WO2012029675A1 - Method for producing polymer compound - Google Patents

Method for producing polymer compound Download PDF

Info

Publication number
WO2012029675A1
WO2012029675A1 PCT/JP2011/069363 JP2011069363W WO2012029675A1 WO 2012029675 A1 WO2012029675 A1 WO 2012029675A1 JP 2011069363 W JP2011069363 W JP 2011069363W WO 2012029675 A1 WO2012029675 A1 WO 2012029675A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
fluorine atom
substituted
Prior art date
Application number
PCT/JP2011/069363
Other languages
French (fr)
Japanese (ja)
Inventor
上谷 保則
吉村 研
淳 藤原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012029675A1 publication Critical patent/WO2012029675A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a polymer compound.
  • Organic semiconductor materials are expected to be applied to organic photoelectric conversion elements (organic solar cells, optical sensors, etc.).
  • the functional layer can be manufactured by an inexpensive coating method.
  • organic semiconductor materials that are various polymer compounds for the organic photoelectric conversion element has been studied.
  • an organic semiconductor material for example, 9,9-dioctylfluorene-2,7-diboronic acid ester and 5,5 ′′ ′′-dibromo-3 ′′, 4 ′′ -dihexyl- ⁇ -pentathiophene are polymerized.
  • a polymer compound has been proposed (WO2005 / 092947).
  • an object of the present invention is to provide a method for producing a polymer compound having a large absorbance for light having a long wavelength and a polymer compound having a large absorbance for light having a long wavelength. That is, the present invention is first represented by the formula (4) in which the compound represented by the formula (1) is reacted with the compound represented by the formula (2) or the compound represented by the formula (3). The manufacturing method of the high molecular compound containing a repeating unit is provided.
  • R represents a hydrogen atom, a fluorine atom, an alkyl group optionally substituted with a fluorine atom, an alkoxy group optionally substituted with a fluorine atom, or an aryl group optionally substituted.
  • R may be the same or different
  • Q represents a dihydroxyboryl group or a borate residue
  • two Q may be the same or different.
  • T represents a hydrogen atom, a fluorine atom, an alkyl group optionally substituted with a fluorine atom, an alkoxy group optionally substituted with a fluorine atom, or an optionally substituted group.
  • a plurality of T's may be the same or different, A represents a bromine atom, a chlorine atom or an iodine atom, and two A's may be the same or different.
  • a represents 0 or 1.
  • R and T represent the same meaning as described above.
  • this invention provides the high molecular compound containing the repeating unit represented by Formula (5). (In the formula, R and T have the same meaning as described above.)
  • the present invention provides an organic photoelectric conversion device having a pair of electrodes and a functional layer provided between the electrodes, wherein the functional layer includes an electron-accepting compound and the polymer compound.
  • FIG. 1 is a graph showing an absorption spectrum of polymer compound A.
  • FIG. 2 is a graph showing an absorption spectrum of the polymer compound B.
  • FIG. 3 is a view showing an absorption spectrum of the polymer compound C.
  • This invention contains the repeating unit represented by Formula (4) with which the compound represented by Formula (1), the compound represented by Formula (2), or the compound represented by Formula (3) is made to react.
  • This is a method for producing a polymer compound.
  • R and Q have the same meaning as described above.
  • T and A represent the same meaning as described above.
  • a represents 0 or 1.
  • T and R represent the same meaning as described above.
  • the alkyl group represented by R may be linear or cyclic.
  • a hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • alkyl group substituted with a fluorine atom examples include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • the alkyl part in the alkoxy group represented by R may be linear or cyclic.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, Examples include tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, and 3,7-dimethyloctyloxy group.
  • a hydrogen atom in the alkoxy group may be substituted with a fluorine atom.
  • alkoxy group substituted with a fluorine atom examples include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • R is an alkyl group or an alkoxy group, from the viewpoint of solubility of the polymer compound in a solvent, the carbon number is preferably 1-20, more preferably 2-18, and more preferably 3-12. More preferably.
  • the aryl group represented by R is an atomic group obtained by removing one hydrogen atom from an unsubstituted aromatic hydrocarbon, having a benzene ring, having a condensed ring, an independent benzene ring or condensed ring 2 Those in which at least two are bonded directly or via a group such as vinylene are also included.
  • the number of carbon atoms of the aryl group is preferably 6 to 60, and more preferably 6 to 30.
  • Examples of the aryl group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • the aryl group may have a substituent, and examples of the substituent that the aryl group may have include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • Etc. the definitions and specific examples of the alkyl group, alkoxy group and aryl group represented by T are the definitions and specific examples of the alkyl group, alkoxy group and aryl group represented by R.
  • Q is a dihydroxyboryl group represented by the following formula Or represents a boric acid ester residue.
  • the boric acid ester residue means a group obtained by removing a hydroxy group from a boric acid diester, and specific examples thereof include a group represented by the following formula.
  • Me represents a methyl group
  • Et represents an ethyl group.
  • Q is preferably a boric acid ester residue.
  • A represents a bromine atom, a chlorine atom or an iodine atom. From the viewpoint of reactivity, a bromine atom is preferable.
  • Examples of the compound represented by the formula (1) in which two Qs are dihydroxyboryl groups include the following compounds.
  • Examples of the compound represented by the formula (1) in which two Qs are boric acid ester residues include the following compounds.
  • the compound represented by the formula (1) in which two Qs are boric acid ester residues is obtained by, for example, dehydrating and condensing the compound represented by the formula (6) with an alcohol or diol in an organic solvent. Can be manufactured. (In the formula, R represents the same meaning as described above.)
  • the slurry-like compound represented by formula (6) disappears, and the reaction solution becomes a uniform solution, so that two Qs are represented by formula (1), which is a borate ester residue. Production of the compound can be confirmed.
  • the reaction solution is concentrated using an evaporator, the residue is washed with a hydrocarbon solvent having a relatively low boiling point, such as hexane, and then filtered, and the two formulas in which Q is a borate ester residue (1 ) Can be obtained.
  • a hydrocarbon solvent having a relatively low boiling point such as hexane
  • Q is a borate ester residue (1 )
  • the alcohol that can be used for the reaction include methanol, ethanol, propanol, 2-propanol, and butanol.
  • the diol that can be used in the reaction include pinacol, catechol, ethylene glycol, and 1,3-propanediol.
  • a dehydrating agent such as anhydrous magnesium sulfate or anhydrous sodium sulfate may be added.
  • the compound represented by the formula (6) is obtained by lithiating the compound represented by the formula (7) with an organolithium compound such as butyllithium (n-BuLi), and then the lithiated compound and trimethyl borate (trimethoxy).
  • a compound represented by the formula (8) is produced by reacting with a boric acid ester such as borane), and the compound represented by the formula (8) can be produced by acid treatment with an acid such as dilute hydrochloric acid. .
  • R represents the same meaning as described above.
  • the lithiation reaction is usually performed in an anhydrous ether solvent such as anhydrous tetrahydrofuran or anhydrous diethyl ether.
  • the reaction temperature is usually ⁇ 80 ° C.
  • the repeating unit represented by Formula (4) is a repeating unit represented by Formula (5).
  • R and T have the same meaning as described above.
  • the amount of the repeating unit represented by the formula (4) is preferably 20 to 100 mol%, more preferably 30 to 100 mol% with respect to the total of all repeating units in the polymer compound. preferable.
  • the polymer compound having a repeating unit represented by the formula (4) preferably has a polystyrene equivalent weight average molecular weight of 10 3 to 10 8 , more preferably 10 3 to 10 7 , and still more preferably 10 3 to 10 6 .
  • the polymer compound represented by the formula (4) is preferably a conjugated polymer compound.
  • the conjugated polymer compound means a compound in which the main chains of molecules constituting the compound are conjugated.
  • the high molecular compound which has a repeating unit represented by Formula (4) may have repeating units other than the repeating unit represented by Formula (4). Examples of the repeating unit include an arylene group and a heteroarylene group.
  • Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, and a fluorenediyl group.
  • Examples of the heteroarylene group include a flangyl group, a pyrrole diyl group, a pyridinediyl group, and the like.
  • the production method of the present invention is a repetition represented by the formula (4) in which the compound represented by the formula (1) is reacted with the compound represented by the formula (2) or the compound represented by the formula (3). It is a manufacturing method of the high molecular compound containing a unit. Examples of the reaction include a Suzuki coupling reaction.
  • Polymerization by Suzuki coupling reaction can be carried out by using inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate, potassium fluoride, tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, water Palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, bis (triphenylphosphine) palladium dichloride, bis (cyclooctadiene) in the presence of an organic base such as tetraethylammonium oxide Using a palladium complex such as nickel or a nickel complex as a catalyst, triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, Add a ligand such as
  • a solvent is usually used.
  • This solvent may be selected in consideration of the polymerization reaction used, the solubility of the monomer and polymer, and the like. Specifically, tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, an organic solvent such as a mixed solvent obtained by mixing two or more of these solvents, an organic solvent A mixed solvent having two phases of a phase and an aqueous phase can be mentioned.
  • Solvents used in the Suzuki coupling reaction are organic solvents such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and mixed solvents in which two or more of these solvents are mixed.
  • a solvent, a mixed solvent having two phases of an organic solvent phase and an aqueous phase is preferable.
  • the reaction solvent is preferably subjected to deoxygenation before the reaction in order to suppress side reactions.
  • the lower limit of the reaction temperature of the production method of the present invention is preferably ⁇ 100 ° C., more preferably ⁇ 20 ° C., and particularly preferably 0 ° C. from the viewpoint of reactivity.
  • the upper limit of the reaction temperature is preferably 200 ° C., more preferably 150 ° C., and particularly preferably 120 ° C. from the viewpoint of the stability of the monomer and the polymer compound.
  • a known method may be used as a method for taking out the polymer compound having the repeating unit represented by the formula (4) from the reaction solution after completion of the reaction.
  • a polymer solution having a repeating unit represented by the formula (4) can be obtained by adding a reaction solution to a lower alcohol such as methanol and filtering and drying the deposited precipitate.
  • the purity of the obtained polymer compound is low, it can be purified by ordinary methods such as recrystallization, continuous extraction with a Soxhlet extractor, column chromatography and the like.
  • the polymerization active group represented by A or Q as an end group remains in the polymer compound. Since the properties such as durability of the obtained organic photoelectric conversion element may be deteriorated, it is preferable to protect the terminal of the polymer compound with a stable group.
  • Examples of the stable group for protecting the terminal include an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, an arylamino group, and a monovalent heterocyclic group. Moreover, it replaces with stable group and the hydrogen atom may be located in the terminal. From the viewpoint of enhancing the hole transport property by the terminal group, a group imparting electron donating properties such as an arylamino group is preferable.
  • As the terminal group a group having a conjugated bond continuous with the conjugated structure of the main chain can also be preferably used. Examples of the group include a group bonded to an aryl group or a monovalent heterocyclic group through a carbon-carbon bond.
  • Examples of the arylamino group include a phenylamino group and a diphenylamino group.
  • Examples of the monovalent heterocyclic group include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
  • the polymer compound having a repeating unit represented by the formula (4) has a high absorbance of light having a long wavelength such as 600 nm light, and is produced using the polymer compound in order to efficiently absorb sunlight.
  • the organic photoelectric conversion element has a large short-circuit current density.
  • the organic photoelectric conversion element of the present invention includes a pair of electrodes, a functional layer between the electrodes, and the functional layer containing a polymer compound containing an electron-accepting compound and a repeating unit represented by the formula (4) To do.
  • a polymer compound containing an electron-accepting compound and a repeating unit represented by the formula (4) are preferable.
  • an electron-accepting compound fullerene and a fullerene derivative are preferable.
  • the high molecular compound containing the repeating unit represented by Formula (5) is preferable.
  • the organic photoelectric conversion element 1.
  • An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and a polymer compound containing a repeating unit represented by the formula (4); 2.
  • An organic photoelectric conversion element in which the electron-accepting compound is a fullerene derivative; Is mentioned.
  • at least one of the pair of electrodes is transparent or translucent.
  • this case will be described as an example. 1 above.
  • the ratio of the electron-accepting compound in the functional layer containing the electron-accepting compound and the polymer compound is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. It is preferably 20 to 500 parts by weight. In addition, 2.
  • the ratio of the fullerene derivative in the functional layer is preferably 20 to 400 parts by weight with respect to 100 parts by weight of the polymer compound. The amount is more preferably 250 parts by weight, and further preferably 80 to 120 parts by weight.
  • the ratio of the fullerene derivative in the functional layer is preferably 20 to 250 parts by weight, more preferably 40 to 120 parts by weight with respect to 100 parts by weight of the polymer. preferable.
  • the electron-accepting compound and the polymer compound having the repeating unit represented by the formula (4) can efficiently absorb the spectrum of desired incident light. It has an absorption region that can be formed, the heterojunction interface includes many heterojunction interfaces in order to efficiently separate excitons, and has a charge transport property that quickly transports the charges generated by the heterojunction interface to the electrode. This is very important. From such a viewpoint, as the organic photoelectric conversion element, the above 1. , 2.
  • the organic photoelectric conversion element is preferable.
  • the organic photoelectric conversion element is more preferable.
  • an additional layer may be provided between at least one electrode and the functional layer in the element.
  • the additional layer include a charge transport layer that transports holes or electrons.
  • the organic photoelectric conversion element of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not chemically change when an electrode is formed and an organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.
  • a metal, a conductive polymer, or the like can be used as a material of the pair of electrodes.
  • one of the pair of electrodes is preferably a material having a low work function.
  • metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and those metals
  • An alloy with metal, graphite, a graphite intercalation compound, or the like is used.
  • the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the material of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Gold, platinum, silver, and copper are used, and ITO, indium / zinc / oxide, and tin oxide are preferable.
  • Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • organic transparent conductive films such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
  • a material used for the charge transport layer as the additional layer that is, the hole transport layer or the electron transport layer
  • an electron donating compound and an electron accepting compound described later can be used, respectively.
  • As a material used for the buffer layer as an additional layer halides or oxides of alkali metals or alkaline earth metals such as lithium fluoride can be used.
  • fine particles of an inorganic semiconductor such as titanium oxide can be used.
  • the organic thin film containing the high molecular compound which has a repeating unit represented by Formula (4) can be used, for example.
  • the thickness of the organic thin film is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
  • the organic thin film may contain the high molecular compound which has a repeating unit represented by Formula (4) individually by 1 type, or may contain it in combination of 2 or more types.
  • another high molecular compound or a low molecular compound can also be mixed and used as an electron-donating compound in an organic thin film.
  • the electron-donating compound that the organic thin film may contain in addition to the polymer compound having the repeating unit represented by the formula (4) include, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligos.
  • Thiophene and derivatives thereof polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof Derivatives, polythienylene vinylene and its derivatives.
  • Examples of the electron accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives.
  • diphenyldicyanoethylene and derivatives thereof diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerene and derivatives thereof such as C 60, carbon nanotube And phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, and fullerene and derivatives thereof are particularly preferable.
  • the electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
  • Fullerenes and derivatives thereof include C 60 , C 70 , C 84 and derivatives thereof.
  • a fullerene derivative represents a compound in which at least a part of fullerene is modified.
  • Examples of the fullerene derivative include a compound represented by the formula (I), a compound represented by the formula (II), a compound represented by the formula (III), and a compound represented by the formula (IV).
  • R a is an alkyl group, aryl group, heteroaryl group or group having an ester structure. A plurality of R a may be the same or different.
  • R b represents an alkyl group or an aryl group, and a plurality of R b may be the same or different.
  • the definitions and specific examples of the alkyl group and aryl group represented by R a and R b are the same as the definitions and specific examples of the alkyl group and aryl group represented by R.
  • the heteroaryl group represented by Ra usually has 3 to 60 carbon atoms, and examples thereof include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
  • Examples of the group having an ester structure represented by Ra include a group represented by the formula (V).
  • u1 represents an integer of 1 to 6
  • u2 represents an integer of 0 to 6
  • R c represents an alkyl group, an aryl group, or a heteroaryl group.
  • the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R a .
  • Specific examples of the C 60 derivative include the following.
  • Specific examples of the C 70 derivative include the following.
  • the organic thin film may be produced by any method, for example, a method by film formation from a solution containing a polymer compound having a repeating unit represented by formula (4), or vacuum deposition.
  • An organic thin film may be formed by a method.
  • Examples of the method for producing an organic thin film by film formation from a solution include a method of producing an organic thin film by applying the solution on one electrode and then evaporating the solvent.
  • the solvent used for film formation from a solution is not particularly limited as long as it dissolves the polymer compound.
  • the solvent examples include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, Examples thereof include halogenated hydrocarbon solvents such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, and trichlorobenzene, and ether solvents such as tetrahydrofuran and tetrahydropyran.
  • hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicycl
  • the polymer compound can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
  • spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an ink jet printing method, and a dispenser printing method are preferable.
  • the organic photoelectric conversion element By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells. In addition, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
  • the polystyrene equivalent weight average molecular weight of the polymer compound was determined by size exclusion chromatography (SEC). Column: TOSOH TSKgel SuperHM-H (2) + TSKgel SuperH2000 (4.6 ml.d. ⁇ 15 cm); Detector: RI (SHIMADZU RID-10A); Mobile phase: Tetrahydrofuran (THF) Synthesis Example 1 Synthesis of Compound (2) In a 100 ml three-necked flask equipped with a Dimroth condenser in a nitrogen atmosphere, Adv. Funct. Mater. 2007, Vol.
  • Synthesis Example 2 Synthesis of Compound (3)
  • 0.74 g (1.2 mmol) of compound (2), 0.29 g (2.5 mmol) of pinacol, and 30 ml of chloroform were added at room temperature (25 ° C.) to form a slurry reaction.
  • the mixture was stirred while heating to reflux until the solution became a homogeneous solution.
  • 1.0 g of anhydrous magnesium sulfate was added to the reaction solution, and the mixture was further stirred while heating under reflux for 4 hours. After stirring, the mixture was filtered, and the filtrate was concentrated with an evaporator.
  • the reaction solution was allowed to stand, and a separated toluene layer was obtained.
  • the toluene layer was washed twice with 10 mL of water, twice with 10 mL of 3 wt% aqueous acetic acid and twice with 10 mL of water, and the obtained toluene layer was poured into methanol to obtain a deposited precipitate. This precipitate was dried under reduced pressure and then dissolved in toluene.
  • the obtained toluene solution was filtered to remove insoluble matters, and then passed through an alumina / silica gel column for purification. The obtained toluene solution was concentrated under reduced pressure and then poured into methanol to obtain a generated precipitate.
  • Example 2 Synthesis of polymer compound B Monomer synthesized by a method described in 312 mg (0.395 mmol) of Compound (3) in a reaction vessel in an argon atmosphere, Journal of Materials Chemistry, 2002, No. 12, pages 2887-2892 200 mg (0.436 mmol) of A, 128 mg of trioctylmethylammonium chloride (trade name Aliquat 336 (registered trademark), manufactured by Sigma-Aldrich Co.) and 26 mL of toluene were added, and the solution obtained using argon was sufficiently bubbled. Deaerated.
  • the polymer obtained above was dissolved in 30 mL of orthodichlorobenzene, 10 ml of a 9.1 wt% sodium diethyldithiocarbamate aqueous solution was added, and the reaction solution was refluxed for 5 hours. After completion of the reflux, the reaction solution was cooled to around room temperature (25 ° C.). Thereafter, the reaction solution was allowed to stand to obtain a separated orthodichlorobenzene layer.
  • the orthodichlorobenzene layer was washed twice with 10 mL of water, twice with 10 mL of 3 wt% acetic acid water, and further twice with 10 mL of water, and the resulting orthodichlorobenzene layer was poured into methanol to obtain a deposited precipitate. did.
  • the precipitate was dried under reduced pressure and then dissolved in orthodichlorobenzene.
  • the obtained orthodichlorobenzene solution was filtered to remove insolubles, and then the filtrate was passed through an alumina / silica gel column for purification.
  • the obtained orthodichlorobenzene solution was concentrated under reduced pressure, poured into methanol, and the resulting precipitate was recovered.
  • the weight average molecular weight in terms of polystyrene of the polymer compound C was 1.1 ⁇ 10 5 .
  • Measurement Example 1 Measurement of absorbance of organic thin film Polymer compound A was dissolved in o-dichlorobenzene at a concentration of 0.5% by weight to prepare a coating solution. The obtained coating solution was applied onto a glass substrate by spin coating. The coating operation was performed at 23 ° C. Then, it baked for 5 minutes on 120 degreeC conditions in air
  • Table 1 shows the absorbance at 600 nm and 700 nm.
  • Measurement Example 2 Measurement of Absorbance of Organic Thin Film An organic thin film was prepared in the same manner as in Measurement Example 1 except that polymer compound B was used instead of polymer compound A, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm and 700 nm. Comparative Example 1 Measurement of Absorbance of Organic Thin Film An organic thin film was prepared in the same manner as in Measurement Example 1 except that the polymer compound C was used in place of the polymer compound A, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm and 700 nm.
  • a PEDOT: PSS solution (CleviosP VP AI4083 manufactured by HC Starck Co., Ltd.) is applied onto the ITO film by spin coating, and heated at 120 ° C. for 10 minutes in the atmosphere to thereby form a hole injection layer having a thickness of 50 nm. It was created.
  • the coating solution 1 was applied onto the hole injection layer by spin coating to obtain a functional layer of an organic thin film solar cell.
  • the film thickness of the functional layer was 100 nm.
  • the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm.
  • the degree of vacuum at the time of vapor deposition was 1 to 9 ⁇ 10 ⁇ 3 Pa in all cases.
  • the shape of the organic thin film solar cell thus obtained was a square of 2 mm ⁇ 2 mm.
  • the resulting organic thin-film solar cell is measured by irradiating with constant light using a solar simulator (trade name OTENTO-SUN II: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.), and a generated current And the voltage was measured to obtain the photoelectric conversion efficiency.
  • the photoelectric conversion efficiency was 3.87%
  • the short-circuit current density was 8.5 mA / cm 2
  • the open-circuit voltage was 0.91 V
  • the fill factor (FF) was 0.50.
  • the method for producing a polymer compound of the present invention is useful for producing a polymer compound having a large absorbance of light having a long wavelength.

