WO2012046274A1 - ファンモータ及びこれを備えた空気調和機 - Google Patents

ファンモータ及びこれを備えた空気調和機 Download PDF

Info

Publication number
WO2012046274A1
WO2012046274A1 PCT/JP2010/005987 JP2010005987W WO2012046274A1 WO 2012046274 A1 WO2012046274 A1 WO 2012046274A1 JP 2010005987 W JP2010005987 W JP 2010005987W WO 2012046274 A1 WO2012046274 A1 WO 2012046274A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
teeth
phase
tooth
rotor
Prior art date
Application number
PCT/JP2010/005987
Other languages
English (en)
French (fr)
Inventor
森 剛
井上 正哉
山田 彰二
智哉 福井
健一 迫田
仁一 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/005987 priority Critical patent/WO2012046274A1/ja
Priority to CN201080069416.9A priority patent/CN103141011B/zh
Priority to JP2012537491A priority patent/JP5484586B2/ja
Publication of WO2012046274A1 publication Critical patent/WO2012046274A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/066Linear Motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to a fan motor and an air conditioner equipped with the fan motor.
  • a propeller fan for the fan unit in order to make the indoor unit thinner and smaller.
  • a propeller fan is provided with a boss portion having a rotation center and a blade portion having blades formed from the boss portion to the outer peripheral side.
  • wing part is provided in the boss
  • a radial sleeve bearing 21 a and a thrust rolling bearing 21 b are arranged on the stator substrate 20 in the vertical direction, and the bearing portion 21 is rotatably supported by the bearing portion 21.
  • a rotating main portion having a blade portion 23 integral with the rotating shaft 22 and an annular magnet 24 having 16 poles of driving magnetic poles in the outer peripheral direction of the blade portion 23 are fixed.
  • An armature portion 27 including a laminated armature core 25 formed in an E shape from the teeth and an armature coil 26 wound around each tooth is intensively arranged.
  • Fan motor has been proposed that (for example, see Patent Document 1).
  • the boss portion can be made smaller than that provided with a motor in the boss portion. Therefore, the ventilation path can be increased, and the blade can be used near the rotating shaft. For this reason, the freedom degree of design of a fan motor improves.
  • a fan motor can increase the rotor radius, a large torque can be obtained and an improvement in efficiency can be expected.
  • JP-A-8-298763 (paragraphs 0010 and 0012, FIG. 1)
  • the present invention has been made to solve the above-described problems, and includes a fan motor capable of improving the degree of design freedom while eliminating the magnetic imbalance between the phases.
  • the purpose is to obtain an air conditioner.
  • a fan motor according to the present invention has a three-phase structure including a blade portion, a rotor provided on the outer peripheral portion of the blade portion, and a stator that is disposed on the outer peripheral side of the rotor via a gap and that is provided with teeth on the inner peripheral surface.
  • the stator includes one or more sets of a first stator, a second stator, and a third stator, and the first stator is , Including at least one first tooth group in which a U-phase tooth, a V-phase tooth, and a W-phase tooth are arranged in order along the rotation direction of the rotor, and the second stator includes a V-phase along the rotation direction of the rotor At least one second tooth group in which teeth, W-phase teeth, and U-phase teeth are arranged in order, and the third stator has a W-phase tooth along the rotational direction of the rotor.
  • U-phase teeth and V-phase teeth are those having at least one third tooth group are arranged in this order.
  • the winding direction of the coil wound around the teeth is the same direction
  • the first stator, the second stator, and the third stator are the teeth group.
  • the in-phase teeth of the first stator, the second stator, and the third stator are wound in series and are connected in series. is there.
  • a fan motor includes a blade portion, a rotor provided on the outer peripheral portion of the blade portion, and a stator that is disposed on the outer peripheral side of the rotor via a gap and that is provided with teeth on the inner peripheral surface.
  • a fan motor comprising a three-phase motor having a housing and a housing arranged to cover the outer peripheral side of the stator and the rotor, wherein the stator comprises one or more sets of a first stator, a second stator, and a third stator,
  • the 1 stator includes at least one first tooth group in which the U-phase teeth, the V-phase teeth, and the W-phase teeth are arranged in order along the rotation direction of the rotor, and the second stator extends along the rotation direction of the rotor.
  • V-phase teeth, W-phase teeth, and U-phase teeth are arranged in order
  • the third stator has a W-phase along the rotation direction of the rotor.
  • those U-phase teeth and V-phase teeth having at least one third tooth group are arranged in this order.
  • the first teeth group, the second teeth group, and a part of the third teeth group, the winding direction of the coil wound around the teeth is the first direction
  • the first teeth group, the remaining part of the second tooth group and the third tooth group is in a second direction in which the winding direction of the coil is opposite to the first direction
  • the first stator, the second stator, and the third stator are
  • the teeth group in which the coil winding direction is the first direction is a position where the in-phase teeth are separated by an integral multiple of 360 ° in electrical angle
  • the teeth group in which the coil winding direction is the second direction is With respect to the teeth group in which the winding direction is the first direction, the teeth having the same phase are arranged so that the electrical angles of the teeth are separated by 360 ° ⁇ N + 180 ° (N is an integer), and the first stator, the second stator, and the second stator 3 steps
  • the first stator, the second stator, and the third stator are arranged at predetermined positions, and coils wound around the in-phase teeth of each stator are connected in series. For this reason, each phase has the same number of coils wound around the teeth arranged at the end of the stator. In addition, in each phase, the number of coils wound around the coils of the teeth arranged other than the end of the stator is the same. And since these coils are connected in series in each phase, the interlinkage magnetic flux of each phase becomes the same, and it can be set as a magnetically balanced state.
  • FIG. 1 is an external perspective view showing a fan motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view showing the stator of the fan motor.
  • the broken line arrow shown in FIG. 1 has shown the rotation direction of the blade
  • the fan motor 100 has an axial fan structure, and includes a motor 40 including a blade portion 20, a rotor 10, and a stator 30, a housing 50, and the like.
  • the housing 50 has a substantially rectangular frame shape, and the blade portion 20 is provided inside.
  • the blade portion 20 includes a boss portion 22 and a plurality of blades 21.
  • the boss portion 22 is a rotation center of the blade portion 20, and the blade 21 is formed on the outer peripheral portion thereof.
  • a substantially annular ring 23 is formed on the outer periphery of the blade 21.
  • the blade portion 20 (the blade 21, the boss portion 22, and the ring 23) is integrally formed of, for example, a resin material.
  • a rotating shaft and a bearing (not shown) into which the rotating shaft is inserted are arranged inside the boss portion 22. The outer peripheral portion of the bearing is held by a housing 50, for example.
  • wing part 20 should just be a material which can ensure the rigidity which does not deform
  • the material forming the blade portion 20 may be a metal material or the like.
  • the rotor 10 is provided on the outer peripheral surface of the ring 23 of the blade portion 20.
  • the rotor 10 includes a magnet 11 and a rotor core 12.
  • the rotor core 12 has a substantially annular shape, and is provided on the outer peripheral surface of the ring 23.
  • the magnet 11 has a substantially annular shape, and is provided on the outer peripheral surface of the rotor core 12.
  • the magnet 11 may have a segment shape separated for each pole, or may have a substantially annular shape in which the poles are not magnetized.
  • the magnet 11 is a rubber magnet having a thickness of 1.5 mm and a residual magnetic flux density of 0.245 T, for example.
  • the magnet 11 has a flat plate shape, and the orientation of the magnet 11 is normal parallel magnetization, and 32 poles are magnetized.
  • the magnet 11 is wound around and adhered to the outer peripheral surface of the rotor core 12.
  • the axial width of the magnet 11 (the width in the rotational axis direction of the blade portion 20) is, for example, 10 mm, and is matched with the axial width of the stator 30.
  • the magnet 11 may be a rare earth sintered magnet, a plastic magnet, a ferrite magnet, or the like.
  • the method of fixing the magnet 11 to the rotor core 12 is not limited to the method of the first embodiment.
  • the magnet 11 may be formed in a substantially annular shape, and the rotor core 12 may be fitted into the inner peripheral surface of the magnet 11.
  • the magnet 11 may be divided into a plurality of segments, and these segments may be attached to the outer peripheral surface of the rotor core 12.
  • the circumferential width of each segment may be made smaller than the pole pitch, and a space may be provided between the segments.
  • the blade 20 when the blade 20 is used while being rotated at a high speed, it may be fixed from the outside of the magnet 11 with a nonmagnetic material such as glass epoxy (glass fiber + epoxy resin).
  • the magnet 11 (which may include the rotor core 12) may be embedded using a resin material that forms the blade portion 20 without being limited to the segment shape (two-color molding or the like).
  • the axial width of the magnet 11 may be made larger than the axial width of the stator 30 to cause overhang. Thereby, the magnetic flux leakage from the edge part of the axial direction side of the stator 30 can be suppressed.
  • the rotor core 12 is obtained by laminating and bonding electromagnetic steel sheets and processing them into a ring shape.
  • a thick iron core and other magnetic materials can be employed in addition to the electromagnetic steel sheet.
  • the orientation of the magnet 11 is the Hullback orientation
  • the magnetic path does not come to the inner side (blade part 20 side), so the rotor core 12 does not have to be provided.
  • the rotor core 12 is a magnetic body, it is generally heavy. For this reason, weight reduction of the fan motor 100 can be achieved by not providing the rotor core 12.
  • the rotor 10 is deformed due to insufficient rigidity of the rotor 10 and noise is generated, it is preferable to reinforce by providing the rotor core 12.
