WO2012043363A1 - 荷電粒子ビーム装置、薄膜作製方法、欠陥修正方法及びデバイス作製方法 - Google Patents

荷電粒子ビーム装置、薄膜作製方法、欠陥修正方法及びデバイス作製方法 Download PDF

Info

Publication number
WO2012043363A1
WO2012043363A1 PCT/JP2011/071578 JP2011071578W WO2012043363A1 WO 2012043363 A1 WO2012043363 A1 WO 2012043363A1 JP 2011071578 W JP2011071578 W JP 2011071578W WO 2012043363 A1 WO2012043363 A1 WO 2012043363A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
sample
particle beam
thin film
gas
Prior art date
Application number
PCT/JP2011/071578
Other languages
English (en)
French (fr)
Inventor
喜弘 小山
行人 八坂
下田 達也
松木 安生
陵 川尻
Original Assignee
エスアイアイ・ナノテクノロジー株式会社
独立行政法人 科学技術振興機構
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスアイアイ・ナノテクノロジー株式会社, 独立行政法人 科学技術振興機構, Jsr株式会社 filed Critical エスアイアイ・ナノテクノロジー株式会社
Priority to EP11828920.6A priority Critical patent/EP2624279B1/en
Priority to US13/876,274 priority patent/US9257273B2/en
Publication of WO2012043363A1 publication Critical patent/WO2012043363A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3178Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for applying thin layers on objects
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using ion beam radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/487Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a charged particle beam apparatus for processing a sample with a charged particle beam.
  • TEM transmission electron microscope
  • Cutting out a minute portion from a semiconductor wafer is performed by etching using a focused ion beam (FIB). And the cut-out micro part is observed with a TEM apparatus.
  • the semiconductor wafer from which the minute portion has been cut out is returned to the device manufacturing process.
  • the processing hole formed at the time of cutting out the minute portion is filled with local silicon film deposition by FIB. Thereby, it is possible to prevent diffusion of FIB ion species implanted into the semiconductor wafer by FIB irradiation in the device manufacturing process.
  • a technique for cutting and connecting wiring using a charged particle beam device for wiring correction.
  • a processed hole is formed by FIB around the corrected portion.
  • the wiring at the correction portion is cut by etching.
  • metal wiring is produced so that it may become suitable wiring by irradiating a charged particle beam, supplying metal containing gas.
  • the processed hole formed around the correction portion is filled with local silicon oxide film deposition by an electron beam using, for example, a silane-based gas (Patent Document 1). As a result, the device can be operated normally after the wiring is corrected.
  • the conventional silicon-based film formation using an electron beam or a focused ion beam has a drawback that the film formation rate is slow.
  • silicon hydrides and halides containing one silicon in one molecule such as silane (SiH4), silicon iodide (SiI4), and trichlorosilane (SiHCl3) have been used as film forming gases. These substances are gases at room temperature. In addition, these substances adsorb on the metal surface in Langmuir type. In Langmuir type adsorption, only one molecule is adsorbed at the adsorption site on the surface. In addition, Langmuir adsorption does not cause multilayer adsorption. Therefore, the amount of adsorption to the surface is small.
  • a film is formed by supplying a source gas to a sample and decomposing the components of the source gas adsorbed on the sample with a charged particle beam. Therefore, if the amount of gas adsorbed on the sample is small, the film forming speed is slow.
  • the present invention has been made in view of such circumstances, and the object thereof is a semiconductor film faster than conventional charged particle beam induced semiconductor film deposition using a silicon hydride or halide as a source gas. To provide a charged particle beam apparatus capable of deposition.
  • the present invention provides the following means.
  • a charged particle beam apparatus includes a charged particle source, a focusing lens electrode for focusing the charged particle beam extracted from the charged particle source, and a blanking electrode for switching between irradiation and non-irradiation of the charged particle beam.
  • a scanning electrode for scanning and irradiating a charged particle beam; a sample stage for placing a sample; a secondary charged particle detector for detecting secondary charged particles generated from the sample by charged particle beam irradiation;
  • a reservoir for storing a silicon compound represented by the following general formula (I) as a source gas, and a gas gun for supplying the source gas to the irradiation position of the charged particle beam of the sample.
  • n represents an integer of 3 or more
  • m represents an integer of n, 2n-2, 2n, or 2n + 2
  • X represents a hydrogen atom and / or a halogen atom
  • the silicon compound is cyclopentasilane.
  • cyclopentasilane can be vaporized and a film can be efficiently formed locally.
  • the charged particle beam is an electron beam.
  • a film containing no impurities can be formed.
  • the charged particle beam is a kind of ion beam selected from gallium, gold, silicon, hydrogen, helium, neon, argon, xenon, oxygen, nitrogen, or carbon.
  • membrane containing said ion and a silicon compound can be formed.
  • a film in which the above ions react with the silicon compound can be formed.
  • the charged particle beam apparatus has a second gas supply system that supplies a source gas different from the source gas.
  • steam of a silicon compound can be formed.
  • a film in which a vapor component different from the vapor of the silicon compound reacts can be formed.
  • the thin film manufacturing method includes a step of irradiating a focused ion beam to form a pair of recessed portions spaced apart from each other on a part of the surface of the sample, and forming a thin sample between the recessed portions. And a step of supplying a silicon compound represented by the following general formula (I) as a raw material gas to the recess and irradiating a charged particle beam to form a film.
  • a silicon compound represented by the following general formula (I) as a raw material gas to the recess and irradiating a charged particle beam to form a film.
  • the defect correction method supplies a silicon compound represented by the following general formula (I) as a raw material gas to a defect part of a nanoimprint mold, irradiates the defect part with a charged particle beam, forms a film, Correct the defective part.
  • a device manufacturing method is a process of supplying a silicon compound represented by the following general formula (I) as a source gas to a sample, irradiating the sample with a first charged particle beam, and manufacturing a first thin film. Supplying a source gas to the sample, irradiating the sample with a second charged particle beam of a beam type different from the first charged particle beam, and producing a second thin film having a function different from the above thin film; Have.
  • n represents an integer of 3 or more
  • m represents an integer of n, 2n-2, 2n, or 2n + 2
  • X represents a hydrogen atom and / or a halogen atom
  • semiconductor film deposition can be performed at a higher speed than conventional deposition using silicon hydride or halide as a source gas.
  • the charged particle beam apparatus includes a charged particle source 1 that generates a charged particle beam 6 and a charged particle optical system, as shown in FIG.
  • the charged particle optical system includes a focusing lens electrode 2, a blanking electrode 3, a scanning electrode 4 for scanning, and an objective lens electrode 5.
  • the focusing lens electrode 2 forms a focusing lens for focusing the charged particle beam 6 generated from the charged particle source 1.
  • the blanking electrode 3 forms an electric field that deflects the charged particle beam 6 when the sample 9 is not irradiated with the charged particle beam 6.
  • the scanning electrode 4 scans the charged particle beam 6.
  • the objective lens electrode 5 forms an objective lens for focusing the charged particle beam 6 on the surface of the sample 6.
  • the charged particle beam apparatus includes a sample stage 10 on which a sample 9 is placed and which can move in the directions of three axes of X, Y, and Z and five axes that are inclined and rotated.
  • the charged particle beam apparatus includes a secondary charged particle detector 8 that irradiates the sample 9 with the charged particle beam 6 and detects the secondary charged particles 7 emitted from the sample 9. Furthermore, the control part 12 which outputs a control signal to the charged particle source 1 and a charged particle optical system is provided. The control unit 12 outputs a scanning signal to the scanning electrode 4. Further, the secondary charged particle detector 8 outputs a secondary electron signal to the control unit 12. The controller 12 forms an observation image from the secondary charged particle signal and the scanning signal. Moreover, the display part 13 which displays the formed observed image is provided.
  • the charged particle beam apparatus includes a gas gun 11 that supplies a source gas for deposition to the sample 9.
  • the gas gun 11 is connected to a reservoir 14 that stores the source gas.
  • a valve 15 is provided between the gas gun 11 and the reservoir 14. When the valve 15 is opened, the source gas stored in the reservoir 14 is supplied to the gas gun 11. The source gas is supplied from the gas gun 11 to the sample 9.
  • a heater 16 for heating the reservoir 14 is also provided. The source gas can be heated by the heater 16 and supplied to the gas gun 11. Further, when using a raw material gas that liquefies or solidifies unless heated, the flow path between the reservoir 14 and the gas gun 11 and the gas gun 11 are heated so that the temperature is higher than that of the reservoir 14. This is to prevent the source gas from being liquefied or solidified in the gas flow path.
