WO2012046964A2 - 응시위치를 추적하여 입체영상을 표시하는 입체영상 표시장치 - Google Patents

응시위치를 추적하여 입체영상을 표시하는 입체영상 표시장치 Download PDF

Info

Publication number
WO2012046964A2
WO2012046964A2 PCT/KR2011/006973 KR2011006973W WO2012046964A2 WO 2012046964 A2 WO2012046964 A2 WO 2012046964A2 KR 2011006973 W KR2011006973 W KR 2011006973W WO 2012046964 A2 WO2012046964 A2 WO 2012046964A2
Authority
WO
WIPO (PCT)
Prior art keywords
stereoscopic image
image display
display unit
eyes
gaze
Prior art date
Application number
PCT/KR2011/006973
Other languages
English (en)
French (fr)
Other versions
WO2012046964A9 (ko
WO2012046964A3 (ko
Inventor
최규호
박종후
김지상
Original Assignee
Choi Gyu Ho
Park Jong Hu
Kim Ji Sang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Choi Gyu Ho, Park Jong Hu, Kim Ji Sang filed Critical Choi Gyu Ho
Publication of WO2012046964A2 publication Critical patent/WO2012046964A2/ko
Publication of WO2012046964A9 publication Critical patent/WO2012046964A9/ko
Publication of WO2012046964A3 publication Critical patent/WO2012046964A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/376Image reproducers using viewer tracking for tracking left-right translational head movements, i.e. lateral movements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/275Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals
    • H04N13/279Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals the virtual viewpoint locations being selected by the viewers or determined by tracking