  • the stator 30 includes three stators (a stator 30a, a stator 30b, and a stator 30c). Each of these stators has the same shape as shown in FIG. More specifically, each stator of the stator 30 includes a substantially L-shaped stator core 31. The angle formed by both outer peripheral surfaces of the stator core 31 is substantially the same angle (for example, approximately 90 °) as the groove portion (inserted portion) of the housing 50 to which the stator 30 is attached. Teeth 32 is provided on the inner peripheral surface of the stator core 31 (the surface facing the blade portion 20).
  • the motor 40 of the first embodiment is a three-phase motor
  • three teeth 32 (tooth 32a, tooth 32b, and tooth 32c) are provided on the inner peripheral surface of the stator core 31.
  • a coil (not shown) is wound around the teeth 32a, teeth 32b, and teeth 32c.
  • auxiliary teeth 33 are provided at both ends of the stator core 31 on the inner peripheral surface side. Thereby, when electricity is supplied to the teeth 32a and the teeth 32c, a magnetic circuit via the auxiliary teeth 33 is newly added. For this reason, in each of stator 30a, stator 30b, and stator 30c, the interlinkage magnetic flux of the phase of teeth 32a and teeth 32c can increase, and the difference with the interlinkage magnetic flux of the phase of teeth 32b can be decreased.
  • the motor can be configured without the auxiliary teeth 33, the provision of the auxiliary teeth 33 can further suppress cogging and the like.
  • Each stator of the stator 30 is processed into a shape shown in FIG. 2 by wire cutting or the like by laminating electromagnetic steel sheets, like the rotor core 12.
  • Each stator of the stator 30 may be formed of a thick powder iron core or other magnetic material.
  • stator 30a, stator 30b, stator 30c when each stator (stator 30a, stator 30b, stator 30c) of the stator 30 is attached to the housing, the teeth 32a, teeth 32b, and teeth 32c of each stator are rotated by the rotor 10. Along the direction, the teeth 32a, the teeth 32b, and the teeth 32c are arranged in this order. And the phase of the teeth 32a, the teeth 32b, and the teeth 32c provided in each stator is as follows.
  • stator 30a coils are wound around the teeth so that the teeth 32a become U-phase teeth 32U, the teeth 32b become V-phase teeth 32V, and the teeth 32c become W-phase teeth 32W. Further, in the stator 30b, coils are wound around the teeth so that the teeth 32a become V-phase teeth 32V, the teeth 32b become W-phase teeth 32W, and the teeth 32c become U-phase teeth 32U. Further, in the stator 30c, coils are wound around the teeth 32 so that the teeth 32a become W-phase teeth 32W, the teeth 32b become U-phase teeth 32U, and the teeth 32c become V-phase teeth 32V.
  • stator 30a the U-phase teeth 32U and the W-phase teeth 32W are arranged on both sides of the V-phase teeth 32V.
  • stator 30b V-phase teeth 32V and U-phase teeth 32U are arranged on both sides of W-phase teeth 32W.
  • stator 30c the W-phase teeth 32W and the V-phase teeth 32V are arranged on both sides of the U-phase teeth 32U.
  • the stator 30a corresponds to the first stator of the present invention
  • the stator 30b corresponds to the second stator of the present invention
  • the stator 30c corresponds to the third stator of the present invention.
  • positioned in order of the U-phase teeth 32U, the V-phase teeth 32V, and the W-phase teeth 32W along the rotation direction of the rotor 10 is equivalent to the 1st teeth group in this invention.
  • a group of teeth of the stator 30b arranged in the order of the V-phase teeth 32V, the W-phase teeth 32W, and the U-phase teeth 32U along the rotation direction of the rotor 10 corresponds to the second teeth group in the present invention.
  • a group of teeth of the stator 30c arranged in the order of the W-phase teeth 32W, the U-phase teeth 32U, and the V-phase teeth 32V along the rotation direction of the rotor 10 corresponds to the third teeth group in the present invention.
  • the winding direction of the coil wound around the tooth 32 is the same direction.
  • the coil wound around the in-phase teeth of the first teeth group, the second teeth group, and the third teeth group that is, the in-phase teeth of the stator 30a, the stator 30b, and the stator 30c
  • the connection method of the coil wound around these in-phase teeth should just be connected in series, for example, (DELTA) connection may be sufficient.
  • E shown in FIG. 3 is, for example, a three-phase power source.
  • the stator 30a, the stator 30b and the stator 30c constituting the stator 30 are provided at three locations of the housing 50. That is, the housing 50 is provided so as to cover the outer peripheral side of the motor 40 (the rotor 10 and the stator 30).
  • both outer peripheral surfaces of the stator core 31 are brought into contact with (in contact with) the inner peripheral surface of the groove portion of the housing 50.
  • the back surface of the stator core 31 is brought into contact (contacted) with a stepped portion (not shown) protruding from the inner peripheral surface of the groove portion of the housing 50. Accordingly, each stator of the stator 30 is positioned in the groove portion of the housing 50. In this state, a screw or the like (not shown) is inserted from the fixing hole 34 to fix each stator of the stator 30 to the groove portion of the housing 50.
  • stator 30a, the stator 30b, and the stator 30c constituting the stator 30 are provided at three locations of the housing 50 so that the respective phase teeth are in the following states.
  • the stator 30b and the stator 30c also have the q-axis of the rotor 10 aligned with the center of the U-phase teeth 32U. It is like that.
  • the stator 30b and the stator 30c also have the q-axis of the rotor 10 centered on the V-phase teeth 32V. It comes to fit.
  • the stator 30b and the stator 30c also have the q-axis of the rotor 10 the center of the W-phase teeth 32W. It comes to fit.
  • the in-phase teeth of the first tooth group, the second tooth group, and the third tooth group are 360 ° in electrical angle. It is arranged at a position separated by an integer multiple of.
  • the magnetic resistance (linkage magnetic flux) of each phase is as follows.
  • the teeth 32 are arranged in the order of the U-phase teeth 32U, the V-phase teeth 32V, and the W-phase teeth 32W along the rotation direction of the rotor 10. For this reason, since the teeth 32 are adjacent to each other between the U phase and the V phase and between the V phase and the W phase, the magnetic resistance of the magnetic circuit is small. On the other hand, between the U-phase and the W-phase, the distance between the teeth 32 is long, so the magnetic resistance of the magnetic circuit increases. For this reason, the U-phase teeth 32U and the W-phase teeth 32W have higher magnetic resistance than the V-phase teeth 32V. Therefore, there is a difference between the flux linkage between the U-phase teeth 32U and the W-phase teeth 32W and the flux linkage between the V-phase teeth 32V.
  • the stator 30b has the V-phase teeth 32V and the U-phase teeth 32U. Is larger in magnetic resistance than the W-phase teeth 32W.
  • the stator 30c has the W-phase teeth 32W and the V-phase teeth 32V. Is higher in magnetic resistance than the U-phase teeth 32U.
  • the present embodiment in which coils wound around the in-phase teeth of the first tooth group, the second tooth group, and the third tooth group (that is, the in-phase teeth of the stator 30a, the stator 30b, and the stator 30c) are connected in series.
  • the magnetic resistance of each phase can be made the same as a whole (that is, the interlinkage magnetic flux of each phase can be made the same as a whole).
  • the magnetic resistance of each phase can be made the same as a whole, the magnetic imbalance between the phases can be eliminated.
  • a means for reducing the cross-sectional area of the teeth 32 is not used, a value corresponding to the original magnetic resistance can be secured.
  • the winding directions of the coils wound around the teeth 32 are the same. Not only this but the winding direction of the coil of some teeth groups is good also as a reverse direction.
  • the coils of the first teeth group that is, the stator 30a
  • the coils of the second teeth group that is, the stator 30b
  • the third teeth group that is, the stator 30c
  • the stator 30a can be arranged. That is, the stator (tooth group) in which the coil winding direction is the second direction is such that the in-phase teeth are 360 ° ⁇ N + 180 ° in electrical angle with respect to the stator (tooth group) in which the coil winding direction is the first direction. (N is an integer) It can arrange
  • the in-phase coil of the teeth group in which the coil winding direction is the first direction and the in-phase coil of the teeth group in which the coil winding direction is the second direction are connected in series
  • the direction of the current flowing in the in-phase coil of each tooth group is the same If it does, linkage flux as a whole phase will decrease. Therefore, when the in-phase coils of the teeth group in which the coil winding direction is the first direction and the in-phase coils of the teeth group in which the coil winding direction is the second direction are connected in series, the coil current flow direction is the first direction.
  • the in-phase coils may be connected in series so that the direction of current flow in the coil with the winding direction as the second direction is opposite.
  • the interlinkage magnetic flux of the entire phase can be made into the number sum (that is, the interlinkage magnetic flux of the entire phase is set to the same phase coil under the condition that the coil winding direction of all teeth groups is only one direction. Can be the same as those obtained in series connection).
  • the slot combination of the motor 40 (the rotor 10 and the stator 30) is not shown in the first embodiment, the slot combination of the motor 40 is not particularly limited.
  • the slot combination of the motor 40 may be 2: 3, 4: 3, 8: 9, or the like.
  • a driving method of the motor 40 a general motor driving method such as vector control or 120 ° energization can be applied.
  • the motor 40 can be driven by sensorless drive, but can also be driven with a sensor by arranging a position sensor such as a Hall IC if necessary.
  • the fan motor is configured by using one set of the stator 30a, the stator 30b, and the stator 30c.
  • the fan motor may be configured by using a plurality of sets of the stator 30a, the stator 30b, and the stator 30c.
  • a fan motor 101 using two sets of the stator 30a, the stator 30b, and the stator 30c will be described.
  • items not particularly described are the same as those in the first embodiment.
  • FIG. 4 is a front view showing a fan motor according to Embodiment 2 of the present invention.
  • the fan motor 101 according to the second embodiment includes two stators 30a, 30b, and 30c. Further, the two stators 30 a are arranged so as to be symmetric with respect to the rotation axis of the blade portion 20. That is, the two stators 30a are arranged at opposing positions (positions where the positions of the stators 30 are rotated by a mechanical angle of 180 ° around the rotation axis of the blade portion 20).
  • the stator 30b and the stator 30c are similarly arranged.
  • the magnetic attraction force in other words, electromagnetic excitation force