  • the charged particle beam apparatus includes a gas gun 17, a reservoir 18, a valve 19, and a heater 20 as a second gas supply system. Use.
  • the charged particle source 1 When a liquid metal ion source is used as the charged particle source 1, gallium, a gold-silicon alloy or silicon is used as the ion species. Liquid metal is applied to the surface of the emitter needle to form a high electric field around the emitter needle. The liquid metal is ionized by the high electric field and emitted toward the sample 9.
  • a plasma ion source when used as the charged particle source 1, a kind of single gas selected from hydrogen, helium, neon, argon, xenon, oxygen or nitrogen is used as the ion species. Further, it is possible to irradiate a carbon ion beam using an organic compound gas such as methane. Furthermore, it is possible to irradiate a silicon ion beam, an arsenic ion beam, and a boron ion beam, respectively, using a kind of compound gas selected from silane, arsine, or borane.
  • the plasma ion source supplies an ion species gas into the ion source chamber, forms plasma, and emits an ion beam.
  • the compound gas when used as the ion species, it is desirable to dispose the ion species by disposing an E ⁇ B mass separator between the charged particle source 1 and the sample 9. Thereby, it is possible to prevent the sample 9 from being irradiated with unnecessary ion species.
  • a field ionization ion source When a field ionization ion source is used as the charged particle source 1, a single gas selected from hydrogen, helium, neon, and argon is supplied as an ion species to the emitter needle, and a high electric field is formed around the emitter needle. Ion beam is emitted.
  • an electron source is used as the charged particle source 1
  • a high electric field is formed around the emitter needle to emit an electron beam.
  • a silicon compound represented by the following general formula (I) is used as a raw material.
  • Si n X m (I) (Here, n represents an integer of 3 or more, m represents an integer of n, 2n-2, 2n, or 2n + 2, and X represents a hydrogen atom and / or a halogen atom) Silicon is a precursor of a silicon film. The bond between silicon and hydrogen or the bond between silicon and a halogen atom is cleaved by excitation with a charged particle beam to form a silicon and silicon bond, thereby forming a silicon film. As the halogen atom, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom can be used.
  • silicon hydride compounds having one ring system such as cyclotrisilane, cyclotetrasilane, cyclopentasilane, silylcyclopentasilane, cyclohexasilane, silylcyclohexasilane, cycloheptasilane, and the like Hexachlorocyclotrisilane, trichlorocyclotrisilane, octachlorocyclotetrasilane, tetrachlorocyclotetrasilane, decachlorocyclopentasilane, pentachlorocyclopentasilane, dodeca Chlorcyclohexasilane, hexachlorocyclohexasilane, tetradecachlorocycloheptasilane, heptachlorocycloheptasilane, hexabromocyclotrisilane, tribromocyclocyclo
  • n a silicon hydride compound having a polycyclic system and a silicon compound in which some or all of these hydrogen atoms are partially substituted with SiH 3 groups or halogen atoms can be exemplified.
  • the above raw material is a liquid or solid compound at room temperature.
  • the vapor pressure of the raw material is lower than the vapor pressure of silicon hydride or halide which is a gas at room temperature such as silane used in the semiconductor manufacturing process.
  • the vapor pressure of cyclopentasilane composed of five silicons bonded in a ring and a bond between silicons and a bond between silicon and hydrogen is approximately 133 Pa. Therefore, the interaction between molecules is large and the amount of adsorption on the sample surface is large. This is considered to be caused by an adsorption phenomenon different from Langmuir type adsorption, such as multimolecular adsorption, on the sample surface. As a result, high-speed deposition can be performed.
  • the raw material gas supply will be described. Cyclopentasilane is inserted into the reservoir 14. The valve 15 is opened and the vaporized cyclopentasilane is supplied to the sample 9 through the gas gun 11. The reservoir 14 is heated by the heater 16 to adjust the supply amount of cyclopentasilane. In addition, when a raw material having a high vapor pressure such as trisilane is used, a mass flow controller is installed between the reservoir 14 and the gas gun 11 to adjust the gas supply amount.
  • Cyclopentasilane is used as a raw material for semiconductor film deposition. Cyclopentasilane is inserted into the reservoir 14. The valve 15 is opened and the vaporized cyclopentasilane is supplied to the sample 9 through the gas gun 11. A gallium liquid metal ion source is used as the charged particle source 1. Based on the beam irradiation information output from the control unit 12, the surface of the sample 9 is scanned and irradiated with a gallium ion beam from a gallium liquid metal ion source. Cyclopentasilane is adsorbed on the surface of the sample 9. At this time, the sample 9 is at room temperature.
  • Cyclopentasilane adsorbed on the sample surface is decomposed by the gallium ion beam irradiation, and a semiconductor film is formed in the region irradiated with the gallium ion beam.
  • the film formation rate was 0.41 ⁇ m 3 / nC.
  • Example 1-2 Next, a case where the gallium liquid metal ion source of Example 1-1 is replaced with an electron source will be described.
  • the surface of the sample 9 supplied with cyclopentasilane is scanned and irradiated with an electron beam.
  • the deposition rate is 3.36 ⁇ 10 ⁇ 3 ⁇ m 3 / nC, which is slower than the deposition with a gallium ion beam. This is because electrons have a longer range in the solid than ions, and thus the proportion of electrons contributing to the decomposition of cyclopentasilane required for film formation is small.
  • the deposition film is a film containing ion species of ion beam of about several to 30% in the film.
  • deposition by electron beam irradiation does not include ion species. Therefore, an impurity-free semiconductor film can be formed by electron beam deposition.
  • Example 1-3 a case where the gallium liquid metal ion source of Example 1-1 is replaced with an ion source using a gas such as hydrogen or helium as ion species will be described.
  • Hydrogen or helium is ionized by a field ionization ion source, and an ion beam is emitted to the surface of the sample 9 adsorbed by cyclopentasilane.
  • a semiconductor film containing no metal impurities can be formed.
  • an ion beam of hydrogen or helium has a shorter range in a solid than electrons, it can be formed more efficiently than when an electron beam is used.
  • Example 1-4 Next, the case where the gallium liquid metal ion source of Example 1-1 is replaced with a plasma ion source using one kind of compound gas selected from silane, arsine, or borane as ion species will be described.
  • An ion species gas is supplied into the ion source chamber, plasma is formed, and an ion beam is emitted.
  • the surface of the sample 9 on which cyclopentasilane is adsorbed is irradiated with the emitted ion beam.
  • silane an intrinsic semiconductor film can be formed.
  • arsine an n-type semiconductor film can be formed.
  • borane a p-type semiconductor film can be formed.
  • the content of ionic species in the film depends on the deposition rate. When the deposition rate is high, the content of ionic species in the film is small.
  • the film formation rate can be controlled by the supply amount of the source gas and the irradiation amount of the charged particle beam.
  • the reservoir 14 is heated by the heater 16, the supply amount of the gas raw material is increased, and the amount of ion beam current applied to the sample 9 is reduced, thereby forming a film having a low content in the ion species film. it can.
  • the ionic species are supplied as a deposition source gas from the second gas supply system simultaneously with the cyclopentasilane, Adsorption to the sample surface and irradiation with an ion beam can compensate for the lack of content.
  • Example 1-5 Next, a case where the gallium liquid metal ion source of Example 1-1 is replaced with an ion source using gold as an ion species will be described. Gold is applied to the surface of the emitter needle, a high electric field is formed around the emitter needle, and an ion beam is emitted. The surface of the sample 9 on which cyclopentasilane is adsorbed is irradiated with the emitted ion beam. Accordingly, a highly conductive film containing gold can be formed.
  • Example 1-6 Next, the case where the gallium liquid metal ion source of Example 1-1 is replaced with an ion source using oxygen or nitrogen as ion species will be described.
  • the surface of the sample 9 adsorbed with cyclopentasilane is irradiated with an ion beam using oxygen or nitrogen as ion species. Thereby, a silicon oxide or silicon nitride film is formed.
  • the silicon oxide or silicon nitride film is an insulating film. Further, since the silicon oxide film and the silicon nitride film are transparent films, it is possible to form or repair a transparent structure such as an optical component such as a lens or a nanoimprint mask.
  • oxygen or nitrogen is supplied to the surface of the sample 9 from the second gas supply system.
  • oxygen or nitrogen content of the silicon oxide film or the silicon nitride film can be controlled.
  • Cyclopentasilane vaporized from the gas gun 11 is supplied, and oxygen or nitrogen is supplied from the gas gun 17.
  • a film having a high oxygen or nitrogen content can be formed. It is also possible to connect a reservoir 18 containing nitrogen to the gas gun 11 and supply a mixed gas of cyclopentasilane and nitrogen from the gas gun 11.
  • Example 1-7 Next, the case where an ion source using carbon as an ion species is used as the gallium liquid metal ion source of Example 1-1 will be described. A carbon ion beam is irradiated on the surface of the sample 9 on which cyclopentasilane is adsorbed. Thereby, a silicon carbide film can be formed.