Definitions

  • the present invention relates to a stereoscopic image display apparatus, and more particularly, to a stereoscopic image display apparatus displaying a stereoscopic image corresponding to a gaze point by tracking a gaze position of both eyes of a user.
  • a person has two eyes, and the positions of the two eyes are different so that the image on the retina of the right eye and the image on the retina of the left eye are different.
  • each object entering the field of view also differs in the position of the image on the left and right eyes depending on the distance from the viewer. In other words, the closer the object is, the more the image is formed on both eyes. The farther the object is, the more the image is on both eyes. Therefore, the information on the distance can be restored from the difference between the images formed at the left and right binoculars, thereby feeling a three-dimensional effect.
  • a stereoscopic image can be realized by showing different images to two eyes.
  • This method is currently used in the implementation of stereoscopic movies and virtual reality.
  • the conventional stereoscopic image display device provides a predetermined left image and a right image at every moment, forcing the viewer to follow the gaze point according to the predetermined image.
  • the focal length of the left image and the right image displaying the stereoscopic image is unilaterally designated and displayed, the eyes of the viewer are easily tired, and the head is dizzy.
  • An object of the present invention is to solve the above-described problems, stereoscopic image that can minimize the eye fatigue and increase the stereoscopic feeling of the viewer by displaying a stereoscopic image adjusted in focus corresponding to the gaze position and gaze point of both eyes of the viewer It is to provide a display device.
  • the stereoscopic image display device of the present invention at least one stereoscopic image display unit for displaying a stereoscopic image;
  • a pair of position sensor-embedded glasses coupled to both eyes and provided with a pair of infrared lamps corresponding to the positions of both eyes;
  • a gaze position detection camera provided at one side of the stereoscopic image display unit and configured to sense gaze positions of both eyes through positions of the pair of infrared lamps;
  • a stereoscopic image generator for generating a stereoscopic image of the object in both eyes according to a change in the gaze position of both eyes when the object is disposed in the virtual reality space where the stereoscopic image display unit is arranged and supplying the stereoscopic image display unit to the stereoscopic image display unit;
  • a stereoscopic image control unit configured to control the stereoscopic image generating unit so that the
  • the gaze position detection camera detects the vertical, horizontal and linear distances of both eyes and the gaze direction with respect to the stereoscopic image display unit.
  • the stereoscopic image generating unit assumes that an object exists in an axial center of the plurality of stereoscopic image displays, and the gaze position The stereoscopic image corresponding to the segment is generated and supplied to each of the plurality of stereoscopic image display units.
  • the apparatus may further include an input device configured to receive a position change signal of a stereoscopic image displayed on the stereoscopic image display unit.
  • the gaze position detection camera photographs the gaze position of the viewer
  • the stereoscopic image controller calculates the gaze position through the gaze position image photographed to display a stereoscopic image corresponding to the gaze position.
  • the stereoscopic image is generated to show that the real object exists in the virtual reality space, the eye fatigue of the viewer can be minimized and the virtual reality can be transmitted more vividly.
  • the position and angle of the displayed object is changed according to the movement of the viewer, it may be combined with a game machine, a virtual reality implementer, and the like to expand the field of application.
  • FIG. 1 is a schematic diagram schematically showing a configuration of a stereoscopic image display device of the present invention
  • FIG. 2 is an exemplary diagram illustrating a process of changing a focal length according to movement of both eyes of a viewer in reality
  • FIG. 3 is an exemplary diagram illustrating a process of changing a focal length when a stereoscopic image is displayed on a stereoscopic image display unit according to movement of both eyes of a viewer implemented by the stereoscopic image display apparatus according to the present invention
  • FIGS. 4 and 5 are exemplary views illustrating a process of displaying a stereoscopic image when one stereoscopic image display unit is provided in the stereoscopic image display apparatus according to the present invention.
  • FIG. 6 is an exemplary view illustrating a process of displaying a stereoscopic image when the stereoscopic image display device is provided with a portable stereoscopic image display unit.
  • FIG. 7 and 8 are exemplary views illustrating a process of displaying a stereoscopic image when two stereoscopic image display units are provided in the stereoscopic image display apparatus according to the present invention.
  • FIGS. 9 and 10 are exemplary views illustrating a process of displaying a stereoscopic image when three stereoscopic image display units are provided in the stereoscopic image display apparatus according to the present invention.
  • FIG. 1 is a schematic diagram showing the configuration of a stereoscopic image display apparatus 100 according to the present invention.
  • the stereoscopic image display apparatus 100 may track a gaze position of a viewer to display a stereoscopic image corresponding to a gaze point, thereby improving stereoscopic feeling to the viewer and minimizing eye fatigue.
  • the stereoscopic image display apparatus 100 includes a stereoscopic image display unit 110 for displaying a stereoscopic image, a position sensor built-in glasses 130 coupled to both eyes of the viewer, and a stereoscopic image display unit.
  • One side of the 110 is provided with a gaze position detection camera 120 for detecting the position of the position sensor built-in glasses 130, and generates a stereoscopic image corresponding to the gaze position of both eyes to supply to the stereoscopic image display unit 110 Stereoscopic image control unit 140, the stereoscopic image control unit for controlling the stereoscopic image generating unit 140 to calculate the number and size of the stereoscopic image display unit 110 and the gaze position of both eyes to generate a stereoscopic image corresponding to the gaze position 160.
  • the stereoscopic image display unit 110 displays a stereoscopic image supplied from the stereoscopic image generator 140.
  • the stereoscopic image display unit 110 selectively displays the left image and the right image to implement a stereoscopic image.
  • the stereoscopic image display unit 110 may include a parallax barrier (not shown) or a lenticular lens array (not shown).
  • the stereoscopic image display unit 110 provides the size and display pixel of the display panel to the stereoscopic image controller 160 and receives a stereoscopic image suitable for the size and the pixel.
  • the stereoscopic image display unit 110 transmits an input signal applied from the input device 150 to the stereoscopic image generator 140.
  • the stereoscopic image display unit 110 includes a receiving sensor (not shown) receiving an input signal, and the display angle of the stereoscopic image A displayed on the stereoscopic image display unit 110 can be changed based on the input signal. have.
  • the gaze position detecting camera 120 is disposed on one side of the stereoscopic image display unit 110 to detect the position of the position sensor built-in glasses 130 and informs the stereoscopic image controller 160.
  • Stare position detection camera 120 detects the gaze position of the viewer by detecting a pair of infrared lamp 131 disposed in the position sensor built-in glasses 130, taking a gaze image of the current viewer (O) to take a three-dimensional image
  • the control unit 160 transmits.
  • the gaze position detecting camera 120 has a built-in optical filter to detect the position of the infrared lamp 131.
  • the gaze image is captured and transmitted to the stereoscopic image controller 160 in real time.
  • the gaze position detecting camera 120 may be provided at an upper end or a lower end of the stereoscopic image display unit 110, and a plurality of gaze position detecting cameras 120 may be arranged at predetermined intervals according to the size of the stereoscopic image display unit 110.
  • the stereoscopic image display apparatus 100 is implemented to detect the position of both eyes of the viewer by the infrared lamp 131 provided in the position sensor built-in glasses 130, in some cases It may be implemented by other position sensing means. In this case, the gaze position detecting camera 120 may be changed to correspond to the type of the position detecting means.
  • the position sensor built-in glasses 130 is worn on the viewer's face to recognize the current position of both eyes to the gaze position detection camera 120.
  • the position sensor built-in glasses 130 includes a left lens 133 and a right lens 133 that are respectively worn on both eyes, and an infrared lamp 131 coupled to one side of the left lens 133 and the right lens 135. .
  • the left lens 133 and the right lens 135 are provided with polarization filters of different colors so that each eye independently recognizes the left image and the right image displayed through the stereoscopic image display unit 110.
