WO2012050070A1 - High molecular compound and organic photoelectric conversion element using same - Google Patents

High molecular compound and organic photoelectric conversion element using same Download PDF

Info

Publication number
WO2012050070A1
WO2012050070A1 PCT/JP2011/073278 JP2011073278W WO2012050070A1 WO 2012050070 A1 WO2012050070 A1 WO 2012050070A1 JP 2011073278 W JP2011073278 W JP 2011073278W WO 2012050070 A1 WO2012050070 A1 WO 2012050070A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
organic
polymer compound
Prior art date
Application number
PCT/JP2011/073278
Other languages
French (fr)
Japanese (ja)
Inventor
上谷 保則
吉村 研
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012050070A1 publication Critical patent/WO2012050070A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a polymer compound and an organic photoelectric conversion element using the same.
  • Organic semiconductor materials are expected to be applied to organic photoelectric conversion elements such as organic solar cells and optical sensors.
  • the functional layer can be manufactured by an inexpensive coating method.
  • organic semiconductor materials that are various polymer compounds for the organic photoelectric conversion element has been studied.
  • an organic semiconductor material for example, 9,9-dioctylfluorene-2,7-diboronic acid ester and 5,5 ′′ ′′-dibromo-3 ′′, 4 ′′ -dihexyl- ⁇ -pentathiophene are polymerized.
  • a polymer compound has been proposed (WO2005 / 092947). However, the polymer compound has a problem that long-wavelength light is not sufficiently absorbed.
  • the present invention provides a polymer compound having a large absorbance of light having a long wavelength. That is, this invention provides the high molecular compound containing the repeating unit represented by Formula (A), and the repeating unit represented by Formula (B).
  • Q and R are the same or different and are a hydrogen atom, a fluorine atom, an alkyl group which may be fluorinated, an alkoxy group which may be fluorinated, an aryl group.
  • a heteroaryl group or formula (2) (In the formula, m1 represents an integer of 0 to 6, m2 represents an integer of 0 to 6.
  • R ′ represents an alkyl group, aryl group or heteroaryl group which may be fluorinated.)
  • Represents a group represented by Plural Qs may be the same or different.
  • a plurality of R may be the same or different.
  • FIG. 1 is a graph showing an absorption spectrum of the polymer compound 1.
  • FIG. 2 is a diagram showing an absorption spectrum of the polymer compound 2.
  • FIG. 3 is a schematic cross-sectional view of an organic thin film transistor fabricated in the example.
  • the polymer compound of the present invention includes a repeating unit represented by the above formula (A) and a repeating unit represented by the formula (B).
  • the alkyl group represented by Q or R may be linear or cyclic.
  • Examples of the fluorinated alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • the alkyl part of the alkoxy group represented by Q or R may be linear or cyclic.
  • Examples of the fluorinated alkoxy group include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • the aryl group represented by Q or R is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon which may have a substituent.
  • the aryl group includes a group containing a benzene ring, a group containing a condensed ring having aromaticity, a group having a structure in which two or more benzene rings or a condensed ring having aromaticity are directly bonded, and two or more benzenes Examples include a group in which a ring or an aromatic condensed ring is bonded via a group such as vinylene.
  • the number of carbon atoms of the aryl group is preferably 6 to 60, and more preferably 6 to 30.
  • a phenyl group, 1-naphthyl group, and 2-naphthyl group are mentioned, for example.
  • Examples of the substituent that the aromatic hydrocarbon may have include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, and an alkoxy group.
  • Specific examples of the alkyl group and alkoxy group are the same as the specific examples of the alkyl group and alkoxy group represented by R.
  • the heteroaryl group represented by Q or R is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic compound which may have a substituent. Examples of the heteroaryl group include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
  • Examples of the substituent that the aromatic heterocyclic compound may have include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, and an alkoxy group.
  • Specific examples of the alkyl group and alkoxy group are the same as the specific examples of the alkyl group and alkoxy group represented by R.
  • m1 represents an integer of 0 to 6
  • m2 represents an integer of 0 to 6.
  • R ′ represents an alkyl group, an aryl group or a heteroaryl group which may be substituted with a fluorine atom.
  • the alkyl group, aryl group and heteroaryl group which may be substituted with a fluorine atom represented by R ′ are the alkyl group and aryl group which may be substituted with a fluorine atom represented by R.
  • the definition and specific examples of the heteroaryl group are the same.
  • Q or R is an alkyl group or an alkoxy group
  • the alkyl group or alkoxy group preferably has 1 to 20 carbon atoms from the viewpoint of solubility of the polymer compound in a solvent, preferably 2 to 18 More preferably, it is more preferably 3-12.
  • Q and R are preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group.
  • Examples of the repeating unit represented by the formula (A) include the following repeating units.
  • Examples of the repeating unit represented by the formula (B) include the following repeating units.
  • the total amount of the repeating unit represented by the formula (A) and the repeating unit represented by the formula (B) contained in the polymer compound of the present invention is that of the organic photoelectric conversion element having a functional layer containing the polymer compound.
  • the polymer compound of the present invention is represented by the formula (1) [In formula, Q and R represent the same meaning as the above-mentioned. Plural Qs may be the same or different. A plurality of R may be the same or different. ] It is a high molecular compound containing the repeating unit represented by these. Examples of the repeating unit represented by the formula (1) include the following repeating units.
  • the amount of the repeating unit represented by the formula (1) contained in the polymer compound of the present invention is selected from the viewpoint of increasing the photoelectric conversion efficiency of an organic photoelectric conversion device having a functional layer containing the polymer compound.
  • the amount is preferably 20 to 100 mol%, more preferably 30 to 100 mol%, based on the total amount of repeating units contained in the compound.
  • the polystyrene equivalent weight average molecular weight of the polymer compound of the present invention is preferably 10 3 to 10 8 , more preferably 10 3 to 10 7 , and still more preferably 10 3 to 10 6 .
  • the polymer compound of the present invention is preferably a conjugated polymer compound.
  • the conjugated polymer compound means a compound in which atoms constituting the main chain of the polymer compound are substantially conjugated.
  • the polymer compound of the present invention may have a repeating unit other than the repeating unit represented by the formula (A), the repeating unit represented by the formula (B), and the repeating unit represented by the formula (1).
  • the repeating unit include an arylene group and a heteroarylene group.
  • the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, and a fluorenediyl group.
  • heteroarylene group examples include a flangyl group, a pyrrole diyl group, and a pyridinediyl group.
  • the polymer compound of the present invention may be produced by any method. For example, after synthesizing a monomer having a functional group suitable for the polymerization reaction to be used, the monomer is dissolved in an organic solvent, if necessary, , And can be synthesized by polymerization using a known aryl coupling reaction using a catalyst, a ligand and the like. The synthesis of the monomer can be performed, for example, with reference to the method disclosed in US2008 / 145571 or JP-A-2006-335933.
  • Examples of the polymerization by the aryl coupling reaction include polymerization by Stille coupling reaction, polymerization by Suzuki coupling reaction, polymerization by Yamamoto coupling reaction, and polymerization by Kumada-Tamao coupling reaction.
  • Polymerization by Stille coupling reaction is necessary using palladium complexes such as palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, bis (triphenylphosphine) palladium dichloride as catalysts.
  • ligands such as triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine
  • a polymerization reaction of a monomer having a group The details of the polymerization by the Stille coupling reaction are described in, for example, Angewante Chemie International Edition, 2005, Vol. 44, p. 4442-4489.
  • Polymerization by Suzuki coupling reaction uses a palladium complex or nickel complex as a catalyst in the presence of an inorganic base or an organic base, and a ligand is added as necessary to have a boronic acid residue or a boric acid ester residue.
  • a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom, or a monomer having a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group.
  • a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom
  • a monomer having a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group.
  • the inorganic base include sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate and potassium fluoride.
  • Examples of the organic base include tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, and tetraethylammonium hydroxide.
  • Examples of the palladium complex include palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, and bis (triphenylphosphine) palladium dichloride.
  • Examples of the nickel complex include bis (cyclooctadiene) nickel.
  • Examples of the ligand include triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, and tri (tert-butyl) phosphine. It is done. Details of the polymerization by the Suzuki coupling reaction are described in, for example, Journal of Polymer Science: Part A: Polymer Chemistry (Part A: Polymer Chemistry), 2001, Vol. 39, p. 1533-1556.
  • Polymerization by Yamamoto coupling reaction uses a catalyst and a reducing agent to react monomers having halogen atoms, monomers having sulfonate groups such as trifluoromethanesulfonate groups, or monomers having halogen atoms and monomers having sulfonate groups.
  • Catalysts include nickel zero-valent complexes such as bis (cyclooctadiene) nickel and ligands such as bipyridyl, [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel.
  • a catalyst comprising a nickel complex other than a nickel zero-valent complex such as dichloride and a ligand such as triphenylphosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine, if necessary.
  • the reducing agent include zinc and magnesium.
  • Polymerization by the Yamamoto coupling reaction may be performed using a dehydrated solvent in the reaction, may be performed in an inert atmosphere, or may be performed by adding a dehydrating agent to the reaction system. Details of the polymerization by Yamamoto coupling are described in, for example, Macromolecules, 1992, Vol. 25, p. 1214-1223.
  • Polymerization by Kumada-Tamao coupling reaction uses a nickel catalyst such as [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel dichloride, a compound having a magnesium halide group and a halogen atom.
  • a nickel catalyst such as [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel dichloride, a compound having a magnesium halide group and a halogen atom.
  • a dehydrated solvent may be used for the reaction, the reaction may be performed in an inert atmosphere, or a dehydrating agent may be added to the reaction system.
  • Polymerization by these aryl coupling reactions is usually performed in a solvent.
  • the solvent may be selected in consideration of the polymerization reaction used, the solubility of the monomer and polymer, and the like.
  • the solvent used in the Stille coupling reaction is preferably an organic solvent such as tetrahydrofuran, toluene, N, N-dimethylformamide, a mixed solvent obtained by mixing two or more of these solvents, or a solvent having two phases of an organic solvent phase and an aqueous phase.
  • the solvent used for the Stille coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • Solvents used in the Suzuki coupling reaction are organic solvents such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and mixed solvents in which two or more of these solvents are mixed.
  • a solvent and a solvent having two phases of an organic solvent phase and an aqueous phase are preferred.
  • the solvent used for the Suzuki coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • the solvent used for the Yamamoto coupling reaction is an organic solvent such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, or a mixed solvent in which two or more of these solvents are mixed.
  • a solvent is preferred.
  • the solvent used for the Yamamoto coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • a method of polymerizing by Stille coupling reaction a method of polymerizing by Suzuki coupling reaction, and a method of polymerizing by Yamamoto coupling reaction are preferable, Stille coupling reaction More preferred are a method of polymerizing, a method of polymerizing by a Suzuki coupling reaction, and a method of polymerizing by a Yamamoto coupling reaction using a nickel zero-valent complex.
  • the lower limit of the reaction temperature of the aryl coupling reaction is preferably ⁇ 100 ° C., more preferably ⁇ 20 ° C., and particularly preferably 0 ° C. from the viewpoint of reactivity.
  • the upper limit of the reaction temperature is preferably 200 ° C., more preferably 150 ° C., and particularly preferably 120 ° C. from the viewpoint of the stability of the monomer and the polymer compound.
  • a known method can be used as a method for removing the polymer compound of the present invention from the reaction solution after completion of the reaction.
  • the polymer compound of the present invention can be obtained by adding a reaction solution to a lower alcohol such as methanol, filtering the deposited precipitate, and drying the filtrate.
  • a lower alcohol such as methanol
  • the polymer compound of the present invention When the polymer compound of the present invention is used for the production of an organic photoelectric conversion element, if a polymerization active group remains at the terminal of the polymer compound, characteristics such as durability of the organic photoelectric conversion element may be deteriorated. It is preferable to protect the terminal of the polymer compound with a stable group.
  • the stable group for protecting the terminal include an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, an arylamino group, and a monovalent heterocyclic group.
  • the arylamino group include a phenylamino group and a diphenylamino group.
  • the monovalent heterocyclic group examples include thienyl group, pyrrolyl group, furyl group, pyridyl group, quinolyl group, and isoquinolyl group.
  • the polymerization active group remaining at the terminal of the polymer compound may be replaced with a hydrogen atom instead of a stable group.
  • the stable group for protecting the terminal is a group imparting electron donating properties such as an arylamino group.
  • the polymer compound of the present invention is produced using Stille coupling, for example, the polymer compound is produced by polymerizing the compound represented by the formula (3) and the compound represented by the formula (4). be able to.
  • Q and R represent the same meaning as described above.
  • a plurality of Q may be the same or different.
  • a plurality of R may be the same or different.
  • Z is bromine.
  • R is.
  • R is optionally the same or different .
  • Z 2 represents an organotin residue. Plurality some Z 2 is also the same They may be different.
  • Z is preferably a bromine atom or a chlorine atom, and more preferably a bromine atom, from the viewpoint of increasing the reactivity during polymerization.
  • the compound represented by the formula (3) is, for example, Macromolecules, 2009, Vol. 42, No. 17, p. 6564 to 6571 (Macromolecules, 42 (17), 6564 (2009)).
  • the following compounds are mentioned, for example.
  • Z 2 is -SnMe 3, preferably a -SnEt 3 or -SnBu 3.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group.
  • the compound represented by the formula (4) is prepared by, for example, reacting the compound represented by the formula (5) with an organolithium compound to produce an intermediate, and then reacting the intermediate with a trialkyltin halide. Can be manufactured.
  • R represents the same meaning as described above.
  • a plurality of R may be the same or different.
  • the organic lithium compound examples include butyl lithium (n-BuLi), sec-butyl lithium, tert-butyl lithium, and lithium diisopropylamide. Of the organic lithium compounds, butyl lithium is preferred.
  • the trialkyltin halide examples include trimethyltin chloride, triethyl chloride, and tributyl chloride.
  • the temperature for reacting the organolithium compound with the compound represented by formula (5) is usually ⁇ 100 to 50 ° C., preferably ⁇ 80 to 0 ° C.
  • the time for reacting the organolithium compound with the compound represented by the formula (5) is usually 1 minute to 10 hours, preferably 30 minutes to 5 hours.
  • the amount of the organolithium compound to be reacted is usually 2 to 5 equivalents, preferably 2 to 3 equivalents, relative to the compound represented by the formula (5).
  • the temperature at which the intermediate and the trialkyltin halide are reacted is usually ⁇ 100 to 100 ° C., preferably ⁇ 80 ° C. to 50 ° C.
  • the reaction time of the intermediate and the trialkyltin halide is usually 1 minute to 30 hours, preferably 1 to 10 hours.
  • the amount of the trialkyltin halide to be reacted is usually 2 to 6 equivalents, preferably 2 to 3 equivalents, relative to the compound represented by the formula (5).
  • normal post-treatment can be performed to obtain the compound represented by the formula (4). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off.
  • the product can be isolated and purified by a method such as fractionation by chromatography or recrystallization.
  • the compound represented by the formula (5) can be produced, for example, by reacting the compound represented by the formula (6) in the presence of an acid. (In the formula, R represents the same meaning as described above.
  • the acid used in the reaction for producing the compound represented by the formula (5) from the compound represented by the formula (6) may be Lewis acid or Bronsted acid, Hydrochloric acid, bromic acid, hydrofluoric acid, sulfuric acid, nitric acid, formic acid, acetic acid, propionic acid, oxalic acid, benzoic acid, boron fluoride, aluminum chloride, tin chloride (IV), iron chloride (II), titanium tetrachloride, Examples include benzenesulfonic acid, p-toluenesulfonic acid and mixtures of these compounds.
  • the reaction for producing the compound represented by formula (5) from the compound represented by formula (6) is preferably carried out in the presence of a solvent.
  • the reaction temperature is preferably ⁇ 80 ° C. or higher and the boiling point of the solvent or lower.
  • Solvents used in the reaction include hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, benzene, toluene, ethylbenzene, xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane, chloropentane, bromopentane, and chlorohexane.
  • Halogenated hydrocarbons such as bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, trichlorobenzene, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, tert-butyl alcohol, formic acid, acetic acid, Carboxylic acid such as propionic acid, dimethyl ether, diethyl ether, methyl-tert-butyl ether, tetrahydrofuran, tetrahydropyran, di And ether of hexane, and the like. These solvents may be used alone or in combination.
  • the reaction normal post-treatment can be performed to obtain the compound represented by the formula (5).
  • the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off.
  • the product can be isolated and purified by a method such as fractionation by chromatography or recrystallization.
  • the compound represented by the formula (6) can be produced, for example, by reacting the compound represented by the formula (7) with a Grignard reagent or an organolithium compound.
  • methyl magnesium chloride methyl magnesium bromide, ethyl magnesium chloride, ethyl magnesium bromide, propyl magnesium chloride, propyl magnesium bromide, butyl magnesium chloride, butyl magnesium bromide, hexyl magnesium bromide, octyl magnesium bromide
  • Examples include decylmagnesium bromide, allylmagnesium chloride, allylmagnesium bromide, benzylmagnesium chloride, phenylmagnesium bromide, naphthylmagnesium bromide, and tolylmagnesium bromide.
  • Examples of the organic lithium compound include methyl lithium, ethyl lithium, propyl lithium, butyl lithium, phenyl lithium, naphthyl lithium, benzyl lithium, and tolyl lithium.
  • the reaction for producing the compound represented by the formula (6) from the compound represented by the formula (7) and the Grignard reagent or the organolithium compound is preferably carried out in an inert gas atmosphere such as nitrogen or argon. Moreover, it is preferable to implement this reaction in presence of a solvent.
  • the reaction temperature is preferably from ⁇ 80 ° C. to the boiling point of the solvent.
  • Solvents used in the reaction include hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, benzene, toluene, ethylbenzene and xylene, ethers such as dimethyl ether, diethyl ether, methyl-tert-butyl ether, tetrahydrofuran, tetrahydropyran, and dioxane. Etc. These solvents may be used alone or in combination.
  • normal post-treatment can be performed to obtain the compound represented by the formula (6). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off.
  • the product can be isolated and purified by a method such as fractionation by chromatography or recrystallization.
  • the compound represented by the formula (7) can be produced, for example, by reacting the compound represented by the formula (8) with a peroxide.
  • the peroxide include sodium perborate, m-chloroperbenzoic acid, hydrogen peroxide, and benzoyl peroxide. Preferred are sodium perborate and m-chloroperbenzoic acid, and particularly preferred is sodium perborate.
  • the reaction for producing the compound represented by the formula (7) from the compound represented by the formula (8) and the peroxide should be carried out using a carboxylic acid solvent such as acetic acid, trifluoroacetic acid, propionic acid, butyric acid.
  • a mixed solvent in which one or more solvents selected from the group consisting of carbon tetrachloride, chloroform, dichloromethane, benzene, and toluene are mixed with a carboxylic acid solvent. It is preferable to carry out the reaction in The reaction temperature is preferably 0 ° C. or higher and 50 ° C. or lower.
  • normal post-treatment can be performed to obtain the compound represented by the formula (7). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off. The product can be isolated and purified by methods such as chromatographic fractionation and recrystallization.
  • the following compound is mentioned, for example.
  • Bu represents a butyl group (CH 3 CH 2 CH 2 CH 2 ).
  • an organic photoelectric conversion element manufactured using the polymer compound of the present invention has a short-circuit current. Density increases.
  • the organic photoelectric conversion device of the present invention has a pair of electrodes and a functional layer between the electrodes, and the functional layer contains the electron-accepting compound and the polymer compound of the present invention.
  • an electron-accepting compound fullerene and a fullerene derivative are preferable.
  • organic photoelectric conversion element As a specific example of the organic photoelectric conversion element, 1. An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and the polymer compound of the present invention; 2. An organic photoelectric conversion element comprising a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and the polymer compound of the present invention, wherein the electron-accepting compound is a fullerene An organic photoelectric conversion element which is a derivative; Is mentioned. In general, at least one of the pair of electrodes is transparent or translucent. Hereinafter, this case will be described as an example. 1 above.
  • the amount of the electron accepting compound in the functional layer containing the electron accepting compound and the polymer compound is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. It is preferably 20 to 500 parts by weight. In addition, 2.
  • the amount of the fullerene derivative in the functional layer containing the fullerene derivative and the polymer compound is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer. More preferably, it is 500 parts by weight. From the viewpoint of increasing the photoelectric conversion efficiency, the amount of the fullerene derivative in the functional layer is preferably 20 to 400 parts by weight, more preferably 40 to 250 parts by weight with respect to 100 parts by weight of the polymer.
  • the amount is preferably 80 to 120 parts by weight.
  • the amount of the fullerene derivative in the functional layer is preferably 20 to 250 parts by weight and more preferably 40 to 120 parts by weight with respect to 100 parts by weight of the polymer. preferable.
  • an absorption region in which the electron-accepting compound and the polymer compound represented by the formula (1) can efficiently absorb a spectrum of desired incident light is provided. It is important that the heterojunction interface contains many heterojunction interfaces in order to efficiently separate excitons, and that the heterojunction interface has a charge transporting property to quickly transport the charges generated by the heterojunction interface to the electrode. is there.
  • the organic photoelectric conversion element the above 1. , 2. From the standpoint of including a large number of heterojunction interfaces, the organic photoelectric conversion element is preferable.
  • the organic photoelectric conversion element is more preferable.
  • an additional layer may be provided between at least one electrode and the functional layer in the element. Examples of the additional layer include a charge transport layer that transports holes or electrons, and a buffer layer.
  • the organic photoelectric conversion element of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not chemically change when an electrode is formed and an organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.
  • a material for the pair of electrodes a metal, a conductive polymer, or the like can be used.
  • the material of one of the pair of electrodes is preferably a material having a low work function.
  • metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and those metals
  • An alloy with metal, graphite, a graphite intercalation compound, or the like is used.
  • the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the material of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Gold, platinum, silver, and copper are used, and ITO, indium / zinc / oxide, and tin oxide are preferable.
  • Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • organic transparent conductive films such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
  • a material used for the charge transport layer as the additional layer that is, the hole transport layer or the electron transport layer
  • an electron donating compound and an electron accepting compound described later can be used, respectively.
  • As a material used for the buffer layer as an additional layer halides or oxides of alkali metals or alkaline earth metals such as lithium fluoride can be used.
  • fine particles of an inorganic semiconductor such as titanium oxide can be used.
  • an organic thin film containing the polymer compound of the present invention and an electron-accepting compound can be used as the functional layer in the organic photoelectric conversion element of the present invention.
  • the organic thin film generally has a thickness of 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
  • the organic thin film may contain the polymer compound alone or in combination of two or more.
  • a low molecular compound and / or a high molecular compound other than the high molecular compound can be mixed and used as the electron donating compound in the organic thin film.
  • Examples of the electron-donating compound that the organic thin film may contain in addition to the polymer compound having the repeating unit represented by the formula (1) include, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligos. Thiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof Derivatives, polythienylene vinylene and its derivatives.
  • Examples of the electron accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives.
  • diphenyldicyanoethylene and derivatives thereof diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerene and derivatives thereof such as C 60, carbon nanotube And phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, and fullerene and derivatives thereof are particularly preferable.
  • the electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
  • Fullerenes and derivatives thereof include C 60 , C 70 , C 84 and derivatives thereof.
  • a fullerene derivative represents a compound in which at least a part of fullerene is modified.
  • Examples of the fullerene derivative include a compound represented by the formula (I), a compound represented by the formula (II), a compound represented by the formula (III), and a compound represented by the formula (IV).
  • R a is an alkyl group, aryl group, heteroaryl group or group having an ester structure. A plurality of R a may be the same or different.
  • R b represents an alkyl group or an aryl group, and a plurality of R b may be the same or different.
  • the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R a and R b are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R.
  • the group having an ester structure represented by R a is, for example, the formula (V) (In the formula, u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, and R c represents an alkyl group, an aryl group, or a heteroaryl group.) The group represented by these is mentioned.
  • the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R.
  • Specific examples of the C 60 derivative include the following.
  • Specific examples of the C 70 derivative include the following.
  • the organic thin film may be produced by any method.
  • the organic thin film may be produced by a film formation method from a solution containing the polymer compound of the present invention, or an organic thin film may be formed by a vacuum deposition method. Good.
  • Examples of the method for producing an organic thin film by film formation from a solution include a method of producing an organic thin film by applying the solution on one electrode and then evaporating the solvent.
  • the solvent used for film formation from a solution is not particularly limited as long as it dissolves the polymer compound of the present invention.
  • the solvent include hydrocarbons such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, and tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, and bromobutane.
  • halogenated hydrocarbons such as chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene and trichlorobenzene, and ethers such as tetrahydrofuran and tetrahydropyran.
  • the polymer compound of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
  • a coating method such as a printing method, an offset printing method, an inkjet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an inkjet printing method, and a dispenser printing method are preferable.
  • the organic photoelectric conversion element By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell.
  • the organic thin film transistor of the present invention includes a source electrode, a drain electrode, an organic semiconductor layer, and a gate electrode. A polymer compound containing a repeating unit is contained. Since the polymer compound of the present invention has high charge mobility, an organic thin film transistor having an organic semiconductor layer containing the polymer compound of the present invention has high field effect mobility.
  • the polystyrene equivalent weight average molecular weight of the polymer compound was determined by size exclusion chromatography (SEC). Column: TOSOH TSKgel SuperHM-H (2 pieces) + TSKgel SuperH2000 (4.6 mm Id ⁇ 15 cm); Detector: RI (SHIMADZU RID-10A); Mobile phase: tetrahydrofuran reference example 1 (synthesis of compound 1) A 1000 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 13.0 g (80.0 mmol) of 3-bromothiophene and 80 mL of diethyl ether to obtain a uniform solution.
  • SEC size exclusion chromatography
  • reaction solution was cooled again to ⁇ 78 ° C., and 62 mL (161 mmol) of 2.6 M n-BuLi in hexane was added dropwise over 15 minutes. After dropping, the reaction solution was stirred at ⁇ 25 ° C. for 2 hours, and further stirred at room temperature (25 ° C.) for 1 hour. Thereafter, the reaction solution was cooled to ⁇ 25 ° C., and a solution in which 60 g of iodine (236 mmol) was dissolved in 1000 mL of diethyl ether was added dropwise over 30 minutes.
  • reaction solution was stirred at room temperature (25 ° C.) for 2 hours, and 50 mL of 1N aqueous sodium thiosulfate solution was added to stop the reaction. Diethyl ether was added to the reaction solution, and the organic layer containing the reaction product was extracted. Then, the organic layer containing the reaction product was dried over magnesium sulfate, and the solvent was distilled off to obtain 35 g of a crude product. The crude product was recrystallized from chloroform to obtain 28 g of purified Compound 1.
  • the solution was kept at ⁇ 78 ° C., and 4.37 mL (11.4 mmol) of 2.6M n-BuLi in hexane was added dropwise to the solution over 10 minutes. After the addition, the reaction solution was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 2 hours. Thereafter, the flask was cooled to ⁇ 78 ° C., and 4.07 g (12.5 mmol) of tributyltin chloride was added to the reaction solution. After the addition, the reaction solution was stirred at ⁇ 78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 3 hours.
  • silica gel of the silica gel column silica gel previously immersed in hexane containing 5 wt% triethylamine for 5 minutes and then rinsed with hexane was used.
  • Example 1 Synthesis of polymer compound 1 In a 200 mL flask in which the gas in the flask was replaced with argon, 200 mg (0.190 mmol) of Compound 7, 115 mg (0.184 mmol) of Compound 8 manufactured by Luminescence Technology Corporation, and 16 ml of toluene were added to obtain a uniform solution. The resulting toluene solution was bubbled with argon for 30 minutes.
  • the precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours using a Soxhlet extractor.
  • the polymer remaining in the cylindrical filter paper was dissolved in 100 mL of toluene, 3 g of sodium diethyldithiocarbamate and 100 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer is washed twice with 50 ml of water, then twice with 50 mL of 3 wt% (wt%) aqueous acetic acid, then twice with 50 mL of water and then 5 wt.
  • polymer compound 1 The solution was washed twice with 50 mL of an aqueous potassium fluoride solution and then twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer.
  • the polymer was filtered and dried, and the obtained polymer was dissolved again in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and dried to obtain 83 mg of purified polymer.
  • this polymer is referred to as polymer compound 1.
  • the polymer compound 2 had a weight average molecular weight in terms of polystyrene of 1.1 ⁇ 10 5 .
  • Reference Example 9 (Synthesis of Compound 5b) A 300 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 2.00 g (9.60 mmol) of Compound 4 and 60 ml of dry tetrahydrofuran to obtain a uniform solution. While maintaining the flask at ⁇ 20 ° C., 50.8 mL of 0.5 M 4-propylphenylmagnesium bromide was added to the reaction solution. Thereafter, the temperature was raised to ⁇ 5 ° C. over 30 minutes, and the reaction solution was stirred at the same temperature for 30 minutes.
  • reaction solution was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 2 hours. Thereafter, the flask was cooled to ⁇ 78 ° C., and 4.10 g (12.6 mmol) of tributyltin chloride was added to the reaction solution. After the addition, the reaction solution was stirred at ⁇ 78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 3 hours. Thereafter, 200 ml of water was added to the reaction solution to stop the reaction, and ethyl acetate was added to extract an organic layer containing the reaction product.
  • the organic layer which is an ethyl acetate solution, was dried over sodium sulfate, and the solvent was distilled off with an evaporator.
  • the obtained oily substance was purified by a silica gel column whose developing solvent was hexane.
  • silica gel of the silica gel column silica gel previously immersed in hexane containing 5 wt% triethylamine for 5 minutes and then rinsed with hexane was used. After purification, 3.52 g (3.49 mmol) of compound 7b was obtained.
  • Example 4 Synthesis of Polymer Compound 3
  • 241.5 mg (0.239 mmol) of Compound 7b, 163.4 mg (0.239 mmol) of Compound 9 manufactured by Luminescence Technology Corporation, and 21 ml of toluene were mixed uniformly. It was. The resulting toluene solution was bubbled with argon for 30 minutes.
  • the precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours using a Soxhlet extractor.
  • the polymer remaining in the cylindrical filter paper was dissolved in 100 mL of toluene, 3 g of sodium diethyldithiocarbamate and 100 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer is washed twice with 50 ml of water, then twice with 50 mL of 3 wt% (wt%) aqueous acetic acid, then twice with 50 mL of water and then 5 wt.
  • the solution was washed twice with 50 mL of an aqueous potassium fluoride solution and then twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer.
  • the polymer was filtered and dried, and the obtained polymer was dissolved again in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and dried to obtain 22 mg of purified polymer.
  • This polymer is referred to as polymer compound 3.
  • Measurement Example 1 (Measurement of absorbance of organic thin film) Polymer compound 1 was dissolved in chloroform at a concentration of 0.5% by weight to prepare a coating solution. The obtained coating solution was applied onto a glass substrate by spin coating. The coating operation was performed at 23 ° C. Then, it baked for 5 minutes on 120 degreeC conditions in air
  • Comparative Example 1 Measurement of absorbance of organic thin film
  • An organic thin film was prepared in the same manner as in Measurement Example 1 except that the high molecular compound 2 was used instead of the high molecular compound 1 and o-dichlorobenzene was used as the solvent, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm, 700 nm, 800 nm, and 900 nm.
  • Example 2 (Production and Evaluation of Organic Thin Film Solar Cell) Fullerene derivative C60PCBM (phenyl C61-butyric acid methyl ester, product name: E100), which is an electron-accepting compound, and polymer compound 1, which is an electron-donating compound, at a weight ratio of 3: 1.
  • the mixture was dissolved in o-dichlorobenzene so that the concentration of the mixture was 2% by weight.
  • the obtained solution was filtered through a Teflon (registered trademark) filter having a pore size of 1.0 ⁇ m to prepare a coating solution 1.
  • a glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment.
  • a PEDOT: PSS solution (CleviosP VP AI4083 manufactured by HC Starck Co., Ltd.) is applied onto the ITO film by spin coating, and heated at 120 ° C. for 10 minutes in the atmosphere to thereby form a hole injection layer having a thickness of 50 nm. It was created.
  • the coating solution 1 was applied onto the ITO film by spin coating to obtain a functional layer of an organic thin film solar cell.
  • the film thickness of the functional layer was 100 nm.
  • the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm.
  • the degree of vacuum at the time of vapor deposition was 1 to 9 ⁇ 10 ⁇ 3 Pa in all cases.
  • the shape of the organic thin film solar cell thus obtained was a square of 2 mm ⁇ 2 mm.
  • the obtained organic thin film solar cell is irradiated with constant light using a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.), and the generated current and voltage are measured. did.
  • the photoelectric conversion efficiency is 4.0%
  • Jsc short circuit current density
  • Voc open circuit voltage
  • FF fill factor
  • Example 3 (Production and Evaluation of Organic Thin Film Transistor) An organic thin film transistor having the structure shown in FIG. First, the surface of the heavily doped n ⁇ -type silicon substrate 31 to be the gate electrode was thermally oxidized to form a silicon oxide film 32 having a thickness of 300 nm. Next, a source electrode 33 and a drain electrode 34 having a channel length of 100 ⁇ m and a channel width of 1 mm were formed on the silicon oxide film 32 by a photolithography process. The source electrode and the drain electrode have a structure in which chromium and gold are laminated in this order from the silicon oxide film side. The obtained substrate was ultrasonically cleaned with acetone for 10 minutes, and then irradiated with ozone UV for 30 minutes.
  • the substrate was dipped in a toluene diluted solution of phenylethyltrichlorosilane for 2 minutes to silane-treat the surface of the substrate.
  • Polymer compound 1 is dissolved in orthodichlorobenzene as a solvent to prepare a solution (organic semiconductor composition) having a concentration of polymer compound 1 of 0.5% by weight, which is filtered through a membrane filter and applied.
  • a liquid was prepared.
  • the obtained coating solution was applied on a silane-treated substrate with the above surface by a spin coating method, and then dried in a glove box filled with nitrogen for 30 minutes using a hot plate at 70 ° C.
  • a thin film (organic semiconductor layer) of polymer compound 1 having a thickness of 30 nm was formed.
  • the source-drain voltage Vsd was set to -40V and the gate voltage Vg was changed to 20 to -40V.
  • the transistor characteristics were measured.
  • the field effect mobility (mobility) of the organic thin film transistor calculated from the transfer characteristics obtained by such measurement was 1.2 ⁇ 10 ⁇ 1 cm 2 / Vs.
  • Comparative Example 2 An organic thin film transistor having the structure shown in FIG. First, the surface of the heavily doped n ⁇ type silicon substrate 31 to be a gate electrode was thermally oxidized to form a silicon oxide film 32 having a thickness of 200 nm.
  • a source electrode 33 and a drain electrode 34 having a channel length of 20 ⁇ m and a channel width of 2 mm were formed on the silicon oxide film 32 by a photolithography process.
  • the source electrode and the drain electrode have a structure in which chromium and gold are laminated in this order from the silicon oxide film side.
  • the obtained substrate was ultrasonically cleaned with acetone for 10 minutes, and then irradiated with ozone UV for 30 minutes. Thereafter, hexamethyldisilazane was dropped on the substrate and spin-coated to silane-treat the surface of the substrate.
  • Polymer compound 2 is dissolved in chloroform as a solvent to prepare a solution (organic semiconductor composition) in which the concentration of polymer compound 2 is 0.5% by weight, and this is filtered through a membrane filter to obtain a coating solution. Prepared. Thereafter, the obtained coating solution is applied on a substrate having the above surface treated with silane by a spin coating method, and then dried at room temperature in a glove box filled with nitrogen, whereby a polymer having a thickness of about 80 nm is obtained.
  • a thin film (organic semiconductor layer) of Compound 2 was formed.
  • the source-drain voltage Vsd was set to -40V, and the gate voltage Vg was changed to 10 to -60V. The transistor characteristics were measured.
  • the field effect mobility (mobility) of the organic thin film transistor calculated from the transfer characteristics obtained by such measurement was 6.2 ⁇ 10 ⁇ 4 cm 2 / Vs.
  • the polymer compound of the present invention is extremely useful for an organic photoelectric conversion element because of its large absorbance of light having a long wavelength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)
  • Thin Film Transistor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A high molecular compound containing a repeating unit represented by formula (A) and a repeating unit represented by formula (B) has high absorbency of long wavelength light, and is useful in an organic photoelectric conversion element. (In formula (A) and formula (B), Q and R are the same or different and represent hydrogen atoms, fluorine atoms, alkyl groups that may be fluorinated, alkoxy groups that may be fluorinated, aryl groups, heteroaryl groups, or groups represented by formula (2) [in the formula, m1 represents an integer number of 0~6, and m2 represents an integer number of 0~6; R' represents an alkyl group that may be fluorinated, an aryl group or a heteroaryl group]. Q, of which there are two, may be the same or different. R, of which there are four, may be the same or different.)

