WO2012044042A2 - Method for preparing fatty acid alkyl esters - Google Patents

Method for preparing fatty acid alkyl esters Download PDF

Info

Publication number
WO2012044042A2
WO2012044042A2 PCT/KR2011/007106 KR2011007106W WO2012044042A2 WO 2012044042 A2 WO2012044042 A2 WO 2012044042A2 KR 2011007106 W KR2011007106 W KR 2011007106W WO 2012044042 A2 WO2012044042 A2 WO 2012044042A2
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
acid alkyl
catalyst
reaction
alkyl ester
Prior art date
Application number
PCT/KR2011/007106
Other languages
French (fr)
Korean (ko)
Other versions
WO2012044042A3 (en
Inventor
이무호
김인기
김일남
곽진원
황승준
박남수
김종원
권은숙
Original Assignee
삼성석유화학(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100093474A external-priority patent/KR101072674B1/en
Application filed by 삼성석유화학(주) filed Critical 삼성석유화학(주)
Publication of WO2012044042A2 publication Critical patent/WO2012044042A2/en
Publication of WO2012044042A3 publication Critical patent/WO2012044042A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals

Definitions

  • the present invention relates to a process for effectively preparing fatty acid alkyl esters from oils, fats, or mixtures thereof containing free fatty acids in the presence of a base catalyst.
  • Fatty acid alkyl esters are generally prepared by homogeneous liquid phase reaction using oil, fat, or mixtures thereof and methanol having an acid value of 2 or less free of fatty acids, and methanol as a raw material.
  • the catalysts include sodium hydroxide (NaOH) and potassium hydroxide ( KOH), potassium methylate (KOCH 3 ), sodium methylate (NaOCH 3 ), and the like. These reaction conditions are gentle conditions of 40-80 degreeC.
  • EP 1308498 A1 proposes a process for preparing fatty acid alkylesters from fats and oils comprising free fatty acids via a multistage homogeneous liquid phase process using Lewis acid catalysts.
  • the method has a high catalyst usage and is difficult to apply to high acid value raw materials.
  • EP 1092703 A1 discloses a process for producing fatty acid methyl ester by reacting a glyceride raw material having an acid value of 5 to 20 in the presence of a transition metal salt, but it is also difficult to use the high acid raw material.
  • U.S. Patent 5,434,279 describes a process for producing fatty acid esters by two step reaction at low temperatures of up to 60 ° C using excess catalyst. In this method, the amount of catalyst used is high and the yield of fatty acid alkyl ester is low, and the method is difficult to apply to a high acid value raw material.
  • U.S. Patent 4,668,439 describes a process for producing fatty acid alkyl esters by reacting excess alkali metal salts or heavy metal salts with excess methanol, liquid glycerides under high temperature and low pressure and then layering the reactants.
  • the catalyst used in this process forms an emulsion, making it difficult to separate glycerin. This process is not particularly desirable for high acid value raw materials.
  • Korean Patent Publication No. 10-2008-0036107 discloses a method for preparing a carboxylic acid ester in the presence of a liquid metal catalyst using an alkaline earth metal salt of carboxylic acid, but this method requires a separate process for preparing a catalyst and a fatty acid salt. The loss of yield is high by using a large amount of catalyst in the form.
  • the prior art uses an excess of catalyst and methanol, where fatty acid salts are formed by the reaction of the catalyst with free fatty acids when oil, fat, or mixtures thereof are present in large amounts. These fatty acid salts form an emulsion with glycerin, which makes it difficult to separate by-product glycerin after the reaction.
  • U.S. Patent 5,908,946 discloses a process for producing fatty acid alkyl esters using at least one of zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), zinc aluminate (ZnAl 2 O 3 ) as a catalyst, U.S.
  • Patent 6,818,026, the second is under critical conditions to a catalyst using calcium hydroxide, calcium carbonate, calcium oxide, magnesium oxide
  • the Republic of Korea Patent Application 644 246 discloses a magnesium oxide-zinc oxide-zinc aluminate (xMgO ⁇ yZnO ⁇ ZnAl 2 O 4)
  • the method using the catalyst system of the Republic of Korea, Korean Patent Publication No. 2007-0104041 is a solid phase for producing biodiesel comprising at least one of the transition metal oxide group including zinc oxide, nickel oxide, cobalt oxide, molybdenum oxide and titanium dioxide as an active ingredient Catalytic process is disclosed.
  • the present inventors studied a method for preparing fatty acid alkyl esters using oils, fats, or mixtures of high acid values. As a result, esterification and transition esterification proceed simultaneously under high temperature and high pressure homogeneous base catalyst conditions. Particularly, when the reaction is performed using MgO or Mg (OH) 2 as a homogeneous base catalyst, it exhibits higher catalytic activity even with a smaller amount of catalyst than the conventional alkali metal catalyst, and is used for the separation of by-product glycerin after the reaction. The small amount of catalyst has led to the present invention in that it is easy to separate the layers.
  • the present invention relates to oils, fats, or mixtures thereof containing free fatty acids and acid values of 2 to 200, and C 1 -C 5 low-cost alcohols at 150-250 ° C. under one or more catalysts selected from MgO and Mg (OH) 2 . And it provides a method for producing a fatty acid alkyl ester comprising the step of esterification reaction and transesterification reaction under 5-100 atm.
  • Oils or fats of the present invention are fatty acid glycerol esters, which are esters of glycerol and saturated or unsaturated fatty acids, meaning fats or oils of animal or vegetable origin, and include free fatty acids.
  • Fats or oils of the invention include, but are not limited to, lower oils, fats, or mixtures thereof containing large amounts of free fatty acids, such as, but not limited to, waste cooking oil, waste fat, yellow grease, and the like.
  • Vegetable origin includes soybean oil, palm oil, castor oil, rapeseed oil, and the like, and animal origin include tallow, lard, poultry fat and the like.
  • oils, fats, or mixtures thereof of the invention have an acid value of 2 to 200, preferably 5 to 100, more preferably 10 to 60.
  • oils, fats, or mixtures thereof of the present invention can be prepared into fatty acid alkylesters by reaction with alcohols and through esterification and transesterification reactions.
  • the alcohol used in the esterification or transesterification reaction with the oil, fat, or mixtures thereof of the present invention may be selected from one or more linear or branched alcohols having 1 to 5 carbon atoms, preferably Methanol or ethanol is used.
  • a small amount of alcohol is used relative to oil, fat, or mixtures thereof, and the ratio of oil, fat, or mixtures thereof (oil, fat, or mixtures / alcohols thereof) to alcohol is 100 / wt. 80-100 / 10, preferably 100 / 70-100 / 15, more preferably 100 / 60-100 / 20.
  • the ratio is preferably 100/80 or more, and the ratio is preferably 100/10 or less for a smooth conversion reaction.
  • magnesium oxide (MgO) or magnesium hydroxide (Mg (OH) 2 ) may be used alone or as a catalyst.
  • Base catalysts such as sodium hydroxide (NaOH) and potassium hydroxide (KOH) react with free fatty acids contained in oils or fats to form soaps, and thus esterification is impossible. While it is possible to use a high acid value raw material including free fatty acids, it is possible to simultaneously esterify the free fatty acids, thereby increasing the conversion to fatty acid alkyl esters and lowering the yield loss.
  • the content of the catalyst may be 0.001 to 0.5% by weight, preferably 0.005 to 0.3% by weight, more preferably 0.01 to 0.1% by weight based on the weight of the oil, fat or mixtures thereof.
  • a small amount of the catalyst can be used. When a small amount of the catalyst is used, the yield loss can be minimized by suppressing the generation of the emulsion upon separation of the layer after completion of the reaction.
  • the catalyst may be mixed with alcohol, oil, fat or mixtures thereof, added to the reaction in the form of a mixture, and mixed in a slurry state.
  • the raw material and catalyst mixture in the slurry state may be introduced into the esterification and transition esterification process continuously or intermittently.
  • Most catalysts added to the reaction participate in the reaction in the form of a homogeneous system, and they may participate in the reaction in the form of oxides, hydroxides, fatty acid salts, and the like during the conversion reaction.
  • esterification and transesterification reaction is carried out by continuous or discontinuous addition of alcohol and MgO or Mg (OH) 2 catalyst to oil, fat, or mixtures thereof.
  • the esterification and transition esterification temperature of the present invention is 150 to 250 ° C, preferably 180 to 230 ° C, more preferably 190 to 220 ° C. If the reaction temperature is less than 150 °C, the conversion rate to fatty acid alkyl ester is reduced because the activity of the metal base catalyst does not appear, and if it exceeds 250 °C energy cost increases to increase the process cost and the raw material oil, fat, or Carbonization of these mixtures may occur.
  • the reaction pressure is 5 to 100 atm, preferably 10 to 70 atm, more preferably 20 to 50 atm. If the reaction pressure is less than 5 atm, the alcohol is present in the gas phase to make a uniform reaction system, excess alcohol is required. In addition, if it exceeds 100 atm, the process equipment becomes complicated and the process cost increases, making it difficult to apply to commercial production.
  • the esterification process of the invention can be carried out continuously or batchwise. Both the reaction time of the batch process and the reaction time of the continuous process may be 30 minutes to 6 hours, preferably 1 hour to 4 hours. In order to sufficiently proceed to the fatty acid alkyl ester, the reaction time is preferably 30 minutes or more, and when considering the generation of carbides and the progress of the reverse reaction due to long-term stagnation at high temperature, the reaction time is preferably 6 hours or less.
  • a continuous stirred reactor type (CSTR) in the case of a continuous process a line or a static mixer type in the case of a batch may be used. Some of the water produced during the reaction can be removed continuously out of the reactor by adjusting the reaction pressure, thereby promoting the esterification reaction to lower the acid value of the product more efficiently.
  • CSTR continuous stirred reactor type
  • the present invention may further comprise the step of recovering the fatty acid alkyl ester of the upper layer after the esterification and transesterification reaction to prepare a fatty acid alkyl ester, removing the unreacted alcohol and water and separating the layers.
  • the unreacted alcohol and water are removed by a known method such as evaporation and extraction, and then the layers are separated.
  • the upper layer includes fatty acid ester, monoglyceride, diglyceride, catalyst, and the like. Glycerin, catalysts, other unconverted glycerides, and the like. Fatty acid alkyl esters with significantly lower acid values can be obtained by the esterification process according to the invention.
  • the lower layer of glycerin produced in this process is recovered after an additional purification process can be useful for various uses, such as food, industrial.
  • the catalyst used after the esterification and transesterification reaction of the present invention can be removed from the fatty acid alkylester by distillation or acid washing. Distillation residues during distillation contain large amounts of catalyst and can be reused as catalysts for esterification and transesterification reactions.
  • the present invention may further comprise a pretreatment process for reducing free fatty acids in the raw materials prior to the esterification and transesterification reaction steps.
  • the pretreatment process may be a conventional method that can reduce the free fatty acid of the oil, fat, or mixtures thereof containing free fatty acid or esterification without a catalyst.
  • the method may further include reacting the oil, the fat, or a mixture thereof under low catalyst of C 1 -C 5 with 150 to 250 ° C. and 5 to 100 atmospheres.
  • esterification and transesterification reaction may occur between the raw material and the alcohol to reduce free fatty acid.
  • the oil or fat / alcohol ratio may be 100/80 to 100/10, preferably 100/70 to 100/15, more preferably 100/60 to 100/20.
  • the ratio is preferably 100/80 or more, and the ratio is preferably 100/10 or less for a smooth conversion reaction.
  • the pretreatment process can be carried out in a continuous or batch process.
  • the reaction time of the batch process and the raw material reaction time of the continuous process are preferably 30 minutes to 6 hours.
  • a reactor such as a stirred reactor type (CSTR) in the case of a batch process, a line or a static mixer form in the case of a continuous process may be used.
  • Some of the water produced during the reaction can be removed continuously out of the reactor by adjusting the reaction pressure, thereby promoting the esterification reaction to lower the acid value of the reactants more efficiently.
  • the reaction products of the pretreatment process include fatty acid esters, monoglycerides, diglycerides, triglycerides, alcohols and water, among which the unreacted alcohols and water are removed by evaporation and the rest are esterified and transesterified reactions of the present invention.
  • the acid value of fats and oils can be greatly reduced by the pretreatment process, and triglycerides can be converted into fatty acid alkyl esters in high yield by a transesterification reaction with alcohol. If the pressure is lowered continuously to remove some of the water produced, the water removal process can be omitted.
  • the pretreatment process of the present invention may be particularly effective when the acid value of the oil or fat is 10 or more, specifically 20 or more.
  • the produced fatty acid ester may be recovered to perform further ester and transesterification reaction.
  • the additional esterification reaction may be repeated one or more times, and the purity may be increased by converting the free fatty acid and the unconverted glyceride present in the fatty acid alkyl ester to the fatty acid alkyl ester by the additional reaction.
  • the conversion reaction may proceed without additional catalyst in the additional esterification step.
  • additional catalysts can be added, which are catalysts used in previous esterification processes, ie MgO and Mg (OH) 2 , or other applicable catalysts, for example base catalysts, in particular The metal base catalyst may be added alone or in a mixture.
  • Other applicable catalysts include base catalysts such as NaOH, KOH, KOCH 3 , NaOCH 3 and the like.
  • the amount of the catalyst used may be preferably 0.001 to 0.5% by weight, more preferably 0.005 to 0.3, based on the weight of the raw materials used for the additional esterification and the transesterification reaction except for alcohol. Weight percent, most preferably 0.01 to 0.1 weight percent.
  • the ratio of fatty acid alkylester / alcohol recovered in the further ester process may be 100/80 to 100/10, preferably 100/70 to 100/15, more preferably 100/60 to 100/20. .
  • the ratio is preferably 100/80 or more, and the ratio is preferably 100/10 or less for a smooth conversion reaction.
  • the pressure of the further esterification reaction may be at high or low pressure.
  • high pressure it may be 5 to 100 atm, preferably 10 to 70 atm, more preferably 20 to 50 atm, and in the case of low pressure, it may be at normal to 10 atm, preferably at atmospheric pressure to 5 atm.
  • the reaction temperature may be a condition of high temperature or low temperature. In the case of high temperature, it may be 150 to 250 ° C, preferably 180 to 230 ° C, more preferably 190 to 220 ° C, and in the case of low temperature, 40 to 100 ° C, preferably 50 to 80 ° C.
  • the manner of the other further esterification reactions is the same as for the previous esterification and transesterification reactions.
  • alcohol and water are first removed from the reaction product by evaporation or the like.
  • Fatty acid alkylesters can be recovered from known reaction products from which alcohol and water have been removed.
  • the reaction product is distilled to obtain fatty acid alkyl esters and glycerin from the top of the distillation column, and then the layers are separated to obtain fatty acid alkyl esters.
  • the fatty acid alkyl esters are separated from the reaction product by separating the fatty acid alkyl esters and glycerin. How to get.
  • the recovered fatty acid alkyl ester can be purified by additional known methods such as washing with water and dehydration.
  • fatty acid alkyl esters with greatly reduced acid values can be obtained.
  • the fatty acid alkyl ester having a low content of unconverted glyceride, which has a low content of monoglyceride, diglyceride and triglyceride can be secured in high yield.
  • fatty acid alkyl esters can be produced in high yield with high reaction activity while using oils, fats, or mixtures thereof having a high free fatty acid content of 2 to 200 as a raw material.
  • yield loss was calculated by comparing the content of fatty acid alkyl ester recovered after layer separation with the theoretical content of fatty acid alkyl ester that can be produced. This yield loss refers to the loss of fatty acid alkylesters upon layer separation due to emulsion formation.
  • the acid value can be obtained by the following equation.
  • Acid value [volume of KOH solution used for sample titration (ml)-volume of KOH solution used in background test (ml)] * concentration of KOH solution (mol / L) * 56.1 / mass of sample (g)
  • a fatty acid alkyl ester was prepared and recovered in the same manner as in Example 1, except that 0.024 g of Mg (OH) 2 was used as a catalyst, and then the acid value and organic content of the recovered fatty acid alkyl ester layer were analyzed and yield loss was measured. Calculated.
  • a fatty acid alkyl ester was prepared and recovered in the same manner as in Example 1 except that 0.054 g of NaOH was used as a catalyst, and then the acid value and organic matter content of the recovered fatty acid alkyl ester layer were analyzed and yield loss was calculated.
  • a fatty acid alkyl ester was prepared and recovered in the same manner as in Example 1 except that KOH 0.052 g was used as a catalyst, and then the acid value and organic matter content of the recovered fatty acid alkyl ester layer were analyzed and yield loss was calculated.
  • the fatty acid alkyl ester was prepared and recovered in the same manner as in Example 1 except that 0.3 g of sodium hydroxide (NaOH) was used as a catalyst and reacted at 80 ° C., and the acid value and organic matter content of the recovered fatty acid alkyl ester layer. was analyzed and yield loss was calculated.
  • NaOH sodium hydroxide
  • a fatty acid alkyl ester was prepared and recovered in the same manner as in Comparative Example 3, except that 0.6 g of sodium hydroxide (NaOH) was used as a catalyst, and then the acid value and organic content of the recovered fatty acid alkyl ester layer were analyzed and yield loss was measured. Calculated.
  • Comparative Examples 1 and 2 using the existing base catalyst can be prepared more than a certain level of fatty acid alkyl ester, there is a disadvantage in that the yield loss occurs due to the emulsion upon separation of the layer after the reaction.
  • Comparative Example 3 in which a large amount of the existing base catalyst was added at low temperature, it was confirmed that the conversion rate to the fatty acid alkyl ester was very low.
  • Comparative Example 4 which used more catalyst than Comparative Example 3, the reaction proceeded rapidly and the conversion rate to fatty acid alkyl ester was high.
  • the glycerin layer was equivalent to 40% by weight. It is confirmed that the yield loss is large because it contains a large amount of 30% by weight.
  • Example 3 The reaction was carried out in the same manner as in Example 3 except that the reaction time was 3 hours to recover the fatty acid alkyl ester layer.
  • the acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
  • Example 7 The reaction was carried out in the same manner as in Example 7, except that the reaction time was 4 hours to recover the fatty acid alkyl ester layer.
  • the acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
  • fatty acid alkyl esters can be produced at high conversion rates without loss of yield even in Examples 7 and 8 using a small amount of catalysts using palm oil by-products having much higher acid values than Examples 5 and 6. Able to know.
  • the fatty acid alkylester was prepared by performing the secondary ester and transition ester reaction after the primary ester and transition ester reaction step. Specifically, 180 g of palm oil by-product (acid value 200 mgKOH / g) and 80 g of methanol were added to a 500 ml high-pressure reactor, and MgO 0.054 g was used as a catalyst to carry out the first ester and transition ester reaction at 200 ° C. and 28 atm for 2 hours. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers.
  • the fatty acid alkylester layer was recovered in the same manner as in Example 9 except that the primary ester and transition ester reactions and the secondary ester and transition ester reactions were all performed at 220 ° C. and 38 atm.
  • the acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
  • the primary ester and the transesterification reaction were carried out using a high acid value lower raw material, and then the secondary ester and the transesterification reaction without additional catalyst were added. It can be seen that it can be produced with a high conversion rate.
  • a pretreatment process is performed, and then, a second ester and transition ester reaction is performed to prepare fatty acid alkyl esters from a lower acidic raw material in a continuous process.
  • 180 g of palm oil mixture (acid value 60 mgKOH / g) and 80 g of methanol were added to a 500 ml high-pressure reactor, and the pretreatment reaction was performed at 200 ° C. and 30 atm for 2 hours. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers.
  • the pretreatment process was carried out before the primary ester and transition ester reaction step, and then the secondary ester and transition ester reaction was carried out to prepare fatty acid alkyl esters from the lower raw materials of the middle acid value in a continuous process.
  • 180 g of waste cooking oil (acid value 43 mgKOH / g) and 80 g of methanol were added to a 500 ml high-pressure reactor, and the pretreatment reaction was performed at 200 ° C. and 30 atm for 2 hours. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers.
  • the upper fatty acid alkyl ester, 180 g of unreacted fatty acid, glyceride, and 80 g of methanol were placed in a 500 ml high-pressure reactor, and a primary ester and a transesterification reaction were performed at 200 ° C. and 30 atm for 2 hours using a MgO catalyst. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers.
  • the upper fatty acid alkyl ester, 180 g of unreacted fatty acid, glyceride, and 80 g of methanol were placed in a 500 ml high-pressure reactor, and a secondary ester and a transesterification reaction were performed at 200 ° C. and 30 atm for 2 hours using a MgO catalyst.
  • the unreacted methanol and the produced water were removed by evaporation, and the fatty acid alkylester layer and the glycerin layer were separated by layer separation to recover the fatty acid alkylester layer.
  • the acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
  • the conventional base catalyst process is carried out in a continuous process to proceed the secondary ester and the transesterification reaction It can be seen that the fatty acid alkyl ester of low acid value can be prepared in a high conversion rate.
  • waste cooking oil (acid value 80 mgKOH / g) and 80 g of methanol were put into a 500 ml high-pressure reactor, and the pretreatment process was performed at 200 ° C. and 30 atm for 2 hours. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers.
  • the conventional base catalyst process is carried out in a continuous process to the secondary ester And it can be seen that the fatty acid alkyl ester can be produced at a high conversion rate while lowering the acid value when the transition ester reaction proceeds.

