WO2012046984A2 - Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof - Google Patents

Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof Download PDF

Info

Publication number
WO2012046984A2
WO2012046984A2 PCT/KR2011/007298 KR2011007298W WO2012046984A2 WO 2012046984 A2 WO2012046984 A2 WO 2012046984A2 KR 2011007298 W KR2011007298 W KR 2011007298W WO 2012046984 A2 WO2012046984 A2 WO 2012046984A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
magnesium alloy
alloy
casting method
less
Prior art date
Application number
PCT/KR2011/007298
Other languages
French (fr)
Korean (ko)
Other versions
WO2012046984A3 (en
Inventor
김영민
김하식
유봉선
임창동
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to EP11830869.1A priority Critical patent/EP2492365B1/en
Priority to JP2012541039A priority patent/JP5852580B2/en
Priority to CN201180005584.6A priority patent/CN102712969B/en
Priority to CA2781995A priority patent/CA2781995A1/en
Priority to US13/510,989 priority patent/US20130183193A1/en
Publication of WO2012046984A2 publication Critical patent/WO2012046984A2/en
Publication of WO2012046984A3 publication Critical patent/WO2012046984A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention is a magnesium alloy having excellent ignition resistance, more specifically, to form a stable protective film on the surface of the molten metal can be dissolved and cast in the air or in a general inert atmosphere, it is very excellent in the resistance to ignition to suppress chip spontaneous ignition It is about magnesium alloy that can not only be used but also have excellent strength and ductility at the same time.
  • Magnesium alloy is the lightest alloy with high specific strength, and can be applied to various casting and processing processes, and has a wide range of applications in almost all fields requiring weight reduction such as automobile parts and electromagnetic parts.
  • Magnesium alloys are electrochemically low-potential, highly active metals, which have strong active reactions when in contact with oxygen or water, and sometimes cause fires, and still have limitations in terms of material stability and reliability. For this reason, its application range is still limited compared to its application potential, and it cannot be used especially for the safety field requiring safety.
  • inert atmospheres such as flux or C0 2 + SF 6 must be used for dissolution. Since the flux used for dissolving and refining is chlorine-based, residual chlorine remains inside the material and greatly degrades corrosion resistance when the melt treatment conditions are not met. Instead of using fluxes to solve these shortcomings, it is effective to melt and cast SF 6 , CO 2 and Air in a mixed atmosphere. However, SF 6 is classified as a global greenhouse-induced substance whose global greenhouse effect is 24 times that of C0 2 , and is expected to be regulated in the future.
  • Ca is preferably 3% by weight or more. At least 2% by weight should be added to the magnesium alloy.
  • Ca is added in excess of 2 weight 3 ⁇ 4>, the tensile property of the magnet alloy is generally lowered, especially the decrease in elongation is noticeable, because a large amount of coarse hard process is formed, causing cracking.
  • the increase in the amount of Ca added has the advantage of increasing the ignition resistance, but the drawback is that the tensile properties deteriorate sharply, and therefore, the development of a magnesium alloy that satisfies both the ignition resistance and the tensile properties is required.
  • an object of the present invention is to provide a magnet alloy for solving the above conventional problems.
  • an object of the present invention is to provide a magnesium alloy containing Ca, which has both excellent ignition resistance and excellent tensile properties.
  • an object of the present invention is to provide a magnesium alloy that enables an environmentally friendly manufacturing process using a minimum of Ca and at the same time does not use a protective gas that is an environmental pollutant such as SF 6 .
  • Magnesium alloy according to the present invention for achieving the above object is a magnesium alloy produced by the melt casting method, 1.0 wt% or more and less than 7.0 wt% A1, 0.05 wt% to 2.0 wt% Ca, 0.05 wt% to 2.0 weight 3 ⁇ 4 of Y, more than 0% by weight of up to 6% by weight of Zn, the balance of Mg and other unavoidable impurities, the combined content of Ca and Y is at least 0.1% by weight relative to the total weight of the total magnesium alloy It is characterized in that less than 2.5% by weight.
  • the content of Ca is preferably 0.2% by weight to 1.5% by weight.
  • the content of Y is preferably from 0.1% by weight to 1.5% by weight 3 ⁇ 4.
  • the content of Ca and Y is preferably 0.3% by weight or more and 2.0% by weight or less with respect to the total weight of the total magnet alloy.
  • the magnesium alloy further contains Mn of more than 0% by weight and less than 1% by weight It is desirable to.
  • the magnesium alloy preferably further comprises Zr in more than 0% by weight and less than 1% by weight.
  • the manufacturing method of the magnet alloy according to the present invention :
  • Magnesium alloy prepared by the above method is at least 1.0 wt% and less than 7.0 wt% A1, 0.05 wt% to 2.0 wt% Ca, 0.05 wt 3 ⁇ 4 to 2.0 wt% Y, 0 wt 3 ⁇ 4 more 6 wt 3 ⁇ 4 It is characterized by consisting of the following Zn, the balance Mg and other unavoidable impurities.
  • the step of adding the raw material of Ca and Y to the magnesium alloy molten metal is preferably characterized in that the addition of the raw material of Ca and Y at a temperature higher than 800 ° C.
  • Magnesium alloy prepared by the above method is at least 1.0% by weight and less than 7.0% by weight of A1, 0.05% by weight> to 2.0% by weight of Ca, 0.05% by weight> to 2.0% by weight of Y, 0% by weight and more than 6% by weight It is characterized by consisting of Zn of less than%, the residual Mg and other unavoidable impurities.
  • the master alloy ingot containing Mg, Al, Zn, Ca and Y is soluble at 750 ° C or less, the master alloy ingot is preferably added to the magnesium alloy molten metal at a temperature lower than 750 ° C. Do.
  • the method for producing a magnesium alloy according to the present invention is:
  • Magnesium alloy prepared by the above method is at least 1.0% by weight and less than 7.0% by weight of A1, 0.05% by weight to 2.0% by weight of Ca, 0.05% by weight »to 2.0% by weight of Y, 0% by weight more than 6% by weight It is preferred to consist of up to Zn%, residual Mg and other unavoidable impurities.
  • the step of injecting the Ca and Y raw material, the master alloy ingot containing Mg, Al, Zn, Ca and Y, or the Ca compound and Y compound into the magnesium alloy molten metal periodically is preferable to further include the step of stirring.
  • the casting method is preferably one of a mold casting method, a sand casting method, a gravity casting method, a pressure casting method, a continuous casting method, a thin plate casting method, a die casting method, a precision casting method, a loss model casting method, a spray casting method and a semi-ung casting method.
  • the method preferably further comprises the step of hot working the magnesium alloy cast material formed by the casting method.
  • the reason for limiting the content of each component in the magnesium alloy according to the present invention is as follows.
  • Aluminum is an element that improves the strength and flowability of the magnesium alloy, and improves castability by increasing the solidification range. Generally, the fraction of the Mg 17 Al 12 phase increases as the amount of aluminum is increased. In addition, as described later, according to the experimental results according to the present invention, when added in combination with other alloying elements, it can be seen that as the aluminum content increases, the ignition resistance increases. On the other hand, when the aluminum content is less than 1% by weight, the strength and the ignition resistance are not improved, and when the aluminum content is more than 7% by weight, the tensile properties are reduced due to the coarse Mg 17 Al 12 process. Silver is preferably included in the range of 1% by weight or more and less than 7% by weight.
  • Calcium forms Mg-Al-Ca intermetallic compounds in Mg-Al-based alloys to improve strength and heat resistance, as well as to form thin and dense CaO oxide layers on the surface of the molten metal.
  • the fire resistance of the magnesium alloy is improved.
  • the calcium content is less than 0.05 weight 3 ⁇ 4
  • the effect of improving the ignition resistance is not large.
  • the calcium content is more than 2 weight%, the castability of the molten metal decreases, hot cracking occurs, and the die sticking with the mold is achieved. There is a problem such as a large decrease in elongation. Therefore, in the magnesium alloy according to the present invention, calcium is preferably included in the range of 0.05% by weight to 2.0% by weight, more preferably in the range of 0.2% by weight to 1.5% by weight.
  • Yttrium is originally used as a high temperature creep-improving element due to the precipitation strengthening effect because it has a large solid solution to the magnet.
  • yttrium is added to the magnesium alloy together with calcium, the fraction of coarse grains is reduced, and when 0.5 wt% or more is added, A1 2 Y particles are formed to refine the grains of the cast material, thereby improving tensile properties.
  • a Y 2 O 3 oxide layer on the surface of the molten metal to form a mixed layer with MgO, Ca to increase the ignition resistance.
  • the yttrium in the magnet alloy according to the present invention is preferably included in the range of 0.05% to 2.0% by weight, more preferably in the range of 0.1% to 3.4% by weight.
  • Zinc has the effect of refining grains and increasing strength when added with aluminum.
  • the maximum solubility of zinc in the magnesium alloy is 6.2% by weight, and when zinc is added to the magnesium alloy in excess of this, the coarse process produced during casting not only weakens the mechanical properties of the casting material, but also the homogenization heat treatment ( It is preferable to add zinc in an amount of 6 weight 3 ⁇ 4 or less, since a considerable amount of coarse phase remains after T4), which causes weak mechanical properties, especially elongation.
  • Manganese combines with Fe, an impurity element that is harmful to corrosion, in Mg-Al alloys to improve corrosion resistance, and improves strength by forming Al-Mn intermetallic compounds at high angles of rotation.
  • manganese is added in excess of 1.0% by weight, the coarse ⁇ - ⁇ phase black in the magnet alloy forms AlsMn 5 phase, which deteriorates mechanical properties, and thus, manganese is preferably included at 1.0% by weight or less.
  • Zirconium when added to magnesium alloys that do not contain elements such as Al and Mn, forms solid Zr with a crystal lattice very similar to magnetite crystals upon solidification, resulting in uneven nucleation of the magnet crystals in primary Zr. It is mainly added for grain refinement through, but if it is added less than 0.1% by weight, the effect is not divided. If it is added more than 1.0% by weight, the elongation is reduced due to the formation of coarse primary Zr. It is preferably included in 0.1% by weight to 1.0% by weight or less.
  • the magnesium alloy according to the present invention may include impurities which are inevitably introduced in the raw material or manufacturing process of the alloy, and among the impurities that may be included in the magnesium alloy according to the present invention, particularly iron (Fe), silicon (Si) and nickel (Ni) is a component that serves to deteriorate the corrosion resistance of the magnesium alloy. Therefore, the content of Fe is less than 0.004% by weight, the content of Si is 0.04% by weight, it is preferable to maintain the content of Ni is less than 0.001% by weight.