Description

高分子化合物及びそれを用いた有機光電変換素子Polymer compound and organic photoelectric conversion device using the same
 本発明は、高分子化合物及びそれを用いた有機光電変換素子に関する。 The present invention relates to a polymer compound and an organic photoelectric conversion element using the same.
 有機半導体材料は、有機太陽電池、光センサー等の有機光電変換素子への適用が期待されている。中でも、有機半導体材料として高分子化合物を用いれば、安価な塗布法で機能層を作製することができる。有機光電変換素子の諸特性を向上させるために、様々な高分子化合物である有機半導体材料を有機光電変換素子に用いることが検討されている。有機半導体材料として、例えば、9,9−ジオクチルフルオレン−2,7−ジボロン酸エステルと5,5’’’’−ジブロモ−3’’,4’’−ジヘキシル−α−ペンタチオフェンとを重合した高分子化合物が提案されている(WO2005/092947)。
 しかしながら、上記高分子化合物は、長波長の光の吸収が十分でないという課題がある。
Organic semiconductor materials are expected to be applied to organic photoelectric conversion elements such as organic solar cells and optical sensors. In particular, when a polymer compound is used as the organic semiconductor material, the functional layer can be manufactured by an inexpensive coating method. In order to improve various characteristics of the organic photoelectric conversion element, use of organic semiconductor materials that are various polymer compounds for the organic photoelectric conversion element has been studied. As an organic semiconductor material, for example, 9,9-dioctylfluorene-2,7-diboronic acid ester and 5,5 ″ ″-dibromo-3 ″, 4 ″ -dihexyl-α-pentathiophene are polymerized. A polymer compound has been proposed (WO2005 / 092947).
However, the polymer compound has a problem that long-wavelength light is not sufficiently absorbed.
 本発明は長波長の光の吸光度が大きい高分子化合物を提供する。
 即ち、本発明は、式(A)で表される繰り返し単位と式(B)で表される繰り返し単位とを含む高分子化合物を提供する。
Figure JPOXMLDOC01-appb-I000005
〔式(A)及び式(B)中、Q及びRは、同一又は相異なり、水素原子、フッ素原子、フッ素化されていてもよいアルキル基、フッ素化されていてもよいアルコキシ基、アリール基、ヘテロアリール基又は式(2)
Figure JPOXMLDOC01-appb-I000006
(式中、m1は、0~6の整数を表し、m2は、0~6の整数を表す。R’は、フッ素化されていてもよいアルキル基、アリール基又はヘテロアリール基を表す。)
で表される基を表す。複数個あるQは、同一でも相異なっていてもよい。複数個あるRは、同一でも相異なっていてもよい。〕
The present invention provides a polymer compound having a large absorbance of light having a long wavelength.
That is, this invention provides the high molecular compound containing the repeating unit represented by Formula (A), and the repeating unit represented by Formula (B).
Figure JPOXMLDOC01-appb-I000005
[In the formula (A) and the formula (B), Q and R are the same or different and are a hydrogen atom, a fluorine atom, an alkyl group which may be fluorinated, an alkoxy group which may be fluorinated, an aryl group. A heteroaryl group or formula (2)
Figure JPOXMLDOC01-appb-I000006
(In the formula, m1 represents an integer of 0 to 6, m2 represents an integer of 0 to 6. R ′ represents an alkyl group, aryl group or heteroaryl group which may be fluorinated.)
Represents a group represented by Plural Qs may be the same or different. A plurality of R may be the same or different. ]
 図1は、高分子化合物1の吸収スペクトルを示す図である。
 図2は、高分子化合物2の吸収スペクトルを示す図である。
 図3は、実施例で作製した有機薄膜トランジスタの模式断面図である。
FIG. 1 is a graph showing an absorption spectrum of the polymer compound 1.
FIG. 2 is a diagram showing an absorption spectrum of the polymer compound 2. As shown in FIG.
FIG. 3 is a schematic cross-sectional view of an organic thin film transistor fabricated in the example.
 31…シリコン基板
 32…シリコン酸化膜
 33…ソース電極
 34…ドレイン電極
 35…有機半導体層
31 ... Silicon substrate 32 ... Silicon oxide film 33 ... Source electrode 34 ... Drain electrode 35 ... Organic semiconductor layer
 以下、本発明を詳細に説明する。
 本発明の高分子化合物は、前述の式(A)で表される繰り返し単位と式(B)で表される繰り返し単位とを含む。
Figure JPOXMLDOC01-appb-I000007
 Q又はRで表されるアルキル基は、鎖状でも環状でもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基、ペンタデシル基及びオクタデシル基が挙げられる。フッ素化されたアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基及びパーフルオロオクチル基が挙げられる。
 Q又はRで表されるアルコキシ基のアルキル部分は、鎖状でも環状でもよく、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基及び3,7−ジメチルオクチルオキシ基が挙げられる。フッ素化されたアルコキシ基としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基及びパーフルオロオクチルオキシ基が挙げられる。
 Q又はRで表されるアリール基は、置換基を有していてもよい芳香族炭化水素から、水素原子1個を除いた原子団である。アリール基には、ベンゼン環を含む基、芳香族性を有する縮合環を含む基、2個以上のベンゼン環又は芳香族性を有する縮合環が直接結合した構造を有する基、2個以上のベンゼン環又は芳香族性を有する縮合環がビニレン等の基を介して結合した基などが含まれる。アリール基の炭素数は、6~60であることが好ましく、6~30であることがより好ましい。アリール基としては、例えば、フェニル基、1−ナフチル基及び2−ナフチル基が挙げられる。芳香族炭化水素が有していてもよい置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、アルキル基及びアルコキシ基が挙げられる。該アルキル基及びアルコキシ基の具体例は、Rで表されるアルキル基及びアルコキシ基の具体例と同じである。
 Q又はRで表されるヘテロアリール基は、置換基を有していてもよい芳香族複素環式化合物から、水素原子1個を除いた原子団である。ヘテロアリール基としては、例えば、チェニル基、ピロリル基、フリル基、ピリジル基、キノリル基及びイソキノリル基が挙げられる。芳香族複素環式化合物が有していてもよい置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、アルキル基及びアルコキシ基が挙げられる。該アルキル基及びアルコキシ基の具体例は、Rで表されるアルキル基及びアルコキシ基の具体例と同じである。
 式(2)で表される基において、m1は、0~6の整数を表し、m2は、0~6の整数を表す。R’は、フッ素原子で置換されていてもよいアルキル基、アリール基又はヘテロアリール基を表す。R’で表されるフッ素原子で置換されていてもよいアルキル基、アリール基及びヘテロアリール基の定義及び具体例は、Rで表されるフッ素原子で置換されていてもよいアルキル基、アリール基及びヘテロアリール基の定義及び具体例と同じである。
 Q又はRが、アルキル基又はアルコキシ基である場合、高分子化合物の溶媒への溶解性の観点からは、アルキル基又はアルコキシ基の炭素数が1~20であることが好ましく、2~18であることがより好ましく、3~12であることがさらに好ましい。
 式(A)で表される繰り返し単位及び式(B)で表される繰り返し単位において、Q及びRが、水素原子、炭素数が1~20のアルキル基又はフェニル基のものが好ましい。
 式(A)で表される繰り返し単位としては、例えば、下記の繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-I000008
 式(B)で表される繰り返し単位としては、例えば、下記の繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-I000009
 本発明の高分子化合物に含まれる式(A)で表される繰り返し単位と式(B)で表される繰り返し単位の合計量は、該高分子化合物を含む機能層を有する有機光電変換素子の光電変換効率を高める観点からは、該高分子化合物が含有する繰り返し単位の合計量に対して、20~100モル%であることが好ましく、30~100モル%であることがより好ましい。
 本発明の高分子化合物の他の態様は、式(1)
Figure JPOXMLDOC01-appb-I000010
〔式中、Q及びRは、前述と同じ意味を表す。複数個あるQは、同一でも相異なっていてもよい。複数個あるRは、同一でも相異なっていてもよい。〕
で表される繰り返し単位を含む高分子化合物である。
 式(1)で表される繰り返し単位としては、例えば、以下の繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
 本発明の高分子化合物に含まれる式(1)で表される繰り返し単位の量は、該高分子化合物を含む機能層を有する有機光電変換素子の光電変換効率を高める観点からは、該高分子化合物が含有する繰り返し単位の合計量に対して、20~100モル%であることが好ましく、30~100モル%であることがより好ましい。
 本発明の高分子化合物のポリスチレン換算の重量平均分子量は、好ましくは10~10であり、より好ましくは10~10であり、さらに好ましくは10~10である。
 本発明の高分子化合物は、共役系高分子化合物であることが好ましい。ここで、共役系高分子化合物とは、高分子化合物の主鎖を構成する原子が実質的に共役している化合物を意味する。
 本発明の高分子化合物は、式(A)で表される繰り返し単位、式(B)で表される繰り返し単位、式(1)で表される繰り返し単位以外の繰り返し単位を有していてもよい。該繰り返し単位としては、アリーレン基、ヘテロアリーレン基等が挙げられる。アリーレン基としては、フェニレン基、ナフタレンジイル基、アントラセンジイル基、ピレンジイル基及びフルオレンジイル基等が挙げられる。ヘテロアリーレン基としては、フランジイル基、ピロールジイル基及びピリジンジイル基等が挙げられる。
 本発明の高分子化合物は、如何なる方法で製造してもよいが、例えば、用いる重合反応に適した官能基を有するモノマーを合成した後に、必要に応じて該モノマーを有機溶媒に溶解し、アルカリ、触媒、配位子等を用いた公知のアリールカップリング反応を用いて重合することにより合成することができる。前記モノマーの合成は、例えば、US2008/145571明細書又は特開2006−335933号公報に示された方法を参考にして行うことができる。
 アリールカップリング反応による重合は、例えば、Stilleカップリング反応による重合、Suzukiカップリング反応による重合、Yamamotoカップリング反応による重合及びKumada−Tamaoカップリング反応による重合が挙げられる。
 Stilleカップリング反応による重合は、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート、ビス(トリフェニルホスフィン)パラジウムジクロライドなどのパラジウム錯体を触媒として用い、必要に応じて、トリフェニルホスフィン、トリ(2−メチルフェニル)ホスフィン、トリ(2−メトキシフェニル)ホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィン等の配位子を添加し、有機スズ残基を有するモノマーと、臭素原子、ヨウ素原子、塩素原子等のハロゲン原子を有するモノマー、又は、トリフルオロメタンスルホネート基、p−トルエンスルホネート基等のスルホネート基を有するモノマーとを反応させる重合である。Stilleカップリング反応による重合の詳細は、例えば、アンゲヴァンテ ケミー インターナショナル エディション(Angewandte Chemie International Edition),2005年,第44巻,p.4442−4489に記載されている。
 Suzukiカップリング反応による重合は、無機塩基又は有機塩基の存在下、パラジウム錯体又はニッケル錯体を触媒として用い、必要に応じて配位子を添加し、ボロン酸残基又はホウ酸エステル残基を有するモノマーと、臭素原子、ヨウ素原子、塩素原子等のハロゲン原子を有するモノマー、又は、トリフルオロメタンスルホネート基、p−トルエンスルホネート基等のスルホネート基を有するモノマーとを反応させる重合である。
 無機塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸三カリウム及びフッ化カリウムが挙げられる。有機塩基としては、例えば、フッ化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム及び水酸化テトラエチルアンモニウムが挙げられる。パラジウム錯体としては、例えば、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート及びビス(トリフェニルホスフィン)パラジウムジクロライドが挙げられる。ニッケル錯体としては、例えば、ビス(シクロオクタジエン)ニッケルが挙げられる。配位子としては、例えば、トリフェニルホスフィン、トリ(2−メチルフェニル)ホスフィン、トリ(2−メトキシフェニル)ホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン及びトリ(tert−ブチル)ホスフィンが挙げられる。
 Suzukiカップリング反応による重合の詳細は、例えば、ジャーナル オブ ポリマー サイエンス:パート エー:ポリマー ケミストリー(Journal of Polymer Science:Part A:Polymer Chemistry),2001年,第39巻,p.1533−1556に記載されている。
 Yamamotoカップリング反応による重合は、触媒と還元剤とを用い、ハロゲン原子を有するモノマー同士、トリフルオロメタンスルホネート基等のスルホネート基を有するモノマー同士又はハロゲン原子を有するモノマーとスルホネート基を有するモノマーとを反応させる重合である。
 触媒としては、ビス(シクロオクタジエン)ニッケル等のニッケルゼロ価錯体とビピリジル等の配位子からなる触媒、[ビス(ジフェニルホスフィノ)エタン]ニッケルジクロライド、[ビス(ジフェニルホスフィノ)プロパン]ニッケルジクロライド等のニッケルゼロ価錯体以外のニッケル錯体と、必要に応じ、トリフェニルホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィン等の配位子からなる触媒が挙げられる。還元剤としては、例えば、亜鉛及びマグネシウムが挙げられる。Yamamotoカップリング反応による重合は、脱水した溶媒を反応に用いてもよく、不活性雰囲気下で反応を行ってもよく、脱水剤を反応系中に添加して行ってもよい。
 Yamamotoカップリングによる重合の詳細は、例えば、マクロモルキュルズ(Macromolecules),1992年,第25巻,p.1214−1223に記載されている。
 Kumada−Tamaoカップリング反応による重合は、[ビス(ジフェニルホスフィノ)エタン]ニッケルジクロライド、[ビス(ジフェニルホスフィノ)プロパン]ニッケルジクロライド等のニッケル触媒を用い、ハロゲン化マグネシウム基を有する化合物とハロゲン原子を有する化合物とを反応させる重合である。反応は、脱水した溶媒を反応に用いてもよく、不活性雰囲気下で反応を行ってもよく、脱水剤を反応系中に添加して行ってもよい。
 これらのアリールカップリング反応による重合は、通常、溶媒中で行われる。該溶媒は、用いる重合反応、モノマー及びポリマーの溶解性等を考慮して選択すればよい。具体的には、テトラヒドロフラン、トルエン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が挙げられる。Stilleカップリング反応に用いる溶媒はテトラヒドロフラン、トルエン、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が好ましい。Stilleカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。Suzukiカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が好ましい。Suzukiカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。Yamamotoカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒が好ましい。Yamamotoカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。
 アリールカップリング反応による重合の中でも、反応性の観点からは、Stilleカップリング反応により重合する方法、Suzukiカップリング反応により重合する方法、及びYamamotoカップリング反応により重合する方法が好ましく、Stilleカップリング反応により重合する方法、Suzukiカップリング反応による重合する方法、及びニッケルゼロ価錯体を用いたYamamotoカップリング反応による重合する方法がより好ましい。
 前記アリールカップリング反応の反応温度の下限は、反応性の観点からは、好ましくは−100℃であり、より好ましくは−20℃であり、特に好ましくは0℃である。反応温度の上限は、モノマー及び高分子化合物の安定性の観点からは、好ましくは200℃であり、より好ましくは150℃であり、特に好ましくは120℃である。
 前記アリールカップリング反応による重合において、反応終了後の反応溶液からの本発明の高分子化合物を取り出す方法としては、公知の方法が挙げられる。例えば、メタノール等の低級アルコールに反応溶液を加え、析出した沈殿をろ過し、ろ過物を乾燥することにより、本発明の高分子化合物を得ることができる。得られた高分子化合物の純度が低い場合は、再結晶、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等により精製することができる。
 本発明の高分子化合物を有機光電変換素子の製造に用いる場合、高分子化合物の末端に重合活性基が残っていると、有機光電変換素子の耐久性等の特性が低下することがあるため、高分子化合物の末端を安定な基で保護することが好ましい。
 末端を保護する安定な基としては、アルキル基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基、アリール基、アリールアミノ基、1価の複素環基等が挙げられる。アリールアミノ基としては、フェニルアミノ基、ジフェニルアミノ基等が挙げられる。1価の複素環基としては、チエニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基等が挙げられる。また、高分子化合物の末端に残っている重合活性基を、安定な基に代えて、水素原子で置換してもよい。ホール輸送性を高める観点からは、末端を保護する安定な基がアリールアミノ基などの電子供与性を付与する基であることが好ましい。高分子化合物が共役高分子化合物である場合、高分子化合物の主鎖の共役構造と末端を保護する安定な基の共役構造とが連続するような共役結合を有している基も末端を保護する安定な基として好ましく用いることができる。該基としては、例えば、アリール基、及び芳香族性を有する1価の複素環基が挙げられる。
 Stilleカップリングを用いて本発明の高分子化合物を製造する場合、例えば、式(3)で表される化合物と式(4)で表される化合物とを重合して該高分子化合物を製造することができる。
Figure JPOXMLDOC01-appb-I000013
(式中、Q及びRは、前述と同じ意味を表す。複数個あるQは、同一でも相異なっていてもよい。複数個あるRは、同一でも相異なっていてもよい。Zは、臭素原子、ヨウ素原子又は塩素原子を表す。複数個あるZは、同一でも相異なっていてもよい。)
Figure JPOXMLDOC01-appb-I000014
(式(4)中、Rは前述と同じ意味を表す。複数個あるRは、同一でも相異なっていてもよい。Zは有機スズ残基を表す。複数個あるZは、同一でも相異なっていてもよい。)
 式(3)において、重合時の反応性を高める観点からは、Zが臭素原子、塩素原子であることが好ましく、臭素原子であることがさらに好ましい。式(3)で表される化合物は、例えば、マクロモルキュルズ、2009年、第42巻、第17号、p.6564~6571(Macromolecules,42(17),6564(2009))に記載の方法を用いて合成することができる。
 式(3)で表される化合物としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000015
 式(4)において、式(4)で表される化合物の合成のしやすさの観点からは、Zが−SnMe、−SnEt又は−SnBuであることが好ましい。ここで、Meはメチル基を表し、Etはエチル基を表し、Buはブチル基を表す。
 式(4)で表される化合物は、例えば、式(5)で表される化合物と有機リチウム化合物とを反応させて中間体を製造した後に、該中間体とトリアルキルスズハライドとを反応させることによって製造することができる。
Figure JPOXMLDOC01-appb-I000016
(式中、Rは前述と同じ意味を表す。複数個あるRは、同一でも相異なっていてもよい。)
 有機リチウム化合物としては、例えば、ブチルリチウム(n−BuLi)、sec−ブチルリチウム、tert−ブチルリチウム、リチウムジイソプロピルアミドが挙げられる。有機リチウム化合物の中でも、ブチルリチウムが好ましい。トリアルキルスズハライドとしては、例えば、トリメチルスズクロリド、トリエチルクロリド、トリブチルクロリドが挙げられる。
 式(5)で表される化合物と有機リチウム化合物から中間体を製造する反応及び該中間体とトリアルキルスズハライドから式(4)で表される化合物を製造する反応は、通常、溶媒中で行われる。溶媒としては十分に脱水したテトラヒドロフラン、十分に脱水した1,4−ジオキサン、十分に脱水したジエチルエーテルが好ましく用いられる。
 有機リチウム化合物と式(5)で表される化合物とを反応させる際の温度は、通常、−100~50℃であり、好ましくは−80~0℃である。有機リチウム化合物と式(5)で表される化合物とを反応させる時間は、通常、1分~10時間であり、好ましくは30分~5時間である。反応させる有機リチウム化合物の量は、式(5)で表される化合物に対して、通常、2~5当量であり、好ましくは2~3当量である。
 前記中間体とトリアルキルスズハライドとを反応させる時の温度は、通常、−100~100℃であり、好ましくは−80℃~50℃である。前記中間体とトリアルキルスズハライドを反応させる時間は、通常、1分~30時間であり、好ましくは1~10時間である。反応させるトリアルキルスズハライドの量は、式(5)で表される化合物に対して、通常、2~6当量であり、好ましくは2~3当量である。
 反応後は、通常の後処理を行い、式(4)で表される化合物を得ることができる。例えば、水を加えて反応を停止させた後に、生成物を有機溶媒で抽出し、溶媒を留去する後処理が挙げられる。生成物の単離及び精製は、クロマトグラフィーによる分取や再結晶などの方法により行うことができる。
 式(5)で表される化合物は、例えば、式(6)で表される化合物を酸の存在下で、反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000017
(式中、Rは前述と同じ意味を表す。複数個あるRは、同一でも相異なっていてもよい。)
 式(6)で表される化合物から式(5)で表される化合物を製造する反応に用いられる酸は、ルイス(Lewis)酸であってもブレンステッド(Bronsted)酸であってもよく、塩酸、臭素酸、フッ化水素酸、硫酸、硝酸、蟻酸、酢酸、プロピオン酸、シュウ酸、安息香酸、フッ化ホウ素、塩化アルミニウム、塩化スズ(IV)、塩化鉄(II)、四塩化チタン、ベンゼンスルホン酸、p−トルエンスルホン酸及びこれらの化合物の混合物が例示される。
 式(6)で表される化合物から式(5)で表される化合物を製造する反応は、溶媒の存在下で実施することが好ましい。該反応の反応温度は、−80℃以上で溶媒の沸点以下の温度が好ましい。
 反応に用いられる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、ベンゼン、トルエン、エチルベンゼン、キシレン等の炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、tert−ブチルアルコールなどのアルコール、蟻酸、酢酸、プロピオン酸等のカルボン酸、ジメチルエーテル、ジエチルエーテル、メチル−tert−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテルなどが挙げられる。該溶媒を単一で用いても、混合して用いてもよい。
 反応後は、通常の後処理を行い、式(5)で表される化合物を得ることができる。例えば、水を加えて反応を停止させた後に、生成物を有機溶媒で抽出し、溶媒を留去する後処理が挙げられる。生成物の単離及び精製は、クロマトグラフィーによる分取や再結晶などの方法により行うことができる。
 式(6)で表される化合物は、例えば、式(7)で表される化合物とグリニャール(Grignard)試薬又は有機リチウム化合物とを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000018
 上記反応に用いられるGrignard試薬としては、メチルマグネシウムクロライド、メチルマグネシウムブロマイド、エチルマグネシウムクロライド、エチルマグネシウムブロマイド、プロピルマグネシウムクロライド、プロピルマグネシウムブロマイド、ブチルマグネシウムクロライド、ブチルマグネシウムブロマイド、ヘキシルマグネシウムブロマイド、オクチルマグネシウムブロマイド、デシルマグネシウムブロマイド、アリルマグネシウムクロライド、アリルマグネシウムブロマイド、ベンジルマグネシウムクロライド、フェニルマグネシウムブロマイド、ナフチルマグネシウムブロマイド、トリルマグネシウムブロマイドなどが挙げられる。
 有機リチウム化合物としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム、フェニルリチウム、ナフチルリチウム、ベンジルリチウム、トリルリチウムなどが挙げられる。
 式(7)で表される化合物とGrignard試薬又は有機リチウム化合物から式(6)で表される化合物を製造する反応は、窒素、アルゴンなどの不活性ガス雰囲気下で実施することが好ましい。また、該反応は、溶媒の存在下で実施することが好ましい。該反応の反応温度は、−80℃以上溶媒の沸点以下の温度が好ましい。
 反応に用いられる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、ベンゼン、トルエン、エチルベンゼン、キシレン等の炭化水素、ジメチルエーテル、ジエチルエーテル、メチル−tert−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテルなどが挙げられる。該溶媒を単一で用いても、混合して用いてもよい。
 反応後は、通常の後処理を行い、式(6)で表される化合物を得ることができる。例えば、水を加えて反応を停止させた後に、生成物を有機溶媒で抽出し、溶媒を留去する後処理が挙げられる。生成物の単離及び精製は、クロマトグラフィーによる分取や再結晶などの方法により行うことができる。
 式(7)で表される化合物は、例えば、式(8)で表される化合物と過酸化物とを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000019
 過酸化物としては、過ホウ酸ナトリウム、m−クロロ過安息香酸、過酸化水素、ベンゾイルパーオキサイドなどが挙げられる。好ましくは過ホウ酸ナトリウム、m−クロロ過安息香酸であり、特に好ましくは過ホウ酸ナトリウムである。
 式(8)で表される化合物と過酸化物から式(7)で表される化合物を製造する反応は、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸などのカルボン酸溶媒を用いて実施することが好ましい。
 式(8)で表される化合物の溶解性を上げるためには、カルボン酸溶媒に、四塩化炭素、クロロホルム、ジクロロメタン、ベンゼン、トルエンからなる群から選ばれる1種以上の溶媒を混合した混合溶媒中で反応を行うことが好ましい。該反応の反応温度は、0℃以上50℃以下の温度が好ましい。
 反応後は、通常の後処理を行い、式(7)で表される化合物を得ることができる。例えば、水を加えて反応を停止させた後に、生成物を有機溶媒で抽出し、溶媒を留去する後処理が挙げられる。生成物の単離及び精製はクロマトグラフィーによる分取や再結晶などの方法により行うことができる。
 式(4)で表される化合物としては、例えば、下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
(式中、Buはブチル基(CHCHCHCH)を表す。)
 本発明の高分子化合物は、600nmの光等の長波長の光の吸光度が高く、太陽光を効率的に吸収するため、本発明の高分子化合物を用いて製造した有機光電変換素子は短絡電流密度が大きくなる。
 本発明の有機光電変換素子は、一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と本発明の高分子化合物を含有する。電子受容性化合物としては、フラーレン、フラーレン誘導体が好ましい。有機光電変換素子の具体例としては、
1.一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と、本発明の高分子化合物とを含有する有機光電変換素子;
2.一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と、本発明の高分子化合物とを含有する有機光電変換素子であって、該電子受容性化合物がフラーレン誘導体である有機光電変換素子;
が挙げられる。前記一対の電極は、通常、少なくとも一方が透明又は半透明であり、以下、その場合を一例として説明する。
 前記1.の有機光電変換素子では、電子受容性化合物及び前記高分子化合物を含有する機能層における該電子受容性化合物の量が、前記高分子化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。また、前記2.の有機光電変換素子では、フラーレン誘導体及び前記高分子化合物を含有する機能層における該フラーレン誘導体の量が、該重合体100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。光電変換効率を高める観点からは、機能層における該フラーレン誘導体の量が、該重合体100重量部に対して、20~400重量部であることが好ましく、40~250重量部であることがより好ましく、80~120重量部であることがさらに好ましい。短絡電流密度を高める観点からは、機能層における該フラーレン誘導体の量が、該重合体100重量部に対して、20~250重量部であることが好ましく、40~120重量部であることがより好ましい。
 有機光電変換素子が高い光電変換効率を有するためには、前記電子受容性化合物及び式(1)で表される高分子化合物が所望の入射光のスペクトルを効率よく吸収することができる吸収域を有するものであること、ヘテロ接合界面が励起子を効率よく分離するためにヘテロ接合界面を多く含むこと、ヘテロ接合界面が生成した電荷を速やかに電極へ輸送する電荷輸送性を有することが重要である。
 このような観点から、有機光電変換素子としては、前記1.、前記2.の有機光電変換素子が好ましく、ヘテロ接合界面を多く含むという観点からは、前記2.の有機光電変換素子がより好ましい。また、本発明の有機光電変換素子には、少なくとも一方の電極と該素子中の機能層との間に付加的な層を設けてもよい。付加的な層としては、ホール又は電子を輸送する電荷輸送層、バッファ層等が挙げられる。
 本発明の有機光電変換素子は、通常、基板上に形成される。該基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
 一対の電極の材料には、金属、導電性高分子等を用いることができる。一対の電極のうち一方の電極の材料は仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらの金属のうちの2つ以上の金属の合金、又はそれらの金属のうちの1つ以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1つ以上の金属との合金、グラファイト、グラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金が挙げられる。
 前記の透明又は半透明の電極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜、NESA、金、白金、銀、銅が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
 前記付加的な層としての電荷輸送層、即ち、ホール輸送層又は電子輸送層に用いられる材料として、それぞれ後述の電子供与性化合物、電子受容性化合物を用いることができる。
 付加的な層としてのバッファ層に用いられる材料としては、フッ化リチウム等のアルカリ金属又はアルカリ土類金属のハロゲン化物又は酸化物等を用いることができる。また、酸化チタン等の無機半導体の微粒子を用いることもできる。
 本発明の有機光電変換素子における前記機能層としては、例えば、本発明の高分子化合物と電子受容性化合物とを含有する有機薄膜を用いることができる。
 前記有機薄膜は、膜厚が、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。
 前記有機薄膜は、前記高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。また、前記有機薄膜のホール輸送性を高めるため、前記有機薄膜中に電子供与性化合物として、低分子化合物及び/又は前記高分子化合物以外の高分子化合物を混合して用いることもできる。
 式(1)で表される繰り返し単位を有する高分子化合物以外に有機薄膜が含んでいてもよい電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。
 前記電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン及びその誘導体、カーボンナノチューブ、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン等のフェナントロリン誘導体が挙げられ、とりわけフラーレン及びその誘導体が好ましい。
 なお、前記電子供与性化合物、前記電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。
 フラーレン及びその誘導体としては、C60、C70、C84及びその誘導体が挙げられる。フラーレン誘導体とは、フラーレンの少なくとも一部が修飾された化合物を表す。
 フラーレン誘導体としては、例えば、式(I)で表される化合物、式(II)で表される化合物、式(III)で表される化合物、式(IV)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000022
(式(I)~(IV)中、Rは、アルキル基、アリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rはアルキル基又はアリール基を表す。複数個あるRは、同一であっても相異なってもよい。)
