WO2012049896A1 - ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体 - Google Patents

ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体 Download PDF

Info

Publication number
WO2012049896A1
WO2012049896A1 PCT/JP2011/066216 JP2011066216W WO2012049896A1 WO 2012049896 A1 WO2012049896 A1 WO 2012049896A1 JP 2011066216 W JP2011066216 W JP 2011066216W WO 2012049896 A1 WO2012049896 A1 WO 2012049896A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
acid resin
resin composition
resin
mass
Prior art date
Application number
PCT/JP2011/066216
Other languages
English (en)
French (fr)
Inventor
直樹 森下
幸浩 木内
位地 正年
曽山 誠
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012538593A priority Critical patent/JPWO2012049896A1/ja
Publication of WO2012049896A1 publication Critical patent/WO2012049896A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen

Definitions

  • the present invention relates to a polylactic acid resin composition and a polylactic acid resin molded article.
  • Polyhydroxycarboxylic acid including polylactic acid has relatively excellent moldability, toughness, rigidity and the like.
  • polylactic acid can be synthesized from natural raw materials such as corn, and has excellent molding processability, biodegradability, and the like, and therefore has been developed in various fields as an environmentally friendly resin.
  • polylactic acid is generally flammable. For example, it is necessary to make it flame retardant when used in applications that require high flame retardance, such as exterior materials for electrical and electronic equipment. is there. Therefore, many attempts have been made to impart flame retardancy to a resin composition containing a polylactic acid resin.
  • biodegradable polyester ie, polylactic acid and polybutylene succinate adipate lactide are mixed with at least a polyfunctional monomer, crosslinked with radiation, and further phosphorus-based flame retardant, melamine-based flame retardant, metal hydrate, nitrogen-based flame retardant
  • a resin composition containing at least one flame retardant selected from a flame retardant and a silane-based flame retardant has been proposed (Patent Document 1).
  • Patent Document 1 high flame retardancy is achieved by adding 11 phr or more of a phosphoric acid ester to 100 parts by mass of the polylactic acid resin.
  • Patent Document 2 10 phr of an aromatic phosphate is added to 100 parts by mass of the polylactic acid resin.
  • Patent Document 3 A polylactic acid resin composition and a polylactic acid resin molded article that have both good properties and excellent molecular weight retention have been proposed (Patent Document 3).
  • Patent Document 3 since there is a large difference in polarity between the polylactic acid resin and the phosphorus compound, there is a limit to the upper limit of the concentration of the phosphorus compound that can be added. For this reason, when the amount of the phosphorus compound is increased to an amount required to achieve both good flame retardancy and mechanical properties such as impact resistance, a large amount of bleed material may be generated on the surface of the molded body.
  • an object of the present invention is to provide a polylactic acid resin composition and a polylactic acid resin molded article having high flame retardancy and heat resistance and further having excellent bleed resistance.
  • the polylactic acid resin composition of the present invention includes a polylactic acid resin, a metal hydroxide, a flame retardant, and a reinforcing fiber having a moisture content of 0.1% or less. To do.
  • the polylactic acid resin molded article of the present invention is characterized by being molded with the polylactic acid resin composition of the present invention.
  • the polylactic acid resin composition and the polylactic acid resin molded article of the present invention have high flame retardancy and heat resistance, and further excellent bleed resistance.
  • the polylactic acid resin composition of the present invention includes a polylactic acid resin, a metal hydroxide, a flame retardant, and a reinforcing fiber having a moisture content of 0.1% or less.
  • the present inventors diligently investigated the improvement of flame retardancy, heat resistance and bleed resistance of polylactic acid resin and the compatibility of these properties.
  • a flame retardant such as a phosphorus compound having a low polarity is likely to migrate to the surface of the molded body and may promote bleeding of the flame retardant.
  • these mechanisms are estimations and do not limit the present invention.
  • copolymers examples include L-lactic acid, D-lactic acid and derivatives thereof, for example, glycolic acid, polyhydroxybutyric acid, polycaprolactone, polybutylene succinate, polyethylene succinate, polybutylene adipate terephthalate, polybutylene succinate. Mention may be made of copolymers obtained from one or more of terephthalate, polyhydroxyalkanoate and the like. Among these, from the viewpoint of saving petroleum resources, those derived from plants are preferable. From the viewpoint of heat resistance and moldability, poly (L-lactic acid), poly (D-lactic acid) and their co-products are preferred. Polymers are particularly preferred. Polylactic acid mainly composed of poly (L-lactic acid) has a melting point of 160 ° C. or higher in consideration of the mechanical properties and heat resistance of the molded product, although the melting point varies depending on the ratio of the D-lactic acid component. Is preferred.
  • polylactic acid resin is polymerized by cross-linking polylactic acid resin with a compound capable of reacting with polylactic acid resin such as carbodiimide compound, compound having epoxy group, compound having amino group, compound having aliphatic unsaturated double bond, etc. Lactic acid resin can also be used.
  • the compound having an epoxy group, the compound having an amino group, and the compound having an aliphatic unsaturated double bond include siloxane compounds having these functional groups.
  • metal hydroxide examples include aluminum hydroxide, magnesium hydroxide, dosonite, calcium aluminate hydrate, hydrated gypsum, calcium hydroxide, zinc borate, barium metaborate, borax, and kaolinite. Can be mentioned. Among these, at least one or a mixture of two or more selected from aluminum hydroxide, magnesium hydroxide, and calcium hydroxide is preferable, and aluminum hydroxide is more preferable.
  • the metal hydroxide is preferably made of a granular material having an average particle diameter of 10 ⁇ m or less, and more preferably made of a granular material having an average particle diameter of 0.1 ⁇ m to 5 ⁇ m.
  • the average particle diameter of the metal hydroxide can be determined by measuring the volume-based median diameter by, for example, the diffraction / scattering method. Examples of a commercially available apparatus capable of measuring the average particle diameter include a laser diffraction particle size distribution measuring apparatus SALD-3100 (trade name) manufactured by Shimadzu Corporation.
  • the metal hydroxide may be subjected to a surface treatment with a silane coupling agent.
  • the method for obtaining the metal hydroxide surface-treated with the silane coupling agent is not particularly limited.
  • a solution obtained by dissolving the silane coupling agent in a solvent such as acetone, ethyl acetate, toluene examples thereof include a method of spraying or coating the surface of a metal hydroxide having a substance content of 0.2% by mass or less and then drying to remove the solvent.
  • the flame retardancy can be increased by adding the metal hydroxide.
  • This flame retardant improvement effect is considered to be due to the endotherm during the thermal decomposition of the metal hydroxide, the endothermic effect caused by the water generated during the thermal decomposition, and the diluting effect of the combustible gas.
  • the addition of the metal hydroxide does not hinder the effect of diluting the flammable gas with the above-described flame retardant such as a phosphorus compound.
  • the compounding amount of the metal hydroxide can be set in a range of 30 to 150 parts by mass with respect to 100 parts by mass of the polylactic acid resin as a total amount of the metal hydroxide and a flame retardant such as a phosphorus compound.
  • the polylactic acid resin composition of the present invention further contains a flame retardant.
  • a flame retardant a phosphorus compound is preferable.
  • a phosphazene derivative and an aromatic condensed phosphoric acid ester are more preferable because they are excellent in flame retardancy, and a phosphazene derivative is particularly preferable.
  • the phosphazene derivative include cyclic cyclophosphazene compounds represented by the following formula (2).
  • n represents an integer of 3 or more, preferably in the range of 3 to 25, and more preferably in the range of 3 to 5. If n is 3, a 6-membered ring is formed by P (phosphorus element) and N (nitrogen element). If n is 4, an 8-membered ring is formed by P and N. The same applies when n is 5 or more.
  • R 1 and R 2 each represents an organic group, for example, a substituted or unsubstituted phenoxy group or a substituted or unsubstituted naphthoxy group (for example, ⁇ -naphthoxy group).
  • aromatic condensed phosphoric acid ester resorcinol bis diphenyl phosphate, bisphenol A, bis diphenyl phosphate, resorcinol - bis-2,6 carboxymethyl les sulfonyl phosphate, resorcinol - bis-2,6-bis diphenyl phosphate, biphenol -
  • aromatic condensed phosphoric acid ester resorcinol bis diphenyl phosphate, bisphenol A, bis diphenyl phosphate, resorcinol - bis-2,6 carboxymethyl les sulfonyl phosphate, resorcinol - bis-2,6-bis diphenyl phosphate, biphenol -
  • examples thereof include bisphenyl phosphate and 4,4′-bis (diphenylphosphoryl) -1,1′-biphenyl.
  • the content of the flame retardant such as the phosphorus compound is preferably determined while confirming the effect, but from the viewpoint of improving the flame retardancy, it is preferably 1 part by mass or more with respect to 100 parts by mass of the polylactic acid resin.
  • the amount is more preferably 2 parts by mass or more, and further preferably 3 parts by mass or more.
  • it is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 10 parts by mass or less with respect to 100 parts by mass of the polylactic acid resin. .
  • inorganic fibers include metal fibers, glass fibers, metal silicate fibers, inorganic oxide fibers, and inorganic nitride fibers.
  • organic synthetic fibers include polyamide fibers and polyarylate fibers.
  • Reinforcing fibers may be used alone or in combination of two or more. Two or more kinds of inorganic fibers, organic synthetic fibers and plant-derived natural fibers may be mixed and used, and preferably contain at least inorganic fibers. By including the reinforcing fiber, it is possible to obtain a thermal deformation preventing effect and a drip suppressing effect of the molded body.
  • the shape of the reinforcing fiber may be circular in fiber cross section, but may be polygonal, indeterminate or uneven. From the viewpoint of increasing the bonding area with the resin, those having irregularities with a high aspect ratio and those having a small fiber diameter are desirable.
  • the reinforcing fiber can be subjected to a surface treatment in order to enhance the affinity with the resin serving as the base material or the entanglement between the fibers.
  • a surface treatment agent such as treatment with a coupling agent such as silane or titanate, treatment with an alkyl phosphate ester type surfactant, treatment with ozone or plasma, and the like are effective.
  • the glass fiber is preferably treated with a surface treatment agent.
  • the surface treatment agent preferably contains at least one resin selected from a polyolefin resin and a resin having a functional group having an epoxy group, from the viewpoint of excellent bleed resistance.
  • the average fiber length of the reinforcing fibers is preferably in the range of 0.1 mm to 20 mm, and more preferably in the range of 0.1 mm to 10 mm. Further, it preferably contains fibers having a fiber length of 300 ⁇ m to 20 mm. Although there is no restriction
  • a hydrolysis inhibitor, a fluorine-containing resin and the like can be added to the polylactic acid resin composition of the present invention as necessary.
  • carbodiimide compound (polycarbodiimide) having two or more carbodiimide groups examples include aliphatic polycarbodiimides such as poly (4,4′-dicyclohexylmethanecarbodiimide); poly (4,4′-diphenylmethanecarbodiimide), poly (p- Phenylenecarbodiimide), poly (m-phenylenecarbodiimide), poly (methylphenylenecarbodiimide), poly (diisopropylphenylenecarbodiimide), poly (methyldiisopropylphenylenecarbodiimide), poly (1,3,5-triisopropylphenylenecarbodiimide), poly ( And aromatic polycarbodiimides such as 1,3,5-triisopropylpheny
  • an aliphatic polycarbodiimide having an alicyclic structure such as a cyclohexane ring is preferable.
  • polycarbodiimide in which the organic linking group R in the general formula “— (N ⁇ C ⁇ N—R) n—” includes at least an alicyclic divalent group such as a cyclohexylene group.
  • poly (4,4'-dicyclohexylmethanecarbodiimide) can be preferably used.
  • the blending ratio (mass ratio) of aliphatic carbodiimide and aromatic carbodiimide can be set, for example, in the range of 1/9 to 9/1, preferably in the range of 3/7 to 7/3, and in the range of 4/6 to 6/4. Can be set to a range.
  • the amount of the carbodiimide compound is too large, the effect according to the amount added cannot be obtained, so it can be set to 20 parts by mass or less, such as resin moldability, bleed resistance, production cost, etc. From the viewpoint, 10 parts by mass or less is preferable, and 5 parts by mass or less is more preferable.
  • the fluorine-containing resin is preferably a fiber-forming resin (that forms a fibril-like structure), and is a fluorinated polyethylene such as polytetrafluoroethylene or a tetrafluoroethylene copolymer (for example, a tetrafluoroethylene / hexafluoropropylene copolymer). Polymer).
  • the content of the fluorine-containing resin is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on the whole polylactic acid resin composition, from the viewpoint of obtaining a sufficient addition effect. On the other hand, 5 mass% or less is preferable and 1 mass% or less is more preferable from points, such as manufacture (granulation) of a resin composition.
