(12,13)は、前記配線シート(10)上に設置される太陽電池セル(8)の周縁部に対向する前記配線シート(10)の領域の少なくとも一部に窪み(32)を有している、配線シート(10)。
    An insulating substrate (11);
    A wiring sheet (10) comprising wirings (12, 13) provided on at least one surface of the insulating substrate (11),
    The wiring (12, 13) has a recess (32) in at least a part of the region of the wiring sheet (10) facing the peripheral edge of the solar cell (8) installed on the wiring sheet (10). A wiring sheet (10).
  2.  前記窪み(32)は、前記絶縁性基材(11)の表面が露出している領域であって、前記配線(12,13)に囲まれている領域である、請求項1に記載の配線シート(10)。 The wiring according to claim 1, wherein the recess (32) is a region where the surface of the insulating base material (11) is exposed and is surrounded by the wiring (12, 13). Sheet (10).
  3.  請求項1または2に記載の配線シート(10)と、
     基板(1)と前記基板(1)の少なくとも一方の表面上に設けられた電極(6,7)とを有する太陽電池セル(8)と、
     前記配線シート(10)の前記配線(12,13)と前記太陽電池セル(8)の前記電極(6,7)との間に設置された導電性物質(21a)と、
     前記配線シート(10)と前記太陽電池セル(8)とを機械的に接続する固定樹脂(22,22a)と、を含み、
     前記固定樹脂(22,22a)は、前記太陽電池セル(8)の周縁部に接するように前記窪み(32)に設けられている、配線シート付き太陽電池セル。
    The wiring sheet (10) according to claim 1 or 2,
    A solar cell (8) having a substrate (1) and electrodes (6, 7) provided on at least one surface of the substrate (1);
    A conductive substance (21a) installed between the wiring (12, 13) of the wiring sheet (10) and the electrode (6, 7) of the solar battery cell (8);
    A fixing resin (22, 22a) for mechanically connecting the wiring sheet (10) and the solar battery cell (8),
    The said fixing resin (22, 22a) is a photovoltaic cell with a wiring sheet provided in the said hollow (32) so that the peripheral part of the said photovoltaic cell (8) may be contact | connected.
  4.  前記固定樹脂(22,22a)は、紫外線の照射および加熱の少なくとも一方の処理によって硬化する絶縁性樹脂である、請求項3に記載の配線シート付き太陽電池セル。 The solar cell with a wiring sheet according to claim 3, wherein the fixing resin (22, 22a) is an insulating resin that is cured by at least one of ultraviolet irradiation and heating.
  5.  請求項3または4に記載の配線シート付き太陽電池セルを含む、太陽電池モジュール。 A solar battery module including the solar battery cell with a wiring sheet according to claim 3 or 4.
  6.  基板(1)と、
     前記基板(1)の少なくとも一方の表面上に設けられた電極(6,7)と、を含む太陽電池セル(8)であって、
     前記電極(6,7)と前記太陽電池セル(8)の周縁部との間の少なくとも一部の領域に樹脂流動阻止部(33)が設けられた、太陽電池セル。
    A substrate (1);
    An electrode (6, 7) provided on at least one surface of the substrate (1), and a solar cell (8) comprising:
    A solar battery cell in which a resin flow blocking part (33) is provided in at least a part of the region between the electrode (6, 7) and the peripheral part of the solar battery cell (8).
  7.  前記樹脂流動阻止部(33)は、前記電極(6,7)と同一の材質から形成されている、請求項6に記載の太陽電池セル(8)。 The solar cell (8) according to claim 6, wherein the resin flow blocking part (33) is formed of the same material as the electrode (6, 7).
  8.  請求項6または7に記載の太陽電池セル(8)と、
     絶縁性基材(11)と前記絶縁性基材(11)の少なくとも一方の表面に設けられた配線(12,13)とを有する配線シート(10)と、
     前記配線シート(10)の前記配線(12,13)と前記太陽電池セル(8)の前記電極(6,7)との間に設置された導電性物質(21a)と、
     前記配線シート(10)と前記太陽電池セル(8)とを機械的に接続する固定樹脂(22,22a)と、を含み、
     前記固定樹脂(22,22a)は、前記太陽電池セル(8)の前記樹脂流動阻止部(33)よりも外側に位置するように前記配線シート(10)上に設けられている、配線シート付き太陽電池セル。
    Solar cell (8) according to claim 6 or 7,
    A wiring sheet (10) having an insulating base (11) and wiring (12, 13) provided on at least one surface of the insulating base (11);
    A conductive substance (21a) installed between the wiring (12, 13) of the wiring sheet (10) and the electrode (6, 7) of the solar battery cell (8);