  • the total content of calcium and yttrium in the magnet alloy according to the present invention is preferably included in the range of 0.1% by weight or more and less than 2.5% by weight, more preferably 0.2% by weight to 2.0% by weight.
  • Magnesium alloy according to the present invention is a dense composite oxide layer acting as a protective film It is very excellent in oxidation resistance and ignition resistance, so that it can be dissolved, cast, and processed in the atmosphere or in general inert atmosphere (Ar, N 2 ), and the spontaneous ignition of chips accumulated in the machining process can be suppressed.
  • the magnesium alloy according to the present invention does not use a gas such as SF 6 is suitable for cost reduction, worker health protection, environmental pollution prevention.
  • the magnesium alloy according to the present invention has an excellent ignition resistance and superior strength and ductility compared to commercial alloys at a melting point of +50 ° C or more, so that it is applicable to structural parts.
  • the magnet alloy according to the present invention can be used in a variety of processing materials or castings, in particular extruded material, plate material, which can be practically applied to the next-generation automobile, high-speed railway, urban railway round, which requires high strength, high ductility and stability characteristics It can be manufactured from forgings, castings and the like.
  • Figure 1 (a) is a photograph of the surface of the alloy casting material according to Comparative Example 1 cast in atmospheric steam according to a preferred embodiment of the present invention.
  • Figure Kb is a photograph of the surface of the alloy casting material according to Example 2 cast in the atmosphere according to a preferred embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a method of measuring the ignition temperature of the magnesium alloy cast according to a preferred embodiment of the present invention.
  • Example 3 is a view showing the results of EPMA analysis of the molten metal oxide layer after maintaining the magnesium alloy according to Example 5 cast in accordance with a preferred embodiment of the present invention at 670 ° C. for 10 minutes.
  • FIG. 4 is a view schematically showing a structure in which a composite oxide layer formed on a solid or liquid surface of Ca and Y complexes blocks external oxygen penetration.
  • Figure 5 (a) is an optical picture showing the microstructure of the alloy according to Comparative Example 3 cast in accordance with a preferred embodiment of the present invention.
  • Figure 5 (b) is an optical photograph showing the microstructure of the alloy according to Example 2 cast in accordance with a preferred embodiment of the present invention.
  • Figure 6 (a) is an optical photograph showing the microstructure of the alloy according to Comparative Example 1 extruded according to a preferred embodiment of the present invention.
  • Figure 6 (b) is an alloy according to Comparative Example 2 extruded according to a preferred embodiment of the present invention It is an optical picture showing the microstructure of the.
  • Figure 6 (c) is an optical photograph showing the microstructure of the alloy according to Comparative Example 3 extruded according to a preferred embodiment of the present invention.
  • Figure 6 (d) is an optical picture showing the microstructure of the alloy according to Example 1 extruded according to the preferred embodiment of the present invention.
  • Figure 7 is a photograph showing a change in the ignition temperature according to the addition amount of Ca and Y in Comparative Examples and Examples prepared according to a preferred embodiment of the present invention.
  • a magnesium alloy and a method of manufacturing the same according to a preferred embodiment of the present invention will be described in detail below.
  • the following examples are merely illustrative and do not limit the invention.
  • the inventors of the present invention have studied the thermodynamically calculated alloy design to solve the above-mentioned problems of the prior art and achieve the object of the present invention, Ca and Y in Mg-Al-based alloys or Mg-Al-Zn-based alloys.
  • the inventors of the present invention produced a magnesium alloy having various compositions based on the above data, the method of producing a magnesium alloy according to a preferred embodiment of the present invention is as follows.
  • the raw material was dissolved and the magnet having the alloy composition described in Examples 1 to 17 and Comparative Examples 1 to 9 of Table 2 by using a gravity casting method.
  • An alloy casting was formed.
  • molten Mg (99.9), Al (99.9%), Zn (99.99%), Ca (99.9%), and Y (99.9%) are simultaneously dissolved to form a molten metal.
  • a magnesium alloy molten metal is first formed using raw materials of Mg, A1, and Zn or an alloy thereof, and then a raw casting material of Ca and Y, or a Ca compound and a Y compound is added to the magnesium alloy molten metal, and then cast. It is also possible to form a magnesium alloy casting material by using.
  • Mg, Al, Zn, Ca, and Y alloys having a higher content of Ca and Y than the final target are prepared, and separately from the raw materials of Mg, A1 and Zn or their alloys.
  • the master alloy ingot may be added to the magnesium alloy molten metal to form a magnet alloy casting material.
  • the mother alloy ingot since the melting point of the master alloy ingot is lower than that of Ca and Y raw materials, the mother alloy ingot can be introduced at a lower temperature than when the Ca and Y raw materials are directly added to the magnesium alloy molten metal. Particularly useful.
  • a magnesium alloy according to the present invention can be implemented through a variety of methods, the formation method of a magnet alloy already widely known in the art to which the present invention belongs all incorporated into the present invention.
  • induction melting in the present embodiment used a graphite crucible, and the SF 6 and CO 2 mixture gas is applied to the upper part of the melt to prevent oxidation of the molten metal until the alloy is finished. Blocked contact.
  • a die was cast without using a protective gas using a steel mold (steel mold), a plate casting material of width 100 ⁇ , length 150 ⁇ , thickness 15 ⁇ was manufactured for the rolling experiment.
  • a cylindrical billet having a diameter of 80 mm and a length of 150 mm was prepared for the extrusion experiment, and a cylindrical billet having a diameter of 55 mm 3 and a length of 100 mm was prepared for the ignition test of the alloy casting material.
  • the magnesium alloy is cast using a die casting method, but various casting methods such as sand casting, gravity casting, pressure casting, continuous casting, sheet casting, die casting, precision casting, spray casting, and semi-unggo casting are used. Can be used, The magnesium alloy according to the present invention is not necessarily limited to any particular casting method, but more preferably melt casting method.
  • the slabs formed above were subjected to homogenization heat treatment at 400 ° C. for 15 hours.
  • Comparative Example 7, Comparative Example 8 and Example 8 of Table 2 extrude the homogenized heat-treated material at an extrusion ratio of 25: 1 at an extrusion rate of 5 m / min at an extrusion temperature of 250 to obtain a good surface condition with a final diameter of 16 mra.
  • a rod-like extruded material was prepared.
  • a chip of a predetermined size was obtained by chip-processing the outer shell of the cylindrical billet manufactured at a constant speed of 0.5 mm depth, pitch 0.1 mm, and 350 rpm.
  • the chip o.ig obtained by the above method was heated up at a constant rate into a heating furnace maintained at Kxxrc.
  • the temperature at which the rapid temperature rise starts due to the ignition was measured as the ignition temperature, and the results are shown in Table 2.
  • the ignition temperature of the magnesium alloy according to Example 1 shows a very high ignition resistance of 807 ° C. This is because the content of yttrium is high as 1 weight 3 ⁇ 4 » and thus, as the amount of yttrium added increases, the ignition resistance It can be seen that also greatly improved.
  • the ignition temperature of the magnesium alloy according to Example 8 in Table 2 shows a very high ignition resistance of 811 ° C. When the magnesium alloy containing 6% by weight of zinc is added by 1 weight 3 ⁇ 4 by 1 weight 3 ⁇ 4, yttrium, The ignition temperature is greatly improved. Evaluation of Tensile Properties of Magnesium Alloys
  • the addition of 1 weight% 'yttrium 1 weight 3 ⁇ 4 »to the Mg-6Zn-lAl alloy not only greatly improved the ignition resistance but also greatly improved the tensile properties, in particular the tensile strength> uniform elongation value.
  • the magnesium alloy according to the present embodiment by the addition of a small amount of yttrium, while maintaining a low content of the chestnut to 1% by weight level, while greatly reducing the fraction of the coarse hard ternary process to obtain a magnet alloy at the same time the strength and elongation Can be.
  • Example 2 and Example 5 were fired as compared to the case where Yttrium was added in the same amount and yttrium was not added. While excellent in resistance, it can be seen that the value of tensile strength X uniform elongation is further excellent.
  • FIGS. 7 and 8 show changes in the firing temperature and tensile properties according to the sum of the amount of chalc and yttrium.
  • the ignition temperature shows a tendency to increase gradually as the amount of the sum of the chams and the yttrium is increased.
  • the slope of the ignition temperature increases more.
  • the addition of the chestnut showed a tendency to significantly decrease the tensile strength> uniform elongation value regardless of the type of hot processing, as calcium addition amount increases, but rather when calcium and yttrium are added simultaneously The mechanical properties are improved compared to the alloy without yttrium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Hard Magnetic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a magnesium alloy with remarkable ignition resistance and being excellent in both strength and ductility. According to the present invention, the magnesium alloy comprises 1.0-7.0 wt% of Al, 0.05-2.0 wt% of Ca, 0.05-2.0 wt% of Y, and the balance of Mg and inevitable impurities, wherein the content of Ca and Y is 0.1-2.5 wt% on the basis of the total weight of the magnesium alloy. According to the present invention, the magnesium alloy forms a dense composite layer serving as a protective film to be able to be melted, cast and processed in air or in the common inert atmosphere (Ar, N2) and to inhibit the spontaneous combustion of chips piled in a machining process due to having superior oxidation resistance or ignition resistance.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
기계적 특성이 우수한 난연성 마그네슘 합금 및 그 제조방법  Flame retardant magnesium alloy with excellent mechanical properties and its manufacturing method
【기술분야】  Technical Field