  • the functionality and deposition rate of the deposition film can be controlled by controlling the beam type of the charged particle beam and the supply of the source gas.
  • Example 2 An embodiment in which a charged particle beam is injected into a deposited film will be described.
  • the surface of the sample 9 adsorbed with cyclopentasilane is irradiated with an oxygen or nitrogen ion beam to form a silicon oxide film or a silicon nitride film.
  • the silicon oxide film or the silicon nitride film is irradiated with an oxygen or nitrogen ion beam to perform ion implantation. Thereby, the oxygen or nitrogen concentration in the film can be increased.
  • the p-type semiconductor film or the n-type semiconductor film can be irradiated with a boron, gallium or arsenic ion beam to increase the impurity doping amount.
  • Example 3 An embodiment for improving the crystallinity of the deposited film will be described.
  • a film is formed by irradiating the surface of the sample 9 adsorbed with cyclopentasilane with a charged particle beam.
  • the sample stage 10 on which the formed film is placed is heated. This heats the film and improves the crystallinity of the film.
  • an electron source can be used as the charged particle source 1 to irradiate the formed film with an electron beam having a large amount of current to heat the film.
  • a laser can be used to irradiate the formed film with laser to heat the film.
  • FIG. 2A is a schematic diagram of a cross section of the wafer 21.
  • a TEM sample 23 including a specific observation region is cut out from the wafer 21.
  • the focused ion beam emitted from the gallium ion source is scanned and irradiated to the peripheral region of the TEM sample 23 to form the recess 22.
  • the TEM sample 23 is processed with a focused ion beam to a thickness that allows transmission of the electron beam of the TEM.
  • the processed TEM sample 23 is separated from the wafer 21 and observed with a TEM.
  • FIG. 2B is a schematic view of a cross section of the wafer 21 from which the TEM sample 23 is cut.
  • Gallium ions are implanted into the bottom and side walls of the recess 22 by focused ion beam irradiation.
  • a silicon film 24 is formed in the recess 22 to fill the recess 22.
  • Cyclopentasilane is supplied from the gas gun 11 to the recess 22.
  • the concave portion 22 is irradiated with an electron beam.
  • a silicon film 24 is formed in the recess 22 as shown in FIG. Then, the wafer 21 filled with the silicon film is returned to the semiconductor device manufacturing process.
  • liquid cyclopentasilane to the recess 22 as a means for forming a silicon film.
  • the hole filling process after TEM sample preparation using liquid cyclopentasilane will be described.
  • FIG. 3 is a configuration diagram of a sample processing apparatus using liquid cyclopentasilane. Since cyclopentasilane burns when it reacts with oxygen, the inside of the sample chamber 39 is filled with nitrogen, and oxygen is reduced to 1 ppm or less.
  • the sample processing apparatus includes a head unit 31 having a liquid discharge unit 32, a microscope unit 33, and a UV light irradiation unit 34.
  • the head unit 31 can be moved relative to the sample table 36 by the head driving unit 35.
  • the microscope unit 33 observes the wafer 21, discharges liquid cyclopentasilane from the liquid discharge unit 32 into the recess 22, and irradiates the UV light from the UV light irradiation unit 34.
  • a container 38 in which liquid cyclopentasilane 37 for replenishing liquid cyclopentasilane is added to the liquid discharge unit 32 is provided.
  • the head unit 31 is moved to replenish the liquid ejection unit 32 with the liquid cyclopentasilane 37 in the container 38.
  • the procedure of the hole filling process after TEM sample preparation will be described.
  • the position of the concave portion 22 of the wafer 21 is confirmed by the microscope unit 33.
  • the head unit 31 is moved, and liquid cyclopentasilane is discharged from the liquid discharge unit 32 to the recess 22.
  • the liquid cyclopentasilane discharged from the UV light irradiation unit 34 is irradiated with UV light, and the liquid cyclopentasilane is polymerized to form an amorphous silicon film.
  • the recess 22 can be filled with the amorphous silicon film.
  • the liquid cyclopentasilane to be discharged may be used in a polymer form by irradiation with UV light in advance.
  • FIG. 4 is a configuration diagram of the liquid discharge unit 32.
  • a needle-like member 42 is provided in the glass tube 41. Further, the glass tube 41 contains liquid cyclopentasilane 44.
  • the acicular member 42 is moved up and down along the glass tube 41 by the acicular member driving unit 43. From the state where the needle-like member 42 is above the liquid surface of the liquid cyclopentasilane 44 as shown in FIG. 4A, the needle-like member 42 protrudes from the glass tube 41 as shown in FIG. The needle-like member 42 is moved.
  • the needle-like member 42 to which the liquid cyclopentasilane 44 is adhered protrudes from the glass tube 41, and the needle-like member 42 is brought into contact with the desired location, whereby the liquid cyclopentasilane 44 can be supplied to the desired location.
  • a TEM sample 23 is produced by a charged particle beam apparatus using a liquid metal gallium ion source as the charged particle source 1 and separated from the wafer 21.
  • Cyclopentasilane is supplied from the gas gun 11 to the recess 22 and irradiated with a gallium ion beam to form a silicon film 24.
  • the wafer 21 is moved to the sample processing apparatus, and liquid cyclopentasilane is supplied onto the silicon film 24 from the liquid discharge unit 32.
  • the liquid cyclopentasilane is irradiated with UV light from the UV light irradiation unit 34 to form an amorphous silicon film.
  • the silicon film 24 into which gallium ions have been implanted can be covered with an amorphous silicon film that does not contain metal impurities, and the wafer 21 can be returned to the semiconductor device manufacturing process.
  • Nanoimprinting is a technique for transferring a pattern by pressing a plate having a concavo-convex pattern called a mold against a liquid polymer or the like on a substrate, and subjecting the liquid polymer to composition deformation by heating or light irradiation in that state.
  • a method of forming a pattern by light irradiation is called optical nanoimprint, and the mold is made of a transparent film in order to transmit light. If there is a defect in this mold, it must be corrected.
  • the sample stage 10 is moved so that the beam can be irradiated to the defective part.
  • Cyclopentasilane vaporized from the gas gun 11 and oxygen or water vapor from the gas gun 17 are supplied to the defective portion of the mold.
  • the electron source as the charged particle source 1
  • the electron beam is irradiated to the defect portion.
  • a transparent silicon oxide film can be formed in the defective portion. Since cyclopentasilane does not contain carbon in the molecule, a film with little light absorption can be formed.
  • the defect can be corrected by forming a transparent film in the defect part.
  • FIG. 5 is a schematic diagram of device fabrication.
  • a plasma ion source is used as the charged particle source 1.
  • Arsine is introduced into the plasma ion source, and an arsenic ion beam is emitted to the substrate 51.
  • the substrate 51 is irradiated with an arsenic ion beam and etched to form a recess 52.
  • the arsine inside the plasma ion source is exhausted.
  • diborane is introduced into the plasma ion source. Diborane is converted into plasma by a plasma ion source, and a boron ion beam is emitted. As shown in FIG.
  • cyclopentasilane is supplied from the gas gun 11 to the recess 52 and irradiated with a boron ion beam to form a silicon film containing boron, thereby filling the recess 52.
  • the source and drain regions 53 of the MOS transistor are formed.
  • tungsten hexafluoride is introduced into the plasma ion source. Tungsten hexafluoride is turned into plasma by a plasma ion source and a tungsten ion beam is emitted. Cyclopentasilane is supplied from the gas gun 11 and irradiated with a tungsten ion beam. Thereby, as shown in FIG. 5D, a gate electrode 55 made of a tungsten silicide film can be formed.
  • a MOS transistor can be formed.
  • a semiconductor device can be manufactured without using conventional semiconductor lithography.
  • Example 6-2 Next, in the formation of the source and drain regions 53 of Example 6-1, an example in which the dopant is supplied by the source gas instead of the ion beam will be described.
  • the substrate 51 is irradiated with an arsenic ion beam, etched, and a recess 52 is formed.
  • the arsine inside the plasma ion source is exhausted.
  • argon is introduced into the plasma ion source.
  • Argon is turned into plasma by a plasma ion source and an argon ion beam is emitted. As shown in FIG.
  • a silicon compound gas containing boron is supplied from the gas gun 17 to the recess 52 and irradiated with an argon ion beam to form a silicon film containing boron. Fill 52. As a result, the source and drain regions 53 of the MOS transistor are formed.
  • an element that does not contain a metal such as hydrogen, helium, neon, argon, or xenon may be used as an ion species.
  • an electron beam may be used instead of the ion beam.
  • the silicon compound gas containing boron is a boron hydride compound such as a modified silane compound or diborane with boron.
  • cyclopentasilane from the gas gun 11 to the recess 52 and simultaneously supply a silicon compound gas containing boron from the gas gun 17.
  • the dope amount can be controlled by supplying the source gas from the two gas guns.
  • a silicon film containing phosphorus by forming a recess 52 with a boron ion beam, supplying a silicon compound gas containing phosphorus from the gas gun 17 to the recess 52 and irradiating an argon ion beam. It is.
  • the present invention can be used in the industrial field of semiconductor devices and charged particle beam apparatuses.