Abstract

Disclosed is a method for producing a polymer compound containing a repeating unit represented by formula (4), wherein a compound represented by formula (1) is caused to react with a compound represented by formula (2) or a compound represented by formula (3). A polymer compound that has high absorbance of light having a long wavelength can be produced by this method. (In formula (1), R represents a hydrogen atom, a fluorine atom, an alkyl group that may be substituted by a fluorine atom, an alkoxy group that may be substituted by a fluorine atom or an optionally substituted aryl group; and Q represents a dihydroxyboryl group or a boric acid ester residue.) (In formula (4), a represents 0 or 1; R is as defined above; and T represents a hydrogen atom, a fluorine atom, an alkyl group that may be substituted by a fluorine atom, an alkoxy group that may be substituted by a fluorine atom or an optionally substituted aryl group.)

Description

高分子化合物の製造方法Method for producing polymer compound
 本発明は、高分子化合物の製造方法に関する。 The present invention relates to a method for producing a polymer compound.
 有機半導体材料は、有機光電変換素子(有機太陽電池、光センサー等)への適用が期待されている。中でも、有機半導体材料として高分子化合物を用いれば、安価な塗布法で機能層を作製することができる。有機光電変換素子の諸特性を向上させるために、様々な高分子化合物である有機半導体材料を有機光電変換素子に用いることが検討されている。有機半導体材料として、例えば、9,9−ジオクチルフルオレン−2,7−ジボロン酸エステルと5,5’’’’−ジブロモ−3’’,4’’−ジヘキシル−α−ペンタチオフェンとを重合した高分子化合物が提案されている(WO2005/092947)。 Organic semiconductor materials are expected to be applied to organic photoelectric conversion elements (organic solar cells, optical sensors, etc.). In particular, when a polymer compound is used as the organic semiconductor material, the functional layer can be manufactured by an inexpensive coating method. In order to improve various characteristics of the organic photoelectric conversion element, use of organic semiconductor materials that are various polymer compounds for the organic photoelectric conversion element has been studied. As an organic semiconductor material, for example, 9,9-dioctylfluorene-2,7-diboronic acid ester and 5,5 ″ ″-dibromo-3 ″, 4 ″ -dihexyl-α-pentathiophene are polymerized. A polymer compound has been proposed (WO2005 / 092947).
 しかしながら、上記高分子化合物は、長波長の光の吸収が十分でないという課題がある。
 そこで、本発明は長波長の光の吸光度が大きい高分子化合物の製造方法及び長波長の光の吸光度が大きい高分子化合物を提供することを目的とする。
 即ち、本発明は第一に、式(1)で表される化合物と、式(2)で表される化合物又は式(3)で表される化合物とを反応させる式(4)で表される繰り返し単位を含む高分子化合物の製造方法を提供する。
Figure JPOXMLDOC01-appb-I000005
(式中、Rは、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、フッ素原子で置換されていてもよいアルコキシ基又は置換されていてもよいアリール基を表す。2個あるRは、同一でも相異なっていてもよい。Qはジヒドロキシボリル基又はホウ酸エステル残基を表す。2個あるQは、同一でも相異なっていてもよい。)
Figure JPOXMLDOC01-appb-I000006
(式(2)及び式(3)中、Tは、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、フッ素原子で置換されていてもよいアルコキシ基又は置換されていてもよいアリール基を表す。複数個あるTは、同一でも相異なっていてもよい。Aは、臭素原子、塩素原子又はヨウ素原子を表す。2個あるAは、同一でも相異なっていてもよい。)
Figure JPOXMLDOC01-appb-I000007
(式中、aは、0又は1を表す。R及びTは、前述と同じ意味を表す。)
 また、本発明は、式(5)で表される繰り返し単位を含む高分子化合物を提供する。
Figure JPOXMLDOC01-appb-I000008
(式中、R及びTは、前述と同じ意味を表す。)
 さらに、本発明は、一対の電極と、該電極間に設けられた機能層とを有し、該機能層が電子受容性化合物と前記高分子化合物とを含む有機光電変換素子を提供する。
However, the polymer compound has a problem that long-wavelength light is not sufficiently absorbed.
Accordingly, an object of the present invention is to provide a method for producing a polymer compound having a large absorbance for light having a long wavelength and a polymer compound having a large absorbance for light having a long wavelength.
That is, the present invention is first represented by the formula (4) in which the compound represented by the formula (1) is reacted with the compound represented by the formula (2) or the compound represented by the formula (3). The manufacturing method of the high molecular compound containing a repeating unit is provided.
Figure JPOXMLDOC01-appb-I000005
(In the formula, R represents a hydrogen atom, a fluorine atom, an alkyl group optionally substituted with a fluorine atom, an alkoxy group optionally substituted with a fluorine atom, or an aryl group optionally substituted. R may be the same or different, Q represents a dihydroxyboryl group or a borate residue, and two Q may be the same or different.)
Figure JPOXMLDOC01-appb-I000006
(In Formula (2) and Formula (3), T represents a hydrogen atom, a fluorine atom, an alkyl group optionally substituted with a fluorine atom, an alkoxy group optionally substituted with a fluorine atom, or an optionally substituted group. A plurality of T's may be the same or different, A represents a bromine atom, a chlorine atom or an iodine atom, and two A's may be the same or different. )
Figure JPOXMLDOC01-appb-I000007
(In the formula, a represents 0 or 1. R and T represent the same meaning as described above.)
Moreover, this invention provides the high molecular compound containing the repeating unit represented by Formula (5).
Figure JPOXMLDOC01-appb-I000008
(In the formula, R and T have the same meaning as described above.)
Furthermore, the present invention provides an organic photoelectric conversion device having a pair of electrodes and a functional layer provided between the electrodes, wherein the functional layer includes an electron-accepting compound and the polymer compound.
 図1は高分子化合物Aの吸収スペクトルを示す図である。図2は高分子化合物Bの吸収スペクトルを示す図である。図3は高分子化合物Cの吸収スペクトルを示す図である。 FIG. 1 is a graph showing an absorption spectrum of polymer compound A. FIG. 2 is a graph showing an absorption spectrum of the polymer compound B. FIG. 3 is a view showing an absorption spectrum of the polymer compound C.
 以下、本発明を詳細に説明する。
 本発明は、式(1)で表される化合物と、式(2)で表される化合物又は式(3)で表される化合物とを反応させる式(4)で表される繰り返し単位を含む高分子化合物の製造方法である。
Figure JPOXMLDOC01-appb-I000009
(式中、R及びQは、前述と同じ意味を表す。)
Figure JPOXMLDOC01-appb-I000010
(式(2)及び式(3)中、T及びAは、前述と同じ意味を表す。)
Figure JPOXMLDOC01-appb-I000011
(式中、aは、0又は1を表す。T及びRは、前述と同じ意味を表す。)
 式(1)及び式(4)中、Rで表されるアルキル基は鎖状でも環状でもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基、ペンタデシル基、オクタデシル基が挙げられる。アルキル基中の水素原子は、フッ素原子で置換されていてもよい。フッ素原子で置換されたアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。
 Rで表されるアルコキシ基中のアルキル部は鎖状でも環状でもよく、アルコキシ基の具体例として、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基が挙げられる。アルコキシ基中の水素原子は、フッ素原子で置換されていてもよい。フッ素原子で置換されたアルコキシ基としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基が挙げられる。
 Rがアルキル基又はアルコキシ基である場合、高分子化合物の溶媒への溶解性の観点からは、炭素数が1~20であることが好ましく、2~18であることがより好ましく、3~12であることがさらに好ましい。
 Rで表されるアリール基は、無置換の芳香族炭化水素から、水素原子1個を除いた原子団であり、ベンゼン環を持つもの、縮合環を持つもの、独立したベンゼン環又は縮合環2個以上が直接又はビニレン等の基を介して結合したものも含まれる。アリール基の炭素数は、6~60であることが好ましく、6~30であることがより好ましい。アリール基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基が挙げられる。アリール基は、置換基を有していてもよく、アリール基が有していてもよい置換基としては、ハロゲン原子、炭素数が1~20のアルキル基、炭素数が1~20のアルコキシ基等が挙げられる。
 式(1)~式(4)中、Tで表されるアルキル基、アルコキシ基及びアリール基の定義及び具体例は、Rで表されるアルキル基、アルコキシ基及びアリール基の定義及び具体例と同じである。
 式(1)中、Qは、下式で示されるジヒドロキシボリル基
Figure JPOXMLDOC01-appb-I000012
又はホウ酸エステル残基を表す。
 ホウ酸エステル残基とは、ホウ酸ジエステルからヒドロキシ基を除いた基を意味し、その具体例としては、下記式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000013
(式中、Meはメチル基を表し、Etはエチル基を表す。)
 式(1)で表される化合物の有機溶媒への溶解性の観点からは、Qは、ホウ酸エステル残基であることが好ましい。
 式(2)及び式(3)中、Aは、臭素原子、塩素原子又はヨウ素原子を表す。反応性の観点からは、臭素原子が好ましい。
 2個あるQがジヒドロキシボリル基である式(1)で表される化合物としては、例えば、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000014
 2個あるQがホウ酸エステル残基である式(1)で表される化合物としては、例えば、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
 2個あるQがホウ酸エステル残基である式(1)で表される化合物は、例えば、有機溶媒中で、式(6)で表される化合物とアルコール又はジオールとを脱水縮合させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000017
(式中、Rは、前述と同じ意味を表す。)
 前記反応において、スラリー状の式(6)で表される化合物が消失して反応液が均一な溶液となることで、2個あるQがホウ酸エステル残基である式(1)で表される化合物の生成を確認することができる。反応後、エバポレータを用いて反応溶液を濃縮し、残渣をヘキサン等の沸点が比較的低い炭化水素溶媒で洗浄し、その後、ろ過を行い2個あるQがホウ酸エステル残基である式(1)で表される化合物を得ることができる。
 前記反応に用いることができるアルコールとしては、メタノール、エタノール、プロパノール、2−プロパノール、ブタノール等が挙げられる。
 前記反応に用いることができるジオールとしては、ピナコール、カテコール、エチレングリコール、1、3−プロパンジオール等が挙げられる。
 また、前記反応において、無水硫酸マグネシウム、無水硫酸ナトリウム等の脱水剤を添加してもよい。
 式(6)で表される化合物は、式(7)で表される化合物をブチルリチウム(n−BuLi)等の有機リチウム化合物でリチオ化し、その後、リチオ化した化合物とホウ酸トリメチル(トリメトキシボラン)等のホウ酸エステルとを反応させて式(8)で表される化合物を製造し、式(8)で表される化合物を希塩酸等の酸で酸処理することにより製造することができる。
Figure JPOXMLDOC01-appb-I000018
(式中、Rは、前述と同じ意味を表す。)
 前記リチオ化反応は、通常、無水テトラヒドロフラン、無水ジエチルエーテル等の無水エーテル溶媒中で行われる。反応温度は、反応基質である式(7)で表される化合物の種類にもよるが、通常、−80℃~25℃である。また、前記酸処理に使用される酸としては、塩酸、硫酸、酢酸等が挙げられる。
 式(2)で表される化合物としては、例えば、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000019
 式(3)で表される化合物としては、例えば、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000020
 式(1)で表される化合物と式(2)で表される化合物とを反応させて得られる高分子化合物が有する繰り返し単位としては、例えば、以下の繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-I000021
 式(1)で表される化合物と式(3)で表される化合物とを反応させて得られる高分子化合物が有する繰り返し単位としては、例えば、以下の繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-I000022
 式(4)で表される繰り返し単位の好ましい一態様は、式(5)で表される繰り返し単位である。
Figure JPOXMLDOC01-appb-I000023
(式中、R及びTは、前述と同じ意味を表す。)
 本発明の製造方法で製造される式(4)で表される繰り返し単位を含む高分子化合物は、該高分子化合物を含む有機層を有する有機光電変換素子の光電変換効率を高める観点からは、該高分子化合物中の全繰り返し単位の合計に対して、式(4)で表される繰り返し単位の量が、20~100モル%であることが好ましく、30~100モル%であることがより好ましい。
 式(4)で表される繰り返し単位を有する高分子化合物のポリスチレン換算の重量平均分子量は、10~10であることが好ましく、より好ましくは10~10であり、さらに好ましくは10~10である。
 式(4)で表される高分子化合物は、共役系高分子化合物であることが好ましい。ここで、共役系高分子化合物とは、該化合物を構成する分子の主鎖が共役している化合物を意味する。
 式(4)で表される繰り返し単位を有する高分子化合物は、式(4)で表される繰り返し単位以外の繰り返し単位を有していてもよい。該繰り返し単位としては、アリーレン基、ヘテロアリーレン基等が挙げられる。アリーレン基としては、フェニレン基、ナフタレンジイル基、アントラセンジイル基、ピレンジイル基、フルオレンジイル基等が挙げられる。ヘテロアリーレン基としては、フランジイル基、ピロールジイル基、ピリジンジイル基等が挙げられる。
 本発明の製造方法は、式(1)で表される化合物と、式(2)で表される化合物又は式(3)で表される化合物とを反応させる式(4)で表される繰り返し単位を含む高分子化合物の製造方法である。反応としては、例えば、Suzukiカップリング反応が挙げられる。
 Suzukiカップリング反応による重合は、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸三カリウム、フッ化カリウム等の無機塩基、又は、フッ化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム等の有機塩基の存在下、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート、ビス(トリフェニルホスフィン)パラジウムジクロライド、ビス(シクロオクタジエン)ニッケル等のパラジウム錯体又はニッケル錯体を触媒として用い、必要に応じて、トリフェニルホスフィン、トリ(2−メチルフェニル)ホスフィン、トリ(2−メトキシフェニル)ホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィン等の配位子を添加し、ボロン酸残基又はホウ酸エステル残基を有するモノマーと、臭素原子、ヨウ素原子、塩素原子等のハロゲン原子を有するモノマーとを反応させる重合である。Suzukiカップリング反応による重合の詳細は、例えば、Journal of Polymer Science:Part A:Polymer Chemistry,Vol.39,1533−1556(2001)に記載されている。
 本発明の製造方法には、通常、溶媒が用いられる。この溶媒は、用いる重合反応、モノマー及びポリマーの溶解性等を考慮して選択すればよい。具体的には、テトラヒドロフラン、トルエン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する混合溶媒が挙げられる。Suzukiカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、1,4−ジオキサン、ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する混合溶媒が好ましい。反応溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。
 本発明の製造方法の反応温度の下限は、反応性の観点からは、好ましくは−100℃であり、より好ましくは−20℃であり、特に好ましくは0℃である。反応温度の上限は、モノマー及び高分子化合物の安定性の観点からは、好ましくは200℃であり、より好ましくは150℃であり、特に好ましくは120℃である。
 本発明の製造方法において、反応終了後の反応液から式(4)で表される繰り返し単位を有する高分子化合物を取り出す方法としては、公知の方法が挙げられる。例えば、メタノール等の低級アルコールに反応溶液を加え、析出させた沈殿をろ過、乾燥することにより、式(4)で表される繰り返し単位を有する高分子化合物を得ることができる。得られた高分子化合物の純度が低い場合は、再結晶、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。
 式(4)で表される繰り返し単位を有する高分子化合物を有機光電変換素子の製造に用いる場合には、末端基としてA又はQで表される重合活性基が高分子化合物に残っていると、得られる有機光電変換素子の耐久性等の特性が低下することがあるので、高分子化合物の末端を安定な基で保護することが好ましい。
 末端を保護する安定な基としては、アルキル基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基、アリール基、アリールアミノ基、1価の複素環基等が挙げられる。また、安定な基に代えて、水素原子が末端に位置していてもよい。末端基でホール輸送性を高めるという観点からは、アリールアミノ基などの電子供与性を付与する基が好ましい。末端基としては、主鎖の共役構造と連続した共役結合を有している基も好ましく用いることができる。該基としては、例えば、炭素−炭素結合を介してアリール基又は1価の複素環基と結合している基が挙げられる。アリールアミノ基としては、フェニルアミノ基、ジフェニルアミノ基等が挙げられる。1価の複素環基としては、チェニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基等が挙げられる。
 式(4)で表される繰り返し単位を有する高分子化合物は、600nmの光等の長波長の光の吸光度が高く、太陽光を効率的に吸収するため、該高分子化合物を用いて製造した有機光電変換素子は短絡電流密度が大きくなる。