  • the stereoscopic image generator 140 generates a stereoscopic image according to the gaze position of the viewer calculated by the stereoscopic image controller 160 by the stereoscopic method and provides the stereoscopic image display unit 110.
  • the stereoscopic image generator 140 generates a stereoscopic image of an object corresponding to the gaze point calculated by the stereoscopic image controller 160 and supplies it to the stereoscopic image display unit 110.
  • the stereoscopic image generator 140 processes an image according to the gaze position and distance of both eyes transmitted from the stereoscopic image controller 160 to the initial stereoscopic image generated by photographing a real object in a stereoscopic image camera (not shown). To generate a processed stereoscopic image.
  • the stereoscopic image controller 160 extracts the position information of the viewer O based on the current image of the viewer O transmitted by the gaze position detecting camera 120 and generates a stereoscopic image corresponding to the extracted gaze position. To control the stereoscopic image generation unit 140 to.
  • FIG. 2 is an exemplary diagram illustrating a change in focus when a spectator moves naturally in real life and views an object. As shown, the focal length varies depending on the distance and direction when the right eye RE and the left eye LE look at the object.
  • FIG 3 is an exemplary view showing the movement of the right eye RE and the left eye LE according to the gaze position when the viewer views the stereoscopic image display unit 110 according to the present invention.
  • the stereoscopic image control unit 160 according to the present invention manipulates the eye movement and the viewpoint in the same way as when viewing an object in real life so that the stereoscopic image of the object displayed by the viewer through the stereoscopic image display unit 110 is actually displayed. To be perceived to exist in reality.
  • the stereoscopic image controller 160 calculates the position information of the viewer (O) based on the stereoscopic image display unit 110 based on the gaze images of both eyes transmitted from the gaze position detecting camera 120 to generate the stereoscopic image generator 110. To send). The stereoscopic image controller 160 calculates vertical and horizontal positions, distances, and gaze directions of both eyes based on the gaze image.
  • the stereoscopic image control unit 160 divides and displays the stereoscopic image according to the number and arrangement position of the stereoscopic image display unit 110 so that one combined stereoscopic image is displayed at the gaze position of the viewer. To control.
  • FIG 4 and 5 are exemplary views illustrating a case where a stereoscopic image is displayed according to the binocular position E when one stereoscopic image display unit 110 is installed on the wall surface (W).
  • the stereoscopic image generating unit 140 has a virtual reality space S where the stereoscopic image display unit 110 is disposed and an object therein. Assuming that M is arranged, a stereoscopic image is generated.
  • the stereoscopic image generated by the stereoscopic image generator 140 corresponds to an initial stereoscopic image captured by a special camera (not shown) for capturing the stereoscopic image and corresponds to the position and gaze direction of both eyes calculated by the stereoscopic image controller 160. Produced by image processing.
  • the stereoscopic image generator 140 processes the initial stereoscopic image provided in the reference direction in accordance with the size of the virtual reality space S and the size of the object M so as to correspond to the size of the stereoscopic image display unit 110. . That is, as shown, when the horizontal length of the stereoscopic image display unit 110 is set to N and the height is R, the viewer O is as if the object M is actually present in the stereoscopic image display unit 110 of the corresponding size. Create stereoscopic images to be recognized.
  • FIG. 5 illustrates a view image of the viewer when the actual viewer O moves and views the stereoscopic image display unit 110, and a display image displayed on the stereoscopic image display unit 110. It is an illustration.
  • the position sensor built-in glasses 130 moves with the spectator O, so the gaze position detection camera ( 120 detects the position of both eyes of the viewer (O).
  • the stereoscopic image controller 160 calculates a position of the current gaze point and transmits it to the stereoscopic image generation unit 140.
  • FIG. The stereoscopic image generator 140 processes the initial stereoscopic image to an angle and a size viewed from the position of the gaze point, and supplies the stereoscopic image to the stereoscopic image display unit 110.
  • a display image is displayed on the stereoscopic image display unit 110.
  • the image displayed on the display image and the view image seen by the viewer are different from each other, the viewer recognizes that the object exists in the virtual reality space.
  • the stereoscopic image generator 140 When the viewer O moves continuously, the stereoscopic image generator 140 generates a panoramic stereoscopic image for each gaze position and supplies the stereoscopic image display unit 110 to the stereoscopic image display unit 110.
  • FIG. 6 is an exemplary diagram illustrating a process of displaying a stereoscopic image according to a gaze position when the stereoscopic image display unit 110a is provided as a portable type such as a tablet PC.
  • the viewing position of the viewer O is determined by the interaction between the position sensor built-in glasses 130 worn by the viewer and the gaze position detection camera 120 disposed on the stereoscopic image display unit 110, and the stereoscopic corresponding to the viewer.
  • Image B is displayed.
  • the stereoscopic image generating unit 140 generates the display image B such that the image B 'of the object (for example, the cup) seen according to the position and gaze angle of both eyes of the viewer is as if the actual object (cup) is viewed. .
  • FIG. 7 and 8 are exemplary views illustrating a process of displaying a stereoscopic image according to positions of both eyes when the stereoscopic image display units 110b1 and 100b2 are provided in two.
  • the first stereoscopic image display unit 110b1 and the second stereoscopic image display unit 110b2 are installed on different walls at right angles to each other, at the center of the axis of the virtual space S2 based on the two stereoscopic image display units 110b1 and 100b2.
  • the stereoscopic image is displayed so that the object M is located.
  • the stereoscopic image generation unit 140 divides the stereoscopic image corresponding to the gaze point so that the divided images displayed on the two stereoscopic image display units 110b1 and 110b2 are combined to display one stereoscopic image. Supply to (110b1, 110b2).
  • the divided and supplied stereoscopic images are displayed on the stereoscopic image display units 110b1 and 110b2 as shown in FIG. 8.
  • the three-dimensional images A1 and A2 are divided and displayed in this manner, the three-dimensional images A1 and A2 are combined with each other and viewed in the form of a statue A '(view image).
  • 9 and 10 are exemplary views illustrating a process of displaying a stereoscopic image according to positions of both eyes when three stereoscopic image display units 110c1, 110c2, and 110c3 are provided.
  • Three stereoscopic image display units 110c1, 110c2, and 110c3 are provided on three axes of the left wall, the right wall, and the bottom surface, respectively.
  • the stereoscopic image of the object M is generated to be displayed at the center of three axes.
  • the stereoscopic image generator 140 generates a stereoscopic image by dividing the stereoscopic image so that partial regions of the object are displayed on the three stereoscopic image display units 110c1, 110c2, and 110c3, respectively, and then displays the stereoscopic image display unit 110c1, 110c2, and 110c3. Supply.
  • the divided and supplied stereoscopic images are displayed on the stereoscopic image display units 110c1, 110c2, and 110c3 as shown in FIG. 9.
  • Each of the three-dimensional images (A1, A2, A3) divided and displayed in this manner is combined with each other when viewed by the viewer (O) in the form of a statue (A ') (view image).
  • the 3D image controller 160 adjusts and displays the size and the gaze angle of the object existing in the virtual reality space displayed according to the gaze position.
  • the display direction of the object is changed and displayed.
  • the 3D image display device generates and displays a 3D image so that the actual object appears in the virtual reality space according to the gaze position of the viewer, thereby minimizing the eye fatigue of the viewer and the virtual reality. Can be delivered more vividly.
  • the position and angle of the displayed object is changed according to the movement of the viewer, it may be combined with a game machine, a virtual reality implementer, and the like to expand the field of application.
  • Embodiment of the stereoscopic image display device of the present invention described above is merely exemplary, and those skilled in the art to which the present invention pertains that various modifications and equivalent other embodiments are possible. You will know. Therefore, it will be understood that the present invention is not limited to the forms mentioned in the above detailed description. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims. It is also to be understood that the present invention includes all modifications, equivalents, and substitutes within the spirit and scope of the invention as defined by the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