Abstract

The present invention relates to a method for preparing fatty acid alkyl esters, comprising a step of esterifying and transesterifying oil, fat, or a mixture thereof, wherein the oil, fat, or the mixture thereof contains free fatty acids and has an acid value of 2 to 200, in the presence of one or more catalysts selected from a low-carbon, i.e. C1 to C5, alcohol, MgO and Mg(OH)2, under the conditions of 150 to 250°C and 5 to 100 atmospheric pressures.

Description

지방산 알킬에스테르의 제조방법Method for producing fatty acid alkyl ester
본 발명은 염기촉매의 존재 하에서 유리지방산을 포함하는 오일, 지방, 또는 이들의 혼합물로부터 지방산 알킬에스테르를 효과적으로 제조하는 방법에 관한 것이다.The present invention relates to a process for effectively preparing fatty acid alkyl esters from oils, fats, or mixtures thereof containing free fatty acids in the presence of a base catalyst.
지방산 알킬에스테르는 일반적으로 유리지방산이 대부분 제거된 산가 2이하의 오일, 지방, 또는 이들의 혼합물과 메탄올을 원료로 균일계 액상반응에 의해 제조되며, 촉매로는 수산화 나트륨(NaOH), 수산화칼륨(KOH), 칼륨메틸레이트(KOCH3), 나트륨메틸레이트(NaOCH3) 등이 사용된다. 이들의 반응조건은 40~80℃의 온화한 조건이다. Fatty acid alkyl esters are generally prepared by homogeneous liquid phase reaction using oil, fat, or mixtures thereof and methanol having an acid value of 2 or less free of fatty acids, and methanol as a raw material.The catalysts include sodium hydroxide (NaOH) and potassium hydroxide ( KOH), potassium methylate (KOCH 3 ), sodium methylate (NaOCH 3 ), and the like. These reaction conditions are gentle conditions of 40-80 degreeC.
이러한 균일계 액상반응 형태의 예는 다음과 같다.Examples of such homogeneous liquid phase reaction forms are as follows.
EP 1308498 A1는 유리지방산을 포함하는 지방 및 오일로부터 루이스산 촉매를 사용한 다단계 균일 액상공정을 통해 지방산 알킬에스테르를 제조하는 방법을 제안하고 있다. 그러나 상기 방법은 촉매 사용량이 많고 고산가 원료에 적용하기 어렵다.EP 1308498 A1 proposes a process for preparing fatty acid alkylesters from fats and oils comprising free fatty acids via a multistage homogeneous liquid phase process using Lewis acid catalysts. However, the method has a high catalyst usage and is difficult to apply to high acid value raw materials.
EP 1092703 A1는 전이금속염 존재 하에 산가 5~20의 글리세라이드 원료를 다단계 반응시켜 지방산 메틸에스테르를 제조하는 공정을 개시하고 있으나, 상기 공정 역시 고산가 원료에는 사용하기 어렵다.EP 1092703 A1 discloses a process for producing fatty acid methyl ester by reacting a glyceride raw material having an acid value of 5 to 20 in the presence of a transition metal salt, but it is also difficult to use the high acid raw material.
미국특허 5,434,279에는 과량의 촉매를 사용하여 60℃ 이하의 저온에서 2단계 반응에 의하여 지방산 에스테르를 제조하는 방법이 기재되어 있다. 상기 방법에서는 촉매 사용량이 많고 지방산 알킬에스테르의 수율이 낮으며, 상기 방법은 고산가 원료에 적용하기 어렵다.U.S. Patent 5,434,279 describes a process for producing fatty acid esters by two step reaction at low temperatures of up to 60 ° C using excess catalyst. In this method, the amount of catalyst used is high and the yield of fatty acid alkyl ester is low, and the method is difficult to apply to a high acid value raw material.
미국특허 4,668,439에는 고온 및 저압 하에서 과량의 알칼리 금속염 또는 중금속염을 과량의 메탄올, 액체 글리세라이드와 반응시킨 후 반응물을 층 분리하여 지방산 알킬 에스테르를 제조하는 공정이 기재되어 있다. 상기 공정에 사용한 촉매는 에멀젼을 형성하므로 글리세린을 분리하기 어렵다. 상기 공정은 특히 고산가 원료에는 바람직하지 않다.U.S. Patent 4,668,439 describes a process for producing fatty acid alkyl esters by reacting excess alkali metal salts or heavy metal salts with excess methanol, liquid glycerides under high temperature and low pressure and then layering the reactants. The catalyst used in this process forms an emulsion, making it difficult to separate glycerin. This process is not particularly desirable for high acid value raw materials.
또한 대한민국 공개특허 10-2008-0036107에는 카르복시산의 알카리 토금속염을 사용한 액상금속촉매의 존재 하에서 카르복시산 에스테르를 제조하는 방법이 기재되어 있으나, 이 방법은 촉매를 제조하기 위한 별도의 공정이 필요하고 지방산 염 형태의 촉매를 다량으로 사용하여 수율 손실이 크다.In addition, Korean Patent Publication No. 10-2008-0036107 discloses a method for preparing a carboxylic acid ester in the presence of a liquid metal catalyst using an alkaline earth metal salt of carboxylic acid, but this method requires a separate process for preparing a catalyst and a fatty acid salt. The loss of yield is high by using a large amount of catalyst in the form.
상기에서 보는 바와 같이, 선행 기술들은 과량의 촉매 및 메탄올을 사용하는데, 유리지방산이 다량 존재하는 오일, 지방, 또는 이들의 혼합물을 원료로 할 경우 촉매와 유리지방산의 반응에 의하여 지방산 염이 형성되고 이들 지방산 염이 글리세린과 에멀젼(emulsion)을 형성하여 반응 후 부생하는 글리세린을 분리하기 어렵다는 문제가 있다.As seen above, the prior art uses an excess of catalyst and methanol, where fatty acid salts are formed by the reaction of the catalyst with free fatty acids when oil, fat, or mixtures thereof are present in large amounts. These fatty acid salts form an emulsion with glycerin, which makes it difficult to separate by-product glycerin after the reaction.
균일계 촉매를 사용할 경우 촉매를 제거하기 위해 수세 또는 증류의 추가 공정이 필요하며 이를 해결하기 위해 비균일계 고체촉매의 개발이 진행되었다. 미국특허 5,908,946에는 촉매로 산화아연(ZnO), 산화알루미늄(Al2O3), 아연알루미네이트(ZnAl2O3)중 적어도 1개 이상을 사용하여 지방산 알킬에스테르를 제조하는 방법이 공지되어 있고, 미국특허 6,818,026에는 초임계 조건하에서 촉매로 산화칼슘, 수산화칼슘, 탄산칼슘, 산화마그네슘을 사용하는 방법이, 대한민국특허 644246호에는 산화마그네슘-산화아연-아연알루미네이트(xMgO·yZnO·ZnAl2O4)의 촉매계를 사용한 방법이, 대한민국 공개특허 2007-0104041호에는 산화아연, 산화니켈, 산화코발트, 산화몰리브덴 및 이산화티타늄을 포함하는 전이금속산화물군 중 1종 이상을 활성성분으로 포함하는 바이오디젤 제조용 고체상 촉매공정이 개시되어 있다. 그러나 이들 비균일 고체촉매 공정에서는 유리지방산이 1% 이상인 원료를 사용할 경우 촉매 활성물질로 작용하는 금속 성분들이 유리지방산과 결합하여 염을 형성하여 반응액상으로 녹아 나오는 현상(Leaching)이 발생되어 촉매의 수명이 단축되며, 특히 유리지방산이 5%이상인 고산가 원료의 경우는 더욱 심각한 문제를 야기할 수 있다.In the case of using a homogeneous catalyst, an additional process of washing with water or distillation is required to remove the catalyst, and in order to solve this problem, development of a non-uniform solid catalyst has been carried out. U.S. Patent 5,908,946 discloses a process for producing fatty acid alkyl esters using at least one of zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), zinc aluminate (ZnAl 2 O 3 ) as a catalyst, U.S. Patent 6,818,026, the second is under critical conditions to a catalyst using calcium hydroxide, calcium carbonate, calcium oxide, magnesium oxide, the Republic of Korea Patent Application 644 246 discloses a magnesium oxide-zinc oxide-zinc aluminate (xMgO · yZnO · ZnAl 2 O 4) The method using the catalyst system of the Republic of Korea, Korean Patent Publication No. 2007-0104041 is a solid phase for producing biodiesel comprising at least one of the transition metal oxide group including zinc oxide, nickel oxide, cobalt oxide, molybdenum oxide and titanium dioxide as an active ingredient Catalytic process is disclosed. However, in these non-uniform solid catalyst processes, when raw materials containing 1% or more free fatty acids are used, the metal components, which act as catalytic active materials, combine with free fatty acids to form salts and melt into the reaction solution, thereby causing the catalyst to react. The service life is shortened, and especially high-value raw materials containing more than 5% of free fatty acids can cause more serious problems.
본 발명은 유리 지방산 함량이 높은 오일, 지방, 또는 이들의 혼합물을 원료로 사용하면서도 높은 반응 활성으로 지방산 알킬에스테르를 고수율로 제조하기 위한 방법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method for producing fatty acid alkyl esters in high yield with high reaction activity while using oils, fats, or mixtures thereof having a high free fatty acid content as raw materials.
본 발명자들은 산가가 높은 오일, 지방, 또는 이들의 혼합물을 이용하여 지방산 알킬에스테르를 제조하는 방법을 연구한 결과, 고온 및 고압의 균일계 염기 촉매 조건하에서는 에스테르화 반응과 전이에스테르화 반응이 동시에 진행되며, 특히 균일계 염기촉매로서 MgO 또는 Mg(OH)2를 사용하여 반응을 진행할 경우 종래의 알칼리 금속 촉매에 비하여 적은 촉매 양으로도 높은 촉매활성을 보이며, 반응 후 부생되는 글리세린의 분리 시 사용되는 촉매의 양이 적기 때문에 층 분리가 용이하다는 점을 발견하여 본 발명에 이르게 되었다. The present inventors studied a method for preparing fatty acid alkyl esters using oils, fats, or mixtures of high acid values. As a result, esterification and transition esterification proceed simultaneously under high temperature and high pressure homogeneous base catalyst conditions. Particularly, when the reaction is performed using MgO or Mg (OH) 2 as a homogeneous base catalyst, it exhibits higher catalytic activity even with a smaller amount of catalyst than the conventional alkali metal catalyst, and is used for the separation of by-product glycerin after the reaction. The small amount of catalyst has led to the present invention in that it is easy to separate the layers.
본 발명은 유리 지방산을 함유하며 산가가 2 내지 200인 오일, 지방, 또는 이들의 혼합물과 C1-C5의 저가 알코올을 MgO 및 Mg(OH)2에서 선택되는 하나 이상의 촉매 하에 150~250℃ 및 5~100기압 하에서 에스테르화 반응 및 전이에스테르화 반응시키는 단계를 포함하는 것을 특징으로 하는 지방산 알킬에스테르의 제조 방법을 제공한다.The present invention relates to oils, fats, or mixtures thereof containing free fatty acids and acid values of 2 to 200, and C 1 -C 5 low-cost alcohols at 150-250 ° C. under one or more catalysts selected from MgO and Mg (OH) 2 . And it provides a method for producing a fatty acid alkyl ester comprising the step of esterification reaction and transesterification reaction under 5-100 atm.
<오일 및 지방><Oil and fat>
본 발명의 오일 또는 지방은 글리세롤 및 포화 또는 불포화 지방산의 에스테르인 지방산 글리세롤 에스테르(fatty acid glycerol esters)로서 동물성 또는 식물성 유래의 지방 또는 오일을 의미하며, 유리 지방산을 포함한다. 본 발명의 지방 또는 오일에는, 이에 제한되는 것은 아니나, 폐식용유, 폐지방, 황색 그리스(yellow grease) 등의, 유리 지방산을 다량 포함한 저급 오일, 지방, 또는 이들의 혼합물이 포함된다. 식물성 유래로는, 대두유, 팜유, 피마자유, 유채유(rapeseed oil) 등이, 동물성 유래로는 수지(tallow), 라드(lard), 가금지방(poultry fat) 등이 포함된다.Oils or fats of the present invention are fatty acid glycerol esters, which are esters of glycerol and saturated or unsaturated fatty acids, meaning fats or oils of animal or vegetable origin, and include free fatty acids. Fats or oils of the invention include, but are not limited to, lower oils, fats, or mixtures thereof containing large amounts of free fatty acids, such as, but not limited to, waste cooking oil, waste fat, yellow grease, and the like. Vegetable origin includes soybean oil, palm oil, castor oil, rapeseed oil, and the like, and animal origin include tallow, lard, poultry fat and the like.
본 발명의 오일, 지방, 또는 이들의 혼합물은 산가가 2 내지 200, 바람직하게는 5 내지 100, 더 바람직하게는 10 내지 60 이다.The oils, fats, or mixtures thereof of the invention have an acid value of 2 to 200, preferably 5 to 100, more preferably 10 to 60.
본 발명의 오일, 지방, 또는 이들의 혼합물은 알코올과 반응하여 에스테르화 반응 및 전이에스테르화 반응을 통해 지방산 알킬에스테르로 제조될 수 있다.The oils, fats, or mixtures thereof of the present invention can be prepared into fatty acid alkylesters by reaction with alcohols and through esterification and transesterification reactions.
<알코올><Alcohol>
본 발명의 오일, 지방, 또는 이들의 혼합물과 에스테르화 또는 전이에스테르화 반응을 하는데 사용되는 알코올은 탄소수 1 내지 5개인 직쇄상 또는 분지상의 알코올을 1종 이상 선택하여 사용할 수 있으며, 바람직하게는 메탄올 또는 에탄올이 사용된다.The alcohol used in the esterification or transesterification reaction with the oil, fat, or mixtures thereof of the present invention may be selected from one or more linear or branched alcohols having 1 to 5 carbon atoms, preferably Methanol or ethanol is used.
본 발명에서는 오일, 지방, 또는 이들의 혼합물 대비 소량의 알코올을 사용하며, 알코올에 대한 오일, 지방, 또는 이들의 혼합물의 비율(오일,지방, 또는 이들의 혼합물/알코올)은 중량 기준으로 100/80~100/10일 수 있고, 바람직하게는 100/70~100/15, 더 바람직하게는 100/60~100/20일 수 있다. 알코올의 회수 비용을 고려할 때에는 상기 비율이 100/80 이상인 것이 바람직하고, 원활한 전환 반응을 위해서는 상기 비율이 100/10 이하인 것이 바람직하다. In the present invention, a small amount of alcohol is used relative to oil, fat, or mixtures thereof, and the ratio of oil, fat, or mixtures thereof (oil, fat, or mixtures / alcohols thereof) to alcohol is 100 / wt. 80-100 / 10, preferably 100 / 70-100 / 15, more preferably 100 / 60-100 / 20. When considering the recovery cost of alcohol, the ratio is preferably 100/80 or more, and the ratio is preferably 100/10 or less for a smooth conversion reaction.
<촉매><Catalyst>
본 발명에서는 산화마그네슘(MgO) 또는 수산화마그네슘(Mg(OH)2)을 단독 또는 혼합하여 촉매로 사용한다. 수산화 나트륨(NaOH), 수산화칼륨(KOH) 등의 염기 촉매는 오일이나 지방에 포함된 유리지방산과 반응하여 비누를 형성하게 되어 에스테르화 반응이 불가능하지만, 본 발명의 촉매는 이러한 문제가 없어 다량의 유리 지방산을 포함하는 고산가 원료를 사용할 수 있으면서, 동시에 유리 지방산의 에스테르화 반응을 시킬 수 있으므로 지방산 알킬에스테르로의 전환율을 증가시키고 수율 손실을 낮출 수 있다. In the present invention, magnesium oxide (MgO) or magnesium hydroxide (Mg (OH) 2 ) may be used alone or as a catalyst. Base catalysts such as sodium hydroxide (NaOH) and potassium hydroxide (KOH) react with free fatty acids contained in oils or fats to form soaps, and thus esterification is impossible. While it is possible to use a high acid value raw material including free fatty acids, it is possible to simultaneously esterify the free fatty acids, thereby increasing the conversion to fatty acid alkyl esters and lowering the yield loss.