 本発明の有機光電変換素子は、一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と式(4)で表される繰り返し単位を含む高分子化合物を含有する。電子受容性化合物としては、フラーレン、フラーレン誘導体が好ましい。また、式(4)で表される繰り返し単位を含む高分子化合物の中でも、式(5)で表される繰り返し単位を含む高分子化合物が好ましい。有機光電変換素子の具体例としては、
1.一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と、式(4)で表される繰り返し単位を含む高分子化合物とを含有する有機光電変換素子;
2.一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と、式(4)で表される繰り返し単位を含む高分子化合物とを含有する有機光電変換素子であって、該電子受容性化合物がフラーレン誘導体である有機光電変換素子;
が挙げられる。前記一対の電極は、通常、少なくとも一方が透明又は半透明であり、以下、その場合を一例として説明する。
 前記1.の有機光電変換素子では、電子受容性化合物及び前記高分子化合物を含有する機能層における該電子受容性化合物の割合が、前記高分子化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。また、前記2.の有機光電変換素子では、光電変換効率を高める観点からは、機能層における該フラーレン誘導体の割合が、前記高分子化合物100重量部に対して、20~400重量部であることが好ましく、40~250重量部であることがより好ましく、80~120重量部であることがさらに好ましい。短絡電流密度を高める観点からは、機能層における該フラーレン誘導体の割合が、該重合体100重量部に対して、20~250重量部であることが好ましく、40~120重量部であることがより好ましい。
 有機光電変換素子が高い光電変換効率を有するためには、前記電子受容性化合物及び式(4)で表される繰り返し単位を有する高分子化合物が所望の入射光のスペクトルを効率よく吸収することができる吸収域を有するものであること、ヘテロ接合界面が励起子を効率よく分離するためにヘテロ接合界面を多く含むこと、ヘテロ接合界面が生成した電荷を速やかに電極へ輸送する電荷輸送性を有することが重要である。
 このような観点から、有機光電変換素子としては、前記1.、前記2.の有機光電変換素子が好ましく、ヘテロ接合界面を多く含むという観点からは、前記2.の有機光電変換素子がより好ましい。また、本発明の有機光電変換素子には、少なくとも一方の電極と該素子中の機能層との間に付加的な層を設けてもよい。付加的な層としては、例えば、ホール又は電子を輸送する電荷輸送層等が挙げられる。
 本発明の有機光電変換素子は、通常、基板上に形成される。該基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが
好ましい。
 一対の電極の材料としては、金属、導電性高分子等を用いることができ、好ましくは一対の電極のうち一方の電極の材料は仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらの金属のうちの2つ以上の金属の合金、又はそれらの金属のうちの1つ以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1つ以上の金属との合金、グラファイト、グラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金が挙げられる。
 前記の透明又は半透明の電極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜、NESA、金、白金、銀、銅が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
 前記付加的な層としての電荷輸送層、即ち、ホール輸送層又は電子輸送層に用いられる材料として、それぞれ後述の電子供与性化合物、電子受容性化合物を用いることができる。
 付加的な層としてのバッファ層に用いられる材料としては、フッ化リチウム等のアルカリ金属又はアルカリ土類金属のハロゲン化物又は酸化物等を用いることができる。また、酸化チタン等無機半導体の微粒子を用いることもできる。
 本発明の有機光電変換素子における前記機能層としては、例えば、式(4)で表される繰り返し単位を有する高分子化合物を含有する有機薄膜を用いることができる。
 有機薄膜の膜厚は、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。
 有機薄膜は、式(4)で表される繰り返し単位を有する高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。また、有機薄膜のホール輸送性を高めるため、有機薄膜中に電子供与性化合物として、その他の高分子化合物又は低分子化合物を混合して用いることもできる。
 式(4)で表される繰り返し単位を有する高分子化合物以外に有機薄膜が含んでいてもよい電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。
 前記電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン及びその誘導体、カーボンナノチューブ、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン等のフェナントロリン誘導体が挙げられ、とりわけフラーレン及びその誘導体が好ましい。
 なお、前記電子供与性化合物及び前記電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。
 フラーレン及びその誘導体としては、C60、C70、C84及びその誘導体が挙げられる。フラーレン誘導体とは、フラーレンの少なくとも一部が修飾された化合物を表す。
 フラーレン誘導体としては、例えば、式(I)で表される化合物、式(II)で表される化合物、式(III)で表される化合物、式(IV)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000024
(式(I)~式(IV)中、Rは、アルキル基、アリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rはアルキル基又はアリール基を表す。複数個あるRは、同一であっても相異なってもよい。)
 R及びRで表されるアルキル基、アリール基の定義、具体例は、Rで表されるアルキル基、アリール基の定義、具体例と同じである。
 Rで表されるヘテロアリール基は、通常、炭素数が3~60であり、チェニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基等が挙げられる。
 Rで表されるエステル構造を有する基は、例えば、式(V)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000025
(式中、u1は、1~6の整数を表す、u2は、0~6の整数を表す、Rは、アルキル基、アリール基又はヘテロアリール基を表す。)
 Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例は、Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例と同じである。
 C60の誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
 C70の誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000028
 前記有機薄膜は、如何なる方法で製造してもよく、例えば、式(4)で表される繰り返し単位を有する高分子化合物を含む溶液からの成膜による方法で製造してもよいし、真空蒸着法により有機薄膜を形成してもよい。溶液からの成膜により有機薄膜を製造する方法としては、例えば、一方の電極上に該溶液を塗布し、その後、溶媒を蒸発させて有機薄膜を製造する方法が挙げられる。
 溶液からの成膜に用いる溶媒は、前記高分子化合物を溶解させるものであれば特に制限はない。この溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル溶媒が挙げられる。前記高分子化合物は、通常、前記溶媒に0.1重量%以上溶解させることができる。
 溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
 有機光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 また、電極間に電圧を印加した状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
Hereinafter, the present invention will be described in detail.
This invention contains the repeating unit represented by Formula (4) with which the compound represented by Formula (1), the compound represented by Formula (2), or the compound represented by Formula (3) is made to react. This is a method for producing a polymer compound.
Figure JPOXMLDOC01-appb-I000009
(In the formula, R and Q have the same meaning as described above.)
Figure JPOXMLDOC01-appb-I000010
(In Formula (2) and Formula (3), T and A represent the same meaning as described above.)
Figure JPOXMLDOC01-appb-I000011
(In the formula, a represents 0 or 1. T and R represent the same meaning as described above.)
In the formulas (1) and (4), the alkyl group represented by R may be linear or cyclic. For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group Tert-butyl group, pentyl group, hexyl group, octyl group, isooctyl group, decyl group, dodecyl group, pentadecyl group and octadecyl group. A hydrogen atom in the alkyl group may be substituted with a fluorine atom. Examples of the alkyl group substituted with a fluorine atom include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
The alkyl part in the alkoxy group represented by R may be linear or cyclic. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, Examples include tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, and 3,7-dimethyloctyloxy group. A hydrogen atom in the alkoxy group may be substituted with a fluorine atom. Examples of the alkoxy group substituted with a fluorine atom include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
When R is an alkyl group or an alkoxy group, from the viewpoint of solubility of the polymer compound in a solvent, the carbon number is preferably 1-20, more preferably 2-18, and more preferably 3-12. More preferably.
The aryl group represented by R is an atomic group obtained by removing one hydrogen atom from an unsubstituted aromatic hydrocarbon, having a benzene ring, having a condensed ring, an independent benzene ring or condensed ring 2 Those in which at least two are bonded directly or via a group such as vinylene are also included. The number of carbon atoms of the aryl group is preferably 6 to 60, and more preferably 6 to 30. Examples of the aryl group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group. The aryl group may have a substituent, and examples of the substituent that the aryl group may have include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms. Etc.
In formulas (1) to (4), the definitions and specific examples of the alkyl group, alkoxy group and aryl group represented by T are the definitions and specific examples of the alkyl group, alkoxy group and aryl group represented by R. The same.
In the formula (1), Q is a dihydroxyboryl group represented by the following formula
Figure JPOXMLDOC01-appb-I000012
Or represents a boric acid ester residue.
The boric acid ester residue means a group obtained by removing a hydroxy group from a boric acid diester, and specific examples thereof include a group represented by the following formula.
Figure JPOXMLDOC01-appb-I000013
(In the formula, Me represents a methyl group, and Et represents an ethyl group.)
From the viewpoint of solubility of the compound represented by formula (1) in an organic solvent, Q is preferably a boric acid ester residue.
In formula (2) and formula (3), A represents a bromine atom, a chlorine atom or an iodine atom. From the viewpoint of reactivity, a bromine atom is preferable.
Examples of the compound represented by the formula (1) in which two Qs are dihydroxyboryl groups include the following compounds.
Figure JPOXMLDOC01-appb-I000014
Examples of the compound represented by the formula (1) in which two Qs are boric acid ester residues include the following compounds.
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
The compound represented by the formula (1) in which two Qs are boric acid ester residues is obtained by, for example, dehydrating and condensing the compound represented by the formula (6) with an alcohol or diol in an organic solvent. Can be manufactured.
Figure JPOXMLDOC01-appb-I000017
(In the formula, R represents the same meaning as described above.)
In the reaction, the slurry-like compound represented by formula (6) disappears, and the reaction solution becomes a uniform solution, so that two Qs are represented by formula (1), which is a borate ester residue. Production of the compound can be confirmed. After the reaction, the reaction solution is concentrated using an evaporator, the residue is washed with a hydrocarbon solvent having a relatively low boiling point, such as hexane, and then filtered, and the two formulas in which Q is a borate ester residue (1 ) Can be obtained.
Examples of the alcohol that can be used for the reaction include methanol, ethanol, propanol, 2-propanol, and butanol.
Examples of the diol that can be used in the reaction include pinacol, catechol, ethylene glycol, and 1,3-propanediol.
In the reaction, a dehydrating agent such as anhydrous magnesium sulfate or anhydrous sodium sulfate may be added.
The compound represented by the formula (6) is obtained by lithiating the compound represented by the formula (7) with an organolithium compound such as butyllithium (n-BuLi), and then the lithiated compound and trimethyl borate (trimethoxy). A compound represented by the formula (8) is produced by reacting with a boric acid ester such as borane), and the compound represented by the formula (8) can be produced by acid treatment with an acid such as dilute hydrochloric acid. .
Figure JPOXMLDOC01-appb-I000018
(In the formula, R represents the same meaning as described above.)
The lithiation reaction is usually performed in an anhydrous ether solvent such as anhydrous tetrahydrofuran or anhydrous diethyl ether. The reaction temperature is usually −80 ° C. to 25 ° C., although it depends on the kind of the compound represented by the formula (7) as the reaction substrate. Moreover, hydrochloric acid, a sulfuric acid, an acetic acid etc. are mentioned as an acid used for the said acid treatment.
As a compound represented by Formula (2), the following compound is mentioned, for example.
Figure JPOXMLDOC01-appb-I000019
As a compound represented by Formula (3), the following compound is mentioned, for example.
Figure JPOXMLDOC01-appb-I000020
Examples of the repeating unit possessed by the polymer compound obtained by reacting the compound represented by the formula (1) with the compound represented by the formula (2) include the following repeating units.
Figure JPOXMLDOC01-appb-I000021
Examples of the repeating unit possessed by the polymer compound obtained by reacting the compound represented by the formula (1) with the compound represented by the formula (3) include the following repeating units.
Figure JPOXMLDOC01-appb-I000022
One preferable aspect of the repeating unit represented by Formula (4) is a repeating unit represented by Formula (5).
Figure JPOXMLDOC01-appb-I000023
(In the formula, R and T have the same meaning as described above.)
From the viewpoint of increasing the photoelectric conversion efficiency of the organic photoelectric conversion element having an organic layer containing the polymer compound, the polymer compound containing the repeating unit represented by the formula (4) produced by the production method of the present invention is: The amount of the repeating unit represented by the formula (4) is preferably 20 to 100 mol%, more preferably 30 to 100 mol% with respect to the total of all repeating units in the polymer compound. preferable.