본 발명은 응시위치를 추적하여 입체영상을 표시하는 입체영상 표시장치에 관한 것으로서, 입체영상이 표시되는 적어도 하나의 입체영상표시부와; 양안에 결합되며, 상기 양안의 위치에 대응되게 한 쌍의 적외선 램프가 구비된 위치센서내장 안경과; 상기 입체영상표시부의 일측에 구비되며 상기 한 쌍의 적외선 램프의 위치를 통해 상기 양안의 응시위치를 감지하여 응시이미지를 촬영하는 응시위치감지 카메라와; 상기 입체영상표시부가 배치된 가상현실공간에 사물이 배치된 경우 양안의 응시위치 변화에 따라 상기 사물이 양안에 보이는 형상을 입체영상으로 생성하여 상기 입체영상표시부에 공급하는 입체영상생성부와; 상기 응시위치감지 카메라에서 촬영된 응시이미지를 기초로 응시위치를 산출하고, 상기 입체영상표시부의 개수와 크기 및 상기 양안의 응시위치를 기초로 상기 응시위치에 대응되는 입체영상이 표시되도록 상기 입체영상생성부를 제어하는 입체영상 제어부를 포함하는 것을 특징으로 한다.

Description

응시위치를 추적하여 입체영상을 표시하는 입체영상 표시장치
본 발명은 입체영상 표시장치에 관한 것으로, 구체적으로는 사용자의 양안의 응시위치를 추적하여 응시지점에 대응하는 입체영상을 표시하는 입체영상 표시장치에 관한 것이다.
사람은 두 개의 눈을 가지고 있으며, 두 눈의 위치가 달라 오른쪽 눈의 망막에 맺히는 상과 왼쪽 눈의 망막에 맺히는 상이 서로 달라진다. 그런데, 시야에 들어오는 각 사물들은 보는 사람으로부터 떨어진 거리에 따라 좌우 눈에 맺히는 상에서의 위치 차이도 달라진다. 즉, 사물이 가까울수록 양안에 맺히는 상도 달라지며, 사물이 멀리 떨어져 있을수록 양안에 맺히는 상은 차이가 없어진다. 따라서, 좌우 두눈에 맺히는 상의 차이로부터 해당 거리에 대한 정보를 복원할 수 있으며, 이에 따라 입체감을 느끼게 된다.
이러한 원리를 응용하여 두 눈에 각각 다른 영상을 보이게 함으로써 입체 영상을 구현할 수 있다. 이러한 방법은 현재 입체 영화나, 가상현실의 구현에 사용되고 있다.
그런데, 3차원 영상이 주는 뛰어난 현실감에도 불구하고, 3차원 입체 영상 관람시 눈이 쉽게 피로해지는 문제로 인해 널리 보급되지 못하는 문제가 있다. 눈이 쉽게 피로해지는 이유는 종래의 입체영상 표시장치는 매 순간마다 미리 정해진 좌측 이미지와 우측이미지를 제공하여, 관람자가 정해진 이미지에 맞추어 응시지점을 따라가도록 강요하기 때문이다.
즉, 종래 입체영상 표시장치는 입체 영상을 표시하는 좌측 이미지와 우측 이미지의 초점 거리가 일방적으로 지정되어 표시되므로 관람자의 눈이 쉽게 피로해지고, 머리가 어지러운 현상이 나타난다.
또한, 관람자가 항상 지정된 위치에 고정된 상태로 관람을 해야 하므로 행동에 제약이 발생되고, 입체영상을 이용한 사용처도 제한되게 된다.
본 발명의 목적은 상술한 문제를 해결하기 위한 것으로, 관람자의 양안의 응시위치와 응시시점에 대응되게 초점이 조절된 입체영상을 표시하여 관람자의 눈의 피로도를 최소화하고 입체감을 높일 수 있는 입체영상 표시장치를 제공하는 것이다.
상기한 기술적 과제를 달성하기 위한 본 발명의 일면은 응시위치를 추적하여 입체영상을 표시하는 입체영상 표시장치에 관한 것이다. 본 발명의 입체영상 표시장치는, 입체영상이 표시되는 적어도 하나의 입체영상표시부와; 양안에 결합되며, 상기 양안의 위치에 대응되게 한 쌍의 적외선 램프가 구비된 위치센서내장 안경과; 상기 입체영상표시부의 일측에 구비되며 상기 한 쌍의 적외선 램프의 위치를 통해 상기 양안의 응시위치를 감지하는 응시위치감지 카메라와; 상기 입체영상표시부가 배치된 가상현실공간에 사물이 배치된 경우 양안의 응시위치 변화에 따라 상기 사물이 양안에 보이는 형상을 입체영상으로 생성하여 상기 입체영상표시부에 공급하는 입체영상생성부와; 상기 입체영상표시부의 개수와 크기 및 상기 양안의 응시위치를 산출하여 상기 응시위치에 대응되는 입체영상이 표시되도록 상기 입체영상생성부를 제어하는 입체영상 제어부를 포함하는 것을 특징으로 한다.
일 실시예에 따르면, 상기 응시위치감지 카메라는 상기 입체영상표시부에 대한 양안의 수직, 수평 및 직선 거리와 응시방향을 감지한다.
또한, 일 실시예에 따르면, 상기 입체영상표시부가 서로 다른 축방향으로 복수개가 배치된 경우, 상기 입체영상생성부는 상기 복수개의 입체영상표시부의 축방향 중심에 사물이 실존하는 것을 가정하고 상기 응시위치에 대응되는 입체영상을 분할하여 생성하여 상기 복수개의 입체영상표시부 각각에 공급한다.
또한, 일 실시예에 따르면, 상기 입체영상표시부에 표시되는 입체영상의 위치변경신호를 입력받는 입력장치를 더 포함한다.
본 발명에 따른 입체영상 표시장치는 관람자의 응시위치를 응시위치감지 카메라가 촬영하고, 입체영상제어부가 촬영된 응시위치 이미지를 통해 응시위치를 산출하여 응시위치에 대응되는 입체영상을 표시할 수 있다.
이에 따라 가상현실공간에 실제 사물이 존재하는 것으로 보이도록 입체영상이 생성되므로 관람자의 눈의 피로도를 최소화하고, 가상현실을 보다 생생하게 전달할 수 있다.
또한, 관람자의 움직임에 따라 표시되는 사물의 위치와 각도가 변경되므로 게임기, 가상현실구현기 등과 결합되어 활용분야를 확대할 수 있다.
도 1은 본 발명의 입체영상 표시장치의 구성을 개략적으로 도시한 개략도이고,
도 2는 현실에서 관람자의 양안의 이동에 따른 초점거리 변화과정을 도시한 예시도이고,
도 3은 본 발명에 따른 입체영상 표시장치에 의해 구현되는 관람자의 양안의 이동에 따라 입체영상표시부에 입체영상이 표시될 때 초점거리의 변화과정을 도시한 예시도이고,
도 4와 도 5는 본 발명에 따른 입체영상 표시장치에 입체영상표시부가 한 개 구비되었을 때 입체영상이 표시되는 과정을 도시한 예시도이고,
도 6은 본 발명에 따른 입체영상 표시장치에 휴대용 입체영상표시부가 구비되었을 때 입체영상이 표시되는 과정을 도시한 예시도이고,
도 7과 도 8은 본 발명에 따른 입체영상 표시장치에 입체영상표시부가 두 개 구비되었을 때 입체영상이 표시되는 과정을 도시한 예시도이고,
도 9와 도 10은 본 발명에 따른 입체영상 표시장치에 입체영상표시부가 세 개 구비되었을 때 입체영상이 표시되는 과정을 도시한 예시도이다.
본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공 되어지는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.
도 1은 본 발명에 따른 입체영상 표시장치(100)의 구성을 도시한 개략도이다.