  • crystal nucleating agents impact resistance improvers, plasticizers, other resins, antioxidants, lubricants, and the like may be added as long as the function of the polylactic acid resin composition of the present invention is not impaired.
  • a crystal nucleating agent may be used in the molding of a molded body in order to further promote crystallization of an amorphous component having a low flow initiation temperature.
  • the crystal nucleating agent itself becomes a crystal nucleus during molding of a molded body, and acts to arrange resin constituent molecules in a regular three-dimensional structure, so that the moldability of the molded body, shortening of molding time, mechanical Strength and heat resistance can be improved.
  • the crystal nucleating agent promotes crystallization of the amorphous component, so that deformation of the molded body is suppressed even when the mold temperature during molding is high, and mold release after molding is easy. To. The same effect can be obtained even when the mold temperature is higher than the glass transition temperature (Tg) of the resin.
  • crystal nucleating agent examples include inorganic crystal nucleating agents and organic crystal nucleating agents.
  • examples of the inorganic crystal nucleating agent include talc, calcium carbonate, mica, boron nitride, synthetic silicic acid, silicate, silica, kaolin, carbon black, zinc white, montmorillonite, clay mineral, basic magnesium carbonate, and quartz powder. Glass fiber, glass powder, diatomaceous earth, dolomite powder, titanium oxide, zinc oxide, antimony oxide, barium sulfate, calcium sulfate, alumina, calcium silicate, boron nitride and the like can be used.
  • Organic carboxylic acid alkali metal salt and organic carboxylic acid alkaline earth metal salt alkali metal salt and alkaline earth metal salt of organic carboxylic acid
  • Polymer organic compound having carboxyl group metal salt carboxyl group-containing polyethylene obtained by oxidation of polyethylene, carboxyl group-containing polypropylene obtained by oxidation of polypropylene, olefins such as ethylene, propylene, butene-1 and acrylic Metal salts such as copolymers of acid or methacrylic acid, copolymers of styrene and acrylic acid or methacrylic acid, copolymers of olefins and maleic anhydride, copolymers of styrene and maleic anhydride, etc.
  • Organic compounds of phosphoric acid or phosphorous acid and their metal salts diphenyl phosphate, diphenyl phosphite, sodium bis (4-tert-butylphenyl) phosphate, methylene phosphate (2,4-tert- Butylphenyl) sodium, etc.
  • sorbitol derivatives such as bis (p-methylbenzylidene) sorbitol, bis (p-ethylbenzylidene) sorbitol, (8) Cholesterol derivatives such as cholesteryl stearate and cholesteryloxy system aramid, (9) Thioglycolic anhydride, p-toluenesulfonic acid, p-toluenesulfonic acid amide and their metal salts can be mentioned.
  • a crystal nucleating agent composed of a neutral substance that does not promote hydrolysis of polyester is preferable because the polylactic acid resin composition can be prevented from undergoing hydrolysis and the molecular weight can be suppressed.
  • an ester or amide compound that is a derivative thereof is preferable to a crystal nucleating agent having a carboxy group, and similarly has a hydroxy group.
  • An ester or an ether compound which is a derivative thereof is preferable to a crystal nucleating agent.
  • a layered compound such as talc which is compatible or finely dispersed with a resin in a high-temperature molten state in injection molding or the like, precipitates or phase-separates in a molding cooling step in a mold, and acts as a crystal nucleus.
  • a layered compound such as talc, which is compatible or finely dispersed with a resin in a high-temperature molten state in injection molding or the like, precipitates or phase-separates in a molding cooling step in a mold, and acts as a crystal nucleus.
  • an inorganic crystal nucleating agent and an organic crystal nucleating agent may be used in combination, or a plurality of types may be used in combination.
  • the content of the crystal nucleating agent is preferably in the range of 0.1% by mass to 20% by mass in the composition.
  • heat stabilizers and antioxidants include hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, alkali metal halides, vitamin E, and the like. These are preferably used in the range of 0.5% by mass or less with respect to the polylactic acid resin.
  • filler examples include glass beads, glass flakes, talc powder, clay powder, mica, wollastonite powder, and silica powder.
  • ⁇ Flexible ingredients can be used as the impact resistance improver.
  • the soft component include a block in which a polymer block (copolymer) such as a polyester segment, a polyether segment, and a polyhydroxycarboxylic acid segment, a polylactic acid segment, an aromatic polyester segment, and a polyalkylene ether segment are bonded to each other.
  • Copolymer block copolymer composed of polylactic acid segment and polycaprolactone segment, polymer based on unsaturated carboxylic acid alkyl ester unit, polybutylene succinate, polyethylene succinate, polycaprolactone, polyethylene adipate, polypropylene adipate , Aliphatic polyesters such as polybutylene adipate, polyhexene adipate, polybutylene succinate adipate, polyethylene glycol and its Ether, polyglycerol acetic ester, epoxidized soybean oil, epoxidized linseed oil, epoxidized linseed oil fatty acid butyl, adipic acid based aliphatic polyester, acetyl tributyl citrate, acetyl ricinoleic acid ester, sucrose fatty acid esters, sorbitan fatty acid esters, Examples thereof include plasticizers such as adipic acid dialkyl ester and alkylphthal
  • Polylactic acid resin composition of the present invention further, other thermoplastic resin as needed, for example, polypropylene, polystyrene, ABS, nylon, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, may include those alloys, and the like. It is preferable to use a thermosetting resin having crystallinity, for example, polypropylene, nylon, polyethylene terephthalate, polybutylene terephthalate, alloys with these polylactic acid resins, and the like.
  • the polylactic acid resin composition of the present invention further includes phenol resin, urea resin, melamine resin, alkyd resin, acrylic resin, unsaturated polyester resin, diallyl phthalate resin, epoxy resin, silicone resin, cyanate resin, isocyanate resin, furan resin, ketone resin, xylene resin, thermosetting polyimide, thermosetting polyamide, styrylpyridine resins, nitrile-terminated resins, addition-curable quinoxaline, and thermosetting resins such as addition-curable polyquinoxaline resin, lignin, hemicellulose
  • a thermosetting resin using a plant raw material such as cellulose may be included. When using the said thermosetting resin, it is preferable to use the hardening
  • the polylactic acid resin composition of the present invention may contain an antioxidant such as a hindered phenol or a phosphite compound, and a lubricant such as a hydrocarbon wax or an anionic surfactant.
  • the content of each of the antioxidant and the lubricant is preferably 0.05 to 3 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the polylactic acid resin.
  • the polylactic acid resin composition of the present invention may contain various antistatic agents, antifogging agents, light stabilizers, ultraviolet absorbers, pigments, colorants, antifungal agents, antibacterial agents, as necessary.
  • You may contain a foaming agent, a heat stabilizer, a weathering agent, a mold release agent, and a filler in the range which does not inhibit the desired effect which concerns on the objective of this invention.
  • a molded article molded using the polylactic acid resin composition can be obtained.
  • a molding method of the molded body for example, injection molding, injection / compression molding, extrusion molding, and mold molding can be used. It is preferable to promote crystallization during the manufacturing process or after molding because a molded body excellent in impact resistance and mechanical strength can be obtained. Examples of the method for promoting crystallization include a method using the crystal nucleating agent in the above range.
  • Such a molded body has high flame retardancy and heat resistance and is prevented from being deteriorated by bleeding, and is suitable for various parts such as electric, electronic, and automobiles.
  • Polylactic acid resin (A) Product name Terramac TE-4000N (melting point: 170 ° C) manufactured by Unitika Ltd.
  • Metal hydroxide (B) The following was used as the metal hydroxide (B).
  • Metal hydroxide 1 product name HP-350 (aluminum hydroxide, average particle size: 3.2 ⁇ m, composition: Al (OH) 3 (99.95%), SiO 2 (0.01 %), Fe 2 O 3 (0.01%), Na 2 O (0.03%, alkali metal substances))
  • Flame retardant (C) The following were used as the flame retardant (C).
  • Phosphorus compound 1 product name sps-100 manufactured by Otsuka Chemical Co., Ltd.
  • Reinforcing fiber (D) The following was used as the reinforcing fiber (D).
  • Glass fiber 1 Product name 03JAFT689S manufactured by Owens Corning Japan
  • Glass fiber 2 Product name 03JAFT762 manufactured by Owens Corning Japan
  • Glass fiber 3 Product name 03JATPB0160 manufactured by Owens Corning Japan
  • Glass fiber 4 Product name 03JAFT592 manufactured by Owens Corning Japan
  • the glass fiber 1 has a water content of 0.10% and is treated with a surface treatment agent mainly composed of a resin having a functional group having an epoxy group.
  • the glass fiber 2 has a moisture content of 0.07% and is treated with a surface treatment agent mainly composed of a polyolefin resin.
  • the glass fiber 3 has a water content of 0.13% and has been treated with a surface treatment agent mainly composed of a resin having a functional group having an epoxy group.
  • the glass fiber 4 has a water content of 0.15% and has been treated with a surface treatment agent mainly composed of a resin having a functional group having an epoxy group.
  • Hydrolysis-resistant inhibitor As the hydrolysis-resistant inhibitor, the following was used. Hydrolysis inhibitor 1: aromatic polycarbodiimide, polydiisopropylphenylcarbodiimide (trade name Stavaxol P) manufactured by Rhein Chemie
  • Fluorine-containing resin The following were used as the fluorine-containing resin.
  • Fluororesin 1 Polytetrafluoroethylene (trade name: Polyflon FA-500) manufactured by Daikin Industries, Ltd.
  • Crystal nucleating agent 1 The following were used as the crystal nucleating agent.
  • Crystal nucleating agent 1 Product name ITOWAX J-530 (N, N′-ethylene-bis-12-hydroxystearylamide) manufactured by Ito Oil Co., Ltd.
  • Plasticizer 1 Daihachi Chemical Co., Ltd. trade name DAIFATTY-101 (benzyl-2- (2-methoxyethoxy) ethyl adipate)
  • the obtained pellets were dried at 100 ° C. for 5 hours, and then an injection molding machine (manufactured by Toshiba Machine Co., Ltd., trade name EC20P-0.4A, molding temperature: 190 ° C., mold surface temperature: 80 ° C., in-mold holding time 30 ), A test piece (125 ⁇ 13 ⁇ 1.6 mm or 3.2 mm) is molded and crystallized (heated at 100 ° C. for 4 hours), and flame retardancy evaluation, bleed resistance evaluation, Fluidity evaluation, bending property evaluation, and Izod impact strength measurement were performed. For evaluation of bleed resistance, after determining the molding conditions, the surface of the mold was cleaned with MEK, and then the first and twelfth shot test pieces were used.
  • the flame retardancy evaluation was performed by leaving a test piece for flame retardancy evaluation (125 mm ⁇ 13 mm ⁇ 1.6 mm) obtained by injection molding in a temperature-controlled room at 23 ° C. and 50% humidity for 48 hours, and then underwriters. -Conducted in accordance with UL94 test (flammability test of plastic material for equipment parts) established by Laboratories.
  • UL94V is a method for evaluating the flame retardancy from the afterflame time and drip properties after indirect flame of a burner for 10 seconds on a test piece of a predetermined size held vertically, as shown in Table 1 below. Divided into classes.
  • the after-flame time is the length of time for which the test piece continues to burn with flame after the ignition source is moved away
  • t1 is the after-flame time after the first flame contact
  • t2 is 2
  • the after-flame time after the second flame contact, t3, is the after glow (flameless combustion) time after the second flame contact.
  • the second flame contact is performed by indirect flame for 10 seconds with a burner immediately after the first flame contact, after the flame has disappeared. Further, the ignition of cotton by the drip is determined by whether or not the labeling cotton that is about 300 mm below the lower end of the test piece is ignited by a drip from the test piece.
  • the results of Examples 1 and 2 indicate that the polylactic acid resin composition of the present invention has excellent flame retardancy and bleed resistance.
  • Comparative Example 1 in which 12 parts by mass of glass fiber 3 having an attached moisture content of 0.13% is added to 100 parts by mass of the polylactic acid resin, the flame resistance is good, but the bleed resistance is slightly inferior. It was.
  • Comparative Example 2 in which 12 parts by mass of glass fiber 4 having an attached water content of 0.15% was added to 100 parts by mass of polylactic acid resin, although flame retardancy was good, bleed resistance was inferior. . It can be seen that when the amount of moisture adhering to the reinforcing fiber is 0.1% or less, both flame retardancy and bleed resistance can be achieved.
  • Examples 1 and 2 were excellent in fluidity as compared with Comparative Examples 1 and 2.
  • the glass fibers added in Examples 1 and 2 are considered to have a low polarity due to the hydrophobic surface, and a good flowability due to a relatively large difference in polarity from the polylactic acid resin. .
  • the polylactic acid resin composition of the present invention has high flame retardancy and heat resistance, and further has excellent bleed resistance.
  • the use of the polylactic acid resin composition of the present invention is not particularly limited, and can be widely applied to, for example, household appliances, OA equipment housings, automobile parts, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 高度な難燃性および耐熱性を有し、さらに優れた耐ブリード性を兼ね備えたポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体を提供する。 本発明のポリ乳酸樹脂組成物は、ポリ乳酸樹脂、金属水酸化物、難燃剤、および、付着水分量が0.1%以下の補強繊維を含むことを特徴とする。