The polymer compound having a repeating unit represented by the formula (4) preferably has a polystyrene equivalent weight average molecular weight of 10 3 to 10 8 , more preferably 10 3 to 10 7 , and still more preferably 10 3 to 10 6 .
The polymer compound represented by the formula (4) is preferably a conjugated polymer compound. Here, the conjugated polymer compound means a compound in which the main chains of molecules constituting the compound are conjugated.
The high molecular compound which has a repeating unit represented by Formula (4) may have repeating units other than the repeating unit represented by Formula (4). Examples of the repeating unit include an arylene group and a heteroarylene group. Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, and a fluorenediyl group. Examples of the heteroarylene group include a flangyl group, a pyrrole diyl group, a pyridinediyl group, and the like.
The production method of the present invention is a repetition represented by the formula (4) in which the compound represented by the formula (1) is reacted with the compound represented by the formula (2) or the compound represented by the formula (3). It is a manufacturing method of the high molecular compound containing a unit. Examples of the reaction include a Suzuki coupling reaction.
Polymerization by Suzuki coupling reaction can be carried out by using inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate, potassium fluoride, tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, water Palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, bis (triphenylphosphine) palladium dichloride, bis (cyclooctadiene) in the presence of an organic base such as tetraethylammonium oxide Using a palladium complex such as nickel or a nickel complex as a catalyst, triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, Add a ligand such as nylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine, a monomer having boronic acid residue or boric acid ester residue, bromine atom, iodine atom, chlorine atom Polymerization in which a monomer having a halogen atom or the like is reacted. Details of the polymerization by the Suzuki coupling reaction are described in, for example, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 39, 1533-1556 (2001).
In the production method of the present invention, a solvent is usually used. This solvent may be selected in consideration of the polymerization reaction used, the solubility of the monomer and polymer, and the like. Specifically, tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, an organic solvent such as a mixed solvent obtained by mixing two or more of these solvents, an organic solvent A mixed solvent having two phases of a phase and an aqueous phase can be mentioned. Solvents used in the Suzuki coupling reaction are organic solvents such as tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and mixed solvents in which two or more of these solvents are mixed. A solvent, a mixed solvent having two phases of an organic solvent phase and an aqueous phase is preferable. The reaction solvent is preferably subjected to deoxygenation before the reaction in order to suppress side reactions.
The lower limit of the reaction temperature of the production method of the present invention is preferably −100 ° C., more preferably −20 ° C., and particularly preferably 0 ° C. from the viewpoint of reactivity. The upper limit of the reaction temperature is preferably 200 ° C., more preferably 150 ° C., and particularly preferably 120 ° C. from the viewpoint of the stability of the monomer and the polymer compound.
In the production method of the present invention, a known method may be used as a method for taking out the polymer compound having the repeating unit represented by the formula (4) from the reaction solution after completion of the reaction. For example, a polymer solution having a repeating unit represented by the formula (4) can be obtained by adding a reaction solution to a lower alcohol such as methanol and filtering and drying the deposited precipitate. When the purity of the obtained polymer compound is low, it can be purified by ordinary methods such as recrystallization, continuous extraction with a Soxhlet extractor, column chromatography and the like.
When the polymer compound having a repeating unit represented by the formula (4) is used for the production of an organic photoelectric conversion element, the polymerization active group represented by A or Q as an end group remains in the polymer compound. Since the properties such as durability of the obtained organic photoelectric conversion element may be deteriorated, it is preferable to protect the terminal of the polymer compound with a stable group.
Examples of the stable group for protecting the terminal include an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, an arylamino group, and a monovalent heterocyclic group. Moreover, it replaces with stable group and the hydrogen atom may be located in the terminal. From the viewpoint of enhancing the hole transport property by the terminal group, a group imparting electron donating properties such as an arylamino group is preferable. As the terminal group, a group having a conjugated bond continuous with the conjugated structure of the main chain can also be preferably used. Examples of the group include a group bonded to an aryl group or a monovalent heterocyclic group through a carbon-carbon bond. Examples of the arylamino group include a phenylamino group and a diphenylamino group. Examples of the monovalent heterocyclic group include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
The polymer compound having a repeating unit represented by the formula (4) has a high absorbance of light having a long wavelength such as 600 nm light, and is produced using the polymer compound in order to efficiently absorb sunlight. The organic photoelectric conversion element has a large short-circuit current density.
The organic photoelectric conversion element of the present invention includes a pair of electrodes, a functional layer between the electrodes, and the functional layer containing a polymer compound containing an electron-accepting compound and a repeating unit represented by the formula (4) To do. As an electron-accepting compound, fullerene and a fullerene derivative are preferable. Moreover, among the high molecular compounds containing the repeating unit represented by Formula (4), the high molecular compound containing the repeating unit represented by Formula (5) is preferable. As a specific example of the organic photoelectric conversion element,
1. An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and a polymer compound containing a repeating unit represented by the formula (4);
2. An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and a polymer compound containing a repeating unit represented by formula (4) An organic photoelectric conversion element in which the electron-accepting compound is a fullerene derivative;
Is mentioned. In general, at least one of the pair of electrodes is transparent or translucent. Hereinafter, this case will be described as an example.
1 above. In the organic photoelectric conversion element, the ratio of the electron-accepting compound in the functional layer containing the electron-accepting compound and the polymer compound is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. It is preferably 20 to 500 parts by weight. In addition, 2. In the organic photoelectric conversion element, from the viewpoint of increasing the photoelectric conversion efficiency, the ratio of the fullerene derivative in the functional layer is preferably 20 to 400 parts by weight with respect to 100 parts by weight of the polymer compound. The amount is more preferably 250 parts by weight, and further preferably 80 to 120 parts by weight. From the viewpoint of increasing the short-circuit current density, the ratio of the fullerene derivative in the functional layer is preferably 20 to 250 parts by weight, more preferably 40 to 120 parts by weight with respect to 100 parts by weight of the polymer. preferable.
In order for the organic photoelectric conversion element to have high photoelectric conversion efficiency, the electron-accepting compound and the polymer compound having the repeating unit represented by the formula (4) can efficiently absorb the spectrum of desired incident light. It has an absorption region that can be formed, the heterojunction interface includes many heterojunction interfaces in order to efficiently separate excitons, and has a charge transport property that quickly transports the charges generated by the heterojunction interface to the electrode. This is very important.
From such a viewpoint, as the organic photoelectric conversion element, the above 1. , 2. From the standpoint of including a large number of heterojunction interfaces, the organic photoelectric conversion element is preferable. The organic photoelectric conversion element is more preferable. Further, in the organic photoelectric conversion element of the present invention, an additional layer may be provided between at least one electrode and the functional layer in the element. Examples of the additional layer include a charge transport layer that transports holes or electrons.
The organic photoelectric conversion element of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when an electrode is formed and an organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.
As a material of the pair of electrodes, a metal, a conductive polymer, or the like can be used. Preferably, one of the pair of electrodes is preferably a material having a low work function. For example, metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and those metals An alloy of two or more of these metals, or one or more of those metals and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin An alloy with metal, graphite, a graphite intercalation compound, or the like is used. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
Examples of the material of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Gold, platinum, silver, and copper are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
As a material used for the charge transport layer as the additional layer, that is, the hole transport layer or the electron transport layer, an electron donating compound and an electron accepting compound described later can be used, respectively.
As a material used for the buffer layer as an additional layer, halides or oxides of alkali metals or alkaline earth metals such as lithium fluoride can be used. In addition, fine particles of an inorganic semiconductor such as titanium oxide can be used.
As said functional layer in the organic photoelectric conversion element of this invention, the organic thin film containing the high molecular compound which has a repeating unit represented by Formula (4) can be used, for example.