Abstract

 従来のシリコンの水素化物やハロゲン化物を原料ガスとして用いたデポジションに比べ、高速な半導体膜デポジションが可能な荷電粒子ビーム装置を提供すること。 荷電粒子源1と、集束レンズ電極2と、ブランキング電極3と、走査電極4と、試料9を載置するための試料台10と、荷電粒子ビーム照射により試料9から発生する二次荷電粒子7を検出する二次荷電粒子検出器8と、シクロペンタシランを原料ガスとして収容するリザーバ14と、原料ガスを試料9に供給するガス銃11と、を備える荷電粒子ビーム装置を用いる。

Description

荷電粒子ビーム装置、薄膜作製方法、欠陥修正方法及びデバイス作製方法
 本発明は、荷電粒子ビームで試料を処理する荷電粒子ビーム装置に関する。
 半導体デバイスの微細化に伴い、微小なデバイス欠陥の検査や配線の修正を行う技術が求められている。デバイス欠陥の検査には、デバイス作製過程の半導体ウエハから検査対象の微小部分を切り出し、微小部分を透過型電子顕微鏡(TEM)で観察する手法が広く用いられている。
 微小部分の半導体ウエハからの切り出しは、集束イオンビーム(FIB)によるエッチング加工で行う。そして、切り出された微小部分をTEM装置で観察する。一方、微小部分を切り出された半導体ウエハは、デバイス作製工程に戻される。ただし、半導体ウエハをデバイス作製工程に戻す前に、FIBによる局所的なシリコン膜デポジションで、微小部分の切り出し時に形成された加工穴を埋める。これにより、デバイス作製工程において、FIB照射で半導体ウエハに注入されたFIBのイオン種が拡散することを防ぐことができる。
 また、配線の修正には、荷電粒子ビーム装置を用いて配線の切断や接続を行う技術が知られている。まず、修正部分の周辺にFIBで加工穴を形成する。そして、修正部分の配線をエッチング加工で切断する。そして、金属含有ガスを供給しながら荷電粒子ビームを照射することにより適切な配線になるように金属配線を作製する。最後に、修正部分の周辺に形成された加工穴を、例えば、シラン系ガスを用いた電子ビームによる局所的な酸化シリコン膜デポジションで埋める(特許文献1)。これにより配線の修正後、正常にデバイスを動作させることができる。
特開2005-166726号公報
 しかしながら、従来の電子ビームや集束イオンビームを用いたシリコン系膜の形成には、成膜速度が遅いという欠点があった。
 従来、成膜用のガスとして、シラン(SiH4)、よう化シリコン(SiI4)、三塩化シラン(SiHCl3)など一つの分子中に一つのシリコンを含むシリコン水素化物やハロゲン化物が用いられていた。これらの物質は常温では気体である。また、これらの物質は金属表面にラングミュア型吸着する。ラングミュア型吸着は、表面の吸着サイトに1分子しか吸着しない。また、ラングミュア型吸着は、多層吸着を起こさない。従って、表面への吸着量が小さい。
 荷電粒子ビームによるデポジション工程は、試料に原料ガスを供給し、試料に吸着した原料ガスの成分を荷電粒子ビームにより分解することにより成膜する。従って、試料に吸着するガスの吸着量が小さければ、成膜速度は遅い。
 この発明は、このような事情を考慮してなされたもので、その目的は、従来のシリコンの水素化物やハロゲン化物を原料ガスとして用いた荷電粒子ビーム誘起半導体膜デポジションよりも高速な半導体膜デポジションが可能な荷電粒子ビーム装置を提供することである。
 上記の目的を達成するために、この発明は以下の手段を提供している。
 本発明に係る荷電粒子ビーム装置は、荷電粒子源と、荷電粒子源から引き出された荷電粒子ビームを集束するための集束レンズ電極と、荷電粒子ビームの照射と非照射を切替えるためのブランキング電極と、荷電粒子ビームを走査照射するための走査電極と、試料を載置するための試料台と、荷電粒子ビーム照射により試料から発生する二次荷電粒子を検出する二次荷電粒子検出器と、下記一般式(I)で表されるケイ素化合物を原料ガスとして収容するリザーバと、原料ガスを前記試料の荷電粒子ビームの照射位置に供給するガス銃と、を備える。
      Si  ・・・・・・・・・・・・  (I)
(ここで、nは3以上の整数を表し、mはn、2n-2、2nまたは2n+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)
 これによりケイ素化合物を用いて局所的に膜を形成することができる。
 また、本発明に係る荷電粒子ビーム装置は、ケイ素化合物がシクロペンタシランである。これにより、シクロペンタシランを気化させて局所的に効率よく膜を形成することができる。
 また、本発明に係る荷電粒子ビーム装置は、荷電粒子ビームが電子ビームである。これにより不純物を含まない膜を形成することができる。
 また、本発明に係る荷電粒子ビーム装置は、荷電粒子ビームがガリウム、金、シリコン、水素、ヘリウム、ネオン、アルゴン、キセノン、酸素、窒素、または炭素から選ばれる一種のイオンビームであることを特徴とする。これにより、上記のイオンとケイ素化合物が含まれた膜を形成することができる。また、上記のイオンとケイ素化合物が反応した膜を形成することができる。
 さらに、本発明に係る荷電粒子ビーム装置は、上記の原料ガスとは異なる原料ガスを供給する第二のガス供給系を有する。これにより、ケイ素化合物の蒸気と異なる蒸気の成分を含んだ膜を形成することができる。また、ケイ素化合物の蒸気と異なる蒸気の成分が反応した膜を形成することができる。
 本発明に係る薄膜作製方法は、集束イオンビームを照射して試料の表面の一部に互いに離間した一対の凹部を形成し、凹部の間に薄片試料を形成する工程と、薄片試料を試料から切り離す工程と、凹部に下記一般式(I)で表されるケイ素化合物を原料ガスとして供給し、荷電粒子ビームを照射し膜を形成する工程と、を有する。
      Si  ・・・・・・・・・・・・  (I)
(ここで、nは3以上の整数を表し、mはn、2n-2、2nまたは2n+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)
 本発明に係る欠陥修正方法は、下記一般式(I)で表されるケイ素化合物を原料ガスとしてナノインプリントのモールドの欠陥部に供給し、欠陥部に荷電粒子ビームを照射し、膜を形成し、欠陥部を修正する。
      Si  ・・・・・・・・・・・・  (I)
(ここで、nは3以上の整数を表し、mはn、2n-2、2nまたは2n+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)
 本発明に係るデバイス作製方法は、下記一般式(I)で表されるケイ素化合物を原料ガスとして試料に供給し、試料に第一の荷電粒子ビームを照射し、第一の薄膜を作製する工程と、試料に原料ガスを供給し、試料に第一の荷電粒子ビームと異なるビーム種の第二の荷電粒子ビームを照射し、上記の薄膜とは異なる機能の第二の薄膜を作製する工程と、を有する。
      Si  ・・・・・・・・・・・・  (I)
(ここで、nは3以上の整数を表し、mはn、2n-2、2nまたは2n+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)
 本発明に係る荷電粒子ビーム装置によれば、従来のシリコンの水素化物やハロゲン化物を原料ガスとして用いたデポジションに比べ、高速な半導体膜デポジションを行うことができる。
本発明の実施形態に係る荷電粒子ビーム装置の構成図である。 本発明の実施形態に係るTEM試料作製と穴埋め処理の模式図である。 本発明の実施形態に係る試料処理装置の構成図である。 本発明の実施形態に係る試料処理装置の液体吐出部の構成図である。 本発明の実施形態に係るデバイス作製の模式図である。
 以下、本発明に係る荷電粒子ビーム装置の実施形態について説明する。
 本実施形態の荷電粒子ビーム装置は、図1に示すように、荷電粒子ビーム6を発生する荷電粒子源1と、荷電粒子光学系とを備える。荷電粒子光学系は、集束レンズ電極2と、ブランキング電極3と、走査する走査電極4と、対物レンズ電極5と、からなる。集束レンズ電極2は、荷電粒子源1で発生した荷電粒子ビーム6を集束させるための集束レンズを形成する。ブランキング電極3は、荷電粒子ビーム6を試料9に照射しないときに荷電粒子ビーム6を偏向させる電界を形成する。また、走査電極4は、荷電粒子ビーム6を走査させる。対物レンズ電極5は、荷電粒子ビーム6を試料6の表面に集束させるための対物レンズを形成する。
 さらに、荷電粒子ビーム装置は、試料9を載置し、X、Y、Zの三軸と、傾斜、回転を加えた五軸の方向に移動可能な試料台10を備える。
 また、荷電粒子ビーム装置は、荷電粒子ビーム6を試料9に照射し、試料9から放出された二次荷電粒子7を検出する二次荷電粒子検出器8を備える。さらに、荷電粒子源1と荷電粒子光学系に制御信号を出力する制御部12を備える。制御部12は、走査電極4に走査信号を出力する。また、二次荷電粒子検出器8は制御部12に二次電子信号を出力する。制御部12は、二次荷電粒子信号と走査信号から観察像を形成する。また、形成された観察像を表示する表示部13を備える。
 さらに、荷電粒子ビーム装置は、試料9にデポジションの原料ガスを供給するガス銃11を備える。ガス銃11は、原料ガスを収容するリザーバ14に接続している。ガス銃11とリザーバ14との間にバルブ15を備える。バルブ15を開くと、リザーバ14に収容された原料ガスはガス銃11に供給される。そして、原料ガスはガス銃11から試料9に供給される。また、リザーバ14を加熱するヒータ16を備える。原料ガスをヒータ16により加熱し、ガス銃11に供給することができる。また、加熱しないと液化や固化する原料ガスを用いる場合は、リザーバ14よりも高い温度になるようにリザーバ14とガス銃11との間の流路、及びガス銃11を加熱する。原料ガスがガス流路で液化や固化することを防ぐためである。
 さらに、荷電粒子ビーム装置は、リザーバ14に収容された原料ガスと異なる原料ガスを試料9に供給する場合は、第二のガス供給系として、ガス銃17、リザーバ18、バルブ19、ヒータ20を用いる。
 次に荷電粒子源1について説明する。荷電粒子源1として、液体金属イオン源を用いる場合、イオン種として、ガリウム、金シリコン系合金またはシリコンを用いる。液体金属をエミッタ針の表面に塗布し、エミッタ針周辺に高電界を形成する。高電界によって液体金属はイオン化し、試料9に向けて放出される。