본 발명에 따른 입체영상 표시장치(100)는 관람자의 응시위치를 추적하여 응시지점에 대응되는 입체영상을 표시하여 관람자에게 입체감을 향상시키고, 눈의 피로도를 최소화할 수 있다.
이를 위해 본 발명에 따른 입체영상 표시장치(100)는 입체영상이 표시되는 입체영상표시부(110)와, 관람자의 양안에 결합되어 양안과 함께 이동되는 위치센서내장 안경(130)과, 입체영상표시부(110)의 일측에 구비되어 위치센서내장 안경(130)의 위치를 감지하는 응시위치감지 카메라(120)와, 양안의 응시위치에 대응되게 입체영상을 생성하여 입체영상표시부(110)에 공급하는 입체영상생성부(140)와, 입체영상표시부(110)의 개수와 크기 및 양안의 응시위치를 산출하여 응시위치에 대응되는 입체영상을 생성하도록 입체영상생성부(140)를 제어하는 입체영상제어부(160)를 포함한다.
입체영상표시부(110)는 입체영상생성부(140)로부터 공급되는 입체영상을 표시한다. 입체영상표시부(110)는 입체영상을 구현하기 위해 좌측이미지와 우측이미지를 선택적으로 표시한다. 이를 위해 입체영상표시부(110)는 패릴랙스 배리어(미도시) 또는 랜티큘러 렌즈 어레이(미도시)를 포함할 수 있다.
입체영상표시부(110)는 표시패널의 크기와 표시화소를 입체영상제어부(160)로 제공하고, 크기와 화소에 적합한 입체영상을 제공받는다.
한편, 입체영상표시부(110)는 입력장치(150)로부터 인가되는 입력신호를 입체영상생성부(140)로 전송한다. 이를 위해 입체영상표시부(110)에는 입력신호를 인가받는 수신센서(미도시)가 구비되며, 입력신호를 기초로 입체영상표시부(110)에 표시되는 입체영상(A)의 표시각도가 변경될 수 있다.
응시위치감지 카메라(120)는 입체영상표시부(110)의 일측에 배치되어 위치센서내장 안경(130)의 위치를 감지하여 입체영상제어부(160)로 알려준다. 응시위치감지 카메라(120)는 위치센서내장 안경(130)에 배치된 한 쌍의 적외선 램프(131)를 감지하여 관람자의 응시위치를 감지하고, 현재 관람자(O)의 응시이미지를 촬영하여 입체영상제어부(160)로 전송한다.
응시위치감지 카메라(120)는 광학필터를 내장하여 적외선 램프(131)의 위치을 감지한다. 적외선 램프(131)의 위치가 감지되면 응시이미지를 촬영하여 입체영상제어부(160)로 실시간 전송한다.
응시위치감지 카메라(120)는 입체영상표시부(110)의 상단부 또는 하단부에 구비되며, 입체영상표시부(110)의 크기에 따라 복수개가 일정간격으로 배치될 수 있다.
또한, 본 발명의 바람직한 실시예에 따른 입체영상 표시장치(100)는 위치센서내장 안경(130)에 구비된 적외선 램프(131)에 의해 관람자의 양안의 위치를 감지하도록 구현되고 있으나, 경우에 따라 다른 위치감지 수단에 의해 구현될 수도 있다. 이 경우 응시위치감지 카메라(120)는 위치감지 수단의 종류에 대응되게 변경될 수 있다.
위치센서내장 안경(130)은 관람자의 얼굴에 착용되어 양안의 현재위치를 응시위치감지 카메라(120)에 인식시킨다. 위치센서내장 안경(130)은 양안에 각각 착용되는 좌측렌즈(133) 및 우측렌즈(133)와, 좌측렌즈(133)와 우측렌즈(135)의 일측에 결합되는 적외선 램프(131)를 포함한다.
좌측렌즈(133)와 우측렌즈(135)는 입체영상표시부(110)를 통해 표시되는 좌측이미지와 우측이미지를 각각의 눈이 독립적으로 인지할 수 있도록 서로 다른 색상의 편광필터가 구비된다.
적외선 램프(131)는 좌측렌즈(133)와 우측렌즈(135)의 일측에 구비되어 양안의 현재 응시시점을 응시위치감지 카메라(120)가 인식할 수 있게 한다.
입체영상생성부(140)는 입체영상제어부(160)에 의해 산출된 관람자의 응시위치에 따른 입체영상을 스테레오스코피 방식에 의해 생성하여 입체영상표시부(110)로 제공한다.
이를 위해 입체영상생성부(140)는 입체영상제어부(160)에서 산출된 응시시점에 대응하는 사물의 입체영상을 생성하여 입체영상표시부(110)로 공급한다.
즉, 관람자와 입체영상표시부(110)까지의 거리와 응시방향 등을 고려하여 입체영상표시부(110)가 위치된 곳에 가상현실공간이 존재하고, 가상현실공간 내에 사물이 배치되었을 때 관람자의 응시위치에서 바라본 사물의 형상에 대응하는 입체영상을 좌측이미지와 우측이미지로 분리하여 제공한다.
이를 위해 입체영상생성부(140)는 입체영상촬영용 카메라(미도시)에서 실제 사물을 촬영하여 생성된 초기입체영상을 입체영상제어부(160)로부터 전송된 양안의 응시위치와 거리에 따라 이미지를 처리하여 가공된 입체영상을 생성한다.
즉, 입체영상생성부(140)는 관람자가 사물을 정면에서 바라볼 때는 사물의 정면형상에 대응하는 입체영상을 제공하고, 관람자가 사물을 측면에서 바라볼 때는 사물의 측면형상에 대응하는 입체영상이 표시되도록 초기입체영상을 가공한다. 또한, 관람자의 관람거리가 먼 경우, 사물이 작아보이도록 축소하여 입체영상을 생성하고 관람자의 관람거리가 가까운 경우, 사물이 커 보이도록 확대하여 입체영상을 생성한다.
입체영상제어부(160)는 응시위치감지 카메라(120)에 의해 전송된 관람자(O)의 현재 이미지를 기초로 관람자(O)의 위치정보를 추출하고, 추출된 응시위치에 대응되는 입체영상을 생성하도록 입체영상생성부(140)를 제어한다.
도 2는 관람자가 실생활에서 자연스럽게 이동하며 사물을 볼 때 초점의 변화를 도시한 예시도이다. 도시된 바와 같이 오른쪽 눈(RE)과 왼쪽 눈(LE)이 사물을 바라볼 때의 거리와 방향에 따라 초점거리가 달라지게 된다.
도 3은 본 발명에 따른 입체영상표시부(110)를 관람자가 바라볼 때, 응시위치에 따른 오른쪽 눈(RE)과 왼쪽 눈(LE)의 움직임을 도시한 예시도이다. 도시된 바와 같이 본 발명에 따른 입체영상제어부(160)는 실생활에서 사물을 볼 때와 동일하게 안구의 움직임과 시점을 조작하여 관람자가 입체영상표시부(110)를 통해 표시되는 사물의 입체영상이 실제 현실에 존재하는 것으로 인식되도록 한다.
입체영상제어부(160)는 응시위치감지 카메라(120)로부터 전송된 양안의 응시이미지를 기초로 입체영상표시부(110)를 기준으로 한 관람자(O)의 위치정보를 산출하여 입체영상생성부(110)로 전송한다. 입체영상제어부(160)는 응시이미지를 기초로 양안의 수직위치 및 수평위치와 거리 및 응시방향을 산출한다.
또한, 입체영상제어부(160)는 입체영상표시부(110)의 개수와 배치위치에 따라 입체영상을 분할하여 표시하여 관람자의 응시위치에서는 한 개의 결합된 입체영상이 표시되도록 입체영상생성부(140)를 제어한다.