Description

ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体
 本発明は、ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体に関する。
 ポリ乳酸をはじめとするポリヒドロキシカルボン酸は、比較的優れた成形加工性、靱性、剛性等を有する。中でも、ポリ乳酸は、トウモロコシ等の天然原料から合成することが可能で、優れた成形加工性、生分解性等を有することから環境調和型樹脂として、種々の分野において開発が進められている。しかしながら、ポリ乳酸は、一般的に燃えやすく、例えば、電気・電子機器用の外装材等のように、高度な難燃性を要求される用途に使用する場合には、難燃化する必要がある。そのため、ポリ乳酸樹脂を含有する樹脂組成物に難燃性を付与する試みが数々なされている。
 例えば、生分解性ポリエステルすなわちポリ乳酸とポリブチレンサクシネートアジペートラクチドに少なくとも多官能性モノマーを混合し、放射線で架橋し、さらにリン系難燃剤、メラミン系難燃剤、金属水和物、窒素系難燃剤、シラン系難燃剤から選ばれる1種類以上の難燃剤を配合した樹脂組成物が提案されている(特許文献1)。この樹脂組成物では、ポリ乳酸樹脂100質量部に対してリン酸エステルを11phr以上添加することで高度な難燃性を達成するとしている。
 また、脂肪族ポリエステル樹脂組成物の成形方法において、前記樹脂組成物に、芳香族リン酸エステルを配合して難燃性を付与することが提案されている(特許文献2)。この樹脂組成物では、ポリ乳酸樹脂100質量部に対して芳香族リン酸エステルを10phr添加している。
 しかし、これらの組成物で成形した部品は、高温高湿下に長時間保管すると、部品表面にリン酸エステルがブリードアウトする場合があり、電気・電子機器の外装材等に要求される実用性の点で十分とは言えない。
 そこで、ポリ乳酸樹脂と、アルカリ金属系物質の含有量が0.2質量%以下である金属水和物と、リン系化合物の一つであるホスファゼン誘導体とを必須成分とすることで、耐ブリード性と優れた分子量保持率を両立するポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体が提案されている(特許文献3)。しかし、このポリ乳酸樹脂組成物では、ポリ乳酸樹脂とリン系化合物の極性に大きな差があるため、添加可能なリン系化合物の濃度の上限値に制限がある。そのため、良好な難燃性と耐衝撃性等の機械特性との両立に必要な添加量までリン系化合物を増量すると、成形体表面にブリード物が多量に発生する場合があった。
 一方、ポリ乳酸樹脂は耐熱性が低いため、ガラス繊維などの補強繊維を添加する処方が用いられており、補強繊維として、ポリ乳酸樹脂との界面密着性が良好な表面処理品の使用が提案されている(特許文献4)。しかし、ポリ乳酸樹脂に、リン系化合物と表面処理された補強繊維とを併せて添加する場合、繊維表面の極性によっては、リン系化合物のブリードが促進される場合がある。
国際公開2007/088920号 特許第4438395号公報 国際公開2010/004799号 特開平11-79793号公報
 そこで、本発明は、高度な難燃性および耐熱性を有し、さらに優れた耐ブリード性を兼ね備えたポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体を提供することを目的とする。
 前記目的を達成するために、本発明のポリ乳酸樹脂組成物は、ポリ乳酸樹脂、金属水酸化物、難燃剤、および、付着水分量が0.1%以下の補強繊維を含むことを特徴とする。
 また、本発明のポリ乳酸樹脂成形体は、前記本発明のポリ乳酸樹脂組成物で成形されたことを特徴とする。
 本発明のポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体は、高度な難燃性および耐熱性を有し、さらに優れた耐ブリード性を有する。
 本発明のポリ乳酸樹脂組成物は、ポリ乳酸樹脂、金属水酸化物、難燃剤、および、付着水分量が0.1%以下の補強繊維を含む。
 本発明者らは、ポリ乳酸樹脂の難燃性、耐熱性および耐ブリード性の改良とそれらの特性の両立について鋭意検討した。その結果、耐熱性向上のために用いる補強繊維表面の極性が高く、水との親和性が高い場合、高温高湿下において、樹脂組成物中に分散する繊維の表面を伝って水が移動し、極性の低いリン系化合物等の難燃剤が成形体の表面に移行しやすくなり、難燃剤のブリードを促進する可能性があることを見出し、本発明に至った。ただし、これらのメカニズムは推定であり、本発明を何ら限定しない。
(ポリ乳酸樹脂)
 本発明のポリ乳酸樹脂組成物の主成分であるポリ乳酸樹脂としては、バイオマス原料から得られるポリ乳酸樹脂の抽出物やこれらの誘導体若しくは変性体、または、バイオマス原料から得られる乳酸化合物のモノマー、オリゴマーや、これらの誘導体若しくは変性体を用いて合成される縮重合物の他、バイオマス原料以外を原料として合成されるポリ乳酸樹脂のセグメントを挙げることができる。かかるセグメントを構成するポリ乳酸樹脂化合物としては、例えば、下記式(1)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
前記式(1)において、
17は、炭素数18以下のアルキル基を表し、
aおよびcは、1以上の整数を表し、
b’は、0以上の整数を表す。
 aは、500~13000の整数であることが好ましく、より好ましくは、1500~4000の整数である。b’は、0~5000の整数であることが好ましい。cは、1~50の整数であることが好ましい。前記式(1)で表されるポリ乳酸化合物においては、繰返し単位数aおよびb’によってそれぞれ繰り返される繰返し単位は、同種の繰返し単位が連続して接続されていても、交互に繰り返されていてもよい。前記式(1)で表されるポリ乳酸化合物としては、具体的には、L-乳酸、D-乳酸およびこれらの誘導体の重合体、さらに、これらを主成分とする共重合体を挙げることができる。かかる共重合体としては、L-乳酸、D-乳酸およびこれらの誘導体と、例えば、グリコール酸、ポリヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートテレフタレート、ポリヒドロキシアルカノエート等の1種または2種以上とから得られる共重合体を挙げることができる。これらのうち、石油資源節約という観点からは、植物由来のものを原料とするものが好ましく、耐熱性、成形性の面から、ポリ(L-乳酸)、ポリ(D-乳酸)やこれらの共重合体が、特に好ましい。また、ポリ(L-乳酸)を主体とするポリ乳酸は、D-乳酸成分の比率によってその融点が異なるが、成形体の機械的特性や耐熱性を考慮すると、160℃以上の融点を有するものが好ましい。
 前記ポリ乳酸化合物の重量平均分子量は、3万~100万の範囲であることが好ましく、より好ましくは、10万~30万の範囲である。
 前記重量平均分子量は、例えば、試料のクロロホルム0.1%溶液のGPC(ポリスチレン標準試料で較正)分析により測定した測定値を採用することができる。
 またポリ乳酸樹脂を、カルボジイミド化合物、エポキシ基を有する化合物、アミノ基を有する化合物、脂肪族不飽和二重結合を有する化合物など、ポリ乳酸樹脂と反応可能な化合物で架橋して高分子量化したポリ乳酸樹脂も使用できる。エポキシ基を有する化合物、アミノ基を有する化合物、脂肪族不飽和二重結合を有する化合物の例としては、これらの官能基を有するシロキサン化合物が挙げられる。
(金属水酸化物)
 本発明のポリ乳酸樹脂組成物は、金属水酸化物を含む。前記金属水酸化物においては、前記ポリ乳酸樹脂および前記リン系化合物等の難燃剤の加水分解を抑制する観点から、金属水酸化物中のアルカリ金属系物質およびアルカリ土類金属系物質の含有量が0.2質量%以下であることが好ましい。前記アルカリ金属系物質とは、リチウム、ナトリウム、カリウム等のアルカリ金属の酸化物または塩化物を、前記アルカリ土類金属系物質とは、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属の酸化物または塩化物を指す。前記アルカリ金属系物質および前記アルカリ土類金属系物質の含有量は、例えば、原子吸光法、ICP発光分光分析法等により測定できる。
 前記金属水酸化物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドーソナイト、アルミン酸カルシウム水和物、水和石膏、水酸化カルシウム、ホウ酸亜鉛、メタホウ酸バリウム、ホウ砂、カオリナイト等が挙げられる。これらの中でも、水酸化アルミニウム、水酸化マグネシウムおよび水酸化カルシウムから選ばれる少なくとも1種または2種以上の混合物が好ましく、水酸化アルミニウムがより好ましい。
 また、前記金属水酸化物は、平均粒径10μm以下の粒状体からなるものが好ましく、平均粒径0.1μm~5μmの粒状体からなるものがより好ましい。なお、前記金属水酸化物の平均粒径は、例えば、回折・散乱法によって体積基準のメジアン径を測定することにより求めることができる。前記平均粒径を測定可能な市販の装置としては、例えば、(株)島津製作所製 レーザー回折式粒度分布測定装置SALD-3100(商品名)等が挙げられる。
 前記金属水酸化物には、シランカップリング剤によって表面処理を施してもよい。シランカップリング剤によって表面処理された金属水酸化物を得る方法は、特に限定されず、例えば、シランカップリング剤を、アセトン、酢酸エチル、トルエン等の溶媒に溶解させた溶液を、アルカリ金属系物質の含有量が0.2質量%以下の金属水酸化物の表面に噴霧または塗工した後、乾燥して溶媒を除去する方法等が挙げられる。