상기 촉매의 함량은 오일, 지방 또는 이들 혼합물의 중량을 기준으로 0.001 내지 0.5중량%일 수 있으며, 바람직하게는 0.005 내지 0.3중량%, 더 바람직하게는 0.01 내지 0.1중량%일 수 있다. 본 발명에서는 소량의 촉매를 사용할 수 있는데, 촉매를 소량 사용할 경우 반응 종료 후 층 분리 시 에멀젼 발생을 억제하여 수율 손실을 최소화할 수 있다.The content of the catalyst may be 0.001 to 0.5% by weight, preferably 0.005 to 0.3% by weight, more preferably 0.01 to 0.1% by weight based on the weight of the oil, fat or mixtures thereof. In the present invention, a small amount of the catalyst can be used. When a small amount of the catalyst is used, the yield loss can be minimized by suppressing the generation of the emulsion upon separation of the layer after completion of the reaction.
상기 촉매는 알코올과, 오일, 지방 또는 이들의 혼합물과 혼합하여 혼합물 형태로 반응에 첨가되어 슬러리 상태로 섞여서 사용될 수 있다. 슬러리 상태의 원료와 촉매 혼합물은 연속적 또는 단속적으로 에스테르화 및 전이에스테르화 반응공정에 투입될 수 있다. 반응에 투입된 촉매는 대부분 균일계의 형태로 반응에 참여하며 이들은 전환반응시 산화물, 수산화물, 지방산 염 등의 형태로 반응에 참여할 수 있다. The catalyst may be mixed with alcohol, oil, fat or mixtures thereof, added to the reaction in the form of a mixture, and mixed in a slurry state. The raw material and catalyst mixture in the slurry state may be introduced into the esterification and transition esterification process continuously or intermittently. Most catalysts added to the reaction participate in the reaction in the form of a homogeneous system, and they may participate in the reaction in the form of oxides, hydroxides, fatty acid salts, and the like during the conversion reaction.
<에스테르화 및 전이에스테르화 반응><Esterification and Transesterification Reaction>
본 발명에서 에스테르화 및 전이에스테르화 반응은 오일, 지방, 또는 이들의 혼합물 원료에 알코올 및 MgO 또는 Mg(OH)2 촉매의 연속 또는 비연속 첨가에 의하여 진행된다. In the present invention, the esterification and transesterification reaction is carried out by continuous or discontinuous addition of alcohol and MgO or Mg (OH) 2 catalyst to oil, fat, or mixtures thereof.
본 발명의 에스테르화 및 전이에스테르화 반응 온도는 150~250℃, 바람직하게는 180~230℃, 더 바람직하게는 190~220℃이다. 상기 반응온도가 150℃ 미만이면 금속 염기 촉매의 활성이 나타나지 않기 때문에 지방산 알킬에스테르로의 전환률이 감소하며, 250℃를 초과하면 에너지 비용이 증가하여 공정비용이 상승하고 원료물질인 오일, 지방, 또는 이들의 혼합물의 탄화가 발생할 수 있다. The esterification and transition esterification temperature of the present invention is 150 to 250 ° C, preferably 180 to 230 ° C, more preferably 190 to 220 ° C. If the reaction temperature is less than 150 ℃, the conversion rate to fatty acid alkyl ester is reduced because the activity of the metal base catalyst does not appear, and if it exceeds 250 ℃ energy cost increases to increase the process cost and the raw material oil, fat, or Carbonization of these mixtures may occur.
또한, 반응압력은 5~100기압, 바람직하게는 10~70기압, 더 바람직하게는 20~50기압이다. 상기 반응압력이 5기압 미만이면 알코올이 기상으로 존재하여 균일한 반응계를 만들 수 없으며 과량의 알코올이 필요하게 된다. 또한 100기압을 초과하면 공정설비가 복잡해지고 공정비용이 증가하여 상업 생산에 적용하기 어렵다.The reaction pressure is 5 to 100 atm, preferably 10 to 70 atm, more preferably 20 to 50 atm. If the reaction pressure is less than 5 atm, the alcohol is present in the gas phase to make a uniform reaction system, excess alcohol is required. In addition, if it exceeds 100 atm, the process equipment becomes complicated and the process cost increases, making it difficult to apply to commercial production.
본 발명의 에스테르화 공정은 연속식 또는 배치식으로 수행될 수 있다. 배치식 공정의 반응시간과 연속식 공정의 반응시간은 모두 30분 내지 6시간일 수 있으며, 바람직하게는 1시간 내지 4시간일 수 있다. 지방산 알킬에스테르로의 충분한 진행을 위해서는 반응시간이 30분 이상인 것이 바람직하고, 고온에서의 장기 정체로 인한 탄화물 발생 및 역반응 진행을 고려할 때에는 반응시간이 6시간 이하인 것이 바람직하다. 반응기로는, 예를 들어, 연속식 공정의 경우 연속 교반형 반응기타입(CSTR) 등, 배치식의 경우 line 또는 static mixer 형태 등의 반응기를 사용할 수 있다. 반응 중 생성되는 물의 일부는 반응압력을 조절하여 연속적으로 반응기 밖으로 제거될 수 있으며 이렇게 함으로써 에스테르화 반응을 촉진시켜 생성물의 산가를 보다 효율적으로 낮출 수 있다. The esterification process of the invention can be carried out continuously or batchwise. Both the reaction time of the batch process and the reaction time of the continuous process may be 30 minutes to 6 hours, preferably 1 hour to 4 hours. In order to sufficiently proceed to the fatty acid alkyl ester, the reaction time is preferably 30 minutes or more, and when considering the generation of carbides and the progress of the reverse reaction due to long-term stagnation at high temperature, the reaction time is preferably 6 hours or less. As the reactor, for example, a continuous stirred reactor type (CSTR) in the case of a continuous process, a line or a static mixer type in the case of a batch may be used. Some of the water produced during the reaction can be removed continuously out of the reactor by adjusting the reaction pressure, thereby promoting the esterification reaction to lower the acid value of the product more efficiently.
<지방산 알킬에스테르의 회수><Recovery of fatty acid alkyl ester>
본 발명은 상기 에스테르화 및 전이에스테르화 반응을 하여 지방산 알킬에스테르를 제조한 후, 미반응 알코올 및 물을 제거하고 층 분리한 후 상층부의 지방산 알킬에스테르를 회수하는 단계를 추가로 포함할 수 있다. The present invention may further comprise the step of recovering the fatty acid alkyl ester of the upper layer after the esterification and transesterification reaction to prepare a fatty acid alkyl ester, removing the unreacted alcohol and water and separating the layers.
구체적으로, 에스테르화 및 전이에스테르화 반응 후 미반응 알코올과 물을 증발, 추출 등의 공지 방법으로 제거시킨 후 층 분리를 하면 상층부에는 지방산 에스테르, 모노글리세라이드, 디글리세라이드, 촉매 등이, 하층부에는 글리세린, 촉매, 기타 미전환 글리세라이드 등이 존재한다. 본 발명에 따른 에스테르화 공정에 의해 산가가 대폭 낮아진 지방산 알킬에스테르가 얻어질 수 있다. 한편, 본 공정에서 생성된 하층부의 글리세린은 추가의 정제공정을 거친 후 회수하여 식품용, 공업용 등 여러 용도로 유용하게 사용할 수 있다.Specifically, after the esterification and the transesterification reaction, the unreacted alcohol and water are removed by a known method such as evaporation and extraction, and then the layers are separated. The upper layer includes fatty acid ester, monoglyceride, diglyceride, catalyst, and the like. Glycerin, catalysts, other unconverted glycerides, and the like. Fatty acid alkyl esters with significantly lower acid values can be obtained by the esterification process according to the invention. On the other hand, the lower layer of glycerin produced in this process is recovered after an additional purification process can be useful for various uses, such as food, industrial.
본 발명의 에스테르화 및 전이에스테르화 반응 종료 후 사용된 촉매는 증류 또는 산 세척에 의하여 지방산 알킬에스테르로부터 제거할 수 있다. 증류시 증류 잔류물은 촉매를 다량 함유하고 있어 에스테르화 및 전이에스테르화 반응의 촉매로도 재사용될 수 있다.The catalyst used after the esterification and transesterification reaction of the present invention can be removed from the fatty acid alkylester by distillation or acid washing. Distillation residues during distillation contain large amounts of catalyst and can be reused as catalysts for esterification and transesterification reactions.
<전처리 공정><Pretreatment Process>
본 발명은 에스테르화 및 전이에스테르화 반응 단계 이전에 원료 내 유리지방산을 감소시키기 위한 전처리 공정을 추가로 포함할 수 있다. 상기 전처리 공정은 유리지방산이 포함된 오일, 지방 또는 이들의 혼합물의 유리지방산을 감소시킬 수 있는 통상의 방법을 쓰거나 촉매 없이 에스테르화 반응시키는 방법일 수 있다. The present invention may further comprise a pretreatment process for reducing free fatty acids in the raw materials prior to the esterification and transesterification reaction steps. The pretreatment process may be a conventional method that can reduce the free fatty acid of the oil, fat, or mixtures thereof containing free fatty acid or esterification without a catalyst.
구체적으로는, 오일, 지방, 또는 이들의 혼합물을 무촉매 하에서 C1-C5의 저가 알코올과 150~250℃ 및 5~100기압 하에서 반응시키는 단계를 추가로 포함할 수 있다. 상기 전처리 공정에서, 원료와 알코올 간에 에스테르화 및 전이에스테르화 반응이 일어나 유리지방산을 감소시킬 수 있다. Specifically, the method may further include reacting the oil, the fat, or a mixture thereof under low catalyst of C 1 -C 5 with 150 to 250 ° C. and 5 to 100 atmospheres. In the pretreatment process, esterification and transesterification reaction may occur between the raw material and the alcohol to reduce free fatty acid.
본 전처리 공정에서 오일이나 지방/알코올의 비율은 100/80~100/10일 수 있고, 바람직하게는 100/70~100/15, 더 바람직하게는 100/60~100/20일 수 있다. 알코올의 회수 비용을 고려할 때에는 상기 비율이 100/80 이상인 것이 바람직하고, 원활한 전환 반응을 위해서는 상기 비율이 100/10 이하인 것이 바람직하다. In the pretreatment process, the oil or fat / alcohol ratio may be 100/80 to 100/10, preferably 100/70 to 100/15, more preferably 100/60 to 100/20. When considering the recovery cost of alcohol, the ratio is preferably 100/80 or more, and the ratio is preferably 100/10 or less for a smooth conversion reaction.
전처리 공정은 연속식 또는 배치식 공정으로 수행될 수 있다. 배치식 공정의 반응시간과 연속식 공정의 원료 반응시간은 바람직하게는 모두 30분 내지 6시간이다. 반응기로는, 예를 들어, 배치식 공정의 경우 교반형 반응기타입(CSTR) 등, 연속식 공정의 경우 line 또는 static mixer 형태 등의 반응기를 사용할 수 있다. 반응 중 생성되는 물의 일부는 반응압력을 조절하여 연속적으로 반응기 밖으로 제거될 수 있으며 이렇게 함으로써 에스테르화 반응을 촉진시켜 반응물의 산가를 보다 효율적으로 낮출 수 있다. 전처리 공정의 반응 생성물은 지방산 에스테르, 모노글리세라이드, 디글리세라이드, 트리글리세라이드, 알코올, 물을 포함하며 이들 중 미반응 알코올과 물을 증발시켜 제거한 후 나머지는 본 발명의 에스테르화 및 전이에스테르화 반응에 사용될 수 있다. 전처리 공정 뒤 알코올과 물을 증발시킨 후 층 분리에 의해 생성된 글리세린을 제거할 수도 있다. 전처리 공정에 의해 유지의 산가를 크게 감소시킬 수 있고, 트리글리세라이드는 알코올과의 전이에스테르화 반응에 의해 고수율로 지방산 알킬에스테르로 전환시킬 수 있다. 압력을 낮추어 생성되는 물의 일부를 연속적으로 제거할 경우 수분 제거 공정을 생략할 수 있다.The pretreatment process can be carried out in a continuous or batch process. The reaction time of the batch process and the raw material reaction time of the continuous process are preferably 30 minutes to 6 hours. As the reactor, for example, a reactor such as a stirred reactor type (CSTR) in the case of a batch process, a line or a static mixer form in the case of a continuous process may be used. Some of the water produced during the reaction can be removed continuously out of the reactor by adjusting the reaction pressure, thereby promoting the esterification reaction to lower the acid value of the reactants more efficiently. The reaction products of the pretreatment process include fatty acid esters, monoglycerides, diglycerides, triglycerides, alcohols and water, among which the unreacted alcohols and water are removed by evaporation and the rest are esterified and transesterified reactions of the present invention. Can be used for After evaporation of the alcohol and water after the pretreatment process, the glycerin produced by layer separation may be removed. The acid value of fats and oils can be greatly reduced by the pretreatment process, and triglycerides can be converted into fatty acid alkyl esters in high yield by a transesterification reaction with alcohol. If the pressure is lowered continuously to remove some of the water produced, the water removal process can be omitted.
본 발명의 전처리 공정은 오일이나 지방의 산가가 10이상, 구체적으로 20이상인 경우 특히 효과적일 수 있다.The pretreatment process of the present invention may be particularly effective when the acid value of the oil or fat is 10 or more, specifically 20 or more.
<추가 에스테르화 및 전이에스테르화 반응><Additional esterification and transesterification reaction>
본 발명은 상기 주 에스테르화 및 전이에스테르화 반응 이후 지방산 알킬에스테르의 순도를 높이기 위하여, 생성된 지방산 에스테르를 회수하여 추가의 에스테르 및 전이에스테르화 반응을 수행할 수 있다. 상기 추가 에스테르화 반응은 1회 또는 그 이상 반복할 수 있으며, 추가 반응에 의하여 지방산 알킬에스테르 내에 존재하는 유리지방산 및 미전환 글리세라이드를 지방산 알킬에스테르로 전환하여 순도를 높일 수 있다. In the present invention, in order to increase the purity of the fatty acid alkyl ester after the main esterification and transesterification reaction, the produced fatty acid ester may be recovered to perform further ester and transesterification reaction. The additional esterification reaction may be repeated one or more times, and the purity may be increased by converting the free fatty acid and the unconverted glyceride present in the fatty acid alkyl ester to the fatty acid alkyl ester by the additional reaction.
이 경우, 이전 에스테르화 반응에서 유래한 촉매가 지방산 에스테르에 포함되어 있으므로 추가 에스테르화 반응 공정에서는 추가의 촉매 투입 없이 전환반응을 진행할 수 있다. 그러나 필요에 따라서는 촉매를 추가로 첨가할 수 있으며, 상기 촉매는 이전 에스테르화 반응 공정에 사용된 촉매, 즉 MgO 및 Mg(OH)2, 또는 기타 적용 가능한 촉매, 예를 들어 염기 촉매, 구체적으로, 금속 염기 촉매를 단독 또는 혼합물로 투입할 수 있다. 기타 적용가능한 촉매로는 NaOH, KOH, KOCH3, NaOCH3 등의 염기 촉매를 들 수 있다. 촉매를 추가 투입하는 경우 사용되는 촉매의 양은 알코올을 제외한 추가 에스테르화 및 전이에스테르화 반응에 사용되는 원료의 중량을 기준으로 바람직하게는 0.001 내지 0.5중량%일 수 있으며, 더 바람직하게는 0.005 내지 0.3중량%, 가장 바람직하게는 0.01 내지 0.1중량%일 수 있다. In this case, since the catalyst derived from the previous esterification reaction is included in the fatty acid ester, the conversion reaction may proceed without additional catalyst in the additional esterification step. However, if desired, additional catalysts can be added, which are catalysts used in previous esterification processes, ie MgO and Mg (OH) 2 , or other applicable catalysts, for example base catalysts, in particular The metal base catalyst may be added alone or in a mixture. Other applicable catalysts include base catalysts such as NaOH, KOH, KOCH 3 , NaOCH 3 and the like. In the case of further addition of the catalyst, the amount of the catalyst used may be preferably 0.001 to 0.5% by weight, more preferably 0.005 to 0.3, based on the weight of the raw materials used for the additional esterification and the transesterification reaction except for alcohol. Weight percent, most preferably 0.01 to 0.1 weight percent.