 R及びRで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例は、Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例と同じである。
 Rで表されるエステル構造を有する基は、例えば、式(V)
Figure JPOXMLDOC01-appb-I000023
(式中、u1は、1~6の整数を表す、u2は、0~6の整数を表す、Rは、アルキル基、アリール基又はヘテロアリール基を表す。)
で表される基が挙げられる。
 Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例は、Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例と同じである。
 C60の誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
 C70の誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000026
 前記有機薄膜は、如何なる方法で製造してもよく、例えば、本発明の高分子化合物を含む溶液からの成膜による方法で製造してもよいし、真空蒸着法により有機薄膜を形成してもよい。溶液からの成膜により有機薄膜を製造する方法としては、例えば、一方の電極上に該溶液を塗布し、その後、溶媒を蒸発させて有機薄膜を製造する方法が挙げられる。
 溶液からの成膜に用いる溶媒は、本発明の高分子化合物を溶解させるものであれば特に制限はない。この溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素、テトラヒドロフラン、テトラヒドロピラン等のエーテルが挙げられる。本発明の高分子化合物は、通常、前記溶媒に0.1重量%以上溶解させることができる。
 溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、インクジェット印刷法及びディスペンサー印刷法が好ましい。
 有機光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 また、電極間に電圧を印加した状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
 本発明の有機薄膜トランジスタは、ソース電極と、ドレイン電極と、有機半導体層と、ゲート電極とを備え、前記有機半導体層に式(A)で表される繰り返し単位と式(B)で表される繰り返し単位とを含む高分子化合物を含有する。
 本発明の高分子化合物は電荷移動度が高いため、本発明の高分子化合物を含む有機半導体層を有する有機薄膜トランジスタは、電界効果移動度が高くなる。
Hereinafter, the present invention will be described in detail.
The polymer compound of the present invention includes a repeating unit represented by the above formula (A) and a repeating unit represented by the formula (B).
Figure JPOXMLDOC01-appb-I000007
The alkyl group represented by Q or R may be linear or cyclic. For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group Hexyl group, octyl group, isooctyl group, decyl group, dodecyl group, pentadecyl group and octadecyl group. Examples of the fluorinated alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
The alkyl part of the alkoxy group represented by Q or R may be linear or cyclic. For example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy Group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group and 3,7-dimethyloctyloxy group. Examples of the fluorinated alkoxy group include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
The aryl group represented by Q or R is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon which may have a substituent. The aryl group includes a group containing a benzene ring, a group containing a condensed ring having aromaticity, a group having a structure in which two or more benzene rings or a condensed ring having aromaticity are directly bonded, and two or more benzenes Examples include a group in which a ring or an aromatic condensed ring is bonded via a group such as vinylene. The number of carbon atoms of the aryl group is preferably 6 to 60, and more preferably 6 to 30. As an aryl group, a phenyl group, 1-naphthyl group, and 2-naphthyl group are mentioned, for example. Examples of the substituent that the aromatic hydrocarbon may have include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, and an alkoxy group. Specific examples of the alkyl group and alkoxy group are the same as the specific examples of the alkyl group and alkoxy group represented by R.
The heteroaryl group represented by Q or R is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic compound which may have a substituent. Examples of the heteroaryl group include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group. Examples of the substituent that the aromatic heterocyclic compound may have include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, and an alkoxy group. Specific examples of the alkyl group and alkoxy group are the same as the specific examples of the alkyl group and alkoxy group represented by R.
In the group represented by the formula (2), m1 represents an integer of 0 to 6, and m2 represents an integer of 0 to 6. R ′ represents an alkyl group, an aryl group or a heteroaryl group which may be substituted with a fluorine atom. The definitions and specific examples of the alkyl group, aryl group and heteroaryl group which may be substituted with a fluorine atom represented by R ′ are the alkyl group and aryl group which may be substituted with a fluorine atom represented by R. And the definition and specific examples of the heteroaryl group are the same.
When Q or R is an alkyl group or an alkoxy group, the alkyl group or alkoxy group preferably has 1 to 20 carbon atoms from the viewpoint of solubility of the polymer compound in a solvent, preferably 2 to 18 More preferably, it is more preferably 3-12.
In the repeating unit represented by the formula (A) and the repeating unit represented by the formula (B), Q and R are preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group.
Examples of the repeating unit represented by the formula (A) include the following repeating units.
Figure JPOXMLDOC01-appb-I000008
Examples of the repeating unit represented by the formula (B) include the following repeating units.
Figure JPOXMLDOC01-appb-I000009
The total amount of the repeating unit represented by the formula (A) and the repeating unit represented by the formula (B) contained in the polymer compound of the present invention is that of the organic photoelectric conversion element having a functional layer containing the polymer compound. From the viewpoint of increasing the photoelectric conversion efficiency, it is preferably 20 to 100 mol%, more preferably 30 to 100 mol%, based on the total amount of repeating units contained in the polymer compound.
Another embodiment of the polymer compound of the present invention is represented by the formula (1)
Figure JPOXMLDOC01-appb-I000010
[In formula, Q and R represent the same meaning as the above-mentioned. Plural Qs may be the same or different. A plurality of R may be the same or different. ]
It is a high molecular compound containing the repeating unit represented by these.
Examples of the repeating unit represented by the formula (1) include the following repeating units.
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
The amount of the repeating unit represented by the formula (1) contained in the polymer compound of the present invention is selected from the viewpoint of increasing the photoelectric conversion efficiency of an organic photoelectric conversion device having a functional layer containing the polymer compound. The amount is preferably 20 to 100 mol%, more preferably 30 to 100 mol%, based on the total amount of repeating units contained in the compound.
The polystyrene equivalent weight average molecular weight of the polymer compound of the present invention is preferably 10 3 to 10 8 , more preferably 10 3 to 10 7 , and still more preferably 10 3 to 10 6 .
The polymer compound of the present invention is preferably a conjugated polymer compound. Here, the conjugated polymer compound means a compound in which atoms constituting the main chain of the polymer compound are substantially conjugated.
The polymer compound of the present invention may have a repeating unit other than the repeating unit represented by the formula (A), the repeating unit represented by the formula (B), and the repeating unit represented by the formula (1). Good. Examples of the repeating unit include an arylene group and a heteroarylene group. Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, and a fluorenediyl group. Examples of the heteroarylene group include a flangyl group, a pyrrole diyl group, and a pyridinediyl group.
The polymer compound of the present invention may be produced by any method. For example, after synthesizing a monomer having a functional group suitable for the polymerization reaction to be used, the monomer is dissolved in an organic solvent, if necessary, , And can be synthesized by polymerization using a known aryl coupling reaction using a catalyst, a ligand and the like. The synthesis of the monomer can be performed, for example, with reference to the method disclosed in US2008 / 145571 or JP-A-2006-335933.
Examples of the polymerization by the aryl coupling reaction include polymerization by Stille coupling reaction, polymerization by Suzuki coupling reaction, polymerization by Yamamoto coupling reaction, and polymerization by Kumada-Tamao coupling reaction.
Polymerization by Stille coupling reaction is necessary using palladium complexes such as palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, bis (triphenylphosphine) palladium dichloride as catalysts. Depending on the ligand, ligands such as triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine A monomer having an organic tin residue and a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom, or a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group. A polymerization reaction of a monomer having a group. The details of the polymerization by the Stille coupling reaction are described in, for example, Angewante Chemie International Edition, 2005, Vol. 44, p. 4442-4489.
Polymerization by Suzuki coupling reaction uses a palladium complex or nickel complex as a catalyst in the presence of an inorganic base or an organic base, and a ligand is added as necessary to have a boronic acid residue or a boric acid ester residue. Polymerization in which a monomer is reacted with a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom, or a monomer having a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group.
Examples of the inorganic base include sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate and potassium fluoride. Examples of the organic base include tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, and tetraethylammonium hydroxide. Examples of the palladium complex include palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, and bis (triphenylphosphine) palladium dichloride. Examples of the nickel complex include bis (cyclooctadiene) nickel. Examples of the ligand include triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, and tri (tert-butyl) phosphine. It is done.
Details of the polymerization by the Suzuki coupling reaction are described in, for example, Journal of Polymer Science: Part A: Polymer Chemistry (Part A: Polymer Chemistry), 2001, Vol. 39, p. 1533-1556.
Polymerization by Yamamoto coupling reaction uses a catalyst and a reducing agent to react monomers having halogen atoms, monomers having sulfonate groups such as trifluoromethanesulfonate groups, or monomers having halogen atoms and monomers having sulfonate groups. Polymerization.
Catalysts include nickel zero-valent complexes such as bis (cyclooctadiene) nickel and ligands such as bipyridyl, [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel. A catalyst comprising a nickel complex other than a nickel zero-valent complex such as dichloride and a ligand such as triphenylphosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine, if necessary. . Examples of the reducing agent include zinc and magnesium. Polymerization by the Yamamoto coupling reaction may be performed using a dehydrated solvent in the reaction, may be performed in an inert atmosphere, or may be performed by adding a dehydrating agent to the reaction system.
Details of the polymerization by Yamamoto coupling are described in, for example, Macromolecules, 1992, Vol. 25, p. 1214-1223.
Polymerization by Kumada-Tamao coupling reaction uses a nickel catalyst such as [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel dichloride, a compound having a magnesium halide group and a halogen atom. Polymerization in which a compound having For the reaction, a dehydrated solvent may be used for the reaction, the reaction may be performed in an inert atmosphere, or a dehydrating agent may be added to the reaction system.
Polymerization by these aryl coupling reactions is usually performed in a solvent. The solvent may be selected in consideration of the polymerization reaction used, the solubility of the monomer and polymer, and the like. Specifically, tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, an organic solvent such as a mixed solvent obtained by mixing two or more of these solvents, an organic solvent Examples thereof include a solvent having two phases of a phase and an aqueous phase. The solvent used in the Stille coupling reaction is preferably an organic solvent such as tetrahydrofuran, toluene, N, N-dimethylformamide, a mixed solvent obtained by mixing two or more of these solvents, or a solvent having two phases of an organic solvent phase and an aqueous phase. The solvent used for the Stille coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions. Solvents used in the Suzuki coupling reaction are organic solvents such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and mixed solvents in which two or more of these solvents are mixed. A solvent and a solvent having two phases of an organic solvent phase and an aqueous phase are preferred. The solvent used for the Suzuki coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions. The solvent used for the Yamamoto coupling reaction is an organic solvent such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, or a mixed solvent in which two or more of these solvents are mixed. A solvent is preferred. The solvent used for the Yamamoto coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
Among the polymerizations by aryl coupling reaction, from the viewpoint of reactivity, a method of polymerizing by Stille coupling reaction, a method of polymerizing by Suzuki coupling reaction, and a method of polymerizing by Yamamoto coupling reaction are preferable, Stille coupling reaction More preferred are a method of polymerizing, a method of polymerizing by a Suzuki coupling reaction, and a method of polymerizing by a Yamamoto coupling reaction using a nickel zero-valent complex.
The lower limit of the reaction temperature of the aryl coupling reaction is preferably −100 ° C., more preferably −20 ° C., and particularly preferably 0 ° C. from the viewpoint of reactivity. The upper limit of the reaction temperature is preferably 200 ° C., more preferably 150 ° C., and particularly preferably 120 ° C. from the viewpoint of the stability of the monomer and the polymer compound.
In the polymerization by the aryl coupling reaction, a known method can be used as a method for removing the polymer compound of the present invention from the reaction solution after completion of the reaction. For example, the polymer compound of the present invention can be obtained by adding a reaction solution to a lower alcohol such as methanol, filtering the deposited precipitate, and drying the filtrate. When the purity of the obtained polymer compound is low, it can be purified by recrystallization, continuous extraction with a Soxhlet extractor, column chromatography, or the like.
When the polymer compound of the present invention is used for the production of an organic photoelectric conversion element, if a polymerization active group remains at the terminal of the polymer compound, characteristics such as durability of the organic photoelectric conversion element may be deteriorated. It is preferable to protect the terminal of the polymer compound with a stable group.
Examples of the stable group for protecting the terminal include an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, an arylamino group, and a monovalent heterocyclic group. Examples of the arylamino group include a phenylamino group and a diphenylamino group. Examples of the monovalent heterocyclic group include thienyl group, pyrrolyl group, furyl group, pyridyl group, quinolyl group, and isoquinolyl group. Further, the polymerization active group remaining at the terminal of the polymer compound may be replaced with a hydrogen atom instead of a stable group. From the viewpoint of enhancing hole transportability, it is preferable that the stable group for protecting the terminal is a group imparting electron donating properties such as an arylamino group. When the polymer compound is a conjugated polymer compound, the end of a group having a conjugated bond in which the conjugated structure of the main chain of the polymer compound and the conjugated structure of a stable group protecting the end are continuous is also protected. It can preferably be used as a stable group. Examples of the group include an aryl group and a monovalent heterocyclic group having aromaticity.
When the polymer compound of the present invention is produced using Stille coupling, for example, the polymer compound is produced by polymerizing the compound represented by the formula (3) and the compound represented by the formula (4). be able to.
Figure JPOXMLDOC01-appb-I000013
(In the formula, Q and R represent the same meaning as described above. A plurality of Q may be the same or different. A plurality of R may be the same or different. Z is bromine.) Represents an atom, an iodine atom or a chlorine atom, and a plurality of Z may be the same or different.
Figure JPOXMLDOC01-appb-I000014
(In the formula (4), R is. A plurality of the same meanings as defined above R is optionally the same or different .Z 2 represents an organotin residue. Plurality some Z 2 is also the same They may be different.)
