WO2012048599A1 - 渐开弧面齿廓的斜齿轮及其啮合副 - Google Patents

渐开弧面齿廓的斜齿轮及其啮合副 Download PDF

Info

Publication number
WO2012048599A1
WO2012048599A1 PCT/CN2011/077599 CN2011077599W WO2012048599A1 WO 2012048599 A1 WO2012048599 A1 WO 2012048599A1 CN 2011077599 W CN2011077599 W CN 2011077599W WO 2012048599 A1 WO2012048599 A1 WO 2012048599A1
Authority
WO
WIPO (PCT)
Prior art keywords
sin
cos
gear
tooth
involute
Prior art date
Application number
PCT/CN2011/077599
Other languages
English (en)
French (fr)
Inventor
陈兵奎
李海翔
梁栋
吕义云
李朝阳
Original Assignee
重庆大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆大学 filed Critical 重庆大学
Publication of WO2012048599A1 publication Critical patent/WO2012048599A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • F16H55/0806Involute profile
    • F16H55/0813Intersecting-shaft arrangement of the toothed members

Definitions

  • the invention relates to a transmission gear and an engaging pair thereof, in particular to a helical gear and an engaging pair thereof. bump
  • the gear is a toothed mechanical part that can mesh with each other and is a transmission basic part.
  • the gear is based on a special tooth profile to ensure its transmission accuracy and transmit power; in various gear meshing pairs, the involute gear transmission has many advantages due to its separability of center distance and ease of manufacture and measurement. , got a wider application.
  • the involute gear also has the disadvantage that the farther the meshing point is from the node, the greater the relative sliding speed between the two meshing tooth surfaces, and the sliding has an adverse effect on the wear of the tooth surface, the transmission stability, the transmission efficiency and the gear life;
  • the involute external meshing gear transmission is the meshing transmission of the convex tooth to the convex tooth.
  • the bearing capacity of the meshing mode is relatively poor.
  • higher requirements are imposed on high-speed, heavy-duty, high-power gear transmissions.
  • arc gears have emerged and developed rapidly; Contact form transmission, with high contact strength, and the arc gear has good running performance, and its equivalent curvature radius is much larger than the equivalent curvature radius of the involute gear, so the contact strength is compared with the involute gear It is greatly improved, but the arc gear has some shortcomings such as sensitivity to the center distance and low bending strength of the tooth root, which hinders the improvement of the bearing capacity and the transmission precision, and it is difficult to meet the special requirements for the arc gear transmission.
  • an object of the present invention is to provide a helical gear with an involute arc profile and an engaging pair thereof, which have the advantages of an involute gear and a circular arc gear, and can satisfy a high speed, heavy load and high power transmission. It is required that the gear center distance has a certain separability, and the contact strength is high, the running and the performance are good, and the transmission performance of the gear is improved.
  • the tooth profile curved surface of the helical gear is formed by a spiral motion of a circular arc line along a tooth surface contact line on the involute spiral surface.
  • tooth profile surface equation of the helical gear is:
  • tooth surface equation of the end face profile is a circular arc:
  • the base circle radius, the tooth profile arc radius, ⁇ is the spiral parameter, the base circle helix angle, /3 ' is the center circle corresponding to the starting point of the base circle spiral line; and ?7 is the tooth surface equation respectively
  • the parameters of the x and y axes form the plane coordinates of the helical gear end face, and the z axis coincides with the axis of the helical gear.
  • tooth profile surface of the helical gear is tangent to the base of the helical gear at the normal of the contact point.
  • the invention also discloses an engaging pair composed of a helical gear with an involute curved tooth profile, comprising a convex gear with a convex curved surface and a concave gear concave with a curved surface of the tooth profile.
  • the radius of the convex surface of the convex gear is not limited to a helical gear with an involute curved tooth profile.
  • the meshing line of the tooth profile curved surface of the convex gear and the tooth profile curved surface of the concave gear is a spatial straight line.