    A fixing resin (22, 22a) for mechanically connecting the wiring sheet (10) and the solar battery cell (8),
    With the wiring sheet, the fixing resin (22, 22a) is provided on the wiring sheet (10) so as to be located outside the resin flow blocking portion (33) of the solar battery cell (8). Solar cell.
  9.  前記固定樹脂(22,22a)は、紫外線の照射および加熱の少なくとも一方の処理によって硬化する絶縁性樹脂である、請求項8に記載の配線シート付き太陽電池セル。 The solar cell with a wiring sheet according to claim 8, wherein the fixing resin (22, 22a) is an insulating resin that is cured by at least one of ultraviolet irradiation and heating.
  10.  請求項8または9に記載の配線シート付き太陽電池セルを含む、太陽電池モジュール。 A solar battery module including the solar battery cell with a wiring sheet according to claim 8 or 9.
  11.  基板(1)と前記基板(1)の少なくとも一方の表面上に設けられた電極(6,7)とを有する太陽電池セル(8)と、
     絶縁性基材(11)と前記絶縁性基材(11)の少なくとも一方の表面に設けられた配線(12,13)とを有する配線シート(10)と、
     前記配線シート(10)の前記配線(12,13)と前記太陽電池セル(8)の前記電極(6,7)との間に設置された導電性物質(21a)と、
     前記配線シート(10)と前記太陽電池セル(8)とを機械的に接続する固定樹脂(22,22a)と、を含む配線シート付き太陽電池セルを製造するための方法であって、
     前記太陽電池セル(8)の前記電極(6,7)と前記配線シート(10)の前記配線(12,13)との間に導電性粒子(21)を含む樹脂(20)を設置する工程と、
     前記太陽電池セル(8)の前記電極(6,7)が前記配線シート(10)の前記配線(12,13)と対向するように前記太陽電池セル(8)と前記配線シート(10)との位置合わせをする工程と、
     前記太陽電池セル(8)の周縁部の少なくとも一部の領域と前記配線シート(10)との間に、前記導電性粒子(21)を含む前記樹脂(20)とは間隔を空けて前記固定樹脂(22,22a)を設置する工程と、
     前記固定樹脂(22,22a)を硬化する工程と、
     前記導電性粒子(21)を含む前記樹脂(20)を硬化する工程と、を含む、配線シート付き太陽電池セルの製造方法。
    A solar cell (8) having a substrate (1) and electrodes (6, 7) provided on at least one surface of the substrate (1);
    A wiring sheet (10) having an insulating base (11) and wiring (12, 13) provided on at least one surface of the insulating base (11);
    A conductive substance (21a) installed between the wiring (12, 13) of the wiring sheet (10) and the electrode (6, 7) of the solar battery cell (8);
    A wiring sheet (10) and a fixing resin (22, 22a) for mechanically connecting the solar battery cell (8), and a method for producing a solar battery cell with a wiring sheet comprising:
    Installing resin (20) containing conductive particles (21) between the electrodes (6, 7) of the solar battery cell (8) and the wires (12, 13) of the wiring sheet (10); When,
    The solar battery cell (8) and the wiring sheet (10) so that the electrodes (6, 7) of the solar battery cell (8) face the wirings (12, 13) of the wiring sheet (10). The process of aligning
    The resin cell (20) containing the conductive particles (21) is spaced from the resin sheet (20) between the at least part of the peripheral edge of the solar battery cell (8) and the wiring sheet (10). Installing the resin (22, 22a);
    Curing the fixing resin (22, 22a);
    A step of curing the resin (20) containing the conductive particles (21).
  12.  前記導電性粒子(21)を含む前記樹脂(20)を硬化する工程においては、前記導電性粒子(21)が溶融して凝集した後に固化することによって形成された前記導電性物質(21a)によって前記電極(6,7)と前記配線(12,13)とが電気的に接続される、請求項11に記載の配線シート付き太陽電池セルの製造方法。 In the step of curing the resin (20) including the conductive particles (21), the conductive material (21a) formed by solidifying after the conductive particles (21) are melted and aggregated is used. The manufacturing method of the photovoltaic cell with a wiring sheet of Claim 11 with which the said electrode (6, 7) and the said wiring (12, 13) are electrically connected.