In the formula (3), Z is preferably a bromine atom or a chlorine atom, and more preferably a bromine atom, from the viewpoint of increasing the reactivity during polymerization. The compound represented by the formula (3) is, for example, Macromolecules, 2009, Vol. 42, No. 17, p. 6564 to 6571 (Macromolecules, 42 (17), 6564 (2009)).
As a compound represented by Formula (3), the following compounds are mentioned, for example.
Figure JPOXMLDOC01-appb-I000015
In the formula (4), ease From the point of view of the synthesis of the compound represented by formula (4), Z 2 is -SnMe 3, preferably a -SnEt 3 or -SnBu 3. Here, Me represents a methyl group, Et represents an ethyl group, and Bu represents a butyl group.
The compound represented by the formula (4) is prepared by, for example, reacting the compound represented by the formula (5) with an organolithium compound to produce an intermediate, and then reacting the intermediate with a trialkyltin halide. Can be manufactured.
Figure JPOXMLDOC01-appb-I000016
(In the formula, R represents the same meaning as described above. A plurality of R may be the same or different.)
Examples of the organic lithium compound include butyl lithium (n-BuLi), sec-butyl lithium, tert-butyl lithium, and lithium diisopropylamide. Of the organic lithium compounds, butyl lithium is preferred. Examples of the trialkyltin halide include trimethyltin chloride, triethyl chloride, and tributyl chloride.
The reaction for producing an intermediate from a compound represented by formula (5) and an organolithium compound and the reaction for producing a compound represented by formula (4) from the intermediate and trialkyltin halide are usually carried out in a solvent. Done. As the solvent, sufficiently dehydrated tetrahydrofuran, fully dehydrated 1,4-dioxane, and fully dehydrated diethyl ether are preferably used.
The temperature for reacting the organolithium compound with the compound represented by formula (5) is usually −100 to 50 ° C., preferably −80 to 0 ° C. The time for reacting the organolithium compound with the compound represented by the formula (5) is usually 1 minute to 10 hours, preferably 30 minutes to 5 hours. The amount of the organolithium compound to be reacted is usually 2 to 5 equivalents, preferably 2 to 3 equivalents, relative to the compound represented by the formula (5).
The temperature at which the intermediate and the trialkyltin halide are reacted is usually −100 to 100 ° C., preferably −80 ° C. to 50 ° C. The reaction time of the intermediate and the trialkyltin halide is usually 1 minute to 30 hours, preferably 1 to 10 hours. The amount of the trialkyltin halide to be reacted is usually 2 to 6 equivalents, preferably 2 to 3 equivalents, relative to the compound represented by the formula (5).
After the reaction, normal post-treatment can be performed to obtain the compound represented by the formula (4). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off. The product can be isolated and purified by a method such as fractionation by chromatography or recrystallization.
The compound represented by the formula (5) can be produced, for example, by reacting the compound represented by the formula (6) in the presence of an acid.
Figure JPOXMLDOC01-appb-I000017
(In the formula, R represents the same meaning as described above. A plurality of R may be the same or different.)
The acid used in the reaction for producing the compound represented by the formula (5) from the compound represented by the formula (6) may be Lewis acid or Bronsted acid, Hydrochloric acid, bromic acid, hydrofluoric acid, sulfuric acid, nitric acid, formic acid, acetic acid, propionic acid, oxalic acid, benzoic acid, boron fluoride, aluminum chloride, tin chloride (IV), iron chloride (II), titanium tetrachloride, Examples include benzenesulfonic acid, p-toluenesulfonic acid and mixtures of these compounds.
The reaction for producing the compound represented by formula (5) from the compound represented by formula (6) is preferably carried out in the presence of a solvent. The reaction temperature is preferably −80 ° C. or higher and the boiling point of the solvent or lower.
Solvents used in the reaction include hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, benzene, toluene, ethylbenzene, xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane, chloropentane, bromopentane, and chlorohexane. Halogenated hydrocarbons such as bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, trichlorobenzene, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, tert-butyl alcohol, formic acid, acetic acid, Carboxylic acid such as propionic acid, dimethyl ether, diethyl ether, methyl-tert-butyl ether, tetrahydrofuran, tetrahydropyran, di And ether of hexane, and the like. These solvents may be used alone or in combination.
After the reaction, normal post-treatment can be performed to obtain the compound represented by the formula (5). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off. The product can be isolated and purified by a method such as fractionation by chromatography or recrystallization.
The compound represented by the formula (6) can be produced, for example, by reacting the compound represented by the formula (7) with a Grignard reagent or an organolithium compound.
Figure JPOXMLDOC01-appb-I000018
As the Grignard reagent used in the above reaction, methyl magnesium chloride, methyl magnesium bromide, ethyl magnesium chloride, ethyl magnesium bromide, propyl magnesium chloride, propyl magnesium bromide, butyl magnesium chloride, butyl magnesium bromide, hexyl magnesium bromide, octyl magnesium bromide, Examples include decylmagnesium bromide, allylmagnesium chloride, allylmagnesium bromide, benzylmagnesium chloride, phenylmagnesium bromide, naphthylmagnesium bromide, and tolylmagnesium bromide.
Examples of the organic lithium compound include methyl lithium, ethyl lithium, propyl lithium, butyl lithium, phenyl lithium, naphthyl lithium, benzyl lithium, and tolyl lithium.
The reaction for producing the compound represented by the formula (6) from the compound represented by the formula (7) and the Grignard reagent or the organolithium compound is preferably carried out in an inert gas atmosphere such as nitrogen or argon. Moreover, it is preferable to implement this reaction in presence of a solvent. The reaction temperature is preferably from −80 ° C. to the boiling point of the solvent.
Solvents used in the reaction include hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, benzene, toluene, ethylbenzene and xylene, ethers such as dimethyl ether, diethyl ether, methyl-tert-butyl ether, tetrahydrofuran, tetrahydropyran, and dioxane. Etc. These solvents may be used alone or in combination.
After the reaction, normal post-treatment can be performed to obtain the compound represented by the formula (6). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off. The product can be isolated and purified by a method such as fractionation by chromatography or recrystallization.
The compound represented by the formula (7) can be produced, for example, by reacting the compound represented by the formula (8) with a peroxide.
Figure JPOXMLDOC01-appb-I000019
Examples of the peroxide include sodium perborate, m-chloroperbenzoic acid, hydrogen peroxide, and benzoyl peroxide. Preferred are sodium perborate and m-chloroperbenzoic acid, and particularly preferred is sodium perborate.
The reaction for producing the compound represented by the formula (7) from the compound represented by the formula (8) and the peroxide should be carried out using a carboxylic acid solvent such as acetic acid, trifluoroacetic acid, propionic acid, butyric acid. Is preferred.
In order to increase the solubility of the compound represented by formula (8), a mixed solvent in which one or more solvents selected from the group consisting of carbon tetrachloride, chloroform, dichloromethane, benzene, and toluene are mixed with a carboxylic acid solvent. It is preferable to carry out the reaction in The reaction temperature is preferably 0 ° C. or higher and 50 ° C. or lower.
After the reaction, normal post-treatment can be performed to obtain the compound represented by the formula (7). For example, after the reaction is stopped by adding water, the product is extracted with an organic solvent and the solvent is distilled off. The product can be isolated and purified by methods such as chromatographic fractionation and recrystallization.
As a compound represented by Formula (4), the following compound is mentioned, for example.
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
(In the formula, Bu represents a butyl group (CH 3 CH 2 CH 2 CH 2 ).)
Since the polymer compound of the present invention has a high absorbance of light having a long wavelength such as 600 nm light and efficiently absorbs sunlight, an organic photoelectric conversion element manufactured using the polymer compound of the present invention has a short-circuit current. Density increases.
The organic photoelectric conversion device of the present invention has a pair of electrodes and a functional layer between the electrodes, and the functional layer contains the electron-accepting compound and the polymer compound of the present invention. As an electron-accepting compound, fullerene and a fullerene derivative are preferable. As a specific example of the organic photoelectric conversion element,
1. An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and the polymer compound of the present invention;
2. An organic photoelectric conversion element comprising a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and the polymer compound of the present invention, wherein the electron-accepting compound is a fullerene An organic photoelectric conversion element which is a derivative;
Is mentioned. In general, at least one of the pair of electrodes is transparent or translucent. Hereinafter, this case will be described as an example.
1 above. In the organic photoelectric conversion element, the amount of the electron accepting compound in the functional layer containing the electron accepting compound and the polymer compound is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. It is preferably 20 to 500 parts by weight. In addition, 2. In the organic photoelectric conversion element, the amount of the fullerene derivative in the functional layer containing the fullerene derivative and the polymer compound is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer. More preferably, it is 500 parts by weight. From the viewpoint of increasing the photoelectric conversion efficiency, the amount of the fullerene derivative in the functional layer is preferably 20 to 400 parts by weight, more preferably 40 to 250 parts by weight with respect to 100 parts by weight of the polymer. The amount is preferably 80 to 120 parts by weight. From the viewpoint of increasing the short-circuit current density, the amount of the fullerene derivative in the functional layer is preferably 20 to 250 parts by weight and more preferably 40 to 120 parts by weight with respect to 100 parts by weight of the polymer. preferable.
In order for the organic photoelectric conversion element to have high photoelectric conversion efficiency, an absorption region in which the electron-accepting compound and the polymer compound represented by the formula (1) can efficiently absorb a spectrum of desired incident light is provided. It is important that the heterojunction interface contains many heterojunction interfaces in order to efficiently separate excitons, and that the heterojunction interface has a charge transporting property to quickly transport the charges generated by the heterojunction interface to the electrode. is there.
From such a viewpoint, as the organic photoelectric conversion element, the above 1. , 2. From the standpoint of including a large number of heterojunction interfaces, the organic photoelectric conversion element is preferable. The organic photoelectric conversion element is more preferable. Further, in the organic photoelectric conversion element of the present invention, an additional layer may be provided between at least one electrode and the functional layer in the element. Examples of the additional layer include a charge transport layer that transports holes or electrons, and a buffer layer.
The organic photoelectric conversion element of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when an electrode is formed and an organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.
As a material for the pair of electrodes, a metal, a conductive polymer, or the like can be used. The material of one of the pair of electrodes is preferably a material having a low work function. For example, metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and those metals An alloy of two or more of these metals, or one or more of those metals and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin An alloy with metal, graphite, a graphite intercalation compound, or the like is used. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
Examples of the material of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Gold, platinum, silver, and copper are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
As a material used for the charge transport layer as the additional layer, that is, the hole transport layer or the electron transport layer, an electron donating compound and an electron accepting compound described later can be used, respectively.
As a material used for the buffer layer as an additional layer, halides or oxides of alkali metals or alkaline earth metals such as lithium fluoride can be used. In addition, fine particles of an inorganic semiconductor such as titanium oxide can be used.
As the functional layer in the organic photoelectric conversion element of the present invention, for example, an organic thin film containing the polymer compound of the present invention and an electron-accepting compound can be used.
The organic thin film generally has a thickness of 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
The organic thin film may contain the polymer compound alone or in combination of two or more. Moreover, in order to improve the hole transport property of the organic thin film, a low molecular compound and / or a high molecular compound other than the high molecular compound can be mixed and used as the electron donating compound in the organic thin film.
Examples of the electron-donating compound that the organic thin film may contain in addition to the polymer compound having the repeating unit represented by the formula (1) include, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligos. Thiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof Derivatives, polythienylene vinylene and its derivatives.
Examples of the electron accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives. , diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerene and derivatives thereof such as C 60, carbon nanotube And phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, and fullerene and derivatives thereof are particularly preferable.
The electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
Fullerenes and derivatives thereof include C 60 , C 70 , C 84 and derivatives thereof. A fullerene derivative represents a compound in which at least a part of fullerene is modified.
Examples of the fullerene derivative include a compound represented by the formula (I), a compound represented by the formula (II), a compound represented by the formula (III), and a compound represented by the formula (IV).
Figure JPOXMLDOC01-appb-I000022
(In the formulas (I) to (IV), R a is an alkyl group, aryl group, heteroaryl group or group having an ester structure. A plurality of R a may be the same or different. R b represents an alkyl group or an aryl group, and a plurality of R b may be the same or different.)
The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R a and R b are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R.
The group having an ester structure represented by R a is, for example, the formula (V)
Figure JPOXMLDOC01-appb-I000023
(In the formula, u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, and R c represents an alkyl group, an aryl group, or a heteroaryl group.)
The group represented by these is mentioned.
The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R.
Specific examples of the C 60 derivative include the following.
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
Specific examples of the C 70 derivative include the following.
Figure JPOXMLDOC01-appb-I000026
The organic thin film may be produced by any method. For example, the organic thin film may be produced by a film formation method from a solution containing the polymer compound of the present invention, or an organic thin film may be formed by a vacuum deposition method. Good. Examples of the method for producing an organic thin film by film formation from a solution include a method of producing an organic thin film by applying the solution on one electrode and then evaporating the solvent.