  • the torque ripple and blade portion of the motor 40 can be balanced. It is possible to suppress vibration when the 20 rotates, noise generated when the blade portion 20 rotates, and the like.
  • the winding direction of the coil of the same type of stator (for example, the stator 30a) is the same, but the winding direction of the coil may be changed as appropriate. This makes it easier to symmetrically arrange the same type of stator (for example, the stator 30a).
  • the fan motor 101 is configured using two sets of the stator 30a, the stator 30b, and the stator 30c.
  • the fan motor may be configured using three or more sets of the stator 30a, the stator 30b, and the stator 30c.
  • the same type of stators may be arranged in a regular polygon in addition to the same type of stators arranged symmetrically.
  • three of the same type of stators may be arranged in an equilateral triangle.
  • a fan motor when configured using five or more sets of the stator 30b and the stator 30c, five of the same type of stators may be arranged in a regular pentagon. Even if the same type of stators are arranged in a regular polygon, the magnetic attractive force generated between the rotor 10 and the stator 30 can be balanced.
  • FIG. 5 is a front view showing another example of a fan motor according to Embodiment 2 of the present invention.
  • the shape of the housing 50 is a regular hexagon by arranging six stators close to a regular hexagon.
  • a hexagonal close-packed arrangement can be achieved when a plurality of fan motors 101 are arranged two-dimensionally. For this reason, the ratio of the fan area (wind path area) which occupies in the arrangement
  • Embodiment 3 When a plurality of fan motors are arranged, the housing may be formed in a rectangular shape in consideration of the installation space of the fan motor.
  • each stator (stator 30a, stator 30b, stator 30c) of the stator 30 may be arranged as follows, for example.
  • a fan motor 102 using two sets of the stator 30b and the stator 30c will be described.
  • items that are not particularly described are the same as those in the first or second embodiment.
  • FIG. 6 is a front view showing a fan motor according to Embodiment 3 of the present invention.
  • the fan motor 102 according to the third embodiment includes two stators 30a, two stators 30b, and two stators 30c, as in the second embodiment. Further, in the fan motor 102 according to the third embodiment, similar to the second embodiment, the same type of stators are symmetrically arranged.
  • the housing 50 is formed in a rectangular shape.
  • each stator of the stator 30 there are a plurality of positions where each stator of the stator 30 can be disposed (a position where the center of each stator, for example, the V-phase teeth 32V matches the q axis of the rotor). . Further, by reversing the coil winding direction of a part of the stator that constitutes the stator 30, this stator can be disposed at a position where the center of the V-phase teeth 32V is aligned with the ⁇ q axis of the rotor. The arrangement position of each stator is increased.
  • each stator is arranged only on the short side of the housing 50.
  • the blade portion 20 in other words, the rotor 10.
  • the stator 30a and the stator 30c are provided in the vicinity of the corners of the housing 50, in the third embodiment, the vicinity of these corners is also referred to as the short side.
  • the fan motor 102 can avoid such problems because each stator of the stator 30 is disposed only on the short side of the housing 50.
  • the magnet 11 since the magnet 11 has 32 poles, there are 16 q-axis positions (32 positions including the -q axis).
  • the q-axis position is also increased, and the interval in the rotation direction is also reduced. Therefore, the distance between the blade portion 20 (in other words, the rotor 10) and the long side of the housing 50 is further reduced. Is possible.
  • the fan motor 102 using two sets of the stator 30b and the stator 30c has been described.
  • the number of these sets is arbitrary.
  • Embodiment 4 FIG.
  • one tooth group is arranged in one stator.
  • the same type of teeth group may be disposed in one stator.
  • items not particularly described are the same as those in the first to third embodiments.
  • FIG. 7 is a front view showing a fan motor according to Embodiment 4 of the present invention.
  • the broken line arrow shown in FIG. 7 has shown the rotation direction of the blade
  • the fan motor 103 according to the fourth embodiment includes a set of a stator 30d, a stator 30e, and a stator 30f as in the first embodiment.
  • the arrangement positions of the stator 30d, the stator 30e, and the stator 30f are the same as the arrangement positions of the stator 30a, the stator 30b, and the stator 30c in the first embodiment.
  • each stator of the stator 30 is provided with a plurality of tooth groups (two in the fourth embodiment). More specifically, the stator 30d is provided with two first tooth groups. That is, the stator 30d has a U-phase tooth 32U, a V-phase tooth 32V, a W-phase tooth 32W, a U-phase tooth 32U, a V-phase tooth 32V and W along the rotation direction of the rotor 10 (clockwise in FIG. 7). A phase tooth 32W and six teeth 32 are provided.
  • the stator 30e is provided with two second tooth groups. That is, the stator 30e extends along the rotation direction of the rotor 10 (in the clockwise direction in FIG.
  • V-phase teeth 32V, W-phase teeth 32W, U-phase teeth 32U, V-phase teeth 32V, W-phase teeth 32W and U Phase teeth 32U and six teeth 32 are provided.
  • the stator 30f is provided with two third tooth groups. That is, the stator 30f is arranged in the direction of rotation of the rotor 10 (in the clockwise direction in FIG. 7), W-phase teeth 32W, U-phase teeth 32U, V-phase teeth 32V, W-phase teeth 32W, U-phase teeth 32U and V. Phase teeth 32V and six teeth 32 are provided.
  • teeth 32 provided on the stator 30d, the stator 30e, and the stator 30f are connected in series for each in-phase tooth as in the first embodiment.
  • each tooth 32 is connected in series for each in-phase tooth, so that the magnetic imbalance between the phases can be further reduced.
  • the number of the same type of teeth group provided in one stator is not limited to two but may be three or more. However, if the number of teeth of the same type provided in one stator is increased too much, the structure becomes the same as that of a conventional fan motor in which the stator is disposed all around the rotor, and the housing 50 and the blade portion 20 ( In other words, the merit of effectively using the space by arranging the stator in the gap of the rotor 10) is lost.
  • Embodiment 5 FIG. In the fifth embodiment, an example in which the fan motor shown in the first to fourth embodiments is used in an air conditioner will be described.
  • FIG. 8 is a longitudinal sectional view showing an example of an air conditioner according to Embodiment 5 of the present invention.
  • FIG. 8 shows an example in which the fan motor 100 according to Embodiment 1 is used for an indoor unit 200 of an air conditioner. 8 shows the left side of the figure as the front side of the indoor unit 200. Based on FIG. 8, the configuration of the indoor unit 200 will be described.
  • the fan motor shown in the second to fourth embodiments may be used as the fan motor of the indoor unit 200.
  • the indoor unit 200 supplies conditioned air to an air-conditioning target area such as a room by using a refrigeration cycle that circulates refrigerant.
  • This indoor unit 200 mainly includes a casing 110 in which an inlet 111 for sucking indoor air into the interior and an outlet 115 for supplying conditioned air to an air-conditioning target area are formed, and the interior of the casing 110
  • the fan motor 100 that sucks indoor air from the suction port 111 and blows conditioned air from the blower outlet 115, and the air path from the suction port 111 to the fan motor 100, and exchanges heat between the refrigerant and the indoor air.
  • a heat exchanger 114 that produces conditioned air.
  • the suction port 111 is formed in the upper part of the housing 110.
  • the air outlet 115 is formed in the lower part of the housing 110 (more specifically, the lower side of the front surface of the housing 110).
  • the fan motor 100 is disposed on the downstream side of the suction port 111 and on the upstream side of the heat exchanger 114. Further, for example, three fan motors 100 are arranged in the direction orthogonal to the paper surface. The number of fan motors 100 installed is merely an example. What is necessary is just to change suitably the installation number of the fan motor 100 according to the air volume etc. which are requested
  • the heat exchanger 114 is disposed on the leeward side of the fan motor 100.
  • the heat exchanger 114 includes a front side heat exchanger 114 a disposed on the front side of the housing 110 and a back side heat exchanger 114 b disposed on the back side of the housing 110.
  • a fin tube heat exchanger or the like may be used.
  • the suction port 111 is provided with a grill 112 and a filter 113.
  • the blower outlet 115 is provided with a mechanism for controlling the blowing direction of the airflow, such as a vane (not shown).
  • room air flows into the indoor unit 200 from the suction port 111 formed in the upper part of the housing 110 by the fan motor 100. At this time, dust contained in the air is removed by the filter 113.
  • this indoor air passes through the heat exchanger 114, it is heated or cooled by the refrigerant flowing in the heat exchanger 114 to become conditioned air.
  • the conditioned air is blown out of the indoor unit 200 from the air outlet 115 formed in the lower part of the housing 110, that is, to the air-conditioning target area.
  • the fan motor 100 shown in the first embodiment is used.
  • the fan motor 100 can be reduced in thickness as compared with a conventional fan motor in which a motor is connected to a boss of a blade portion and a conventional fan motor in which a stator is disposed in the entire outer peripheral portion of the blade portion, and the area of the blade 21 is increased. can do.
  • the indoor unit 200 according to Embodiment 5 can be made thinner and smaller than the conventional indoor unit.
  • the indoor unit 200 according to the fifth embodiment is manufactured in the same size as the conventional indoor unit, an indoor unit having a larger air volume than the conventional indoor unit can be obtained.
  • the fan motor 100 shown in the first embodiment is used. For this reason, compared with the indoor unit which mounts the conventional fan motor by which the stator was provided in a part of outer peripheral part of the blade
  • the fan motor 100 is disposed on the leeward side of the heat exchanger 114, but the fan motor 100 may be disposed on the leeward side of the heat exchanger 114.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 ファンモータ100は、羽根部20の外周部に設けられたロータ10、及びロータ10の外周側に配置されたステータ30を備えている。ステータ30は、ステータ30a~30cを1組備えている。ステータ30aはU相ティース、V相ティース及びW相ティースが順に配置された第1ティース群を備え、ステータ30bはV相ティース、W相ティース及びU相ティースが順に配置された第2ティース群を備え、ステータ30cはW相ティース、U相ティース及びV相ティースが順に配置され第3ティース群を備えている。各ティース群はコイルの巻き方向が同方向になっており、ステータ30a~ステータ30cは、ティース群の同相ティースが電気角で360°の整数倍だけ離れた位置となるように配置され、ステータ30a~30cの同相ティースに巻き付けられたコイルが直列接続されている。