  • the beneficial effects of the present invention are: the helical gear of the involute arc profile of the present invention and the meshing pair thereof, and the tooth profile curved surface of the helical gear is formed by a spiral motion of the arc line along the tooth surface contact line on the involute spiral surface, Therefore, the center distance of the involute gear has the advantages of separability, convenient manufacture and measurement, large contact strength of the circular arc gear, good running performance, reduced contact stress of the tooth surface, greatly improved bearing capacity of the tooth surface, and processing.
  • FIG. 1 is a schematic view showing the formation of a helical gear tooth profile surface according to the present invention
  • FIG. 2 is a perspective structural view of a helical gear of the present invention
  • Figure 3 is a schematic view showing the structure of the engaging pair of the present invention.
  • FIG. 1 is a schematic view showing the formation of a helical gear tooth profile surface according to the present invention
  • FIG. 2 is a perspective structural view of the helical gear according to the present invention, as shown in the figure: the helical gear of the involute arc profile of the present embodiment, the tooth profile surface of the helical gear
  • the circular arc line is formed by spiral motion along the tooth surface contact line on the involute spiral surface; as shown in the figure, the circular arc curve 5 (the dotted line in the figure) is spirally moved along the tooth surface contact line 3 to form a tooth.
  • a curved surface 4 (a curved surface surrounded by a broken line); that is, the involute 1 is spirally moved to form an involute spiral surface 2, and each contact point on the tooth surface of the helical gear formed by the involute spiral surface 2 is connected together,
  • the tooth surface contact line 3 is formed.
  • the contact line is on the involute spiral surface and is a space curve.
  • the arc curve 5 is moved by the tooth surface contact line end point 6 along the tooth surface contact line 3 to form a tooth profile surface. 4;
  • Helical gear tooth profile surface can be convex or concave, but the meshing pair can only be two tooth profile curved spur gears or one tooth profile curved spur gears one tooth profile curved concave gear Engaged.
  • the tooth profile surface equation of the helical gear is:
  • the tooth surface equation of the normal tooth profile is a circular arc:
  • the X and y axes form the plane coordinate of the helical gear end face, and the Z axis coincides with the helical gear axis.
  • the tooth profile curved surface of the helical gear is tangent to the base circle of the helical gear at the contact point, that is, the contact point of the tooth profile arc moves along the involute line while spiraling around the base cylinder;
  • the arc profile is at the normal of the contact point, tangent to the involute base circle, and the center of curvature of the arc is at the normal of the contact point.
  • the number of teeth of the helical gear of the involute arc profile of the present invention may be any natural number greater than or equal to one.
  • 3 is a schematic view showing the structure of the engaging sub-structure of the present invention. As shown in the figure, the meshing pair and the gears of the helical gear of the involute arc profile of the present embodiment are all the helical gears of the above embodiment, and the involute arc is shown in the figure.
  • a is the convex tooth profile, its radius of curvature is A
  • b is the concave tooth profile, its radius of curvature is 3 ⁇ 4
  • C is the two gear base circle common normal, that is, the involute arc gear Projection of the meshing line of the engaging pair on the end face.
  • is the meshing point of the two gears at any time.
  • the center of curvature of the convex tooth profile and the center of curvature of the concave tooth profile are on the common normal line of the ⁇ point, that is, the meshing line.
  • the meshing point moves a distance along the meshing line, and the tooth profile of the two gears moves axially by a distance to engage the next meshing point; the convex gear and the tooth including the convex surface of the tooth profile
  • the concave concave gear of the concave curved surface, the radius of the curved surface of the concave gear is larger than the radius of the convex curved surface of the convex gear; according to the meshing condition, the concave facing convex surface forms partial containment, so that it has high meshing and transmission strength .
  • the meshing line of the tooth profile curved surface of the convex gear and the tooth profile curved surface of the concave gear is a spatial straight line, and the projection and the involute gear meshing line corresponding to the involute curved gear are coincident on the end face.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)
  • Gear Transmission (AREA)