The solvent used for film formation from a solution is not particularly limited as long as it dissolves the polymer compound of the present invention. Examples of the solvent include hydrocarbons such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, and tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, and bromobutane. And halogenated hydrocarbons such as chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene and trichlorobenzene, and ethers such as tetrahydrofuran and tetrahydropyran. The polymer compound of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
For film formation from solution, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method A coating method such as a printing method, an offset printing method, an inkjet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an inkjet printing method, and a dispenser printing method are preferable.
By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
In addition, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
The organic thin film transistor of the present invention includes a source electrode, a drain electrode, an organic semiconductor layer, and a gate electrode. A polymer compound containing a repeating unit is contained.
Since the polymer compound of the present invention has high charge mobility, an organic thin film transistor having an organic semiconductor layer containing the polymer compound of the present invention has high field effect mobility.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
 高分子化合物のポリスチレン換算の重量平均分子量はサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
 カラム: TOSOH TSKgel SuperHM−H(2本)+TSKgel SuperH2000(4.6mm I.d.×15cm);検出器:RI(SHIMADZU RID−10A);移動相:テトラヒドロフラン
参考例1(化合物1の合成)
Figure JPOXMLDOC01-appb-I000027
 フラスコ内の気体をアルゴンで置換した1000mLの4つ口フラスコに、3−ブロモチオフェンを13.0g(80.0mmol)、ジエチルエーテルを80mL入れて均一な溶液とした。該溶液を−78℃に保ったまま、2.6Mのブチルリチウム(n−BuLi)のヘキサン溶液を31mL(80.6mmol)滴下した。−78℃で2時間反応させた後、8.96gの3−チオフェンアルデヒド(80.0mmol)を20mLのジエチルエーテルに溶解させた溶液を反応液に滴下した。滴下後、反応液を−78℃で30分攪拌し、さらに室温(25℃)で30分攪拌した。反応液を再度−78℃に冷却し、2.6Mのn−BuLiのヘキサン溶液62mL(161mmol)を15分かけて滴下した。滴下後、反応液を−25℃で2時間攪拌し、さらに室温(25℃)で1時間攪拌した。その後、反応液を−25℃に冷却し、60gのヨウ素(236mmol)を1000mLのジエチルエーテルに溶解させた溶液を30分かけて滴下した。滴下後、反応液を室温(25℃)で2時間攪拌し、1規定のチオ硫酸ナトリウム水溶液50mLを加えて反応を停止させた。反応液にジエチルエーテルを加え、反応生成物を含む有機層を抽出した後、硫酸マグネシウムで反応生成物を含む有機層を乾燥し、溶媒を留去して35gの粗生成物を得た。粗生成物をクロロホルムより再結晶して、精製した化合物1を28g得た。
参考例2(化合物2の合成)
Figure JPOXMLDOC01-appb-I000028
 300mLの4つ口フラスコに、参考例1で合成したビスヨードチエニルメタノール(化合物1)を10g(22.3mmol)、塩化メチレンを150mL加えて均一な溶液とした。該溶液にクロロクロム酸ピリジニウムを7.50g(34.8mmol)加え、室温(25℃)で10時間攪拌した。反応液をろ過して不溶物を除去後、ろ液より溶媒を留去して、化合物2を10.0g(22.4mmol)得た。
参考例3(化合物3の合成)
Figure JPOXMLDOC01-appb-I000029
 フラスコ内の気体をアルゴンで置換した300mLフラスコに、参考例2で合成した化合物2を10.0g(22.3mmol)、銅粉末を6.0g(94.5mmol)、乾燥N,N−ジメチルホルムアミドを120mL加えて、120℃で4時間攪拌した。反応後、フラスコを室温(25℃)まで冷却し、反応液をシリカゲルカラムに通して不溶成分を除去した。その後、反応液に水500mLを加え、さらにクロロホルムを加え、反応生成物を含む有機層を抽出した。クロロホルム溶液である有機層を硫酸マグネシウムで乾燥し、有機層をろ過し、ろ液より溶媒を留去して粗生成物を得た。粗生成物を展開液がクロロホルムであるシリカゲルカラムで精製し、化合物3を3.26g得た。
参考例4(化合物4の合成)
Figure JPOXMLDOC01-appb-I000030
 メカニカルスターラーを備え、フラスコ内の気体をアルゴンで置換した300mL4つ口フラスコに、参考例3で合成した化合物3を3.85g(20.0mmol)、クロロホルムを50mL、トリフルオロ酢酸を50mL入れて均一な溶液とした。該溶液に過ホウ酸ナトリウム1水和物を5.99g(60mmol)加え、室温(25℃)で45分間攪拌した。その後、反応液に水200mLを加え、さらにクロロホルムを加え、反応生成物を含む有機層を抽出した。クロロホルム溶液である有機層をシリカゲルカラムに通し、エバポレーターでろ液の溶媒を留去した。残渣をメタノールより再結晶して、化合物4を534mg得た。
H NMR in CDCl(ppm):7.64(d、1H)、7.43(d、1H)、7.27(d、1H)、7.10(d、1H)
参考例5(化合物5の合成)
Figure JPOXMLDOC01-appb-I000031
 フラスコ内の気体をアルゴンで置換した100mL四つ口フラスコに、化合物4を1.00g(4.80mmol)と乾燥テトラヒドロフランを30ml入れて均一な溶液とした。フラスコを−20℃に保ちながら、反応液に1Mの3,7−ジメチルオクチルマグネシウムブロミドのエーテル溶液を12.7mL加えた。その後、30分かけて温度を−5℃まで上げ、そのままの温度で反応液を30分攪拌した。その後、10分かけて温度を0℃に上げ、そのままの温度で反応液を1.5時間攪拌した。その後、反応液に水を加えて反応を停止し、さらに酢酸エチルを加え、反応生成物を含む有機層を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、シリカゲルカラムに通した後、溶出液の溶媒を留去して、化合物5を1.50g得た。
H NMR in CDCl(ppm):8.42(b、1H)、7.25(d、1H)、7.20(d、1H)、6.99(d、1H)、6.76(d、1H)、2.73(b、1H)、1.90(m、4H)、1.58‐1.02(b、20H)、0.92(s、6H)、0.88(s、12H)
参考例6(化合物6の合成)
Figure JPOXMLDOC01-appb-I000032
 フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物5を1.50g、トルエンを30mL入れて均一な溶液とした。該溶液にp−トルエンスルホン酸ナトリウム1水和物を100mg入れて100℃で1.5時間攪拌を行った。反応液を室温(25℃)まで冷却後、水50mLを加え、さらにトルエンを加えて反応生成物を含む有機層を抽出した。トルエン溶液である有機層を硫酸ナトリウムで乾燥し、溶媒を留去した。得られた粗生成物を、展開溶媒がヘキサンであるシリカゲルカラムで生成し、化合物6を1.33g得た。
H NMR in CDCl(ppm):6.98(d、1H)、6.93(d、1H)、6.68(d、1H)、6.59(d、1H)、1.89(m、4H)、1.58‐1.00(b、20H)、0.87(s、6H)、0.86(s、12H)
参考例7(化合物7の合成)
Figure JPOXMLDOC01-appb-I000033
 フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物6を2.16g(4.55mmol)、乾燥テトラヒドロフランを100mL入れて均一な溶液とした。該溶液を−78℃に保ち、該溶液に2.6Mのn−BuLiのヘキサン溶液4.37mL(11.4mmol)を10分かけて滴下した。滴下後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で2時間攪拌した。その後、フラスコを−78℃に冷却し、反応液にトリブチルスズクロリドを4.07g(12.5mmol)加えた。添加後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で3時間攪拌した。その後、反応液に水200mlを加えて反応を停止し、酢酸エチルを加えて反応生成物を含む有機層を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、有機層をろ過後、エバポレーターで、ろ液の溶媒を留去した。得られたオイル状の物質を展開溶媒がヘキサンであるシリカゲルカラムで精製し、化合物7を3.52g(3.34mmol)得た。シリカゲルカラムのシリカゲルには、あらかじめ5wt%のトリエチルアミンを含むヘキサンに5分間浸し、その後、ヘキサンで濯いだシリカゲルを用いた。
実施例1(高分子化合物1の合成)
Figure JPOXMLDOC01-appb-I000034
 フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物7を200mg(0.190mmol)、Luminescence Technology Corporation社製の化合物8を115mg(0.184mmol)、トルエンを16ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを2.61mg(0.00285mmol)、トリス(2−トルイル)ホスフィンを5.2mg(0.0171mmol)加え、100℃で5時間攪拌した。その後、反応液にフェニルブロミドを100mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール300mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、トルエン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム3gと水100mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3重量%(wt%)の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、5重量%のフッ化カリウム水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン50mLに再度溶解し、アルミナ/シリカゲルカラムを通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された高分子83mgを得た。以下、この高分子を高分子化合物1と呼称する。
参考例8(高分子化合物2の合成)
Figure JPOXMLDOC01-appb-I000035
 フラスコ内の気体をアルゴンで置換した2L四つ口フラスコに、化合物(E)を7.928g(16.72mmol)、化合物(F)を13.00g(1760mmol)、トリオクチルメチルアンモニウムクロリド(商品名Aliquat336(登録商標)、シグマアルドリッチ社製、CHN[(CHCHCl、density 0.884g/ml、25℃)を4.979g、及びトルエンを405ml入れ、撹拌しながら反応系内を30分間アルゴンバブリングした。フラスコ内にジクロロビス(トリフェニルホスフィン)パラジウム(II)を0.02g加え、105℃に昇温し、撹拌しながら2mol/Lの炭酸ナトリウム水溶液42.2mlを滴下した。滴下終了後5時間反応させ、その後、フェニルボロン酸2.6gとトルエン1.8mlとを加え、105℃で16時間撹拌した。その後、反応液にトルエン700ml及び7.5wt%のジエチルジチオカルバミン酸ナトリウム三水和物水溶液200mlを加え、85℃で3時間撹拌した。反応液の水層を除去後、有機層を60℃のイオン交換水300mlで2回、60℃の3wt%酢酸300mlで1回、さらに60℃のイオン交換水300mlで3回洗浄した。有機層をセライト、アルミナ及びシリカを充填したカラムに通し、ろ液を取得した。その後、熱トルエン800mlでカラムを洗浄し、洗浄したトルエン溶液をろ液に加えた。得られた溶液を700mlまで濃縮した後、濃縮した溶液を2Lのメタノールに加え、重合体を再沈殿させた。重合体をろ過して取得し、500mlのメタノール、500mlのアセトン、500mlのメタノールで重合体を洗浄した。重合体を50℃で一晩真空乾燥することにより、ペンタチエニル−フルオレンコポリマー(高分子化合物2)12.21gを得た。高分子化合物2のポリスチレン換算の重量平均分子量は1.1×10であった。
参考例9(化合物5bの合成)
Figure JPOXMLDOC01-appb-I000036
 フラスコ内の気体をアルゴンで置換した300mL四つ口フラスコに、化合物4を2.00g(9.60mmol)と乾燥テトラヒドロフランを60ml入れて均一な溶液とした。フラスコを−20℃に保ちながら、反応液に0.5Mの4−プロピルフェニルマグネシウムブロミドを50.8mL加えた。その後、30分かけて温度を−5℃まで上げ、そのままの温度で反応液を30分攪拌した。その後、10分かけて温度を0℃に上げ、そのままの温度で反応液を1.5時間攪拌した。その後、反応液に水を加えて反応を停止し、さらに酢酸エチルを加え、反応生成物を含む有機層を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、シリカゲルカラムに通した後、溶媒を留去し、化合物5bを3.49g(7.78mmol)得た。
参考例10(化合物6bの合成)
Figure JPOXMLDOC01-appb-I000037
 フラスコ内の気体をアルゴンで置換した500mLフラスコに、化合物5bを3.49g(7.78mmol)、トルエンを50mL入れて均一な溶液とした。該溶液にp−トルエンスルホン酸ナトリウム1水和物を100mg入れて100℃で1.5時間攪拌を行った。反応液を室温(25℃)まで冷却後、水50mLを加え、さらにトルエンを加えて反応生成物を含む有機層を抽出した。トルエン溶液である有機層を硫酸ナトリウムで乾燥し、溶媒を留去した。得られた粗生成物を、展開溶媒がヘキサンであるシリカゲルカラムで精製し、化合物6bを3.30g(7.76mmol)得た。
参考例11(化合物7bの合成)
Figure JPOXMLDOC01-appb-I000038
 フラスコ内の気体をアルゴンで置換した300mLフラスコに、化合物6bを2.00g(4.64mmol)、乾燥テトラヒドロフランを100mL入れて均一な溶液とした。該溶液を−78℃に保ち、該溶液に1.6Mのブチルリチウム(n−BuLi)のヘキサン溶液7.25mL(11.6mmol)を10分かけて滴下した。滴下後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で2時間攪拌した。その後、フラスコを−78℃に冷却し、反応液にトリブチルスズクロリドを4.10g(12.6mmol)加えた。添加後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で3時間攪拌した。その後、反応液に水200mlを加えて反応を停止し、酢酸エチルを加えて反応生成物を含む有機層を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、エバポレーターで溶媒を留去した。得られたオイル状の物質を展開溶媒がヘキサンであるシリカゲルカラムで精製した。シリカゲルカラムのシリカゲルには、あらかじめ5wt%のトリエチルアミンを含むヘキサンに5分間浸し、その後、ヘキサンで濯いだシリカゲルを用いた。精製後、化合物7bを3.52g(3.49mmol)得た。
実施例4(高分子化合物3の合成)
Figure JPOXMLDOC01-appb-I000039
 フラスコ内の気体をアルゴンで置換した100mLフラスコに、化合物7bを241.5mg(0.239mmol)、Luminescence Technology Corporation社製の化合物9を163.4mg(0.239mmol)、トルエンを21ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを3.29mg(0.0036mmol)、トリス(2−トルイル)ホスフィンを6.6mg(0.022mmol)加え、100℃で6時間攪拌した。その後、反応液にフェニルブロミドを100mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール300mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、トルエン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム3gと水100mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3重量%(wt%)の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、5重量%のフッ化カリウム水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン50mLに再度溶解し、アルミナ/シリカゲルカラムを通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された高分子22mgを得た。この高分子を高分子化合物3と呼称する。
測定例1(有機薄膜の吸光度の測定)
 高分子化合物1を0.5重量%の濃度でクロロホルムに溶解させ、塗布溶液を作製した。得られた塗布溶液をガラス基板上に、スピンコートで塗布した。塗布操作は23℃で行った。その後、大気下120℃の条件で5分間ベークし、膜厚約100nmの有機薄膜を得た。有機薄膜の吸収スペクトルを分光光度計(日本分光株式会社製、商品名:V−670)で測定した。測定したスペクトルを図1に示す。600nm、700nm、800nm及び900nmにおける吸光度を表1に示す。
 比較例1(有機薄膜の吸光度の測定)
 高分子化合物1の代わりに高分子化合物2を使用し、溶媒にo−ジクロロベンゼンを使用した以外は、測定例1と同様にして有機薄膜を作製し、該有機薄膜の吸収スペクトルを測定した。測定したスペクトルを図2に示す。600nm、700nm、800nm及び900nmにおける吸光度を表1に示す。
Figure JPOXMLDOC01-appb-T000040
実施例2(有機薄膜太陽電池の作製及び評価)
 電子受容性化合物であるフラーレン誘導体C60PCBM(Phenyl C61−butyric acid methyl ester、フロンティアカーボン社製、商品名:E100)と、電子供与性化合物である高分子化合物1とを、3:1の重量比で混合し、混合物の濃度が2重量%となるよう、o−ジクロロベンゼンに溶解させた。得られた溶液を、孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液1を調製した。
 スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を作成した。次に、前記塗布溶液1を、スピンコートによりITO膜上に塗布し、有機薄膜太陽電池の機能層を得た。機能層の膜厚は100nmであった。その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1~9×10−3Paであった。こうして得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO−SUNII:AM1.5Gフィルター、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定した。光電変換効率は4.0%であり、Jsc(短絡電流密度)は13.2mA/cmであり、Voc(開放端電圧)は0.54Vであり、FF(フィルファクター)は0.57であった。
実施例3(有機薄膜トランジスタの作製及び評価)
 高分子化合物1を用いて、図3に示す構造を有する有機薄膜トランジスタを作製した。
 まず、ゲート電極となる高濃度にドーピングされたn−型シリコン基板31の表面を熱酸化し、厚さ300nmのシリコン酸化膜32を形成した。次に、フォトリソグラフィ工程によりシリコン酸化膜32上にチャネル長100μm、チャネル幅1mmのソース電極33、ドレイン電極34を作製した。ソース電極及びドレイン電極は、シリコン酸化膜側から、クロムと金をこの順に積層させた構造を有する。得られた基板をアセトンで10分間超音波洗浄した後、オゾンUVを30分間照射した。その後、フェニルエチルトリクロロシランのトルエン希釈液に基板を2分間浸漬させることにより、該基板の表面をシラン処理した。
 高分子化合物1を溶媒であるオルトジクロロベンゼンに溶解させて、高分子化合物1の濃度が0.5重量%である溶液(有機半導体組成物)を作製し、これをメンブランフィルターでろ過して塗布液を調製した。
 その後、得られた塗布液を、上記表面をシラン処理した基板上にスピンコート法により塗布後、窒素を満たしたグローブボックス中で、70℃のホットプレートを用いて30分間乾燥させることにより、約30nmの厚さを有する高分子化合物1の薄膜(有機半導体層)を形成した。
 上述のようにして作製して有機薄膜トランジスタの21個の素子中の5個の素子において、ソース・ドレイン間電圧Vsdを−40Vに設定し、ゲート電圧Vgを20~−40Vに変化させた条件で、トランジスタ特性を測定した。かかる測定により得られた伝達特性から算出した、有機薄膜トランジスタによる電界効果移動度(移動度)は1.2×10−1cm/Vsであった。
比較例2(有機薄膜トランジスタの作製及び評価)
 高分子化合物2を用いて、図3に示す構造を有する有機薄膜トランジスタを作製した。
 まず、ゲート電極となる高濃度にドーピングされたn−型シリコン基板31の表面を熱酸化し、厚さ200nmのシリコン酸化膜32を形成した。次に、フォトリソ工程によりシリコン酸化膜32上にチャネル長20μm、チャネル幅2mmのソース電極33、ドレイン電極34を作製した。ソース電極及びドレイン電極は、シリコン酸化膜側から、クロムと金をこの順に積層させた構造を有する。得られた基板をアセトンで10分間超音波洗浄した後、オゾンUVを30分間照射した。その後、基板上にヘキサメチルジシラザンを滴下後、スピンコートすることにより、該基板の表面をシラン処理した。
 高分子化合物2を溶媒であるクロロホルムに溶解させて、高分子化合物2の濃度が0.5重量%である溶液(有機半導体組成物)を作製し、これをメンブランフィルターでろ過して塗布液を調製した。
 その後、得られた塗布液を、上記表面をシラン処理した基板上にスピンコート法により塗布後、窒素を満たしたグローブボックス中で、室温で乾燥させることにより、約80nmの厚さを有する高分子化合物2の薄膜(有機半導体層)を形成した。
 上述のようにして作製して有機薄膜トランジスタの21個の素子中の5個の素子において、ソース・ドレイン間電圧Vsdを−40Vに設定し、ゲート電圧Vgを10~−60Vに変化させた条件で、トランジスタ特性を測定した。かかる測定により得られた伝達特性から算出した、有機薄膜トランジスタによる電界効果移動度(移動度)は6.2×10−4cm/Vsであった。
Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.
The polystyrene equivalent weight average molecular weight of the polymer compound was determined by size exclusion chromatography (SEC).
Column: TOSOH TSKgel SuperHM-H (2 pieces) + TSKgel SuperH2000 (4.6 mm Id × 15 cm); Detector: RI (SHIMADZU RID-10A); Mobile phase: tetrahydrofuran reference example 1 (synthesis of compound 1)
Figure JPOXMLDOC01-appb-I000027
A 1000 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 13.0 g (80.0 mmol) of 3-bromothiophene and 80 mL of diethyl ether to obtain a uniform solution. While maintaining the solution at −78 ° C., 31 mL (80.6 mmol) of 2.6M butyllithium (n-BuLi) in hexane was added dropwise. After reacting at −78 ° C. for 2 hours, a solution prepared by dissolving 8.96 g of 3-thiophenaldehyde (80.0 mmol) in 20 mL of diethyl ether was added dropwise to the reaction solution. After dropping, the reaction solution was stirred at -78 ° C for 30 minutes, and further stirred at room temperature (25 ° C) for 30 minutes. The reaction solution was cooled again to −78 ° C., and 62 mL (161 mmol) of 2.6 M n-BuLi in hexane was added dropwise over 15 minutes. After dropping, the reaction solution was stirred at −25 ° C. for 2 hours, and further stirred at room temperature (25 ° C.) for 1 hour. Thereafter, the reaction solution was cooled to −25 ° C., and a solution in which 60 g of iodine (236 mmol) was dissolved in 1000 mL of diethyl ether was added dropwise over 30 minutes. After the dropwise addition, the reaction solution was stirred at room temperature (25 ° C.) for 2 hours, and 50 mL of 1N aqueous sodium thiosulfate solution was added to stop the reaction. Diethyl ether was added to the reaction solution, and the organic layer containing the reaction product was extracted. Then, the organic layer containing the reaction product was dried over magnesium sulfate, and the solvent was distilled off to obtain 35 g of a crude product. The crude product was recrystallized from chloroform to obtain 28 g of purified Compound 1.
Reference Example 2 (Synthesis of Compound 2)
Figure JPOXMLDOC01-appb-I000028
To a 300 mL four-necked flask, 10 g (22.3 mmol) of bisiodothienylmethanol (compound 1) synthesized in Reference Example 1 and 150 mL of methylene chloride were added to obtain a uniform solution. To the solution, 7.50 g (34.8 mmol) of pyridinium chlorochromate was added and stirred at room temperature (25 ° C.) for 10 hours. The reaction solution was filtered to remove insolubles, and then the solvent was distilled off from the filtrate to obtain 10.0 g (22.4 mmol) of Compound 2.
Reference Example 3 (Synthesis of Compound 3)
Figure JPOXMLDOC01-appb-I000029
In a 300 mL flask in which the gas in the flask was replaced with argon, 10.0 g (22.3 mmol) of Compound 2 synthesized in Reference Example 2, 6.0 g (94.5 mmol) of copper powder, and dry N, N-dimethylformamide Was added and stirred at 120 ° C. for 4 hours. After the reaction, the flask was cooled to room temperature (25 ° C.), and the reaction solution was passed through a silica gel column to remove insoluble components. Thereafter, 500 mL of water was added to the reaction solution, and chloroform was further added to extract an organic layer containing the reaction product. The organic layer which is a chloroform solution was dried with magnesium sulfate, the organic layer was filtered, and the solvent was distilled off from the filtrate to obtain a crude product. The crude product was purified with a silica gel column whose developing solution was chloroform, and 3.26 g of compound 3 was obtained.
Reference Example 4 (Synthesis of Compound 4)
Figure JPOXMLDOC01-appb-I000030
A 300 mL four-neck flask equipped with a mechanical stirrer and substituted with argon in the flask was uniformly charged with 3.85 g (20.0 mmol) of Compound 3 synthesized in Reference Example 3, 50 mL of chloroform, and 50 mL of trifluoroacetic acid. Solution. To the solution was added 5.99 g (60 mmol) of sodium perborate monohydrate, and the mixture was stirred at room temperature (25 ° C.) for 45 minutes. Thereafter, 200 mL of water was added to the reaction solution, chloroform was further added, and the organic layer containing the reaction product was extracted. The organic layer, which is a chloroform solution, was passed through a silica gel column, and the solvent of the filtrate was distilled off with an evaporator. The residue was recrystallized from methanol to obtain 534 mg of compound 4.
1 H NMR in CDCl 3 (ppm): 7.64 (d, 1H), 7.43 (d, 1H), 7.27 (d, 1H), 7.10 (d, 1H)
Reference Example 5 (Synthesis of Compound 5)
Figure JPOXMLDOC01-appb-I000031
A 100 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 1.00 g (4.80 mmol) of Compound 4 and 30 ml of dry tetrahydrofuran to obtain a uniform solution. While maintaining the flask at −20 ° C., 12.7 mL of a 1M 3,7-dimethyloctylmagnesium bromide ether solution was added to the reaction solution. Thereafter, the temperature was raised to −5 ° C. over 30 minutes, and the reaction solution was stirred at the same temperature for 30 minutes. Thereafter, the temperature was raised to 0 ° C. over 10 minutes, and the reaction solution was stirred at the same temperature for 1.5 hours. Thereafter, water was added to the reaction solution to stop the reaction, and ethyl acetate was further added to extract an organic layer containing the reaction product. The organic layer as an ethyl acetate solution was dried over sodium sulfate and passed through a silica gel column, and then the solvent of the eluate was distilled off to obtain 1.50 g of compound 5.
1 H NMR in CDCl 3 (ppm): 8.42 (b, 1H), 7.25 (d, 1H), 7.20 (d, 1H), 6.99 (d, 1H), 6.76 ( d, 1H), 2.73 (b, 1H), 1.90 (m, 4H), 1.58-1.02 (b, 20H), 0.92 (s, 6H), 0.88 (s) , 12H)
Reference Example 6 (Synthesis of Compound 6)
Figure JPOXMLDOC01-appb-I000032