 また、荷電粒子源1として、プラズマイオン源を用いる場合、イオン種として、水素、ヘリウム、ネオン、アルゴン、キセノン、酸素または窒素から選ばれる一種の単体ガスを用いる。また、メタンなどの有機系化合物ガスを用いて炭素イオンビームを照射することも可能である。さらに、シラン、アルシンまたは、ボランから選ばれる一種の化合物ガスを用いて、それぞれ、シリコンイオンビーム、砒素イオンビーム、ボロンイオンビームを照射することも可能である。プラズマイオン源は、イオン源室内にイオン種のガスを供給し、プラズマを形成して、イオンビームを放出する。ただし、化合物ガスをイオン種として用いる場合、荷電粒子源1から試料9までの間にE×B質量分離器を配置し、イオン種を分離することが望ましい。これにより、不要なイオン種が試料9に照射されることを防ぐことができる。
 また、荷電粒子源1として電界電離型イオン源を用いる場合、エミッタ針に水素、ヘリウム、ネオン、アルゴンから選ばれる一種の単体ガスをイオン種として供給し、エミッタ針周辺に高電界を形成し、イオンビームを放出する。
 また、荷電粒子源1として電子源を用いる場合、エミッタ針周辺に高電界を形成して電子ビームを放出する。
 次に半導体膜デポジションの原料ガスについて説明する。原料物質として、下記一般式(I)で表されるケイ素化合物を用いる。
      Si  ・・・・・・・・・・・・  (I)
(ここで、nは3以上の整数を表し、mはn、2n-2、2nまたは2n+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)
 ケイ素はシリコン膜の前駆体である。荷電粒子ビーム励起によりケイ素と水素の結合、またはケイ素とハロゲン原子の結合が開裂し、ケイ素とケイ素の結合が生じ、シリコン膜を形成する。ハロゲン原子として、フッ素原子、塩素原子、臭素原子、沃素原子を用いることができる。
 また、Siの具体例としては、m=2n+2の場合、トリシラン、テトラシラン、ペンタシラン、ヘキサシラン、ヘプタシランなどの水素化シラン、またこれらの水素原子の一部またはすべてをハロゲン原子に置換したものを挙げることができる。m=2nの場合、シクロトリシラン、シクロテトラシラン、シクロペンタシラン、シリルシクロペンタシラン、シクロヘキサシラン、シリルシクロヘキサシラン、シクロヘプタシラン、などの一個の環系を有する水素化ケイ素化合物およびこれらの水素原子の一部またはすべてをハロゲン原子に置換したヘキサクロルシクロトリシラン、トリクロルシクロトリシラン、オクタクロルシクロテトラシラン、テトラクロルシクロテトラシラン、デカクロルシクロペンタシラン、ペンタクロルシクロペンタシラン、ドデカクロルシクロヘキサシラン、ヘキサクロルシクロヘキサシラン、テトラデカクロルシクロヘプタシラン、ヘプタクロルシクロヘプタシラン、ヘキサブロモシクロトリシラン、トリブロモシクロトリシラン、ペンタブロモシクロトリシラン、テトラブロモシクロトリシラン、オクタブロモシクロテトラシラン、テトラブロモシクロテトラシラン、デカブロモシクロペンタシラン、ペンタブロモシクロペンタシラン、ドデカブロモシクロヘキサシラン、ヘキサブロモシクロヘキサシラン、テトラデカブロモシクロヘプタシラン、ヘプタブロモシクロヘプタシランなどのハロゲン化環状ケイ素化合物を挙げることができる。m=2n-2の場合、1、1’-ビスシクロブタシラン、1、1’-ビスシクロペンタシラン、1、1’-ビスシクロヘキサシラン、1、1’-ビスシクロヘプタシラン、1、1’-シクロブタシリルシクロペンタシラン、1、1’-シクロブタシリルシクロヘキサシラン、1、1’-シクロブタシリルシクロヘプタシラン、1、1’-シクロペンタシリルシクロヘキサシラン、1、1’-シクロペンタシリルシクロヘプタシラン、1、1’-シクロヘキサシリルシクロヘプタシラン、スピロ[2、2]ペンタシラン、スピロ[3、3]ヘプタタシラン、スピロ[4、4]ノナシラン、スピロ[4、5]デカシラン、スピロ[4、6]ウンデカシラン、スピロ[5、5]ウンデカシラン、スピロ[5、6]ドデカシラン、スピロ[6、6]トリデカシランなどの2個の環系を有する水素化ケイ素化合物およびこれらの水素原子の一部またはすべてをSiH3基やハロゲン原子に置換したケイ素化合物を挙げることができる。m=nの場合、多環系を有する水素化ケイ素化合物およびこれらの水素原子の一部またはすべてを部分的にSiH3基やハロゲン原子に置換したケイ素化合物を挙げることができる。
 上記の原料物質は、室温では液体または固体の化合物である。上記の原料物質の蒸気圧は、半導体製造プロセスで使用されているシランなど室温で気体であるシリコンの水素化物やハロゲン化物の蒸気圧よりも低い。例えば、5つのシリコンが環状に結合し、シリコン間の結合と、シリコンと水素の結合からなるシクロペンタシランの蒸気圧は、およそ133Paである。そのため、分子間の相互作用が大きく、試料表面での吸着量が大きい。これは試料表面でラングミュア型吸着とは異なる吸着現象、例えば多分子吸着が起こること考えられる。これにより高速なデポジションを行うことができる。
 原料ガス供給について説明する。リザーバ14にシクロペンタシランを挿入する。バルブ15を開き、気化したシクロペンタシランを、ガス銃11を通して試料9に供給する。リザーバ14をヒータ16で加熱し、シクロペンタシランの供給量を調整する。また、トリシランなど蒸気圧が高い原料物質を用いる場合は、リザーバ14とガス銃11との間にマスフローコントローラを設置し、ガス供給量を調整する。
 <実施例1-1>
 荷電粒子ビーム誘起半導体膜デポジションの実施例について説明する。半導体膜デポジションの原料物質としてシクロペンタシランを用いる。リザーバ14にシクロペンタシランを挿入する。バルブ15を開き、気化したシクロペンタシランを、ガス銃11を通して試料9に供給する。また、荷電粒子源1としてガリウム液体金属イオン源を用いる。制御部12から出力されたビーム照射情報により、ガリウム液体金属イオン源からガリウムイオンビームを試料9表面に走査照射する。試料9表面にはシクロペンタシランが吸着している。このとき、試料9は室温である。ガリウムイオンビーム照射により試料表面に吸着したシクロペンタシランが分解され、ガリウムイオンビームを照射した領域に半導体膜が形成される。成膜速度は0.41μm/nCであった。
 <実施例1-2>
 次に実施例1-1のガリウム液体金属イオン源を電子源に代えた場合について説明する。シクロペンタシランを供給した試料9表面に電子ビームを走査照射する。成膜速度は3.36×10-3μm/nCであり、ガリウムイオンビームによるデポジションよりも遅い。この理由は、電子はイオンに比べ、固体内での飛程が長いため、成膜に必要なシクロペンタシランの分解に寄与する電子の割合が小さいためである。
 しかし、金属イオン照射によるデポジションでは、デポジション膜は膜中に数%から30%程度のイオンビームのイオン種が含まれた膜になる。一方、電子ビーム照射によるデポジションではイオン種が含まれることはない。従って、電子ビームによるデポジションでは、不純物のない半導体膜を形成することができる。
 <実施例1-3>
 次に実施例1-1のガリウム液体金属イオン源を、水素やヘリウム等のガスをイオン種としたイオン源に代えた場合について説明する。電界電離型イオン源で水素やヘリウムをイオン化し、イオンビームをシクロペンタシランが吸着した試料9表面に放出する。これにより金属不純物を含まない半導体膜を形成することができる。また、水素やヘリウムのイオンビームは、電子に比べ固体内での飛程が短いため、電子ビームを用いた場合よりも効率よく成膜することができる。
 <実施例1-4>
 次に実施例1-1のガリウム液体金属イオン源を、シラン、アルシンまたは、ボランから選ばれる一種の化合物ガスをイオン種としたプラズマイオン源に代えた場合について説明する。イオン源室内にイオン種のガスを供給し、プラズマを形成して、イオンビームを放出する。放出したイオンビームをシクロペンタシランが吸着した試料9表面に照射する。これによりシランを用いた場合は、真性半導体膜を形成することができる。また、アルシンを用いた場合、n型半導体膜を形成することができる。また、ボランを用いた場合、p型半導体膜を形成することができる。
 また、イオン種の膜中での含有率は、成膜速度に依存する。成膜速度が速いと、イオン種の膜中での含有率は小さい。成膜速度は、原料ガスの供給量と荷電粒子ビームの照射量によって制御することができる。ヒータ16でリザーバ14を加熱し、ガス原料の供給量を増加させ、試料9に照射するイオンビーム電流量を少なくすることで、イオン種の膜中での含有率の低い膜を形成することができる。また、原料ガスの供給量とビームの照射量を制御しても含有量が不足する場合は、第二のガス供給系から上記イオン種をデポジションの原料ガスとしてシクロペンタシランと同時に供給し、試料表面に吸着させ、イオンビームを照射することにより、含有量の不足を補うことができる。
 <実施例1-5>
 次に実施例1-1のガリウム液体金属イオン源を、金をイオン種としたイオン源に代えた場合について説明する。金をエミッタ針の表面に塗布し、エミッタ針周辺に高電界を形成し、イオンビームを放出する。放出したイオンビームをシクロペンタシランが吸着した試料9表面に照射する。これにより金を含み導電性の高い膜を形成することができる。
 <実施例1-6>
 次に実施例1-1のガリウム液体金属イオン源を、酸素または窒素をイオン種としたイオン源に代えた場合について説明する。シクロペンタシランが吸着した試料9表面に酸素または窒素をイオン種としたイオンビームを照射する。これにより、酸化シリコンまたは窒化シリコン膜が形成される。酸化シリコンまたは窒化シリコン膜は絶縁膜である。また酸化シリコン膜と窒化シリコン膜は透明膜であるので、レンズなどの光学部品やナノインプリントのマスクのような透明体構造物の形成や修復が可能である。
 また、第二のガス供給系から酸素または窒素を試料9表面に供給する。これにより、酸化シリコン膜または窒化シリコン膜の酸素または窒素含有量を制御することができる。ガス銃11から気化したシクロペンタシランを、ガス銃17から酸素または窒素を供給する。そして、酸素または窒素イオンビームを照射することで、酸素また窒素含有量の多い膜を形成することができる。また、窒素を収容したリザーバ18をガス銃11に接続し、ガス銃11からシクロペンタシランと窒素の混合ガスを供給することも可能である。
 <実施例1-7>
 次に実施例1-1のガリウム液体金属イオン源を、炭素をイオン種としたイオン源を用いる場合について説明する。炭素イオンビームをシクロペンタシランが吸着した試料9表面に照射する。これによりシリコンカーバイド膜を形成することができる。
 上記のとおり、荷電粒子ビームのビーム種と原料ガス供給を制御することにより、デポジション膜の機能性と成膜速度を制御することができる。
 <実施例2>