 前記金属水酸化物を添加することにより、難燃性を高めることができる。この難燃性向上効果は、金属水酸化物の熱分解時の吸熱、並びに熱分解時に発生する水による吸熱および可燃性ガスの希釈効果に起因すると考えられる。金属水酸化物の添加は、前述のリン系化合物等の難燃剤による可燃性ガスの希釈効果を阻害しない。金属水酸化物の配合量は、ポリ乳酸樹脂100質量部に対して、金属水酸化物とリン系化合物等の難燃剤との合計量で30~150質量部の範囲に設定することができる。金属水酸化物の十分な添加効果を得る観点から、金属水酸化物の含有量は、10質量部以上が好ましく、15質量部以上がより好ましく、20質量部以上がさらに好ましい。また、ポリ乳酸樹脂の流動性や機械強度を十分に確保する観点から、金属水酸化物の含有量は、200質量部以下が好ましく、150質量部以下がより好ましく、120質量部以下がさらに好ましい。
(難燃剤)
 本発明のポリ乳酸樹脂組成物は、さらに、難燃剤を含む。前記難燃剤としては公知のものが使用できるが、リン系化合物が好ましい。リン系化合物としては、ホスファゼン誘導体および芳香族縮合型リン酸エステルが難燃効果に優れるのでより好ましく、特に好ましくは、ホスファゼン誘導体である。前記ホスファゼン誘導体としては、例えば、下記式(2)で表される環状シクロホスファゼン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 nは、3以上の整数を表し、3~25の範囲であることが好ましく、3~5の範囲であることがより好ましい。nが3であれば、P(リン元素)とN(窒素元素)とで6員環が形成されており、nが4であれば、PとNとで8員環が形成されており、nが5以上であっても同様である。RおよびRは、それぞれ、有機基を表し、例えば、置換若しくは無置換のフェノキシ基、置換若しくは無置換のナフトキシ基(例えば、β-ナフトキシ基)である。
 前記ホスファゼン誘導体としては、例えば、フェノキシ基を有するシクロホスファゼン化合物、シアノフェノキシ基を有するシクロホスファゼン化合物、アミノフェノキシ基を有するシクロホスファゼン化合物、置換若しくは無置換のナフトキシ基を有するシクロホスファゼン化合物等も挙げられる。これらのシクロホスファゼン化合物の中でも、置換若しくは無置換のフェノキシ基または置換若しくは無置換のナフトキシ基を有する、シクロトリホスファゼン、シクロテトラホスファゼンまたはシクロペンタホスファゼンが好ましく、置換若しくは無置換のフェノキシ基を有するシクロトリホスファゼンが特に好ましい。具体的には、例えば、ヘキサフェノキシシクロトリホスファゼン(フェノキシ基は、置換基を有していてもよい)が挙げられる。前記シクロホスファゼン化合物は、酸化により着色の原因となるキノン構造を形成しやすいため、フェノール性水酸基を有しないことが好ましい。前記ホスファゼン誘導体は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
 前記芳香族縮合型リン酸エステルとしては、レゾルシノールビスジフェニルホスフェート、ビスフェノールA、ビスジフェニルホスフェート、レゾルシノール-ビス-2,6-キシレニルホスフェート、レゾルシノール-ビス-2,6-ビスジフェニルホスフェート、ビフェノール-ビスフェニルホスフェート、4,4’-ビス(ジフェニルホスホリル)-1,1’-ビフェニル等が挙げられる。
 前記リン系化合物等の難燃剤の含有量は、効果を確認しながら決めることが好ましいが、難燃性向上の観点から、ポリ乳酸樹脂100質量部に対し、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、3質量部以上であることがさらに好ましい。他方、耐ブリード性の観点からは、ポリ乳酸樹脂100質量部に対し、30質量部以下であることが好ましく、20質量部以下であることがより好ましく、10質量部以下であることがさらに好ましい。
(補強繊維)
 本発明のポリ乳酸樹脂組成物は、さらに、補強繊維を含む。この補強繊維は、付着水分量が0.1%以下である。ここで、付着水分量は、補強繊維を100℃のオーブン中で12時間乾燥させた後の重量を基準として、25℃、湿度95%で24時間放置した後の重量増加分から算出したものである。付着水分量が0.1%以下であると、補強繊維の表面の極性が低く、疎水的なものとなる。前記補強繊維は、無機繊維、有機合成繊維、植物由来の天然繊維等の繊維を含んでいてもよい。無機繊維としては、金属繊維、ガラス繊維、金属ケイ酸塩繊維、無機酸化物繊維、無機窒化物繊維等が挙げられる。有機合成繊維としては、ポリアミド繊維やポリアリレート繊維等が挙げられる。耐熱性等の点から無機繊維が好ましく、特に、ガラス繊維が、耐熱性が高く、かつ安価であるという点で好ましい。補強繊維は1種単独で用いても良く、また2種以上を混合して使用してもよい。無機繊維、有機合成繊維および植物由来の天然繊維の2種以上を混合して使用してもよく、少なくとも無機繊維を含むことが好ましい。補強繊維を含むことにより、成形体の熱変形防止効果、ドリップ抑制効果を得ることができる。
 補強繊維の形状は、繊維断面が円形であってもよいが、多角形、不定形あるいは凹凸のある形状のものであってもよい。樹脂との接合面積が大きくなる観点から、アスペクト比の高い凹凸を有するものや、繊維径の小さいものが望ましい。
 補強繊維には、必要に応じて、基材となる樹脂との親和性または繊維間の絡み合いを高めるために、表面処理を施すことができる。表面処理方法としては、シラン系、チタネート系などのカップリング剤による処理およびアルキルリン酸エステル型の界面活性剤による処理等の表面処理剤による処理、オゾンやプラズマによる処理などが有効である。補強繊維としてガラス繊維を用いる場合、ガラス繊維が表面処理剤による処理がされていることが好ましい。前記表面処理剤は、その主剤が、ポリオレフィン樹脂および官能基がエポキシ基を有する樹脂から選択される少なくとも一種の樹脂を含むことが、耐ブリード性に優れる点から好ましい。
 なお、補強繊維として、ポリ乳酸樹脂との界面密着性(親和性)が高い繊維を用いる場合、リン系化合物等の難燃剤のブリードを促進するだけでなく、射出成形時においてポリ乳酸樹脂組成物の流動性が低下する可能性がある。一方、ポリ乳酸樹脂との界面密着性が著しく低い繊維を用いる場合、界面密着性が高い繊維に比べて、耐ブリード性および流動性は改善するものの、強度や耐衝撃性等の機械的強度が低下する可能性がある。そのため、適度な界面密着性を有していることが好ましい。
 補強繊維の平均繊維長(破砕片を除く繊維の数平均繊維長)は、0.1mm~20mmの範囲にあることが好ましく、0.1mm~10mmの範囲にあることがより好ましい。また、300μm~20mmの繊維長の繊維を含むことが好ましい。補強繊維の含有量は特に制限はないが、十分な添加効果を得る点から、ポリ乳酸樹脂組成物全体を基準として、1質量%以上が好ましく、3質量%以上が好ましい。また、樹脂組成物の成形性や機械強度を十分に確保する観点から、50質量%以下が好ましく、30質量%以下がより好ましく、例えば1質量%以上10質量%以下に設定することができる。
 その他、本発明のポリ乳酸樹脂組成物には、必要に応じて、耐加水分解抑制剤、含フッ素樹脂等を添加することができる。
 前記耐加水分解抑制剤としては、例えば、カルボジイミド系化合物が好ましい。カルボジイミド系化合物は、分子内に少なくとも一つのカルボジイミド基を有する化合物である。このようなカルボジイミドとしては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジフェニルカルボジイミド、ビス(メチルフェニル)カルボジイミド、ビス(メトキシフェニル)カルボジイミド、ビス(ニトロフェニル)カルボジイミド、ビス(ジメチルフェニル)カルボジイミド、ビス(ジイソプロピル)カルボジイミド、ビス(t-ブチル)カルボジイミド、N-エチル-N’-(3-ジメチルアミノプロピル)カルボジイミド、ビス(トリフェニルシリル)カルボジイミド、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミドが挙げられる。N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミドの市販品として、Rhein Chemie社製のスタバクゾールI(商品名)を用いることができる。カルボジイミド基を二つ以上有するカルボジイミド系化合物(ポリカルボジイミド)としては、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)等の脂肪族ポリカルボジイミド;ポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(p-フェニレンカルボジイミド)、ポリ(m-フェニレンカルボジイミド)、ポリ(メチルフェニレンカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、ポリ(メチルジイソプロピルフェニレンカルボジイミド)、ポリ(1,3,5-トリイソプロピルフェニレンカルボジイミド)、ポリ(1,3,5-トリイソプロピルフェニレン及び1,5-ジイソプロピルフェニレンカルボジイミド)等の芳香族ポリカルボジイミドが挙げられる。脂肪族ポリカルボジイミドとしては、シクロヘキサン環などの脂環式構造を有する脂肪族ポリカルボジイミドが好ましい。例えば、一般式「-(N=C=N-R)n-」における有機系連結基Rがシクロヘキシレン基等の脂環式の二価基を少なくとも含むポリカルボジイミドが挙げられる。このような脂肪族ポリカルボジイミドとしては、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)を好適に用いることができる。このポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)の市販品として、日清紡ケミカル(株)製のカルボジライトLA-1(商品名)を用いることができる。芳香族ポリカルボジイミドは、ベンゼン環などの芳香環構造を有するポリカルボジイミドが挙げられる。芳香族ポリカルボジイミドとしては、市販品として、Rhein Chemie社製のスタバクゾールP(商品名、ポリ(1,3,5-トリイソプロピルフェニレンカルボジイミド))や、スタバクゾールP-100(商品名)を用いることができる。