추가 에스테르 공정에서 회수된 지방산 알킬에스테르/알코올의 비율은 100/80~100/10일 수 있고, 바람직하게는 100/70~100/15, 더 바람직하게는 100/60~100/20일 수 있다. 알코올의 회수 비용을 고려할 때에는 상기 비율이 100/80 이상인 것이 바람직하고, 원활한 전환 반응을 위해서는 상기 비율이 100/10 이하인 것이 바람직하다. The ratio of fatty acid alkylester / alcohol recovered in the further ester process may be 100/80 to 100/10, preferably 100/70 to 100/15, more preferably 100/60 to 100/20. . When considering the recovery cost of alcohol, the ratio is preferably 100/80 or more, and the ratio is preferably 100/10 or less for a smooth conversion reaction.
추가 에스테르화 반응의 압력은 고압 또는 저압의 조건일 수 있다. 고압의 경우 5~100기압, 바람직하게는 10~70기압, 더 바람직하게는 20~50기압일 수 있으며, 저압의 경우 상압~10기압, 바람직하게는 상압~5기압일 수 있다. 또한 반응온도는 고온 또는 저온의 조건일 수 있다. 고온의 경우 150~250℃, 바람직하게는 180~230℃, 더 바람직하게는 190~220℃일 수 있으며, 저온의 경우 40~100℃, 바람직하게는 50~80℃ 일 수 있다.The pressure of the further esterification reaction may be at high or low pressure. In the case of high pressure, it may be 5 to 100 atm, preferably 10 to 70 atm, more preferably 20 to 50 atm, and in the case of low pressure, it may be at normal to 10 atm, preferably at atmospheric pressure to 5 atm. In addition, the reaction temperature may be a condition of high temperature or low temperature. In the case of high temperature, it may be 150 to 250 ° C, preferably 180 to 230 ° C, more preferably 190 to 220 ° C, and in the case of low temperature, 40 to 100 ° C, preferably 50 to 80 ° C.
본 발명의 추가 에스테르화의 반응에서, 사용되는 촉매가 MgO 또는 Mg(OH)2 인 경우에는 상기 고온 및 고압의 조건에서 반응시킬 수 있고, NaOH, KOH, KOCH3, NaOCH3 등인 경우에는 저온 및 저압에서 반응시킬 수 있다.In the reaction of the further esterification of the present invention, when the catalyst used is MgO or Mg (OH) 2 can be reacted under the conditions of the high temperature and high pressure, and in the case of NaOH, KOH, KOCH 3 , NaOCH 3 and the like, Can be reacted at low pressure.
기타의 추가 에스테르화 반응의 방식은 이전 에스테르화 및 전이에스테르화 반응과 동일하다. 추가 에스테르화 및 전이에스테르화 반응을 진행한 후 반응 생성물로부터 우선 알코올과 물을 증발 등의 방법으로 제거한다. 지방산 알킬에스테르는 알코올과 물이 제거된 반응 생성물로부터 공지의 방법으로 회수할 수 있다. 예를 들어, 상기 반응 생성물을 증류시켜 증류탑 상부로부터 지방산 알킬에스테르 및 글리세린을 얻은 후 이를 층 분리하여 지방산 알킬에스테르를 얻는 방법, 상기 반응 생성물로부터 지방산 알킬에스테르와 글리세린을 층 분리한 후 지방산 알킬에스테르를 얻는 방법 등이 있다. 회수된 지방산 알킬에스테르는 수세, 탈수 등의 추가적인 공지의 방법으로 정제할 수 있다. The manner of the other further esterification reactions is the same as for the previous esterification and transesterification reactions. After further esterification and transesterification, alcohol and water are first removed from the reaction product by evaporation or the like. Fatty acid alkylesters can be recovered from known reaction products from which alcohol and water have been removed. For example, the reaction product is distilled to obtain fatty acid alkyl esters and glycerin from the top of the distillation column, and then the layers are separated to obtain fatty acid alkyl esters. The fatty acid alkyl esters are separated from the reaction product by separating the fatty acid alkyl esters and glycerin. How to get. The recovered fatty acid alkyl ester can be purified by additional known methods such as washing with water and dehydration.
본 발명의 추가 에스테르화 공정을 거치는 경우, 산가가 크게 감소된 지방산 알킬에스테르를 얻을 수 있다. 그리고 모노글리세라이드, 디글리세라이드 및 트리글리세라이드의 함량이 적은, 미전환 글리세라이드의 함량이 낮은 지방산 알킬에스테르를 고수율로 확보할 수 있다.When undergoing the further esterification process of the present invention, fatty acid alkyl esters with greatly reduced acid values can be obtained. In addition, the fatty acid alkyl ester having a low content of unconverted glyceride, which has a low content of monoglyceride, diglyceride and triglyceride, can be secured in high yield.
본 발명에 의하면 유리지방산 함량이 높은 산가 2~200의 오일, 지방, 또는 이들의 혼합물을 원료로 사용하면서도 높은 반응활성으로 지방산 알킬에스테르를 고수율로 제조할 수 있다.According to the present invention, fatty acid alkyl esters can be produced in high yield with high reaction activity while using oils, fats, or mixtures thereof having a high free fatty acid content of 2 to 200 as a raw material.
이하, 실시예에 의해 본 발명을 보다 상세하게 설명하고자 하며, 본 발명은 하기 실시예로 제한되지 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples, and the present invention is not limited to the following Examples.
실시예1Example 1
160ml 고압반응기에 미정제팜유(산가 9mgKOH/g) 55g과 메탄올 23.5g을 넣고 MgO 0.017g을 촉매로 사용하여 200℃, 34기압 하에서 1시간 동안 반응시켰다. 미반응 메탄올과 생성된 물을 증발하여 제거한 후 지방산 알킬에스테르층과 글리세린층을 분리하고 지방산 알킬에스테르층을 회수하였다. 회수된 지방산 알킬에스테르층의 산가 및 유기물 함량을 하기 KS 규격에 따라 분석하였다. 또한, 층 분리 후 회수한 지방산 알킬에스테르의 함량과 제조 가능한 지방산 알킬에스테르의 이론 함량을 비교하여, 수율 손실을 계산하였다. 이 수율 손실은 에멀젼 형성으로 인한 층 분리시의 지방산 알킬에스테르의 손실을 의미한다.55 g of crude palm oil (acid value 9 mgKOH / g) and 23.5 g of methanol were added to a 160 ml high-pressure reactor, and the reaction was carried out at 200 ° C. and 34 atm for 1 hour using 0.017 g of MgO as a catalyst. The unreacted methanol and the produced water were removed by evaporation, and then the fatty acid alkyl ester layer and the glycerin layer were separated and the fatty acid alkyl ester layer was recovered. Acid value and organic matter content of the recovered fatty acid alkyl ester layer were analyzed according to the following KS standards. In addition, yield loss was calculated by comparing the content of fatty acid alkyl ester recovered after layer separation with the theoretical content of fatty acid alkyl ester that can be produced. This yield loss refers to the loss of fatty acid alkylesters upon layer separation due to emulsion formation.
산가 측정 방법 (KS M ISO 6618 : 2003) Acid value measurement method (KS M ISO 6618: 2003)
(1) 산가에 따라 시료를 0.1~2.0g 범위에서 취하여 톨루엔(50%), 이소프로필 알콜(49.5%), 물(0.5%) 혼합용액 100ml에 녹인 후 p-naphtolbenzein 용액을 0.5ml 정도 첨가한다.(1) Depending on the acid value, take a sample in the range of 0.1 to 2.0 g, dissolve in 100 ml of toluene (50%), isopropyl alcohol (49.5%), and water (0.5%) mixed solution, and add 0.5 ml of p-naphtolbenzein solution. .
(2) 0.1N KOH 용액으로 붉은색 용액이 푸른색으로 변할 때까지 적정한다.(2) Titrate with 0.1N KOH solution until the red solution turns blue.
(3) 시료를 넣지 않고 바탕시험을 수행한다.(3) Perform the background test without inserting the sample.
여기서, 산가는 다음과 같은 식에 의하여 구할 수 있다.Here, the acid value can be obtained by the following equation.
산가 =[시료 적정에 사용된 KOH용액의 부피(ml) - 바탕시험에 사용된 KOH용액의 부피(ml)]*KOH용액의 농도(mol/L)*56.1/시료의 질량(g)Acid value = [volume of KOH solution used for sample titration (ml)-volume of KOH solution used in background test (ml)] * concentration of KOH solution (mol / L) * 56.1 / mass of sample (g)
지방산 알킬에스테르 함량(전환율) 측정 방법 (KS M 2413:2004) Fatty acid alkyl ester content (conversion) measurement method (KS M 2413: 2004)
시료 0.25g을 10mg/ml 농도의 Methylheptadecanoate Heptane용액 5ml에 용해 후, FID가 장착된 가스크로마토그래피 (Agilent, 6790A)를 이용하여 분석한다.0.25 g of the sample is dissolved in 5 ml of 10 mg / ml Methylheptadecanoate Heptane solution and analyzed using gas chromatography (Agilent, 6790A) equipped with FID.
유리 글리세롤(글리세린) 및 결합 글리세롤(모노-,디-,트리글리세라이드) 함량 측정 방법 (KS M 2412: 2004) Method for determining the content of free glycerol (glycerine) and bound glycerol (mono-, di-, triglyceride) (KS M 2412: 2004)
(1) 시료 0.1g에 N-methyl-N-trimethylsilyltrifluoracetamide 100㎕, Tricaprin 100㎕, (1) 100 μl of N-methyl-N-trimethylsilyltrifluoracetamide, 100 μl of Tricaprin, in 0.1 g of sample,
Butantriol 100㎕를 혼합한 후 30분 이상 정치시킨다.After mixing 100 μl of Butantriol, it is allowed to stand for at least 30 minutes.
(2) 정치시킨 용액에 Heptane 8ml를 첨가한다.(2) 8 ml of Heptane is added to the still solution.
(3) FID가 장착된 가스크로마토그래피 (Agilent, 6790A)를 이용하여 분석한다.(3) Analyze with FID-equipped gas chromatography (Agilent, 6790A).
실시예2Example 2
촉매로서 Mg(OH)2 0.024g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로, 지방산 알킬에스테르를 제조, 회수한 다음, 회수한 지방산 알킬에스테르층의 산가 및 유기물 함량을 분석하고 수율 손실을 계산하였다.A fatty acid alkyl ester was prepared and recovered in the same manner as in Example 1, except that 0.024 g of Mg (OH) 2 was used as a catalyst, and then the acid value and organic content of the recovered fatty acid alkyl ester layer were analyzed and yield loss was measured. Calculated.
비교예1Comparative Example 1
촉매로서 NaOH 0.054g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로, 지방산 알킬에스테르를 제조, 회수한 다음, 회수한 지방산 알킬에스테르층의 산가 및 유기물 함량을 분석하고 수율 손실을 계산하였다.A fatty acid alkyl ester was prepared and recovered in the same manner as in Example 1 except that 0.054 g of NaOH was used as a catalyst, and then the acid value and organic matter content of the recovered fatty acid alkyl ester layer were analyzed and yield loss was calculated.
비교예2Comparative Example 2
촉매로서 KOH 0.052g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로, 지방산 알킬에스테르를 제조, 회수한 다음, 회수한 지방산 알킬에스테르층의 산가 및 유기물 함량을 분석하고 수율 손실을 계산하였다.A fatty acid alkyl ester was prepared and recovered in the same manner as in Example 1 except that KOH 0.052 g was used as a catalyst, and then the acid value and organic matter content of the recovered fatty acid alkyl ester layer were analyzed and yield loss was calculated.
비교예3 Comparative Example 3
촉매로서 수산화나트륨(NaOH) 0.3g을 사용하고 80℃에서 반응시킨 것을 제외하고는 실시예1과 동일한 방법으로, 지방산 알킬에스테르를 제조, 회수한 다음, 회수한 지방산 알킬에스테르층의 산가 및 유기물 함량을 분석하고 수율 손실을 계산하였다.The fatty acid alkyl ester was prepared and recovered in the same manner as in Example 1 except that 0.3 g of sodium hydroxide (NaOH) was used as a catalyst and reacted at 80 ° C., and the acid value and organic matter content of the recovered fatty acid alkyl ester layer. Was analyzed and yield loss was calculated.
비교예4 Comparative Example 4
촉매로서 수산화나트륨(NaOH) 0.6g을 사용한 것을 제외하고는 비교예 3과 동일한 방법으로, 지방산 알킬에스테르를 제조, 회수한 다음, 회수한 지방산 알킬에스테르층의 산가 및 유기물 함량을 분석하고 수율 손실을 계산하였다.A fatty acid alkyl ester was prepared and recovered in the same manner as in Comparative Example 3, except that 0.6 g of sodium hydroxide (NaOH) was used as a catalyst, and then the acid value and organic content of the recovered fatty acid alkyl ester layer were analyzed and yield loss was measured. Calculated.
실시예 1, 2와 비교예 1~4에서의 지방산 알킬에스테르층의 산가 및 유기물 함량의 분석결과,그리고 층 분리 후 지방산 알킬 에스테르의 수율 손실은 하기 표 1에 나타난 바와 같다. Analysis of the acid value and organic matter content of the fatty acid alkyl ester layer in Examples 1 and 2 and Comparative Examples 1 to 4, and the yield loss of fatty acid alkyl ester after layer separation are shown in Table 1 below.
표 1
구분 촉매의종류 촉매사용량(g) 회수 층 분석 층분리후 수율손실(중량%)
산가(mgKOH/g) MG(중량%) DG(중량%) TG(중량%) 전환율(중량%)
실시예1 MgO 0.017 1 3.5 1.5 1.5 93 없음
실시예2 Mg(OH)2 0.024 1.2 3.2 2.3 2 91 없음
비교예1 NaOH 0.054 1.5 4 3 1.5 90 5~10
비교예2 KOH 0.052 2.5 4 7.5 9 78 5~10
비교예3 NaOH 0.3 2.4 0.5 5 86 8 -
비교예4 NaOH 0.6 0.3 0.5 0.5 0.5 98 30
Table 1
division Type of catalyst Catalyst usage (g) Recovery layer analysis Yield loss after layer separation (wt%)
Acid value (mgKOH / g) MG (% by weight) DG (% by weight) TG (% by weight) Conversion rate (% by weight)
Example 1 MgO 0.017 One 3.5 1.5 1.5 93 none
Example 2 Mg (OH) 2 0.024 1.2 3.2 2.3 2 91 none
Comparative Example 1 NaOH 0.054 1.5 4 3 1.5 90 5-10
Comparative Example 2 KOH 0.052 2.5 4 7.5 9 78 5-10
Comparative Example 3 NaOH 0.3 2.4 0.5 5 86 8 -
Comparative Example 4 NaOH 0.6 0.3 0.5 0.5 0.5 98 30
(MG: 모노글리세라이드, DG: 디글리세라이드, TG: 트리글리세라이드)(MG: monoglyceride, DG: diglyceride, TG: triglyceride)
상기와 같이, MgO 또는 Mg(OH)2 촉매를 사용한 실시예 1 및 2의 경우 NaOH 또는 KOH 촉매를 사용한 비교예 1~3에 비하여 산가가 낮은 지방산 알킬에스테르가 고함량으로 제조되었다. As described above, in Examples 1 and 2 using MgO or Mg (OH) 2 catalyst, fatty acid alkyl ester having a lower acid value was prepared in higher content than Comparative Examples 1 to 3 using NaOH or KOH catalyst.
기존 염기촉매를 사용한 비교예 1 및 2의 경우 일정 수준 이상의 지방산 알킬에스테르를 제조할 수 있지만, 반응종료 후 층 분리 시 에멀젼으로 인하여 수율 손실이 발생하는 단점이 있다. 저온에서 기존 염기촉매를 다량 투입한 비교예 3의 경우 지방산 알킬에스테르로의 전환률이 매우 낮은 것을 확인할 수 있다. 비교예 3보다 촉매를 더 과량 사용한 비교예 4의 경우 반응이 빠르게 진행되고 지방산 알킬에스테르로의 전환율도 높게 나타나지만 반응종료 후 층 분리를 실시하면 글리세린층이 40중량%에 해당되며 여기에도 지방산 알킬에스테르가 30중량%수준으로 다량 포함되어 있기 때문에 수율 손실이 큰 것을 확인할 수 있다. 그러나, 실시예 1 및 2의 경우에는 에멀젼이 발생하기 전까지 촉매 사용량을 증가시켜 수율 손실 없이 지방산 알킬에스테르를 얻을 수 있었다.For Comparative Examples 1 and 2 using the existing base catalyst can be prepared more than a certain level of fatty acid alkyl ester, there is a disadvantage in that the yield loss occurs due to the emulsion upon separation of the layer after the reaction. In the case of Comparative Example 3 in which a large amount of the existing base catalyst was added at low temperature, it was confirmed that the conversion rate to the fatty acid alkyl ester was very low. In Comparative Example 4, which used more catalyst than Comparative Example 3, the reaction proceeded rapidly and the conversion rate to fatty acid alkyl ester was high. However, when the layer was separated after completion of the reaction, the glycerin layer was equivalent to 40% by weight. It is confirmed that the yield loss is large because it contains a large amount of 30% by weight. However, in the case of Examples 1 and 2 it was possible to obtain a fatty acid alkyl ester without loss of yield by increasing the amount of catalyst until the emulsion occurs.