본 발명은 발화저항성이 우수한 마그네슘 합금, 더욱 상세하게는 용탕 표면 에 안정한 보호 피막을 형성하여 대기 중 혹은 일반적인 불활성 분위기 하에서도 용해 및 주조가 가능하고, 발화 저항성이 매우 우수하여 칩의 자연발화를 억제할 수 있을 뿐 아니라 우수한 강도와 연성을 동시에 갖는 마그네슘 합금에 관한 것이 다- 【배경기술】  The present invention is a magnesium alloy having excellent ignition resistance, more specifically, to form a stable protective film on the surface of the molten metal can be dissolved and cast in the air or in a general inert atmosphere, it is very excellent in the resistance to ignition to suppress chip spontaneous ignition It is about magnesium alloy that can not only be used but also have excellent strength and ductility at the same time.
마그네슘 합금은 높은 비강도를 갖는 최경량의 합금으로서 다양한 주조 및 가공 공정에 적용이 가능하며 자동차 부품이나 전자기 부품 등 경량화가 요구되는 거의 모든 분야에 적용 가능한 웅용범위가 넓다. 하지만 마그네슴 합금은 전기화 학적으로 전위가 낮고 상당히 활성적인 금속으로서 산소 혹은 물과 접촉 시 강한 활성반웅을 보이며 때로는 화재를 일으키기도 하는 등 재료의 안정성 및 신뢰성 측 면에서 아직 한계를 가진다. 이 때문에 그 용용 잠재력에 비해서 아직 응용범위가 제한적이며, 특히 안전성을 요구하는 웅용분야에는 사용할 수 없다.  Magnesium alloy is the lightest alloy with high specific strength, and can be applied to various casting and processing processes, and has a wide range of applications in almost all fields requiring weight reduction such as automobile parts and electromagnetic parts. Magnesium alloys, however, are electrochemically low-potential, highly active metals, which have strong active reactions when in contact with oxygen or water, and sometimes cause fires, and still have limitations in terms of material stability and reliability. For this reason, its application range is still limited compared to its application potential, and it cannot be used especially for the safety field requiring safety.
마그네슘 합금의 이러한 활성반응으로 인해 용해 시에는 플럭스 (flux)나 C02 + SF6 등의 불활성 흔합가스를 사용하여 비활성 분위기를 만들어 주어야 한다. 용해 및 정련 시 사용되는 플럭스는 염화계이기 때문에, 용탕 처리 조건이 맞지 않을 경 우 잔류 염소가 소재 내부에 잔존하여 내식성을 크게 떨어뜨리는 문제가 있었다. 이러한 단점을 해결하기 위해 플럭스를 사용하는 대신, SF6, C02 및 Air를 흔합한 분위기에서 용해 및 주조하는 방법이 효과적이다. 하지만 SF6는 지구온실효과가 C02의 24배나 되는 지구온실유발 물질로 분류되어 향후 사용규제가 될 것으로 예상 된다. Due to this active reaction of the magnesium alloy, inert atmospheres such as flux or C0 2 + SF 6 must be used for dissolution. Since the flux used for dissolving and refining is chlorine-based, residual chlorine remains inside the material and greatly degrades corrosion resistance when the melt treatment conditions are not met. Instead of using fluxes to solve these shortcomings, it is effective to melt and cast SF 6 , CO 2 and Air in a mixed atmosphere. However, SF 6 is classified as a global greenhouse-induced substance whose global greenhouse effect is 24 times that of C0 2 , and is expected to be regulated in the future.
이러한 문제를 보다 근본적으로 해결하기 위하여 마그네슴 합금 자체의 내산 화성을 향상시키기 위한 연구로서 특히 Ca, Be 등 회토류금속 첨가를 통한 마그네 슴 합금의 발화온도를 향상시키고자 하는 연구들이 진행되어 왔다. 종래에는 내산 화 마그네슘 합금에 첨가되는 합금원소 가운데 Ca이 주로 이용되었는데, 그 이유는 Ca 원소의 가격이 다른 회토류금속에 비해 저렴하고, 독성이 없으며 첨가량 대비 발화온도 상승이 크기 때문이다.  In order to solve this problem more fundamentally, researches to improve the oxidation resistance of the magnet alloy itself have been conducted to improve the ignition temperature of the magnet alloy, particularly by adding a rare earth metal such as Ca and Be. In the prior art, Ca is mainly used among the alloying elements added to the magnesium oxide alloy, because the price of the Ca element is cheaper than other rare earth metals, is not toxic, and the ignition temperature is increased with respect to the amount added.
Ca을 포함하는 마그네슴 합금과 관련된 기존의 연구에 따르면, 3 중량 ¾> 이상 의 Ca를 첨가할 경우 발화온도가 250 가량 증가하는 것으로 알려져 있다. 따라서 보호가스 없이 대기노출 주조가 가능하기 위한 발화온도인 700 이상의 발화온도, 또는 보호가스를 포함한 상태에서 주조를 하기 위한 발화온도인 650 이상의 발화온 도를 얻기 위해서는 바람직하게는 Ca이 3중량 % 이상, 최소한 2중량 % 이상 마그네슘 합금에 첨가되어야 한다. 하지만 Ca이 2중량 ¾>를 초과하여 첨가되면 마그네슴 합금 의 인장특성은 일반적으로 저하되며, 특히 연신율의 감소가 두드러지는데, 이는 조 대한 경질의 공정상이 다량 형성되어 크랙 발생을 유발하기 때문이다. 이처럼 Ca 첨가량의 증가는 발화저항성을 증가시키는 장점이 있지만, 인장특성이 급격히 나빠 진다는 단점이 있고, 따라서, 발화저항성과 인장특성을 동시에 만족시키는 마그네 슘 합금의 개발이 요구되는 실정이다. According to previous studies involving magnesium alloys containing Ca, more than 3 weight ¾> It is known that the addition of Ca increases the ignition temperature by about 250. Therefore, in order to obtain an ignition temperature of 700 or more, which is an ignition temperature for allowing the exposure to air without a protective gas, or a ignition temperature of 650 or more, which is for ignition in a state containing a protective gas, Ca is preferably 3% by weight or more. At least 2% by weight should be added to the magnesium alloy. However, when Ca is added in excess of 2 weight ¾>, the tensile property of the magnet alloy is generally lowered, especially the decrease in elongation is noticeable, because a large amount of coarse hard process is formed, causing cracking. The increase in the amount of Ca added has the advantage of increasing the ignition resistance, but the drawback is that the tensile properties deteriorate sharply, and therefore, the development of a magnesium alloy that satisfies both the ignition resistance and the tensile properties is required.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
따라서, 본 발명은 상기 종래의 문제점을 해결하기 위한 마그네슴 합금을 제 공하는 것을 목적으로 한다.  Therefore, an object of the present invention is to provide a magnet alloy for solving the above conventional problems.
구체적으로 본 발명은 Ca를 포함하는 마그네슘 합금으로서, 우수한 발화저항 성과 우수한 인장특성을 동시에 갖는 마그네슴 합금을 제공하는 것을 목적으로 한 다.  Specifically, an object of the present invention is to provide a magnesium alloy containing Ca, which has both excellent ignition resistance and excellent tensile properties.
또한, 본 발명은 Ca을 최소한으로 사용하는 동시에 SF6와 같은 환경오염 유 발 물질인 보호가스를 사용하지 않는 친환경 제조공정을 가능하게 하는 마그네슘 합금을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a magnesium alloy that enables an environmentally friendly manufacturing process using a minimum of Ca and at the same time does not use a protective gas that is an environmental pollutant such as SF 6 .
【기술적 해결방법】  Technical Solution
상기 목적을 달성하기 위한 본 발명에 따른 마그네슘 합금은 용융 주조법에 의하여 제조되는 마그네슘 합금으로서, 1.0중량% 이상 7.0중량 % 미만의 A1과, 0.05 중량 ¾ 내지 2.0 중량 %의 Ca와, 0.05중량 % 내지 2.0중량¾의 Y와, 0중량 % 초과 6중 량% 이하의 Zn과, 잔부인 Mg 및 기타 불가피한 불순물을 포함하고, 상기 Ca와 Y의 합산 함량은 전체 마그네슘 합금의 전체 중량 대비 0.1중량 % 이상 2.5중량% 미만인 것을 특징으로 한다.  Magnesium alloy according to the present invention for achieving the above object is a magnesium alloy produced by the melt casting method, 1.0 wt% or more and less than 7.0 wt% A1, 0.05 wt% to 2.0 wt% Ca, 0.05 wt% to 2.0 weight ¾ of Y, more than 0% by weight of up to 6% by weight of Zn, the balance of Mg and other unavoidable impurities, the combined content of Ca and Y is at least 0.1% by weight relative to the total weight of the total magnesium alloy It is characterized in that less than 2.5% by weight.
또한, 상기 Ca의 함량은 0.2중량 % 내지 1.5중량%인 것이 바람직하다.  In addition, the content of Ca is preferably 0.2% by weight to 1.5% by weight.
또한, 상기 Y의 함량은 0.1중량 % 내지 1.5중량¾인 것이 바람직하다.  In addition, the content of Y is preferably from 0.1% by weight to 1.5% by weight ¾.
또한, Ca와 Y의 함량은 전체 마그네슴 합금의 전체 중량 대비 0.3중량% 이상 2.0중량 % 이하인 것이 바람직하다.  In addition, the content of Ca and Y is preferably 0.3% by weight or more and 2.0% by weight or less with respect to the total weight of the total magnet alloy.
또한, 상기 마그네슘 합금은 Mn을 0중량 % 초과 및 1중량 % 미만으로 더 포함 하는 것이 바람직하다 . In addition, the magnesium alloy further contains Mn of more than 0% by weight and less than 1% by weight It is desirable to.
또한, 상기 마그네슘 합금은 Zr을 0중량 % 초과 및 1중량 % 미만으로 더 포함 하는 것이 바람직하다. 또한, 본 발명에 따른 마그네슴 합금의 제조방법은:  In addition, the magnesium alloy preferably further comprises Zr in more than 0% by weight and less than 1% by weight. In addition, the manufacturing method of the magnet alloy according to the present invention:
Mg, Al 및 Zn을 포함하는 마그네슘 합금 용탕을 형성하는 단계;  Forming a magnesium alloy molten metal including Mg, Al, and Zn;
상기 마그네슘 합금 용탕에 Ca 및 Y의 원료 물질을 첨가하는 단계;  Adding raw materials of Ca and Y to the magnesium alloy molten metal;
상기 Ca 및 Y의 원료 물질이 첨가된 마그네슴 합금 용탕을 용융 주조 방법을 이용하여 마그네슴 합금 주조재를 제조하는 단계를 포함하고,  Manufacturing a molten alloy casting material using a molten casting method of the molten magnesium alloy to which the raw materials of Ca and Y are added,
상기 방법에 의하여 제조된 마그네슴 합금은 1.0증량 % 이상 및 7.0중량 % 미 만의 A1, 0.05중량 % 내지 2.0 중량 %의 Ca, 0.05중량 ¾ 내지 2.0중량%의 Y와, 0중량 ¾ 초과 6중량 ¾ 이하의 Zn과, 잔부인 Mg 및 기타 불가피한 불순물로 구성되는 것을 특 징으로 한다.  Magnesium alloy prepared by the above method is at least 1.0 wt% and less than 7.0 wt% A1, 0.05 wt% to 2.0 wt% Ca, 0.05 wt ¾ to 2.0 wt% Y, 0 wt ¾ more 6 wt ¾ It is characterized by consisting of the following Zn, the balance Mg and other unavoidable impurities.
또한, 상기 마그네슘 합금 용탕에 Ca 및 Y의 원료 물질을 첨가하는 단계는 800°C보다 높은 온도에서 Ca 및 Y의 원료 물질을 첨가하는 것을 특징으로 하는 것 이 바람직하다. In addition, the step of adding the raw material of Ca and Y to the magnesium alloy molten metal is preferably characterized in that the addition of the raw material of Ca and Y at a temperature higher than 800 ° C.
또는, 본 발명에 따른 마그네슴 합금의 제조방법은:  Alternatively, the manufacturing method of the magnet alloy according to the present invention:
Mg, Al 및 Zn을 포함하는 마그네슘 합금 용탕을 형성하는 단계;  Forming a magnesium alloy molten metal including Mg, Al, and Zn;
Mg, Al, Zn, Ca 및 Y를 포함하고 750 °C 이하에서 용해가능한 모합금 잉고트 를 형성하는 단계; Forming a master alloy ingot comprising Mg, Al, Zn, Ca and Y and soluble at 750 ° C. or lower;
상기 마그네슴 합금 용탕에 상기 750°C 이하에서 용해가능한 모합금 잉고트 를 투입하는 단계 ; Injecting a master alloy ingot soluble at 750 ° C. or lower into the molten alloy alloy;
상기 모합금 잉고트가 포함된 용탕을 용융 주조 방법을 이용하여 마그네슘 합금 주조재를 제조하는 단계를 포함하고,  Manufacturing a molten magnesium alloy casting material using the molten casting method of the molten metal including the master alloy ingot;
상기 방법에 의하여 제조된 마그네슘 합금은 1.0중량 % 이상 및 7.0중량 % 미 만의 A1, 0.05중량 ¾> 내지 2.0 중량 %의 Ca, 0.05중량 ¾> 내지 2.0중량 %의 Y와, 0증량 % 초과 6중량 % 이하의 Zn과, 잔부인 Mg 및 기타 불가피한 불순물로 구성되는 것을 특 징으로 한다.  Magnesium alloy prepared by the above method is at least 1.0% by weight and less than 7.0% by weight of A1, 0.05% by weight> to 2.0% by weight of Ca, 0.05% by weight> to 2.0% by weight of Y, 0% by weight and more than 6% by weight It is characterized by consisting of Zn of less than%, the residual Mg and other unavoidable impurities.
또한, 상기 Mg, Al, Zn, Ca 및 Y가 포함된 모합금 잉고트는 750 °C 이하에서 용해 가능한 것이고, 상기 모합금 잉고트는 750°C 보다 낮은 온도에서 상기 마그네 슘 합금 용탕에 투입되는 것이 바람직하다. In addition, the master alloy ingot containing Mg, Al, Zn, Ca and Y is soluble at 750 ° C or less, the master alloy ingot is preferably added to the magnesium alloy molten metal at a temperature lower than 750 ° C. Do.
또는, 본 발명에 따른 마그네슘 합금의 제조방법은:  Alternatively, the method for producing a magnesium alloy according to the present invention is:
Mg, Al 및 Zn을 포함하는 마그네슘 합금 용탕을 형성하는 단계; 상기 마그네슘 합금 용탕에 Ca 화합물 및 Y 화합물을 첨가하는 단계; Forming a magnesium alloy molten metal including Mg, Al, and Zn; Adding a Ca compound and a Y compound to the magnesium alloy melt;
상기 Ca 화합물 및 Y 화합물이 첨가된 마그네슴 합금 용탕을 용융 주조 방법 을 이용하여 마그네슘 합금 주조재를 제조하는 단계를 포함하고,  Manufacturing a magnesium alloy casting material by using a molten casting method on the molten magnesium alloy to which the Ca compound and the Y compound are added;
상기 방법에 의하여 제조된 마그네슴 합금은 1.0중량 % 이상 및 7.0중량 % 미 만의 A1, 0.05중량 % 내지 2.0 중량 %의 Ca, 0.05중량 ¾» 내지 2.0중량 )의 Y와, 0증량 % 초과 6중량 % 이하의 Zn과, 잔부인 Mg 및 기타 불가피한 불순물로 구성되는 것이 바 람직하다.  Magnesium alloy prepared by the above method is at least 1.0% by weight and less than 7.0% by weight of A1, 0.05% by weight to 2.0% by weight of Ca, 0.05% by weight »to 2.0% by weight of Y, 0% by weight more than 6% by weight It is preferred to consist of up to Zn%, residual Mg and other unavoidable impurities.
또한, 상기 Ca 및 Y 원료물질, Mg, Al, Zn, Ca 및 Y가 포함된 모합금 잉고 트, 또는 상기 Ca 화합물 및 Y 화합물을 상기 마그네슴 합금 용탕에 투입하는 단계 는 상기 마그네슘 합금 용탕을 주기적으로 교반하는 단계를 더 포함하는 것이 바람 직하다.  In addition, the step of injecting the Ca and Y raw material, the master alloy ingot containing Mg, Al, Zn, Ca and Y, or the Ca compound and Y compound into the magnesium alloy molten metal periodically It is preferable to further include the step of stirring.
또한, 상기 주조 방법은 금형주조법, 사형주조법, 중력주조법, 가압주조법, 연속주조법, 박판주조법, 다이캐스팅법, 정밀주조법, 소실모형주조법, 분무주조법 및 반웅고주조법 중 하나인 것이 바람직하다.  In addition, the casting method is preferably one of a mold casting method, a sand casting method, a gravity casting method, a pressure casting method, a continuous casting method, a thin plate casting method, a die casting method, a precision casting method, a loss model casting method, a spray casting method and a semi-ung casting method.
또한, 상기 방법은 상기 주조 방법에 의하여 형성된 마그네슘 합금 주조재를 열간가공하는 단계를 더 포함하는 것이 바람직하다. 본 발명에 따른 마그네슘 합금에서 각 성분의 함량을 한정한 이유는 각각 다 음과 같다. 알루미늄 (A1)  In addition, the method preferably further comprises the step of hot working the magnesium alloy cast material formed by the casting method. The reason for limiting the content of each component in the magnesium alloy according to the present invention is as follows. Aluminum (A1)
알루미늄은 마그네슘 합금의 강도 증가 및 유동성을 향상시키며 응고 범위를 증가시켜 주조성을 개선시키는 원소로서, 일반적으로 알루미늄 첨가량이 증가함에 따라 공정상인 Mg17Al12 상의 분율이 증가한다. 또한, 뒤에서 설명하듯이 본 발명에 따른 실험결과에 따르면 다른 합금원소와 복합으로 첨가될 경우, 알루미늄의 함량 이 증가할수록 발화저항성은 증가하는 것을 확인할 수 있다. 한편, 알루미늄의 함 량이 1중량 % 미만일 경우 강도 증가 및 발화저항성 향상 효과가 나타나지 않고, 알 루미늄의 함량이 7중량 % 이상에서는 조대한 Mg17Al12 공정상으로 인해 인장특성이 저 하되므로, 알루미늄은 1중량 % 이상 7중량 % 미만의 범위로 포함되는 것이 바람직하 다. Aluminum is an element that improves the strength and flowability of the magnesium alloy, and improves castability by increasing the solidification range. Generally, the fraction of the Mg 17 Al 12 phase increases as the amount of aluminum is increased. In addition, as described later, according to the experimental results according to the present invention, when added in combination with other alloying elements, it can be seen that as the aluminum content increases, the ignition resistance increases. On the other hand, when the aluminum content is less than 1% by weight, the strength and the ignition resistance are not improved, and when the aluminum content is more than 7% by weight, the tensile properties are reduced due to the coarse Mg 17 Al 12 process. Silver is preferably included in the range of 1% by weight or more and less than 7% by weight.
칼슘 (Ca)  Calcium (Ca)
칼슘은 Mg-Al계 합금에서 Mg-Al-Ca 금속간 화합물을 형성하여 강도 및 내열 특성을 향상시킬 뿐만 아니라 용탕 표면에 얇고 치밀한 CaO 산화층을 형성시켜 용 탕의 산화를 억제함으로써 마그네슘 합금의 발화 저항성을 향상시킨다. 하지만 칼 슘의 함량이 0.05중량 ¾ 미만인 경우 발화저항성 향상 효과가 크지 않고, 2중량 %를 초과할 경우 용탕의 주조성을 떨어지고 열간균열 (hot cracking)이 발생하며, 금형 과의 점착성 (die sticking)이 증가하며 연신율이 크게 떨어지는 등의 문제가 있다. 따라서, 본 발명에 따른 마그네슴 합금에서 칼슘은 0.05중량 % 내지 2.0중량¾의 범 위로, 더욱 바람직하게는 0.2중량 % 내지 1.5중량%의 범위로 포함되는 것이 바람직 하다. Calcium forms Mg-Al-Ca intermetallic compounds in Mg-Al-based alloys to improve strength and heat resistance, as well as to form thin and dense CaO oxide layers on the surface of the molten metal. By suppressing the oxidation of the hot water, the fire resistance of the magnesium alloy is improved. However, if the calcium content is less than 0.05 weight ¾, the effect of improving the ignition resistance is not large. If the calcium content is more than 2 weight%, the castability of the molten metal decreases, hot cracking occurs, and the die sticking with the mold is achieved. There is a problem such as a large decrease in elongation. Therefore, in the magnesium alloy according to the present invention, calcium is preferably included in the range of 0.05% by weight to 2.0% by weight, more preferably in the range of 0.2% by weight to 1.5% by weight.
이트륨 (Y)  Yttrium (Y)
이트륨은 원래 마그네슴에 대하여 큰 고용한을 가지고 있어 주로 석출강화 효과에 의한 고온 내크리프 향상원소로 사용된다. 그런데, 이트륨을 칼슘과 함께 마그네슘 합금에 첨가하면, 조대한 칼슴 함유 공정상의 분율이 줄어들고 0.5중량 % 이상 첨가될 경우 주조재의 결정립올 미세화 시키는 A12Y 입자가 형성되어 인장특성 을 개선시키는 효과가 있다. 또한 용탕 표면에 Y203 산화층을 형성하여 MgO, Ca와 흔합층을 형성함으로써 발화 저항성을 증가시킨다. 한편, 마그네슘 합금에 이트륨 이 0.05중량 % 미만으로 포함되는 경우 발화온도 증가가 크지 않고, 이트륨이 2중 량¾를 초과하여 포함되는 경우 합금의 가격이 상승하고, A12Y 입자의 조대화로 인한 미세화 효과가 상실된다. 따라서, 본 발명에 따른 마그네슴 합금에서 이트륨은 0.05중량 % 내지 2.0중량%의 범위로, 더욱 바람직하게는 0.1중량 ¾> 내지 1.5중량%의 범위로 포함되는 것이 바람직하다. Yttrium is originally used as a high temperature creep-improving element due to the precipitation strengthening effect because it has a large solid solution to the magnet. However, when yttrium is added to the magnesium alloy together with calcium, the fraction of coarse grains is reduced, and when 0.5 wt% or more is added, A1 2 Y particles are formed to refine the grains of the cast material, thereby improving tensile properties. . In addition, by forming a Y 2 O 3 oxide layer on the surface of the molten metal to form a mixed layer with MgO, Ca to increase the ignition resistance. On the other hand, when the yttrium is contained in the magnesium alloy less than 0.05% by weight, the increase in the ignition temperature is not large, when the yttrium is contained in excess of 2¾ ¾ the price of the alloy increases, due to the coarsening of A1 2 Y particles The refinement effect is lost. Therefore, the yttrium in the magnet alloy according to the present invention is preferably included in the range of 0.05% to 2.0% by weight, more preferably in the range of 0.1% to 3.4% by weight.
아연 (Zn)  Zinc (Zn)
아연은 알루미늄과 함께 첨가될 때 결정립을 미세화하고 강도를 증가시키는 효과를 갖는다. 또한 일반적으로 마그네슴 합금 내 아연의 최대 고용한은 6.2 중 량%이고, 이를 초과하여 마그네슘 합금에 아연을 첨가할 경우 주조 시 생성된 조대 한 공정상이 주조재의 기계적 특성을 약화시킬 뿐만 아니라 균질화 열처리 (T4) 후 에도 상당량의 조대한 공정상이 잔류하게 되어 기계적 특성, 특히 연신율을 취약하 게 하는 원인이 되기 때문에 아연은 6중량 ¾> 이하로 첨가되는 것이 바람직하다.  Zinc has the effect of refining grains and increasing strength when added with aluminum. In general, the maximum solubility of zinc in the magnesium alloy is 6.2% by weight, and when zinc is added to the magnesium alloy in excess of this, the coarse process produced during casting not only weakens the mechanical properties of the casting material, but also the homogenization heat treatment ( It is preferable to add zinc in an amount of 6 weight ¾ or less, since a considerable amount of coarse phase remains after T4), which causes weak mechanical properties, especially elongation.
망간 (Mn)  Manganese (Mn)
망간은 Mg-Al계 합금에서 내식성에 유해한 불순물원소인 Fe와 결합하여 내식 성을 향상시키며, 빠른 넁각 속도에서 Al-Mn 금속간화합물을 형성하여 강도를 향상 시킨다. 하지만, 망간을 1.0중량%를 초과하여 첨가할 경우 마그네슴 합금 내에 조 대한 β-Μη 상 흑은 AlsMn5 상이 형성되어 기계적 특성을 저하시키므로 망간은 1.0 중량 % 이하로 포함되는 것이 바람직하다. 지르코늄 (Zr) Manganese combines with Fe, an impurity element that is harmful to corrosion, in Mg-Al alloys to improve corrosion resistance, and improves strength by forming Al-Mn intermetallic compounds at high angles of rotation. However, when manganese is added in excess of 1.0% by weight, the coarse β-Μη phase black in the magnet alloy forms AlsMn 5 phase, which deteriorates mechanical properties, and thus, manganese is preferably included at 1.0% by weight or less. Zirconium (Zr)
지르코늄 (Zr)은 Al, Mn 등의 원소를 함유하지 않은 마그네슘 합금에 첨가될 경우 응고 시 마그네슴 결정과 매우 유사한 결정격자를 갖는 초정 Zr이 형성되기 때문에 초정 Zr에서의 마그네슴 결정의 불균일 핵생성을 통한 결정립 미세화를 위 해 주로 첨가되는데, 0.1중량 % 미만으로 첨가되면 그 효과가 층분하지 않고, 1.0중 량%를 초과하여 첨가되면, 조대한 초정 Zr의 형성으로 인해 연신율이 저하되기 때 문에 0.1중량 % 내지 1.0중량 % 이하로 포함하는 것이 바람직하다.  Zirconium (Zr), when added to magnesium alloys that do not contain elements such as Al and Mn, forms solid Zr with a crystal lattice very similar to magnetite crystals upon solidification, resulting in uneven nucleation of the magnet crystals in primary Zr. It is mainly added for grain refinement through, but if it is added less than 0.1% by weight, the effect is not divided. If it is added more than 1.0% by weight, the elongation is reduced due to the formation of coarse primary Zr. It is preferably included in 0.1% by weight to 1.0% by weight or less.
기타 불가피한 불순물  Other unavoidable impurities
본 발명에 따른 마그네슘 합금에는 합금의 원료 또는 제조과정에서 불가피하 게 흔입되는 불순물을 포함할 수 있으며, 본 발명에 따른 마그네슘 합금에 포함될 수 있는 불순물 중에서 특히 철 (Fe), 실리콘 (Si) 및 니켈 (Ni)은 마그네슘 합금의 내식성을 악화시키는 역할을 하는 성분이다. 따라서 Fe의 함량은 0.004중량 % 이하, Si의 함량은 0.04중량%, Ni의 함량은 0.001중량 % 이하를 유지하도록 하는 것이 바 람직하다.  The magnesium alloy according to the present invention may include impurities which are inevitably introduced in the raw material or manufacturing process of the alloy, and among the impurities that may be included in the magnesium alloy according to the present invention, particularly iron (Fe), silicon (Si) and nickel (Ni) is a component that serves to deteriorate the corrosion resistance of the magnesium alloy. Therefore, the content of Fe is less than 0.004% by weight, the content of Si is 0.04% by weight, it is preferable to maintain the content of Ni is less than 0.001% by weight.
칼슴과 이트륨의 합산량  Total amount of scab and yttrium
칼슘과 이트륨을 복합 첨가하면 고상 혹은 액상의 마그네슘 합금 표면에 치 밀한 Ca0/Y203 복합 산화층을 형성하여 칼슴 혹은 이트륨을 독립적으로 첨가한 합금 에 비해 발화저항성이 훨씬 우수해진다. 또한 칼슴 흑은 이트륨을 독립적으로 첨 가할 경우 우수한 발화저항성을 얻기 위해서는 일반적으로 3중량 % 이상 첨가해야 하지만, 이 경우 조대한 금속간 화합물을 형성하기 때문에 인장특성이 크게 저하되 는 문제가 있다. 하지만 칼슘과 이트륨을 복합첨가하게 되면 소량 첨가로도 발화 저항성이 우수하면서 동시에 금속간 화합물의 분율과 크기를 크게 줄여 인장특성을 향상시킬 수 있는 장점이 있다. 한편, 마그네슘 합금에 칼슘과 이트륨의 합산 함 량이 0.1중량 % 미만으로 첨가한 경우 칼슴과 이트륨의 복합첨가 효과가 나타나지 않아 발화온도가 65CTC 이하로 낮으므로 대기 중 혹은 일반적인 불활성 가스 분위 기 하에서 용해할 수 없다. 또한, 칼슘과 이트륨의 합산 함량이 2.5중량¾ 이상일 경우 추가적인 발화온도 상승에 의한 장점이 없는 반면 합금가격의 상승을 초래한 다. 따라서 본 발명에 따른 마그네슴 합금에서 칼슘과 이트륨의 합산 함량은 0.1 중량 % 이상 및 2.5중량 % 미만, 더욱 바람직하게는 0.2중량 % 내지 2.0중량%의 범위 로 포함되는 것이 바람직하다. When calcium and yttrium are added in combination, a dense Ca0 / Y 2 0 3 composite oxide layer is formed on the surface of the solid or liquid magnesium alloy, so that the ignition resistance is much better than that of the alloy independently added with chame or yttrium. In addition, in order to obtain excellent ignition resistance when yttrium is independently added, the black chestnut is generally added in an amount of 3% by weight or more. However, when calcium and yttrium are added in combination, the addition of a small amount of ignition resistance is excellent, and at the same time, the fraction and size of the intermetallic compound can be greatly reduced, thereby improving tensile properties. On the other hand, when the combined content of calcium and yttrium in the magnesium alloy is less than 0.1% by weight, the compounding effect of scab and yttrium does not appear, and the ignition temperature is lower than 65CTC, so that it can be dissolved in the atmosphere or in an inert gas atmosphere. none. In addition, when the combined content of calcium and yttrium is more than 2.5 weight ¾, there is no advantage due to the additional ignition temperature increase, but leads to an increase in the alloy price. Therefore, the total content of calcium and yttrium in the magnet alloy according to the present invention is preferably included in the range of 0.1% by weight or more and less than 2.5% by weight, more preferably 0.2% by weight to 2.0% by weight.
【유리한 효과】  Advantageous Effects
본 발명에 따른 마그네슴 합금은 보호피막으로 작용하는 치밀한 복합 산화층 을 형성하여 내산화성 및 발화저항성이 매우 우수하여 대기 중이나 일반적인 불활 성분위기 (Ar, N2)에서 용해, 주조 및 가공이 가능하고, 기계가공 공정에서 쌓이는 칩의 자연발화를 억제할 수 있다. Magnesium alloy according to the present invention is a dense composite oxide layer acting as a protective film It is very excellent in oxidation resistance and ignition resistance, so that it can be dissolved, cast, and processed in the atmosphere or in general inert atmosphere (Ar, N 2 ), and the spontaneous ignition of chips accumulated in the machining process can be suppressed.
또한, 본 발명에 따른 마그네슘 합금은 SF6 등의 가스를 사용하지 않아 비용 감소, 작업자 건강보호, 환경오염방지에 적합하다. In addition, the magnesium alloy according to the present invention does not use a gas such as SF 6 is suitable for cost reduction, worker health protection, environmental pollution prevention.
또한, 본 발명에 따른 마그네슘 합금은 발화온도가 녹는점 +50 °C 이상으로 상용 합금 대비 월등히 우수한 발화저항성을 가지면서도 강도 및 연성도 우수하여 구조용 부품 소재로 적용가능하다. In addition, the magnesium alloy according to the present invention has an excellent ignition resistance and superior strength and ductility compared to commercial alloys at a melting point of +50 ° C or more, so that it is applicable to structural parts.
또한, 본 발명에 따른 마그네슴 합금은 가공재 또는 주조재로 다양하게 이용 될 수 있으며, 특히 고강도 고연성 및 안정성 특성을 요구하는 차세대 자동차, 고 속철도, 도심철도 둥에 실제적 적용이 가능한 압출재, 판재, 단조재, 주조재 등으 로 제조될 수 있다.  In addition, the magnet alloy according to the present invention can be used in a variety of processing materials or castings, in particular extruded material, plate material, which can be practically applied to the next-generation automobile, high-speed railway, urban railway round, which requires high strength, high ductility and stability characteristics It can be manufactured from forgings, castings and the like.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1(a)는 본 발명의 바람직한 실시예에 따라 대기 증에서 주조한 비교예 1 에 따른 합금 주조재의 표면 사진이다.  Figure 1 (a) is a photograph of the surface of the alloy casting material according to Comparative Example 1 cast in atmospheric steam according to a preferred embodiment of the present invention.