The thickness of the organic thin film is usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
The organic thin film may contain the high molecular compound which has a repeating unit represented by Formula (4) individually by 1 type, or may contain it in combination of 2 or more types. Moreover, in order to improve the hole transport property of an organic thin film, another high molecular compound or a low molecular compound can also be mixed and used as an electron-donating compound in an organic thin film.
Examples of the electron-donating compound that the organic thin film may contain in addition to the polymer compound having the repeating unit represented by the formula (4) include, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligos. Thiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof Derivatives, polythienylene vinylene and its derivatives.
Examples of the electron accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives. , diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerene and derivatives thereof such as C 60, carbon nanotube And phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, and fullerene and derivatives thereof are particularly preferable.
The electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
Fullerenes and derivatives thereof include C 60 , C 70 , C 84 and derivatives thereof. A fullerene derivative represents a compound in which at least a part of fullerene is modified.
Examples of the fullerene derivative include a compound represented by the formula (I), a compound represented by the formula (II), a compound represented by the formula (III), and a compound represented by the formula (IV).
Figure JPOXMLDOC01-appb-I000024
(In the formulas (I) to (IV), R a is an alkyl group, aryl group, heteroaryl group or group having an ester structure. A plurality of R a may be the same or different. R b represents an alkyl group or an aryl group, and a plurality of R b may be the same or different.)
The definitions and specific examples of the alkyl group and aryl group represented by R a and R b are the same as the definitions and specific examples of the alkyl group and aryl group represented by R.
The heteroaryl group represented by Ra usually has 3 to 60 carbon atoms, and examples thereof include a chenyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
Examples of the group having an ester structure represented by Ra include a group represented by the formula (V).
Figure JPOXMLDOC01-appb-I000025
(In the formula, u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, and R c represents an alkyl group, an aryl group, or a heteroaryl group.)
The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R a .
Specific examples of the C 60 derivative include the following.
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
Specific examples of the C 70 derivative include the following.
Figure JPOXMLDOC01-appb-I000028
The organic thin film may be produced by any method, for example, a method by film formation from a solution containing a polymer compound having a repeating unit represented by formula (4), or vacuum deposition. An organic thin film may be formed by a method. Examples of the method for producing an organic thin film by film formation from a solution include a method of producing an organic thin film by applying the solution on one electrode and then evaporating the solvent.
The solvent used for film formation from a solution is not particularly limited as long as it dissolves the polymer compound. Examples of the solvent include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, Examples thereof include halogenated hydrocarbon solvents such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, and trichlorobenzene, and ether solvents such as tetrahydrofuran and tetrahydropyran. The polymer compound can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
For film formation from solution, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an ink jet printing method, and a dispenser printing method are preferable.
By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
In addition, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
 高分子化合物のポリスチレン換算の重量平均分子量はサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
 カラム: TOSOH TSKgel SuperHM−H(2本)+ TSKgel SuperH2000(4.6mml.d.× 15cm);検出器:RI (SHIMADZU RID−10A);移動相:テトラヒドロフラン(THF)
合成例1 化合物(2)の合成
Figure JPOXMLDOC01-appb-I000029
 窒素雰囲気下、ジムロートコンデンサーを装着した100mlの3口フラスコに、Adv.Funct.Mater.、2007年、17巻、3836−3842頁に記載の方法で合成した化合物(1)を3.1g(4.5mmol)、無水テトラヒドロフラン(THF)を50ml入れ、−78℃にて攪拌した。フラスコ内の温度を−70℃以下に保ちながら、1.57Mのn−ブチルリチウムヘキサン溶液を5.9ml(9.3mmol)滴下し、1時間攪拌した。その後、フラスコ内にトリメトキシボランを1.0g(9.6mmol)滴下し、30分攪拌した後、室温(25℃)まで昇温し、5時間攪拌した。その後、水50mlを加え、ジエチルエーテル100mlを用いた抽出を2回行った。得られた有機層をエバポレータで濃縮した後、濃縮した溶液に、クロロホルム50ml、及び6N−塩酸50mlを加え、室温(25℃)にて5時間攪拌した。1時間静置後、ろ過し得られた固体を、5時間減圧乾燥(30mmHg、80℃)し、化合物(2)を0.74g得た。化合物(2)の精製を行わず、次の反応に用いた。化合物(2)の収率は、26%であった。
合成例2 化合物(3)の合成
Figure JPOXMLDOC01-appb-I000030
 100mlの3口フラスコに、室温(25℃)下で、化合物(2)を0.74g(1.2mmol)、ピナコールを0.29g(2.5mmol)、及びクロロホルムを30ml入れ、スラリー状の反応液が均一溶液になるまで加熱還流しながら攪拌した。その後、無水硫酸マグネシウム1.0gを反応液に加え、さらに4時間加熱還流しながら攪拌した。攪拌後、ろ過し、ろ液をエバポレータで濃縮した。濃縮後、残渣をヘキサン20mlで洗浄し、得られた結晶をろ取し、3時間減圧乾燥(50mmHg、30℃)して化合物(3)を0.57g(0.73mmol)得た。化合物(3)の収率は、62%であった。
H−NMR(270MHz/CDCl):
δ7.99(s、2H)、7.39(brs、2H)、7.15(m、4H)、6.87(m、2H)、3.88(t、4H)、1.77−1.66(m、4H)、1.47(s、24H)、1.50−1.20(m、24H)、0.89(t、6H)
実施例1 高分子化合物Aの合成
 アルゴン雰囲気において、反応容器に化合物(3)を150mg(0.190mmol)、2,5−ジブロモチオフェン(東京化成製)を46mg(0.190mmol)、トリオクチルメチルアンモニウムクロリド(商品名Aliquat336(登録商標)、シグマアルドリッチ社製)を49mg、トルエンを10mL入れ、アルゴンを用いて得られた溶液をバブリングし、十分に脱気を行った。さらに酢酸パラジウムを0.64mg(0.00285mmol)、トリス(メトキシフェニル)ホスフィンを3.50mg(0.00993mmol)、脱気した16.7重量(wt)%の炭酸ナトリウム水溶液を1.0mL加え、反応液を4時間還流した。次に、反応液にフェニルホウ酸を10.0mg加えた後、2時間還流した。その後、反応液に9.1wt%のジエチルジチオカルバミン酸ナトリウム水溶液を10ml加え、5時間還流した。還流終了後、反応液を室温(25℃)まで冷却した。その後、反応液を静置し、分液したトルエン層を取得した。該トルエン層を水10mLで2回、3wt%の酢酸水10mLで2回、さらに水10mLで2回洗浄し、得られたトルエン層をメタノール中に注ぎ込み、析出した沈殿物を取得した。この沈殿物を減圧乾燥した後、トルエンに溶解した。次に、得られたトルエン溶液をろ過し、不溶物を除去した後、アルミナ/シリカゲルカラムに通し、精製した。得られたトルエン溶液を減圧濃縮した後、メタノール中に注ぎ込み、生成した沈殿を取得した。この沈殿をメタノールで洗浄した後、減圧乾燥して、高分子化合物Aを65mg得た。
 高分子化合物Aは、下式で表される繰り返し単位のみを含む。
Figure JPOXMLDOC01-appb-I000031
実施例2 高分子化合物Bの合成
Figure JPOXMLDOC01-appb-I000032
 アルゴン雰囲気において、反応容器に化合物(3)を312mg(0.395mmol)、ジャーナル・オブ・マテリアルズ・ケミストリー、2002年、第12号、2887−2892頁に記載のある方法で合成した単量体Aを200mg(0.436mmol)、トリオクチルメチルアンモニウムクロリド(商品名Aliquat336(登録商標)、シグマアルドリッチ社製)を128mg、トルエンを26mL入れ、アルゴンを用いて得られた溶液をバブリングし、十分に脱気を行った。さらに酢酸パラジウムを1.47mg(0.00655mmol)、トリス(メトキシフェニル)ホスフィンを8.10mg(0.0230mmol)、脱気した16.7wt%の炭酸ナトリウム水溶液を2.6mL加え、反応液を1時間還流した。次に、反応溶液に、フェニルホウ酸を60.0mg加えた後、2時間還流した。その後、反応液をメタノールに注ぎ、沈殿したポリマーをろ過し、取得した。得られたポリマーを純水50mLで2回、メタノール50mLで2回洗浄し、乾燥して重合体を230mg得た。
 上記で得られた重合体をオルトジクロロベンゼン30mLに溶解し、9.1wt%のジエチルジチオカルバミン酸ナトリウム水溶液を10ml加え、反応液を5時間還流した。還流終了後、反応液を室温(25℃)付近まで冷却した。その後、反応液を静置し、分液したオルトジクロロベンゼン層を取得した。該オルトジクロロベンゼン層を水10mLで2回、3wt%の酢酸水10mLで2回、さらに水10mLで2回洗浄し、得られたオルトジクロロベンゼン層をメタノール中に注ぎ込み、析出した沈殿物を取得した。この沈殿物を減圧乾燥した後、オルトジクロロベンゼンに溶解した。次に、得られたオルトジクロロベンゼン溶液をろ過し、不溶物を除去した後、ろ液をアルミナ/シリカゲルカラムに通し、精製した。得られたオルトジクロロベンゼン溶液を減圧濃縮した後、メタノール中に注ぎ込み、生成した沈殿を回収した。この沈殿をメタノールで洗浄した後、減圧乾燥して、高分子化合物Bを170mg得た。
 高分子化合物Bは、下式で表される繰り返し単位のみを含む。
Figure JPOXMLDOC01-appb-I000033
合成例3 高分子化合物Cの合成
Figure JPOXMLDOC01-appb-I000034
 フラスコ内の気体をアルゴンで置換した2L四つ口フラスコに、化合物(C)を7.928g(16.72mmol)、化合物(F)を13.00g(17.60mmol)、トリオクチルメチルアンモニウムクロリド(商品名Aliquat336(登録商標)、シグマアルドリッチ社製、CHN[(CHCHCl、density 0.884g/ml、25℃)を4.979g、及びトルエンを405ml入れ、撹拌しながら反応系内を30分間アルゴンバブリングした。フラスコ内にジクロロビス(トリフェニルホスフィン)パラジウム(II)を0.02g加え、105℃に昇温し、撹拌しながら2mol/Lの炭酸ナトリウム水溶液42.2mlを滴下した。滴下終了後5時間反応させ、その後、フェニルボロン酸2.6gとトルエン1.8mlとを加え、105℃で16時間撹拌した。その後、反応液にトルエン700ml及び7.5wt%のジエチルジチオカルバミン酸ナトリウム三水和物水溶液200mlを加え、85℃で3時間撹拌した。反応液の水層を除去後、有機層を60℃のイオン交換水300mlで2回、60℃の3wt%酢酸300mlで1回、さらに60℃のイオン交換水300mlで3回洗浄した。有機層をセライト、アルミナ及びシリカを充填したカラムに通し、ろ液を取得した。その後、熱トルエン800mlでカラムを洗浄し、洗浄後のトルエン溶液をろ液に加えた。得られた溶液を700mlまで濃縮した後、濃縮した溶液を2Lのメタノールに加え、重合体を再沈殿させた。重合体をろ過して取得し、500mlのメタノール、500mlのアセトン、500mlのメタノールで重合体を洗浄した。重合体を50℃で一晩真空乾燥することにより、ペンタチエニル−フルオレンコポリマー(高分子化合物C)を12.21g得た。高分子化合物Cのポリスチレン換算の重量平均分子量は1.1×10であった。
測定例1 有機薄膜の吸光度の測定
 高分子化合物Aを0.5重量%の濃度でo−ジクロロベンゼンに溶解させ、塗布溶液を作製した。得られた塗布溶液をガラス基板上に、スピンコートで塗布した。塗布操作は23℃で行った。その後、大気下120℃の条件で5分間ベークし、膜厚約100nmの有機薄膜を得た。有機薄膜の吸収スペクトルを分光光度計(日本分光株式会社製、商品名:V−670)で測定した。測定したスペクトルを図1に示す。600nm及び700nmにおける吸光度を表1に示す。
測定例2 有機薄膜の吸光度の測定
 高分子化合物Aの代わりに高分子化合物Bを使用した以外は、測定例1と同様にして有機薄膜を作製し、該有機薄膜の吸収スペクトルを測定した。測定したスペクトルを図2に示す。600nm及び700nmにおける吸光度を表1に示す。
比較例1 有機薄膜の吸光度の測定
 高分子化合物Aの代わりに高分子化合物Cを使用した以外は、測定例1と同様にして有機薄膜を作製し、該有機薄膜の吸収スペクトルを測定した。測定したスペクトルを図3に示す。600nm及び700nmにおける吸光度を表1に示す。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-I000036
参考例1 有機薄膜太陽電池の作製と評価
 電子受容性化合物であるフラーレン誘導体C70PCBM(Phenyl C71−butyric acid methyl ester、アメリカンダイソース社製、商品名:ADS71BFA)と、電子供与性化合物である高分子化合物Aとを、2:1の重量比で混合し、該混合物の濃度が2重量%となるよう、o−ジクロロベンゼンに溶解させた。得られた溶液を、孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液1を調製した。
 スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を作成した。次に、前記塗布溶液1を、スピンコートにより正孔注入層上に塗布し、有機薄膜太陽電池の機能層を得た。機能層の膜厚は100nmであった。その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1~9×10−3Paであった。こうして得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池をソーラシミュレーター(分光計器製、商品名 OTENTO−SUN II:AM1.5G フィルター、放射照度 100mW/cm)を用いて一定の光を照射して測定し、発生する電流と電圧を測定して光電変換効率を求めた。光電変換効率は、3.87%であり、短絡電流密度は8.5mA/cmであり、開放端電圧は0.91Vであり、フィルファクター(FF)は0.50であった。
参考例2 有機薄膜太陽電池の作製と評価
電子受容性化合物にC70PCBMの代わりにC60PCBM(Phenyl C61−butyric acid methyl ester、フロンティアカーボン社製、商品名:E100)を使用し、高分子化合物Aの代わりに高分子化合物Bを使用し、C60PCBMと高分子化合物Bを3:1の重量比で混合し以外は、参考例1と同様にして有機薄膜太陽電池の作製、評価を行った。光電変換効率は、1.6%であり、短絡電流密度は5.6mA/cmであり、開放端電圧は0.54Vであり、FFは0.53であった。
Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.
The polystyrene equivalent weight average molecular weight of the polymer compound was determined by size exclusion chromatography (SEC).
Column: TOSOH TSKgel SuperHM-H (2) + TSKgel SuperH2000 (4.6 ml.d. × 15 cm); Detector: RI (SHIMADZU RID-10A); Mobile phase: Tetrahydrofuran (THF)
Synthesis Example 1 Synthesis of Compound (2)
Figure JPOXMLDOC01-appb-I000029
In a 100 ml three-necked flask equipped with a Dimroth condenser in a nitrogen atmosphere, Adv. Funct. Mater. 2007, Vol. 17, pages 3836-3842, 3.1 g (4.5 mmol) of compound (1) synthesized by the method described in pages 3836-3842 and 50 ml of anhydrous tetrahydrofuran (THF) were added and stirred at -78 ° C. While maintaining the temperature in the flask at −70 ° C. or lower, 5.9 ml (9.3 mmol) of a 1.57 M n-butyllithium hexane solution was added dropwise and stirred for 1 hour. Thereafter, 1.0 g (9.6 mmol) of trimethoxyborane was dropped into the flask, stirred for 30 minutes, then warmed to room temperature (25 ° C.) and stirred for 5 hours. Thereafter, 50 ml of water was added, and extraction with 100 ml of diethyl ether was performed twice. After concentrating the obtained organic layer with an evaporator, 50 ml of chloroform and 50 ml of 6N-hydrochloric acid were added to the concentrated solution, and the mixture was stirred at room temperature (25 ° C.) for 5 hours. After standing for 1 hour, the solid obtained by filtration was dried under reduced pressure (30 mmHg, 80 ° C.) for 5 hours to obtain 0.74 g of Compound (2). The compound (2) was used for the next reaction without purification. The yield of compound (2) was 26%.
Synthesis Example 2 Synthesis of Compound (3)
Figure JPOXMLDOC01-appb-I000030