 デポジションした膜に荷電粒子ビームを注入する実施例について説明する。シクロペンタシランが吸着した試料9表面に酸素または窒素イオンビームを照射し、酸化シリコン膜または窒化シリコン膜を形成する。さらに酸素または窒素濃度を増加させるために、酸化シリコン膜または窒化シリコン膜に酸素または窒素イオンビームを照射し、イオン注入する。これにより膜中の酸素または窒素濃度を増加することができる。
 また、同様にして、p型半導体膜またはn型半導体膜に、ボロンやガリウムまたは砒素イオンビームを照射し、不純物のドープ量を増加することができる。
 <実施例3>
 デポジションした膜の結晶性を向上させる実施例について説明する。シクロペンタシランが吸着した試料9表面に荷電粒子ビームを照射して膜を形成する。次に形成した膜を載置した試料台10を加熱する。これにより膜が加熱され、膜の結晶性が向上する。また、荷電粒子源1として、電子源を用いて、形成した膜に電流量の大きい電子ビームを照射し、膜を加熱することもできる。また、レーザー装置を用いて、形成した膜にレーザーを照射し、膜を加熱することもできる。
 <実施例4>
 図2を用いてTEM試料作製後の穴埋め処理の実施例を説明する。図2(a)はウエハ21の断面の模式図である。ウエハ21から特定の観察領域を含むTEM試料23を切り出す。ガリウムイオン源から放出された集束イオンビームをTEM試料23の周辺領域に走査照射し、凹部22を形成する。TEM試料23はTEMの電子ビームが透過可能な厚さに集束イオンビームにより加工される。加工されたTEM試料23をウエハ21から切り離し、TEMで観察する。図2(b)はTEM試料23が切り離されたウエハ21の断面の模式図である。凹部22の底や側壁には集束イオンビーム照射によりガリウムイオンが注入されている。注入されたガリウムイオンの拡散を防ぐために、凹部22にシリコン膜24を形成し、凹部22を埋める。ガス銃11からシクロペンタシランを凹部22に供給する。荷電粒子源1として電子源を用いて、電子ビームを凹部22に照射する。これにより図2(c)に示すように凹部22にシリコン膜24を形成する。そしてシリコン膜で穴埋めされたウエハ21を半導体デバイス作製工程に戻す。
 また、シリコン膜を形成する手段として、液体のシクロペンタシランを凹部22に供給することも可能である。液体のシクロペンタシランを用いたTEM試料作製後の穴埋め処理について説明する。
 図3は、液体シクロペンタシランを用いた試料処理装置の構成図である。シクロペンタシランは酸素と反応すると燃焼するため、試料室39内部を窒素で満たし、酸素を1ppm以下にしている。試料処理装置は液体吐出部32と顕微鏡部33とUV光照射部34を有するヘッド部31を備える。ヘッド部31はヘッド駆動部35により試料台36に対して相対移動することができる。顕微鏡部33でウエハ21を観察し、凹部22に液体吐出部32から液体シクロペンタシランを吐出し、UV光照射部34からUV光を照射する。また、液体吐出部32に液体シクロペンタシランを補充するための液体シクロペンタシラン37を入れた容器38を備える。ヘッド部31を移動し、液体吐出部32に容器38の液体シクロペンタシラン37を補充する。
 TEM試料作製後の穴埋め処理の手順を説明する。顕微鏡部33でウエハ21の凹部22の位置を確認する。ヘッド部31を移動し、液体吐出部32から液体シクロペンタシランを凹部22に吐出する。UV光照射部34吐出した液体シクロペンタシランにUV光を照射し、液体シクロペンタシランを重合し、アモルファスシリコンの膜を形成する。これにより凹部22をアモルファスシリコンの膜で埋めることができる。ここで、吐出する液体シクロペンタシランは、事前にUV光を照射しポリマー状にして用いても良い。
 図4は液体吐出部32の構成図である。ガラス管41内に針状部材42を備える。また、ガラス管41は液体シクロペンタシラン44を収容している。針状部材42は針状部材駆動部43によりガラス管41に沿って上下に移動する。図4(a)のように針状部材42が液体シクロペンタシラン44の液面よりも上にある状態から、図4(b)のようにガラス管41から針状部材42が突出した状態に針状部材42を移動させる。これにより液体シクロペンタシラン44を付着した針状部材42をガラス管41から突出させ、針状部材42を所望箇所に接触させることで液体シクロペンタシラン44を所望箇所に供給することができる。
 次に、荷電粒子ビーム装置と試料処理装置を用いたTEM試料作製と穴埋め処理の手順について説明する。荷電粒子源1として液体金属ガリウムイオン源を用いた荷電粒子ビーム装置でTEM試料23を作製し、ウエハ21から切り離す。凹部22にガス銃11からシクロペンタシランを供給し、ガリウムイオンビームを照射し、シリコン膜24を形成する。次に、ウエハ21を試料処理装置に移動し、シリコン膜24上に液体吐出部32から液体シクロペンタシランを供給する。液体シクロペンタシランにUV光照射部34からUV光を照射しアモルファスシリコン膜を形成する。これによりガリウムイオンが注入されていたシリコン膜24を、金属不純物を含まないアモルファスシリコン膜で覆うことができ、ウエハ21を半導体デバイス作製工程に戻すことができる。
 <実施例5>
 ナノインプリントのモールド修正の実施例について説明する。ナノインプリントとは、モールドと呼ばれる凹凸のパターンを持った板を基板上の液状ポリマー等へ押しつけ、その状態で加熱や光の照射で液状ポリマーを組成変形させ、パターンを転写する技術である。その中で光の照射でパターンを形成する方法は、光ナノインプリントと呼ばれ、光を透過させるため、モールドが透明膜でできている。このモールドに欠損部分ができた場合、修正が必要である。
 欠損部分にビームを照射できるように試料台10を移動させる。ガス銃11から気化したシクロペンタシランを、またガス銃17から酸素または水蒸気を、モールドの欠損部分に供給する。荷電粒子源1として電子源を用いて、電子ビームを欠損部分に照射する。これにより欠損部分に透明な酸化シリコン膜を形成することができる。シクロペンタシランは分子内に炭素を含まないので、光吸収の少ない膜を形成することができる。上記のように欠損部分に透明膜を形成することで欠損を修正することができる。
 <実施例6-1>
 デバイス作製の実施例について説明する。図5はデバイス作製の模式図である。荷電粒子源1としてプラズマイオン源を用いる。アルシンをプラズマイオン源に導入し、砒素イオンビームを基板51に放出する。図5(a)に示すように、基板51に砒素イオンビームを照射し、エッチングを行い、凹部52を形成する。次にプラズマイオン源の内部のアルシンを排気する。次にプラズマイオン源の内部にジボランを導入する。プラズマイオン源でジボランをプラズマ化し、ボロンイオンビームを放出させる。図5(b)に示すように、凹部52に対して、ガス銃11からシクロペンタシランを供給し、ボロンイオンビームを照射することによりボロンを含んだシリコン膜を形成し、凹部52を埋める。これによりMOS型トランジスタのソース、ドレイン領域53が形成される。
 次にプラズマイオン源の内部のジボランを排気する。そして、プラズマイオン源の内部に酸素を導入する。プラズマイオン源で酸素をプラズマ化し、酸素イオンビームを放出させる。ガス銃11からシクロペンタシランを供給し、酸素イオンビーム照射する。これにより図5(c)に示すように、ゲート酸化膜54が形成される。
 次にプラズマイオン源の内部の酸素を排気する。次にプラズマイオン源の内部に六フッ化タングステンを導入する。プラズマイオン源で六フッ化タングステンをプラズマ化し、タングステンイオンビームを放出させる。ガス銃11からシクロペンタシランを供給し、タングステンイオンビーム照射する。これにより図5(d)に示すように、タングステンシリサイド膜によるゲート電極55を形成することができる。
 以上よりMOS型トランジスタを形成することができる。荷電粒子ビームとシクロペンタシランを用いることにより、従来の半導体リソグラフィーを用いることなく、半導体デバイスを作製することができる。
 <実施例6-2>
 次に実施例6-1のソース、ドレイン領域53の形成において、ドーパントをイオンビームにより供給することに代えて、原料ガスにより供給する実施例を説明する。図5(a)に示すように、基板51に砒素イオンビームを照射し、エッチングを行い、凹部52を形成する。次にプラズマイオン源の内部のアルシンを排気する。次にプラズマイオン源の内部にアルゴンを導入する。プラズマイオン源でアルゴンをプラズマ化し、アルゴンイオンビームを放出させる。図5(b)に示すように、凹部52に対して、ガス銃17からボロンを含んだケイ素化合物ガスを供給し、アルゴンイオンビームを照射することによりボロンを含んだシリコン膜を形成し、凹部52を埋める。これによりMOS型トランジスタのソース、ドレイン領域53が形成される。
 ここで、アルゴンイオンビームの代わりに、水素、ヘリウム、ネオン、アルゴン、キセノンなど金属を含まない元素をイオン種に用いても良い。また、イオンビームの代わりに電子ビームを用いても良い。
 また、ボロンを含んだケイ素化合物ガスは、ボロンによる変性シラン化合物またはジボランなどのボロン水素化合物であることが望ましい。
 さらに、凹部52に対して、ガス銃11からシクロペンタシランを供給し、ガス銃17からボロンを含んだケイ素化合物ガスを同時に供給することも可能である。二つのガス銃からの原料ガス供給により、ドープ量を制御することができる。
 また、ボロンイオンビームで凹部52を形成し、凹部52にガス銃17からリンを含んだケイ素化合物ガスを供給し、アルゴンイオンビームを照射することによりリンを含んだシリコン膜を形成することも可能である。
 本発明は、半導体デバイス及び荷電粒子ビーム装置の産業分野で利用することができる。
 1   荷電粒子源
 2   集束レンズ電極
 3   ブランキング電極
 4   走査電極
 5   対物レンズ電極
 6   荷電粒子ビーム
 7   二次荷電粒子
 8   二次荷電粒子検出器
 9   試料
 10 試料台
 11 ガス銃
 12 制御部
 13 表示部
 14 リザーバ
 15 バルブ
 16 ヒータ
 17 ガス銃
 18 リザーバ
 19 バルブ
 20 ヒータ
 21 ウエハ
 22 凹部
 23 TEM試料
 24 シリコン膜
 31 ヘッド部
 32 液体吐出部
 33 顕微鏡部
 34 UV光照射部
 35 ヘッド駆動部
 36 試料台
 37 液体シクロペンタシラン
 38 容器
 39 試料室
 41 ガラス管
 42 針状部材
 43 針状部材駆動部
 44 液体シクロペンタシラン
 51 基板
 52 凹部
 53 ソース、ドレイン領域
 54 ゲート酸化膜
 55 ゲート電極