이하에서는 도면을 참조하여 양안의 응시위치와 입체영상표시부(110)의 개수에 따라 입체영상을 표시하는 경우를 구체적으로 설명한다.
도 4와 도 5는 벽면(W)에 한 개의 입체영상표시부(110)가 설치된 경우 양안위치(E)에 따라 입체영상이 표시되는 경우를 도시한 예시도이다.
도 4에 도시된 바와 같이 한 개의 입체영상표시부(110)가 설치된 경우, 입체영상생성부(140)는 입체영상표시부(110)가 배치된 곳에 가상현실공간(S)이 존재하고, 내부에 사물(M)이 배치된 것을 가정하고 입체영상을 생성한다.
입체영상생성부(140)에서 생성되는 입체영상은 입체영상을 촬영하기 위한 특수 카메라(미도시)에 의해 촬영된 초기입체영상을 입체영상제어부(160)에서 산출된 양안의 위치와 응시방향에 대응되게 이미지처리하여 생산된다.
입체영상생성부(140)는 가상현실공간(S)의 크기와, 사물(M)의 크기를 고려하여 기준방향에 대해 제공받은 초기입체영상을 입체영상표시부(110)의 크기에 대응되게 가공한다. 즉, 도시된 바와 같이 입체영상표시부(110)의 가로길이가 N, 높이가 R로 구비될 때, 해당 크기의 입체영상표시부(110)에 사물(M)이 실제 존재하는 것처럼 관람자(O)가 인식할 수 있도록 입체영상을 생성한다.
도 5는 실제 관람자(O)가 이동하면서 입체영상표시부(110)를 바라보았을 때 관람자의 눈에 보이는 영상(view image)과, 입체영상표시부(110)에 표시되는 표시영상(display image)을 도시한 예시도이다.
관람자(O)가 입체영상표시부(110)를 기준으로 오른쪽에서 이동하며 입체영상표시부(110)를 바라볼 때, 위치센서내장 안경(130)이 관람자(O)와 함께 이동되므로 응시위치감지 카메라(120)는 관람자(O)의 양안의 위치를 파악한다.
응시위치감지 카메라(120)에 의해 감지된 응시위치를 기준으로 입체영상제어부(160)는 현재 응시시점의 위치를 산출하여 입체영상생성부(140)로 전송한다. 입체영상생성부(140)는 초기입체영상을 응시시점의 위치에서 바라본 각도와 크기로 가공하여 입체영상을 입체영상표시부(110)로 공급한다.
이에 따라 입체영상표시부(110)에 표시영상(display image)이 표시된다. 표시영상(display image)에 표시되는 영상과 관람자가 눈으로 바라봤을 때 보이는 영상(view image)은 서로 차이가 있으나, 이런 차이에 의해 관람자는 실제 가상현실공간에 사물이 있는 것으로 인식하게 된다.
관람자(O)가 연속해서 이동할 경우, 입체영상생성부(140)는 응시위치별로 파노라마 입체영상을 생성하여 입체영상표시부(110)에 공급한다.
한편, 도 6은 입체영상표시부(110a)가 태블릿 PC와 같이 휴대형으로 구비된 경우 응시위치에 따라 입체영상이 표시되는 과정을 도시한 예시도이다.
앞서 설명한 경우와 같이 입체영상표시부(110a)가 벽면에 고정설치된 경우 관람자(O)가 이동하여 양안의 위치가 가변된다. 반면, 도 6에 도시된 바와 같이 입체영상표시부(110a)가 소형인 경우 관람자의 양안의 위치는 고정되고 입체영상표시부(110a)의 상대위치가 가변될 수 있다. 이 경우에도 관람자가 착용한 위치센서내장 안경(130)과 입체영상표시부(110)에 배치된 응시위치감지 카메라(120)의 상호작용에 의해 관람자(O)의 응시위치를 판단하고 그에 대응되는 입체영상(B)이 표시된다.
입체영상생성부(140)는 관람자의 양안의 위치와 응시각도에 따라 보이는 사물(일례로 컵)의 영상(B')이 실제 사물(컵)을 보는 것과 같도록 표시영상(B)을 생성한다.
한편, 도 7과 도 8은 입체영상표시부(110b1,100b2)가 두 개로 구비된 경우, 양안의 위치에 따라 입체영상이 표시되는 과정을 도시한 예시도이다.
제1입체영상표시부(110b1)와 제2입체영상표시부(110b2)가 서로 직교하게 서로 다른 벽면에 설치된 경우, 두 입체영상표시부(110b1,100b2)를 기준으로 한 가상공간(S2)의 축 중심에 사물(M)이 위치하도록 입체영상이 표시된다.
이 경우, 입체영상생성부(140)는 두 개의 입체영상표시부(110b1,110b2)에서 표시되는 분할영상이 합쳐져서 한 개의 입체영상을 표시하도록 응시시점에 대응되는 입체영상을 분할하여 각각의 입체영상표시부(110b1,110b2)로 공급한다.
이렇게 분할되어 공급된 입체영상은 도 8에 도시된 바와 같이 입체영상표시부(110b1,110b2)에서 표시된다(display image). 이렇게 분할되어 표시되는 입체영상(A1,A2)은 관람자(O)의 눈에 보일 때는 서로 합쳐서 조각상(A')의 형태로 보인다(view image).
한편, 도9와 도 10은 입체영상표시부(110c1,110c2,110c3)가 세 개로 구비된 경우, 양안의 위치에 따라 입체영상이 표시되는 과정을 도시한 예시도이다.
세 개의 입체영상표시부(110c1,110c2,110c3)는 좌측벽, 우측벽, 및 바닥면의 세 개의 축상에 각각 구비된다. 이 때, 사물(M)의 입체영상은 세 개의 축의 중심에 표시되도록 생성된다.
입체영상생성부(140)는 세 개의 입체영상표시부(110c1,110c2,110c3)에 사물의 일부영역들이 각각 표시되도록 입체영상을 분할하여 생성하여, 각각의 입체영상표시부(110c1,110c2,110c3)에 공급한다.
이렇게 분할되어 공급된 입체영상은 도 9에 도시된 바와 같이 각각의 입체영상표시부(110c1,110c2,110c3)에 표시된다(display image). 이렇게 분할되어 표시되는 각각의 입체영상(A1,A2,A3)은 관람자(O)의 눈에 보일 때는 서로 합쳐서 조각상(A')의 형태로 보인다(view image).
한편, 앞서 설명한 각각의 경우에서 입체영상제어부(160)는 응시위치에 따라 표시되는 가상현실공간에 존재하는 사물의 크기와 응시각도를 조절하여 표시한다.
또한, 관람자가 입력장치(150)를 통해 응시각도를 조절할 경우 사물의 표시방향을 변경하여 표시한다.
이상에서 설명한 바와 같이 본 발명에 따른 입체영상 표시장치는 관람자의 응시위치에 따라 가상현실공간에 실제 사물이 존재하는 것으로 보이도록 입체영상을 생성하여 표시하므로 관람자의 눈의 피로도를 최소화하고, 가상현실을 보다 생생하게 전달할 수 있다.
또한, 관람자의 움직임에 따라 표시되는 사물의 위치와 각도가 변경되므로 게임기, 가상현실구현기 등과 결합되어 활용분야를 확대할 수 있다.
이상에서 설명된 본 발명의 입체영상 표시장치의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.