  13.  前記固定樹脂(22,22a)を硬化する工程は、紫外線の照射および加熱の少なくとも一方の処理によって前記固定樹脂(22,22a)を硬化する工程を含む、請求項11または12に記載の配線シート付き太陽電池セルの製造方法。 The wiring sheet according to claim 11 or 12, wherein the step of curing the fixing resin (22, 22a) includes a step of curing the fixing resin (22, 22a) by at least one of ultraviolet irradiation and heating. Method for manufacturing attached solar battery cell.
  14.  基板(1)と前記基板(1)の少なくとも一方の表面上に設けられた電極(6,7)とを有する太陽電池セル(8)と、
     絶縁性基材(11)と前記絶縁性基材(11)の少なくとも一方の表面に設けられた配線(12,13)とを有する配線シート(10)と、
     前記配線シート(10)の前記配線(12,13)と前記太陽電池セル(8)の前記電極(6,7)との間に設置された導電性物質(21a)と、
     前記配線シート(10)と前記太陽電池セル(8)とを機械的に接続するための固定樹脂(22,22a)と、を含む配線シート付き太陽電池セルを封止材(18)によって封止した太陽電池モジュールを製造するための方法であって、
     前記太陽電池セル(8)の前記電極(6,7)と前記配線シート(10)の前記配線(12,13)との間に導電性粒子(21)を含む樹脂(20)を設置する工程と、
     前記太陽電池セル(8)の前記電極(6,7)が前記配線シート(10)の前記配線(12,13)と対向するように前記太陽電池セル(8)と前記配線シート(10)との位置合わせをする工程と、
     前記太陽電池セル(8)の周縁部の少なくとも一部の領域と前記配線シート(10)との間に、前記導電性粒子(21)を含む前記樹脂(20)とは間隔を空けて前記固定樹脂(22,22a)を設置する工程と、
     前記固定樹脂(22,22a)を硬化する工程と、
     前記固定樹脂(22,22a)を硬化する工程で前記配線シート(10)に仮固定された前記太陽電池セル(8)を前記封止材(18)によって封止する工程と、を含み、
     前記封止材(18)によって封止する工程は、前記導電性粒子(21)を含む前記樹脂(20)を硬化する工程を含む、太陽電池モジュールの製造方法。
    A solar cell (8) having a substrate (1) and electrodes (6, 7) provided on at least one surface of the substrate (1);
    A wiring sheet (10) having an insulating base (11) and wiring (12, 13) provided on at least one surface of the insulating base (11);
    A conductive substance (21a) installed between the wiring (12, 13) of the wiring sheet (10) and the electrode (6, 7) of the solar battery cell (8);
    A solar cell with a wiring sheet including a fixing resin (22, 22a) for mechanically connecting the wiring sheet (10) and the solar battery cell (8) is sealed with a sealing material (18). A method for manufacturing a solar cell module comprising:
    Installing resin (20) containing conductive particles (21) between the electrodes (6, 7) of the solar battery cell (8) and the wires (12, 13) of the wiring sheet (10); When,
    The solar battery cell (8) and the wiring sheet (10) so that the electrodes (6, 7) of the solar battery cell (8) face the wirings (12, 13) of the wiring sheet (10). The process of aligning
    The resin cell (20) containing the conductive particles (21) is spaced from the resin sheet (20) between the at least part of the peripheral edge of the solar battery cell (8) and the wiring sheet (10). Installing the resin (22, 22a);
    Curing the fixing resin (22, 22a);
    Sealing the solar cell (8) temporarily fixed to the wiring sheet (10) in the step of curing the fixing resin (22, 22a) with the sealing material (18),
    The step of sealing with the sealing material (18) is a method for manufacturing a solar cell module, including a step of curing the resin (20) including the conductive particles (21).
PCT/JP2011/072033 2010-10-21 2011-09-27 Wiring sheet, solar battery cell having wiring sheet attached thereto, solar battery module, solar battery cell, process for manufacturing solar battery cell having wiring sheet attached thereto, and process for manufacturing solar battery module WO2012053329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-236333 2010-10-21
JP2010236333A JP5159860B2 (en) 2010-10-21 2010-10-21 Solar cell with wiring sheet, solar cell module, method for manufacturing solar cell with wiring sheet, and method for manufacturing solar cell module

Publications (1)

Publication Number Publication Date
WO2012053329A1 true WO2012053329A1 (en) 2012-04-26

Family

ID=45975048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072033 WO2012053329A1 (en) 2010-10-21 2011-09-27 Wiring sheet, solar battery cell having wiring sheet attached thereto, solar battery module, solar battery cell, process for manufacturing solar battery cell having wiring sheet attached thereto, and process for manufacturing solar battery module

Country Status (2)

Country Link
JP (1) JP5159860B2 (en)
WO (1) WO2012053329A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090718A1 (en) * 2007-01-25 2008-07-31 Sharp Kabushiki Kaisha Solar battery cell, solar battery array, solar battery module and method for manufacturing solar battery array
JP2009088145A (en) * 2007-09-28 2009-04-23 Sharp Corp Solar battery, manufacturing method for the solar battery, manufacturing method for solar battery module, and the solar battery module
JP2010050341A (en) * 2008-08-22 2010-03-04 Sharp Corp Solar battery module, and method of manufacturing same
JP2010092981A (en) * 2008-10-06 2010-04-22 Sharp Corp Solar battery, backside contact solar battery, wiring substrate, and method of manufacturing solar battery
WO2010110036A1 (en) * 2009-03-23 2010-09-30 シャープ株式会社 Wiring-sheet-attached solar battery cell, solar cell module, and process for manufacturing wiring-sheet-attached solar battery cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090718A1 (en) * 2007-01-25 2008-07-31 Sharp Kabushiki Kaisha Solar battery cell, solar battery array, solar battery module and method for manufacturing solar battery array
JP2009088145A (en) * 2007-09-28 2009-04-23 Sharp Corp Solar battery, manufacturing method for the solar battery, manufacturing method for solar battery module, and the solar battery module
JP2010050341A (en) * 2008-08-22 2010-03-04 Sharp Corp Solar battery module, and method of manufacturing same
JP2010092981A (en) * 2008-10-06 2010-04-22 Sharp Corp Solar battery, backside contact solar battery, wiring substrate, and method of manufacturing solar battery
WO2010110036A1 (en) * 2009-03-23 2010-09-30 シャープ株式会社 Wiring-sheet-attached solar battery cell, solar cell module, and process for manufacturing wiring-sheet-attached solar battery cell

Also Published As

Publication number Publication date
JP5159860B2 (en) 2013-03-13
JP2012089729A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP4944240B1 (en) Back electrode type solar cell, back electrode type solar cell with wiring sheet, solar cell module, method for manufacturing back electrode type solar cell with wiring sheet, and method for manufacturing solar cell module
WO2011001837A1 (en) Solar battery cell with wiring sheet, solar battery module, and method for producing solar battery cell with wiring sheet
JP5450595B2 (en) Solar cell with wiring sheet, solar cell module, method for manufacturing solar cell with wiring sheet, and method for manufacturing solar cell module
JP5231515B2 (en) Manufacturing method of solar cell
JP5140133B2 (en) Method for manufacturing solar cell with wiring sheet, method for manufacturing solar cell module, solar cell with wiring sheet and solar cell module
WO2010110083A1 (en) Back electrode type solar cell, wiring sheet, solar cell provided with wiring sheet, solar cell module, method for manufacturing solar cell provided with wiring sheet, and method for manufacturing solar cell module
JP2010283201A (en) Solar cell, solar cell with wiring sheet, and solar cell module
JP5140132B2 (en) Back electrode type solar cell with wiring substrate, solar cell module, and method for manufacturing back electrode type solar cell with wiring substrate
US9048360B2 (en) Solar cell, solar cell with interconnection sheet attached and solar cell module
JP5159860B2 (en) Solar cell with wiring sheet, solar cell module, method for manufacturing solar cell with wiring sheet, and method for manufacturing solar cell module
CN103081117B (en) The manufacture method of the solar battery cell of solar battery cell, the solar battery cell being with distribution, solar module and band distribution
JP5410397B2 (en) Manufacturing method of semiconductor device, manufacturing method of back electrode type solar cell with wiring substrate, manufacturing method of solar cell module, semiconductor device, back electrode type solar cell with wiring substrate and solar cell module
JP5661676B2 (en) Method for manufacturing solar cell with wiring board
JP5123409B2 (en) Method for manufacturing solar cell with wiring board and method for manufacturing solar cell module
JP2013187381A (en) Back contact solar cell, back contact solar cell with wiring sheet, solar cell module, manufacturing method of back contact solar cell, manufacturing method of back contact solar cell with wiring sheet, and manufacturing method of solar cell module
JP2012099854A (en) Manufacturing method of solar cell with wiring sheet, manufacturing method of solar cell module, solar cell with wiring sheet, and solar cell module
JP2013214603A (en) Method for manufacturing solar cell with wiring sheet and method for manufacturing solar cell module
JP2012099853A (en) Manufacturing method of solar cell with wiring sheet, manufacturing method of solar cell module, solar cell with wiring sheet, and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834169

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834169

Country of ref document: EP

Kind code of ref document: A1