실시예 3Example 3
160ml 고압반응기에 폐식용유(산가 9.7mgKOH/g) 55g과 메탄올 23.5g을 넣고 MgO 0.02g을 촉매로 사용하여 200℃, 23기압 하에서 1시간 동안 반응시켰다. 미반응 메탄올과 생성된 물을 증발하여 제거한 후 층 분리를 통하여 지방산 알킬에스테르층과 글리세린층을 분리하여 지방산 알킬에스테르층을 회수하였다. 회수된 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실을 실시예 1과 동일한 방법으로 분석하였다. 55 g of waste cooking oil (acid value 9.7 mgKOH / g) and 23.5 g of methanol were added to a 160 ml high-pressure reactor, and the reaction was performed at 200 ° C. and 23 atm for 1 hour using MgO 0.02 g as a catalyst. The unreacted methanol and the produced water were removed by evaporation, and the fatty acid alkylester layer and the glycerin layer were separated by layer separation to recover the fatty acid alkylester layer. The acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
실시예 4Example 4
반응시간을 3시간으로 하였다는 것을 제외하고는 실시예 3과 동일하게 반응을 수행하여 지방산 알킬에스테르층을 회수하였다. 회수된 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실을 실시예 1과 동일한 방법으로 분석하였다. The reaction was carried out in the same manner as in Example 3 except that the reaction time was 3 hours to recover the fatty acid alkyl ester layer. The acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
실시예 3, 4에서의 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실의 분석결과를 하기 표 2에 나타내었다. The results of analysis of acid value, organic matter content, and yield loss of the fatty acid alkyl ester layer in Examples 3 and 4 are shown in Table 2 below.
표 2
구분 촉매의종류 촉매사용량(g) 회수 층 분석 층분리후 수율손실(중량%)
산가(mgKOH/g) MG(중량%) DG(중량%) TG(중량%) 전환율(중량%)
실시예3 MgO 0.02 1.3 3.45 0.48 1.23 94.19 없음
실시예4 MgO 0.02 0.8 2.81 0.13 0.00 96.64 없음
TABLE 2
division Type of catalyst Catalyst usage (g) Recovery layer analysis Yield loss after layer separation (wt%)
Acid value (mgKOH / g) MG (% by weight) DG (% by weight) TG (% by weight) Conversion rate (% by weight)
Example 3 MgO 0.02 1.3 3.45 0.48 1.23 94.19 none
Example 4 MgO 0.02 0.8 2.81 0.13 0.00 96.64 none
상기 분석결과를 통하여 실시예 1 보다 산가가 더 높은 폐식용유를 원료로 사용한 실시예 3, 4의 경우에도 수율 손실 없이 높은 전환율로 지방산 알킬에스테르를 제조할 수 있음을 알 수 있다. Through the analysis results, it can be seen that in the case of Examples 3 and 4 using waste cooking oil having a higher acid value than Example 1 as a raw material, fatty acid alkyl esters can be produced with high conversion without loss of yield.
실시예 5Example 5
500ml 고압반응기에 폐식용유(산가 43mgKOH/g) 180g과 메탄올 80g을 넣고 MgO 0.012g을 촉매로 사용하여 200℃, 32기압 하에서 3시간 동안 반응시켰다. 미반응 메탄올과 생성된 물을 증발하여 제거한 후 층 분리를 통하여 지방산 알킬에스테르층과 글리세린층을 분리함으로써 지방산 알킬에스테르층을 회수하였다. 회수된 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실을 실시예 1과 동일한 방법으로 분석하였다. 180 g of waste cooking oil (acid value 43 mgKOH / g) and 80 g of methanol were added to a 500 ml high-pressure reactor, and the reaction was performed at 200 ° C. and 32 atm for 3 hours using MgO 0.012 g as a catalyst. The unreacted methanol and the produced water were removed by evaporation, and the fatty acid alkylester layer was recovered by separating the fatty acid alkylester layer and the glycerin layer through layer separation. The acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
실시예 6Example 6
500ml 고압반응기에 Yellow Grease(산가 26mgKOH/g) 180g과 메탄올 80g을 넣고 MgO 0.054g을 촉매로 사용하여 200℃, 32기압 하에서 2시간 동안 반응시켰다. 미반응 메탄올과 생성된 물을 증발, 추출 방법 등을 사용하여 제거한 후 층 분리를 통하여 지방산 알킬에스테르층과 글리세린층을 분리하여 지방산 알킬에스테르층을 회수하였다. 회수된 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실을 실시예 1과 동일한 방법으로 분석하였다.180 g of Yellow Grease (acid value 26 mgKOH / g) and 80 g of methanol were added to a 500 ml high-pressure reactor, and the reaction was performed at 200 ° C. and 32 atm for 2 hours using 0.054 g of MgO as a catalyst. The unreacted methanol and the produced water were removed using an evaporation and extraction method, and then the fatty acid alkylester layer and the glycerin layer were separated by layer separation to recover the fatty acid alkylester layer. The acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
실시예 5, 6에서의 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실의 분석결과를 하기 표 3에 나타내었다.The results of analysis of acid value, organic matter content, and yield loss of the fatty acid alkyl ester layer in Examples 5 and 6 are shown in Table 3 below.
표 3
구분 촉매의종류 사용량(g) 회수 층 분석 층분리후수율손실(중량%)
산가(mgKOH/g) MG(중량%) DG(중량%) TG(중량%) 전환율 (중량%)
실시예5 MgO 0.012 5.4 6.19 3.73 2.53 84.39 없음
실시예6 MgO 0.054 2.5 5.6 1.2 0.4 91.4 없음
TABLE 3
division Type of catalyst Usage (g) Recovery layer analysis Yield loss after layer separation (wt%)
Acid value (mgKOH / g) MG (% by weight) DG (% by weight) TG (% by weight) Conversion rate (% by weight)
Example 5 MgO 0.012 5.4 6.19 3.73 2.53 84.39 none
Example 6 MgO 0.054 2.5 5.6 1.2 0.4 91.4 none
상기 분석결과를 통하여 실시예 3, 4 보다 산가가 더 높은 고산가의 폐식용유나 황색 그리스를 원료로 사용한 실시예 5, 6의 경우에도 수율 손실 없이 높은 전환율로 지방산 알킬에스테르를 제조할 수 있음을 알 수 있다. The analysis results show that fatty acids alkyl esters can be produced at high conversion rates without loss of yield even in Examples 5 and 6 using high acid value waste oil or yellow grease as raw materials having higher acid values than Examples 3 and 4. Can be.
실시예 7Example 7
500ml 고압반응기에 팜유부산물(산가 180mgKOH/g) 180g과 메탄올 80g을 넣고 MgO 0.012g을 촉매로 사용하여 200℃, 28기압 하에서 2시간 동안 반응시켰다. 미반응 메탄올과 생성된 물을 증발하여 제거한 후 층 분리를 통하여 지방산 알킬에스테르층과 글리세린층을 분리하여 지방산 알킬에스테르층을 회수하고, 회수된 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실을 실시예 1과 동일한 방법으로 분석하였다.180 g of palm oil by-product (acid value 180 mgKOH / g) and 80 g of methanol were added to a 500 ml high-pressure reactor, and the reaction was carried out at 200 ° C. and 28 atm for 2 hours using MgO 0.012 g as a catalyst. After the unreacted methanol and the produced water are removed by evaporation, the fatty acid alkyl ester layer and the glycerin layer are separated by layer separation to recover the fatty acid alkyl ester layer, and the acid value, organic content and yield loss of the recovered fatty acid alkyl ester layer are performed. The analysis was conducted in the same manner as in Example 1.
실시예Example 8 8
반응시간을 4시간으로 하였다는 것을 제외하고는 실시예 7과 동일하게 반응을 수행하여 지방산 알킬에스테르층을 회수하였다. 회수된 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실을 실시예 1과 동일한 방법으로 분석하였다. The reaction was carried out in the same manner as in Example 7, except that the reaction time was 4 hours to recover the fatty acid alkyl ester layer. The acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
실시예 7, 8에서의 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실의 분석결과를 하기 표 4에 나타내었다.The results of analysis of acid value, organic matter content, and yield loss of the fatty acid alkyl ester layer in Examples 7 and 8 are shown in Table 4 below.
표 4
구분 촉매의종류 사용량(g) 회수 층 분석 층분리후수율손실(중량%)
산가(mgKOH/g) MG(중량%) DG(중량%) TG(중량%) 전환율(중량%)
실시예7 MgO 0.012 17.3 0.17 0.21 0.00 90.96 없음
실시예8 MgO 0.012 11.5 0.05 0.00 0.00 94.22 없음
Table 4
division Type of catalyst Usage (g) Recovery layer analysis Yield loss after layer separation (wt%)
Acid value (mgKOH / g) MG (% by weight) DG (% by weight) TG (% by weight) Conversion rate (% by weight)
Example 7 MgO 0.012 17.3 0.17 0.21 0.00 90.96 none
Example 8 MgO 0.012 11.5 0.05 0.00 0.00 94.22 none
상기 분석결과를 통하여 실시예 5, 6 보다 산가가 훨씬 더 높은 팜유부산물을 원료로 하여 소량의 촉매를 사용한 실시예 7, 8의 경우에도 수율 손실 없이 높은 전환율로 지방산 알킬에스테르를 제조할 수 있음을 알 수 있다. According to the above analysis results, fatty acid alkyl esters can be produced at high conversion rates without loss of yield even in Examples 7 and 8 using a small amount of catalysts using palm oil by-products having much higher acid values than Examples 5 and 6. Able to know.
실시예 9Example 9
1차 에스테르 및 전이에스테르 반응 단계 이후 2차 에스테르 및 전이에스테르 반응을 수행하여 지방산 알킬에스테르를 제조하였다. 구체적으로, 500ml 고압반응기에 팜유 부산물(산가 200mgKOH/g) 180g과 메탄올 80g을 넣고 MgO 0.054g을 촉매로 사용하여 200℃ 및 28기압에서 2시간 동안 1차 에스테르 및 전이에스테르 반응을 진행하였다. 반응이 끝난 후 감압조건에서 미반응 메탄올과 생성된 수분을 제거하고 1시간 동안 층 분리를 진행하여 상층의 지방산 알킬에스테르, 미반응 지방산 및 글리세라이드와 하층의 글리세린을 분리하였다. The fatty acid alkylester was prepared by performing the secondary ester and transition ester reaction after the primary ester and transition ester reaction step. Specifically, 180 g of palm oil by-product (acid value 200 mgKOH / g) and 80 g of methanol were added to a 500 ml high-pressure reactor, and MgO 0.054 g was used as a catalyst to carry out the first ester and transition ester reaction at 200 ° C. and 28 atm for 2 hours. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers.
상층의 지방산 알킬에스테르와 미반응 지방산 및 글리세라이드 180g과 메탄올 80g을 500ml 고압반응기에 넣고 200℃ 및 28기압에서 2시간 동안 2차 에스테르 및 전이에스테르 반응을 진행하였다. 미반응 메탄올과 생성된 물을 증발하여 제거한 후 층 분리를 통하여 지방산 알킬에스테르층과 글리세린층을 분리하여 지방산 알킬에스테르층을 회수하였다. 회수된 지방산 알킬에스테르층의 산가 및 유기물 함량, 수율 손실을 실시예 1과 동일한 방법으로 분석하였다.180 g of fatty acid alkyl ester, unreacted fatty acid, glyceride, and 80 g of methanol were added to a 500 ml high-pressure reactor, and secondary ester and transition ester reaction was performed at 200 ° C. and 28 atm for 2 hours. The unreacted methanol and the produced water were removed by evaporation, and the fatty acid alkylester layer and the glycerin layer were separated by layer separation to recover the fatty acid alkylester layer. The acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
실시예 10Example 10
1차 에스테르 및 전이에스테르 반응과, 2차 에스테르 및 전이에스테르 반응을 모두 220℃ 및 38기압 하에서 수행하였다는 것을 제외하고는 실시예 9와 동일하게 반응을 수행하여 지방산 알킬에스테르층을 회수하였다. 회수된 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실을 실시예 1과 동일한 방법으로 분석하였다. The fatty acid alkylester layer was recovered in the same manner as in Example 9 except that the primary ester and transition ester reactions and the secondary ester and transition ester reactions were all performed at 220 ° C. and 38 atm. The acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
실시예 9, 10에서의 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실의 분석결과를 하기 표 5에 나타내었다.The results of analyzing the acid value, organic matter content, and yield loss of the fatty acid alkyl ester layer in Examples 9 and 10 are shown in Table 5 below.
표 5
구분 촉매의종류 사용량(g) 회수 층 분석 층분리후수율손실(중량%)
산가(mgKOH/g) MG(중량%) DG(중량%) TG(중량%) 전환율(중량%)
실시예9 1차 MgO 0.054 16.8 - - - - 없음
2차 - - 1.8 0.51 0.00 0.00 98.59 없음
실시예10 1차 MgO 0.054 12.7 - - - - 없음
2차 - - 0.9 0.57 0.00 0.00 98.98 없음
Table 5
division Type of catalyst Usage (g) Recovery layer analysis Yield loss after layer separation (wt%)
Acid value (mgKOH / g) MG (% by weight) DG (% by weight) TG (% by weight) Conversion rate (% by weight)
Example 9 Primary MgO 0.054 16.8 - - - - none
Secondary - - 1.8 0.51 0.00 0.00 98.59 none
Example 10 Primary MgO 0.054 12.7 - - - - none
Secondary - - 0.9 0.57 0.00 0.00 98.98 none
상기 분석결과를 통하여 고산가 저급원료를 사용하여 1차 에스테르 및 전이에스테르 반응을 한 다음, 촉매를 추가 투입하지 않고 2차 에스테르 및 전이에스테르 반응을 시킨 결과, 산가를 낮추면서 수율 손실 없이 지방산 알킬에스테르를 높은 전환율로 제조할 수 있음을 알 수 있다.Through the above analysis results, the primary ester and the transesterification reaction were carried out using a high acid value lower raw material, and then the secondary ester and the transesterification reaction without additional catalyst were added. It can be seen that it can be produced with a high conversion rate.
실시예 11Example 11