In a 200 mL flask in which the gas in the flask was replaced with argon, 1.50 g of Compound 5 and 30 mL of toluene were added to obtain a uniform solution. 100 mg of sodium p-toluenesulfonate monohydrate was added to the solution, and the mixture was stirred at 100 ° C. for 1.5 hours. After cooling the reaction solution to room temperature (25 ° C.), 50 mL of water was added, and toluene was further added to extract the organic layer containing the reaction product. The organic layer as a toluene solution was dried over sodium sulfate, and the solvent was distilled off. The obtained crude product was produced on a silica gel column whose developing solvent was hexane, and 1.33 g of compound 6 was obtained.
1 H NMR in CDCl 3 (ppm): 6.98 (d, 1H), 6.93 (d, 1H), 6.68 (d, 1H), 6.59 (d, 1H), 1.89 ( m, 4H), 1.58-1.00 (b, 20H), 0.87 (s, 6H), 0.86 (s, 12H)
Reference Example 7 (Synthesis of Compound 7)
Figure JPOXMLDOC01-appb-I000033
Into a 200 mL flask in which the gas in the flask was replaced with argon, 2.16 g (4.55 mmol) of Compound 6 and 100 mL of dry tetrahydrofuran were added to obtain a uniform solution. The solution was kept at −78 ° C., and 4.37 mL (11.4 mmol) of 2.6M n-BuLi in hexane was added dropwise to the solution over 10 minutes. After the addition, the reaction solution was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 2 hours. Thereafter, the flask was cooled to −78 ° C., and 4.07 g (12.5 mmol) of tributyltin chloride was added to the reaction solution. After the addition, the reaction solution was stirred at −78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 3 hours. Thereafter, 200 ml of water was added to the reaction solution to stop the reaction, and ethyl acetate was added to extract an organic layer containing the reaction product. The organic layer which is an ethyl acetate solution was dried with sodium sulfate, the organic layer was filtered, and then the solvent of the filtrate was distilled off with an evaporator. The obtained oily substance was purified with a silica gel column whose developing solvent was hexane, and 3.52 g (3.34 mmol) of Compound 7 was obtained. As the silica gel of the silica gel column, silica gel previously immersed in hexane containing 5 wt% triethylamine for 5 minutes and then rinsed with hexane was used.
Example 1 (Synthesis of polymer compound 1)
Figure JPOXMLDOC01-appb-I000034
In a 200 mL flask in which the gas in the flask was replaced with argon, 200 mg (0.190 mmol) of Compound 7, 115 mg (0.184 mmol) of Compound 8 manufactured by Luminescence Technology Corporation, and 16 ml of toluene were added to obtain a uniform solution. The resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 2.61 mg (0.00285 mmol) of tris (dibenzylideneacetone) dipalladium and 5.2 mg (0.0171 mmol) of tris (2-toluyl) phosphine were added to the toluene solution, and the mixture was stirred at 100 ° C. for 5 hours. Thereafter, 100 mg of phenyl bromide was added to the reaction solution, and the mixture was further stirred for 5 hours. Thereafter, the flask was cooled to 25 ° C., and the reaction solution was poured into 300 mL of methanol. The precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours using a Soxhlet extractor. The polymer remaining in the cylindrical filter paper was dissolved in 100 mL of toluene, 3 g of sodium diethyldithiocarbamate and 100 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer is washed twice with 50 ml of water, then twice with 50 mL of 3 wt% (wt%) aqueous acetic acid, then twice with 50 mL of water and then 5 wt. The solution was washed twice with 50 mL of an aqueous potassium fluoride solution and then twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the obtained polymer was dissolved again in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and dried to obtain 83 mg of purified polymer. Hereinafter, this polymer is referred to as polymer compound 1.
Reference Example 8 (Synthesis of polymer compound 2)
Figure JPOXMLDOC01-appb-I000035
In a 2 L four-necked flask in which the gas in the flask was replaced with argon, 7.928 g (16.72 mmol) of compound (E), 13.00 g (1760 mmol) of compound (F), trioctylmethylammonium chloride (trade name) 4.979 g of Aliquat 336 (registered trademark), manufactured by Sigma-Aldrich, CH 3 N [(CH 2 ) 7 CH 3 ] 3 Cl, density 0.884 g / ml, 25 ° C.), and 405 ml of toluene were added and stirred. The reaction system was bubbled with argon for 30 minutes. 0.02 g of dichlorobis (triphenylphosphine) palladium (II) was added to the flask, the temperature was raised to 105 ° C., and 42.2 ml of a 2 mol / L sodium carbonate aqueous solution was added dropwise with stirring. After completion of the dropwise addition, the reaction was allowed to proceed for 5 hours, and then 2.6 g of phenylboronic acid and 1.8 ml of toluene were added, followed by stirring at 105 ° C. for 16 hours. Thereafter, 700 ml of toluene and 200 ml of a 7.5 wt% sodium diethyldithiocarbamate trihydrate aqueous solution were added to the reaction solution, followed by stirring at 85 ° C. for 3 hours. After removing the aqueous layer of the reaction solution, the organic layer was washed twice with 300 ml of ion exchange water at 60 ° C., once with 300 ml of 3 wt% acetic acid at 60 ° C., and further three times with 300 ml of ion exchange water at 60 ° C. The organic layer was passed through a column filled with celite, alumina and silica to obtain a filtrate. Thereafter, the column was washed with 800 ml of hot toluene, and the washed toluene solution was added to the filtrate. After the obtained solution was concentrated to 700 ml, the concentrated solution was added to 2 L of methanol to reprecipitate the polymer. The polymer was obtained by filtration, and the polymer was washed with 500 ml of methanol, 500 ml of acetone, and 500 ml of methanol. The polymer was vacuum-dried at 50 ° C. overnight to obtain 12.21 g of a pentathienyl-fluorene copolymer (polymer compound 2). The polymer compound 2 had a weight average molecular weight in terms of polystyrene of 1.1 × 10 5 .
Reference Example 9 (Synthesis of Compound 5b)
Figure JPOXMLDOC01-appb-I000036
A 300 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 2.00 g (9.60 mmol) of Compound 4 and 60 ml of dry tetrahydrofuran to obtain a uniform solution. While maintaining the flask at −20 ° C., 50.8 mL of 0.5 M 4-propylphenylmagnesium bromide was added to the reaction solution. Thereafter, the temperature was raised to −5 ° C. over 30 minutes, and the reaction solution was stirred at the same temperature for 30 minutes. Thereafter, the temperature was raised to 0 ° C. over 10 minutes, and the reaction solution was stirred at the same temperature for 1.5 hours. Thereafter, water was added to the reaction solution to stop the reaction, and ethyl acetate was further added to extract an organic layer containing the reaction product. The organic layer, which was an ethyl acetate solution, was dried over sodium sulfate and passed through a silica gel column, and then the solvent was distilled off to obtain 3.49 g (7.78 mmol) of compound 5b.
Reference Example 10 (Synthesis of Compound 6b)
Figure JPOXMLDOC01-appb-I000037
A homogeneous solution was obtained by adding 3.49 g (7.78 mmol) of compound 5b and 50 mL of toluene to a 500 mL flask in which the gas in the flask was replaced with argon. 100 mg of sodium p-toluenesulfonate monohydrate was added to the solution, and the mixture was stirred at 100 ° C. for 1.5 hours. After cooling the reaction solution to room temperature (25 ° C.), 50 mL of water was added, and toluene was further added to extract the organic layer containing the reaction product. The organic layer as a toluene solution was dried over sodium sulfate, and the solvent was distilled off. The obtained crude product was purified with a silica gel column in which the developing solvent was hexane to obtain 3.30 g (7.76 mmol) of compound 6b.
Reference Example 11 (Synthesis of Compound 7b)
Figure JPOXMLDOC01-appb-I000038
A 300 mL flask in which the gas in the flask was replaced with argon was charged with 2.00 g (4.64 mmol) of compound 6b and 100 mL of dry tetrahydrofuran to obtain a uniform solution. The solution was kept at −78 ° C., and 7.25 mL (11.6 mmol) of 1.6M butyllithium (n-BuLi) in hexane was added dropwise to the solution over 10 minutes. After the addition, the reaction solution was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 2 hours. Thereafter, the flask was cooled to −78 ° C., and 4.10 g (12.6 mmol) of tributyltin chloride was added to the reaction solution. After the addition, the reaction solution was stirred at −78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 3 hours. Thereafter, 200 ml of water was added to the reaction solution to stop the reaction, and ethyl acetate was added to extract an organic layer containing the reaction product. The organic layer, which is an ethyl acetate solution, was dried over sodium sulfate, and the solvent was distilled off with an evaporator. The obtained oily substance was purified by a silica gel column whose developing solvent was hexane. As the silica gel of the silica gel column, silica gel previously immersed in hexane containing 5 wt% triethylamine for 5 minutes and then rinsed with hexane was used. After purification, 3.52 g (3.49 mmol) of compound 7b was obtained.
Example 4 (Synthesis of Polymer Compound 3)
Figure JPOXMLDOC01-appb-I000039
In a 100 mL flask in which the gas in the flask was replaced with argon, 241.5 mg (0.239 mmol) of Compound 7b, 163.4 mg (0.239 mmol) of Compound 9 manufactured by Luminescence Technology Corporation, and 21 ml of toluene were mixed uniformly. It was. The resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 3.29 mg (0.0036 mmol) of tris (dibenzylideneacetone) dipalladium and 6.6 mg (0.022 mmol) of tris (2-toluyl) phosphine were added to the toluene solution, and the mixture was stirred at 100 ° C. for 6 hours. Thereafter, 100 mg of phenyl bromide was added to the reaction solution, and the mixture was further stirred for 5 hours. Thereafter, the flask was cooled to 25 ° C., and the reaction solution was poured into 300 mL of methanol. The precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours using a Soxhlet extractor. The polymer remaining in the cylindrical filter paper was dissolved in 100 mL of toluene, 3 g of sodium diethyldithiocarbamate and 100 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer is washed twice with 50 ml of water, then twice with 50 mL of 3 wt% (wt%) aqueous acetic acid, then twice with 50 mL of water and then 5 wt. The solution was washed twice with 50 mL of an aqueous potassium fluoride solution and then twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the obtained polymer was dissolved again in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and dried to obtain 22 mg of purified polymer. This polymer is referred to as polymer compound 3.
Measurement Example 1 (Measurement of absorbance of organic thin film)
Polymer compound 1 was dissolved in chloroform at a concentration of 0.5% by weight to prepare a coating solution. The obtained coating solution was applied onto a glass substrate by spin coating. The coating operation was performed at 23 ° C. Then, it baked for 5 minutes on 120 degreeC conditions in air | atmosphere, and obtained the organic thin film with a film thickness of about 100 nm. The absorption spectrum of the organic thin film was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm, 700 nm, 800 nm, and 900 nm.
Comparative Example 1 (Measurement of absorbance of organic thin film)
An organic thin film was prepared in the same manner as in Measurement Example 1 except that the high molecular compound 2 was used instead of the high molecular compound 1 and o-dichlorobenzene was used as the solvent, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm, 700 nm, 800 nm, and 900 nm.
Figure JPOXMLDOC01-appb-T000040
Example 2 (Production and Evaluation of Organic Thin Film Solar Cell)
Fullerene derivative C60PCBM (phenyl C61-butyric acid methyl ester, product name: E100), which is an electron-accepting compound, and polymer compound 1, which is an electron-donating compound, at a weight ratio of 3: 1. The mixture was dissolved in o-dichlorobenzene so that the concentration of the mixture was 2% by weight. The obtained solution was filtered through a Teflon (registered trademark) filter having a pore size of 1.0 μm to prepare a coating solution 1.
A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, a PEDOT: PSS solution (CleviosP VP AI4083 manufactured by HC Starck Co., Ltd.) is applied onto the ITO film by spin coating, and heated at 120 ° C. for 10 minutes in the atmosphere to thereby form a hole injection layer having a thickness of 50 nm. It was created. Next, the coating solution 1 was applied onto the ITO film by spin coating to obtain a functional layer of an organic thin film solar cell. The film thickness of the functional layer was 100 nm. Then, the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −3 Pa in all cases. The shape of the organic thin film solar cell thus obtained was a square of 2 mm × 2 mm. The obtained organic thin film solar cell is irradiated with constant light using a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.), and the generated current and voltage are measured. did. The photoelectric conversion efficiency is 4.0%, Jsc (short circuit current density) is 13.2 mA / cm 2 , Voc (open circuit voltage) is 0.54 V, and FF (fill factor) is 0.57. there were.
Example 3 (Production and Evaluation of Organic Thin Film Transistor)
An organic thin film transistor having the structure shown in FIG.
First, the surface of the heavily doped n − -type silicon substrate 31 to be the gate electrode was thermally oxidized to form a silicon oxide film 32 having a thickness of 300 nm. Next, a source electrode 33 and a drain electrode 34 having a channel length of 100 μm and a channel width of 1 mm were formed on the silicon oxide film 32 by a photolithography process. The source electrode and the drain electrode have a structure in which chromium and gold are laminated in this order from the silicon oxide film side. The obtained substrate was ultrasonically cleaned with acetone for 10 minutes, and then irradiated with ozone UV for 30 minutes. Thereafter, the substrate was dipped in a toluene diluted solution of phenylethyltrichlorosilane for 2 minutes to silane-treat the surface of the substrate.
Polymer compound 1 is dissolved in orthodichlorobenzene as a solvent to prepare a solution (organic semiconductor composition) having a concentration of polymer compound 1 of 0.5% by weight, which is filtered through a membrane filter and applied. A liquid was prepared.
Thereafter, the obtained coating solution was applied on a silane-treated substrate with the above surface by a spin coating method, and then dried in a glove box filled with nitrogen for 30 minutes using a hot plate at 70 ° C. A thin film (organic semiconductor layer) of polymer compound 1 having a thickness of 30 nm was formed.
In five of the 21 elements of the organic thin film transistor fabricated as described above, the source-drain voltage Vsd was set to -40V and the gate voltage Vg was changed to 20 to -40V. The transistor characteristics were measured. The field effect mobility (mobility) of the organic thin film transistor calculated from the transfer characteristics obtained by such measurement was 1.2 × 10 −1 cm 2 / Vs.
Comparative Example 2 (Production and Evaluation of Organic Thin Film Transistor)
An organic thin film transistor having the structure shown in FIG.
First, the surface of the heavily doped n− type silicon substrate 31 to be a gate electrode was thermally oxidized to form a silicon oxide film 32 having a thickness of 200 nm. Next, a source electrode 33 and a drain electrode 34 having a channel length of 20 μm and a channel width of 2 mm were formed on the silicon oxide film 32 by a photolithography process. The source electrode and the drain electrode have a structure in which chromium and gold are laminated in this order from the silicon oxide film side. The obtained substrate was ultrasonically cleaned with acetone for 10 minutes, and then irradiated with ozone UV for 30 minutes. Thereafter, hexamethyldisilazane was dropped on the substrate and spin-coated to silane-treat the surface of the substrate.
Polymer compound 2 is dissolved in chloroform as a solvent to prepare a solution (organic semiconductor composition) in which the concentration of polymer compound 2 is 0.5% by weight, and this is filtered through a membrane filter to obtain a coating solution. Prepared.
Thereafter, the obtained coating solution is applied on a substrate having the above surface treated with silane by a spin coating method, and then dried at room temperature in a glove box filled with nitrogen, whereby a polymer having a thickness of about 80 nm is obtained. A thin film (organic semiconductor layer) of Compound 2 was formed.
In five of the 21 elements of the organic thin film transistor fabricated as described above, the source-drain voltage Vsd was set to -40V, and the gate voltage Vg was changed to 10 to -60V. The transistor characteristics were measured. The field effect mobility (mobility) of the organic thin film transistor calculated from the transfer characteristics obtained by such measurement was 6.2 × 10 −4 cm 2 / Vs.
 本発明の高分子化合物は、長波長の光の吸光度が大きいため、有機光電変換素子に極めて有用である。 The polymer compound of the present invention is extremely useful for an organic photoelectric conversion element because of its large absorbance of light having a long wavelength.