도 Kb)는 본 발명의 바람직한 실시예에 따라 대기 중에서 주조한 실시예 2 에 따른 합금 주조재의 표면 사진이다.  Figure Kb) is a photograph of the surface of the alloy casting material according to Example 2 cast in the atmosphere according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따라 주조한 마그네슴 합금의 발화온도 측정 방법을 예시하는 도면이다.  2 is a diagram illustrating a method of measuring the ignition temperature of the magnesium alloy cast according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 실시예에 따라 주조한 실시예 5에 따른 마그네슘 합금을 670°C에서 10분 간 유지한 후 용탕 표면 산화층의 EPMA 분석 결과를 도시하 는 도면이다. 3 is a view showing the results of EPMA analysis of the molten metal oxide layer after maintaining the magnesium alloy according to Example 5 cast in accordance with a preferred embodiment of the present invention at 670 ° C. for 10 minutes.
도 4는 Ca과 Y이 복합 첨가된 합금에서 고상 혹은 액상 표면에서 형성된 이 중의 복합 산화층이 외부의 산소 침투를 차단하는 구조를 개략적으로 보여주는 도 면이다.  4 is a view schematically showing a structure in which a composite oxide layer formed on a solid or liquid surface of Ca and Y complexes blocks external oxygen penetration.
도 5(a)는 본 발명의 바람직한 실시예에 따라 주조한 비교예 3에 따른 합금 의 미세조직을 보여주는 광학 사진이다.  Figure 5 (a) is an optical picture showing the microstructure of the alloy according to Comparative Example 3 cast in accordance with a preferred embodiment of the present invention.
도 5(b)는 본 발명의 바람직한 실시예에 따라 주조한 실시예 2에 따른 합금 의 미세조직을 보여주는 광학사진이다.  Figure 5 (b) is an optical photograph showing the microstructure of the alloy according to Example 2 cast in accordance with a preferred embodiment of the present invention.
도 6(a)는 본 발명의 바람직한 실시예에 따라 압출한 비교예 1에 따른 합금 의 미세조직을 보여주는 광학사진이다.  Figure 6 (a) is an optical photograph showing the microstructure of the alloy according to Comparative Example 1 extruded according to a preferred embodiment of the present invention.
도 6(b)는 본 발명의 바람직한 실시예에 따라 압출한 비교예 2에 따른 합금 의 미세조직을 보여주는 광학사진이다. Figure 6 (b) is an alloy according to Comparative Example 2 extruded according to a preferred embodiment of the present invention It is an optical picture showing the microstructure of the.
도 6(c)는 본 발명의 바람직한 실시예에 따라 압출한 비교예 3에 따른 합금 의 미세조직을 보여주는 광학사진이다.  Figure 6 (c) is an optical photograph showing the microstructure of the alloy according to Comparative Example 3 extruded according to a preferred embodiment of the present invention.
도 6(d)는 본 발명의 바람직한 실시예에 따라 압출한 실시예 1에 따른 합금 의 미세조직을 보여주는 광학 사진이다.  Figure 6 (d) is an optical picture showing the microstructure of the alloy according to Example 1 extruded according to the preferred embodiment of the present invention.
도 7은 본 발명의 바람직한 실시예에 따라 제조한 비교예 및 실시예에서 Ca 과 Y의 합산 첨가량에 따른 발화온도의 변화를 보여주는 사진이다.  Figure 7 is a photograph showing a change in the ignition temperature according to the addition amount of Ca and Y in Comparative Examples and Examples prepared according to a preferred embodiment of the present invention.
도 8은 본 발명의 바람직한 실시예에 따라 제조한 비교예 및 실시예에서 Ca 과 Y의 합산 첨가량에 따른 인장강도 X균일연신율 값의 변화를 보여주는 사진이다. 【발명을 실시하기 위한 최선의 형태】  8 is a photograph showing a change in tensile strength X uniform elongation value according to the combined amount of Ca and Y in Comparative Examples and Examples prepared according to a preferred embodiment of the present invention. [The best form to carry out invention]
본 발명의 바람직한 실시예에 따른 마그네슘 합금 및 그 제조방법을 이하에 서 상세히 설명한다. 그러나 하기의 실시예는 단지 예시적인 것으로 본 발명을 한 정하는 것이 아니다. 본 발명의 발명자들은 전술한 종래기술의 문제점을 해결하고 본 발명의 목적 을 달성하기 위해 열역학적으로 계산된 합금설계에 대한 연구 결과, Mg-Al계 합금 또는 Mg-Al-Zn계 합금에 Ca과 Y을 복합 첨가하게 되면, 아래의 표 1에서 확인할 수 있듯이 Ca만 단독으로 첨가할 경우에 비해 경질의 공정상 (Eutectic phase I)의 분 율이 획기적으로 감소하면서 동시에 결정립 미세화 입자인 A12Y상의 형성을 유도하 여 발화저항성 뿐만 아니라 인장특성도 향상될 수 있음을 확인하였다. A magnesium alloy and a method of manufacturing the same according to a preferred embodiment of the present invention will be described in detail below. However, the following examples are merely illustrative and do not limit the invention. The inventors of the present invention have studied the thermodynamically calculated alloy design to solve the above-mentioned problems of the prior art and achieve the object of the present invention, Ca and Y in Mg-Al-based alloys or Mg-Al-Zn-based alloys. When the complex is added, as shown in Table 1 below, the fraction of the hard process phase (Eutectic phase I) is significantly reduced compared to the case of adding only Ca alone, and at the same time, the formation of the A1 2 Y phase grain refinement particles By inducing it was confirmed that not only the ignition resistance but also the tensile property can be improved.
【표 1】 Table 1
Figure imgf000010_0001
본 발명의 발명자들은 상기 데이터를 기초로 다양한 조성을 갖는 마그네슘 합금을 제조하였는데, 본 발명의 바람직한 실시예에 따른 마그네슘 합금의 제조방 법은 아래와 같다.
Figure imgf000010_0001
The inventors of the present invention produced a magnesium alloy having various compositions based on the above data, the method of producing a magnesium alloy according to a preferred embodiment of the present invention is as follows.
먼저, Mg(99.9 ), Al(99.9%), Zn(99.99%), Ca(99.9%), Y(99.9%) 및 선택적으 로 Mn(99.9¾)의 원료 물질을 준비한 후, 상기 원료를 용해하여 중력 주조방법을 이 용하여 하기 표 2의 실시예 1 내지 실시예 17 및 비교예 1 내지 비교예 9에 기재된 합금조성을 가지는 마그네슴 합금 주조재를 형성하였다. 특히, 융점이 각각 842°C 와 1525°C로 높은 Ca과 Y을 직접 용탕에 투입하여 합금화시키기 위해서, 850 °C 내 지 900°C까지 용탕의 온도를 올려서 이들 원소를 완전 용해시킨 후, 주조온도까지 서서히 넁각한후 주조하여 마그네슘 합금 주조재를 형성하였다. First, Mg (99.9), Al (99.9%), Zn (99.99%), Ca (99.9%), Y (99.9%) and optionally After preparing a raw material of Mn (99.9¾), the raw material was dissolved and the magnet having the alloy composition described in Examples 1 to 17 and Comparative Examples 1 to 9 of Table 2 by using a gravity casting method. An alloy casting was formed. In particular, in order to alloy the high melting point Ca and Y directly into the melt at 842 ° C and 1525 ° C, respectively, by melting the elements from 850 ° C to 900 ° C and completely dissolving these elements, casting After slowly cooling down to a temperature, casting was performed to form a magnesium alloy casting material.
또는, 본 발명의 바람직한 실시예에 따르면, Mg(99.9)), Al(99.9%), Zn(99.99%), Ca(99.9%), Y(99.9%)의 원료 물질을 동시에 용해시켜 용탕을 형성한 후 주조하는 방법 외에 다양한 방법에 따라서 마그네슘 합금을 제조하는 것이 가능 하다. 예컨대, Mg, A1 및 Zn의 원료 물질 또는 이들의 합금을 이용하여 마그네슘 합금 용탕을 먼저 형성하고, Ca 및 Y의 원료 물질, 또는 Ca 화합물 및 Y 화합물을 상기 마그네슘 합금 용탕에 투입한 후 적절한 주조 방법을 이용하여 마그네슘 합금 주조재를 형성하는 것도 가능하다. 또는, 최종 목표보다 Ca 및 Y의 함량이 높은 Mg, Al, Zn, Ca 및 Y 합금 (모합금 잉고트)을 제조하고, 이와 별도로 Mg, A1 및 Zn 의 원료 물질 또는 이들의 합금을 이용하여 마그네슴 합금 용탕을 형성한 후 상기 모합금 잉고트를 상기 마그네슘 합금 용탕에 투입하여 마그네슴 합금 주조재를 형 성할 수도 있다. 상기 방법에 따르면 모합금 잉고트의 녹는점은 Ca 및 Y 원료 물 질의 녹는점보다 낮으므로 Ca 및 Y 원료물질을 직접 마그네슘 합금 용탕에 투입할 때보다 낮은 온도에서 모합금 잉고트를 투입할 수 있다는 점에서 특히 유용하다. 그 외에도, 본 발명에 따른 마그네슘 합금의 형성은 다양한 방법을 통해서 구현 가 능하며, 본 발명이 속한 기술분야에서 이미 널리 알려진 마그네슴 합금의 형성 방 법은 모두 본 발명에 일체로 합체된다. 한편, 본 실시예에서 유도 용해는 혹연 도가니 (graphite crucible)를 사용하 였으며, 합금화가 마무리되기 전까지는 용탕의 산화를 방지하기 위해 SF6와 C02 흔 합가스를 용탕 상부에 도포하여 용탕과 대기가 접촉하는 것을 차단하였다. 또한, 용해가 완료된 후에는 철계 금형 (steel mold)을 사용하여 보호가스를 사용하지 않 고 금형 주조하였으며, 압연 실험을 위해 폭 100瞧, 길이 150隱, 두께 15瞧의 판상 주조재를 제조하였고, 압출 실험을 위해 직경 80mm, 길이 150mm의 원통형 빌렛 (billet)을 제조하였으며, 합금 주조재의 발화실험을 위해 직경 55讓, 길이 100mm 의 원통형 빌렛을 제조하였다. 또한, 본 실시예는 금형주조법을 사용하여 마그네 슘 합금을 주조하였으나, 사형주조, 중력주조, 가압주조, 연속주조, 박판주조, 다 이캐스팅, 정밀주조, 분무주조, 반웅고주조 등 다양한 주조법이 사용될 수 있으며, 본 발명에 따른 마그네슘 합금은 반드시 어떠한 특정한 주조 방식에 한정되지는 않 지만 용융 주조법인 것이 더욱 바람직하다. 다음으로, 앞에서 형성한 슬라브를 400°C에서 15시간 동안 균질화 열처리를 실시하였다. 이어서, 표 2의 비교예 1 내지 비교예 6 및 실시예 1 내지 실시예 7 에 대해서 균질화 열처리된 재료를 를 온도 200°C, 를 직경 210隱, 롤 속도 5.74 mpm, 압연 1회 당 압하율 30%/pass 및 7 /pass의 조건 하에서 각각 압연처리하여 최종 두께 1mm의 판재로 열간가공 하였다. 이때 압연 1회당 압하율이 3OT/pass일 경우 최종 두께 1mm까지 총 7회의 압연이 행해졌다. Alternatively, according to a preferred embodiment of the present invention, molten Mg (99.9), Al (99.9%), Zn (99.99%), Ca (99.9%), and Y (99.9%) are simultaneously dissolved to form a molten metal. In addition to the casting method, it is possible to manufacture the magnesium alloy according to various methods. For example, a magnesium alloy molten metal is first formed using raw materials of Mg, A1, and Zn or an alloy thereof, and then a raw casting material of Ca and Y, or a Ca compound and a Y compound is added to the magnesium alloy molten metal, and then cast. It is also possible to form a magnesium alloy casting material by using. Alternatively, Mg, Al, Zn, Ca, and Y alloys (mother alloy ingots) having a higher content of Ca and Y than the final target are prepared, and separately from the raw materials of Mg, A1 and Zn or their alloys. After forming the molten alloy, the master alloy ingot may be added to the magnesium alloy molten metal to form a magnet alloy casting material. According to the above method, since the melting point of the master alloy ingot is lower than that of Ca and Y raw materials, the mother alloy ingot can be introduced at a lower temperature than when the Ca and Y raw materials are directly added to the magnesium alloy molten metal. Particularly useful. In addition, the formation of a magnesium alloy according to the present invention can be implemented through a variety of methods, the formation method of a magnet alloy already widely known in the art to which the present invention belongs all incorporated into the present invention. On the other hand, induction melting in the present embodiment used a graphite crucible, and the SF 6 and CO 2 mixture gas is applied to the upper part of the melt to prevent oxidation of the molten metal until the alloy is finished. Blocked contact. In addition, after the melting is completed, a die was cast without using a protective gas using a steel mold (steel mold), a plate casting material of width 100 瞧, length 150 隱, thickness 15 제조 was manufactured for the rolling experiment. A cylindrical billet having a diameter of 80 mm and a length of 150 mm was prepared for the extrusion experiment, and a cylindrical billet having a diameter of 55 mm 3 and a length of 100 mm was prepared for the ignition test of the alloy casting material. In addition, in the present embodiment, the magnesium alloy is cast using a die casting method, but various casting methods such as sand casting, gravity casting, pressure casting, continuous casting, sheet casting, die casting, precision casting, spray casting, and semi-unggo casting are used. Can be used, The magnesium alloy according to the present invention is not necessarily limited to any particular casting method, but more preferably melt casting method. Next, the slabs formed above were subjected to homogenization heat treatment at 400 ° C. for 15 hours. Subsequently, the materials subjected to homogenization heat treatment for Comparative Examples 1 to 6 and Examples 1 to 7 of Table 2 were subjected to a temperature of 200 ° C., a diameter of 210 kPa, a roll speed of 5.74 mpm, and a rolling reduction per roll of 30. The sheet was rolled under the conditions of% / pass and 7 / pass, respectively, and hot worked into a sheet having a final thickness of 1 mm. In this case, when the rolling reduction per rolling was 3OT / pass, a total of seven rollings were performed up to a final thickness of 1 mm.
한편, 표 2의 비교예 7과 비교예 8 및 실시예 8은 균질화 열처리된 재료를 압출 온도 250에서 압출 속도 5 m/min로 25:1의 압출비로 각각 압출하여 최종 직경 16mra의 표면 상태가 양호한 봉상 압출재를 제조하였다.  Meanwhile, Comparative Example 7, Comparative Example 8 and Example 8 of Table 2 extrude the homogenized heat-treated material at an extrusion ratio of 25: 1 at an extrusion rate of 5 m / min at an extrusion temperature of 250 to obtain a good surface condition with a final diameter of 16 mra. A rod-like extruded material was prepared.
한편, 본 발명의 실시예에서는 주조 및 균질화 열처리 후 압연 및 압출 가공 을 실시하였으나, 예를 들어 단조, 인발 등 다양한 가공 방법에 의해 제조될 수 있 으며, 반드시 어떠한 특정한 가공 방식에 한정되지는 않는다. 마그네슘 합금의 발화온도 측정  On the other hand, in the embodiment of the present invention was carried out after the casting and homogenization heat treatment and rolling and extrusion processing, for example, can be produced by a variety of processing methods such as forging, drawing, and is not necessarily limited to any particular processing method. Ignition temperature measurement of magnesium alloy
상기 마그네슘 합금의 발화온도를 측정하기 위하여, 앞에서 제조된 원통형 빌렛의 외각을 깊이 0.5瞧, 피치 0.1誦, 350rpm의 일정한 속도로 칩 가공하여 일정 한 크기의 칩을 얻었다. 상기 방법으로 얻은 칩 o.ig을 Kxxrc로 유지되는 가열로 안으로 일정한 속도로 넣어서 승온시켰다. 그 과정에서 도 3에서 보듯이 발화로 인해 급격한 온도 상승이 시작되는 온도를 발화온도로 측정하고, 그 결과를 표 2에 나타내었다.  In order to measure the ignition temperature of the magnesium alloy, a chip of a predetermined size was obtained by chip-processing the outer shell of the cylindrical billet manufactured at a constant speed of 0.5 mm depth, pitch 0.1 mm, and 350 rpm. The chip o.ig obtained by the above method was heated up at a constant rate into a heating furnace maintained at Kxxrc. In the process, as shown in FIG. 3, the temperature at which the rapid temperature rise starts due to the ignition was measured as the ignition temperature, and the results are shown in Table 2.
표 2의 비교예 1 내지 비교예 6에서 보듯이, 마그네슴 합금의 발화온도는 칼 슘 첨가에 따라 급격히 증가하고, 같은 양의 칼슴이 첨가될 경우 알루미늄 함량이 많은 합금일수록 발화온도도 증가하는 경향을 보인다.  As shown in Comparative Examples 1 to 6 of Table 2, the ignition temperature of the magnet alloy rapidly increases with the addition of calcium, and when the same amount of calcium is added, the ignition temperature tends to increase as the alloy contains more aluminum. Seems.
【표 2]
Figure imgf000013_0001
표 2에서 실시예 2 및 실시예 5의 발화온도를 비교예 2 및 비교예 5의 발화 온도와 각각 비교하면, 마그네슘 합금에 칼슘만 포함된 경우에 비하여, 이트륨이 더 첨가된 경우 발화온도가 훨씬 높게 형성되는 것을 확인할 수 있다. 왜냐하면, 도 4의 EPMA (Electron Probe Micro-Analyzer) 분석결과에서 보듯이, Y 첨가로 인 해 용탕과 접하는 부분에 CaO와 Y203의 흔합층이 형성되었고, 이 층이 대기 중의 산 소가 용탕으로 침투하여 반응하는 것을 효과적으로 억제할 수 있기 때문이다. 또 한 CaO와 Y203 흔합층의 바깥부분에도 CaO와 MgO의 흔합층이 존재하며, 이러한 이중 흔합층이 용탕을 높은 온도에서도 안정하게 유지할 수 있도록 한다.
[Table 2]
Figure imgf000013_0001
Comparing the ignition temperatures of Examples 2 and 5 in Table 2 with the ignition temperatures of Comparative Examples 2 and 5, respectively, compared to the case where the magnesium alloy contains only calcium, the ignition temperature is much higher when yttrium is added. It can be confirmed that it is formed high. Because, as shown in the EPMA (Electron Probe Micro-Analyzer) analysis of FIG. 4, due to the addition of Y, a mixed layer of CaO and Y 2 0 3 was formed in the contact with the molten metal. It is because it can effectively suppress that it penetrates into a molten metal and reacts. In addition, a mixed layer of CaO and MgO exists in the outer portion of the CaO and Y 2 0 3 mixed layer. The mixed layer keeps the melt stable even at high temperatures.
또한, 비교예 3과 실시예 2 및 비교예 6과 실시예 5를 비교하면, 단순히 칼 슘만 첨가한 경우에 비하여 칼슘과 이트륨을 복합첨가한 경우, 칼슘과 이트륨의 전 체 함량이 단순히 칼슴만 첨가한 경우의 칼슘 함량에 비하여 적은 경우에도 발화온 도는 더욱 높은 것을 확인할 수 있다. 이것은 마그네슴 합금의 발화온도를 높이기 위하여 칼슘만 이용하는 경우에 비하여 칼슴과 이트륨을 복합첨가할 경우 발화저항 성을 높인다는 측면에서 더욱 우수한 효과를 얻을 수 있음을 보여준다.  In addition, when comparing Comparative Example 3, Example 2, and Comparative Example 6 and Example 5, when calcium and yttrium are added in combination with the case of simply adding calcium, the total content of calcium and yttrium is simply added by only chestnut. It can be seen that the ignition temperature is higher even in a small case compared to the calcium content of one case. This shows that the addition of the calcium and the yttrium compound can increase the ignition resistance compared to the case of using only calcium to increase the ignition temperature of the magnet alloy.
또한, 표 2에서 실시예 1에 따른 마그네슘 합금의 발화온도가 807°C로 매우 높은 발화저항성을 보여주는데, 이는 이트륨의 함량이 1중량 ¾»로 높기 때문이며, 따 라서 이트륨의 첨가량이 증가할수록 발화저항성도 크게 향상될 수 있음을 알 수 있 다. 또한, 표 2에서 실시예 8에 따른 마그네슘 합금의 발화온도가 811°C로 매우 높은 발화저항성을 보여주는데, 이는 아연이 6중량 % 첨가된 마그네슘 합금에서도 칼슴과 이트륨이 1중량 ¾씩 첨가될 경우, 발화온도가 크게 향상됨을 보여준다. 마그네습 합금의 인장 특성 평가 In addition, in Table 2, the ignition temperature of the magnesium alloy according to Example 1 shows a very high ignition resistance of 807 ° C. This is because the content of yttrium is high as 1 weight ¾ », and thus, as the amount of yttrium added increases, the ignition resistance It can be seen that also greatly improved. In addition, the ignition temperature of the magnesium alloy according to Example 8 in Table 2 shows a very high ignition resistance of 811 ° C. When the magnesium alloy containing 6% by weight of zinc is added by 1 weight ¾ by 1 weight ¾, yttrium, The ignition temperature is greatly improved. Evaluation of Tensile Properties of Magnesium Alloys
앞에서 설명한 방법에 의하여 제조된 판재를 250°C에서 30분간 열처리한 후, 게이지부 길이가 25mm인 ASTM-E-8M 규격의 sub— size 판상 시편을 제조하였고, 통상 의 인장시험기를 사용하여 1X 10—3 s— 1의 변형률로 상온 인장시험을 실시하였으며, 그 결과를 표 3에 나타내었다. After heat-treating the plate prepared by the method described above at 250 ° C for 30 minutes, a sub-size plate specimen of ASTM-E-8M standard having a gauge length of 25 mm was prepared, using a conventional tensile tester 1X 10 The tensile test was conducted at a strain of 3 s— 1 , and the results are shown in Table 3.
또한 압출재의 경우 게이지부 길이가 25mm인 봉상 시편을 제조하여 판상 시 편과 동일한 조건에서 인장시험을 실시하였다. 표 3에서 보듯이, 비교예 2와 비교예 3, 비교예 5와 비교예 6, 및 비교예 7 과 비교예 8을 비교하면, 칼슘의 함량이 1중량 %에서 2중량 ¾로 증가함에 따라 항복 강도와 인장강도는 증가하지만 연신율은 크게 감소하는 것을 볼 수 있다. 이러한 연신율의 감소는 도 5(a)에서 보듯이 칼슘의 첨가량이 2중량 %로 증가할 경우 기지 내 미세한 Al2Ca 석출상과 더불어 조대한 경질의 Mg-Al-Ca 삼원계 공정상의 분율이 높아지기 때문이다. 반면, 도 5(b)에서 보듯이, 칼슘의 첨가량이 1중량 ¾인 경우 이트륨이 0.6중량 % 포함될 경우에도 조대한 경질의 Mg-Al-Ca 삼원계 공정상은 발견 되지 않고, 따라서 연신율이 낮아지지 않는다. 마찬가지로 도 6에서 비교예 1 내지 비교예 3과 실시예 1의 압출재의 미세조직을 비교하면, 칼슘의 첨가량이 1중량 %와 2중량 ¾로 증가할 경우 도 6(b)와 도 6(c)에서 화살표로 표시된 검은색의 이차상이 다량 관찰되고, 이러한 경질의 이차상에서 결함 발생이 용이하기 때문에 연신율이 감소하게 된다. In addition, in the case of the extruded material, a rod-shaped specimen having a gauge length of 25 mm was manufactured, and a tensile test was performed under the same conditions as the plate-shaped specimen. As shown in Table 3, comparing Comparative Example 2 and Comparative Example 3, Comparative Example 5 and Comparative Example 6, and Comparative Example 7 and Comparative Example 8, yielding as the calcium content increases from 1% by weight to 2% by weight ¾ The strength and tensile strength increase but the elongation decreases significantly. This decrease in elongation is increased as the amount of calcium added to 2% by weight increases the fraction of coarse hard Mg-Al-Ca ternary process with fine Al 2 Ca precipitated phase in the matrix. Because. On the other hand, as shown in Figure 5 (b), when the amount of calcium added 1 ¾ ¾ even if the yttrium is 0.6% by weight coarse hard Mg-Al-Ca ternary process is not found, so the elongation is not lowered Do not. Similarly, when comparing the microstructure of the extruded materials of Comparative Examples 1 to 3 and Example 1 in Figure 6, when the addition amount of calcium increases to 1% by weight and 2% by weight 3 (b) and 6 (c) A large number of black secondary phases, indicated by arrows at, are observed, and elongation is reduced because defects are easily generated in these hard secondary phases. Will decrease.
【표 3】Table 3
Figure imgf000015_0001
반면, 도 6(d)에서 보듯이 칼슘과 이트륨이 각각 1중량 % 씩 첨가된 합금의 압출재에서는 연신율을 저하시키는 경질의 이차상이 관찰되지 않는다. 이러한 결 과는 실시예 2와 비교예 3, 실시예 5와 비교예 6, 및 실시예 13과 비교예 8을 각각 비교하면 더욱 명확하다. 즉, 실시예 2와 실시예 5는 칼슘 1중량 %, 이트륨 0.6중 량%만 첨가하였음에도 불구하고, 칼슘을 2중량 ¾> 첨가한 비교예 3 및 비교예 6과 비 교하여 유사한 수준의 발화저항성과 인장강도를 가지면서 동시에 연신율은 매우 높 은 것을 확인할 수 있다. 실시예 13도 마찬가지로 Mg-6Zn-lAl 합금에 칼슴 1중 량%' 이트륨 1중량 ¾»를 첨가하면 발화저항성이 크게 향상될 뿐만 아니라 인장특성, 특히 인장강도>균일연신율 값이 크게 향상됨을 알 수 있다. 즉, 본 실시예에 따른 마그네슘 합금은 이트륨을 소량 첨가함으로서 칼슴의 함량을 1중량 % 수준으로 낮게 유지하면서도 조대한 경질의 삼원계 공정상의 분율을 크게 감소시켜 강도와 연신율 이 동시에 마그네슴 합금을 얻을 수 있다.
Figure imgf000015_0001
On the other hand, as shown in Figure 6 (d) in the extruded material of the alloy is added by 1% by weight of calcium and yttrium, respectively, the hard secondary phase to reduce the elongation is not observed. This result is more apparent when comparing Example 2 with Comparative Example 3, Example 5, Comparative Example 6, and Example 13 and Comparative Example 8, respectively. That is, in Example 2 and Example 5, although only 1% by weight of calcium and 0.6% by weight of yttrium were added, a similar level of ignition resistance was compared with that of Comparative Example 3 and Comparative Example 6, which added 2% by weight of calcium. Have high tensile strength and high elongation at the same time You can see that. In the same manner as in Example 13, the addition of 1 weight% 'yttrium 1 weight ¾ »to the Mg-6Zn-lAl alloy not only greatly improved the ignition resistance but also greatly improved the tensile properties, in particular the tensile strength> uniform elongation value. have. In other words, the magnesium alloy according to the present embodiment by the addition of a small amount of yttrium, while maintaining a low content of the chestnut to 1% by weight level, while greatly reducing the fraction of the coarse hard ternary process to obtain a magnet alloy at the same time the strength and elongation Can be.
또한, 실시예 2와 비교예 2, 실시예 5와 비교예 5를 각각 비교하면, 실시예 2 및 실시예 5는 이트륨을 첨가함으로써 칼슴을 동일 함량으로 첨가하고 이트륨을 첨가하지 않은 경우에 비하여 발화저항성이 우수하면서, 동시에 인장강도 X균일연 신율 값도 더욱 우수해지는 것을 확인할 수 있다.  In addition, when Example 2, Comparative Example 2, Example 5 and Comparative Example 5 are compared, Example 2 and Example 5 were fired as compared to the case where Yttrium was added in the same amount and yttrium was not added. While excellent in resistance, it can be seen that the value of tensile strength X uniform elongation is further excellent.
이러한 경향은 칼슴과 이트륨의 합산 첨가량에 따른 발화온도와 인장특성의 변화를 나타내는 도 7과 도 8에서도 확인할 수 있다. 도 7에서 칼슴과 이트륨의 합산 첨가량이 증가함에 따라 발화온도는 점차 증가하는 경향을 보이며, 특히 이트 륨이 첨가되지 않는 합금에 비해 이트륨이 첨가될 경우 발화온도 증가 기울기가 더 욱 커지는 것을 확인할 수 있다. 반면, 도 8에서 보듯이 칼슴 단독 첨가의 경우 칼 슘 첨가량이 증가함에 따라 열간가공 종류에 상관없이 인장강도>균일연신율 값이 크게 감소하는 경향을 보이지만, 칼슴과 이트륨이 동시에 첨가될 경우 오히려 칼슘 과 이트륨이 첨가되지 않은 합금보다 기계적 특성이 향상되는 결과를 보인다. 이러 한 결과로부터 소량의 칼슴과 이트륨을 동시에 첨가함으로써 발화저항성을 크게 향 상시키면서 동시에 인장특성도 향상되는 것을 확인할 수 있다. 이상으로 본 발명의 바람직한 실시예에 따른 마그네슴 합금 및 그 제조방법 을 첨부한 도면을 참고로 상세하게 설명하였다. 하지만, 본 발명이 속하는 기술분 야에서 통상의 지식을 가진 자는 상기 실시예가 본 발명의 일례를 예시하는 것에 불고하고 다른 다양한 수정 및 변형이 가능하다는 것을 이해할 것이다. 따라서, 본 발명의 범위는 오직 뒤에서 설명할 특허청구범위에 의해서만 한정된다.  This tendency can also be seen in FIGS. 7 and 8, which show changes in the firing temperature and tensile properties according to the sum of the amount of chalc and yttrium. In FIG. 7, the ignition temperature shows a tendency to increase gradually as the amount of the sum of the chams and the yttrium is increased. In particular, when the yttrium is added, the slope of the ignition temperature increases more. . On the other hand, as shown in Figure 8, the addition of the chestnut showed a tendency to significantly decrease the tensile strength> uniform elongation value regardless of the type of hot processing, as calcium addition amount increases, but rather when calcium and yttrium are added simultaneously The mechanical properties are improved compared to the alloy without yttrium. From these results, it can be seen that the addition of a small amount of chestnut and yttrium simultaneously improves the ignition resistance and at the same time improves the tensile properties. The magnet alloy according to a preferred embodiment of the present invention and a method for manufacturing the same have been described in detail with reference to the accompanying drawings. However, one of ordinary skill in the art to which the present invention pertains will understand that the above embodiments are illustrative of the invention and that various other modifications and variations are possible. Accordingly, the scope of the present invention is limited only by the claims which will be described later.