Claims (15)

  1.  荷電粒子源と、
     前記荷電粒子源から引き出された荷電粒子ビームを集束するための集束レンズ電極と、
     前記荷電粒子ビームの照射と非照射を切替えるためのブランキング電極と、
     前記荷電粒子ビームを走査照射するための走査電極と、
     試料を載置するための試料台と、
     荷電粒子ビーム照射により前記試料から発生する二次荷電粒子を検出する二次荷電粒子検出器と、
     下記一般式(I)で表されるケイ素化合物を原料ガスとして収容するリザーバと、
     前記原料ガスを前記試料の荷電粒子ビームの照射位置に供給するガス銃と、
     を備える荷電粒子ビーム装置。
          Si  ・・・・・・・・・・・・  (I)
    (ここで、nは3以上の整数を表し、mはn、2n-2、2nまたは2n+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)
  2.  前記ケイ素化合物は、シクロペンタシランである請求項1に記載の荷電粒子ビーム装置。
  3.  前記荷電粒子ビームは、電子ビームである請求項1または2に記載の荷電粒子ビーム装置。
  4.  前記荷電粒子ビームは、ガリウム、金、シリコン、水素、ヘリウム、ネオン、アルゴン、キセノン、酸素、窒素、または炭素から選ばれる一種のイオンビームである請求項1または2に記載の荷電粒子ビーム装置。
  5.  前記原料ガスとは異なる原料ガスを供給する第二のガス供給系を有する請求項1から4のいずれか一つに記載の荷電粒子ビーム装置。
  6.  試料に原料ガスを供給し、前記試料に荷電粒子ビームを集束させて照射することにより、薄膜を作製する薄膜作製方法であって、
     下記一般式(I)で表されるケイ素化合物を前記原料ガスとして前記試料に供給し、前記試料に前記荷電粒子ビームを集束させて照射し、前記薄膜を作製する薄膜作製方法。
          Si  ・・・・・・・・・・・・  (I)
    (ここで、nは3以上の整数を表し、mはn、2n-2、2nまたは2n+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)
  7.  前記ケイ素化合物は、シクロペンタシランである請求項6に記載の薄膜作製方法。
  8.  前記原料ガスとは異なる原料ガスを前記試料に供給する請求項6または7に記載の薄膜作製方法。
  9.  前記異なる原料ガスの原料は、水、酸素または窒素のいずれか一つである請求項8に記載の薄膜作製方法。
  10.  前記薄膜を加熱する請求項6から9のいずれか一つに記載の薄膜作製方法。
  11.  前記薄膜に酸素または窒素イオンビームを注入する請求項6から10のいずれか一つに記載の薄膜作製方法。
  12.  集束イオンビームを照射して試料の表面の一部に互いに離間した一対の凹部を形成し、前記凹部の間に薄片試料を形成する工程と、
     前記薄片試料を前記試料から切り離す工程と、
     前記凹部に下記一般式(I)で表されるケイ素化合物を原料ガスとして供給し、荷電粒子ビームを集束させて照射し膜を形成する工程と、を有する薄膜作製方法。
          Si  ・・・・・・・・・・・・  (I)
    (ここで、nは3以上の整数を表し、mはn、2n-2、2nまたは2n+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)
  13.  前記荷電粒子ビームは前記集束イオンビームである請求項12に記載の薄膜作製方法。
  14.  下記一般式(I)で表されるケイ素化合物を原料ガスとしてナノインプリントのモールドの欠陥部に供給し、前記欠陥部に荷電粒子ビームを集束させて照射し、膜を形成し、前記欠陥部を修正する欠陥修正方法。
          Si  ・・・・・・・・・・・・  (I)
    (ここで、nは3以上の整数を表し、mはn、2n-2、2nまたは2n+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)
  15.  試料に原料ガスを供給し、前記試料に第一の荷電粒子ビームを集束させて照射することにより、第一の薄膜を作製する工程を有するデバイス作製方法であって、
     下記一般式(I)で表されるケイ素化合物を前記原料ガスとして前記試料に供給し、前記試料に前記第一の荷電粒子ビームを集束させて照射し、前記第一の薄膜を作製する工程と、
     前記試料に前記原料ガスを供給し、前記試料に前記第一の荷電粒子ビームと異なるビーム種の第二の荷電粒子ビームを照射し、前記第一の薄膜とは異なる機能の第二の薄膜を作製する工程と、を有するデバイス作製方法。
          Si  ・・・・・・・・・・・・  (I)
    (ここで、nは3以上の整数を表し、mはn、2n-2、2nまたは2n+2の整数を表し、Xは水素原子および/またはハロゲン原子を表す)
PCT/JP2011/071578 2010-09-28 2011-09-22 荷電粒子ビーム装置、薄膜作製方法、欠陥修正方法及びデバイス作製方法 WO2012043363A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11828920.6A EP2624279B1 (en) 2010-09-28 2011-09-22 Charged particle beam device, thin film forming method, defect correction method and device fabrication method
US13/876,274 US9257273B2 (en) 2010-09-28 2011-09-22 Charged particle beam apparatus, thin film forming method, defect correction method and device forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-217084 2010-09-28
JP2010217084A JP5442572B2 (ja) 2010-09-28 2010-09-28 荷電粒子ビーム装置、薄膜作製方法、欠陥修正方法及びデバイス作製方法