Claims (8)

  1.  式(A)で表される繰り返し単位と式(B)で表される繰り返し単位とを含む高分子化合物。
    Figure JPOXMLDOC01-appb-I000001
    〔式(A)及び式(B)中、Q及びRは、同一又は相異なり、水素原子、フッ素原子、フッ素化されていてもよいアルキル基、フッ素化されていてもよいアルコキシ基、アリール基、ヘテロアリール基又は式(2)
    Figure JPOXMLDOC01-appb-I000002
    (式中、m1は、0~6の整数を表し、m2は、0~6の整数を表す。R’は、フッ素化されていてもよいアルキル基、アリール基又はヘテロアリール基を表す。)
    で表される基を表す。複数個あるQは、同一でも相異なっていてもよい。複数個あるRは、同一でも相異なっていてもよい。〕
    A polymer compound comprising a repeating unit represented by formula (A) and a repeating unit represented by formula (B).
    Figure JPOXMLDOC01-appb-I000001
    [In the formula (A) and the formula (B), Q and R are the same or different and are a hydrogen atom, a fluorine atom, an alkyl group which may be fluorinated, an alkoxy group which may be fluorinated, an aryl group. A heteroaryl group or formula (2)
    Figure JPOXMLDOC01-appb-I000002
    (In the formula, m1 represents an integer of 0 to 6, m2 represents an integer of 0 to 6. R ′ represents an alkyl group, aryl group or heteroaryl group which may be fluorinated.)
    Represents a group represented by Plural Qs may be the same or different. A plurality of R may be the same or different. ]
  2.  Q及びRが、水素原子、炭素数が1~20のアルキル基又はフェニル基である請求項1に記載の高分子化合物。 2. The polymer compound according to claim 1, wherein Q and R are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group.
  3.  式(1)で表される繰り返し単位を含む高分子化合物。
    Figure JPOXMLDOC01-appb-I000003
    〔式中、Q及びRは、同一又は相異なり、水素原子、フッ素原子、フッ素化されていてもよいアルキル基、フッ素化されていてもよいアルコキシ基、アリール基、ヘテロアリール基又は式(2)
    Figure JPOXMLDOC01-appb-I000004
    (式中、m1は、0~6の整数を表し、m2は、0~6の整数を表す。R’は、フッ素化されていてもよいアルキル基、アリール基又はヘテロアリール基を表す。)
    で表される基を表す。複数個あるQは、同一でも相異なっていてもよい。複数個あるRは、同一でも相異なっていてもよい。〕
    The high molecular compound containing the repeating unit represented by Formula (1).
    Figure JPOXMLDOC01-appb-I000003
    [In the formula, Q and R are the same or different and are a hydrogen atom, a fluorine atom, an optionally fluorinated alkyl group, an optionally fluorinated alkoxy group, an aryl group, a heteroaryl group, or a formula (2 )
    Figure JPOXMLDOC01-appb-I000004
    (In the formula, m1 represents an integer of 0 to 6, m2 represents an integer of 0 to 6. R ′ represents an alkyl group, aryl group or heteroaryl group which may be fluorinated.)
    Represents a group represented by Plural Qs may be the same or different. A plurality of R may be the same or different. ]
  4.  Q及びRが、水素原子、炭素数が1~20のアルキル基又はフェニル基である請求項3に記載の高分子化合物。 The polymer compound according to claim 3, wherein Q and R are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group.
  5.  一対の電極と、該電極間に設けられた機能層とを有し、該機能層が電子受容性化合物と請求項1~4のいずれかに記載の高分子化合物とを含む有機光電変換素子。 An organic photoelectric conversion device comprising a pair of electrodes and a functional layer provided between the electrodes, wherein the functional layer includes an electron-accepting compound and the polymer compound according to any one of claims 1 to 4.
  6.  機能層中に含まれる電子受容性化合物の量が、高分子化合物100重量部に対して10~1000重量部の割合である請求項5に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 5, wherein the amount of the electron-accepting compound contained in the functional layer is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound.
  7.  電子受容性化合物がフラーレン誘導体である請求項6に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 6, wherein the electron-accepting compound is a fullerene derivative.
  8.  ソース電極と、ドレイン電極と、有機半導体層と、ゲート電極とを備え、前記有機半導体層に請求項1~4のいずれかに記載の高分子化合物を含む有機薄膜トランジスタ。 5. An organic thin film transistor comprising a source electrode, a drain electrode, an organic semiconductor layer, and a gate electrode, wherein the organic semiconductor layer comprises the polymer compound according to claim 1.
PCT/JP2011/073278 2010-10-13 2011-10-04 High molecular compound and organic photoelectric conversion element using same WO2012050070A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010230291 2010-10-13
JP2010-230291 2010-10-13
JP2011008517 2011-01-19
JP2011-008517 2011-01-19
JP2011088882 2011-04-13
JP2011-088882 2011-04-13