Claims (3)

  1. 응시위치를 추적하여 입체영상을 표시하는 입체영상 표시장치로서,
    입체영상이 표시되는 적어도 하나의 입체영상표시부와;
    양안에 결합되며, 상기 양안의 위치에 대응되게 한 쌍의 적외선 램프가 구비된 위치센서내장 안경과;
    상기 입체영상표시부의 일측에 구비되며 상기 한 쌍의 적외선 램프의 위치를 통해 상기 양안의 응시위치를 감지하여 응시이미지를 촬영하는 응시위치감지 카메라와;
    상기 입체영상표시부가 배치된 가상현실공간에 사물이 배치된 경우 양안의 응시위치 변화에 따라 상기 사물이 양안에 보이는 형상을 입체영상으로 생성하여 상기 입체영상표시부에 공급하는 입체영상생성부와;
    상기 응시위치감지 카메라에서 촬영된 응시이미지를 기초로 응시위치를 산출하고, 상기 입체영상표시부의 개수와 크기 및 상기 양안의 응시위치를 기초로 상기 응시위치에 대응되는 입체영상이 표시되도록 상기 입체영상생성부를 제어하는 입체영상 제어부를 포함하며,
    상기 응시위치감지 카메라는 상기 입체영상표시부에 대한 양안의 수직, 수평 및 직선 거리와 응시방향을 감지하는 것을 특징으로 입체영상 표시장치.
  2. 제1항에 있어서,
    상기 입체영상표시부가 서로 다른 축방향으로 복수개가 배치된 경우,
    상기 입체영상생성부는 상기 복수개의 입체영상표시부의 축방향 중심에 사물이 실존하는 것을 가정하고 상기 응시위치에 대응되는 입체영상을 분할하여 생성하여 상기 복수개의 입체영상표시부 각각에 공급하는 것을 특징으로 하는 입체영상 표시장치.
  3. 제1항에 있어서,
    상기 입체영상표시부에 표시되는 입체영상의 위치변경신호를 입력받는 입력장치를 더 포함하는 것을 특징으로 하는 입체영상 표시장치.
PCT/KR2011/006973 2010-10-04 2011-09-21 응시위치를 추적하여 입체영상을 표시하는 입체영상 표시장치 WO2012046964A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0096368 2010-10-04
KR1020100096368A KR101046259B1 (ko) 2010-10-04 2010-10-04 응시위치를 추적하여 입체영상을 표시하는 입체영상 표시장치

Publications (3)

Publication Number Publication Date
WO2012046964A2 true WO2012046964A2 (ko) 2012-04-12
WO2012046964A9 WO2012046964A9 (ko) 2012-05-10
WO2012046964A3 WO2012046964A3 (ko) 2012-06-21

Family

ID=44923087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006973 WO2012046964A2 (ko) 2010-10-04 2011-09-21 응시위치를 추적하여 입체영상을 표시하는 입체영상 표시장치

Country Status (2)

Country Link
KR (1) KR101046259B1 (ko)
WO (1) WO2012046964A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204323A1 (ko) * 2015-06-17 2016-12-22 (주)에프엑스기어 사용자 시점 연동형 영상 처리 장치 및 그 방법
CN114598789A (zh) * 2022-03-02 2022-06-07 厦门聚视智创科技有限公司 一种虚拟现实图像采集用触发式变焦***及其工作方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926477B1 (ko) * 2011-07-18 2018-12-11 삼성전자 주식회사 콘텐츠 재생 방법 및 장치
DE102012209917A1 (de) * 2012-06-13 2013-12-19 Technische Universität Dresden Überführung von 2D-Eyetracking-Daten in virtuelle 3D-Entwurfswerkzeuge
KR101343551B1 (ko) 2012-07-09 2013-12-20 인텔렉추얼디스커버리 주식회사 눈 깜박임 측정을 통해 입체감을 조절하는 3차원 영상 표시 장치
KR101960897B1 (ko) 2013-02-06 2019-07-16 삼성디스플레이 주식회사 입체 영상 표시 장치 및 그 표시 방법
WO2014130584A1 (en) * 2013-02-19 2014-08-28 Reald Inc. Binocular fixation imaging method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050076946A (ko) * 2004-01-26 2005-07-29 엘지전자 주식회사 입체영상 표시장치 및 방법
KR100908677B1 (ko) * 2007-08-24 2009-07-22 주식회사 나노박스 디스플레이 픽셀 변경을 이용한 입체 영상 표시 장치 및 그입체 영상 표시 방법
KR20100081803A (ko) * 2009-01-07 2010-07-15 엘지디스플레이 주식회사 입체 영상의 뷰 제어방법과 이를 이용한 입체 영상표시장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763398B1 (ko) 2006-04-06 2007-10-05 엘지전자 주식회사 휴대용 영상 표시장치를 이용한 입체영상의 표시방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050076946A (ko) * 2004-01-26 2005-07-29 엘지전자 주식회사 입체영상 표시장치 및 방법
KR100908677B1 (ko) * 2007-08-24 2009-07-22 주식회사 나노박스 디스플레이 픽셀 변경을 이용한 입체 영상 표시 장치 및 그입체 영상 표시 방법
KR20100081803A (ko) * 2009-01-07 2010-07-15 엘지디스플레이 주식회사 입체 영상의 뷰 제어방법과 이를 이용한 입체 영상표시장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204323A1 (ko) * 2015-06-17 2016-12-22 (주)에프엑스기어 사용자 시점 연동형 영상 처리 장치 및 그 방법
CN114598789A (zh) * 2022-03-02 2022-06-07 厦门聚视智创科技有限公司 一种虚拟现实图像采集用触发式变焦***及其工作方法

Also Published As

Publication number Publication date
KR101046259B1 (ko) 2011-07-04
WO2012046964A9 (ko) 2012-05-10
WO2012046964A3 (ko) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2012046964A2 (ko) 응시위치를 추적하여 입체영상을 표시하는 입체영상 표시장치
US8717352B2 (en) Tracing-type stereo display apparatus and tracing-type stereo display method
JP3443271B2 (ja) 立体映像表示装置
US20130113894A1 (en) Variable 3-d camera assembly for still photography
US20110316881A1 (en) Display device
KR20120105495A (ko) 입체 영상 촬상 장치
TW201234838A (en) Stereoscopic display device and control method of stereoscopic display device
KR20120091585A (ko) 디스플레이 장치 및 삼차원 영상 제공방법
WO2012060564A1 (en) 3d camera
WO2011129488A1 (ko) 평행축 입체카메라
WO2021015383A1 (ko) 안구운동장치
WO2015088057A1 (ko) 3d 카메라 모듈
US20120127572A1 (en) Stereoscopic display apparatus and method
WO2013180442A1 (ko) 입체 동영상 촬영용 장치 및 카메라
WO2016006731A1 (ko) 촬영 모드를 제어하는 포터블 디바이스 및 그 제어 방법
JP2011141381A (ja) 立体画像表示装置及び立体画像表示方法
US11405531B2 (en) Data processing
WO2010095770A1 (ko) 입체영상 가시화를 위한 자동 피사계심도 조절 방법
WO2009116810A2 (ko) 입체영상용 디스플레이 패널의 수평 방향/수직 방향 정렬을 수행하는 접합 장치
WO2014058187A2 (ko) 가변 초점 렌즈, 이를 이용한 디스플레이 장치 및 디스플레이 방법
EP2408217A2 (en) Method of virtual 3d image presentation and apparatus for virtual 3d image presentation
US20210065435A1 (en) Data processing
WO2014185578A1 (ko) 직교식 입체 카메라의 광축 정렬 방법 및 직교식 입체 카메라
EP3547081B1 (en) Data processing
KR20110136326A (ko) 삼차원 입체안경의 수평각 정보를 반영한 삼차원 스테레오스코픽 렌더링 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830849

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830849

Country of ref document: EP

Kind code of ref document: A2