In a 100 ml three-necked flask, 0.74 g (1.2 mmol) of compound (2), 0.29 g (2.5 mmol) of pinacol, and 30 ml of chloroform were added at room temperature (25 ° C.) to form a slurry reaction. The mixture was stirred while heating to reflux until the solution became a homogeneous solution. Thereafter, 1.0 g of anhydrous magnesium sulfate was added to the reaction solution, and the mixture was further stirred while heating under reflux for 4 hours. After stirring, the mixture was filtered, and the filtrate was concentrated with an evaporator. After concentration, the residue was washed with 20 ml of hexane, and the resulting crystals were collected by filtration and dried under reduced pressure (50 mmHg, 30 ° C.) for 3 hours to obtain 0.57 g (0.73 mmol) of Compound (3). The yield of compound (3) was 62%.
1 H-NMR (270 MHz / CDCl 3 ):
δ 7.9 (s, 2H), 7.39 (brs, 2H), 7.15 (m, 4H), 6.87 (m, 2H), 3.88 (t, 4H), 1.77-1 .66 (m, 4H), 1.47 (s, 24H), 1.50-1.20 (m, 24H), 0.89 (t, 6H)
Example 1 Synthesis of Polymer Compound A In an argon atmosphere, 150 mg (0.190 mmol) of compound (3), 46 mg (0.190 mmol) of 2,5-dibromothiophene (manufactured by Tokyo Chemical Industry), trioctylmethyl in a reaction vessel 49 mg of ammonium chloride (trade name Aliquat 336 (registered trademark), manufactured by Sigma-Aldrich Co.) and 10 mL of toluene were added, and the resulting solution was bubbled with argon and sufficiently deaerated. Further, 0.64 mg (0.00285 mmol) of palladium acetate, 3.50 mg (0.00993 mmol) of tris (methoxyphenyl) phosphine, and 1.0 mL of degassed 16.7 wt (wt)% aqueous sodium carbonate solution were added, The reaction was refluxed for 4 hours. Next, 10.0 mg of phenylboric acid was added to the reaction solution, followed by refluxing for 2 hours. Thereafter, 10 ml of a 9.1 wt% sodium diethyldithiocarbamate aqueous solution was added to the reaction solution, and the mixture was refluxed for 5 hours. After completion of the reflux, the reaction solution was cooled to room temperature (25 ° C.). Thereafter, the reaction solution was allowed to stand, and a separated toluene layer was obtained. The toluene layer was washed twice with 10 mL of water, twice with 10 mL of 3 wt% aqueous acetic acid and twice with 10 mL of water, and the obtained toluene layer was poured into methanol to obtain a deposited precipitate. This precipitate was dried under reduced pressure and then dissolved in toluene. Next, the obtained toluene solution was filtered to remove insoluble matters, and then passed through an alumina / silica gel column for purification. The obtained toluene solution was concentrated under reduced pressure and then poured into methanol to obtain a generated precipitate. The precipitate was washed with methanol and dried under reduced pressure to obtain 65 mg of polymer compound A.
The high molecular compound A contains only the repeating unit represented by the following formula.
Figure JPOXMLDOC01-appb-I000031
Example 2 Synthesis of polymer compound B
Figure JPOXMLDOC01-appb-I000032
Monomer synthesized by a method described in 312 mg (0.395 mmol) of Compound (3) in a reaction vessel in an argon atmosphere, Journal of Materials Chemistry, 2002, No. 12, pages 2887-2892 200 mg (0.436 mmol) of A, 128 mg of trioctylmethylammonium chloride (trade name Aliquat 336 (registered trademark), manufactured by Sigma-Aldrich Co.) and 26 mL of toluene were added, and the solution obtained using argon was sufficiently bubbled. Deaerated. Further, 1.47 mg (0.00655 mmol) of palladium acetate, 8.10 mg (0.0230 mmol) of tris (methoxyphenyl) phosphine, and 2.6 mL of degassed 16.7 wt% aqueous sodium carbonate solution were added, and the reaction solution was added to 1 Reflux for hours. Next, 60.0 mg of phenylboric acid was added to the reaction solution, followed by refluxing for 2 hours. Thereafter, the reaction solution was poured into methanol, and the precipitated polymer was filtered and obtained. The obtained polymer was washed twice with 50 mL of pure water and twice with 50 mL of methanol and dried to obtain 230 mg of a polymer.
The polymer obtained above was dissolved in 30 mL of orthodichlorobenzene, 10 ml of a 9.1 wt% sodium diethyldithiocarbamate aqueous solution was added, and the reaction solution was refluxed for 5 hours. After completion of the reflux, the reaction solution was cooled to around room temperature (25 ° C.). Thereafter, the reaction solution was allowed to stand to obtain a separated orthodichlorobenzene layer. The orthodichlorobenzene layer was washed twice with 10 mL of water, twice with 10 mL of 3 wt% acetic acid water, and further twice with 10 mL of water, and the resulting orthodichlorobenzene layer was poured into methanol to obtain a deposited precipitate. did. The precipitate was dried under reduced pressure and then dissolved in orthodichlorobenzene. Next, the obtained orthodichlorobenzene solution was filtered to remove insolubles, and then the filtrate was passed through an alumina / silica gel column for purification. The obtained orthodichlorobenzene solution was concentrated under reduced pressure, poured into methanol, and the resulting precipitate was recovered. This precipitate was washed with methanol and then dried under reduced pressure to obtain 170 mg of polymer compound B.
The high molecular compound B contains only the repeating unit represented by the following formula.
Figure JPOXMLDOC01-appb-I000033
Synthesis Example 3 Synthesis of Polymer Compound C
Figure JPOXMLDOC01-appb-I000034
In a 2 L four-necked flask in which the gas in the flask was replaced with argon, 7.928 g (16.72 mmol) of compound (C), 13.00 g (17.60 mmol) of compound (F), trioctylmethylammonium chloride ( 4.979 g of trade name Aliquat 336 (registered trademark), manufactured by Sigma-Aldrich, CH 3 N [(CH 2 ) 7 CH 3 ] 3 Cl, density 0.884 g / ml, 25 ° C.), and 405 ml of toluene were added and stirred. Then, argon was bubbled through the reaction system for 30 minutes. 0.02 g of dichlorobis (triphenylphosphine) palladium (II) was added to the flask, the temperature was raised to 105 ° C., and 42.2 ml of a 2 mol / L sodium carbonate aqueous solution was added dropwise with stirring. After completion of the dropwise addition, the reaction was allowed to proceed for 5 hours, and then 2.6 g of phenylboronic acid and 1.8 ml of toluene were added, followed by stirring at 105 ° C. for 16 hours. Thereafter, 700 ml of toluene and 200 ml of a 7.5 wt% sodium diethyldithiocarbamate trihydrate aqueous solution were added to the reaction solution, followed by stirring at 85 ° C. for 3 hours. After removing the aqueous layer of the reaction solution, the organic layer was washed twice with 300 ml of ion exchange water at 60 ° C., once with 300 ml of 3 wt% acetic acid at 60 ° C., and further three times with 300 ml of ion exchange water at 60 ° C. The organic layer was passed through a column filled with celite, alumina and silica to obtain a filtrate. Thereafter, the column was washed with 800 ml of hot toluene, and the washed toluene solution was added to the filtrate. After the obtained solution was concentrated to 700 ml, the concentrated solution was added to 2 L of methanol to reprecipitate the polymer. The polymer was obtained by filtration, and the polymer was washed with 500 ml of methanol, 500 ml of acetone, and 500 ml of methanol. The polymer was vacuum-dried at 50 ° C. overnight to obtain 12.21 g of a pentathienyl-fluorene copolymer (polymer compound C). The weight average molecular weight in terms of polystyrene of the polymer compound C was 1.1 × 10 5 .
Measurement Example 1 Measurement of absorbance of organic thin film Polymer compound A was dissolved in o-dichlorobenzene at a concentration of 0.5% by weight to prepare a coating solution. The obtained coating solution was applied onto a glass substrate by spin coating. The coating operation was performed at 23 ° C. Then, it baked for 5 minutes on 120 degreeC conditions in air | atmosphere, and obtained the organic thin film with a film thickness of about 100 nm. The absorption spectrum of the organic thin film was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm and 700 nm.
Measurement Example 2 Measurement of Absorbance of Organic Thin Film An organic thin film was prepared in the same manner as in Measurement Example 1 except that polymer compound B was used instead of polymer compound A, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm and 700 nm.
Comparative Example 1 Measurement of Absorbance of Organic Thin Film An organic thin film was prepared in the same manner as in Measurement Example 1 except that the polymer compound C was used in place of the polymer compound A, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm and 700 nm.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-I000036
Reference Example 1 Preparation and Evaluation of Organic Thin Film Solar Cell Fullerene derivative C70PCBM (Phenyl C71-butylic acid methyl ester, trade name: ADS71BFA), which is an electron-accepting compound, and a polymer which is an electron-donating compound Compound A was mixed at a weight ratio of 2: 1 and dissolved in o-dichlorobenzene so that the concentration of the mixture was 2% by weight. The obtained solution was filtered through a Teflon (registered trademark) filter having a pore size of 1.0 μm to prepare a coating solution 1.
A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, a PEDOT: PSS solution (CleviosP VP AI4083 manufactured by HC Starck Co., Ltd.) is applied onto the ITO film by spin coating, and heated at 120 ° C. for 10 minutes in the atmosphere to thereby form a hole injection layer having a thickness of 50 nm. It was created. Next, the coating solution 1 was applied onto the hole injection layer by spin coating to obtain a functional layer of an organic thin film solar cell. The film thickness of the functional layer was 100 nm. Then, the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −3 Pa in all cases. The shape of the organic thin film solar cell thus obtained was a square of 2 mm × 2 mm. The resulting organic thin-film solar cell is measured by irradiating with constant light using a solar simulator (trade name OTENTO-SUN II: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.), and a generated current And the voltage was measured to obtain the photoelectric conversion efficiency. The photoelectric conversion efficiency was 3.87%, the short-circuit current density was 8.5 mA / cm 2 , the open-circuit voltage was 0.91 V, and the fill factor (FF) was 0.50.
Reference Example 2 Production and Evaluation of Organic Thin Film Solar Cell Instead of C70PCBM, C60PCBM (phenyl C61-butyric acid methyl ester, product name: E100) was used instead of polymer compound A instead of C70PCBM. An organic thin film solar cell was prepared and evaluated in the same manner as in Reference Example 1 except that the polymer compound B was used and C60PCBM and the polymer compound B were mixed at a weight ratio of 3: 1. The photoelectric conversion efficiency was 1.6%, the short-circuit current density was 5.6 mA / cm 2 , the open-circuit voltage was 0.54 V, and FF was 0.53.
 本発明の高分子化合物の製造方法は、長波長の光の吸光度が大きい高分子化合物を製造するのに有用である。 The method for producing a polymer compound of the present invention is useful for producing a polymer compound having a large absorbance of light having a long wavelength.

Claims (6)

  1.  式(1)で表される化合物と、式(2)で表される化合物又は式(3)で表される化合物とを反応させる式(4)で表される繰り返し単位を含む高分子化合物の製造方法。
    Figure JPOXMLDOC01-appb-I000001
     式中、Rは、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、フッ素原子で置換されていてもよいアルコキシ基又は置換されていてもよいアリール基を表す。2個あるRは、同一でも相異なっていてもよい。Qはジヒドロキシボリル基又はホウ酸エステル残基を表す。2個あるQは、同一でも相異なっていてもよい。
    Figure JPOXMLDOC01-appb-I000002
     式(2)及び式(3)中、Tは、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、フッ素原子で置換されていてもよいアルコキシ基又は置換されていてもよいアリール基を表す。複数個あるTは、同一でも相異なっていてもよい。Aは、臭素原子、塩素原子又はヨウ素原子を表す。2個あるAは、同一でも相異なっていてもよい。
    Figure JPOXMLDOC01-appb-I000003
     式中、aは、0又は1を表す。T及びRは、前述と同じ意味を表す。
    A polymer compound comprising a repeating unit represented by formula (4), wherein a compound represented by formula (1) and a compound represented by formula (2) or a compound represented by formula (3) are reacted. Production method.
    Figure JPOXMLDOC01-appb-I000001
    In the formula, R represents a hydrogen atom, a fluorine atom, an alkyl group which may be substituted with a fluorine atom, an alkoxy group which may be substituted with a fluorine atom, or an aryl group which may be substituted. Two R may be the same or different. Q represents a dihydroxyboryl group or a borate ester residue. Two Qs may be the same or different.
    Figure JPOXMLDOC01-appb-I000002
    In Formula (2) and Formula (3), T is a hydrogen atom, a fluorine atom, an alkyl group which may be substituted with a fluorine atom, an alkoxy group which may be substituted with a fluorine atom, or an optionally substituted group. Represents an aryl group. A plurality of T may be the same or different. A represents a bromine atom, a chlorine atom or an iodine atom. Two A may be the same or different.
    Figure JPOXMLDOC01-appb-I000003
    In the formula, a represents 0 or 1. T and R represent the same meaning as described above.
  2.  式(5)で表される繰り返し単位を含む高分子化合物。
    Figure JPOXMLDOC01-appb-I000004
     式中、Rは、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、フッ素原子で置換されていてもよいアルコキシ基又は置換されていてもよいアリール基を表す。2個あるRは、同一でも相異なっていてもよい。Tは、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、フッ素原子で置換されていてもよいアルコキシ基又は置換されていてもよいアリール基を表す。複数個あるTは、同一でも相異なっていてもよい。
    The high molecular compound containing the repeating unit represented by Formula (5).
    Figure JPOXMLDOC01-appb-I000004
    In the formula, R represents a hydrogen atom, a fluorine atom, an alkyl group which may be substituted with a fluorine atom, an alkoxy group which may be substituted with a fluorine atom, or an aryl group which may be substituted. Two R may be the same or different. T represents a hydrogen atom, a fluorine atom, an alkyl group which may be substituted with a fluorine atom, an alkoxy group which may be substituted with a fluorine atom, or an aryl group which may be substituted. A plurality of T may be the same or different.
  3.  一対の電極と、該電極間に設けられた機能層とを有し、該機能層が電子受容性化合物と請求項2に記載の高分子化合物とを含む有機光電変換素子。 An organic photoelectric conversion element having a pair of electrodes and a functional layer provided between the electrodes, wherein the functional layer includes an electron-accepting compound and the polymer compound according to claim 2.
  4.  機能層中に含まれる電子受容性化合物の量が、高分子化合物100重量部に対して、10~1000重量部である請求項3に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 3, wherein the amount of the electron-accepting compound contained in the functional layer is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound.
  5.  電子受容性化合物が、フラーレン誘導体である請求項3に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 3, wherein the electron-accepting compound is a fullerene derivative.
  6.  電子受容性化合物が、フラーレン誘導体である請求項4に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 4, wherein the electron-accepting compound is a fullerene derivative.
PCT/JP2011/069363 2010-09-03 2011-08-22 Method for producing polymer compound WO2012029675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-197550 2010-09-03
JP2010197550 2010-09-03

Publications (1)

Publication Number Publication Date
WO2012029675A1 true WO2012029675A1 (en) 2012-03-08

Family

ID=45772764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069363 WO2012029675A1 (en) 2010-09-03 2011-08-22 Method for producing polymer compound

Country Status (2)

Country Link
JP (1) JP2012072398A (en)
WO (1) WO2012029675A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199590A (en) * 2012-03-26 2013-10-03 Toray Ind Inc Electron-donating organic material, material for photovoltaic element using the same, and photovoltaic element
EP2824158A1 (en) * 2013-04-12 2015-01-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Semiconducting copolymer and method for the production thereof, mixture of substances, electric or electronic component and method for producing the same
US20160181536A1 (en) * 2013-07-31 2016-06-23 Lg Chem, Ltd. Copolymer and organic solar cell comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500464A (en) * 2000-02-25 2004-01-08 ケンブリッジ ディスプレイ テクノロジー リミテッド Light emitting polymer
JP2005171243A (en) * 2003-12-08 2005-06-30 Samsung Electronics Co Ltd Organic semiconductor polymer having quinoxaline ring in main chain and used for organic thin-film transistor
WO2010016613A1 (en) * 2008-08-06 2010-02-11 住友化学株式会社 Photoelectric conversion element
JP2010084131A (en) * 2008-09-03 2010-04-15 Sumitomo Chemical Co Ltd Polymer compound and polymer light-emitting device using the same
JP2010111649A (en) * 2008-11-10 2010-05-20 Toray Ind Inc Quinoxaline compound, electron-donating organic material produced by using the same, material for photovoltaic element and photovoltaic element
WO2010084865A1 (en) * 2009-01-20 2010-07-29 東レ株式会社 Material for photovoltaic element, and photovoltaic element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500464A (en) * 2000-02-25 2004-01-08 ケンブリッジ ディスプレイ テクノロジー リミテッド Light emitting polymer
JP2005171243A (en) * 2003-12-08 2005-06-30 Samsung Electronics Co Ltd Organic semiconductor polymer having quinoxaline ring in main chain and used for organic thin-film transistor
WO2010016613A1 (en) * 2008-08-06 2010-02-11 住友化学株式会社 Photoelectric conversion element
JP2010084131A (en) * 2008-09-03 2010-04-15 Sumitomo Chemical Co Ltd Polymer compound and polymer light-emitting device using the same
JP2010111649A (en) * 2008-11-10 2010-05-20 Toray Ind Inc Quinoxaline compound, electron-donating organic material produced by using the same, material for photovoltaic element and photovoltaic element
WO2010084865A1 (en) * 2009-01-20 2010-07-29 東レ株式会社 Material for photovoltaic element, and photovoltaic element

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BLOUIN, N. ET AL.: "Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, no. 2, 2008, pages 732 - 742 *
LIU, C. ET AL.: "New Didecyloxyphenylene-Acceptor Alternating Conjugated Copolymers: Synthesis, Properties, and Optoelectronic Device Applications", MACROMOLECULES, vol. 41, no. 19, 2008, WASHINGTON, DC, UNITED STATES, pages 6952 - 6959 *
MOULE, A.J. ET AL.: "Two Novel Cyclopentadithiophene-Based Alternating Copolymers as Potential Donor Components for High-Efficiency Bulk-Heterojunction-Type Solar Cells", CHEMISTRY OF MATERIALS, vol. 20, no. 12, 2008, pages 4045 - 4050 *
YU, C. ET AL.: "Thiophene/Phenylene/Thiophene-Based Low-Bandgap Conjugated Polymers for Efficient Near-Infrared Photovoltaic Applications", CHEMISTRY OF MATERIALS, vol. 21, no. 14, 2009, pages 3262 - 3269 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199590A (en) * 2012-03-26 2013-10-03 Toray Ind Inc Electron-donating organic material, material for photovoltaic element using the same, and photovoltaic element
EP2824158A1 (en) * 2013-04-12 2015-01-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Semiconducting copolymer and method for the production thereof, mixture of substances, electric or electronic component and method for producing the same
US20160181536A1 (en) * 2013-07-31 2016-06-23 Lg Chem, Ltd. Copolymer and organic solar cell comprising same
US9680101B2 (en) * 2013-07-31 2017-06-13 Lg Chem, Ltd. Copolymer and organic solar cell comprising same

Also Published As

Publication number Publication date
JP2012072398A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5720178B2 (en) High molecular compound
JP5720180B2 (en) Photoelectric conversion element
JP5810818B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5991324B2 (en) Polymer compound and organic photoelectric conversion element
JP5834819B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5747789B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP6003399B2 (en) Polymer compound and organic photoelectric conversion device using the same
WO2012165128A1 (en) High-molecular-weight compound and organic photoelectric conversion element
JP5834682B2 (en) Polymer compound and electronic device using the same
WO2012029675A1 (en) Method for producing polymer compound
JP2014028912A (en) Polymer compound and organic photoelectric conversion element using the same
WO2012032949A1 (en) Polymer compound and organic photoelectric transducer
WO2012090971A1 (en) Photoelectric conversion element and composition used in same
WO2011138885A1 (en) Polymer compound and organic photoelectric conversion element using same
JP2014019781A (en) Polymer compound, and organic photoelectric conversion element using the same
JP5786504B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5810837B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5884423B2 (en) Polymer compound and organic photoelectric conversion device using the same
WO2013047293A1 (en) Photoelectric conversion element
JP5104074B2 (en) Polymer and organic photoelectric conversion element using the same
JP5874302B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP2013004722A (en) Photoelectric conversion element
JP2010010438A (en) Organic photoelectric conversion element and composition useful for its manufacture
JP2012253212A (en) Polymer compound and organic photoelectric conversion element manufactured using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821692

Country of ref document: EP

Kind code of ref document: A1