Publications (1)

Publication Number Publication Date
WO2012050070A1 true WO2012050070A1 (en) 2012-04-19

Family

ID=45938299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073278 WO2012050070A1 (en) 2010-10-13 2011-10-04 High molecular compound and organic photoelectric conversion element using same

Country Status (3)

Country Link
JP (1) JP5810818B2 (en)
TW (1) TW201226432A (en)
WO (1) WO2012050070A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229394A (en) * 2010-10-13 2012-11-22 Sumitomo Chemical Co Ltd Polymeric compound, and organic photoelectric conversion device using the same
WO2012165128A1 (en) * 2011-05-27 2012-12-06 住友化学株式会社 High-molecular-weight compound and organic photoelectric conversion element
WO2013065855A1 (en) 2011-11-02 2013-05-10 三菱化学株式会社 Method for producing conjugated polymer, conjugated polymer, photoelectric conversion element, solar cell, and solar cell module
WO2013065836A1 (en) 2011-11-02 2013-05-10 三菱化学株式会社 Process for producing fused-ring aromatic compound, and conjugated polymer
CN105378961A (en) * 2013-07-19 2016-03-02 富士胶片株式会社 Organic film transistor, organic semiconductor film, organic semiconductor material and application of these
WO2022096611A3 (en) * 2020-11-04 2022-07-07 Cambridge Display Technology Limited Nanoparticle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003399B2 (en) * 2011-09-07 2016-10-05 住友化学株式会社 Polymer compound and organic photoelectric conversion device using the same
JP6281813B2 (en) * 2013-07-19 2018-02-21 富士フイルム株式会社 Organic thin film transistor, organic semiconductor thin film and organic semiconductor material
JP6174404B2 (en) * 2013-07-19 2017-08-02 富士フイルム株式会社 Organic thin film transistor, organic semiconductor thin film and organic semiconductor material
EP3442043A4 (en) * 2016-04-07 2019-04-03 FUJIFILM Corporation Organic thin film transistor element, composition for forming organic semiconductor film, method for producing organic semiconductor film, and organic semiconductor film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269698A (en) * 2003-03-10 2004-09-30 Toyo Ink Mfg Co Ltd Organic electroluminescent device material and organic electroluminescent device using the same
JP2007516315A (en) * 2003-10-28 2007-06-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド New diketopyrrolopyrrole polymer
JP2009062537A (en) * 2007-09-06 2009-03-26 Xerox Corp Diketopyrrolopyrrole-based polymer and method of forming the same
JP2009135422A (en) * 2007-09-06 2009-06-18 Xerox Corp Thin-film transistor and method of forming the same
JP2009541548A (en) * 2006-06-30 2009-11-26 チバ ホールディング インコーポレーテッド Diketopyrrolopyrrole polymers as organic semiconductors
JP2010235869A (en) * 2009-03-31 2010-10-21 Osaka Gas Co Ltd Polymer having diketopyrrolopyrrole skeleton and white light emitting material
WO2011052711A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Photoelectric conversion element
WO2011052709A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Polymeric compound

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010049323A1 (en) * 2008-10-31 2010-05-06 Basf Se Diketopyrrolopyrrole polymers for use in organic semiconductor devices
KR101754432B1 (en) * 2009-03-23 2017-07-05 바스프 에스이 Diketopyrrolopyrrole polymers for use in organic semiconductor devices
JP5720179B2 (en) * 2009-10-29 2015-05-20 住友化学株式会社 High molecular compound
WO2012050070A1 (en) * 2010-10-13 2012-04-19 住友化学株式会社 High molecular compound and organic photoelectric conversion element using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269698A (en) * 2003-03-10 2004-09-30 Toyo Ink Mfg Co Ltd Organic electroluminescent device material and organic electroluminescent device using the same
JP2007516315A (en) * 2003-10-28 2007-06-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド New diketopyrrolopyrrole polymer
JP2009541548A (en) * 2006-06-30 2009-11-26 チバ ホールディング インコーポレーテッド Diketopyrrolopyrrole polymers as organic semiconductors
JP2009062537A (en) * 2007-09-06 2009-03-26 Xerox Corp Diketopyrrolopyrrole-based polymer and method of forming the same
JP2009135422A (en) * 2007-09-06 2009-06-18 Xerox Corp Thin-film transistor and method of forming the same
JP2010235869A (en) * 2009-03-31 2010-10-21 Osaka Gas Co Ltd Polymer having diketopyrrolopyrrole skeleton and white light emitting material
WO2011052711A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Photoelectric conversion element
WO2011052709A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Polymeric compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229394A (en) * 2010-10-13 2012-11-22 Sumitomo Chemical Co Ltd Polymeric compound, and organic photoelectric conversion device using the same
WO2012165128A1 (en) * 2011-05-27 2012-12-06 住友化学株式会社 High-molecular-weight compound and organic photoelectric conversion element
WO2013065855A1 (en) 2011-11-02 2013-05-10 三菱化学株式会社 Method for producing conjugated polymer, conjugated polymer, photoelectric conversion element, solar cell, and solar cell module
WO2013065836A1 (en) 2011-11-02 2013-05-10 三菱化学株式会社 Process for producing fused-ring aromatic compound, and conjugated polymer
CN105378961A (en) * 2013-07-19 2016-03-02 富士胶片株式会社 Organic film transistor, organic semiconductor film, organic semiconductor material and application of these
WO2022096611A3 (en) * 2020-11-04 2022-07-07 Cambridge Display Technology Limited Nanoparticle

Also Published As

Publication number Publication date
JP2012229394A (en) 2012-11-22
JP5810818B2 (en) 2015-11-11
TW201226432A (en) 2012-07-01

Similar Documents

Publication Publication Date Title
JP5810818B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5720178B2 (en) High molecular compound
JP5991324B2 (en) Polymer compound and organic photoelectric conversion element
JP5720180B2 (en) Photoelectric conversion element
JP5740836B2 (en) Photoelectric conversion element
JP5834819B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5747789B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP2014031364A (en) Compound, method for producing compound, polymer obtained by polymerizing compound, and organic thin film and organic semiconductor element containing polymer
JP6003399B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP6247581B2 (en) Polymer compound and electronic device using the same
JP2014028912A (en) Polymer compound and organic photoelectric conversion element using the same
JP2014019781A (en) Polymer compound, and organic photoelectric conversion element using the same
WO2012029675A1 (en) Method for producing polymer compound
WO2012032949A1 (en) Polymer compound and organic photoelectric transducer
JP2015180621A (en) compound
WO2011138885A1 (en) Polymer compound and organic photoelectric conversion element using same
JP5884423B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5810837B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5786504B2 (en) Polymer compound and organic photoelectric conversion device using the same
WO2012090971A1 (en) Photoelectric conversion element and composition used in same
JP5874302B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP2015174900A (en) Compound and organic photoelectric conversion element using the same
WO2013047293A1 (en) Photoelectric conversion element
JP2012253212A (en) Polymer compound and organic photoelectric conversion element manufactured using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832505

Country of ref document: EP

Kind code of ref document: A1