 カルボジイミド系化合物の配合量は、十分な難燃性向上効果を得る点から、ポリ乳酸樹脂100質量部に対して0.1質量部以上に設定され、0.5質量部以上が好ましく、1質量部以上がさらに好ましい。脂肪族カルボジイミドと芳香族カルボジイミドを併用する場合、芳香族カルボジイミドの配合量は、十分な添加効果を得る点から、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上がさらに好ましい。脂肪族カルボジイミドと芳香族カルボジイミドの配合比(質量比)は、例えば1/9~9/1の範囲に設定でき、3/7~7/3の範囲が好ましく、4/6~6/4の範囲に設定することができる。一方、カルボジイミド系化合物の配合量が多すぎると、添加量に応じた効果は得られなくなるため、20質量部以下に設定することができ、樹脂の成形性や、耐ブリード性、製造コスト等の観点から、10質量部以下が好ましく、5質量部以下がより好ましい。
 また、前記含フッ素樹脂を含有させると、燃焼時のドリップ現象を防止する耐ドリップ性を高めることができる。前記含フッ素樹脂としては、繊維形成型樹脂(フィブリル状構造を形成するもの)が好ましく、ポリテトラフルオロエチレン等のフッ素化ポリエチレン、テトラフルオロエチレン共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体)が挙げられる。含フッ素樹脂の含有量は、十分な添加効果を得る点から、ポリ乳酸樹脂組成物全体を基準として、0.05質量%以上が好ましく、0.1質量%以上がより好ましい。他方、樹脂組成物の製造(造粒)等の点から、5質量%以下が好ましく、1質量%以下がより好ましい。
 さらに、本発明のポリ乳酸樹脂組成物の機能を阻害しない範囲において、各種の結晶核剤、耐衝撃性改良材、可塑剤、他の樹脂、酸化防止剤、滑剤等を配合させてもよい。
 本発明のポリ乳酸樹脂組成物が結晶性樹脂を含有する場合、成形体の成形において、流動開始温度が低い非晶質分の結晶化をより促進させるために、結晶核剤を使用することが好ましい。前記結晶核剤は、成形体の成形時にそれ自身が結晶核となり、樹脂の構成分子を規則的な三次元構造に配列させるように作用し、成形体の成形性、成形時間の短縮、機械的強度、耐熱性の向上を図ることができる。さらに、前記結晶核剤は、非晶質分の結晶化が促進されることにより、成形時の金型温度が高い場合であっても成形体の変形が抑制され、成形後の離型を容易にする。金型温度が樹脂のガラス転移温度(Tg)よりも高い場合であっても同様の効果が得られる。
 前記結晶核剤としては、無機系の結晶核剤および有機系の結晶核剤が挙げられる。前記無機系の結晶核剤としては、例えば、タルク、炭酸カルシウム、マイカ、窒化硼素、合成珪酸、珪酸塩、シリカ、カオリン、カーボンブラック、亜鉛華、モンモリロナイト、粘土鉱物、塩基性炭酸マグネシウム、石英粉、ガラスファイバー、ガラス粉、ケイ藻土、ドロマイト粉、酸化チタン、酸化亜鉛、酸化アンチモン、硫酸バリウム、硫酸カルシウム、アルミナ、ケイ酸カルシウム、窒化ホウ素等を使用することができる。前記有機系の結晶核剤としては、例えば、
(1)有機カルボン酸類:オクチル酸、トルイル酸、ヘプタン酸、ペラルゴン酸、ラウリン酸、ミリスチン酸、パルチミン酸、ステアリン酸、ベヘニン酸、セロチン酸、モンタン酸、メリシン酸、安息香酸、p-tert-ブチル安息香酸、テレフタル酸、テレフタル酸モノメチルエステル、イソフタル酸、イソフタル酸モノメチルエステル、ロジン酸、12-ヒドロキシステアリン酸、コール酸等、
(2)有機カルボン酸アルカリ金属塩および有機カルボン酸アルカリ土類金属塩:前記有機カルボン酸のアルカリ金属塩およびアルカリ土類金属塩等、
(3)カルボキシル基の金属塩を有する高分子有機化合物:ポリエチレンの酸化によって得られるカルボキシル基含有ポリエチレン、ポリプロピレンの酸化によって得られるカルボキシル基含有ポリプロピレン、エチレン、プロピレン、ブテン-1等のオレフィン類とアクリル酸またはメタクリル酸との共重合体、スチレンとアクリル酸またはメタクリル酸との共重合体、オレフィン類と無水マレイン酸との共重合体、スチレンと無水マレイン酸との共重合体等の金属塩等、
(4)脂肪族カルボン酸アミド:オレイン酸アミド、ステアリン酸アミド、エルカ酸アミド、ベヘニン酸アミド、N-オレイルパルミトアミド、N-ステアリルエルカ酸アミド、N,N’-エチレンビス(ステアロアミド)、N,N’-エチレンビス-12-ヒドロキシステアリルアミド、N,N’-メチレンビス(ステアロアミド)、メチロール・ステアロアミド、エチレンビスオレイン酸アマイド、エチレンビスベヘン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスラウリン酸アマイド、ヘキサメチレンビスオレイン酸アマイド、ヘキサメチレンビスステアリン酸アマイド、ブチレンビスステアリン酸アマイド、N,N’-ジオレイルセバシン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミド、m-キシリレンビスステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミド、N,N’-ジステアリルテレフタル酸アミド、N-オレイルオレイン酸アミド、N-ステアリルオレイン酸アミド、N-ステアリルエルカ酸アミド、N-オレイルステアリン酸アミド、N-ステアリルステアリン酸アミド、N-ブチル-N’-ステアリル尿素、N-プロピル-N’-ステアリル尿素、N-アリル-N’-ステアリル尿素、N-フェニル-N’-ステアリル尿素、N-ステアリル-N’-ステアリル尿素、ジメチトール油アマイド、ジメチルラウリン酸アマイド、ジメチルステアリン酸アマイド、N,N’-シクロヘキサンビス(ステアロアミド)、N-ラウロイル-L-グルタミン酸-α,γ-n-ブチルアミド等、
(5)高分子有機化合物:3,3-ジメチルブテン-1、3-メチルブテン-1、3-メチルペンテン-1、3-メチルヘキセン-1、3,5,5-トリメチルヘキセン-1等の炭素数5以上の3位分岐α-オレフィン、並びにビニルシクロペンタン、ビニルシクロヘキサン、ビニルノルボルナン等のビニルシクロアルカンの重合体、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール、ポリグリコール酸、セルロース、セルロースエステル、セルロースエーテル、ポリエステル、ポリカーボネート等、
(6)リン酸または亜リン酸の有機化合物およびそれらの金属塩:リン酸ジフェニル、亜リン酸ジフェニル、リン酸ビス(4-tert-ブチルフェニル)ナトリウム、リン酸メチレン(2,4-tert-ブチルフェニル)ナトリウム等、
(7)ビス(p-メチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール等のソルビトール誘導体、
(8)コレステリルステアレート、コレステリロキシステアラミド等のコレステロール誘導体、
(9)無水チオグリコール酸、パラトルエンスルホン酸、パラトルエンスルホン酸アミドおよびそれらの金属塩等を挙げることができる。
 これらのうち、ポリエステルの加水分解を促進しない中性物質からなる結晶核剤が、前記ポリ乳酸樹脂組成物が加水分解を受けて分子量が低下するのを抑制できるため、好ましい。また、前記ポリ乳酸樹脂組成物のエステル交換反応による低分子量化を抑制するため、カルボキシ基を有する結晶核剤よりもその誘導体であるエステルやアミド化合物の方が好ましく、同様に、ヒドロキシ基を有する結晶核剤よりもその誘導体であるエステルやエーテル化合物の方が好ましい。
 前記結晶核剤については、射出成形等において高温溶融状態で樹脂と相溶あるいは微分散し、金型内での成形冷却段階で析出あるいは相分離し、結晶核として作用する、タルク等の層状化合物が好ましい。前記結晶核剤としては、無機系の結晶核剤と有機系の結晶核剤を併用してもよく、複数種を組み合わせて使用することもできる。前記結晶核剤の含有量は、組成物中、0.1質量%~20質量%の範囲であることが好ましい。
 熱安定剤および酸化防止剤としては、例えば、ヒンダードフェノール類、リン化合物、ヒンダードアミン、イオウ化合物、銅化合物、アルカリ金属のハロゲン化物、ビタミンE等を挙げることができる。これらは、前記ポリ乳酸樹脂に対して、0.5質量%以下の範囲で用いることが好ましい。
 充填材としては、例えば、ガラスビーズ、ガラスフレーク、タルク粉、クレー粉、マイカ、ワラストナイト粉、シリカ粉等を挙げることができる。