Description

ファンモータ及びこれを備えた空気調和機
 本発明は、ファンモータ及びこれを備えた空気調和機に関するものである。
 従来の空気調和機には、室内機を薄型化・小型化するため、ファンユニットにプロペラファンを用いた構成が提案されている。このようなプロペラファンは、回転中心となるボス部、及びボス部から外周側へ形成された羽根を有する羽根部が設けられている。そして、羽根部を回転させるモータは、ボス部に設けられている。したがって、モータは主にアウターロータ型となっており、ロータ側(回転側)に羽根部が設けられている。このため、モータを大きくすると、モータの外側に配置される羽根の大きさが制限され、通風路を塞いでしまう。したがって、十分な風量を得ることができない、羽根部の設計自由度が少なくファン効率が低下してしまう等の問題点があった。また、通風路を確保するためにモータの大きさを小さくすると、モータ自体の効率が低下してしまうという問題点があった。
 そこで、これらの問題点を解決するため、例えば「ステータ基板20上にはラジアルスリーブ軸受21aとスラスト転がり軸受21bとを上下方向に配置した軸受部21と、この軸受部21に回転自在に支持された回転軸22と一体の羽根部23を有した回転主部と、この羽根部23の外周方向に16極の駆動磁極を有する環状のマグネット24が固定されている。羽根部23は回転軸22を中心とした放射状の複数の羽根から構成されているものであり、合成樹脂等によって形成されている。…また、ステータ基板20上には上記マグネット24と所定の間隔を保って対向した3つのティースよりE型に形成された積層型の電機子鉄心25と、各ティースに巻回された電機子コイル26とよりなる電機子部27が集中的に配置してある。」(例えば特許文献1参照)というファンモータが提案されている。このようなファンモータは、ボス部にモータが備えられたものに比べて、ボス部を小さくすることができるため通風路が大きくでき、回転軸付近まで羽根にすることができる。このため、ファンモータの設計自由度が向上する。また、このようなファンモータは、ロータ半径を大きくできるため、大きなトルクを得ることができ、効率の向上が期待できる。
特開平8-298763号公報(段落0010,0012、図1)
 しかしながら、このようなファンモータ(例えば特許文献1参照)は、ボス部を小さくできるものの、ステータをファンの外周の一部にU相、V相、W相を組みとして配置するため、ステータの両端に配置する相(ティース)に比べて中央に配置する相の磁気抵抗が小さくなり、磁気的アンバランスが生じるという問題点があった。また、このようなファンモータ(例えば特許文献1参照)は、ステータをロータの周囲全域に配置した一般的なモータ構成では発生しないような、ステータとロータ間の電磁加振力のアンバランスが生じるという問題点があった。このため、このようなファンモータ(例えば特許文献1参照)は、トルクリプル、騒音及び振動等が増加してしまうという問題点や、ファンモータの効率が低下してしまうという問題点があった。
 本発明は、上記のような問題点を解決するためになされたものであり、各相間の磁気的アンバランスを解消しながら、設計自由度を向上させることが可能なファンモータ及びこれを備えた空気調和機を得ることを目的としている。
 本発明に係るファンモータは、羽根部と、羽根部の外周部に設けられたロータ、及びロータの外周側にギャップを介して配置され、内周面にティースが設けられたステータを有する三相モータと、ステータ及びロータの外周側を覆うように配置されたハウジングと、を備えたファンモータにおいて、ステータは、第1ステータ、第2ステータ及び第3ステータを1組以上備え、第1ステータは、ロータの回転方向に沿って、U相ティース、V相ティース及びW相ティースが順に配置された第1ティース群を少なくとも1つ備え、第2ステータは、ロータの回転方向に沿って、V相ティース、W相ティース及びU相ティースが順に配置された第2ティース群を少なくとも1つ備え、第3ステータは、ロータの回転方向に沿って、W相ティース、U相ティース及びV相ティースが順に配置され第3ティース群を少なくとも1つ備えたものである。そして、第1ティース群、第2ティース群及び第3ティース群は、ティースに巻き付けられたコイルの巻き方向が同方向になっており、第1ステータ、第2ステータ及び第3ステータは、ティース群の同相ティースが電気角で360°の整数倍だけ離れた位置となるように配置され、第1ステータ、第2ステータ及び第3ステータの同相ティースに巻き付けられたコイルが直列接続されているものである。
 また、本発明に係るファンモータは、羽根部と、羽根部の外周部に設けられたロータ、及び該ロータの外周側にギャップを介して配置され、内周面にティースが設けられたステータを有する三相モータと、ステータ及びロータの外周側を覆うように配置されたハウジングと、を備えたファンモータにおいて、ステータは、第1ステータ、第2ステータ及び第3ステータを1組以上備え、第1ステータは、ロータの回転方向に沿って、U相ティース、V相ティース及びW相ティースが順に配置された第1ティース群を少なくとも1つ備え、第2ステータは、ロータの回転方向に沿って、V相ティース、W相ティース及びU相ティースが順に配置された第2ティース群を少なくとも1つ備え、第3ステータは、ロータの回転方向に沿って、W相ティース、U相ティース及びV相ティースが順に配置され第3ティース群を少なくとも1つ備えたものである。そして、第1ティース群、第2ティース群及び第3ティース群のうちの一部のティース群は、ティースに巻き付けられたコイルの巻き方向が第1方向になっており、第1ティース群、第2ティース群及び第3ティース群のうちの残りの一部は、コイルの巻き方向が第1方向と逆方向となる第2方向になっており、第1ステータ、第2ステータ及び第3ステータは、コイルの巻方向を第1方向としているティース群が、互いの同相ティースが電気角で360°の整数倍だけ離れた位置となり、コイルの巻き方向を第2方向としたティース群が、コイルの巻き方向を第1方向としたティース群に対し、互いの同相ティースが電気角で360°×N+180°(Nは整数)離れた位置となるように配置され、第1ステータ、第2ステータ及び第3ステータの同相ティースに巻き付けられたコイルは、巻き方向を第1方向としたコイルの電流の流れ方向と巻き方向を第2方向としたコイルの電流の流れ方向とが逆向きとなるように、直列接続されているものである。
 本発明においては、第1ステータ、第2ステータ及び第3ステータを所定の位置に配置し、各ステータの同相ティースに巻き付けられたコイルを直列接続している。このため、各相は、ステータの端に配置のティースに巻き付けられたコイルの数が同数になる。また、各相は、ステータの端以外に配置のティースのコイルに巻き付けられたコイルの数が同数になる。そして、各相においてこれらコイルを直列接続するため、各相の鎖交磁束が同一となり、磁気的にバランスがとれた状態とすることができる。
本発明の実施の形態1に係るファンモータを示す外観斜視図である。 本発明の実施の形態1に係るファンモータのステータを示す正面図である。 本発明の実施の形態1に係るファンモータにおける同相ティースの接続方法の一例を示す説明図である。 本発明の実施の形態2に係るファンモータを示す正面図である。 本発明の実施の形態2に係るファンモータの別の一例を示す正面図である。 本発明の実施の形態3に係るファンモータを示す正面図である。 本発明の実施の形態4に係るファンモータを示す正面図である。 本発明の実施の形態5に係る空気調和機の一例を示す縦断面図である。
実施の形態1.
 図1は、本発明の実施の形態1に係るファンモータを示す外観斜視図である。また、図2は、このファンモータのステータを示す正面図である。なお、図1に示す破線矢印は、羽根部20(換言するとロータ10)の回転方向を示している。
 ファンモータ100は、軸流ファン構造であり、羽根部20、ロータ10及びステータ30を備えたモータ40、ハウジング50等から構成されている。
 ハウジング50は、略四角形の額縁形状をしており、内側に羽根部20が設けられている。
 羽根部20は、ボス部22及び複数の羽根21を備えている。ボス部22は、羽根部20の回転中心となるものであり、その外周部には、羽根21が形成されている。また、羽根21の外周部には、略円環状のリング23が形成されている。羽根部20(羽根21、ボス部22及びリング23)は、例えば樹脂材料で一体成形される。また、ボス部22の内側には回転シャフト及びこの回転シャフトが挿入されたベアリング(図示せず)が配置されている。このベアリングの外周部は例えばハウジング50に保持されている。
 なお、羽根部20を形成する材料は、樹脂材料に限らず、磁気吸引力(ロータ10とステータ30との間の磁気吸引力)や空気抵抗等により変形しない剛性を確保できる材料であればよい。例えば、羽根部20を形成する材料は、金属材料等であってもよい。
 羽根部20のリング23の外周面には、ロータ10が設けられている。このロータ10は、磁石11及びロータコア12を備えている。ロータコア12は略円環状をしており、リング23の外周面に設けられている。磁石11は、略円環状をしており、ロータコア12の外周面に設けられている。なお、磁石11は、1極ごとに分離したセグメント形状のものでもよいし、極間を未着磁にした略円環状のものでもよい。
 磁石11は、例えば厚さ1.5mm、残留磁束密度0.245Tのラバー磁石である。また、この磁石11は、平板形状をしており、磁石11の配向は通常のパラレル着磁で、32極着磁されている。そして、磁石11は、ロータコア12の外周面に巻き付けられ、接着されている。また、本実施の形態1では、磁石11の軸方向幅(羽根部20の回転軸方向の幅)を、例えば10mmとし、ステータ30の軸方向幅と合わせている。
 なお、磁石11の種類は、希土類焼結磁石、プラマグ磁石、フェライト磁石等を使用してもよい。また、磁石11のロータコア12への固定方法も、本実施の形態1の方法に限られるものではない。例えば、磁石11を略円環状に形成し、この磁石11の内周面にロータコア12をはめ込んでもよい。また例えば、磁石11を複数のセグメントに分割し、これらセグメントをロータコア12の外周面に貼付等してもよい。磁石11を複数のセグメントに分割する場合、各セグメントの周方向幅を極ピッチより小さくし、セグメント間にスペースを設けてもよい。また例えば、羽根部20を高速回転させて使用する場合、磁石11の外側からガラエポ(ガラス繊維+エポキシ樹脂)等の非磁性材料で固定するとよい。また例えば、セグメント形状に限らず、羽根部20を形成する樹脂材料を用いて磁石11(ロータコア12を含めてもよい)を埋め込んでもよい(二色成形等)。また例えば、磁石11の軸方向幅をステータ30の軸方向幅よりも大きくし、オーバーハングさせてもよい。これにより、ステータ30の軸方向側の端部からの磁束漏れを抑制できる。
 ロータコア12は、電磁鋼板を積層接着し、リング状に加工したものである。ロータコア12の材質は、電磁鋼板の他、厚粉鉄心、その他磁性材料を採用することができる。なお、磁石11の配向をハルバック配向にした場合、磁路が内側(羽根部20側)にこないため、ロータコア12を設けなくともよい。ロータコア12は磁性体であるので、一般に重量が重い。このため、ロータコア12を設けないことにより、ファンモータ100の軽量化を図ることができる。なお、ロータ10の剛性不足によってロータ10が変形し、騒音が発生するような場合は、ロータコア12を設けて補強するのがよい。
 図1に示すように、本実施の形態1に係るステータ30は、3つのステータ(ステータ30a、ステータ30b、ステータ30c)を備えている。これら各ステータは、図2に示すように同一形状となっている。より詳しくは、ステータ30の各ステータは、略L型のステータコア31を備えている。ステータコア31の両外周面がなす角度は、ステータ30が取り付けられるハウジング50の溝部(はめ込み部)と略同一角度(例えば略90°)となっている。このステータコア31の内周面(羽根部20と対向する面)には、ティース32が設けられている。本実施の形態1のモータ40は3相モータのため、ステータコア31の内周面には、3つのティース32(ティース32a、ティース32b、ティース32c)が設けられている。これらティース32a、ティース32b及びティース32cには、コイル(図示せず)が巻き付けられている。
 また、ステータコア31の両端部には、内周面側に補助ティース33が設けられている。これにより、ティース32a及びティース32cに通電した際、補助ティース33を介した磁気回路が新たに加わることとなる。このため、ステータ30a、ステータ30b及びステータ30cのそれぞれにおいて、ティース32a及びティース32cの相の鎖交磁束が増加し、ティース32bの相の鎖交磁束との差を減少することができる。なお、補助ティース33が無い場合でもモータを構成することができるが、補助ティース33を設けることにより、コギング等をより抑制することが可能となる。
 ステータ30の各ステータは、ロータコア12と同様、電磁鋼板を積層したものをワイヤカット等により図2に示す形状に加工している。なお、ステータ30の各ステータは、厚粉鉄心やその他磁性材料で形成されてもよい。
 ここで、本実施の形態1においては、ステータ30の各ステータ(ステータ30a、ステータ30b、ステータ30c)をハウジングに取り付けた際、各ステータのティース32a、ティース32b及びティース32cは、ロータ10の回転方向に沿って、ティース32a、ティース32b及びティース32cの順で配置される。そして、各ステータに設けられたティース32a、ティース32b及びティース32cの相を以下のようにしている。
 ステータ30aは、ティース32aがU相ティース32Uとなり、ティース32bがV相ティース32Vとなり、ティース32cがW相ティース32Wとなるように、各ティースにコイルが巻き付けられている。また、ステータ30bは、ティース32aがV相ティース32Vとなり、ティース32bがW相ティース32Wとなり、ティース32cがU相ティース32Uとなるように、各ティースにコイルが巻き付けられている。また、ステータ30cは、ティース32aがW相ティース32Wとなり、ティース32bがU相ティース32Uとなり、ティース32cがV相ティース32Vとなるように、各ティース32にコイルが巻き付けられている。
 つまり、ステータ30aでは、V相ティース32Vの両側にU相ティース32U及びW相ティース32Wが配置されることになる。ステータ30bでは、W相ティース32Wの両側にV相ティース32V及びU相ティース32Uが配置されることになる。ステータ30cでは、U相ティース32Uの両側にW相ティース32W及びV相ティース32Vが配置されることになる。
 なお、ステータ30aが本発明の第1ステータに相当し、ステータ30bが本発明の第2ステータに相当し、ステータ30cが本発明の第3ステータに相当する。また、ロータ10の回転方向に沿ってU相ティース32U、V相ティース32V及びW相ティース32Wの順で配置されるステータ30aのティース群が、本発明における第1ティース群に相当する。ロータ10の回転方向に沿ってV相ティース32V、W相ティース32W及びU相ティース32Uの順で配置されるステータ30bのティース群が、本発明における第2ティース群に相当する。ロータ10の回転方向に沿ってW相ティース32W、U相ティース32U及びV相ティース32Vの順で配置されるステータ30cのティース群が、本発明における第3ティース群に相当する。
 本実施の形態1においては、第1ティース群、第2ティース群及び第3ティース群は、ティース32に巻き付けられたコイルの巻き方向が同一方向になっている。また、第1ティース群、第2ティース群及び第3ティース群の同相ティース(つまり、ステータ30a、ステータ30b及びステータ30cの同相ティース)に巻き付けられたコイルは、例えば図3に示すように、例えばY結線で直列接続されている。これら同相ティースに巻き付けられたコイルの接続方法は、各相が直列接続されていればよく、例えばΔ結線でもよい。なお、図3に示す「E」は、例えば3相電源である。
 これらステータ30を構成するステータ30a、ステータ30b及びステータ30cは、ハウジング50の3箇所に設けられている。つまり、ハウジング50は、モータ40(ロータ10及びステータ30)の外周側を覆うように設けられている。ステータ30の各ステータをハウジング50に取り付ける際、ステータコア31の両外周面を、ハウジング50の溝部の内周面に当接する(接触させる)。また、ステータコア31の裏面を、ハウジング50の溝部の内周面に突設された段部(図示せず)に当接する(接触させる)。これにより、ステータ30の各ステータは、ハウジング50の溝部に位置決めされる。この状態で、固定用穴34からネジ等(図示せず)を挿入し、ステータ30の各ステータをハウジング50の溝部に固定する。
 ステータ30の各ステータがハウジング50の溝部に固定された状態においては、各ステータにおけるティース32a、ティース32b、ティース32c及び補助ティース33の先端部と、ロータ10の磁石11の外周面と、の間に一定のギャップが形成されている。
 また、これらステータ30を構成するステータ30a、ステータ30b及びステータ30cは、これらの各相ティースが以下の状態となるように、ハウジング50の3箇所に設けられる。
 つまり、ロータ10のq軸がステータ30aのU相ティース32Uの中心に合う回転位置となっている状態においては、ステータ30b及びステータ30cも、ロータ10のq軸がU相ティース32Uの中心に合うようになっている。同様に、ロータ10のq軸がステータ30aのV相ティース32Vの中心に合う回転位置となっている状態においては、ステータ30b及びステータ30cも、ロータ10のq軸がV相ティース32Vの中心に合うようになっている。また同様に、ロータ10のq軸がステータ30aのW相ティース32Wの中心に合う回転位置となっている状態においては、ステータ30b及びステータ30cも、ロータ10のq軸がW相ティース32Wの中心に合うようになっている。
 換言すると、本実施の形態1においては、第1ティース群、第2ティース群及び第3ティース群の同相ティース(つまり、ステータ30a、ステータ30b及びステータ30cの同相ティース)は、電気角で360°の整数倍だけ離れた位置に配置されている。
(動作説明)
 このように構成されたファンモータ100においては、各相の磁気抵抗(鎖交磁束)は次のようになる。
 ステータ30aは、ロータ10の回転方向に沿ってU相ティース32U、V相ティース32V及びW相ティース32Wの順で各ティース32が配置されている。このため、U相-V相間及びV相-W相間は、各ティース32が隣同士となるため、磁気回路の磁気抵抗は小さい。一方、U相-W相間では、ティース32の間隔が遠くなるため、磁気回路の磁気抵抗が大きくなる。このため、U相ティース32U及びW相ティース32Wは、V相ティース32Vに比べて、磁気抵抗が高くなる。したがって、U相ティース32U及びW相ティース32Wの鎖交磁束とV相ティース32Vの鎖交磁束には、差が生じてしまう。
 しかしながら、ステータ30bは、ロータ10の回転方向に沿ってV相ティース32V、W相ティース32W及びU相ティース32Uの順で各ティース32が配置されているため、V相ティース32V及びU相ティース32Uは、W相ティース32Wに比べて、磁気抵抗が大きくなる。また、ステータ30cは、ロータ10の回転方向に沿ってW相ティース32W、U相ティース32U及びV相ティース32Vの順で各ティース32が配置されているため、W相ティース32W及びV相ティース32Vは、U相ティース32Uに比べて、磁気抵抗が高くなる。
 このため、第1ティース群、第2ティース群及び第3ティース群の同相ティース(つまり、ステータ30a、ステータ30b及びステータ30cの同相ティース)に巻き付けられたコイルが直列接続されている本実施の形態1に係るファンモータ100においては、全体として各相の磁気抵抗を同じにすることができる(つまり、全体として各相の鎖交磁束を同じにすることができる)。
 以上、本実施の形態1のように構成されたファンモータ100においては、全体として各相の磁気抵抗を同じにすることができるので、各相間の磁気的アンバランスを解消することができる。その際、ティース32の断面積を小さくするなどの手段を用いていないため、本来の磁気抵抗相当の値を確保できる。
 なお、本実施の形態1では、第1ティース群、第2ティース群及び第3ティース群は、ティース32に巻き付けられたコイルの巻き方向が同一方向になっている。これに限らず、一部のティース群のコイルの巻方向を逆方向としてもよい。例えば、第1ティース群(つまり、ステータ30a)のコイルを第1方向に巻き、第2ティース群(つまり、ステータ30b)及び第3ティース群(つまり、ステータ30c)のコイルを第1方向と逆の第2方向に巻くとする。これにより、ロータ10のq軸がステータ30b及びステータ30cのU相ティース32Uの中心に合う回転位置となっているときに、ステータ30aのU相ティースの中心がロータ10の-q軸とあうように、ステータ30aを配置することができる。つまり、コイルの巻き方向を第2方向としたステータ(ティース群)は、コイルの巻き方向を第1方向としたステータ(ティース群)に対し、互いの同相ティースが電気角で360°×N+180°(Nは整数)離れた位置となるように配置することができる。このように各ステータ(つまり、各ティース群)毎にコイルの巻き方向を選択することにより、ステータの配置位置の自由度を向上させることができる。
 このとき、コイルの巻き方向を第1方向としたティース群とコイルの巻き方向を第2方向としたティース群の同相コイルを直列接続する場合、各ティース群の同相コイルに流れる電流の方向を同じにすると、相全体としての鎖交磁束が減少してしまう。したがって、コイルの巻き方向を第1方向としたティース群とコイルの巻き方向を第2方向としたティース群の同相コイルを直列接続する場合、巻き方向を第1方向としたコイルの電流の流れ方向と巻き方向を第2方向としたコイルの電流の流れ方向とが逆向きとなるように、同相コイルを直列接続すればよい。このようにすることで、相全体としての鎖交磁束を個数和とすることができる(つまり、相全体の鎖交磁束を、全ティース群のコイル巻き方向を1方向のみとした条件で同相コイルを直列接続した際に得られるものと同じにすることができる)。
 また、本実施の形態1ではモータ40(ロータ10及びステータ30)のスロットコンビネーションを示さなかったが、モータ40のスロットコンビネーションは特に限定されるものではない。例えばモータ40のスロットコンビネーションを、2:3、4:3、8:9等とすればよい。また、モータ40の駆動方法も、ベクトル制御や120°通電等、一般のモータ駆動方法を適用できる。また、モータ40の駆動方法としては、センサレス駆動も可能であるが、必要に応じてホールIC等の位置センサを配置してのセンサ付駆動も可能である。
実施の形態2.
 実施の形態1ではステータ30a、ステータ30b及びステータ30cを1組用いてファンモータを構成したが、ステータ30a、ステータ30b及びステータ30cを複数組用いてファンモータを構成してもよい。なお、本実施の形態2では、ステータ30a、ステータ30b及びステータ30cを2組用いたファンモータ101について説明する。また、本実施の形態2において、特に記述しない項目については実施の形態1と同様とする。
 図4は、本発明の実施の形態2に係るファンモータを示す正面図である。
 本実施の形態2に係るファンモータ101は、ステータ30a、ステータ30b及びステータ30cを2つずつ備えている。また、2つのステータ30aは、羽根部20の回転軸に対して互いが対称となるように配置されている。つまり、2つのステータ30aは、対向位置(羽根部20の回転軸を中心として、互いの位置が機械角で180°回転した位置)に配置されている。ステータ30b及びステータ30cにおいても、同様に配置されている。
 このように構成されたファンモータ101においては、ロータ10とステータ30との間に発生する磁気吸引力(換言すると、電磁加振力)をバランスさせることができるため、モータ40のトルクリプル、羽根部20が回転した際の振動、及び羽根部20が回転した際に発生する騒音等を抑制することができる。
 なお、本実施の形態2では、同種のステータ(例えばステータ30a)のコイルの巻き方向を同一としているが、コイルの巻き方向は適宜変更すればよい。これにより、同種のステータ(例えばステータ30a)を対称配置しやすくなる。
 また、本実施の形態2ではステータ30a、ステータ30b及びステータ30cを2組用いてファンモータ101を構成したが、ステータ30a、ステータ30b及びステータ30cを3組以上用いてファンモータを構成しても勿論よい。ステータ30b及びステータ30cを3組以上用いてファンモータを構成する場合、同種のステータを対称配置する以外にも、同種のステータを正多角形に配置してもよい。例えば、ステータ30b及びステータ30cを3組以上用いてファンモータを構成する場合、同種のステータの3つを正三角形に配置してもよい。また例えば、ステータ30b及びステータ30cを5組以上用いてファンモータを構成する場合、同種のステータの5つを正五角形に配置してもよい。同種のステータを正多角形に配置しても、ロータ10とステータ30との間に発生する磁気吸引力をバランスさせることができる。
 また、本実施の形態2のようにステータ30b及びステータ30cを2組用いてファンモータ101を構成する場合、図5に示すようにファンモータ101を構成してもよい。
 図5は、本発明の実施の形態2に係るファンモータの別の一例を示す正面図である。
 図5に示すファンモータ101は、6つのステータを正六角形に近い配置とすることにより、ハウジング50の形状を正六角形にしている。このようにハウジング50を正六角形に形成することにより、複数個のファンモータ101を二次元に配置するとき、六方最密配置をとることができる。このため、ファンモータの配置総スペース中に占めるファン面積(風路面積)の比率を高くすることができる。したがって、配置されたファンモータ101全体での特性を向上させることができる。
実施の形態3.
 ファンモータを複数配置する場合等、ファンモータの設置スペース等を考慮し、ハウジングの形状を長方形に形成することがある。このような場合、ステータ30の各ステータ(ステータ30a、ステータ30b、ステータ30c)を、例えば以下のように配置してもよい。なお、本実施の形態3では、ステータ30b及びステータ30cを2組用いたファンモータ102について説明する。また、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とする。
 図6は、本発明の実施の形態3に係るファンモータを示す正面図である。
 本実施の形態3に係るファンモータ102は、実施の形態2と同様に、ステータ30a、ステータ30b及びステータ30cを2つずつ備えている。また、本実施の形態3に係るファンモータ102は、実施の形態2と同様に、同種のステータを対称配置している。また、本実施の形態3に係るファンモータ102は、ハウジング50の形状を長方形に形成している。
 ここで、ロータのq軸は極対数分存在するため、ステータ30の各ステータを配置できる位置(各ステータの例えばV相ティース32Vの中心がロータのq軸とあう位置)は複数あることとなる。また、ステータ30を構成するステータの一部のコイル巻き方向を逆にすることにより、このステータを例えばV相ティース32Vの中心がロータの-q軸とあう位置にも配置できるため、ステータ30の各ステータの配置位置はより多くなる。
 そこで、本実施の形態3では、各ステータをハウジング50の短辺側のみに配置している。このようにステータ30の各ステータを配置することにより、ハウジング50の長辺間距離ぎりぎりまでの大きさの羽根部20(換言するとロータ10)を使用することができる。なお、ステータ30a及びステータ30cはハウジング50の角部近傍に設けられているが、本実施の形態3では、これら角部近傍も短辺側と称することとする。
 一般に、ハウジング50の形状が長方形でアスペクト比が大きな場合、短辺側(ハウジング50の長手方向)には、羽根部20の外側となるスペースを大きく確保できる。しかしながら、長辺側(ハウジング50の短手方向)においては、羽根部20の外側となるスペースが小さくなってしまう。このため、ハウジング50の長辺側(ハウジング50の短手方向)にステータの配置スペースを確保しようとすると、羽根部20(換言するとロータ10)の径を小さくする必要が生じ、風量等のファン特性が低下してしまう。しかしながら、本実施の形態3に係るファンモータ102は、ステータ30の各ステータをハウジング50の短辺側のみに配置しているので、このような問題点を回避することができる。
 なお、本実施の形態3では磁石11を32極としているため、q軸位置は16箇所(-q軸を含めると32箇所)となる。磁石11の極数を増加させるとq軸位置も増加し、その回転方向間隔も小さくなるため、羽根部20(換言するとロータ10)とハウジング50の長辺側との距離をよりいっそう小さくすることが可能となる。
 また、本実施の形態3ではステータ30b及びステータ30cを2組用いたファンモータ102について説明したが、これらの組数は任意である。ステータ30の各ステータをハウジング50の短辺側のみに配置することにより、羽根部20(換言するとロータ10)とハウジング50の長辺側との距離を小さくすることができ、風量等のファン特性が低下してしまうことを防止できる。
実施の形態4.
 実施の形態1~実施の形態3では、1つのステータに1つのティース群が配置されていた。これに限らず、1のステータに同種のティース群を複数配置しても勿論よい。なお、本実施の形態3において、特に記述しない項目については実施の形態1~実施の形態3と同様とする。
 図7は、本発明の実施の形態4に係るファンモータを示す正面図である。なお、図7に示す破線矢印は、羽根部20(換言するとロータ10)の回転方向を示している。
 本実施の形態4に係るファンモータ103は、実施の形態1と同様に、ステータ30d、ステータ30e及びステータ30fを1組備えている。また、ステータ30d、ステータ30e及びステータ30fの配置位置は、実施の形態1におけるステータ30a、ステータ30b及びステータ30cの配置位置と同様である。
 しかしながら、本実施の形態4においては、ステータ30の各ステータには、複数のティース群(本実施の形態4では2つ)が設けられている。より詳しくは、ステータ30dには、2つの第1ティース群が設けられている。つまり、ステータ30dは、ロータ10の回転方向に沿って(図7の時計回り方向に)、U相ティース32U、V相ティース32V、W相ティース32W、U相ティース32U、V相ティース32V及びW相ティース32Wと6つのティース32が設けられている。また、ステータ30eには、2つの第2ティース群が設けられている。つまり、ステータ30eは、ロータ10の回転方向に沿って(図7の時計回り方向に)、V相ティース32V、W相ティース32W、U相ティース32U、V相ティース32V、W相ティース32W及びU相ティース32Uと6つのティース32が設けられている。また、ステータ30fには、2つの第3ティース群が設けられている。つまり、ステータ30fは、ロータ10の回転方向に沿って(図7の時計回り方向に)、W相ティース32W、U相ティース32U、V相ティース32V、W相ティース32W、U相ティース32U及びV相ティース32Vと6つのティース32が設けられている。
 また、ステータ30d、ステータ30e及びステータ30fに設けられた各ティース32は、実施の形態1と同様に、同相ティース毎に直列接続されている。
 このように1つのステータに同種のティース群を複数設けることにより、1つのステータに1つのティース群を設ける場合と比べ、各相間の磁気的アンバランスをより小さくすることができる。さらに、実施の形態1と同様に、各ティース32が同相ティース毎に直列接続されているの、各相間の磁気的アンバランスをさらに小さくすることができる。
 なお、1つのステータに設けられる同種のティース群の数は、2つに限らず、3つ以上としても勿論よい。ただし、1つのステータに設けられる同種のティース群の数を多くしすぎた場合、ロータの周囲全てにステータを配置する従来のファンモータと同様の構造となってしまい、ハウジング50と羽根部20(換言するとロータ10)の隙間にステータを配置してスペースを有効利用するメリットが失われてしまう。
実施の形態5.
 本実施の形態5では、実施の形態1~実施の形態4に示したファンモータを空気調和機に用いた例について説明する。
 図8は、本発明の実施の形態5に係る空気調和機の一例を示す縦断面図である。この図8は、実施の形態1に係るファンモータ100を、空気調和機の室内機200に用いた例を示している。また、図8は、図の左側を室内機200の前面側として示している。図8に基づいて、室内機200の構成について説明する。
 なお、室内機200のファンモータとして、実施の形態2~実施の形態4に示したファンモータを用いても勿論よい。
 室内機200は、冷媒を循環させる冷凍サイクルを利用することで室内等の空調対象域に空調空気を供給するものである。この室内機200は、主に、室内空気を内部に吸い込むための吸込口111及び空調空気を空調対象域に供給するための吹出口115が形成されている筐体110と、この筐体110内に収納され、吸込口111から室内空気を吸い込み、吹出口115から空調空気を吹き出すファンモータ100と、吸込口111からファンモータ100までの風路に配設され、冷媒と室内空気とで熱交換することで空調空気を作り出す熱交換器114と、を有している。
 吸込口111は、筐体110の上部に開口形成されている。吹出口115は、筐体110の下部(より詳しくは、筐体110の前面部下側)に開口形成されている。ファンモータ100は、吸込口111の下流側でかつ、熱交換器114の上流側に配設されている。また、ファンモータ100は、紙面直交方向に例えば3つ並べられている。なお、ファンモータ100の設置数は、あくまでも一例である。要求される風量等に応じて、ファンモータ100の設置数を適宜変更すればよい。
 熱交換器114は、ファンモータ100の風下側に配置されている。この熱交換器114は、筐体110の前面側に配置された前面側熱交換器114aと、筐体110の背面側に配置された背面側熱交換器114bと、から構成されている。この熱交換器114には、例えばフィンチューブ型熱交換器等を用いるとよい。また、吸込口111には、グリル112やフィルター113が設けられている。さらに、吹出口115には、気流の吹出し方向を制御する機構、例えば図示省略のベーン等が設けられている。
 ここで、室内機200内における空気の流れについて簡単に説明する。
 まず、室内空気は、ファンモータ100によって筐体110の上部に形成されている吸込口111から室内機200内に流れ込む。このとき、フィルター113によって空気に含まれている塵埃が除去される。この室内空気は、熱交換器114を通過する際、熱交換器114内を流れる冷媒によって加熱又は冷却されて空調空気となる。そして、空調空気は、筐体110の下部に形成されている吹出口115から室内機200の外部、つまり空調対象域に吹き出されるようになっている。
 このように構成された室内機200(空気調和機)においては、実施の形態1に示したファンモータ100を用いている。このファンモータ100は、羽根部のボスにモータが接続された従来のファンモータや羽根部の外周部全域にステータが配置された従来のファンモータと比べて薄型化でき、羽根21の面積を大きくすることができる。このため、本実施の形態5に係る室内機200は、従来の室内機よりも薄型化・小型化することが可能となる。また、従来の室内機と同様の大きさで本実施の形態5に係る室内機200を製作した場合、従来の室内機よりも風量の大きな室内機を得ることができる。
 また、このように構成された室内機200(空気調和機)においては、実施の形態1に示したファンモータ100を用いている。このため、羽根部の外周部の一部にステータが設けられた従来のファンモータを搭載した室内機と比べ、騒音及び振動等を防止することができる。
 なお、本実施の形態5ではファンモータ100を熱交換器114の風上側に配置したが、ファンモータ100を熱交換器114の風下側に配置しても勿論よい。
 10 ロータ、11 磁石、12 ロータコア、20 羽根部、21 羽根、22 ボス部、23 リング、30 ステータ、30a~30f ステータ、31 ステータコア、32 ティース、32a ティース、32b ティース、32c ティース、32U U相ティース、32V V相ティース、32W W相ティース、33 補助ティース、34 固定用穴、40 モータ、50 ハウジング、100~103 ファンモータ、110 筐体、111 吸入口、112 グリル、113 フィルター、114 熱交換器、114a 前面側熱交換器、114b 背面側熱交換器、115 吹出口、200 室内機(空気調和機)。

Claims (9)

  1.  羽根部と、
     該羽根部の外周部に設けられたロータ、及び該ロータの外周側にギャップを介して配置され、内周面にティースが設けられたステータを有する三相モータと、
     前記ステータ及び前記ロータの外周側を覆うように配置されたハウジングと、
     を備えたファンモータにおいて、
     前記ステータは、第1ステータ、第2ステータ及び第3ステータを1組以上備え、
     前記第1ステータは、前記ロータの回転方向に沿って、U相ティース、V相ティース及びW相ティースが順に配置された第1ティース群を少なくとも1つ備え、
     前記第2ステータは、前記ロータの回転方向に沿って、V相ティース、W相ティース及びU相ティースが順に配置された第2ティース群を少なくとも1つ備え、
     前記第3ステータは、前記ロータの回転方向に沿って、W相ティース、U相ティース及びV相ティースが順に配置され第3ティース群を少なくとも1つ備え、
     前記第1ティース群、前記第2ティース群及び前記第3ティース群は、ティースに巻き付けられたコイルの巻き方向が同方向になっており、
     前記第1ステータ、前記第2ステータ及び前記第3ステータは、前記ティース群の同相ティースが電気角で360°の整数倍だけ離れた位置となるように配置され、
     前記第1ステータ、前記第2ステータ及び前記第3ステータの同相ティースに巻き付けられた前記コイルが直列接続されていることを特徴とするファンモータ。
  2.  羽根部と、
     該羽根部の外周部に設けられたロータ、及び該ロータの外周側にギャップを介して配置され、内周面にティースが設けられたステータを有する三相モータと、
     前記ステータ及び前記ロータの外周側を覆うように配置されたハウジングと、
     を備えたファンモータにおいて、
     前記ステータは、第1ステータ、第2ステータ及び第3ステータを1組以上備え、
     前記第1ステータは、前記ロータの回転方向に沿って、U相ティース、V相ティース及びW相ティースが順に配置された第1ティース群を少なくとも1つ備え、
     前記第2ステータは、前記ロータの回転方向に沿って、V相ティース、W相ティース及びU相ティースが順に配置された第2ティース群を少なくとも1つ備え、
     前記第3ステータは、前記ロータの回転方向に沿って、W相ティース、U相ティース及びV相ティースが順に配置され第3ティース群を少なくとも1つ備え、
     前記第1ティース群、前記第2ティース群及び前記第3ティース群のうちの一部の前記ティース群は、ティースに巻き付けられたコイルの巻き方向が第1方向になっており、
     前記第1ティース群、前記第2ティース群及び前記第3ティース群のうちの残りの一部は、前記コイルの巻き方向が前記第1方向と逆方向となる第2方向になっており、
     前記第1ステータ、前記第2ステータ及び前記第3ステータは、
     前記コイルの巻方向を前記第1方向としている前記ティース群が、互いの同相ティースが電気角で360°の整数倍だけ離れた位置となり、
     前記コイルの巻き方向を前記第2方向とした前記ティース群が、前記コイルの巻き方向を前記第1方向とした前記ティース群に対し、互いの同相ティースが電気角で360°×N+180°(Nは整数)離れた位置となるように配置され、
     前記第1ステータ、前記第2ステータ及び前記第3ステータの同相ティースに巻き付けられた前記コイルは、巻き方向を前記第1方向とした前記コイルの電流の流れ方向と巻き方向を前記第2方向とした前記コイルの電流の流れ方向とが逆向きとなるように、直列接続されていることを特徴とするファンモータ。
  3.  前記ステータは、第1ステータ、第2ステータ及び第3ステータを2組以上備え、
     前記第1ステータ、前記第2ステータ及び前記第3ステータは、同種の前記ステータが前記羽根部の回転軸に対して対称に配置されていることを特徴とする請求項1又は請求項2に記載のファンモータ。
  4.  前記ハウジングが長方形であり、
     前記第1ステータ、前記第2ステータ及び前記第3ステータは、前記ハウジングの短辺側のみに集中配置されていることを特徴とする請求項1~請求項3のいずれか一項に記載のファンモータ。
  5.  前記ステータは、第1ステータ、第2ステータ及び第3ステータを2組備え、
     前記ハウジングが正六角形となっていることを特徴とする請求項1~請求項3のいずれか一項に記載のファンモータ。
  6.  前記ステータは、第1ステータ、第2ステータ及び第3ステータを3組以上備え、
     前記第1ステータ、前記第2ステータ及び前記第3ステータは、同種の前記ステータが正多角形に配置されていることを特徴とする請求項1又は請求項2に記載のファンモータ。
  7.  前記第1ステータは、2つ以上の前記第1ティース群を備え、
     前記第2ステータは、2つ以上の前記第2ティース群を備え、
     前記第3ステータは、2つ以上の前記第3ティース群を備えたことを特徴とする請求項1~請求項6のいずれか一項に記載のファンモータ。
  8.  前記第1ステータ、前記第2ステータ及び前記第3ステータの少なくとも1つには、端部に補助ティースが設けられていることを特徴とする請求項1~請求項7のいずれか一項に記載のファンモータ。
  9.  室内空気を内部に吸い込むための吸込口及び空調空気を空調対象域に供給するための吹出口が形成された筐体と、
     前記筐体に収納された請求項1~請求項8のいずれか一項に記載のファンモータと、
     前記筐体に収納され、前記室内空気を熱交換して前記空調空気とする熱交換器と、
     を備えたことを特徴とする空気調和機。
PCT/JP2010/005987 2010-10-06 2010-10-06 ファンモータ及びこれを備えた空気調和機 WO2012046274A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/005987 WO2012046274A1 (ja) 2010-10-06 2010-10-06 ファンモータ及びこれを備えた空気調和機
CN201080069416.9A CN103141011B (zh) 2010-10-06 2010-10-06 风扇电机和具备该风扇电机的空调机
JP2012537491A JP5484586B2 (ja) 2010-10-06 2010-10-06 ファンモータ及びこれを備えた空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/005987 WO2012046274A1 (ja) 2010-10-06 2010-10-06 ファンモータ及びこれを備えた空気調和機

Publications (1)

Publication Number Publication Date
WO2012046274A1 true WO2012046274A1 (ja) 2012-04-12

Family

ID=45927301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005987 WO2012046274A1 (ja) 2010-10-06 2010-10-06 ファンモータ及びこれを備えた空気調和機

Country Status (3)

Country Link
JP (1) JP5484586B2 (ja)
CN (1) CN103141011B (ja)
WO (1) WO2012046274A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170113634A (ko) * 2015-02-02 2017-10-12 퍼시몬 테크놀로지스 코포레이션 비원형 고정자를 가진 모터

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110594175A (zh) * 2019-10-25 2019-12-20 深圳市高斯轨道交通有限公司 一种无轴风扇
IT202200002807A1 (it) * 2022-02-16 2023-08-16 Denso Thermal Systems Spa Macchina elettrica a magneti permanenti a inversione di flusso

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387004U (ja) * 1989-12-14 1991-09-04
JP2002345224A (ja) * 2001-05-18 2002-11-29 Yaskawa Electric Corp 永久磁石形同期電動機
WO2003034573A1 (fr) * 2001-10-10 2003-04-24 Mitsuba Corporation Structure d'enroulement pour machine dynamoelectrique
JP2004166483A (ja) * 2002-09-27 2004-06-10 Nippon Densan Corp 記録ディスク駆動用モータ及びそれを備えた記録ディスク駆動装置
JP2009118653A (ja) * 2007-11-07 2009-05-28 Honda Motor Co Ltd アウタロータ型多極発電機
JP2009156559A (ja) * 2007-12-27 2009-07-16 Toshiba Carrier Corp 空気調和機の室内機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196346B2 (ja) * 2004-03-25 2008-12-17 三菱電機株式会社 空気調和機
JP4909111B2 (ja) * 2007-02-14 2012-04-04 株式会社日立産機システム ファンシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387004U (ja) * 1989-12-14 1991-09-04
JP2002345224A (ja) * 2001-05-18 2002-11-29 Yaskawa Electric Corp 永久磁石形同期電動機
WO2003034573A1 (fr) * 2001-10-10 2003-04-24 Mitsuba Corporation Structure d'enroulement pour machine dynamoelectrique
JP2004166483A (ja) * 2002-09-27 2004-06-10 Nippon Densan Corp 記録ディスク駆動用モータ及びそれを備えた記録ディスク駆動装置
JP2009118653A (ja) * 2007-11-07 2009-05-28 Honda Motor Co Ltd アウタロータ型多極発電機
JP2009156559A (ja) * 2007-12-27 2009-07-16 Toshiba Carrier Corp 空気調和機の室内機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170113634A (ko) * 2015-02-02 2017-10-12 퍼시몬 테크놀로지스 코포레이션 비원형 고정자를 가진 모터
JP2018507672A (ja) * 2015-02-02 2018-03-15 パーシモン テクノロジーズ コーポレイションPersimmon Technologies, Corp. 非円形の固定子を備えるモータ
JP2021023099A (ja) * 2015-02-02 2021-02-18 パーシモン テクノロジーズ コーポレイションPersimmon Technologies, Corp. 非円形の固定子を備えるモータ
US11043857B2 (en) 2015-02-02 2021-06-22 Persimmon Technologies Corporation Motor having non-circular stator
JP7202339B2 (ja) 2015-02-02 2023-01-11 パーシモン テクノロジーズ コーポレイション 非円形の固定子を備えるモータ
KR102576223B1 (ko) * 2015-02-02 2023-09-11 퍼시몬 테크놀로지스 코포레이션 비원형 고정자를 가진 모터

Also Published As

Publication number Publication date
CN103141011B (zh) 2015-09-09
CN103141011A (zh) 2013-06-05
JP5484586B2 (ja) 2014-05-07
JPWO2012046274A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5506811B2 (ja) ファンモーター及びこれを備えた空気調和機
JP6873250B2 (ja) コンシクエントポール型ロータ、電動機、圧縮機、送風機、及び空気調和機
JP5816822B2 (ja) モータおよびそれを搭載した電気機器
JP6964672B2 (ja) ロータ、電動機、送風機および空気調和装置
JP5487649B2 (ja) ファンモータおよびこのファンモータを備えた送風機
JP5589506B2 (ja) 永久磁石モータ
US9995305B2 (en) Fluid flow apparatus, fan assembly and associated method
JP5484586B2 (ja) ファンモータ及びこれを備えた空気調和機
JP2009033886A (ja) 回転電機
JP4491903B2 (ja) 送風装置
JP5456170B2 (ja) ファンモータ及びこれを備えた空気調和機
WO2021171476A1 (ja) 電動機、ファン、及び空気調和機
JP7098047B2 (ja) モータ、ファン、および空気調和機
JP7026805B2 (ja) ステータ、モータ、ファン、及び空気調和機並びにステータの製造方法
WO2023073757A1 (ja) ロータ、電動機、送風機および空気調和装置
JP7321393B2 (ja) 電動機、ファン、及び空気調和機
JP2013223395A (ja) 誘導電動機と送風装置およびそれを搭載した電気機器
JP7239738B2 (ja) ロータ、電動機、ファン、及び空気調和機
JPWO2023073757A5 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069416.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012537491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858083

Country of ref document: EP

Kind code of ref document: A1