Claims

【청구의 범위】  [Range of request]
【청구항 11  [Claim 11
용융 주조법에 의하여 제조되는 마그네슘 합금으로서,  Magnesium alloy manufactured by melt casting method,
상기 마그네슘 합금은 1.0중량 ¾) 이상 및 7.0중량 % 미만의 A1, 0.05중량 % 내 지 2.0 중량 %의 Ca, 0.05중량 % 내지 2.0중량%의 Y와, 0중량 ¾ 초과 및 6.0중량 % 이 하의 Zn과, 잔부인 Mg 및 기타 불가피한 불순물을 포함하고,  The magnesium alloy is 1.0 wt ¾) and less than 7.0 wt% A1, 0.05 wt% to 2.0 wt% Ca, 0.05 wt% to 2.0 wt% Y, greater than 0 wt% and less than 6.0 wt% Zn And, the balance of Mg and other unavoidable impurities,
상기 Ca와 Y의 합산 함량은 전체 마그네슘 합금의 전체 중량 대비 0.1중량 % 이상 2.5중량¾ 미만인 것을 특징으로 하는 마그네슘 합금.  Magnesium alloy, characterized in that the combined content of Ca and Y is less than 2.5% by weight of less than 0.1% by weight relative to the total weight of the total magnesium alloy.
【청구항 2】  [Claim 2]
제 1항에 있어서, 상기 Ca의 함량은 0.2중량 ¾ 내지 1.5중량%인 것을 특징으 로 하는 마그네슴 합금.  According to claim 1, wherein the content of Ca is magnesium alloy, characterized in that 0.2 to ¾ to 1.5% by weight.
【청구항 3]  [Claim 3]
제 1항에 있어서, 상기 Y의 함량은 0.1중량 % 내지 1.5중량%인 것을 특징으로 하는 마그네슘 합금.  The magnesium alloy according to claim 1, wherein the content of Y is 0.1% by weight to 1.5% by weight.
【청구항 4]  [Claim 4]
제 1항 내지 3항 중 어느 한 항에 있어서, 상기 Ca와 Y의 함량은 전체 마그 네슴 합금의 전체 중량 대비 0.3중량 % 이상 2.0중량 % 이하인 것을 특징으로 하는 마그네슘 합금.  The magnesium alloy according to any one of claims 1 to 3, wherein the content of Ca and Y is 0.3% by weight or more and 2.0% by weight or less with respect to the total weight of the entire magnet alloy.
【청구항 5】  [Claim 5]
제 1항 내지 3항 중 어느 한 항에 있어서, 상기 마그네슘 합금은 Mn을 0중 량%초과 및 1.0중량 % 이하로 더 포함하는 것을 특징으로 하는 마그네슴 합금.  The magnesium alloy according to any one of claims 1 to 3, wherein the magnesium alloy further comprises Mn of more than 0% by weight and 1.0% by weight or less.
【청구항 6] [Claim 6]
제 1항 내지 3항 중 어느 한 항에 있어서, 상기 마그네슘 합금은 Zr을 0.1중 량% 내지 1.0중량 % 이하로 더 포함하는 것을 특징으로 하는 마그네슴 합금.  The magnesium alloy according to any one of claims 1 to 3, wherein the magnesium alloy further comprises Zr in an amount of 0.1 wt% to 1.0 wt% or less.
【청구항 7]  [Claim 7]
Mg, Al 및 Zn을 포함하는 마그네슴 합금 용탕을 형성하는 단계;  Forming a molten alloy molten metal including Mg, Al, and Zn;
상기 마그네슘 합금 용탕에 Ca 및 Y의 원료 물질을 첨가하는 단계;  Adding raw materials of Ca and Y to the magnesium alloy molten metal;
상기 Ca 및 Y의 원료 물질이 첨가된 마그네슘 합금 용탕을 용융 주조 방법을 이용하여 마그네슘 합금 주조재를 제조하는 단계를 포함하고,  Manufacturing a magnesium alloy casting material using a melt casting method of the magnesium alloy molten metal to which the raw materials of Ca and Y are added,
상기 방법에 의하여 제조된 마그네슘 합금은 1.0중량 % 이상 및 7.0중량 % 미 만의 A1, 0.05중량 % 내지 2.0 중량 %의 Ca, 0.05중량 % 내지 2.0중량¾의 Y와, 0중량 % 초과 6중량 % 이하의 Zn과, 잔부인 Mg 및 기타 불가피한 불순물로 구성되는 것을 특 징으로 하는 마그네슘 합금의 제조방법 . The magnesium alloy prepared by the above method is 1.0% by weight or more and less than 7.0% by weight of A1, 0.05% by weight to 2.0% by weight of Ca, 0.05% by weight to 2.0% by weight Y, and more than 0% by weight and 6% by weight or less. Consisting of Zn, residual Mg and other unavoidable impurities Method for producing magnesium alloy by gong
【청구항 8]  [Claim 8]
제 7항에 있어서, 상기 마그네슘 합금 용탕에 Ca 및 Y의 원료 물질을 첨가하 는 단계는 800°C보다 높은 온도에서 Ca 및 Y의 원료 물질을 첨가하는 것을 특징으 로 하는 마그네슘 합금의 제조방법 . 8. The method of claim 7, wherein adding the Ca and Y raw materials to the magnesium alloy melt comprises adding Ca and Y raw materials at a temperature higher than 800 ° C. 9.
【청구항 9]  [Claim 9]
Mg, Al 및 Zn을 포함하는 마그네슴 합금 용탕을 형성하는 단계 ;  Forming a molten alloy alloy containing Mg, Al, and Zn;
Mg, Al , Zn, Ca 및 Y를 포함하고 750°C 이하에서 용해가능한 모합금 잉고트 를 형성하는 단계 ; Forming a master alloy ingot comprising Mg, Al, Zn, Ca and Y and soluble at 750 ° C. or lower;
상기 마그네슴 합금 용탕에 상기 750°C 이하에서 용해가능한 모합금 잉고트 를 투입하는 단계 ; Injecting a master alloy ingot soluble at 750 ° C. or lower into the molten alloy alloy;
상기 모합금 잉고트가 포함된 용탕을 용융 주조 방법을 이용하여 마그네슴 합금 주조재를 제조하는 단계를 포함하고 ,  Manufacturing a molten alloy casting material by using a molten casting method for the molten metal including the master alloy ingot;
상기 방법에 의하여 제조된 마그네슘 합금은 1.0중량 % 이상 및 7.0중량¾ 미 만의 A1 , 0.05중량 ¾> 내지 2.0 중량 %의 Ca , 0.05중량 % 내지 2.0중량%의 Y와, 0중량 % 초과 6중량? ¾ 이하의 Zn과, 잔부인 Mg 및 기타 불가피 한 불순물로 구성 되는 것을 특 징으로 하는 마그네슴 합금의 제조방법 .  Magnesium alloy prepared by the above method is more than 1.0% by weight and less than 7.0% by weight A1, 0.05% by weight ¾> to 2.0% by weight of Ca, 0.05% to 2.0% by weight of Y, more than 0% by weight 6%? A method for producing a magnet alloy characterized by consisting of Zn of ¾ or less, balance Mg, and other unavoidable impurities.
【청구항 10]  [Claim 10]
제 9항에 있어서, 상기 Mg, Al , Zn, Ca 및 Y가 포함된 모합금 잉고트는 75 0°C 이하에서 용해 가능한 것이고, 상기 모합금 잉고트는 750°C 보다 낮은 온도에 서 상기 마그네슘 합금 용탕에 투입되는 것을 특징으로 하는 마그네슘 합금의 제조 방법 . The method of claim 9, wherein the master alloy ingot containing Mg, Al, Zn, Ca and Y is soluble at 75 0 ° C or less, the master alloy ingot is the magnesium alloy molten metal at a temperature lower than 750 ° C Method for producing a magnesium alloy, characterized in that it is added to.
【청구항 11]  [Claim 11]
Mg, Al 및 Zn을 포함하는 마그네슘 합금 용탕을 형성하는 단계 ;  Forming a magnesium alloy molten metal including Mg, Al, and Zn;
상기 마그네슘 합금 용탕에 Ca 화합물 및 Y 화합물을 첨가하는 단계 ;  Adding a Ca compound and a Y compound to the magnesium alloy melt;
상기 Ca 화합물 및 Y 화합물이 첨가된 마그네슴 합금 용탕을 용융 주조 방법 을 이용하여 마그네슘 합금 주조재를 제조하는 단계를 포함하고,  Manufacturing a magnesium alloy casting material by using a molten casting method on the molten magnesium alloy to which the Ca compound and the Y compound are added;
상기 방법에 의하여 제조된 마그네슘 합금은 1.0중량 % 이상 및 7.0중량 % 미 만의 A1 , 0.05중량 % 내지 2.0 중량 %의 Ca , 0.05중량 % 내지 2.0중량%의 Y와, 0중량 % 초과 6증량 «¾ 이하의 Zn과, 잔부인 Mg 및 기타 불가피 한 불순물로 구성 되는 것을 특 징으로 하는 마그네슘 합금의 제조방법 .  Magnesium alloy prepared by the above method is more than 1.0% by weight and less than 7.0% by weight of A1, 0.05% to 2.0% by weight of Ca, 0.05% to 2.0% by weight of Y, more than 0% by weight 6% «¾ Magnesium alloy production method characterized by consisting of the following Zn, the balance Mg and other unavoidable impurities.
【청구항 12】 제 7항 내지 11항 중 어느 한 항에 있어서, 상기 Ca 및 Y 원료물질, Mg, A1, Zn, Ca 및 Y가 포함된 모합금 잉고트, 또는 상기 Ca 화합물 및 Y 화합물을 상기 마 그네슘 합금 용탕에 투입하는 단계는 상기 마그네슴 합금 용탕을 주기적으로 교반 하는 단계를 더 포함하는 것을 특징으로 하는 마그네슴 합금의 제조방법. [Claim 12] 12. The molten magnesium alloy according to any one of claims 7 to 11, wherein the Ca and Y raw material, a mother alloy ingot containing Mg, A1, Zn, Ca, and Y, or the Ca compound and the Y compound are melted in the magnesium alloy. The step of adding to the manufacturing method of the magnet alloy, characterized in that further comprising the step of periodically stirring the molten alloy alloy.
【청구항 13]  [Claim 13]
제 7항 내지 11항 중 어느 한 항에 있어서, 상기 주조 방법은 금형주조법, 사형주조법, 중력주조법, 가압주조법, 연속주조법, 박판주조법, 다이캐스팅법, 정 밀주조법, 소실모형주조법, 분무주조법 및 반응고주조법 중 하나인 것을 특징으로 하는 마그네슘 합금의 제조방법 .  The casting method according to any one of claims 7 to 11, wherein the casting method is a die casting method, a sand casting method, a gravity casting method, a pressure casting method, a continuous casting method, a thin plate casting method, a die casting method, a precision casting method, a loss model casting method, a spray casting method, and a reaction. Method for producing magnesium alloy, characterized in that one of the high casting method.
【청구항 14]  [Claim 14]
제 7항 내지 11항 중 어느 한 항에 있어서, 상기 마그네슘 합금의 제조방법 은 상기 주조 방법에 의하여 형성된 마그네슘 합금 주조재를 열간가공하는 단계를 더 포함하는 것을 특징으로 하는 마그네슘 합금의 제조방법 .  The method of manufacturing a magnesium alloy according to any one of claims 7 to 11, wherein the manufacturing method of the magnesium alloy further comprises hot working a magnesium alloy cast material formed by the casting method.
PCT/KR2011/007298 2010-10-05 2011-10-04 Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof WO2012046984A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11830869.1A EP2492365B1 (en) 2010-10-05 2011-10-04 Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof
JP2012541039A JP5852580B2 (en) 2010-10-05 2011-10-04 Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
CN201180005584.6A CN102712969B (en) 2010-10-05 2011-10-04 Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof
CA2781995A CA2781995A1 (en) 2010-10-05 2011-10-04 Non-flammable magnesium alloy with excellent mechanical properties, and preparation method thereof
US13/510,989 US20130183193A1 (en) 2010-10-05 2011-10-04 Non-flammable magnesium alloy with excellent mechanical properties, and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-96709 2010-10-05
KR20100096709 2010-10-05
KR1020110023260A KR101066536B1 (en) 2010-10-05 2011-03-16 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
KR10-2011-23260 2011-03-16

Publications (2)

Publication Number Publication Date
WO2012046984A2 true WO2012046984A2 (en) 2012-04-12
WO2012046984A3 WO2012046984A3 (en) 2012-06-21

Family

ID=44957671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007298 WO2012046984A2 (en) 2010-10-05 2011-10-04 Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof

Country Status (7)

Country Link
US (1) US20130183193A1 (en)
EP (1) EP2492365B1 (en)
JP (1) JP5852580B2 (en)
KR (1) KR101066536B1 (en)
CN (1) CN102712969B (en)
CA (1) CA2781995A1 (en)
WO (1) WO2012046984A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013157653A1 (en) * 2012-04-19 2015-12-21 国立大学法人 熊本大学 Magnesium alloy and manufacturing method thereof

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223045B1 (en) * 2011-12-29 2013-01-17 한국기계연구원 Magnesium inactivating materal and method for manufacturing magnesium alloy using the magnesium inactivating materal
CN103074467B (en) * 2013-02-01 2015-12-23 浙江宝信新型炉料科技发展有限公司 A kind of solid metal Mg alloy cored wine for steel desulfurization and preparation method thereof
JP6048217B2 (en) * 2013-02-28 2016-12-21 セイコーエプソン株式会社 Magnesium-based alloy powder and magnesium-based alloy compact
JP5852039B2 (en) * 2013-03-29 2016-02-03 株式会社栗本鐵工所 Heat-resistant magnesium alloy
EP2987875B1 (en) * 2013-04-15 2018-10-10 National University Corporation Kumamoto University Fire-resistant magnesium alloy and production method therefor
JP6199073B2 (en) * 2013-05-02 2017-09-20 雅史 野田 Method for producing magnesium alloy
CN104233027B (en) * 2014-06-06 2017-03-22 河南科技大学 Flame-retardant high-strength magnesium alloy and preparation method thereof
KR101585089B1 (en) * 2014-06-17 2016-01-22 한국생산기술연구원 High ignition-resistance with high-strength magnesium alloy and method of manufacturing the same
JP2016076701A (en) * 2014-10-07 2016-05-12 ジャパンファインスチール株式会社 Electromagnetic wave shield film and compact including the same
KR101608429B1 (en) 2014-10-27 2016-04-04 한국철도기술연구원 A railway vehicle body made of non-framable magnesium alloy
CN104532094A (en) * 2014-12-15 2015-04-22 镁联科技(芜湖)有限公司 Casting magnesium alloy as well as preparation method and application thereof
KR101931672B1 (en) * 2014-12-19 2018-12-21 한국기계연구원 High speed extrudable non-flammability magnesium alloys and method for manufacturing magnesium alloy extrusion using the same
CN104630586B (en) * 2015-02-27 2017-03-22 河南科技大学 Flame-retardant and heat-resistant magnesium alloy and preparation method
KR101670043B1 (en) * 2015-03-17 2016-10-27 전북대학교산학협력단 Calcium added magnesium alloy and its manufacturing method
KR101684300B1 (en) 2015-05-26 2016-12-08 주식회사 에스제이테크 Method of the magnesium alloy castings produced using the calcium silicon alloy powder
KR101889018B1 (en) * 2016-12-23 2018-09-20 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same
CN108660348A (en) * 2017-04-01 2018-10-16 比亚迪股份有限公司 A kind of fire-retardant wrought magnesium alloy of high strength and low cost
CN108796327B (en) * 2018-06-28 2020-08-28 郑州大学 High-plasticity low-anisotropy deformed magnesium alloy plate and preparation method thereof
CN110656270B (en) * 2018-06-29 2021-11-12 比亚迪股份有限公司 Die-casting magnesium alloy and preparation method and application thereof
KR102271295B1 (en) * 2018-07-18 2021-06-29 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same
KR102242818B1 (en) * 2018-10-25 2021-04-21 한국재료연구원 Magnesium alloy with excellent corrosion resistance and room-temperature formability, magnesium alloy plate, and method of manufacturing the same
JP6814446B2 (en) * 2019-03-12 2021-01-20 本田技研工業株式会社 Flame-retardant magnesium alloy and its manufacturing method
WO2020054880A2 (en) * 2019-12-18 2020-03-19 一般社団法人日本マグネシウム協会 Flame retardant magnesium alloy with high toughness
CN111254334B (en) * 2020-03-10 2022-03-29 东莞宜安科技股份有限公司 Flame-resistant magnesium alloy and preparation method thereof
CN111455245A (en) * 2020-05-21 2020-07-28 东北大学 High-strength Mg-Ca-Mn-Al-Zn series wrought magnesium alloy containing gadolinium-yttrium rare earth elements and preparation method thereof
CN113373398B (en) * 2021-06-24 2023-04-28 重庆大学 Flame-retardant magnesium alloy part
CN115537619A (en) * 2022-09-22 2022-12-30 宁波尚镁新材料科技有限责任公司 Magnesium alloy for processing cookware, magnesium alloy cookware and processing method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269609A (en) * 1995-03-27 1996-10-15 Toyota Central Res & Dev Lab Inc Mg-al-ca alloy excellent in die castability
US6264763B1 (en) * 1999-04-30 2001-07-24 General Motors Corporation Creep-resistant magnesium alloy die castings
JP2002129272A (en) * 2000-10-31 2002-05-09 Ahresty Corp Magnesium alloy for diecasting
JP2005068550A (en) * 2003-08-06 2005-03-17 Aisin Seiki Co Ltd Inexpensive heat resistant magnesium alloy for casting having excellent heat resistance and casting property
GB0323855D0 (en) * 2003-10-10 2003-11-12 Magnesium Elektron Ltd Castable magnesium alloys
KR100605741B1 (en) * 2004-04-06 2006-08-01 김강형 magnesium alloy wrought product with anti-corrosion and good plating characteristics
KR101085253B1 (en) * 2004-06-30 2011-11-22 스미토모덴키고교가부시키가이샤 Producing method for magnesium alloy material
JP4500916B2 (en) * 2004-09-28 2010-07-14 国立大学法人 熊本大学 Magnesium alloy and manufacturing method thereof
JP4415098B2 (en) * 2005-03-16 2010-02-17 独立行政法人産業技術総合研究所 Method for producing flame retardant magnesium alloy extruded material and extruded material
JP4706011B2 (en) 2005-07-27 2011-06-22 国立大学法人東北大学 Magnesium alloy, molded article, and method of forming magnesium alloy
JP5035893B2 (en) * 2006-09-01 2012-09-26 独立行政法人産業技術総合研究所 High strength and high ductility flame retardant magnesium alloy and method for producing the same
DE112007002016T5 (en) * 2006-09-01 2009-07-23 National Institute Of Advanced Industrial Science And Technology High strength non-flammable magnesium alloy
CN100467647C (en) * 2007-04-19 2009-03-11 沈阳工业大学 High-strength heat-proof compression casting magnesium alloy and preparation method thereof
JP5252629B2 (en) * 2008-08-06 2013-07-31 独立行政法人産業技術総合研究所 Flame retardant magnesium alloy filler
KR101045218B1 (en) * 2008-09-18 2011-06-30 한국생산기술연구원 Magnesium alloy and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013157653A1 (en) * 2012-04-19 2015-12-21 国立大学法人 熊本大学 Magnesium alloy and manufacturing method thereof

Also Published As

Publication number Publication date
EP2492365B1 (en) 2019-12-11
CN102712969A (en) 2012-10-03
US20130183193A1 (en) 2013-07-18
EP2492365A4 (en) 2017-12-20
EP2492365A2 (en) 2012-08-29
CA2781995A1 (en) 2012-04-12
JP2013512338A (en) 2013-04-11
KR101066536B1 (en) 2011-09-21
CN102712969B (en) 2015-06-17
WO2012046984A3 (en) 2012-06-21
JP5852580B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
KR101066536B1 (en) Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
KR101080164B1 (en) Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
KR101367892B1 (en) Magnesium alloy for high temperature and manufacturing method thereof
KR101276665B1 (en) Magnesium alloy heat-treatable at high temperature
JP7323616B2 (en) Magnesium alloy material and its manufacturing method
KR101931672B1 (en) High speed extrudable non-flammability magnesium alloys and method for manufacturing magnesium alloy extrusion using the same
JP4958267B2 (en) Magnesium alloy material and method for producing the same
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
CN105283566A (en) Fire-resistant magnesium alloy and production method therefor
US10023943B2 (en) Casting aluminum alloy and casting produced using the same
KR20160011136A (en) Magnesium alloy having improved corrosion resistance and method for manufacturing magnesium alloy member using the same
JP2006291327A (en) Heat-resistant magnesium alloy casting
WO2013157653A1 (en) Magnesium alloy and method for producing same
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
JP6916882B2 (en) Magnesium alloy plate material and its manufacturing method
KR20210130455A (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
JP5202303B2 (en) Zn alloy for die casting and manufacturing method thereof, Al master alloy for die casting alloy
KR101858856B1 (en) High strength magnesium alloy having excellent fire-retardant, and method for manufacturing the same
KR20150090380A (en) Method of manufacturing Mg alloy with good formability
KR101223045B1 (en) Magnesium inactivating materal and method for manufacturing magnesium alloy using the magnesium inactivating materal
KR20150090379A (en) Method of manufacturing high strength Mg alloy with good formability

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005584.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13510989

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012541039

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2781995

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011830869

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830869

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE