WO2012042867A1 - 電気分解装置及びこれを備えたヒートポンプ式給湯機 - Google Patents

電気分解装置及びこれを備えたヒートポンプ式給湯機 Download PDF

Info

Publication number
WO2012042867A1
WO2012042867A1 PCT/JP2011/005464 JP2011005464W WO2012042867A1 WO 2012042867 A1 WO2012042867 A1 WO 2012042867A1 JP 2011005464 W JP2011005464 W JP 2011005464W WO 2012042867 A1 WO2012042867 A1 WO 2012042867A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
wall portion
electrolyzer
electrode
electrode plates
Prior art date
Application number
PCT/JP2011/005464
Other languages
English (en)
French (fr)
Inventor
柴田 豊
かおり 吉田
藤波 功
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2011310302A priority Critical patent/AU2011310302B2/en
Priority to CN2011800458993A priority patent/CN103118990A/zh
Priority to US13/823,912 priority patent/US20130180846A1/en
Priority to EP11828433.0A priority patent/EP2623462A4/en
Publication of WO2012042867A1 publication Critical patent/WO2012042867A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4602Treatment of water, waste water, or sewage by electrochemical methods for prevention or elimination of deposits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/40Arrangements for preventing corrosion
    • F24H9/45Arrangements for preventing corrosion for preventing galvanic corrosion, e.g. cathodic or electrolytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/40Arrangements for preventing corrosion
    • F24H9/45Arrangements for preventing corrosion for preventing galvanic corrosion, e.g. cathodic or electrolytic means
    • F24H9/455Arrangements for preventing corrosion for preventing galvanic corrosion, e.g. cathodic or electrolytic means for water heaters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/028Tortuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters

Definitions

  • the present invention relates to an electrolyzer for removing scale components in water in a water heater such as a heat pump water heater, and a heat pump water heater provided with the same.
  • a heat pump type water heater is composed of a heat pump unit in which a compressor, a water heat exchanger, an expansion valve, and an air heat exchanger are connected in this order by piping, a tank for storing water, and the water in this tank is converted into a water heat exchanger. And a hot water storage unit having a hot water discharge pipe for returning water heated by the water heat exchanger to the tank.
  • the water stored in the tank usually uses tap water or well water as a water supply source.
  • tap water and well water contain components such as calcium ions and magnesium ions that cause scales (hereinafter referred to as scale components). Therefore, scales such as calcium salt and magnesium salt are deposited in the water heater.
  • groundwater such as well water has a higher concentration of the scale component than tap water, and has a water quality that tends to cause scale.
  • scales are more likely to deposit than other parts. If the scale is deposited and deposited on the inner surface of the pipe in the water heat exchanger, there may be a problem that the heat transfer performance of the water heat exchanger is lowered or the flow path of the pipe is narrowed.
  • Patent Document 1 proposes a cooling water circulation device including an electrolysis device in which one electrode pair is installed in an electrolytic cell. This Patent Document 1 describes that scale components can be removed from the cooling water by electrolysis, so that scale adhesion in the circulation path can be reduced.
  • the electrolyzer (41) of the present invention is used in a water heater having a water heat exchanger (21) for heating water.
  • the electrolyzer (41) includes a container (47), a plurality of electrode pairs (49), and a power source (51).
  • the container (47) has a first circulation port (43) that functions as one of an inlet and an outlet of water, and a second circulation port (45) that functions as either the inlet or the outlet of water. .
  • the plurality of electrode pairs (49) are disposed in the container (47).
  • the power source (51) applies a voltage to each electrode pair (49).
  • Each electrode pair (49) has a pair of electrode plates (53).
  • the plurality of electrode plates (53) are arranged at intervals in the thickness direction of the electrode plate (53). In this electrolysis device (41), water flowing into the container (47) from the inlet passes between the pair of electrode plates (53) in each electrode pair (49) to reach the outlet.
  • a water flow path (F) is formed by the plurality of electrode plates (53
  • FIG. 2 It is a lineblock diagram showing the heat pump type water heater concerning one embodiment of the present invention.
  • A is sectional drawing which shows the electrolyzer concerning 1st Embodiment of this invention used for the said heat pump type water heater, and is a figure when the electrolyzer is seen from the side.
  • B is a plan view of the electrolyzer.
  • A) is a schematic diagram showing the electrolyzer of FIG. 2, and (B) to (D) are schematic diagrams showing an electrolyzer according to a modification of the first embodiment.
  • A) to (D) are schematic views respectively showing an electrolysis apparatus according to another modification of the first embodiment.
  • A) to (D) are schematic views respectively showing an electrolysis apparatus according to still another modification of the first embodiment.
  • FIG. 6 is a schematic diagram showing the electrolyzer of FIG. 6, and (B) to (D) are schematic diagrams showing an electrolyzer according to a modification of the second embodiment.
  • (A) to (H) are schematic views showing an electrolyzer according to another modification of the second embodiment.
  • (A) to (C) are cross-sectional views showing an electrolyzer according to still another modification of the second embodiment. It is sectional drawing which shows the modification of the said heat pump type water heater.
  • A) And (B) is the schematic which shows the modification of the said heat pump type water heater. It is the schematic which shows the modification of the said heat pump type water heater.
  • (A) And (B) is the schematic which shows the modification of the said heat pump type water heater.
  • the heat pump type hot water heater 11 of the first embodiment heats and exchanges heat with the refrigerant of the heat pump unit 13 in which the refrigerant circulates and the refrigerant of the heat pump unit 13,
  • the hot water storage unit 17 which stores the water, the water supply piping 37, the hot water supply piping 35, the electrolyzer 41, and the control part 33 are provided.
  • the heat pump unit 13 includes a compressor 19, a water heat exchanger 21, an electric expansion valve 23, an air heat exchanger 25, and a pipe connecting them.
  • carbon dioxide is used as the refrigerant circulating in the heat pump unit 13.
  • the refrigerant exchanges heat with water circulating in the hot water storage unit 17 in the water heat exchanger 21 to heat the water, and exchanges heat with the outside air in the air heat exchanger 25 to absorb heat from the outside air.
  • the hot water storage unit 17 includes a tank 15 in which water is stored, a water inlet pipe 27 that sends water from the tank 15 to the water heat exchanger 21, and water that is heated by heat exchange with the water heat exchanger 21 in the tank 15. There is a return hot water piping 29.
  • a pump 31 is provided in the incoming water pipe 27. The pump 31 sends water that has flowed into the incoming water pipe 27 from the lower part of the tank 15 to the water heat exchanger 21, and further to the upper part of the tank 15 through the hot water outlet pipe 29.
  • the electrolyzer 41 is provided in the incoming water pipe 27 and is located between the pump 31 and the water heat exchanger 21. Details of the electrolyzer 41 will be described later.
  • the hot water supply pipe 35 is connected to the upper part of the tank 15.
  • the hot water supply pipe 35 is for taking out hot water stored in the tank 15 and supplying hot water to a bathtub or the like.
  • the water supply pipe 37 is connected to the bottom of the tank 15.
  • the water supply pipe 37 is for supplying low-temperature water into the tank 15 from a water supply source.
  • a water supply source for supplying water to the tank 15 for example, tap water or ground water such as well water can be used.
  • the control unit 33 includes a central processing unit (CPU), a memory in which data such as a program is stored, a memory for storing data at the time of program execution, various setting values, measured data, and the like. .
  • the control unit 33 controls the heat pump unit 13 and the hot water storage unit 17 based on temperature data measured by a temperature sensor (not shown) provided in the tank 15, the water heat exchanger 21, piping, and the like.
  • the control unit 33 drives the compressor 19 of the heat pump unit 13 to adjust the opening degree of the electric expansion valve 23 and drives the pump 31 of the hot water storage unit 17. .
  • low-temperature water in the tank 15 is sent to the water heat exchanger 21 through the inlet pipe 27 from the water outlet provided at the bottom of the tank 15, and is heated in the water heat exchanger 21.
  • the heated high-temperature water is returned into the tank 15 from a water inlet provided in the upper part of the tank 15 through the hot water supply pipe 29.
  • hot water is stored in the tank 15 in order from the upper part.
  • the heat pump type water heater 11 of the present embodiment is a transient type water heater.
  • the water (hot water) supplied from the hot water supply pipe 35 is used by the user and does not return to the tank 15. Accordingly, the same amount of water supplied from the tank 15 through the hot water supply pipe 35 is supplied to the tank 15 from the water supply source through the water supply pipe 37. That is, the tank 15 is frequently replenished with water containing scale components from a water supply source such as tap water or well water, and the amount of replenishment is also large. Therefore, in the case of a transient heat pump type hot water heater, it is necessary to efficiently remove scale components as compared with the circulating type cooling water circulation device and the circulating type water heater.
  • FIG. 2A is a cross-sectional view showing the electrolyzer 41 according to the first embodiment of the present invention used in the water heater 11.
  • FIG. 2A is a view of the electrolyzer 41 as viewed from the side.
  • FIG. 2B is a plan view of the electrolyzer 41.
  • the electrolyzer 41 according to the first embodiment includes a container 47, a plurality of electrode pairs 49, and a power source 51.
  • the container 47 has a substantially rectangular parallelepiped shape.
  • the container 47 has a first wall portion 471 located on the upstream side of the water flow, a second wall portion 472 located on the downstream side, and a side wall portion 48 connecting these wall portions 471 and 472.
  • the first wall portion 471 and the second wall portion 472 are opposed to the direction in which the side wall portion 48 extends (arrangement direction D of the plurality of electrode plates 53) via a plurality of electrode plates 53 described later.
  • the side wall part 48 has a third wall part 473 and a fourth wall part 474 shown in FIG. 2 (A), and a fifth wall part 475 and a sixth wall part 476 shown in FIG. 2 (B).
  • the electrolyzer 41 of the present embodiment is used, for example, arranged in the direction shown in FIG. 2 (A) so that the third wall portion 473 is located below and the fourth wall portion 474 is located above.
  • the third wall portion 473 and the fourth wall portion 474 are opposed to each other in the height direction H (vertical direction) with the plurality of electrode plates 53 interposed therebetween.
  • the fifth wall portion 475 and the sixth wall portion 476 are opposed to each other in the width direction W (horizontal direction perpendicular to the arrangement direction D) with the plurality of electrode plates 53 interposed therebetween.
  • the 1st wall part 471 has the 1st distribution port 43 which functions as an entrance and exit of water.
  • the 2nd wall part 472 has the 2nd circulation port 45 which functions as an entrance / exit of water.
  • the first circulation port 43 functions as an inlet
  • the second circulation port 45 functions as an outlet.
  • a water inlet pipe 27 is connected to each of the first circulation port 43 and the second circulation port 45.
  • the first circulation port 43 is provided in the first wall portion 471 at a position closer to the third wall portion 473 than the fourth wall portion 474 and closer to the fifth wall portion 475 than the sixth wall portion 476.
  • the second flow port 45 is provided in the second wall portion 472 at a position closer to the fourth wall portion 474 than the third wall portion 473 and closer to the sixth wall portion 476 than the fifth wall portion 475.
  • the first flow port 43 and the second flow port 45 are respectively provided in the vicinity of the diagonal in the rectangular parallelepiped container 47.
  • the container 47 has an elongated shape.
  • the distance between the outer surface of the first wall portion 471 and the outer surface of the second wall portion 472 is the distance between the outer surface of the third wall portion 473 and the outer surface of the fourth wall portion 474 and the outer surface of the fifth wall portion 475 and the sixth surface. It is larger than the distance from the outer surface of the wall portion 476.
  • Each electrode pair 49 includes a pair of electrode plates 53 (a first electrode plate 531 and a second electrode plate 532).
  • a plurality of electrode plates 53 constituting a plurality of electrode pairs 49 are arranged in the container 47.
  • the plurality of electrode plates 53 are arranged at intervals in the thickness direction of the electrode plates 53.
  • Each electrode plate 53 is arranged in a posture extending in a direction substantially perpendicular to the arrangement direction D.
  • the arrangement direction D substantially coincides with the direction in which the side wall 48 extends (the longitudinal direction of the container 47).
  • the distance between the electrode plates 53 of each electrode pair 49 is substantially the same.
  • a gap between the electrode plates 53 in each electrode pair 49 functions as a flow path (water flow path) F through which water flows.
  • Each electrode plate 53 is substantially rectangular. Examples of the material of the electrode plate 53 include titanium, platinum, nickel, carbon, graphite, copper, and vitreous carbon.
  • the plurality of electrode plates 53 include a plurality of first electrode plates 531 connected to the positive electrode of the power source 51 and a plurality of second electrode plates 532 connected to the negative electrode of the power source 51.
  • the first electrode plate 531 functions as an anode
  • the second electrode plate 532 functions as a cathode.
  • the first electrode plates 531 and the second electrode plates 532 are alternately arranged along the arrangement direction D of the plurality of electrode plates 53.
  • Each electrode plate 53 is fixed to the side wall portion 48 by, for example, a support member (not shown) while being insulated from the electrode plate 53 having a different polarity.
  • the second electrode plate 532 at the left end and the first electrode plate 531 second from the left constitute one electrode pair 49.
  • the first electrode plate 531 second from the left and the second electrode plate 532 third from the left constitute one electrode pair 49.
  • adjacent electrode plates 53 constitute one electrode pair 49.
  • a gap G1 through which water can flow is provided between one end portion 53a in the height direction H of each electrode plate 53 and the inner surface of the third wall portion 473. Further, a gap G ⁇ b> 2 through which water can flow is provided between the other end portion 53 b in the height direction H of each electrode plate 53 and the inner surface of the fourth wall portion 474.
  • the gap between each electrode plate 53 and the inner surface of the side wall 48 may be only the above-described gap G1 and gap G2, but further, between the end of each electrode plate 53 and the inner surface of the fifth wall 475. , And between the end of each electrode plate 53 and the inner surface of the sixth wall 476.
  • the water flowing into the container 47 from the first circulation port 43 flows out of the container 47 from the second circulation port 45 along the following path. That is, the water flowing into the container 47 flows along the third wall portion 473 toward the second wall portion 472 through the gap G1 between the one end portion 53a of each electrode plate 53 and the inner surface of the third wall portion 473.
  • the water flowing along the third wall portion 473 partially flows from the upstream water flow path F into the gap (water flow path F) between the electrode plates 53 of each electrode pair 49 arranged in the arrangement direction D. Go.
  • the scale is deposited on the cathode second electrode plate 532 by electrolysis until the water flowing into the container 47 from the first flow port 43 flows out of the container 47 through the second flow port 45.
  • the scale attached to the second electrode plate 532 is removed from the electrolyzer 41, for example, by periodically cleaning the second electrode plate 532.
  • the scale attached to the cathode is dropped from the cathode by inverting the polarity of the electrode plate 53. You can also.
  • FIG. 3A is a schematic diagram showing the electrolysis apparatus of FIG. 2, and FIG. 3B to FIG. 3D, FIG. 4A to FIG. 4D, and FIG. FIG. 5D is a schematic diagram showing an electrolyzer 41 according to a modification of the first embodiment.
  • These drawings show a cross section when the electrolyzer 41 is viewed from the side. In these electrolyzers 41, the power supply 51 is not shown.
  • the electrolyzer 41 shown in FIG. 3A has the same structure as the electrolyzer 41 shown in FIG. About other modifications, the main composition is outlined below.
  • the electrolyzer 41 shown in FIG. 3 (B) has the same basic structure as the electrolyzer 41 shown in FIG. 3 (A), and the orientation of the device during use is different.
  • the arrangement direction D of the electrode plates 53 and the longitudinal direction of the container 47 are both in the vertical direction (height direction H).
  • the arrangement direction D of the electrode plates 53 is oriented in the horizontal direction, and the longitudinal direction of the container 47 is oriented in the up-down direction.
  • the arrangement direction D of the electrode plates 53 is oriented in the vertical direction, and the longitudinal direction of the container 47 is oriented in the horizontal direction.
  • the electrolyzer 41 shown in FIGS. 4 (A) to 4 (D) is similar to the electrolyzer 41 shown in FIGS. 3 (A) to 3 (D), respectively. 3 is different from the electrolyzer 41 shown in FIGS. 3A to 3D in that it is inclined as described above.
  • each electrode plate 53 has one end 53a on one side in the arrangement direction D with respect to the other end 53b (the first wall in the arrangement direction D). It is arranged to be inclined so as to be located on the part 471 side).
  • each electrode plate 53 is arranged in a direction substantially parallel to the height direction H of the container 47, but in the modification shown in FIG. The electrode plate 53 is disposed to be inclined with respect to the height direction H.
  • each electrode plate 53 is inclined as described above, the water flow path F formed by the plurality of electrode plates 53 is also inclined in substantially the same direction as the inclination direction of the electrode plate 53.
  • the flow of water in these modified examples will be described as follows, taking the electrolyzer 41 of FIG. 4A as an example. That is, the inflow direction of flowing into the water flow path F from the one end portion 53a side of the electrode plate 53 is such that the water flowing into the container 47 from the first flow port 43 moves toward the second wall portion 472 along the third wall portion 473. It is inclined to form an acute angle (angle ⁇ in FIG. 4A) with the flowing direction.
  • the water flowing toward the second wall portion 472 along the third wall portion 473 is transformed into the deformation shown in FIGS. 3A to 3D.
  • the water flowing along the electrode plate 53 through the water flow path F of each electrode pair 49 smoothly merges with the water flowing through the other water flow paths F on the fourth wall portion 474 side.
  • each electrode plate 53 is inclined, compared with the modified examples shown in FIGS. 3A to 3D, Even if the size of the container 47 is the same, the area of each electrode plate 53 can be increased.
  • the electrolyzer 41 shown in FIGS. 5A to 5D is similar in structure to the modification shown in FIGS. 4A to 4D in that a plurality of electrode plates are inclined. However, the structure differs from the modification shown in FIGS. 4A to 4D in the following points.
  • each electrode plate 53 has a portion on the one end 53a side and a portion on the other end 53b side in FIGS. D) is inclined in the same direction as the inclination direction of each electrode plate 53 of the modified example, and the portion between the one end portion 53a side portion and the other end portion 53b side portion is substantially in the arrangement direction D. It is vertical.
  • each electrode plate 53 includes a non-inclined portion substantially parallel to the height direction H of the container 47 and the one end 53a side of the non-inclined portion. And a part closer to the other end 53b than the non-inclined part.
  • the electrode pairs 49 can easily flow into the water flow path F compared to the modified examples shown in FIGS. 3A to 3D. And the smoothness at the time of joining improves, and the area of each electrode plate 53 can be enlarged.
  • FIG. 6 is a sectional view showing an electrolyzer 41 according to the second embodiment of the present invention.
  • FIG. 6 is a diagram when the electrolyzer 41 is viewed in the horizontal direction.
  • the configuration of each electrode plate 53 is different from that of the first embodiment.
  • symbol as 1st Embodiment is attached
  • subjected and the detailed description is abbreviate
  • the plurality of first electrode plates 531 are extended from the base end portion located on the third wall portion 473 toward the fourth wall portion 474, respectively.
  • the base end portion of each first electrode plate 531 is connected to a connection plate 54 (or connection wiring 54) extending in a direction substantially parallel to the third wall portion 473.
  • the end of the connecting plate 54 is connected to the positive electrode of the power source 51.
  • the connecting plate 54 is embedded in the third wall portion 473.
  • a gap G ⁇ b> 3 through which water can flow is provided between the tip end portion (end portion on the fourth wall portion 474 side) of each first electrode plate 531 and the inner surface of the fourth wall portion 474.
  • the plurality of second electrode plates 532 are respectively extended from the base end portion located on the fourth wall portion 474 toward the third wall portion 473.
  • the base end portion of each second electrode plate 532 is connected to a connection plate 56 (or connection wiring 56) extending in a direction substantially parallel to the fourth wall portion 474.
  • the end of the connecting plate 56 is connected to the negative electrode of the power source 51.
  • the connecting plate 56 is embedded in the fourth wall portion 474.
  • a gap G ⁇ b> 4 through which water can flow is provided between the distal end portion (the end portion on the third wall portion 473 side) of each second electrode plate 532 and the inner surface of the third wall portion 473.
  • the plurality of first electrode plates 531 and the connecting plate 54 to which these are connected have a comb-like cross section as shown in FIG.
  • the plurality of second electrode plates 532 and the connecting plate 56 to which these are connected have a comb-like cross section as shown in FIG.
  • the first electrode plates 531 and the second electrode plates 532 are alternately arranged along the arrangement direction D.
  • the water flow path F has a path meandering up and down.
  • FIG. 7A is a schematic diagram showing the electrolyzer 41 of FIG. 6, and FIGS. 7B to 7D are schematic diagrams showing the electrolyzer 41 according to a modification of the second embodiment.
  • FIG. These drawings show a cross section when the electrolyzer 41 is viewed from the side.
  • the electrolyzer 41 shown in FIG. 7A has the same structure as the electrolyzer 41 shown in FIG. In the electrolyzer 41, the water flowing into the container 47 from the first flow port 43 flows in the container 47 sideways while meandering up and down.
  • the arrangement direction D of the electrode plates 53 and the longitudinal direction of the container 47 are both in the vertical direction.
  • the first flow port 43 is provided in the third wall portion 473, and is located at or near the corner where the first wall portion 471 and the third wall portion 473 intersect.
  • the second circulation port 45 is provided in the fourth wall portion 474 and is located at or near the corner where the second wall portion 472 and the fourth wall portion 474 intersect.
  • the water flowing into the container 47 from the first flow port 43 flows in the container 47 upward while meandering left and right.
  • the second circulation port 45 may be an inlet and the first circulation port 45 may be an outlet.
  • the arrangement direction D of the electrode plates 53 is in the horizontal direction, and the longitudinal direction of the container 47 is in the vertical direction.
  • the flow of water is the same as that of the electrolyzer 41 in FIG.
  • the arrangement direction D of the electrode plates 53 is oriented in the vertical direction, and the longitudinal direction of the container 47 is oriented in the horizontal direction.
  • the first flow port 43 is provided in the third wall portion 473, and is located at or near the corner where the first wall portion 471 and the third wall portion 473 intersect.
  • the second circulation port 45 is provided in the fourth wall portion 474 and is located at or near the corner where the second wall portion 472 and the fourth wall portion 474 intersect.
  • the flow of water is the same as that of the electrolyzer 41 in FIG.
  • FIGS. 8A and 8B are schematic views showing an electrolyzer according to still another modification of the second embodiment.
  • 8A shows a cross section when the electrolyzer 41 is viewed from above
  • FIG. 8B shows a cross section when the electrolyzer 41 is viewed from the side.
  • the arrangement direction D of the electrode plates 53 and the longitudinal direction of the container 47 are both in the horizontal direction.
  • the water flowing into the container 47 from the first flow port 43 flows in the container 47 sideways while meandering left and right.
  • FIGS. 8C and 8D are schematic views showing an electrolyzer according to still another modification of the second embodiment.
  • FIG. 8C shows a cross section when the electrolyzer 41 is viewed from the downstream side
  • FIG. 8D shows a cross section when the electrolyzer 41 is viewed from the side.
  • the arrangement direction D of the electrode plates 53 and the longitudinal direction of the container 47 are both directed in the vertical direction.
  • the water flowing into the container 47 from the first flow port 43 flows in the container 47 upward while meandering left and right.
  • FIGS. 8E and 8F are schematic views showing an electrolyzer according to still another modification of the second embodiment.
  • FIG. 8E shows a cross section when the electrolyzer 41 is viewed from above
  • FIG. 8F shows a cross section when the electrolyzer 41 is viewed from the side.
  • the arrangement direction D of the electrode plates 53 is oriented in the horizontal direction
  • the longitudinal direction of the container 47 is oriented in the vertical direction.
  • the water flowing into the container 47 from the first flow port 43 flows in the container 47 sideways while meandering left and right.
  • FIG. 8 (G) and 8 (H) are schematic views showing an electrolyzer according to still another modification of the second embodiment.
  • FIG. 8 (G) shows a cross section when the electrolyzer 41 is viewed from the downstream side
  • FIG. 8 (H) shows a cross section when the electrolyzer 41 is viewed from the side.
  • the arrangement direction D of the electrode plates 53 is directed in the vertical direction
  • the longitudinal direction of the container 47 is directed in the horizontal direction.
  • the water flowing into the container 47 from the first flow port 43 flows in the container 47 upward while meandering left and right.
  • FIGS. 9A and 9B are cross-sectional views showing an electrolyzer according to still another modification of the second embodiment.
  • this electrolyzer 41 the same components as those in the electrolyzer 41 shown in FIG.
  • the electrolysis apparatus 41 of this modification has a reversing mechanism that reverses the polarity of the electrode plate 53.
  • the plurality of first electrode plates 531 are connected to the positive electrode of the power source 51 via the connecting plate 54, and the plurality of second electrode plates 532 are connected to the power source via the connecting plate 56.
  • 51 is connected to the negative electrode.
  • the polarity of the electrode plate 53 is reversed by the reversing mechanism. That is, the plurality of first electrode plates 531 are connected to the negative electrode of the power source 51 through the connecting plate 54, and the plurality of second electrode plates 532 are connected to the positive electrode of the power source 51 through the connecting plate 56.
  • the polarity of the electrode plate 53 can be reversed by switching the contact of the contact switching unit 71 and the contact of the contact switching unit 72.
  • the polarity of the electrode plate 53 is reversed based on a predetermined cycle or predetermined conditions such as water quality and temperature described later.
  • a predetermined cycle or predetermined conditions such as water quality and temperature described later.
  • scale adheres to the cathode by electrolysis, but when the polarity of the electrode plate 53 is reversed to change the cathode electrode plate 53 to the anode, the pH of the liquid locally decreases in the vicinity thereof. To do. As a result, a part of the scale on the surface of the electrode plate 53 is dissolved and falls off the electrode plate 53.
  • FIG. 10 is a cross-sectional view showing a modification of the heat pump type water heater 11.
  • the water heater 11 according to this modification further includes a bypass pipe 27 a that bypasses the electrolyzer 41.
  • the bypass pipe 27 a connects the water inlet pipe 27 located on the upstream side of the electrolyzer 41 and the water inlet pipe 27 located on the downstream side.
  • a valve 81 is attached to the water inlet pipe 27 located on the upstream side of the electrolyzer 41, and a valve 82 is also attached to the bypass pipe 27a.
  • the valve 81 is provided in the incoming water pipe 27 on the downstream side of the branching point of the bypass pipe 27a.
  • the valve 81 when electrolysis is performed, the valve 81 is opened and the valve 82 is closed. On the other hand, when electrolysis is not performed in the electrolysis apparatus 41, the valve 81 is closed and the valve 82 is opened. Thereby, when not performing electrolysis, since water can be flowed through the bypass piping 27a with small resistance of the flow of water, the power of the pump 31 can be reduced. Further, since water is allowed to flow through the electrolyzer 41 only when electrolysis is performed, consumption (wear) of the electrode plate 53 can be suppressed.
  • FIGS. 11A and 11B are schematic views showing another modification of the heat pump hot water heater 11. These water heaters 11 have a mechanism that reverses the inlet and outlet of the electrolyzer 41.
  • the water inlet pipe 27 located on the upstream side of the electrolyzer 41 is connected to, for example, a three-way valve 83, and the branch pipe 271 is connected to the three-way valve 83.
  • the branch pipe 272 are branched.
  • the branch pipe 271 is connected to the first wall part 471 of the container 47, and the branch pipe 272 is connected to the second wall part 472.
  • the water inlet pipe 27 located on the downstream side of the electrolyzer 41 is connected to, for example, a three-way valve 84, and a branch pipe 273 and a branch pipe 274 branch from the three-way valve 84.
  • the branch pipe 273 is connected to the second wall part 472, and the branch pipe 274 is connected to the first wall part 471.
  • FIG. 12 is a schematic view showing still another modified example of the heat pump type water heater 11.
  • the water heater 11 according to this modification further includes a reflow pipe 27 b for returning the water that has passed through the electrolyzer 41 to the upstream side of the electrolyzer 41 and flowing it back into the electrolyzer 41.
  • the reflow pipe 27b connects the water inlet pipe 27 located on the upstream side of the electrolyzer 41 and the water inlet pipe 27 located on the downstream side.
  • the reflow pipe 27b is provided with a valve 92 and a pump 91 that can be opened and closed.
  • the pump 91 plays a role of sending a part of the water flowing through the downstream inlet pipe 27 in the direction of the arrow in FIG. 12 through the re-inflow pipe 27 b and joining the upstream inlet pipe 27.
  • the check valve 93 is provided in the inlet pipe 27 located on the upstream side of the electrolyzer 41 at a position upstream of the connection point with the re-inflow pipe 27b.
  • a check valve 94 is provided in the water inlet pipe 27 located downstream of the electrolyzer 41 at a position downstream of the connection point with the reflow pipe 27b.
  • the valve 92 In normal operation of the electrolyzer 41, the valve 92 is closed and the pump 91 is stopped. On the other hand, when it is desired to increase the efficiency of electrolysis in the electrolyzer 41 than during normal operation, the valve 92 is opened and the pump 91 is driven. When the pump 91 is driven, a part of the water flowing out from the electrolyzer 41 flows again into the inlet pipe 27 on the upstream side of the electrolyzer 41 through the re-inflow pipe 27 b and merges with the water flowing through the inlet pipe 27. And flows into the electrolysis apparatus 41.
  • FIGS. 13A and 13B are schematic views showing another modification of the heat pump type water heater 11.
  • the hot water heater 11 of these modified examples further includes a sensor 95.
  • the sensor 95 is attached to the incoming water pipe 27 located on the upstream side of the electrolyzer 41.
  • the sensor 95 is attached to the incoming water pipe 27 located on the downstream side of the electrolyzer 41.
  • Examples of the sensor 95 include a water quality measurement sensor and a temperature sensor.
  • the sensor 95 is a water quality measurement sensor, the hardness of the water is detected by measuring, for example, the conductivity of the water using the sensor 95.
  • the control unit 33 controls the power source 51 so as to adjust the voltage applied to each electrode pair 49 according to the quality of the water flowing in the water inlet pipe 27. Specifically, when the water quality is high and the scale is likely to cause scale, the control unit 33 applies a high voltage to each electrode pair 49. Thereby, in the electrolysis apparatus 41, the removal effect of a scale component can be heightened. On the other hand, when the water quality is low and scale is difficult to generate, the control unit 33 applies a voltage lower than the above to each electrode pair 49. Thereby, power consumption can be reduced.
  • the control unit 33 controls the power supply 51 to apply a high voltage to each electrode pair 49 when the water temperature detected by the sensor 95 is larger than a predetermined value set in advance.
  • the control unit 33 controls the power supply 51 so that a voltage lower than the above is applied to each electrode pair 49. Thereby, power consumption can be reduced.
  • the power source 51 may be controlled based on the set temperature of the water heater 11 or the like.
  • the temperature of water heated by the water heat exchanger 21 is set to a high temperature of, for example, 85 ° C. to 90 ° C. in winter.
  • the temperature of the water heated by the water heat exchanger 21 is set to a relatively low temperature of about 60 ° C., for example.
  • the control unit 33 controls the power source 51 so as to apply a voltage to each electrode pair 49 in the electrolyzer 41 in winter when the set temperature is high, and whether or not to apply a voltage to each electrode pair 49 in summer.
  • the power supply 51 is controlled so that the applied voltage is lower than in winter.
  • the removal efficiency of scale components can be improved.
  • the plurality of electrode plates 53 are arranged at intervals in the thickness direction. And the water which flowed in in the container 47 from the inlet reaches between the pair of electrode plates 53 in each electrode pair 49 to the outlet.
  • one of the water inlet and outlet is provided on one side of the arrangement direction D of the plurality of electrode plates 53, and the other of the water inlet and outlet is the arrangement of the plurality of electrode plates 53. It is provided on the other side in the direction D.
  • the water that has flowed into the container 47 from the inlet provided in the first wall portion 471 passes through the gap between the one end portion of each electrode plate 53 and the third wall portion 473, so that the third wall It flows along the portion 473 to the second wall portion 472 side.
  • a part of the water flowing along the third wall portion 473 flows between the electrode plates of the electrode pairs 49 arranged in the arrangement direction D.
  • the water that flows along the electrode plate 53 between the electrode plates of each electrode pair 49 joins on the fourth wall portion 474 side and flows out of the container 47 from the second circulation port 45.
  • each electrode plate 53 is inclined and disposed such that one end 53a is located on one side in the arrangement direction D with respect to the other end 53b. Since each electrode plate 53 is inclined as described above, the water flow path F formed by the plurality of electrode plates 53 is also inclined in substantially the same direction as the inclination direction of the electrode plate 53. The inflow direction flowing into the water flow path F from the one end portion 53a side is inclined so as to form an acute angle with the flow direction in which the water flowing into the container 47 from the inlet flows along the third wall portion 473 to the second wall portion 472 side. is doing.
  • the second wall flows along the third wall portion 473 through the gap between the one end portion 53a of each electrode plate 53 and the third wall portion 473 through the container 47 through the inlet provided in the first wall portion 471.
  • the water flowing toward the portion 472 is likely to flow between the electrode plates of the electrode pairs 49 arranged in the arrangement direction D.
  • the first electrode plate 531 and the second electrode plate 532 are alternately arranged along the arrangement direction D, and the water flow path F has a meandering path.
  • the water that has flowed into the container 47 from the inlet flows along the meandering path and sequentially passes between the pair of electrode plates 53 in each electrode pair 49.
  • the water that has flowed into the container 47 from the inlet can be evenly distributed to the plurality of electrode pairs 49, so that the removal efficiency of the scale component can be further improved.
  • the electrolyzer 41 is provided in the water inlet pipe 27. Since the flow rate of water is low and the fluctuation is small in the water intake pipe 27, the water passing through the electrolyzer 41 is also almost constant at a low flow rate. Thereby, the electrolysis apparatus 41 can obtain a stable and effective removal effect of scale components. In addition, since the electrolysis is performed during the operation of the heat pump, it is possible to use nighttime power and to keep the electricity cost low.
  • a voltage is applied to each electrode pair 49 when the temperature of the water is equal to or higher than a preset value at which scale is likely to occur. In other cases, power consumption is reduced without applying a voltage. it can.
  • the voltage applied to each electrode pair 49 is adjusted according to the water quality such as the hardness of the water, so that the voltage required for the water quality can be applied. Thereby, it is possible to reduce power consumption by suppressing application of an excessive voltage while increasing the removal efficiency of scale components.
  • the concentration difference of the scale component water conductivity of the water generated between the inlet side region and the outlet side region in the container 47. (Difference) can be reduced.
  • region of an exit side becomes small, and the electrolysis efficiency can be improved as a whole. It is also possible to maintain or improve the removal efficiency of scale components while suppressing the total power consumption.
  • variation in the adhesion amount of the scale to the electrode plate 53 can be made small among several electrode plates.
  • the scale As a result, it is possible to prevent the scale from being biased and deposited on the specific electrode plate 53. Therefore, for example, the period of the operation for reversing the polarity as described above can be lengthened. Further, it is possible to operate only by cleaning the cathode while omitting the polarity reversal operation.
  • the electrolysis apparatus of the present invention is used in a water heater having a water heat exchanger for heating water.
  • the electrolyzer includes a container, a plurality of electrode pairs, and a power source.
  • the container has a first circulation port that functions as one of an inlet and an outlet of water, and a second circulation port that functions as either the inlet or the outlet of water.
  • the plurality of electrode pairs are disposed in the container.
  • the power source applies a voltage to each electrode pair.
  • Each electrode pair has a pair of electrode plates.
  • the plurality of electrode plates are arranged at intervals in the thickness direction of the electrode plates.
  • a water flow path is formed by the plurality of electrode plates so that water flowing into the container from the inlet passes between the pair of electrode plates in each electrode pair and reaches the outlet.
  • each electrode pair has a pair of electrode plates. Therefore, the plurality of electrode pairs are constituted by a plurality of electrode plates. The plurality of electrode plates are arranged at intervals in the thickness direction. And the water which flowed in in the container from the inlet reaches the outlet through the pair of electrode plates in each electrode pair.
  • the container is positioned on one side of the arrangement direction with respect to the plurality of electrode plates, and on the other side of the arrangement direction with respect to the plurality of electrode plates.
  • a second wall portion facing the first wall portion via the plurality of electrode plates; and extending along the arrangement direction to surround the plurality of electrode plates; and the first wall portion and the second wall portion. It is preferable to have a side wall portion that connects the wall portion, and in this case, the first flow port is provided in the first wall portion or the vicinity thereof, and the second flow port is It is preferable to be provided in the second wall portion or in the vicinity thereof.
  • one of the water inlet and outlet is provided on one side of the arrangement direction of the plurality of electrode plates, and the other of the water inlet and outlet is provided on the other side of the arrangement direction of the plurality of electrode plates. It has been.
  • the inlet and the outlet on one side and the other side in the arrangement direction, it becomes easy to spread water to the plurality of electrode pairs, so that the removal efficiency of scale components can be further improved.
  • the side wall portion extends along the arrangement direction and the third wall portion extends along the arrangement direction, and faces the third wall portion via the plurality of electrode plates.
  • a plurality of electrode plates including a first electrode plate connected to one pole of the power source and a second electrode plate connected to the other pole of the power source, The first electrode plate extends from the base end located on the third wall toward the fourth wall, and the second electrode plate extends from the base end located on the fourth wall. It is preferable to extend toward the third wall, and in this case, the water flow path is formed by alternately arranging the first electrode plate and the second electrode plate along the arrangement direction. It preferably has a serpentine path.
  • the first electrode plate and the second electrode plate are alternately arranged along the arrangement direction, and the water flow path has a meandering path.
  • the water that has flowed into the container from the inlet flows along the meandering path, and thus passes between the pair of electrode plates in each electrode pair in order from the electrode pair on the inlet side.
  • water flowing into the container from the inlet can be evenly distributed to the plurality of electrode pairs, so that the removal efficiency of the scale component can be further improved.
  • the side wall portion extends along the arrangement direction and the third wall portion extends along the arrangement direction, and faces the third wall portion via the plurality of electrode plates.
  • a gap through which water can flow is provided, and the first flow port is provided in the first wall portion at a position closer to the third wall portion than the fourth wall portion.
  • the second flow port is provided in the second wall portion at a position closer to the fourth wall portion than the third wall portion.
  • the case where the first circulation port functions as an inlet and the second circulation port functions as an outlet will be described as an example.
  • Water flowing into the container from the inlet generally follows the following path. Flow out of the exit. That is, the water flowing into the container from the inlet provided in the first wall portion passes through the gap between the one end portion of each electrode plate and the third wall portion, toward the second wall portion side along the third wall portion. Flowing. A part of the water flowing along the third wall portion flows between the electrode plates of the electrode pairs arranged in the arrangement direction. And the water which flowed along the electrode plate between the electrode plates of each electrode pair joins on the 4th wall part side, flows to the 2nd wall part side along the 4th wall part, and is a container from the 2nd circulation port. It flows out.
  • each electrode plate is preferably arranged so as to be inclined so that the one end portion is located on the one side in the arrangement direction with respect to the other end portion.
  • each electrode plate is inclined as described above, the water flow path formed by the plurality of electrode plates is also inclined in substantially the same direction as the inclination direction of the electrode plates.
  • the flow of water will be described as an example where the first circulation port functions as an inlet. That is, the inflow direction that flows into the electrode plates (water flow paths) of each electrode pair from the one end side is the flow direction in which the water that flows into the container flows to the second wall side along the third wall portion It is inclined to make an acute angle. Therefore, the water flowing toward the second wall portion along the third wall portion is likely to flow between the electrode plates of each electrode pair arranged in the arrangement direction.
  • the tank includes tap water and Water containing scale components is regularly replenished from water sources such as well water. Therefore, in the case of a heat pump type water heater, it is necessary to efficiently remove scale components as compared with the circulation type cooling water circulation device. In particular, when groundwater such as well water is used as a water supply source, scale is likely to precipitate.
  • the heat pump type water heater of the present invention has a water heat exchanger for heating water, a heat pump unit in which the refrigerant circulates through a refrigerant pipe, a tank in which water is stored, and water in the tank is used as the water.
  • a hot water storage unit having a feed-side flow path for sending to a heat exchanger, a return-side flow path for returning water heated by the water heat exchanger to the tank, a water supply pipe for supplying water to the tank from a water supply source, and A hot water supply pipe for supplying hot water stored in the tank, and the electrolyzer for removing scale components contained in the water.
  • the electrolysis apparatus that can improve the removal efficiency of scale components as compared with the conventional electrolysis apparatus is provided, the scale is deposited in the water heat exchanger even in the case of a heat pump type hot water heater. Can be effectively suppressed.
  • the electrolyzer is provided in the feed side flow path.
  • the electrolyzer is provided in the feed-side flow path. Since the flow rate of water is low and the fluctuation is small in this feed side flow path, the water passing through the electrolyzer is also almost constant at a low flow rate. Thereby, the removal effect of the scale component which is stable and effective in the electrolysis apparatus can be obtained. In addition, since the electrolysis is performed during the operation of the heat pump, it is possible to use nighttime power and to keep the electricity cost low.
  • the heat pump type hot water heater preferably further includes a control unit that controls the power source of the electrolyzer, and in this case, the control unit includes water heated by the water heat exchanger. It is preferable to control the power supply so that a voltage is applied to each electrode pair when the temperature is equal to or higher than a preset value.
  • the heat pump type hot water supply apparatus preferably further includes a control unit that controls the power source of the electrolyzer.
  • the control unit is configured to connect each electrode pair according to the water quality in the hot water storage unit.
  • the power source is controlled to adjust the voltage applied to the.
  • the feed-side flow path has a reflow channel for returning the water that has passed through the electrolyzer to the upstream side of the electrolyzer and flowing it back into the electrolyzer. It is preferable to have it.
  • water that has passed through the electrolyzer can be flowed into the electrolyzer again through the re-inflow channel, so that the scale component removal efficiency can be improved while suppressing the size of the electrolyzer from increasing. It can be further increased.
  • the heat pump type water heater further includes a reversing mechanism for reversing the inlet and the outlet of the electrolyzer.
  • the scale component contained in the water is gradually removed, so that the downstream region is more electrolyte than the upstream region.
  • the concentration is low. Accordingly, the scale region removal efficiency is likely to be lower in the downstream region than in the upstream region.
  • the concentration difference of the scale component difference in water conductivity generated between the inlet side region and the outlet side region in the container is reduced. Can be small. Thereby, in the container, the difference in electrolysis efficiency between the region on the inlet side and the region on the outlet side is reduced, and the electrolysis efficiency can be improved as a whole.
  • variation in the adhesion amount of the scale to an electrode plate can be made small among several electrode plates. Thereby, it can suppress that a scale is biased and deposited on a specific electrode plate.
  • the electrolyzer is preferably used for the transient heat pump type hot water heater.
  • the transient water heater the water supplied from the hot water supply pipe is not returned to the tank, so that almost the same amount of water discharged from the tank through the hot water supply pipe is supplied to the tank through the water supply pipe. The Therefore, it is necessary to efficiently remove the scale component as compared with the circulating cooling water circulation device and the circulating water heater. Since the electrolyzer is excellent in the removal efficiency of scale components, it is also suitable for a transient heat pump type hot water heater.
  • the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the spirit of the present invention.
  • the first flow port 43 may be provided in the vicinity of the first wall portion 471, and the second flow port 45 may be provided in the vicinity of the second wall portion 472.
  • the first circulation port 43 may be provided in the third wall portion 473 in the vicinity of the first wall portion 471, and the second circulation port 45 is in the vicinity of the second wall portion 472.
  • the fourth wall portion 474 may be provided.
  • the characteristics of the modified examples shown in FIGS. 9 to 13 have been described by taking the second embodiment having meandering paths as an example.
  • the electrolyzer 41 of the first embodiment shown in FIG. the electrolyzer 41 of the first embodiment shown in FIG.
  • the characteristic configuration of the modification shown in FIGS. 9 to 13 may be added.
  • each electrode plate may have a mesh shape in which a plurality of small through holes are formed, or may have a rod shape.
  • the electrode plate is rod-shaped, among the dimensions in two directions perpendicular to the cross section perpendicular to the longitudinal direction of the electrode plate, the shorter one is the thickness, and the longer one is the width.
  • first circulation port functions as an inlet and the second circulation port functions as an outlet
  • the first circulation port serves as an outlet
  • the second circulation port functions as an outlet
  • the mouth may be the entrance.
  • the electrolyzer 41 in the water heater 11, although the case where the electrolyzer 41 was provided in the inlet piping 27 downstream from the pump 31 was demonstrated as an example, it is not limited to this. .
  • the electrolyzer 41 may be provided in the incoming water pipe 27 upstream of the pump 31, or may be provided in the water supply pipe 37 that supplies water from the water supply source to the tank 15.
  • the container 47 has a substantially rectangular parallelepiped shape has been described as an example.
  • the container 47 may have a prismatic shape other than a rectangular parallelepiped or a cylindrical shape.
  • a transient hot water heater has been described as an example.
  • the present invention is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 電気分解装置41は、水の入口及び出口のいずれか一方として機能する第1流通口43と、水の入口及び出口のいずれか他方として機能する第2流通口45とを有する容器47と、容器47内に配設された複数の電極対49と、各電極対(49)に電圧を印加する電源51と、を備えている。各電極対49は、一対の電極板53を有している。複数の電極板53は、電極板53の厚み方向に、間隔をあけて配列されている。この電気分解装置41では、入口から容器47内に流入した水が各電極対49における一対の電極板53の間を通って出口に至るように、複数の電極板53により水流路Fが形成されている。

Description

電気分解装置及びこれを備えたヒートポンプ式給湯機
 本発明は、ヒートポンプ式給湯機などの給湯機において水中のスケール成分を除去するための電気分解装置、及びこれを備えたヒートポンプ式給湯機に関するものである。
 一般に、ヒートポンプ式給湯機は、圧縮機、水熱交換器、膨張弁及び空気熱交換器をこの順に配管で接続したヒートポンプユニットと、水が貯留されるタンク、このタンクの水を水熱交換器に送る入水配管、及び水熱交換器により加熱された水をタンクに戻す出湯配管を有する貯湯ユニットとを備えている。このヒートポンプ式給湯機では、タンクに貯留される水は、通常、水道水や井戸水などを給水源としている。
 ところで、水道水や井戸水には、スケールの発生原因となるカルシウムイオン、マグネシウムイオンなどの成分(以下、スケール成分という。)が含まれている。したがって、給湯機においては、カルシウム塩、マグネシウム塩などのスケールが析出する。特に、井戸水などの地下水は、水道水と比べて前記スケール成分の濃度が高く、スケールが生じやすい水質を有している。また、水熱交換器においては水の温度が高くなるので、他の部位よりもスケールが析出しやすい。スケールが水熱交換器における管の内面に析出して堆積すると、水熱交換器の伝熱性能が低下する、管の流路が狭くなるなどの問題が生じることがある。
 例えば特許文献1には、1つの電極対が電解槽内に設置された電気分解装置を備えた冷却水循環装置が提案されている。この特許文献1には、電気分解によって冷却水中からスケール成分を除去することができるので、循環経路内でのスケールの付着を低減できる、と記載されている。
 しかしながら、特許文献1に開示されている電気分解装置では、水中のスケール成分の除去効率が必ずしも十分ではない。
国際公開第2006/027825号
 そこで、本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、水中のスケール成分の除去効率に優れた電気分解装置、及びこれを備えたヒートポンプ式給湯機を提供することにある。
 本発明の電気分解装置(41)は、水を加熱するための水熱交換器(21)を有する給湯機に用いられる。前記電気分解装置(41)は、容器(47)と、複数の電極対(49)と、電源(51)とを備えている。前記容器(47)は、水の入口及び出口のいずれか一方として機能する第1流通口(43)と、水の入口及び出口のいずれか他方として機能する第2流通口(45)とを有する。前記複数の電極対(49)は、前記容器(47)内に配設されている。前記電源(51)は、各電極対(49)に電圧を印加する。各電極対(49)は、一対の電極板(53)を有している。複数の前記電極板(53)は、電極板(53)の厚み方向に、間隔をあけて配列されている。この電気分解装置(41)では、前記入口から前記容器(47)内に流入した水が各電極対(49)における前記一対の電極板(53)の間を通って前記出口に至るように、前記複数の電極板(53)により水流路(F)が形成されている。
本発明の一実施形態にかかるヒートポンプ式給湯機を示す構成図である。 (A)は、前記ヒートポンプ式給湯機に用いられる本発明の第1実施形態にかかる電気分解装置を示す断面図であり、電気分解装置を側方から見たときの図である。(B)は、この電気分解装置の平面図である。 (A)は、図2の電気分解装置を示す概略図であり、(B)~(D)は、第1実施形態の変形例にかかる電気分解装置をそれぞれ示す概略図である。 (A)~(D)は、第1実施形態の他の変形例にかかる電気分解装置をそれぞれ示す概略図である。 (A)~(D)は、第1実施形態のさらに他の変形例にかかる電気分解装置をそれぞれ示す概略図である。 本発明の第2実施形態にかかる電気分解装置を示す断面図である。 (A)は、図6の電気分解装置を示す概略図であり、(B)~(D)は、第2実施形態の変形例にかかる電気分解装置を示す概略図である。 (A)~(H)は、第2実施形態の他の変形例にかかる電気分解装置を示す概略図である。 (A)~(C)は、第2実施形態のさらに他の変形例にかかる電気分解装置を示す断面図である。 前記ヒートポンプ式給湯機の変形例を示す断面図である。 (A)及び(B)は、前記ヒートポンプ式給湯機の変形例を示す概略図である。 前記ヒートポンプ式給湯機の変形例を示す概略図である。 (A)及び(B)は、前記ヒートポンプ式給湯機の変形例を示す概略図である。
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。
 <ヒートポンプ式給湯機>
 図1に示すように、第1実施形態のヒートポンプ式給湯機11は、冷媒が循環するヒートポンプユニット13と、このヒートポンプユニット13の冷媒と熱交換して低温の水を沸き上げ、タンク15に高温の水を貯留する貯湯ユニット17と、給水配管37と、給湯配管35と、電気分解装置41と、制御部33とを備えている。
 ヒートポンプユニット13は、圧縮機19と、水熱交換器21と、電動膨張弁23と、空気熱交換器25と、これらを接続する配管とを有している。本実施形態では、ヒートポンプユニット13を循環する冷媒として二酸化炭素が用いられている。冷媒は、水熱交換器21において貯湯ユニット17を循環する水と熱交換してこの水を加熱し、空気熱交換器25において外気と熱交換して外気から熱を吸収する。
 貯湯ユニット17は、水が貯留されるタンク15と、このタンク15の水を水熱交換器21に送る入水配管27と、水熱交換器21と熱交換して加熱された水をタンク15に戻す出湯配管29とを有している。入水配管27には、ポンプ31が設けられている。このポンプ31は、タンク15の下部から入水配管27内に流入した水を、水熱交換器21に送り、さらに出湯配管29を通じてタンク15の上部に送る。
 電気分解装置41は、入水配管27に設けられており、ポンプ31と水熱交換器21との間に位置している。電気分解装置41の詳細については後述する。
 給湯配管35は、タンク15の上部に接続されている。この給湯配管35は、タンク15内に貯留された高温の水を取り出して浴槽などへ給湯するためのものである。給水配管37は、タンク15の底部に接続されている。この給水配管37は、給水源からタンク15内に低温の水を給水するためのものである。タンク15へ水を給水する給水源としては、例えば水道水や、井戸水などの地下水を利用することができる。
 制御部33は、中央処理装置(CPU)、プログラムなどのデータが記憶されているメモリ、プログラム実行時のデータ、各種設定値、計測されたデータなどを記憶するためのメモリなどで構成されている。制御部33は、タンク15、水熱交換器21、配管などに設けられた図略の温度センサにより測定された温度データなどに基づいてヒートポンプユニット13および貯湯ユニット17を制御する。
 次に、給湯機11の動作について説明する。タンク15内の水を沸上げる沸上げ運転では、制御部33は、ヒートポンプユニット13の圧縮機19を駆動させ、電動膨張弁23の開度を調節するとともに、貯湯ユニット17のポンプ31を駆動させる。これにより、図1に示すように、タンク15の底部に設けられた出水口からタンク15内の低温の水が入水配管27を通じて水熱交換器21に送られ、水熱交換器21において加熱される。加熱された高温の水は出湯配管29を通じてタンク15の上部に設けられた入水口からタンク15内に戻される。これにより、タンク15内には、その上部から順に高温の水が貯湯されていく。
 本実施形態のヒートポンプ式給湯機11は、一過式の給湯機である。この一過式の給湯機11では、給湯配管35から給湯された水(湯)は、ユーザーによって使用され、タンク15には戻らない。したがって、タンク15から給湯配管35を通じて給湯された水量とほぼ同じ量の水が給水源から給水配管37を通じてタンク15に給水される。すなわち、タンク15には、水道水や井戸水などの給水源からスケール成分を含む水がタンク15に補充される頻度が高く、補充される量も多い。したがって、一過式のヒートポンプ式給湯機の場合には、循環式の前記冷却水循環装置や循環式の給湯機に比べて、効率よくスケール成分を除去する必要がある。
 <電気分解装置>
 (第1実施形態)
 図2(A)は、給湯機11に用いられる本発明の第1実施形態にかかる電気分解装置41を示す断面図である。図2(A)は、電気分解装置41を側方から見たときの図である。図2(B)は、この電気分解装置41の平面図である。図2(A),(B)に示すように、第1実施形態にかかる電気分解装置41は、容器47と、複数の電極対49と、電源51とを備えている。
 図2(A),(B)に示すように、容器47は、略直方体の形状を有している。容器47は、水の流れの上流側に位置する第1壁部471と下流側に位置する第2壁部472と、これらの壁部471,472をつなぐ側壁部48とを有している。第1壁部471と第2壁部472は、後述する複数の電極板53を介して、側壁部48の延びる方向(複数の電極板53の配列方向D)に対向している。
 側壁部48は、図2(A)に示す第3壁部473及び第4壁部474と、図2(B)に示す第5壁部475及び第6壁部476とを有している。本実施形態の電気分解装置41は、例えば、第3壁部473が下に、第4壁部474が上に位置するように、図2(A)に示す向きに配置して用いられる。第3壁部473と第4壁部474は、複数の電極板53を介して高さ方向H(上下方向)に対向している。同様に、第5壁部475と第6壁部476は、複数の電極板53を介して、幅方向W(配列方向Dに垂直な水平方向)に対向している。
 第1壁部471は、水の出入口として機能する第1流通口43を有している。第2壁部472は、水の出入口として機能する第2流通口45を有している。本実施形態では、第1流通口43は、入口として機能し、第2流通口45は、出口として機能する。第1流通口43及び第2流通口45には、入水配管27がそれぞれ接続される。
 第1流通口43は、第1壁部471において、第4壁部474よりも第3壁部473に近く、かつ第6壁部476よりも第5壁部475に近い位置に設けられている。第2流通口45は、第2壁部472において、第3壁部473よりも第4壁部474に近く、かつ第5壁部475よりも第6壁部476に近い位置に設けられている。具体的には、第1流通口43及び第2流通口45は、直方体形状の容器47における対角の近傍にそれぞれ設けられている。
 容器47は、細長い形状を有している。第1壁部471の外面と第2壁部472の外面との距離は、第3壁部473の外面と第4壁部474の外面との距離、及び第5壁部475の外面と第6壁部476の外面との距離よりも大きい。
 各電極対49は、一対の電極板53(第1電極板531と第2電極板532)により構成されている。容器47内には、複数の電極対49を構成する複数の電極板53が配置されている。複数の電極板53は、電極板53の厚み方向に、間隔をあけて配列されている。各電極板53は、配列方向Dとほぼ垂直な方向に延びる姿勢で配置されている。配列方向Dは、側壁部48の延びる方向(容器47の長手方向)とほぼ一致している。各電極対49の電極板53同士の間隔はほぼ同じである。各電極対49における電極板53同士の隙間は、水が流れる流路(水流路)Fとして機能する。
 各電極板53は、略長方形である。電極板53の材料としては、チタン、白金、ニッケル、炭素、黒鉛、銅、ガラス質炭素などが例示できる。
 複数の電極板53は、電源51の正極に接続された複数の第1電極板531と、電源51の負極に接続された複数の第2電極板532とを含む。本実施形態では、第1電極板531が陽極として機能し、第2電極板532が陰極として機能する。複数の電極板53の配列方向Dに沿って、第1電極板531と第2電極板532とは、交互に並んでいる。各電極板53は、異極の電極板53と絶縁された状態で、例えば図略の支持部材などによって側壁部48に固定されている。
 例えば図2(A)において、左端の第2電極板532と左から2番目の第1電極板531とは1つの電極対49を構成している。また、左から2番目の第1電極板531と左から3番目の第2電極板532とは1つの電極対49を構成している。以下、同様にして隣り合う電極板53が1つの電極対49を構成している。
 図2(A)に示すように、各電極板53における高さ方向Hの一端部53aと第3壁部473の内面との間には水が流通可能な隙間G1が設けられている。また、各電極板53における高さ方向Hの他端部53bと第4壁部474の内面との間には水が流通可能な隙間G2が設けられている。各電極板53と側壁部48の内面との隙間は、前述の隙間G1と隙間G2のみであってもよいが、さらに、各電極板53の端部と第5壁部475の内面との間、及び各電極板53の端部と第6壁部476の内面との間に設けられていてもよい。
 以上のような構造を有する電気分解装置41では、第1流通口43から容器47内に流入した水は、おおよそ次のような経路をたどって第2流通口45から容器47外に流出する。すなわち、容器47内に流入した水は、各電極板53の一端部53aと第3壁部473の内面との隙間G1を通じて、第3壁部473に沿って第2壁部472側に流れる。この第3壁部473に沿って流れる水は、その一部が配列方向Dに並ぶ各電極対49の電極板53同士の隙間(水流路F)に、上流側の水流路Fから順に流れ込んでいく。そして、各電極対49の水流路Fを電極板53に沿って流れた水は、第4壁部474側において合流し、第4壁部474に沿って第2壁部472側に流れ、第2流通口45から容器47外に流出する。
 第1流通口43から容器47内に流入した水が第2流通口45から容器47外に流出するまでの間に、電気分解によって陰極の第2電極板532にスケールが析出する。第2電極板532に付着したスケールは、例えば第2電極板532を定期的に洗浄するなどして電気分解装置41内から除去される。また、後述する図9(A),(B)の第2実施形態の変形例に示すように、電極板53の極性を反転させることにより、陰極に付着していたスケールを陰極から脱落させることもできる。
 電気分解中の陰極では、水素イオンと電子が反応して水素が生じる反応(2H+2e→H)が起こり、陰極周辺のpHが上昇する。一方、電気分解中の陽極では、水酸化物イオンから水と酸素が生じる反応(4OH→2HO+O+4e)が起こり、陽極周辺のpHが低下する。
 図3(A)は、図2の電気分解装置を示す概略図であり、図3(B)~図3(D)、図4(A)~図4(D)及び図5(A)~図5(D)は、第1実施形態の変形例にかかる電気分解装置41を示す概略図である。これらの図は、電気分解装置41を側方から見たときの断面を示している。これらの電気分解装置41では、電源51の図示を省略している。図3(A)に示す電気分解装置41は、前述した図2に示す電気分解装置41と同様の構造であるので説明を省略する。他の変形例については、主な構成を以下に概説する。
 図3(B)に示す電気分解装置41は、基本構造が図3(A)に示す電気分解装置41と同様であり、使用時の装置の向きが異なっている。この電気分解装置41では、電極板53の配列方向D及び容器47の長手方向は、ともに上下方向(高さ方向H)に向いている。図3(C)に示す電気分解装置41では、電極板53の配列方向Dは、水平方向に向いており、容器47の長手方向は、上下方向に向いている。図3(D)に示す電気分解装置41では、電極板53の配列方向Dは、上下方向に向いており、容器47の長手方向は、水平方向に向いている。
 図4(A)~図4(D)に示す電気分解装置41は、図3(A)~図3(D)に示す電気分解装置41とそれぞれ類似しており、複数の電極板53が次のように傾斜している点で図3(A)~図3(D)に示す電気分解装置41と異なっている。
 図4(A)~図4(D)に示す各電気分解装置41では、各電極板53は、一端部53aが他端部53bよりも配列方向Dの一方側(配列方向Dの第1壁部471側)に位置するように傾斜して配置されている。例えば、図3(A)に示す変形例では、各電極板53は、容器47の高さ方向Hとほぼ平行な方向に配置されているが、図4(A)に示す変形例では、各電極板53は、高さ方向Hに対して傾斜して配置されている。
 各電極板53が上記のように傾斜して配置されていることにより、複数の電極板53により形成された水流路Fも電極板53の傾斜方向とほぼ同じ方向に傾斜している。
 これらの変形例における水の流れは、例えば図4(A)の電気分解装置41を例に挙げて説明すると、おおよそ次のようになる。すなわち、電極板53の一端部53a側から水流路Fに流入する流入方向は、第1流通口43から容器47内に流入した水が第3壁部473に沿って第2壁部472側に流れる流れ方向と鋭角(図4(A)の角度θ)をなすように傾斜している。
 したがって、図4(A)~図4(D)に示す変形例では、第3壁部473に沿って第2壁部472側に流れる水は、図3(A)~(D)に示す変形例と比べて、各電極対49の水流路Fに流れ込みやすくなる。しかも、各電極対49の水流路Fを電極板53に沿って流れた水は、第4壁部474側において他の水流路Fを流れてきた水とスムーズに合流する。
 また、図4(A)~図4(D)に示す変形例では、各電極板53が傾斜して配置されているので、図3(A)~(D)に示す変形例と比べて、容器47の大きさが同じであっても各電極板53の面積を大きくすることができる。
 図5(A)~図5(D)に示す電気分解装置41は、複数の電極板が傾斜している点で図4(A)~図4(D)に示す変形例と構造がそれぞれ類似しているが、以下の点で図4(A)~図4(D)に示す変形例と構造が異なっている。
 図5(A)~図5(D)に示す電気分解装置41では、各電極板53は、一端部53a側の部位と他端部53b側の部位とが図4(A)~図4(D)に示す変形例の各電極板53の傾斜方向と同様の方向に傾斜しており、一端部53a側の部位と他端部53b側の部位との間の部位は、配列方向Dにほぼ垂直である。言い換えると、図5(A)~図5(D)に示すでは、各電極板53は、容器47の高さ方向Hにほぼ平行な非傾斜部位と、この非傾斜部位よりも一端部53a側の部位と、非傾斜部位よりも他端部53b側の部位とを有している。
 したがって、図5(A)~図5(D)に示す変形例では、図3(A)~図3(D)に示す変形例と比べて、各電極対49の水流路Fへの流れ込みやすさと、合流時の円滑性とが向上するとともに、各電極板53の面積を大きくすることができる。
 (第2実施形態)
 図6は、本発明の第2実施形態にかかる電気分解装置41を示す断面図である。図6は、電気分解装置41を水平方向に見たときの図である。図6に示すように、この第2実施形態では、各電極板53の構成が第1実施形態とは異なっている。第1実施形態と同様の構成については、第1実施形態と同じ符号を付し、その詳細な説明を省略する。
 この電気分解装置41では、複数の第1電極板531は、第3壁部473に位置する基端部から第4壁部474に向かってそれぞれ延設されている。各第1電極板531の基端部は、第3壁部473と略平行な方向に延設された連結板54(又は連結用配線54)につながっている。この連結板54の端部は電源51の正極に接続されている。連結板54は、第3壁部473内に埋設されている。各第1電極板531の先端部(第4壁部474側の端部)と、第4壁部474の内面との間には水が流通可能な隙間G3が設けられている。
 複数の第2電極板532は、第4壁部474に位置する基端部から第3壁部473に向かってそれぞれ延設されている。各第2電極板532の基端部は、第4壁部474と略平行な方向に延設された連結板56(又は連結用配線56)につながっている。この連結板56の端部は電源51の負極に接続されている。連結板56は、第4壁部474内に埋設されている。各第2電極板532の先端部(第3壁部473側の端部)と、第3壁部473の内面との間には水が流通可能な隙間G4が設けられている。
 複数の第1電極板531とこれらが連結された連結板54とは、図6に示す断面形状が櫛状である。同様に、複数の第2電極板532とこれらが連結された連結板56とは、図6に示す断面形状が櫛状である。第1電極板531と第2電極板532は、配列方向Dに沿って交互に並んでいる。以上のような構造を有する第2実施形態の電気分解装置41では、図6に示すように、水流路Fは、上下に蛇行した経路を有している。
 図7(A)は、図6の電気分解装置41を示す概略図であり、図7(B)~図7(D)は、第2実施形態の変形例にかかる電気分解装置41を示す概略図である。これらの図は、電気分解装置41を側方から見たときの断面を示している。
 図7(A)に示す電気分解装置41は、前述した図6に示す電気分解装置41と同様の構造である。この電気分解装置41では、第1流通口43から容器47内に流入した水は、上下に蛇行しながら側方に向かって容器47内を流れる。
 図7(B)に示す電気分解装置41では、電極板53の配列方向D及び容器47の長手方向は、ともに上下方向に向いている。また、この電気分解装置41では、第1流通口43は、第3壁部473に設けられており、第1壁部471と第3壁部473とが交わる角部又はその近傍に位置している。第2流通口45は、第4壁部474に設けられており、第2壁部472と第4壁部474とが交わる角部又はその近傍に位置している。この電気分解装置41では、第1流通口43から容器47内に流入した水は、左右に蛇行しながら上方に向かって容器47内を流れる。なお、第2流通口45を入口とし、第1流通口45を出口としてもよい。
 図7(C)に示す電気分解装置41では、電極板53の配列方向Dは、水平方向に向いており、容器47の長手方向は、上下方向に向いている。水の流れは図7(A)の電気分解装置41と同様である。
 図7(D)に示す電気分解装置41では、電極板53の配列方向Dは、上下方向に向いており、容器47の長手方向は、水平方向に向いている。また、この電気分解装置41では、第1流通口43は、第3壁部473に設けられており、第1壁部471と第3壁部473とが交わる角部又はその近傍に位置している。第2流通口45は、第4壁部474に設けられており、第2壁部472と第4壁部474とが交わる角部又はその近傍に位置している。水の流れは図7(B)の電気分解装置41と同様である。
 図8(A),(B)は、第2実施形態のさらに他の変形例にかかる電気分解装置を示す概略図である。図8(A)は、電気分解装置41を上方から見たときの断面を示しており、図8(B)は、この電気分解装置41を側方から見たときの断面を示している。この電気分解装置41では、電極板53の配列方向D及び容器47の長手方向は、ともに水平方向に向いている。この電気分解装置41では、第1流通口43から容器47内に流入した水は、左右に蛇行しながら側方に向かって容器47内を流れる。
 図8(C),(D)は、第2実施形態のさらに他の変形例にかかる電気分解装置を示す概略図である。図8(C)は、電気分解装置41を下流側から見たときの断面を示しており、図8(D)は、この電気分解装置41を側方から見たときの断面を示している。この電気分解装置41では、電極板53の配列方向D及び容器47の長手方向は、ともに上下方向に向いている。この電気分解装置41では、第1流通口43から容器47内に流入した水は、左右に蛇行しながら上方に向かって容器47内を流れる。
 図8(E),(F)は、第2実施形態のさらに他の変形例にかかる電気分解装置を示す概略図である。図8(E)は、電気分解装置41を上方から見たときの断面を示しており、図8(F)は、この電気分解装置41を側方から見たときの断面を示している。この電気分解装置41では、電極板53の配列方向Dは、水平方向を向いており、容器47の長手方向は、上下方向に向いている。この電気分解装置41では、第1流通口43から容器47内に流入した水は、左右に蛇行しながら側方に向かって容器47内を流れる。
 図8(G),(H)は、第2実施形態のさらに他の変形例にかかる電気分解装置を示す概略図である。図8(G)は、電気分解装置41を下流側から見たときの断面を示しており、図8(H)は、この電気分解装置41を側方から見たときの断面を示している。この電気分解装置41では、電極板53の配列方向Dは、上下方向を向いており、容器47の長手方向は、水平方向に向いている。この電気分解装置41では、第1流通口43から容器47内に流入した水は、左右に蛇行しながら上方に向かって容器47内を流れる。
 図9(A),(B)は、第2実施形態のさらに他の変形例にかかる電気分解装置を示す断面図である。この電気分解装置41は、図6に示す電気分解装置41と同様の構成については同じ符号を付してその説明を省略する。この変形例の電気分解装置41は、電極板53の極性を反転させる反転機構を有している。
 図9(A)に示す状態では、複数の第1電極板531は、連結板54を介して電源51の正極につながっており、複数の第2電極板532は、連結板56を介して電源51の負極につながっている。図9(B)に示す状態では、前記反転機構によって電極板53の極性が反転している。すなわち、複数の第1電極板531は、連結板54を介して電源51の負極につながっており、複数の第2電極板532は、連結板56を介して電源51の正極につながっている。例えば図9(C)に示す反転機構のように、接点切替部71の接点及び接点切替部72の接点を切り替えることによって電極板53の極性を反転させることができる。
 この変形例では、所定の周期、又は後述する水質、温度などの所定の条件に基づいて電極板53の極性を反転させる。電気分解装置41では、電気分解により陰極にスケールが付着するが、電極板53の極性を反転させて陰極であった電極板53が陽極に変わると、その近傍において局所的に液のpHが低下する。これにより、電極板53の表面のスケールが一部溶解して電極板53から脱落する。このような反転動作が所定の周期又は所定の条件で繰り返されることにより、電極板53へのスケールの付着を抑制することができる。
 図10は、ヒートポンプ式給湯機11の変形例を示す断面図である。この変形例の給湯機11は、電気分解装置41を迂回するバイパス配管27aをさらに備えている。このバイパス配管27aは、電気分解装置41よりも上流側に位置する入水配管27と下流側に位置する入水配管27とをつないでいる。例えば図10に示すように電気分解装置41よりも上流側に位置する入水配管27に弁81が取り付けられ、バイパス配管27aにも弁82が取り付けられる。弁81は、バイパス配管27aの分岐箇所よりも下流側の入水配管27に設けられている。
 電気分解装置41において、電気分解を行う場合には、弁81を開け、弁82を閉じる。一方、電気分解装置41において、電気分解を行わない場合には、弁81を閉じ、弁82を開ける。これにより、電気分解を行わない場合には、水の流れの抵抗が小さいバイパス配管27aを通じて水を流すことができるので、ポンプ31の動力を低減することができる。また、電気分解を行うときに限って電気分解装置41に水を流すので、電極板53の消耗(摩耗)を抑制できる。
 図11(A),(B)は、ヒートポンプ式給湯機11の他の変形例を示す概略図である。これらの給湯機11は、電気分解装置41における入口と出口を反転させる機構を有している。
 まず、図11(A)に示すヒートポンプ式給湯機11では、電気分解装置41よりも上流側に位置する入水配管27は、例えば三方弁83に接続されており、この三方弁83から分岐管271と分岐管272とが分岐している。分岐管271は、容器47の第1壁部471に接続され、分岐管272は、第2壁部472に接続されている。また、電気分解装置41よりも下流側に位置する入水配管27は、例えば三方弁84に接続されており、この三方弁84から分岐管273と分岐管274とが分岐している。分岐管273は、第2壁部472に接続され、分岐管274は、第1壁部471に接続されている。
 このヒートポンプ式給湯機11では、容器47内において実線の矢印Aの方向に水を流す場合には、三方弁83及び三方弁84を切り替えて分岐管271及び分岐管273に水を流通させる。一方、容器47内において二点鎖線の矢印Bの方向に水を流す場合には、三方弁83及び三方弁84を切り替えて分岐管272及び分岐管274に水を流通させる。これにより、容器47内において、入口側の領域と出口側の領域との間で生じるスケール成分の濃度差(水の導電率の差)を小さくすることができる。このような切替動作は、所定の周期、又は後述する水質、温度などの所定の条件に基づいて行われる。
 図12は、ヒートポンプ式給湯機11のさらに他の変形例を示す概略図である。この変形例の給湯機11は、電気分解装置41を通過した水を電気分解装置41の上流側に戻して電気分解装置41に再度流入させるための再流入配管27bをさらに備えている。この再流入配管27bは、電気分解装置41よりも上流側に位置する入水配管27と下流側に位置する入水配管27とをつないでいる。
 再流入配管27bには、開閉可能な弁92と、ポンプ91とが設けられている。ポンプ91は、下流側の入水配管27を流れる水の一部を、再流入配管27bを通じて図12の矢印の方向に送り、上流側の入水配管27に合流させる役割を果たす。
 電気分解装置41よりも上流側に位置する入水配管27には、再流入配管27bとの接続箇所よりも上流側の位置に逆止弁93が設けられている。また、電気分解装置41よりも下流側に位置する入水配管27には、再流入配管27bとの接続箇所よりも下流側の位置に逆止弁94が設けられている。
 電気分解装置41の通常運転では、弁92は閉じられ、ポンプ91を停止させる。一方、電気分解装置41における電気分解の効率を通常運転時よりも高めたい場合には、弁92は開けられ、ポンプ91を駆動させる。ポンプ91が駆動すると、電気分解装置41から流出した水の一部は、再流入配管27bを通って電気分解装置41の上流側の入水配管27に再度流れ込み、入水配管27を流れる水と合流し、電気分解装置41に流入する。
 図13(A),(B)は、ヒートポンプ式給湯機11の他の変形例を示す概略図である。これらの変形例の給湯機11は、センサ95をさらに備えている。図13(A)に示す給湯機11では、センサ95は、電気分解装置41よりも上流側に位置する入水配管27に取り付けられている。図13(B)に示す給湯機11では、センサ95は、電気分解装置41よりも下流側に位置する入水配管27に取り付けられている。
 センサ95としては、例えば水質測定センサ、温度センサなどが挙げられる。センサ95が水質測定センサの場合、センサ95により例えば水の導電率を測定することによって水の硬度を検知する。
 制御部33は、入水配管27内を流れる水質に応じて各電極対49に印加される電圧を調節するように電源51を制御する。具体的には、硬度が高くスケールが生じやすい水質である場合には、制御部33は、各電極対49に高い電圧をかける。これにより、電気分解装置41においてスケール成分の除去効果を高めることができる。一方、硬度が低くスケールが生じにくい水質である場合には、制御部33は、各電極対49に上記よりも低い電圧をかける。これにより、消費電力を削減できる。
 センサ95が温度センサである場合、制御部33は、センサ95により検知される水温が予め設定された所定値よりも大きいときに各電極対49に高い電圧をかけるように電源51を制御する。一方、制御部33は、センサ95により検知される水温が前記所定値以下であるときには各電極対49に上記よりも低い電圧をかけるように電源51を制御する。これにより、消費電力を削減できる。
 また、上記のようにセンサ95により検知される水温に基づいて電源51を制御するのではなく、給湯機11の設定温度などに基づいて制御してもよい。例えば、給湯機11では、冬季には水熱交換器21により加熱される水の温度が例えば85℃~90℃という高い温度に設定される。また、夏季には水熱交換器21により加熱される水の温度が例えば60℃程度の比較的低い温度に設定される。そして、制御部33は、前記設定温度が高い冬季には電気分解装置41において各電極対49に電圧を印加するように電源51を制御し、夏季には各電極対49に電圧を印加しないか、又は印加する電圧が冬季よりも低くなるように電源51を制御する。
 以上説明したように、前記実施形態では、複数の電極対49を容器47内に配設することにより、1つの電極対49が電解槽内に設置された従来の電気分解装置41に比べて、スケール成分の除去効率を向上させることができる。また、複数の電極板53は、厚み方向に間隔をあけて配列されている。そして、入口から容器47内に流入した水は、各電極対49における一対の電極板53の間を通って出口に至る。このような構成を採用することにより、複数の電極対49が占める容積を小さく抑えつつ、電極と水との接触面積を大きくすることができる。
 また、前記実施形態では、水の入口及び出口の一方が、複数の電極板53の配列方向Dの一方側に設けられており、水の入口及び出口の他方が、複数の電極板53の配列方向Dの他方側に設けられている。このように入口と出口を配列方向Dの一方側と他方側に設けることによって、複数の電極対49に水を行き渡らせやすくなるので、スケール成分の除去効率をより向上させることができる。
 また、前記第1実施形態では、第1壁部471に設けられた入口から容器47内に流入した水は、各電極板53の一端部と第3壁部473との隙間を通じて、第3壁部473に沿って第2壁部472側に流れる。この第3壁部473に沿って流れる水は、その一部が配列方向Dに並ぶ各電極対49の電極板間に流れ込んでいく。そして、各電極対49の電極板間を電極板53に沿って流れた水は、第4壁部474側において合流し、第2流通口45から容器47外に流出する。
 この第1実施形態の変形例では、各電極板53は、一端部53aが他端部53bよりも配列方向Dの一方側に位置するように傾斜して配置されている。各電極板53が上記のように傾斜して配置されていることにより、複数の電極板53により形成された水流路Fも電極板53の傾斜方向とほぼ同じ方向に傾斜している。一端部53a側から水流路Fに流入する流入方向は、入口から容器47内に流入した水が第3壁部473に沿って第2壁部472側に流れる流れ方向と鋭角をなすように傾斜している。したがって、第1壁部471に設けられた入口から容器47内に流入し、各電極板53の一端部53aと第3壁部473との前記隙間を通じて第3壁部473に沿って第2壁部472側に流れる水は、配列方向Dに並ぶ各電極対49の電極板間に流れ込みやすくなる。
 また、前記第2実施形態では、第1電極板531と第2電極板532が配列方向Dに沿って交互に並び、水流路Fが蛇行した経路を有している。入口から容器47内に流入した水は、前記蛇行した経路に沿って流れることにより、各電極対49における一対の電極板53の間を順に通過する。これにより、入口から容器47内に流入した水を複数の電極対49に満遍なく行き渡らせることができるので、スケール成分の除去効率をさらに向上させることができる。
 また、前記実施形態では、電気分解装置41は、入水配管27に設けられている。この入水配管27においては水の流速が低く、その変動が小さいので、電気分解装置41を通過する水も低流速でほぼ一定である。これにより、電気分解装置41において安定して効果的なスケール成分の除去効果を得ることができる。また、ヒートポンプの運転時に電気分解を行うので、夜間電力を使用でき、電気代を低く抑えることも可能になる。
 また、前記実施形態では、水の温度がスケールの発生しやすい予め設定された値以上の場合に各電極対49に電圧が印加され、それ以外のときには電圧の印加をせずに消費電力を低減できる。
 また、前記実施形態では、例えば水の硬度などの水質に応じて各電極対49に印加される電圧を調節するので、その水質に必要とされる電圧の印加が可能になる。これにより、スケール成分の除去効率を高めつつ、過剰な電圧の印加を抑制して消費電力を低減できる。
 また、前記実施形態では、電気分解装置41を通過した水を、再流入流路を通じて再度電気分解装置41に流入させることができるので、電気分解装置41のサイズが大きくなるのを抑制しつつ、スケール成分の除去効率をさらに高めることができる。
 また、前記実施形態では、前記反転機構により入口と出口を反転させることにより、容器47内において、入口側の領域と出口側の領域との間で生じるスケール成分の濃度差(水の導電率の差)を小さくすることができる。これにより、容器47内において、入口側の領域と出口側の領域の電気分解効率の差が小さくなり、全体として電気分解効率を向上させることができる。また、トータルの消費電力を抑えつつ、スケール成分の除去効率を維持又は向上させることも可能になる。また、電極板53へのスケールの付着量のばらつきを、複数の電極板間で小さくすることができる。これにより、特定の電極板53にスケールが偏って析出するのを抑制できる。したがって、例えば、前述したような極性を反転させる動作の周期を長くすることができる。また、極性の反転動作を省略して陰極の洗浄のみでの運転も可能になる。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の電気分解装置は、水を加熱するための水熱交換器を有する給湯機に用いられる。前記電気分解装置は、容器と、複数の電極対と、電源とを備えている。前記容器は、水の入口及び出口のいずれか一方として機能する第1流通口と、水の入口及び出口のいずれか他方として機能する第2流通口とを有する。前記複数の電極対は、前記容器内に配設されている。前記電源は、各電極対に電圧を印加する。各電極対は、一対の電極板を有している。複数の前記電極板は、電極板の厚み方向に、間隔をあけて配列されている。この電気分解装置では、前記入口から前記容器内に流入した水が各電極対における前記一対の電極板の間を通って前記出口に至るように、前記複数の電極板により水流路が形成されている。
 この構成では、複数の電極対を容器内に配設することにより、1つの電極対が電解槽内に設置された従来の電気分解装置に比べて、スケール成分の除去効率を向上させることができる。また、各電極対は、一対の電極板を有している。したがって、前記複数の電極対は、複数の電極板により構成されている。複数の電極板は、厚み方向に間隔をあけて配列されている。そして、入口から容器内に流入した水は、各電極対における前記一対の電極板の間を通って出口に至る。このような構成を採用することにより、複数の電極対が占める容積を小さく抑えつつ、電極と水との接触面積を大きくすることができる。
 また、前記電気分解装置において、前記容器は、前記複数の電極板よりもこれらの配列方向の一方側に位置する第1壁部と、前記複数の電極板よりも前記配列方向の他方側に位置し、前記複数の電極板を介して前記第1壁部と対向する第2壁部と、前記配列方向に沿って延びて前記複数の電極板を囲むとともに、前記第1壁部と前記第2壁部をつなぐ側壁部と、を有しているのが好ましく、この場合において、前記第1流通口は、前記第1壁部又はその近傍に設けられており、前記第2流通口は、前記第2壁部又はその近傍に設けられているのが好ましい。
 この構成では、水の入口及び出口の一方が、複数の電極板の配列方向の一方側に設けられており、水の入口及び出口の他方が、複数の電極板の配列方向の他方側に設けられている。このように入口と出口を前記配列方向の一方側と他方側に設けることによって、前記複数の電極対に水を行き渡らせやすくなるので、スケール成分の除去効率をより向上させることができる。
 複数の電極板の好ましい配置例としては、次のような構成が挙げられる。すなわち、前記電気分解装置において、前記側壁部は、前記配列方向に沿って延びる第3壁部と、前記配列方向に沿って延び、前記複数の電極板を介して前記第3壁部と対向する第4壁部とを含み、前記複数の電極板は、前記電源の一方の極に接続される第1電極板と、前記電源の他方の極に接続される第2電極板とを有し、前記第1電極板は、前記第3壁部に位置する基端部から前記第4壁部に向かって延設され、前記第2電極板は、前記第4壁部に位置する基端部から前記第3壁部に向かって延設されているのが好ましく、この場合において、前記水流路は、前記第1電極板と前記第2電極板が前記配列方向に沿って交互に並ぶことにより、蛇行した経路を有しているのが好ましい。
 この構成では、前記第1電極板と前記第2電極板が前記配列方向に沿って交互に並び、前記水流路が蛇行した経路を有している。入口から容器内に流入した水は、前記蛇行した経路に沿って流れることにより、各電極対における前記一対の電極板の間を、前記入口側の電極対から順に通過する。これにより、入口から容器内に流入した水を前記複数の電極対に満遍なく行き渡らせることができるので、スケール成分の除去効率をさらに向上させることができる。
 また、複数の電極板の他の配置例としては、次のような構成が挙げられる。例えば、前記電気分解装置において、前記側壁部は、前記配列方向に沿って延びる第3壁部と、前記配列方向に沿って延び、前記複数の電極板を介して前記第3壁部と対向する第4壁部とを含み、各電極板の一端部と前記第3壁部との間には水が流通可能な隙間が設けられており、各電極板の他端部と前記第4壁部との間には水が流通可能な隙間が設けられており、前記第1流通口は、前記第1壁部において、前記第4壁部よりも前記第3壁部に近い位置に設けられており、前記第2流通口は、前記第2壁部において、前記第3壁部よりも前記第4壁部に近い位置に設けられている。
 この構成では、第1流通口が入口として機能し、第2流通口が出口として機能する場合を例に挙げて説明すると、入口から容器内に流入した水は、おおよそ次のような経路をたどって出口から流出する。すなわち、第1壁部に設けられた入口から容器内に流入した水は、各電極板の一端部と第3壁部との前記隙間を通じて、第3壁部に沿って第2壁部側に流れる。この第3壁部に沿って流れる水は、その一部が前記配列方向に並ぶ各電極対の電極板間に流れ込んでいく。そして、各電極対の電極板間を電極板に沿って流れた水は、第4壁部側において合流し、第4壁部に沿って第2壁部側に流れ、第2流通口から容器外に流出する。
 また、前記電気分解装置において、各電極板は、前記一端部が前記他端部よりも前記配列方向の前記一方側に位置するように傾斜して配置されているのが好ましい。
 この構成では、各電極板が上記のように傾斜して配置されていることにより、前記複数の電極板により形成された前記水流路も電極板の傾斜方向とほぼ同じ方向に傾斜している。例えば第1流通口が入口として機能する場合を例に挙げて水の流れを説明すると、次のようになる。すなわち、前記一端部側から各電極対の電極板間(水流路)に流入する流入方向は、容器内に流入した水が前記第3壁部に沿って前記第2壁部側に流れる流れ方向と鋭角をなすように傾斜している。したがって、第3壁部に沿って第2壁部側に流れる水は、前記配列方向に並ぶ各電極対の電極板間に流れ込みやすくなる。
 ところで、特許文献1のように水を冷却水として循環させる循環式の冷却水循環装置ではなく、加熱された水(湯)をユーザーが利用するヒートポンプ式給湯機においては、タンクには、水道水や井戸水などの給水源からスケール成分を含む水が定期的に補充される。したがって、ヒートポンプ式給湯機の場合には、循環式の前記冷却水循環装置に比べて、効率よくスケール成分を除去する必要がある。特に、井戸水などの地下水を給水源として用いた場合にはスケールが析出しやすい。
 そこで、本発明のヒートポンプ式給湯機は、水を加熱するための水熱交換器を有し、冷媒配管を通じて冷媒が循環するヒートポンプユニットと、水が貯留されるタンク、前記タンクの水を前記水熱交換器に送る送り側流路、及び前記水熱交換器により加熱された水を前記タンクに戻す戻し側流路を有する貯湯ユニットと、給水源から前記タンクに水を給水する給水配管、及び前記タンクに貯留された高温の水を給湯する給湯配管と、前記水に含まれるスケール成分を除去するための前記電気分解装置と、を備えている。
 この構成では、従来の電気分解装置に比べてスケール成分の除去効率を向上させることができる前記電気分解装置を備えているので、ヒートポンプ式給湯機であっても、水熱交換器においてスケールが析出するのを効果的に抑制することができる。
 また、前記ヒートポンプ式給湯機において、前記電気分解装置は、前記送り側流路に設けられているのが好ましい。
 この構成では、前記電気分解装置は、前記送り側流路に設けられている。この送り側流路においては水の流速が低く、その変動が小さいので、電気分解装置を通過する水も低流速でほぼ一定である。これにより、電気分解装置において安定して効果的なスケール成分の除去効果を得ることができる。また、ヒートポンプの運転時に電気分解を行うので、夜間電力を使用でき、電気代を低く抑えることも可能になる。
 また、前記ヒートポンプ式給湯機において、前記電気分解装置の前記電源を制御する制御部をさらに備えているのが好ましく、この場合において、前記制御部は、前記水熱交換器により加熱される水の温度が予め設定された値以上の場合に各電極対に電圧が印加されるように前記電源を制御するのが好ましい。
 この構成では、水の温度がスケールの発生しやすい前記予め設定された値以上の場合に各電極対に電圧が印加され、それ以外のときには電圧の印加をせずに消費電力を低減できる。
 また、前記ヒートポンプ式給湯機において、前記電気分解装置の前記電源を制御する制御部をさらに備えているのが好ましく、この場合において、前記制御部は、前記貯湯ユニットにおける水質に応じて各電極対に印加される電圧を調節するように前記電源を制御するのが好ましい。
 この構成では、例えば水の硬度などの水質に応じて各電極対に印加される電圧を調節するので、その水質に必要とされる電圧の印加が可能になる。これにより、スケール成分の除去効率を高めつつ、過剰な電圧の印加を抑制して消費電力を低減できる。
 また、前記ヒートポンプ式給湯機において、前記送り側流路は、前記電気分解装置を通過した水を前記電気分解装置の上流側に戻して前記電気分解装置に再度流入させるための再流入流路を有しているのが好ましい。
 この構成では、電気分解装置を通過した水を、再流入流路を通じて再度電気分解装置に流入させることができるので、電気分解装置のサイズが大きくなるのを抑制しつつ、スケール成分の除去効率をさらに高めることができる。
 また、前記ヒートポンプ式給湯機において、前記電気分解装置における前記入口と前記出口を反転させる反転機構をさらに備えているのが好ましい。
 電気分解装置の容器内を水が上流側から下流側に流れる過程においては、水に含まれるスケール成分は、徐々に除去されるので、上流側の領域よりも下流側の領域の方が電解質の濃度が低い。したがって、前記下流側の領域の方が前記上流側の領域よりもスケール成分の除去効率が低くなりやすい。この構成では、前記機構により前記入口と前記出口を反転させることにより、容器内において、入口側の領域と出口側の領域との間で生じるスケール成分の濃度差(水の導電率の差)を小さくすることができる。これにより、容器内において、入口側の領域と出口側の領域の電気分解効率の差が小さくなり、全体として電気分解効率を向上させることができる。また、トータルの消費電力を抑えつつ、スケール成分の除去効率を維持又は向上させることも可能になる。また、電極板へのスケールの付着量のばらつきを、複数の電極板間で小さくすることができる。これにより、特定の電極板にスケールが偏って析出するのを抑制できる。
 また、前記電気分解装置は、一過式の前記ヒートポンプ式給湯機に用いるのが好ましい。一過式の給湯機では、前記給湯配管から給湯された水を前記タンクに戻さないので、タンクから給湯配管を通じて排出された水量とほぼ同じ量の水が給水源から給水配管を通じてタンクに給水される。したがって、循環式の前記冷却水循環装置や循環式の給湯機に比べて、効率よくスケール成分を除去する必要がある。前記電気分解装置は、スケール成分の除去効率に優れているので、一過式のヒートポンプ式給湯機にも好適である。
 なお、本発明は、前記実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。例えば、前記実施形態では、第1流通口が第1壁部に設けられ、第2流通口が第2壁部に設けられている形態を例示したが、これに限定されない。第1流通口43は、第1壁部471の近傍に設けられていてもよく、第2流通口45は、第2壁部472の近傍に設けられていてもよい。具体的には、例えば、第1流通口43は、第1壁部471の近傍の第3壁部473に設けられていてもよく、第2流通口45は、第2壁部472の近傍の第4壁部474に設けられていてもよい。
 前記実施形態では、図9~図13に示す変形例の特徴を、蛇行した経路を有する第2実施形態を例に挙げて説明したが、例えば図2に示す第1実施形態の電気分解装置41に、図9~図13に示す変形例の特徴的な構成を付加してもよい。
 また、各電極板は、小さな貫通孔が複数形成された網目状であってもよく、棒状であってもよい。電極板が棒状である場合には、電極板の長手方向に垂直な断面において直交する2方向の寸法のうち、短い方を厚みとし、長い方を幅とする。
 また、前記実施形態では、主に、第1流通口が入口として機能し、第2流通口が出口として機能する場合を例に挙げて説明したが、第1流通口を出口とし、第2流通口を入口としてもよい。
 また、前記実施形態では、図1に示すように、給湯機11において、ポンプ31よりも下流側の入水配管27に電気分解装置41を設ける場合を例に挙げて説明したが、これに限定されない。電気分解装置41は、ポンプ31よりも上流側の入水配管27に設けてもよく、また、給水源からタンク15に水を供給する給水配管37に設けてもよい。
 また、前記実施形態では、容器47が略直方体の形状を有している場合を例に挙げて説明したが、これに限定されない。容器47は、直方体以外の角柱形状であってもよく、円柱形状であってもよい。
 また、前記実施形態では、一過式の給湯機を例に挙げて説明したが、これに限定されない。
 11 給湯機
 13 ヒートポンプユニット
 15 タンク
 17 貯湯ユニット
 21 水熱交換器
 27 入水配管(送り側流路の一例)
 27a バイパス配管
 27b 再流入配管(再流入流路の一例)
 29 出湯配管(戻し側流路の一例)
 31 ポンプ
 33 制御部
 35 給湯配管
 37 給水配管
 41 電気分解装置
 43 第1流通口
 45 第2流通口
 47 容器
 471 第1壁部
 472 第2壁部
 473 第3壁部
 474 第4壁部
 48 側壁部
 49 電極対
 51 電源
 53 電極板
 531 第1電極板
 532 第2電極板
 D 複数の電極板の配列方向
 F 水流路
 

Claims (12)

  1.  水を加熱するための水熱交換器(21)を有する給湯機に用いられる電気分解装置であって、
     水の入口及び出口のいずれか一方として機能する第1流通口(43)と、水の入口及び出口のいずれか他方として機能する第2流通口(45)とを有する容器(47)と、
     前記容器(47)内に配設された複数の電極対(49)と、
     各電極対(49)に電圧を印加する電源(51)と、を備え、
     各電極対(49)は、一対の電極板(53)を有し、
     複数の前記電極板(53)は、電極板(53)の厚み方向に、間隔をあけて配列されており、
     前記入口から前記容器(47)内に流入した水が各電極対(49)における前記一対の電極板(53)の間を通って前記出口に至るように、前記複数の電極板(53)により水流路(F)が形成されている、電気分解装置。
  2.  前記容器(47)は、
     前記複数の電極板(53)よりもこれらの配列方向(D)の一方側に位置する第1壁部(471)と、
     前記複数の電極板(53)よりも前記配列方向(D)の他方側に位置し、前記複数の電極板(53)を介して前記第1壁部(471)と対向する第2壁部(472)と、
     前記配列方向(D)に沿って延びて前記複数の電極板(53)を囲むとともに、前記第1壁部(471)と前記第2壁部(472)をつなぐ側壁部(48)と、を有し、
     前記第1流通口(43)は、前記第1壁部(471)又はその近傍に設けられており、前記第2流通口(45)は、前記第2壁部(472)又はその近傍に設けられている、請求項1に記載の電気分解装置。
  3.  前記側壁部(48)は、前記配列方向(D)に沿って延びる第3壁部(473)と、前記配列方向(D)に沿って延び、前記複数の電極板(53)を介して前記第3壁部(473)と対向する第4壁部(474)とを含み、
     前記複数の電極板(53)は、前記電源(51)の一方の極に接続される第1電極板(531)と、前記電源(51)の他方の極に接続される第2電極板(532)とを有し、
     前記第1電極板(531)は、前記第3壁部(473)に位置する基端部から前記第4壁部(474)に向かって延設され、
     前記第2電極板(532)は、前記第4壁部(474)に位置する基端部から前記第3壁部(473)に向かって延設され、
     前記水流路(F)は、前記第1電極板(531)と前記第2電極板(532)が前記配列方向(D)に沿って交互に並ぶことにより、蛇行した経路を有している、請求項2に記載の電気分解装置。
  4.  前記側壁部(48)は、前記配列方向(D)に沿って延びる第3壁部(473)と、前記配列方向(D)に沿って延び、前記複数の電極板(53)を介して前記第3壁部(473)と対向する第4壁部(474)とを含み、
     各電極板(53)の一端部と前記第3壁部(473)との間には水が流通可能な隙間が設けられており、各電極板(53)の他端部と前記第4壁部(474)との間には水が流通可能な隙間が設けられており、
     前記第1流通口(43)は、前記第1壁部(471)において、前記第4壁部(474)よりも前記第3壁部(473)に近い位置に設けられており、前記第2流通口(45)は、前記第2壁部(472)において、前記第3壁部(473)よりも前記第4壁部(474)に近い位置に設けられている、請求項2に記載の電気分解装置。
  5.  各電極板(53)は、前記一端部が前記他端部よりも前記配列方向(D)の前記一方側に位置するように傾斜して配置されている、請求項4に記載の電気分解装置。
  6.  ヒートポンプ式給湯機であって、
     水を加熱するための水熱交換器(21)を有し、冷媒配管を通じて冷媒が循環するヒートポンプユニット(13)と、
     水が貯留されるタンク(15)、前記タンク(15)の水を前記水熱交換器(21)に送る送り側流路(27)、及び前記水熱交換器(21)により加熱された水を前記タンク(15)に戻す戻し側流路(29)を有する貯湯ユニット(17)と、
     給水源から前記タンク(15)に水を給水する給水配管(37)、及び前記タンク(15)に貯留された高温の水を給湯する給湯配管(35)と、
     前記水に含まれるスケール成分を除去するための請求項1~5のいずれか1項に記載の電気分解装置(41)と、を備えているヒートポンプ式給湯機。
  7.  前記電気分解装置(41)は、前記送り側流路(27)に設けられている、請求項6に記載のヒートポンプ式給湯機。
  8.  前記電気分解装置(41)の前記電源(51)を制御する制御部をさらに備え、
     前記制御部は、前記水熱交換器(21)により加熱される水の温度が予め設定された値以上の場合に各電極対(49)に電圧が印加されるように前記電源(51)を制御する、請求項6又は7に記載のヒートポンプ式給湯機。
  9.  前記電気分解装置(41)の前記電源(51)を制御する制御部をさらに備え、
     前記制御部は、前記貯湯ユニット(17)における水質に応じて各電極対(49)に印加される電圧を調節するように前記電源(51)を制御する、請求項6~8のいずれか1項に記載のヒートポンプ式給湯機。
  10.  前記電気分解装置(41)を通過した水を前記電気分解装置(41)の上流側に戻して前記電気分解装置(41)に再度流入させるための再流入流路をさらに備えている、請求項6~9のいずれか1項に記載のヒートポンプ式給湯機。
  11.  前記電気分解装置(41)における前記入口と前記出口を反転させる反転機構をさらに備えている、請求項6~10のいずれか1項に記載のヒートポンプ式給湯機。
  12.  前記給湯配管(35)から給湯された水を前記タンク(15)に戻さない一過式である、請求項6~11のいずれか1項に記載のヒートポンプ式給湯機。
PCT/JP2011/005464 2010-09-30 2011-09-28 電気分解装置及びこれを備えたヒートポンプ式給湯機 WO2012042867A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2011310302A AU2011310302B2 (en) 2010-09-30 2011-09-28 Electrolysis device and heat-pump-type water heater provided with same
CN2011800458993A CN103118990A (zh) 2010-09-30 2011-09-28 电解装置及具备该电解装置的热泵式供热水器
US13/823,912 US20130180846A1 (en) 2010-09-30 2011-09-28 Electrolysis device and heat-pump-type water heater provided with same
EP11828433.0A EP2623462A4 (en) 2010-09-30 2011-09-28 ELECTROLYSIS DEVICE AND WATER HEAT PUMP HEAT PUMP TYPE HAVING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-220944 2010-09-30
JP2010220944A JP4968375B2 (ja) 2010-09-30 2010-09-30 ヒートポンプ式給湯機

Publications (1)

Publication Number Publication Date
WO2012042867A1 true WO2012042867A1 (ja) 2012-04-05

Family

ID=45892356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005464 WO2012042867A1 (ja) 2010-09-30 2011-09-28 電気分解装置及びこれを備えたヒートポンプ式給湯機

Country Status (6)

Country Link
US (1) US20130180846A1 (ja)
EP (1) EP2623462A4 (ja)
JP (1) JP4968375B2 (ja)
CN (1) CN103118990A (ja)
AU (1) AU2011310302B2 (ja)
WO (1) WO2012042867A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2664860A1 (en) * 2012-05-18 2013-11-20 Panasonic Corporation Water heater comprising scale suppressing device
JP5365737B1 (ja) * 2012-12-03 2013-12-11 ダイキン工業株式会社 温度調節水供給機
CN103435133A (zh) * 2013-09-12 2013-12-11 苏州大学 一种废水处理***
EP2778561A1 (en) * 2013-03-12 2014-09-17 Panasonic Corporation Water heater

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304916B1 (ja) * 2012-03-30 2013-10-02 ダイキン工業株式会社 電気分解装置及び温度調節水供給機
CN104203836B (zh) 2012-03-28 2017-03-22 大金工业株式会社 电解装置以及具备该电解装置的温度调节供水机
JP5678388B1 (ja) * 2013-04-15 2015-03-04 有限会社ターナープロセス 系に保持されている水性液体のイオン濃度を低減する装置および方法、ならびにその装置を備える装置
JP6209904B2 (ja) * 2013-09-03 2017-10-11 ダイキン工業株式会社 電気分解システム及びこれを備えた温度調節水供給機
CN104197504B (zh) * 2014-08-29 2017-01-18 黄悦荣 多格分腔式直流加热矩阵加热技术的新型热水器
CN105154918B (zh) * 2015-11-04 2017-10-24 江苏海涛新能源科技有限公司 一种节能降耗的电解锰生产***
CN105177622B (zh) * 2015-11-04 2017-11-07 湖北新海鸿化工有限公司 一种节能降耗的电解锰生产新工艺
CN105347446A (zh) * 2015-12-16 2016-02-24 无锡吉进环保科技有限公司 一种电离式高级氧化反应器
US11047581B2 (en) * 2017-12-06 2021-06-29 Mitsubishi Electric Corporation Method for constructing a water circulation device and scale removal device
JP6919696B2 (ja) * 2019-11-05 2021-08-18 ダイキン工業株式会社 給湯装置
AT524772B1 (de) * 2021-05-21 2022-09-15 Olymp Werk Gmbh Zusatzvorrichtung für Temperiersystem und Temperiersystem mit Desinfektionseinheit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207346A (ja) * 1998-01-26 1999-08-03 Hitachi Taga Technol Co Ltd 水処理装置
WO2006027825A1 (ja) 2004-09-06 2006-03-16 Innovative Design & Technology Inc. 冷却水循環装置、および冷却水循環装置のスケール除去方法
JP2006110512A (ja) * 2004-10-18 2006-04-27 Towa Techno:Kk 電解水製造装置および製造方法
JP2009541032A (ja) * 2006-06-22 2009-11-26 シーメンス ウォーター テクノロジース コーポレイション スケール生成能が低い水処理
JP2010091122A (ja) * 2008-10-03 2010-04-22 Panasonic Corp 給湯機
JP2010125353A (ja) * 2008-11-25 2010-06-10 Koganei Corp 軟水化方法及びその装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116509A (en) * 1989-09-08 1992-05-26 Millipore Corporation Electrodeionization and ultraviolet light treatment method for purifying water
JP2976977B2 (ja) * 1991-02-26 1999-11-10 株式会社日立製作所 表示装置、階調表示方法
JPH06110512A (ja) * 1992-09-25 1994-04-22 Matsushita Electric Works Ltd プログラマブルコントローラ
FR2731420B1 (fr) * 1995-03-10 1997-06-13 Mercier Dominique Procede et dispositif de traitement de l'eau en vue de son adoucissement par voie electrochimique
JPH10125353A (ja) * 1996-10-17 1998-05-15 Fuji Elelctrochem Co Ltd スパイラル形非水電解液電池
JP3632402B2 (ja) * 1997-10-22 2005-03-23 松下電器産業株式会社 ヒートポンプ給湯装置
US7252752B2 (en) * 2002-01-03 2007-08-07 Herbert William Holland Method and apparatus for removing contaminants from conduits and fluid columns
JP2003328173A (ja) * 2002-05-08 2003-11-19 Takayuki Shimamune 溶融塩電解槽
JP2004190924A (ja) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd 給湯機
JP4315719B2 (ja) * 2003-02-24 2009-08-19 株式会社キノテック・ソーラーエナジー 高純度亜鉛の製造法及び製造装置
JP2006098003A (ja) * 2004-09-30 2006-04-13 Kurita Water Ind Ltd 循環型冷却水系の電解処理方法及び電解処理装置
GB2424875A (en) * 2005-04-04 2006-10-11 Philip Graeme Morgan Electrode assembly and method for treating and separating contaminants from fluids
JP3953074B2 (ja) * 2005-05-16 2007-08-01 ダイキン工業株式会社 熱交換器
JP4977137B2 (ja) * 2006-07-07 2012-07-18 旭硝子株式会社 電解装置及び方法
JP2008264718A (ja) * 2007-04-23 2008-11-06 Noritz Corp ホルムアルデヒド除去装置及びこれを備えた給湯装置
JP5224041B2 (ja) * 2007-06-27 2013-07-03 ダイキン工業株式会社 ヒートポンプ式給湯装置
EP2314546A1 (en) * 2008-08-07 2011-04-27 Panasonic Corporation Demineralizer and hot water supply apparatus provided with the same
CN102123952B (zh) * 2009-02-09 2013-07-24 松下电器产业株式会社 热水器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207346A (ja) * 1998-01-26 1999-08-03 Hitachi Taga Technol Co Ltd 水処理装置
WO2006027825A1 (ja) 2004-09-06 2006-03-16 Innovative Design & Technology Inc. 冷却水循環装置、および冷却水循環装置のスケール除去方法
JP2006110512A (ja) * 2004-10-18 2006-04-27 Towa Techno:Kk 電解水製造装置および製造方法
JP2009541032A (ja) * 2006-06-22 2009-11-26 シーメンス ウォーター テクノロジース コーポレイション スケール生成能が低い水処理
JP2010091122A (ja) * 2008-10-03 2010-04-22 Panasonic Corp 給湯機
JP2010125353A (ja) * 2008-11-25 2010-06-10 Koganei Corp 軟水化方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623462A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2664860A1 (en) * 2012-05-18 2013-11-20 Panasonic Corporation Water heater comprising scale suppressing device
JP5365737B1 (ja) * 2012-12-03 2013-12-11 ダイキン工業株式会社 温度調節水供給機
EP2778561A1 (en) * 2013-03-12 2014-09-17 Panasonic Corporation Water heater
CN103435133A (zh) * 2013-09-12 2013-12-11 苏州大学 一种废水处理***
CN103435133B (zh) * 2013-09-12 2015-07-15 苏州大学 一种废水处理***

Also Published As

Publication number Publication date
EP2623462A1 (en) 2013-08-07
AU2011310302A1 (en) 2013-04-18
JP4968375B2 (ja) 2012-07-04
AU2011310302B2 (en) 2014-08-21
US20130180846A1 (en) 2013-07-18
EP2623462A4 (en) 2015-10-14
JP2012075982A (ja) 2012-04-19
CN103118990A (zh) 2013-05-22

Similar Documents

Publication Publication Date Title
JP4968375B2 (ja) ヒートポンプ式給湯機
JP5206892B2 (ja) 電気分解装置及びこれを備えたヒートポンプ式給湯機
EP2832702B1 (en) Electrolysis device and temperature-adjusting water-supplying machine provided with same
JP5375908B2 (ja) ヒートポンプ給湯機
AU2012347139B2 (en) Electrolysis device and heat pump hot-water supply device provided with same
JP4968376B2 (ja) 電気分解装置及びこれを備えたヒートポンプ式給湯機
JP6209904B2 (ja) 電気分解システム及びこれを備えた温度調節水供給機
JP5206893B2 (ja) 電気分解装置及びこれを備えたヒートポンプ式給湯機
WO2013038710A1 (ja) ヒートポンプ給湯機
JP2013208528A (ja) 電気分解装置及び温度調節水供給機
JP2013202486A (ja) 電気分解装置及びこれを備えた温度調節水供給機
JP2013119993A (ja) ヒートポンプ給湯機
JP2014188402A (ja) 電気分解装置及びこれを備えた温度調節水供給機
JP2014092340A (ja) 温度調節水供給機
JP5365737B1 (ja) 温度調節水供給機
JP2013208575A (ja) 電気分解装置及びこれを備えた温度調節水供給機
JP2013184098A (ja) 電気分解装置及びこれを備えたヒートポンプ給湯機
JP2013126645A (ja) 電気分解装置及びこれを備えたヒートポンプ給湯機
JP2013184097A (ja) 電気分解装置及びこれを備えたヒートポンプ給湯機
JP2014066479A (ja) 温度調節水供給機
JP2014129945A (ja) 温度調節水供給機
JP2013204904A (ja) ヒートポンプ給湯機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045899.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828433

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823912

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011828433

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011828433

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011310302

Country of ref document: AU

Date of ref document: 20110928

Kind code of ref document: A