Description

渐开弧面齿廓的斜齿轮及其啮合副
¾术领 ¾
本发明涉及一种传动齿轮及其啮合副, 特别涉及一种斜齿轮及其啮合副。 碰
齿轮是能互相啮合的有齿的机械零件, 是一种传动基础件。 在机械传动中, 齿轮是靠专门的齿廓来保证其传动精度并传递动力;在各种齿轮啮合副中,渐开 线齿轮传动由于其中心距的可分性以及制造、测量方便等诸多优点, 得到了较为 广泛的应用。但渐开线齿轮也存在啮合点离节点越远则两啮合齿面间相对滑动的 速度也越大等缺点, 滑动对于齿面的磨损、传动平稳性、 传动效率以及齿轮寿命 都有不利影响; 同时,渐开线外啮合齿轮传动是凸齿对凸齿的啮合传动, 从接触 强度来看, 这种啮合方式的承载能力比较差。 随着生产和科技的发展, 对高速、 重载、大功率的齿轮传动装置提出了更高的要求, 由此, 出现了圆弧齿轮并得到 了较快的发展; 圆弧齿轮啮合时以点接触形式传动, 具有很高的接触强度, 且圆 弧齿轮具有很好的跑合性, 其当量曲率半径比渐开线齿轮的当量曲率半径大的 多, 因此接触强度与渐开线齿轮相比大大提高, 但圆弧齿轮存在着如对中心距敏 感、齿根弯曲强度低等一些缺点, 阻碍了承载能力和传动精度的提高, 难以满足 对圆弧齿轮传动的特殊要求。
因此当前需要一种齿轮及其啮合副, 兼具渐开线齿轮和圆弧齿轮的优点, 能够满足高速、重载和大功率的传动要求, 齿轮中心距具有一定的可分性, 且接 触强度大、 跑和性好, 提高齿轮的传动性能。 发明内容
有鉴于此,本发明的目的是提供一种渐开弧面齿廓的斜齿轮及其啮合副, 兼 具渐开线齿轮和圆弧齿轮的优点, 能够满足高速、重载和大功率的传动要求, 齿 轮中心距具有一定的可分性, 且接触强度大、 跑和性好, 提高齿轮的传动性能。
本发明的渐开弧面齿廓的斜齿轮,斜齿轮的齿廓曲面由圆弧线沿渐开螺旋面 上的齿面接触线做螺旋运动形成。
进一步, 斜齿轮的齿廓曲面方程为:
法面齿廓为圆弧的齿面方程为: = { sin 77 cos γ + [p cos η + rb tan(arctan φ) - p] sin γ cos β - rb sin γ) cos φ +{p sin 77 sin y— [ p cos η + rb tan(arctan φ) - p] cos γ cos b - rb cos γ) sin φ < y = {p sm η cos γ + [p cos 77 + ¾ tan(arctan φ) - p] sin γ cos βύ - rb sin 7} sin φ -{p sin 77 sin 7 - [ cos η + ^ tan(arctan φ) - p] cos/ cos Pb -rb cos /} cos(p ζ - ρφ - [p cos η + rb tan(arctan φ) - p] sin fib
或者, 端面齿廓为圆弧的齿面方程为:
X = [ sin 77 cos γ + p COS77 sin γ + rb tan(arctan φ) sin / - sin γ - rb sin 7] cos 9) +[ p sin 77 sin 7 - cos η cos γ _rb tan(arctan φ、 cos 7 + p cos γ _ rb cos 7] sin φ ' y = [ sin 77 cos 7 + p COS77 sin γ + rb tan(arctan φ) sin / - p sin γ - rb sin 7] sin φ
-[p sin 77 sin 7 - cos η cos γ -rb tan(arctan φ) cos 7 + p cos γ _ rb cos 7] cos φ ζ = ρφ
其中
Figure imgf000004_0001
为基圆半径、 为齿廓圆弧半径、 ρ为螺旋参数, 为基圆螺旋角、 /3 ' 为基圆螺旋线在端面上起始点对应的圆心角; 与 ?7分别为为齿面方程的参数; x、 y轴形成斜齿轮端面平面坐标, z轴与斜齿轮轴线重合。
进一步, 斜齿轮的齿廓曲面在接触点的法线与斜齿轮基圆相切。
本发明还公开了一种渐开弧面齿廓的斜齿轮组成的啮合副,包括齿廓曲面外 凸的凸齿轮和齿廓曲面内凹的凹齿轮,凹齿轮的齿廓曲面圆弧半径大于凸齿轮的 齿廓曲面圆弧半径。
进一步, 凸齿轮的齿廓曲面与凹齿轮的齿廓曲面的啮合线为一条空间直线。 本发明的有益效果是:本发明的渐开弧面齿廓的斜齿轮及其啮合副, 斜齿轮 的齿廓曲面由圆弧线沿渐开螺旋面上的齿面接触线做螺旋运动形成,因此具有渐 开线齿轮中心距具有可分性、制造和测量方便以及圆弧齿轮接触强度大、跑和性 好的优点, 降低了齿面接触应力, 使齿面承载能力大为提高, 并且加工方便; 其 圆弧的齿形曲线以及参加啮合的渐开线径向长度很短,避免了标准齿轮的根切现 象, 使该齿轮的最小齿数能够达到 1, 与现有技术的齿轮相比, 大大减小了重量 和尺寸; 啮合副采用凸齿轮和凹齿轮的啮合方式, 承载能力较高。 画删 下面结合附图和实施例对本发明作进一步描述。
图 1为本发明的斜齿轮齿廓曲面形成示意图;
图 2为本发明斜齿轮立体结构图;
图 3为本发明啮合副结构示意图。
具体实施方式
图 1为本发明的斜齿轮齿廓曲面形成示意图, 图 2为本发明斜齿轮立体结 构图, 如图所示: 本实施例的渐开弧面齿廓的斜齿轮, 斜齿轮的齿廓曲面由圆弧 线沿渐开螺旋面上的齿面接触线做螺旋运动形成;如图所示,所述圆弧曲线 5 (图 中圆弧虚线)沿齿面接触线 3做螺旋运动,形成齿廓曲面 4(虚线所围成的曲面); 即渐开线 1做螺旋运动, 形成渐开螺旋面 2, 由渐开螺旋面 2形成的斜齿轮齿面 上的每个接触点连接在一起, 就形成了齿面接触线 3, 这条接触线就在渐开螺旋 面上, 为一条空间曲线, 圆弧曲线 5由齿面接触线端点 6沿齿面接触线 3运动, 形成了齿廓曲面 4; 斜齿轮齿廓曲面可以是外凸也可以是内凹, 但是组成啮合副 只能是两个齿廓曲面外凸斜齿轮或者一个齿廓曲面外凸斜齿轮一个齿廓曲面内 凹斜齿轮相啮合。
本实施例中, 斜齿轮的齿廓曲面方程为:
法面齿廓为圆弧的齿面方程为:
= { sin77 cos γ+[ρ cos n + rb tan(arctan φ) - p] sin γ cos b - rb sin γ) cos φ + { sin77sin7-[ cos η + rb tan(arctan φ) - p] cos γ cos b - rb cos γ\ sin φ ' γ-{ρύΏ.η cos γ+[ρ cos η + rb tan(arctan φ) - p] sin γ cos b - rb sin γ) sin φ -{p sin η sin γ - [ cos η + ^ tan(arctan φ)- p] cosy cos b -rb οο γ}οο φ z - ρφ- [ cos η + rb tan(arctan φ) - p] sin b
当然, 也可以使端面齿廓为圆弧, 则其齿面方程为:
X = [ sin77 cos / + cos77 sin γ + rb tan(arctan φ) sin χ - sin γ -rb sin/] cos φ +[ p sin 77 sin 7 - cos η cos γ -rb tan(arctan φ) cos 7 + p cos γ -rb cos 7] sin φ < y = [ sin 77 cos γ + p COS77 sin γ + rb tan(arctan φ) sin χ - sin γ -rb sin 7] sin φ -[p sin 77 sin — p cos η cos γ—rb tan(arctan φ) cos γ + p cos γ -rb cos 7] cos φ 其中
Figure imgf000005_0001
^为基圆半径、 y9为齿廓圆弧半径、 p为螺旋参数, 为基圆螺旋角、 β ' 为基圆螺旋线在端面上起始点对应的圆心角; 与 ?7分别为为齿面方程的参数;
X、 y轴形成斜齿轮端面平面坐标, Z轴与斜齿轮轴线重合。
本实施例中, 斜齿轮的齿廓曲面在接触点的法线与斜齿轮基圆相切, 即齿 廓圆弧的接触点在沿渐开线移动的同时,绕基圆柱做螺旋运动; 在任意一个法截 面上, 圆弧齿廓曲线在接触点的法线, 与渐开线基圆相切, 圆弧的曲率中心在接 触点的法线上。
本发明的渐开弧面齿廓的斜齿轮的齿数可以为大于等于 1的任意自然数。 图 3为本发明啮合副结构示意图,如图所示, 本实施例的渐开弧面齿廓的斜 齿轮组成的啮合副,齿轮均为上述实施例的斜齿轮, 图中为渐开弧面齿轮在任意 时刻啮合的截面示意图, a为凸齿齿廓, 其曲率半径为 A, b为凹齿齿廓, 其曲 率半径为 ¾, C为两齿轮基圆公法线, 即渐开弧面齿轮啮合副的啮合线在端面上 的投影。 κ为任意时刻两齿轮的啮合点, 凸齿齿廓的曲率中心与凹齿齿廓的曲率 中心在过 κ点的公法线上, 即啮合线上。 随着齿轮的转动, 在下一个瞬时, 啮 合点沿着啮合线移动一个距离,两齿轮的齿廓沿轴向移动一个距离, 进入下一个 啮合点啮合;包括齿廓曲面外凸的凸齿轮和齿廓曲面内凹的凹齿轮, 凹齿轮的齿 廓曲面圆弧半径大于凸齿轮的齿廓曲面圆弧半径;根据啮合情况, 凹面对凸面形 成局部包容, 使其具有较高的啮合和传动强度。
本实施例中,凸齿轮的齿廓曲面与凹齿轮的齿廓曲面的啮合线为一条空间直 线, 在端面上其投影和渐开弧面齿轮对应的渐开线齿轮啮合线重合。
最后说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管参 照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解, 可以 对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和 范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

木又利要求书
1. 一种渐开弧面齿廓的斜齿轮, 其特征在于: 斜齿轮的齿廓曲面由圆弧线沿 渐开螺旋面上的齿面接触线做螺旋运动形成。
2. 根据权利要求 1所述的渐开弧面齿廓的斜齿轮, 其特征在于: 斜齿轮的齿 廓曲面方程为: 法面齿廓为圆弧的齿面方程为: = { sin77COS7 + [ cos77 + ^ tan(arctan φ) p] sin 7 cos b - rb sin 7} cos φ + { sin 77 sin/ -[pcos77 + rb tan(arctan φ) p]cos / cos βι -rb cos 7} sin 9»
< y - { sin77C0S7 + [pcos77 + rb tan(arctan φ) p] sin 7 cos b - rb sin 7} sin φ -{p sin η si y -[p cos η + rb tan(arctan φ) p] cos γ cos βι -rbcos γ) οο φ ζ-ρφ- [ cos n + rb tan(arctan φ) - p] sin βι 或者, 端面齿廓为圆弧的齿面方程为: x-[p sin 77 cosy + cos 77 sin γ + rb
Figure imgf000007_0001
+ [ρύηη ύηγ - p οο ηοο γ - rb tan(arctan φ)οο γ + pcosy -rbcos 7]sin^»
< y-[p sin 77 cosy + cos 77 sin γ + rb tan(arctan^) sin/ - p ηγ - rb sin γ] sin φ _[ sin ?7 sin y _ cos ?7 cos y _ tan(arctan^) cosy + pcos/ -rfi cos/]cos(p z = ρφ
其中
Figure imgf000007_0002
' φ-φ, 。, (φλ<φ<φ2
φ = β 、
Φι ~Φι
^为基圆半径、; 为齿廓圆弧半径、 ρ为螺旋参数, 为基圆螺旋角、 β' 为基圆螺旋线在端面上起始点对应的圆心角; 与? 7分别为为齿面方程的参 数; x、 y轴形成斜齿轮端面平面坐标, z轴与斜齿轮轴线重合。
3. 根据权利要求 2所述的渐开弧面齿廓的斜齿轮, 其特征在于: 斜齿轮的齿 廓曲面在接触点的法线与斜齿轮基圆相切。
4 一种权利要求 1所述的渐开弧面齿廓的斜齿轮组成的啮合副,其特征在于: 包括齿廓曲面外凸的凸齿轮和齿廓曲面内凹的凹齿轮, 凹齿轮的齿廓曲面圆 弧半径大于凸齿轮的齿廓曲面圆弧半径。 根据权利要求 4所述的啮合副, 其特征在于: 凸齿轮的齿廓曲面与凹齿轮 的齿廓曲面的啮合线为一条空间直线。
PCT/CN2011/077599 2010-10-15 2011-07-26 渐开弧面齿廓的斜齿轮及其啮合副 WO2012048599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105080979A CN101975264B (zh) 2010-10-15 2010-10-15 渐开弧面齿廓的斜齿轮及其啮合副
CN2010105080979 2010-10-15

Publications (1)

Publication Number Publication Date
WO2012048599A1 true WO2012048599A1 (zh) 2012-04-19

Family

ID=43575169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077599 WO2012048599A1 (zh) 2010-10-15 2011-07-26 渐开弧面齿廓的斜齿轮及其啮合副

Country Status (2)

Country Link
CN (1) CN101975264B (zh)
WO (1) WO2012048599A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104595422A (zh) * 2015-02-02 2015-05-06 中国地质大学(武汉) 用于平行轴外啮合传动的螺旋圆弧齿轮机构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975264B (zh) * 2010-10-15 2012-07-11 重庆大学 渐开弧面齿廓的斜齿轮及其啮合副
CN102853054B (zh) * 2012-09-27 2015-03-04 重庆大学 基于曲线共轭的对称弧面共轭曲线齿轮及其啮合副
CN104500695B (zh) * 2014-12-26 2017-07-07 方年学 弧齿轮及弧齿条
CN105179600B (zh) * 2015-08-31 2017-07-28 重庆百花园齿轮传动技术研究所 双大负变位渐开线齿轮传动装置
CN105202152B (zh) * 2015-09-11 2019-04-02 重庆大学 基于共轭曲线的多点接触圆锥齿轮啮合副
CN105605196B (zh) * 2016-03-24 2018-02-02 江苏理工学院 高强度低振动低噪声斜齿轮传动机构
CN106321776B (zh) * 2016-09-26 2019-09-17 重庆大学 具有双点接触齿廓曲线的斜齿轮
CN109268472A (zh) * 2017-07-17 2019-01-25 李保文 一种面接触齿轮传动机构
CN109711098B (zh) * 2019-01-22 2023-04-07 重庆大学 渐开弧面齿廓的直齿锥齿轮的设计方法及齿轮啮合副
CN112377594B (zh) * 2020-11-10 2024-05-10 重庆交通大学 一种分段式点线啮合齿轮副
CN112377595B (zh) * 2020-11-10 2024-05-10 重庆交通大学 一种基于空间共轭曲线的内啮合斜齿轮副

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB315063A (en) * 1928-05-29 1929-07-11 Nikola Trbojevich Improvements in method of generating helical gears
JPH09152011A (ja) * 1995-11-29 1997-06-10 Oval Corp ハスバ歯車
CN2446333Y (zh) * 2000-11-10 2001-09-05 昆明理工大学 渐开线—圆弧齿轮
CN101149104A (zh) * 2007-11-09 2008-03-26 完颜学明 弧螺旋圆柱齿轮及弧齿条
CN101725692A (zh) * 2008-10-10 2010-06-09 江苏飞船股份有限公司 复式齿轮
CN101975264A (zh) * 2010-10-15 2011-02-16 重庆大学 渐开弧面齿廓的斜齿轮及其啮合副

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2768912B2 (ja) * 1995-04-18 1998-06-25 川崎重工業株式会社 はすば/やまば歯車における3次元歯面修整構造
CN1070595C (zh) * 1996-01-02 2001-09-05 株式会社椭圆 斜齿轮
CN101818802B (zh) * 2009-02-27 2012-10-31 完颜学明 弧螺旋圆柱齿轮及弧齿条

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB315063A (en) * 1928-05-29 1929-07-11 Nikola Trbojevich Improvements in method of generating helical gears
JPH09152011A (ja) * 1995-11-29 1997-06-10 Oval Corp ハスバ歯車
CN2446333Y (zh) * 2000-11-10 2001-09-05 昆明理工大学 渐开线—圆弧齿轮
CN101149104A (zh) * 2007-11-09 2008-03-26 完颜学明 弧螺旋圆柱齿轮及弧齿条
CN101725692A (zh) * 2008-10-10 2010-06-09 江苏飞船股份有限公司 复式齿轮
CN101975264A (zh) * 2010-10-15 2011-02-16 重庆大学 渐开弧面齿廓的斜齿轮及其啮合副

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104595422A (zh) * 2015-02-02 2015-05-06 中国地质大学(武汉) 用于平行轴外啮合传动的螺旋圆弧齿轮机构

Also Published As

Publication number Publication date
CN101975264B (zh) 2012-07-11
CN101975264A (zh) 2011-02-16

Similar Documents

Publication Publication Date Title
WO2012048599A1 (zh) 渐开弧面齿廓的斜齿轮及其啮合副
CN108533715B (zh) 一种用于谐波齿轮传动的双向共轭齿形设计方法
CN206522422U (zh) 一种柔轮齿形、刚轮齿形以及谐波减速机
CN110081148B (zh) 一种基于共轭曲线的凸-凸接触的对构齿轮
WO2015154317A1 (zh) 基于共轭曲线的点接触齿轮、啮合副及其加工刀具
CN106321776B (zh) 具有双点接触齿廓曲线的斜齿轮
US10871213B2 (en) Strain wave gearing with compound meshing that involves congruity of tooth surfaces
CN102374273A (zh) 一种双压力角渐开线斜齿外啮合圆柱齿轮的齿形设计
RU2658846C1 (ru) Сдвоенная волновая зубчатая передача
CN108036038A (zh) 一种圆弧抛物线多点接触的人字齿轮
WO2021248762A1 (zh) 一种内啮合斜齿轮传动机构
CN104564673A (zh) 一种蒸汽螺杆压缩机端面齿形
CN101550935A (zh) 双螺杆压缩机螺杆转子齿形
JP5542873B2 (ja) 歯車及び歯車設計方法
WO2023184652A1 (zh) 一种非正交椭圆环面蜗杆齿轮副
CN109711098B (zh) 渐开弧面齿廓的直齿锥齿轮的设计方法及齿轮啮合副
CN112377595B (zh) 一种基于空间共轭曲线的内啮合斜齿轮副
WO2010006550A1 (zh) 阴阳全滚动齿轮
CN216131325U (zh) 一种无滑动、中心距可分的平行轴线齿轮机构
CN204267660U (zh) 双联从动齿轮
CN113280081A (zh) 一种无滑动、中心距可分的平行轴线齿轮机构
TWI354095B (zh)
CN104265858A (zh) 基于不同齿形角球面齿形的圆弧伞齿轮齿面设计方法
CN211117436U (zh) 圆弧齿线圆柱齿轮组
RU2274786C1 (ru) Зубчатая передача

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11831996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11831996

Country of ref document: EP

Kind code of ref document: A1