1차 에스테르 및 전이에스테르 반응 단계 이전에는 전처리 공정을 수행하고, 이후에는 2차 에스테르 및 전이에스테르 반응을 수행하여 연속 공정으로 고산가의 저급원료로부터 지방산 알킬에스테르를 제조하였다. 500ml 고압반응기에 팜유 혼합물(산가 60mgKOH/g) 180g과 메탄올 80g을 넣고 200℃, 30기압 하에서 2시간 동안 전처리 반응을 진행하였다. 반응이 끝난 후 감압조건에서 미반응 메탄올과 생성된 수분을 제거하고 1시간 동안 층 분리를 진행하여 상층의 지방산 알킬에스테르, 미반응 지방산 및 글리세라이드와 하층의 글리세린을 분리하였다. 상층의 지방산 알킬에스테르와 미반응 지방산 및 글리세라이드 180g과 메탄올 80g을 500ml 고압반응기에 넣고 MgO촉매를 사용하여 200℃, 30기압 하에서 2시간 동안 1차 에스테르 및 전이에스테르 반응을 진행하였다. 반응이 끝난 후 감압조건에서 미반응 메탄올과 생성된 수분을 제거하고 1시간 동안 층 분리를 진행하여 상층의 지방산 알킬에스테르, 미반응 지방산 및 글리세라이드와 하층의 글리세린을 분리하였다. 상층의 지방산 알킬에스테르와 미반응 지방산 및 글리세라이드 180g과 메탄올 80g을 500ml 고압반응기에 넣고, MgO를 추가 투입하여 200℃, 30기압 하에서 2시간 동안 2차 에스테르 및 전이에스테르 반응을 진행하였다. 미반응 메탄올과 생성된 물을 증발하여 제거한 후 층 분리를 통하여 지방산 알킬에스테르층과 글리세린층을 분리함으로써 지방산 알킬에스테르층을 회수하였다. 회수된 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실을 실시예 1과 동일한 방법으로 분석하였다. Before the first ester and transition ester reaction step, a pretreatment process is performed, and then, a second ester and transition ester reaction is performed to prepare fatty acid alkyl esters from a lower acidic raw material in a continuous process. 180 g of palm oil mixture (acid value 60 mgKOH / g) and 80 g of methanol were added to a 500 ml high-pressure reactor, and the pretreatment reaction was performed at 200 ° C. and 30 atm for 2 hours. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers. 180 g of fatty acid alkyl ester, unreacted fatty acid, glyceride, and 80 g of methanol were added to a 500 ml high-pressure reactor, and the first ester and transition ester reaction was performed at 200 ° C. and 30 atm for 2 hours using a MgO catalyst. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers. 180 g of fatty acid alkyl ester, unreacted fatty acid and glyceride, and 80 g of methanol were added to a 500 ml high-pressure reactor, and further MgO was added to carry out the secondary ester and transition ester reaction at 200 ° C. and 30 atm for 2 hours. The unreacted methanol and the produced water were removed by evaporation, and the fatty acid alkylester layer was recovered by separating the fatty acid alkylester layer and the glycerin layer through layer separation. The acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
실시예 11에서의 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실의 분석결과를 하기 표 6에 나타내었다. The analysis results of the acid value, organic matter content, and yield loss of the fatty acid alkyl ester layer in Example 11 are shown in Table 6 below.
표 6
구분 촉매의종류 사용량(g) 회수 층 분석 층분리후수율손실(중량%)
산가(mgKOH/g) MG(중량%) DG(중량%) TG(중량%) 전환율 (중량%)
전처리 - - 15.97 5.74 14.52 11.04 68.70 없음
1차 MgO 0.05 1.3 1.13 0.17 0.00 98.70 없음
2차 MgO 0.084 0.5 0.54 0.08 0.00 99.38 없음
Table 6
division Type of catalyst Usage (g) Recovery layer analysis Yield loss after layer separation (wt%)
Acid value (mgKOH / g) MG (% by weight) DG (% by weight) TG (% by weight) Conversion rate (% by weight)
Pretreatment - - 15.97 5.74 14.52 11.04 68.70 none
Primary MgO 0.05 1.3 1.13 0.17 0.00 98.70 none
Secondary MgO 0.084 0.5 0.54 0.08 0.00 99.38 none
실시예 12Example 12
1차 에스테르 및 전이에스테르 반응 단계 이전에는 전처리 공정을 수행하고, 이후에는 2차 에스테르 및 전이에스테르 반응을 수행하여 연속 공정으로 중산가의 저급원료로부터 지방산 알킬에스테르를 제조하였다. 500ml 고압반응기에 폐식용유(산가 43mgKOH/g) 180g과 메탄올 80g을 넣고 200℃, 30기압 하에서 2시간 동안 전처리 반응을 진행하였다. 반응이 끝난 후 감압조건에서 미반응 메탄올과 생성된 수분을 제거하고 1시간 동안 층 분리를 진행하여 상층의 지방산 알킬에스테르, 미반응 지방산 및 글리세라이드와 하층의 글리세린을 분리하였다. 상층의 지방산 알킬에스테르와 미반응 지방산 및 글리세라이드 180g과 메탄올 80g을 500ml 고압반응기에 넣고 MgO 촉매를 사용하여 200℃, 30기압 하에서 2시간 동안 1차 에스테르 및 전이에스테르 반응을 진행하였다. 반응이 끝난 후 감압조건에서 미반응 메탄올과 생성된 수분을 제거하고 1시간 동안 층 분리를 진행하여 상층의 지방산 알킬에스테르, 미반응 지방산 및 글리세라이드와 하층의 글리세린을 분리하였다. 상층의 지방산 알킬에스테르와 미반응 지방산 및 글리세라이드 180g과 메탄올 80g을 500ml 고압반응기에 넣고 MgO 촉매를 사용하여 200℃, 30기압 하에서 2시간 동안 2차 에스테르 및 전이에스테르 반응을 진행하였다. 미반응 메탄올과 생성된 물을 증발시켜 제거한 후 층 분리를 통하여 지방산 알킬에스테르층과 글리세린층을 분리하여 지방산 알킬에스테르층을 회수하였다. 회수된 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실을 실시예 1과 동일한 방법으로 분석하였다.The pretreatment process was carried out before the primary ester and transition ester reaction step, and then the secondary ester and transition ester reaction was carried out to prepare fatty acid alkyl esters from the lower raw materials of the middle acid value in a continuous process. 180 g of waste cooking oil (acid value 43 mgKOH / g) and 80 g of methanol were added to a 500 ml high-pressure reactor, and the pretreatment reaction was performed at 200 ° C. and 30 atm for 2 hours. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers. The upper fatty acid alkyl ester, 180 g of unreacted fatty acid, glyceride, and 80 g of methanol were placed in a 500 ml high-pressure reactor, and a primary ester and a transesterification reaction were performed at 200 ° C. and 30 atm for 2 hours using a MgO catalyst. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers. The upper fatty acid alkyl ester, 180 g of unreacted fatty acid, glyceride, and 80 g of methanol were placed in a 500 ml high-pressure reactor, and a secondary ester and a transesterification reaction were performed at 200 ° C. and 30 atm for 2 hours using a MgO catalyst. The unreacted methanol and the produced water were removed by evaporation, and the fatty acid alkylester layer and the glycerin layer were separated by layer separation to recover the fatty acid alkylester layer. The acid value, organic matter content, and yield loss of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
실시예 12에서의 지방산 알킬에스테르층의 산가, 유기물 함량, 수율 손실의 분석결과를 하기 표 7에 나타내었다. The analysis results of the acid value, organic matter content, and yield loss of the fatty acid alkyl ester layer in Example 12 are shown in Table 7 below.
표 7
구분 촉매의종류 사용량(g) 회수 층 분석 층분리후수율손실(중량%)
산가(mgKOH/g) MG(중량%) DG(중량%) TG(중량%) 전환율 (중량%)
전처리 - - 13.91 9.21 22.02 14.54 52.70 없음
1차 MgO 0.054 2.24 3.71 0.63 0.30 94.42 없음
2차 MgO 0.054 0.43 0.8 0.00 0.16 98.0 없음
TABLE 7
division Type of catalyst Usage (g) Recovery layer analysis Yield loss after layer separation (wt%)
Acid value (mgKOH / g) MG (% by weight) DG (% by weight) TG (% by weight) Conversion rate (% by weight)
Pretreatment - - 13.91 9.21 22.02 14.54 52.70 none
Primary MgO 0.054 2.24 3.71 0.63 0.30 94.42 none
Secondary MgO 0.054 0.43 0.8 0.00 0.16 98.0 none
실시예 11 및 12를 통하여 고산가 또는 중산가의 저급원료를 사용하여 연속공정으로 전처리, 1차 에스테르 및 전이에스테르 반응, 2차 에스테르 및 전이에스테르 반응을 시킨 결과, 산가를 낮추면서 수율 손실 없이 지방산 알킬에스테르를 높은 전환율로 제조할 수 있음을 알 수 있다. 기존의 염기촉매 공정은 고산가의 원료를 사용시 emulsion이 형성되고 Gel과 같은 혼합물이 형성되기 때문에 층 분리가 어려워 지방산 알킬에스테르의 수율 손실이 크지만, 본 발명의 방법에 의하면 그러한 문제를 해결할 수 있다. As a result of the pretreatment, the primary ester and the transesterification reaction, the secondary ester and the transesterification reaction in a continuous process using the high acid or middle acid low grade raw materials through Examples 11 and 12, fatty acid alkyl ester without loss of yield while lowering the acid value It can be seen that can be prepared with a high conversion rate. Conventional base catalyst process is difficult to separate the layer because the emulsion is formed when using a high acid value raw material and a gel-like mixture is formed, the yield loss of fatty acid alkyl ester is large, but the problem can be solved by the method of the present invention.
실시예 13Example 13
500ml 고압반응기에 yellow grease(산가 27mgKOH/g) 180g과 메탄올 80g을 넣고 MgO 0.054g을 촉매로 사용하여 220℃ 및 44기압에서 2시간 동안 1차 에스테르 및 전이 에스테르 반응을 진행하였다. 반응이 끝난 후 감압조건에서 미반응 메탄올과 생성된 수분을 제거하고 1시간 동안 층 분리를 진행하여 상층의 지방산 알킬에스테르, 미반응 지방산 및 글리세라이드와 하층의 글리세린을 분리하였다. 상층의 지방산 알킬에스테르와 미반응 지방산 및 글리세라이드 180g과 메탄올 40g을 500ml 반응기에 넣고 NaOCH3(30% solution in Methanol) 1.47g을 70℃ 및 상압에서 2시간 동안 2차 에스테르 및 전이 에스테르 반응을 진행하였다. 미반응 메탄올과 생성된 물을 증발하여 제거한 후 층 분리를 통하여 지방산 알킬에스테르층과 글리세린층을 분리하여 지방산 알킬에스테르층을 회수하였다. 회수된 지방산 알킬에스테르층의 산가 및 유기물 함량을 실시예 1과 동일한 방법으로 분석하였다.180 g of yellow grease (acid value 27 mgKOH / g) and 80 g of methanol were added to a 500 ml high-pressure reactor, and MgO 0.054 g was used as a catalyst to carry out the first ester and transition ester reaction at 220 ° C. and 44 atm for 2 hours. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers. 180 g of fatty acid alkyl ester, unreacted fatty acid, glyceride and 40 g of methanol were added to a 500 ml reactor, and 1.47 g of NaOCH 3 (30% solution in Methanol) was subjected to secondary ester and transition ester reaction at 70 ° C. and atmospheric pressure for 2 hours. It was. The unreacted methanol and the produced water were removed by evaporation, and the fatty acid alkylester layer and the glycerin layer were separated by layer separation to recover the fatty acid alkylester layer. The acid value and organic matter content of the recovered fatty acid alkyl ester layer were analyzed in the same manner as in Example 1.
실시예 13에서의 지방산 알킬에스테르층의 산가 및 유기물 함량의 분석결과를 하기 표 8에 나타내었다. The analysis results of the acid value and organic matter content of the fatty acid alkyl ester layer in Example 13 are shown in Table 8 below.
표 8
구분 촉매의종류 사용량(g) 회수 층 분석
산가(mgKOH/g) MG(중량%) DG(중량%) TG(중량%) 전환율(중량%)
1차 MgO 0.054 1.79 5.496 0.89 0.289 93.33
2차 NaOCH3 1.47 0.1 0.787 0.098 0.021 99.09
Table 8
division Type of catalyst Usage (g) Recovery layer analysis
Acid value (mgKOH / g) MG (% by weight) DG (% by weight) TG (% by weight) Conversion rate (% by weight)
Primary MgO 0.054 1.79 5.496 0.89 0.289 93.33
Secondary NaOCH 3 1.47 0.1 0.787 0.098 0.021 99.09
상기 분석결과를 통하여, 고산가 저급원료를 사용하여 MgO 촉매를 사용하여 1차 에스테르 및 전이에스테르 반응을 진행한 후, 기존의 염기 촉매 공정을 연속공정으로 수행하여 2차 에스테르 및 전이에스테르 반응을 진행시키는 경우 높은 전환율로 저산가의 지방산 알킬에스테르를 제조할 수 있음을 알 수 있다.Through the above analysis results, after the first ester and the transesterification reaction using the MgO catalyst using a high acid low-grade raw material, the conventional base catalyst process is carried out in a continuous process to proceed the secondary ester and the transesterification reaction It can be seen that the fatty acid alkyl ester of low acid value can be prepared in a high conversion rate.
실시예 14Example 14
500ml 고압반응기에 폐식용유(산가 80mgKOH/g) 180g과 메탄올 80g을 넣고 200℃, 30기압 하에서 2시간 동안 전처리 공정을 진행하였다. 반응이 끝난 후 감압조건에서 미반응 메탄올과 생성된 수분을 제거하고 1시간 동안 층분리를 진행하여 상층의 지방산 알킬에스테르, 미반응 지방산 및 글리세라이드와 하층의 글리세린을 분리하였다. 상층의 지방산 알킬에스테르와 미반응 지방산 및 글리세라이드 180g과 메탄올 80g을 500ml 고압반응기에 넣고 MgO 촉매 0.054g을 사용하여 200℃, 30기압 하에서 2시간 동안 1차 에스테르 및 전이에스테르 공정을 진행하였다. 반응이 끝난 후 감압조건에서 미반응 메탄올과 생성된 수분을 제거하고 1시간 동안 층분리를 진행하여 상층의 지방산 알킬에스테르, 미반응 지방산 및 글리세라이드와 하층의 글리세린을 분리하였다. 상층의 지방산 알킬에스테르와 미반응 지방산 및 글리세라이드 180g과 메탄올 40g을 500ml 고압반응기에 넣고 NaOCH3(30% solution in Methanol) 1.13g을 70℃ 및 상압에서 2시간 동안 2차 에스테르 및 전이에스테르 공정을 진행하였다. 미반응 메탄올과 생성된 물을 증발시켜 제거한 후 층 분리를 통하여 지방산 알킬에스테르층과 글리세린층을 분리하여 지방산 알킬에스테르층을 회수하고, 회수된 지방산 알킬에스테르층의 산가 및 유기물 함량을 분석하고 그 결과를 표 9에 기재하였다.180 g of waste cooking oil (acid value 80 mgKOH / g) and 80 g of methanol were put into a 500 ml high-pressure reactor, and the pretreatment process was performed at 200 ° C. and 30 atm for 2 hours. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers. 180 g of fatty acid alkyl ester, unreacted fatty acid, glyceride, and 80 g of methanol were placed in a 500 ml high pressure reactor, and a primary ester and a transesterification process were performed at 200 ° C. and 30 atm for 2 hours using 0.054 g of MgO catalyst. After completion of the reaction, unreacted methanol and generated water were removed under reduced pressure, and the layers were separated for 1 hour to separate fatty acid alkyl esters, unreacted fatty acids, glycerides, and glycerin from lower layers. 180 g of fatty acid alkyl ester, unreacted fatty acid and glyceride, and 40 g of methanol were added to a 500 ml autoclave, and 1.13 g of NaOCH 3 (30% solution in Methanol) was subjected to secondary ester and transition ester processes at 70 ° C. and atmospheric pressure for 2 hours. Proceeded. The unreacted methanol and the produced water were removed by evaporation, the fatty acid alkylester layer and the glycerin layer were separated by layer separation to recover the fatty acid alkylester layer, and the acid value and organic content of the recovered fatty acid alkylester layer were analyzed. Are listed in Table 9.
표 9
구분 촉매의종류 사용량(g) 회수 층 분석
산가(mgKOH/g) MG(중량%) DG(중량%) TG(중량%) 전환율(중량%)
전처리 - - 12.9 6.8 10.9 5.5 70.3
1차 MgO 0.054 1.3 2.5 0.4 0.1 96
2차 NaOCH3 1.13 0.1 0.6 0 0 99
Table 9
division Type of catalyst Usage (g) Recovery layer analysis
Acid value (mgKOH / g) MG (% by weight) DG (% by weight) TG (% by weight) Conversion rate (% by weight)
Pretreatment - - 12.9 6.8 10.9 5.5 70.3
Primary MgO 0.054 1.3 2.5 0.4 0.1 96
Secondary NaOCH 3 1.13 0.1 0.6 0 0 99
상기 분석결과를 통하여, 고산가 저급원료를 사용하여 전처리 공정을 진행한 다음, MgO 촉매를 사용하여 1차 에스테르 및 전이에스테르 반응을 진행한 후, 기존의 염기 촉매 공정을 연속공정으로 수행하여 2차 에스테르 및 전이에스테르 반응을 진행시키는 경우 산가를 낮추면서 높은 전환율로 지방산 알킬에스테르를 제조할 수 있음을 알 수 있다.Through the analysis results, after the pretreatment process using a high acid low-grade raw material, and then the primary ester and transition ester reaction using the MgO catalyst, the conventional base catalyst process is carried out in a continuous process to the secondary ester And it can be seen that the fatty acid alkyl ester can be produced at a high conversion rate while lowering the acid value when the transition ester reaction proceeds.

Claims (10)

  1. 유리지방산을 함유하며 산가가 2 내지 200인 오일, 지방, 또는 이들의 혼합물을 C1-C5의 저가 알코올과 MgO 및 Mg(OH)2 중 하나 이상의 촉매 하에 150~250℃ 및 5~100기압 하에서 에스테르화 반응 및 전이에스테르화 반응시키는 단계를 포함하는 것을 특징으로 하는 지방산 알킬에스테르의 제조 방법.Oils, fats, or mixtures thereof containing free fatty acids and having an acid value of 2 to 200 are charged at 150 to 250 ° C. and 5 to 100 atm under a catalyst of at least one of C 1 -C 5 low alcohols and MgO and Mg (OH) 2 Method for producing a fatty acid alkyl ester characterized in that it comprises the step of esterification reaction and transesterification reaction under.
  2. 제1항에 있어서, The method of claim 1,
    촉매가 상기 오일, 지방, 또는 이들의 혼합물의 전체 중량을 기준으로 0.001 내지 0.5중량% 사용되는 것을 특징으로 하는 지방산 알킬에스테르의 제조방법.Method for producing a fatty acid alkyl ester, characterized in that the catalyst is used 0.001 to 0.5% by weight based on the total weight of the oil, fat, or mixtures thereof.
  3. 제1항에 있어서, The method of claim 1,
    상기 알코올에 대한 오일, 지방, 또는 이들의 혼합물의 비율은 중량 기준으로 100/80~100/10인 것을 특징으로 하는 지방산 알킬에스테르의 제조방법.The ratio of the oil, fat, or mixtures thereof with respect to the alcohol is a fatty acid alkyl ester production method, characterized in that 100/80 ~ 100/10 by weight.
  4. 제1항에 있어서,The method of claim 1,
    상기 오일, 지방, 또는 이들의 혼합물은 산가가 5~100인 것을 특징으로 하는 지방산 알킬에스테르의 제조방법The oil, fat, or mixtures thereof are fatty acid alkyl esters, characterized in that the acid value is 5 ~ 100.
  5. 제1항에 있어서, The method of claim 1,
    상기 에스테르화 및 전이 에스테르화 반응이 180~230℃ 및 10~70기압 하에서 수행되는 것을 특징으로 하는 지방산 알킬에스테르의 제조방법Method for producing fatty acid alkyl esters, characterized in that the esterification and transition esterification reaction is carried out at 180 ~ 230 ℃ and 10 ~ 70 atm
  6. 제1항에 있어서, The method of claim 1,
    상기 에스테르화 및 전이 에스테르화 반응이 30분 내지 6시간 동안 수행되는 것을 특징으로 하는 지방산 알킬에스테르의 제조방법.Method for producing a fatty acid alkyl ester, characterized in that the esterification and transition esterification reaction is carried out for 30 minutes to 6 hours.
  7. 제1항에 있어서, The method of claim 1,
    상기 에스테르화 반응 및 전이에스테르화 반응 단계 이전에, 오일, 지방, 또는 이들의 혼합물을 무촉매 하에서 C1-C5의 저가 알코올과 150~250℃ 및 5~100기압 하에서 반응시키는 전처리 단계를 포함하는 것을 특징으로 하는 지방산 알킬 에스테르의 제조 방법.Before the esterification and transesterification step, a pretreatment step of reacting the oil, fat, or mixtures thereof with C 1 -C 5 low-cost alcohol under a catalyst under 150 ~ 250 ℃ and 5 ~ 100 atm Method for producing a fatty acid alkyl ester, characterized in that.
  8. 제1항 또는 제7항에 있어서, The method according to claim 1 or 7,
    상기 에스테르화 반응 및 전이에스테르화 반응 단계 이후에, 상기 제조된 지방산 알킬 에스테르를 C1-C5의 저가알코올과 촉매 또는 무촉매 하에 추가로 에스테르화 반응 및 전이에스테르화 반응시키는 단계를 포함하는 것을 특징으로 하는 지방산 알킬에스테르의 제조방법. After the esterification reaction and the transesterification step, further comprising the step of further esterification and transesterification reaction of the prepared fatty acid alkyl ester with a C 1 -C 5 low-alcohol under a catalyst or non-catalyst Method for producing a fatty acid alkyl ester, characterized in that.
  9. 제8항에 있어서, The method of claim 8,
    상기 추가 에스테르화 및 전이에스테르화 반응이 150~250℃ 및 5~100기압 또는 40~100℃ 및 상압~10기압에서 수행되는 것을 특징으로 하는 지방산 알킬에스테르의 제조방법.The further esterification and transesterification reaction is a method for producing a fatty acid alkyl ester, characterized in that carried out at 150 ~ 250 ℃ and 5 ~ 100 atm or 40 ~ 100 ℃ and atmospheric pressure-10 atm.
  10. 제8항에 있어서, The method of claim 8,
    상기 촉매가 MgO, Mg(OH)2, NaOH, KOH, 및 NaOCH3로 이루어진 그룹으로부터 선택되는 하나 이상의 촉매인 것을 특징으로 하는 지방산 알킬에스테르의 제조 방법.Wherein said catalyst is at least one catalyst selected from the group consisting of MgO, Mg (OH) 2 , NaOH, KOH, and NaOCH 3 .
PCT/KR2011/007106 2010-09-27 2011-09-27 Method for preparing fatty acid alkyl esters WO2012044042A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100093472 2010-09-27
KR10-2010-0093472 2010-09-27
KR1020100093474A KR101072674B1 (en) 2010-09-27 2010-09-27 Process for the preparation of aliphatic alkylester
KR10-2010-0093474 2010-09-27

Publications (2)

Publication Number Publication Date
WO2012044042A2 true WO2012044042A2 (en) 2012-04-05
WO2012044042A3 WO2012044042A3 (en) 2012-06-07

Family

ID=45893636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007106 WO2012044042A2 (en) 2010-09-27 2011-09-27 Method for preparing fatty acid alkyl esters

Country Status (1)

Country Link
WO (1) WO2012044042A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10542773B2 (en) 2013-07-19 2020-01-28 Philip Morris Products S.A. Hydrophobic paper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228754B1 (en) * 1999-01-05 2001-05-08 Advanced Micro Devices, Inc. Method for forming semiconductor seed layers by inert gas sputter etching
US20060014378A1 (en) * 2004-07-14 2006-01-19 Sanjeev Aggarwal System and method to form improved seed layer
US20060030151A1 (en) * 2004-08-09 2006-02-09 Applied Materials, Inc. Sputter deposition and etching of metallization seed layer for overhang and sidewall improvement
US7585760B2 (en) * 2006-06-23 2009-09-08 Intel Corporation Method for forming planarizing copper in a low-k dielectric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228754B1 (en) * 1999-01-05 2001-05-08 Advanced Micro Devices, Inc. Method for forming semiconductor seed layers by inert gas sputter etching
US20060014378A1 (en) * 2004-07-14 2006-01-19 Sanjeev Aggarwal System and method to form improved seed layer
US20060030151A1 (en) * 2004-08-09 2006-02-09 Applied Materials, Inc. Sputter deposition and etching of metallization seed layer for overhang and sidewall improvement
US7585760B2 (en) * 2006-06-23 2009-09-08 Intel Corporation Method for forming planarizing copper in a low-k dielectric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10542773B2 (en) 2013-07-19 2020-01-28 Philip Morris Products S.A. Hydrophobic paper

Also Published As

Publication number Publication date
WO2012044042A3 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
CA2535639A1 (en) Method of making alkyl esters using glycerin
JP3581906B2 (en) Method for preparing fatty acid alkyl ester
EP0623581B1 (en) Esterification process
US20120255223A1 (en) process for conversion of low cost and high ffa oils to biodiesel
SG140551A1 (en) Production of biodiesel and glycerin from high free fatty acid feedstocks
GB2168701A (en) A process for the production of fatty acid methyl esters
US5424457A (en) Process for the production of sterol and tocopherol concentrates
JP2004510044A (en) Method for forming fatty acid alkyl ester
US6815551B2 (en) Processes for concentrating tocopherols and/or sterols
EP0391485A1 (en) Process for producing fatty-acid lower-alkyl monoesters
WO2015026073A1 (en) Method for preparing glycol ester using reactive distillation
MY106264A (en) A process for the production and refining of fatty alcohol products from esters
WO2010058983A2 (en) Method for recovering (meth)acrylic acid ester
WO2003106604A1 (en) Process for producing fatty acid alkyl ester composition
WO2020122591A1 (en) Plasticizer composition and resin composition comprising same
US8692008B2 (en) Use of methanesulfonic acid for preparing fatty acid esters
WO2012044042A2 (en) Method for preparing fatty acid alkyl esters
WO2013183872A1 (en) Method for manufacturing biodegradable ester lubricating base oil by using solid acid catalyst
CA2422804A1 (en) Method for producing starting materials for obtaining conjugated linoleic acid
WO2023120912A1 (en) Method for producing bio-diesel using animal lipids and removing sulfur
US20080287697A1 (en) Process for preparing fatty acid esters from pre-treated glyceride oils
WO2022169165A1 (en) 1,4-cyclohexanedimethanol composition and purification method therefor
KR101072674B1 (en) Process for the preparation of aliphatic alkylester
KR101297495B1 (en) Process for the preparation of fatty acid alkylester
WO2018012847A1 (en) Integrated system comprising electrocatalysis device of glycerol and chemical catalysis device of biomass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829548

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829548

Country of ref document: EP

Kind code of ref document: A2