 耐衝撃性改良材としては、柔軟成分を使用することができる。前記柔軟成分としては、例えば、ポリエステルセグメント、ポリエーテルセグメント、ポリヒドロキシカルボン酸セグメント等のポリマーブロック(共重合体)、ポリ乳酸セグメント、芳香族ポリエステルセグメントおよびポリアルキレンエーテルセグメントが互いに結合されてなるブロック共重合物、ポリ乳酸セグメントとポリカプロラクトンセグメントからなるブロック共重合物、不飽和カルボン酸アルキルエステル単位を主成分とする重合体、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリカプロラクトン、ポリエチレンアジペート、ポリプロピレンアジペート、ポリブチレンアジペート、ポリヘキセンアジペート、ポリブチレンサクシネートアジペート等の脂肪族ポリエステル、ポリエチレングリコールおよびそのエステル、ポリグリセリン酢酸エステル、エポキシ化大豆油、エポキシ化亜麻仁油、エポキシ化亜麻仁油脂肪酸ブチル、アジピン酸系脂肪族ポリエステル、アセチルクエン酸トリブチル、アセチルリシノール酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、アジピン酸ジアルキルエステル、アルキルフタリルアルキルグリコレート等の可塑剤等を挙げることができる。
 本発明のポリ乳酸樹脂組成物は、さらに、必要に応じて他の熱可塑性樹脂、例えば、ポリプロピレン、ポリスチレン、ABS、ナイロン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、これらのアロイ等を含んでもよい。結晶性を有する熱可性樹脂、例えば、ポリプロピレン、ナイロン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、これらの前記ポリ乳酸樹脂とのアロイ等を使用することが好ましい。
 また、本発明のポリ乳酸樹脂組成物は、さらに、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、シリコーン樹脂、シアネート樹脂、イソシアネート樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化型ポリイミド、熱硬化型ポリアミド、スチリルピリジン樹脂、ニトリル末端型樹脂、付加硬化型キノキサリン、付加硬化型ポリキノキサリン樹脂等の熱硬化性樹脂や、リグニン、ヘミセルロース、セルロース等の植物原料を使用した熱硬化性樹脂を含んでもよい。前記熱硬化性樹脂を使用する場合、硬化反応に必要な硬化剤や硬化促進剤を使用することが好ましい。
 本発明のポリ乳酸樹脂組成物には、ヒンダードフェノールやホスファイト化合物などの酸化防止剤、炭化水素系ワックス類やアニオン型界面活性剤等の滑剤を含有させてもよい。酸化防止剤、滑剤のそれぞれの含有量は、ポリ乳酸樹脂100質量部に対し0.05~3質量部が好ましく、0.1~2質量部がさらに好ましい。
 本発明のポリ乳酸樹脂組成物は、上記の他に、必要に応じて、各種の帯電防止剤、防曇剤、光安定剤、紫外線吸収剤、顔料、着色剤、防カビ剤、抗菌剤、発泡剤、熱安定剤、耐候剤、離型剤、充填材を、本発明の目的に係る所望の効果を阻害しない範囲において、含んでもよい。
 本発明によれば、前記ポリ乳酸樹脂組成物を用いて成形された成形体を得ることができる。前記成形体の成形方法としては、例えば、射出成形、射出・圧縮成形、押出成形、金型成形を使用することができる。製造工程中、または、成形後、結晶化を促進することが、耐衝撃性、機械的強度に優れた成形体が得られることから好ましい。結晶化を促進する方法としては、前記結晶核剤を前記範囲で使用する方法を挙げることができる。
 このような成形体は、高度な難燃性および耐熱性を有するとともに、ブリードによる変質が抑制され、各種、電気、電子、自動車等の部品に好適である。
 つぎに、本発明の実施例について比較例と併せて説明する。なお、本発明は、下記の実施例および比較例により限定および制限されない。本発明の実施例および比較例に使用した各原料の詳細は、下記のとおりである。
1.ポリ乳酸樹脂(A)
 ユニチカ(株)製の商品名テラマックTE-4000N(融点170℃)
2.金属水酸化物(B)
 金属水酸化物(B)としては、下記を用いた。
 金属水酸化物1:昭和電工(株)製 商品名HP-350(水酸化アルミニウム、平均粒子径:3.2μm、組成:Al(OH)(99.95%)、SiO(0.01%)、Fe(0.01%)、NaO(0.03%、アルカリ金属系物質))
3.難燃剤(C)
 難燃剤(C)としては、下記を用いた。
 リン系化合物1:大塚化学(株)製 商品名sps-100
4.補強繊維(D)
 補強繊維(D)としては、下記を用いた。
 ガラス繊維1:オーウェンスコーニングジャパン社製 商品名03JAFT689S
 ガラス繊維2:オーウェンスコーニングジャパン社製 商品名03JAFT762
 ガラス繊維3:オーウェンスコーニングジャパン社製 商品名03JATPB0160
 ガラス繊維4:オーウェンスコーニングジャパン社製 商品名03JAFT592
 前記ガラス繊維1は、付着水分量が0.10%であり、官能基がエポキシ基を有する樹脂を主剤とする表面処理剤で処理がされたものである。前記ガラス繊維2は、付着水分量が0.07%であり、ポリオレフィン樹脂を主剤とする表面処理剤で処理がされたものである。前記ガラス繊維3は、付着水分量が0.13%であり、官能基がエポキシ基を有する樹脂を主剤とする表面処理剤で処理がされたものである。前記ガラス繊維4は、付着水分量が0.15%であり、官能基がエポキシ基を有する樹脂を主剤とする表面処理剤で処理がされたものである。
5.耐加水分解抑制剤
 耐加水分解抑制剤としては、下記を用いた。
 耐加水分解抑制剤1:Rhein Chemie社製の芳香族ポリカルボジイミド、ポリジイソプロピルフェニルカルボジイミド(商品名スタバクゾールP)
6.含フッ素樹脂
 含フッ素樹脂としては、下記を用いた。
 含フッ素樹脂1:ダイキン工業(株)製のポリテトラフルオロエチレン(商品名ポリフロンFA-500)
7.結晶核剤
 結晶核剤としては、下記を用いた。
 結晶核剤1:伊藤製油(株)製 商品名ITOWAX J-530(N,N’-エチレン-ビス-12-ヒドロキシステアリルアミド)
8.可塑剤
 可塑剤としては、下記を用いた。
 可塑剤1:大八化学(株)製 商品名DAIFATTY-101(ベンジル-2-(2-メトキシエトキシ)エチルアジペート)
[実施例1、2および比較例1、2]
 表2に示す質量割合でドライブレンドして得た混合物を、シリンダー温度が190℃に設定された連続混練押出機(ベルストルフ社製、商品名ZE40A×40D、L/D=40、スクリュー径φ40)のホッパー口から供給した。スクリューを150rpmで回転させ、溶融剪断下において混合撹拌した後、押出機のダイス口からストランド状に押出し、それを水中で冷却した後、ペレット状に切断し、ポリ乳酸樹脂組成物のペレットを得た。
 得られたペレットを100℃で5時間乾燥した後、射出成形機(東芝機械社製、商品名EC20P-0.4A、成形温度:190℃、金型表面温度:80℃、型内保持時間30秒)を用いて試験片(125×13×1.6mmまたは3.2mm)を成形し、結晶化(100℃で4時間加熱)させ、下記の方法により難燃性評価、耐ブリード性評価、流動性評価、曲げ特性評価、アイゾット衝撃強度測定を行った。なお耐ブリード性の評価は、成形条件を決定した後、MEKで金型表面を清浄化したのち、1ショット目と12ショット目の試験片を使用した。
(難燃性評価)
 難燃性評価は、射出成形により得た難燃性評価用の試験片(125mm×13mm×1.6mm)を温度23℃、湿度50%の恒温室中に48時間放置した後、アンダーライターズ・ラボラトリーズが定めているUL94試験(機器の部品用プラスチック材料の燃焼性試験)に準拠して行った。UL94Vとは、鉛直に保持した所定の大きさの試験片にバーナーの炎を10秒間接炎した後の残炎時間およびドリップ性等から難燃性を評価する方法であり、下記表1に示すクラスに分けられる。
Figure JPOXMLDOC01-appb-T000003
 なお、上記分類以外の燃焼形態をとる場合は、notV-2と分類した。評価結果を、難燃性が良好な方から並べると、V-0、V-1、(V-2またはnotV-2)となる。
 上記残炎時間とは、着火源を遠ざけた後の、試験片が有炎燃焼を続ける時間の長さであり、t1は、1回目の接炎後の前記残炎時間、t2は、2回目の接炎後の前記残炎時間、t3は、2回目の接炎後のアフターグロー(無炎燃焼)時間である。2回目の接炎は、1回目の接炎後、炎が消えた後、直ちに試験片にバーナーの炎を10秒間接炎することで行なう。また、上記ドリップによる綿の着火とは、試験片の下端から約300mm下にある標識用の綿が、試験片からの滴下(ドリップ)物によって着火されるかどうかによって決定される。
(耐ブリード性の評価)
 射出成形にて得られた厚みが1.6mmの各成形体を恒温恒湿機にて、高温高湿(60℃、95%RH)にて長時間(60時間)保持した後、取り出し、サンプル表面の顕微鏡観察を行い、表面の滲み出し(ブリード)について、以下の基準で評価した。結果を表2に示す。
 A:表面の滲み出しが全くない。
 B:表面への滲み出しがわずかである。
 C:表面への滲み出しが著しい。
(流動性の評価)
 得られたペレットを100℃で5時間乾燥した後、射出成形機(東芝機械製、EC20P-0.4A、成形温度:190℃、金型表面温度:80℃、型内保持時間30秒)を用いて、射出圧力118MPa、厚み1mmの条件でスパイラルフローを測定して評価した。
Figure JPOXMLDOC01-appb-T000004
 
 前記表2に示すとおり、実施例1および2の結果から、本発明のポリ乳酸樹脂組成物は、優れた難燃性と耐ブリード性を兼ね備えていることがわかった。一方、ポリ乳酸樹脂100質量部に対し、付着水分量が0.13%であるガラス繊維3を12質量部添加した比較例1では、難燃性は良好なものの、耐ブリード性が若干劣っていた。また、ポリ乳酸樹脂100質量部に対し、付着水分量が0.15%であるガラス繊維4を12質量部添加した比較例2では、難燃性は良好なものの、耐ブリード性が劣っていた。補強繊維の付着水分量が0.1%以下であると、難燃性と耐ブリード性とを両立できることがわかる。さらに、実施例1および2は比較例1および2に比べ、流動性にも優れることがわかった。実施例1および2で添加したガラス繊維は、表面が疎水性であるために極性が低く、ポリ乳酸樹脂との極性の差が比較的大きくなるために流動性が良好になったものと考えられる。
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は、上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
 この出願は、2010年10月14日に出願された日本出願特願2010-231185を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上のように、本発明のポリ乳酸樹脂組成物は、高度な難燃性と耐熱性とを有し、さらに優れた耐ブリード性を有するものである。本発明のポリ乳酸樹脂組成物の用途は、特に限定されず、例えば、家電製品、OA機器のハウジング、自動車部品等に広く適用可能である。
 

Claims (8)

  1. ポリ乳酸樹脂、金属水酸化物、難燃剤、および、付着水分量が0.1%以下の補強繊維を含むことを特徴とするポリ乳酸樹脂組成物。
  2. 前記金属水酸化物が、水酸化アルミニウムであることを特徴とする請求項1記載のポリ乳酸樹脂組成物。
  3. 前記難燃剤が、リン系化合物であることを特徴とする請求項1または2記載のポリ乳酸樹脂組成物。
  4. 前記リン系化合物が、ホスファゼン誘導体であることを特徴とする請求項3記載のポリ乳酸樹脂組成物。
  5. 前記補強繊維が、ガラス繊維であることを特徴とする請求項1から4のいずれか一項に記載のポリ乳酸樹脂組成物。
  6. 前記補強繊維が、表面処理剤による処理がされており、前記表面処理剤の主剤が、ポリオレフィン樹脂および官能基がエポキシ基を有する樹脂から選択される少なくとも一種の樹脂を含むことを特徴とする請求項1から5のいずれか一項に記載のポリ乳酸樹脂組成物。
  7. 請求項1から6のいずれか一項に記載のポリ乳酸樹脂組成物で成形されたことを特徴とするポリ乳酸樹脂成形体。
  8. 請求項1から6のいずれか一項に記載のポリ乳酸樹脂組成物、または、請求項7記載のポリ乳酸樹脂成形体を含むことを特徴とする電子機器部品。
PCT/JP2011/066216 2010-10-14 2011-07-15 ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体 WO2012049896A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012538593A JPWO2012049896A1 (ja) 2010-10-14 2011-07-15 ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010231185 2010-10-14
JP2010-231185 2010-10-14

Publications (1)

Publication Number Publication Date
WO2012049896A1 true WO2012049896A1 (ja) 2012-04-19

Family

ID=45938132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066216 WO2012049896A1 (ja) 2010-10-14 2011-07-15 ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体

Country Status (2)

Country Link
JP (1) JPWO2012049896A1 (ja)
WO (1) WO2012049896A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060908A (ja) * 2014-09-12 2016-04-25 ハンファ トータル ペトロケミカルズ カンパニー リミテッド 難燃性ポリ乳酸樹脂組成物
US10961388B2 (en) 2015-12-04 2021-03-30 Nec Corporation Polylactic acid resin composition and polyester resin composition, and method for producing the same and molded body thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089643A (ja) * 2004-09-24 2006-04-06 Mitsubishi Plastics Ind Ltd 樹脂組成物およびその成形体
JP2006117839A (ja) * 2004-10-22 2006-05-11 Idemitsu Kosan Co Ltd ガラス繊維処理用変性ポリオレフィン系樹脂、表面処理ガラス繊維及び繊維強化ポリオレフィン系樹脂
JP2006176652A (ja) * 2004-12-22 2006-07-06 Unitika Ltd ポリ乳酸系樹脂組成物およびそれを成形してなる成形体
JP2006182798A (ja) * 2004-12-24 2006-07-13 Mitsubishi Plastics Ind Ltd 樹脂組成物
JP2006241340A (ja) * 2005-03-04 2006-09-14 Sumitomo Chemical Co Ltd 樹脂組成物およびその成形体
JP2007186584A (ja) * 2006-01-13 2007-07-26 Mitsubishi Engineering Plastics Corp レーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
JP2009173735A (ja) * 2008-01-23 2009-08-06 Nippon Zeon Co Ltd 熱可塑性樹脂組成物の製造方法、熱可塑性樹脂組成物および成形品
WO2010004799A1 (ja) * 2008-07-10 2010-01-14 日本電気株式会社 ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089643A (ja) * 2004-09-24 2006-04-06 Mitsubishi Plastics Ind Ltd 樹脂組成物およびその成形体
JP2006117839A (ja) * 2004-10-22 2006-05-11 Idemitsu Kosan Co Ltd ガラス繊維処理用変性ポリオレフィン系樹脂、表面処理ガラス繊維及び繊維強化ポリオレフィン系樹脂
JP2006176652A (ja) * 2004-12-22 2006-07-06 Unitika Ltd ポリ乳酸系樹脂組成物およびそれを成形してなる成形体
JP2006182798A (ja) * 2004-12-24 2006-07-13 Mitsubishi Plastics Ind Ltd 樹脂組成物
JP2006241340A (ja) * 2005-03-04 2006-09-14 Sumitomo Chemical Co Ltd 樹脂組成物およびその成形体
JP2007186584A (ja) * 2006-01-13 2007-07-26 Mitsubishi Engineering Plastics Corp レーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
JP2009173735A (ja) * 2008-01-23 2009-08-06 Nippon Zeon Co Ltd 熱可塑性樹脂組成物の製造方法、熱可塑性樹脂組成物および成形品
WO2010004799A1 (ja) * 2008-07-10 2010-01-14 日本電気株式会社 ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060908A (ja) * 2014-09-12 2016-04-25 ハンファ トータル ペトロケミカルズ カンパニー リミテッド 難燃性ポリ乳酸樹脂組成物
US10961388B2 (en) 2015-12-04 2021-03-30 Nec Corporation Polylactic acid resin composition and polyester resin composition, and method for producing the same and molded body thereof

Also Published As

Publication number Publication date
JPWO2012049896A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
KR101260590B1 (ko) 폴리락트산 수지 조성물 및 폴리락트산 수지 성형체
US8779042B2 (en) Flame-retardant polylactic acid based resin composition, molded article thereof and method for producing molded article
US20100292381A1 (en) Thermoplastic resin composition and molded body obtained by molding the same
JP6143124B2 (ja) ポリシロキサン変性ポリ乳酸樹脂組成物およびその製造方法
JP5479747B2 (ja) ポリ乳酸樹脂組成物
KR20110008181A (ko) 폴리락트산 수지 조성물의 제조법
JP5796577B2 (ja) ポリ乳酸樹脂組成物およびその成形体
JP2021121683A (ja) ポリエステル系樹脂組成物および成形体、並びにポリエステル系樹脂組成物の製造方法
WO2017094900A1 (ja) ポリ乳酸系樹脂組成物、その製造方法および成形体
KR20100131482A (ko) 폴리락트산 수지 조성물
JP5435977B2 (ja) ポリ乳酸樹脂組成物
JP5479748B2 (ja) ポリ乳酸樹脂組成物
WO2012049896A1 (ja) ポリ乳酸樹脂組成物およびポリ乳酸樹脂成形体
JP2015063645A (ja) ポリ乳酸系樹脂組成物及びこれを用いた成形体
JP5261006B2 (ja) ポリ乳酸樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012538593

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832338

Country of ref document: EP

Kind code of ref document: A1