Publications (1)

Publication Number Publication Date
WO2012043363A1 true WO2012043363A1 (ja) 2012-04-05

Family

ID=45892814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071578 WO2012043363A1 (ja) 2010-09-28 2011-09-22 荷電粒子ビーム装置、薄膜作製方法、欠陥修正方法及びデバイス作製方法

Country Status (4)

Country Link
US (1) US9257273B2 (ja)
EP (1) EP2624279B1 (ja)
JP (1) JP5442572B2 (ja)
WO (1) WO2012043363A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140295105A1 (en) * 2010-12-23 2014-10-02 Michael Huth Method and device for depositing silicon on a substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529264B2 (ja) * 2014-01-22 2019-06-12 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置および試料観察方法
US9735019B2 (en) * 2014-09-05 2017-08-15 Tel Epion Inc. Process gas enhancement for beam treatment of a substrate
JP6703903B2 (ja) * 2016-06-16 2020-06-03 株式会社日立製作所 微細構造体の加工方法および微細構造体の加工装置
KR102385038B1 (ko) * 2020-03-16 2022-04-12 티오에스주식회사 단결정 금속산화물 반도체 에피 성장 장치
KR102336228B1 (ko) * 2020-04-06 2021-12-09 티오에스주식회사 챔버 분리형 에피 성장 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169679A (ja) * 1993-08-31 1995-07-04 Toshiba Corp プロセス装置
JPH0945922A (ja) * 1995-07-27 1997-02-14 Showa Denko Kk 多結晶シリコン膜の形成方法
JP2002203794A (ja) * 2000-12-28 2002-07-19 Seiko Epson Corp シリコン薄膜の形成方法
JP3424232B2 (ja) * 2000-03-13 2003-07-07 ジェイエスアール株式会社 シリコン膜の形成方法
JP2005166726A (ja) 2003-11-28 2005-06-23 Sii Nanotechnology Inc 集積回路の配線変更方法
JP2008123891A (ja) * 2006-11-14 2008-05-29 Hitachi High-Technologies Corp 荷電ビーム装置、及びその鏡体
JP2008130390A (ja) * 2006-11-21 2008-06-05 Hitachi High-Technologies Corp 荷電ビーム装置、及びそのクリーニング方法
JP2010206161A (ja) * 2009-02-04 2010-09-16 Sony Corp 成膜方法および半導体装置の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1145991A (en) 1965-03-12 1969-03-19 Mullard Ltd Improvements in and relating to methods of manufacturing electrical circuit arrangements
US5700526A (en) 1995-05-04 1997-12-23 Schlumberger Technologies Inc. Insulator deposition using focused ion beam
JP2000012465A (ja) 1998-06-22 2000-01-14 Sharp Corp シリコン膜の形成方法及び太陽電池の製造方法
EP1087433A4 (en) 1999-03-30 2001-08-16 Jsr Corp METHOD FOR PRODUCING SILICON OXIDE FILMS
WO2000065406A1 (fr) 1999-04-21 2000-11-02 Seiko Instruments Inc. Procede de correction de masque a changement de phase et dispositif a faisceau ionique focalise
JP4031146B2 (ja) 1999-04-22 2008-01-09 エスアイアイ・ナノテクノロジー株式会社 表示素子の修正装置
DE60128611T2 (de) 2000-03-13 2008-01-31 Jsr Corp. Cyclosilan, eine flüssige Zusammensetzung und ein Verfahren zur Bildung eines Silicium-Films
JP2002087809A (ja) 2000-09-11 2002-03-27 Jsr Corp シリコン膜の形成方法
US7314513B1 (en) * 2004-09-24 2008-01-01 Kovio, Inc. Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
JP2008012391A (ja) 2006-07-03 2008-01-24 Clean Technology Kk 薄膜塗布装置のノズル構造
US7892978B2 (en) 2006-07-10 2011-02-22 Micron Technology, Inc. Electron induced chemical etching for device level diagnosis
US7500397B2 (en) 2007-02-15 2009-03-10 Air Products And Chemicals, Inc. Activated chemical process for enhancing material properties of dielectric films
JP5181105B2 (ja) 2007-03-02 2013-04-10 株式会社日立ハイテクサイエンス 集積回路の修正配線形成方法
JP2010079842A (ja) 2008-09-29 2010-04-08 Hitachi Software Eng Co Ltd 電子新聞保存管理システム及び新聞記事データ管理方法
JP5604044B2 (ja) * 2009-01-09 2014-10-08 独立行政法人科学技術振興機構 高次シラン組成物および膜付基板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169679A (ja) * 1993-08-31 1995-07-04 Toshiba Corp プロセス装置
JPH0945922A (ja) * 1995-07-27 1997-02-14 Showa Denko Kk 多結晶シリコン膜の形成方法
JP3424232B2 (ja) * 2000-03-13 2003-07-07 ジェイエスアール株式会社 シリコン膜の形成方法
JP2002203794A (ja) * 2000-12-28 2002-07-19 Seiko Epson Corp シリコン薄膜の形成方法
JP2005166726A (ja) 2003-11-28 2005-06-23 Sii Nanotechnology Inc 集積回路の配線変更方法
JP2008123891A (ja) * 2006-11-14 2008-05-29 Hitachi High-Technologies Corp 荷電ビーム装置、及びその鏡体
JP2008130390A (ja) * 2006-11-21 2008-06-05 Hitachi High-Technologies Corp 荷電ビーム装置、及びそのクリーニング方法
JP2010206161A (ja) * 2009-02-04 2010-09-16 Sony Corp 成膜方法および半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2624279A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140295105A1 (en) * 2010-12-23 2014-10-02 Michael Huth Method and device for depositing silicon on a substrate

Also Published As

Publication number Publication date
EP2624279A4 (en) 2014-04-30
EP2624279A1 (en) 2013-08-07
US9257273B2 (en) 2016-02-09
JP5442572B2 (ja) 2014-03-12
JP2012074194A (ja) 2012-04-12
EP2624279B1 (en) 2017-04-05
US20130224889A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5442572B2 (ja) 荷電粒子ビーム装置、薄膜作製方法、欠陥修正方法及びデバイス作製方法
JP5677700B2 (ja) ビーム誘起処理における窒素ベース化合物の使用
US9685304B2 (en) Isotopically-enriched boron-containing compounds, and methods of making and using same
TWI520905B (zh) 利用選擇性氟化硼前驅物之硼離子植入方法,及供植入用之大群氫化硼之形成方法
KR101856921B1 (ko) 이온 주입에 사용하기 위한 패키지된 가스 혼합물
EP2606004B1 (en) Isotopically-enriched boron-containing compounds, and methods of making and using same
US9171725B2 (en) Enriched silicon precursor compositions and apparatus and processes for utilizing same
US8138071B2 (en) Isotopically-enriched boron-containing compounds, and methods of making and using same
EP3000123A1 (en) Enriched silicon precursor compositions and apparatus and processes for utilizing same
JP5883025B2 (ja) 基板上へのシリコンの析出法
WO2000065406A1 (fr) Procede de correction de masque a changement de phase et dispositif a faisceau ionique focalise
US20130082189A1 (en) Pre-aligned multi-beam nozzle/skimmer module
TWI594301B (zh) 離子佈植方法與離子佈植機
JPH07147245A (ja) 結晶質シリコン薄膜の形成方法
JPH1187343A (ja) 化合物堆積方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828920

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011828920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13876274

Country of ref document: US

Ref document number: 2011828920

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE