WO2012042780A1 - Electroconductive composition, solar battery cell, and method for producing solar battery cell - Google Patents

Electroconductive composition, solar battery cell, and method for producing solar battery cell Download PDF

Info

Publication number
WO2012042780A1
WO2012042780A1 PCT/JP2011/005260 JP2011005260W WO2012042780A1 WO 2012042780 A1 WO2012042780 A1 WO 2012042780A1 JP 2011005260 W JP2011005260 W JP 2011005260W WO 2012042780 A1 WO2012042780 A1 WO 2012042780A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
conductive composition
curing agent
composition according
type epoxy
Prior art date
Application number
PCT/JP2011/005260
Other languages
French (fr)
Japanese (ja)
Inventor
奈央 佐藤
石川 和憲
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201180025135.8A priority Critical patent/CN102918105B/en
Publication of WO2012042780A1 publication Critical patent/WO2012042780A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/687Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a conductive composition, a solar battery cell using the conductive composition, and a method for manufacturing a solar battery.
  • conductive particles such as silver particles, a binder made of a thermoplastic resin (eg, acrylic resin, vinyl acetate resin, etc.) or a thermosetting resin (eg, epoxy resin, unsaturated polyester resin, etc.), organic solvent, cured Silver paste (conductive composition) obtained by adding and mixing agents, catalysts, etc., is printed on a synthetic resin substrate (for example, a polyester film) so as to have a predetermined circuit pattern, and these are heated.
  • a synthetic resin substrate for example, a polyester film
  • Patent Document 1 states that “an epoxy resin having a molecular weight of 900 or more, a silver powder having a weight ratio within a range of 4 to 10 with respect to the epoxy resin, and curing the epoxy resin.
  • the conductive paste is characterized in that it contains an imidazole-based curing agent in an amount of addition of at least twice the minimum amount required to make it.
  • Patent Document 2 discloses that “(A) an epoxy resin, (B) an oxetane resin, (C) a cationic polymerization curing agent, and (D) a conductive paste characterized by blending conductive powder. Is described.
  • thermosetting component is a bisphenol A type epoxy resin having an epoxy equivalent of 2000 to 3500 g / eq; And a polyhydric alcohol-based glycidyl-type epoxy resin having an epoxy equivalent of 1000 g / eq or less and a viscosity of 10 to 100 mPa ⁇ s, and a curing agent, wherein the polyhydric alcohol-based glycidyl-type epoxy resin comprises: An alkyldiol system having the structural formula of Chemical Formula 1 or a polyethylene glycol system having the structural formula of Chemical Formula 2 below, wherein n in the structural formula of Chemical Formula 1 and the structural formula of Chemical Formula 2 is 3 to 9, and the bisphenol A type epoxy The weight mixing ratio of the resin to the polyhydric alcohol-based glycidyl type epoxy resin is 1 to 1 to 1 to 3. Electroconductive paste composition and symptoms. "Is described.
  • Patent Documents 4 to 6 describe “a silver paste containing silver powder, an epoxy resin and its curing agent (phenol novolac compound), and a solvent”.
  • an object of the present invention is to provide a conductive composition having good solderability to a cured product, a solar battery cell in which an electrode is formed using the conductive composition, and a method for manufacturing a solar battery.
  • the present inventor when a sulfonium cation-based curing agent is blended with two specific types of epoxy resins, becomes a conductive composition with good solderability to a cured product. As a result, the present invention has been completed.
  • the present invention (1) contains silver powder (A), epoxy resin (B), and curing agent (C),
  • the epoxy resin (B) is at least a bisphenol A type epoxy resin (b1) having an epoxy equivalent of 1500 to 4000 g / eq and a polyhydric alcohol-based glycidyl type epoxy resin (b2) having an epoxy equivalent of 1000 g / eq or less
  • the present invention also provides: (2) It comprises a surface electrode on the light receiving surface side, a semiconductor substrate and a back electrode, Provided is a solar cell in which the front electrode and / or the back electrode is formed using the conductive composition according to (1) above used for a solar cell electrode paste. Furthermore, the present invention provides (3) a wiring forming step of forming a wiring by applying the conductive composition according to (1) above on a silicon substrate; There is provided a method for manufacturing a solar battery cell, comprising: a heat treatment step of heat-treating the obtained wiring to form a front-surface electrode and / or a back-surface electrode on a light-receiving surface side.
  • the present invention it is possible to provide a conductive composition having good solderability to a cured product, a solar battery cell in which an electrode is formed using the conductive composition, and a method for manufacturing a solar battery.
  • the conductive composition of the present invention can form an electrode or the like while suppressing the occurrence of disconnection or blurring even when firing at a low temperature (about 150 to 500 ° C.).
  • the use of the conductive composition of the present invention is very useful because an electrode or the like can be formed not only on a silicon substrate but also on a substrate having low heat resistance.
  • FIG. 1 is a cross-sectional view showing an example of a preferred embodiment of a solar battery cell.
  • FIG. 2 is a photograph of silver powder (AgC-103, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.) taken with a scanning electron microscope (SEM).
  • FIG. 3 is a photograph of silver powder (AgC-2011, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.) taken with a scanning electron microscope (SEM).
  • the conductive composition of the present invention contains silver powder (A), an epoxy resin (B), and a curing agent (C), and the epoxy resin (B) has at least an epoxy equivalent of 1500 to 4000 g / eq.
  • the silver powder (A) used by the electrically conductive composition of this invention is not specifically limited, What is mix
  • the silver powder (A) is preferably a spherical silver powder having an average particle diameter of 0.5 to 10 ⁇ m because it has good printability and can form an electrode having a small volume resistivity.
  • spherical refers to the shape of a particle having a major axis / minor axis ratio of 2 or less.
  • an average particle diameter means the average value of the particle diameter of spherical silver powder, and means the 50% volume cumulative diameter (D50) measured using the laser diffraction type particle size distribution measuring apparatus.
  • the particle diameter that is the basis for calculating the average value is the average value obtained by dividing the total value of the major axis and the minor axis by 2, and is a regular circle Refers to its diameter.
  • a silver powder (AgC-103, manufactured by Fukuda Metal Foil Powder Co., Ltd.) used in the examples described later corresponds to a spherical silver powder, but silver powder (AgC-2011, Fukuda). What is shown by the photograph (FIG. 3) of a metal foil powder industry company does not correspond to spherical silver powder, but corresponds to flake (scale) -like silver powder.
  • the average particle size of the silver powder (A) is preferably 0.7 to 5 ⁇ m for the reason that printability is better, and 1 to 3 ⁇ m for the reason that the sintering speed is appropriate and the workability is excellent. It is more preferable that
  • a commercially available product can be used as such silver powder (A).
  • Specific examples thereof include AgC-102 (shape: spherical, average particle size: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.).
  • AgC-103 (shape: spherical, average particle diameter: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Powder Industries), AG4-8F (shape: spherical, average particle diameter: 2.2 ⁇ m, manufactured by DOWA Electronics), AG2 -1C (shape: spherical, average particle size: 1.0 ⁇ m, manufactured by DOWA Electronics), AG3-11F (shape: spherical, average particle size: 1.4 ⁇ m, manufactured by DOWA Electronics), EHD (shape: spherical, average Particle diameter: 0.5 ⁇ m, manufactured by Mitsui Kinzoku Co., Ltd.), AgC-2011 (shape: flake shape, average particle diameter: 2-10 ⁇ m, manufactured by Fukuda Metal Foil Co., Ltd.), and the like.
  • AG4-8F shape: spherical, average particle diameter: 2.2 ⁇ m, manufactured by DOWA Electronics
  • AG2 -1C shape:
  • the epoxy resin (B) used in the conductive composition of the present invention comprises at least a bisphenol A type epoxy resin (b1) having an epoxy equivalent of 1500 to 4000 g / eq and a polyhydric alcohol glycidyl type having an epoxy equivalent of 1000 g / eq or less. Although it is an epoxy resin (b2), you may use together another epoxy resin (b3) with these epoxy resins.
  • the epoxy equivalent of the epoxy resin (B) is the Japanese Industrial Standard JIS. This is a value calculated according to “How to determine epoxy equivalent of epoxy resin” in K-7236: 2001.
  • the bisphenol A type epoxy resin (b1) is a bisphenol A type epoxy resin having an epoxy equivalent of 1500 to 4000 g / eq.
  • the epoxy equivalent of the bisphenol A-type epoxy resin (b1) is within the above range, the hardness of the conductive composition of the present invention after curing becomes good, and excellent solderability for the cured product can be maintained.
  • the epoxy equivalent of the bisphenol A type epoxy resin (b1) has better solderability to the cured product of the conductive composition of the present invention, and the rate of cure shrinkage is small, such as an adherend (for example, a circuit board) ) Is preferably 2000 to 4000 g / eq, more preferably 2000 to 3500 g / eq.
  • the polyhydric alcohol glycidyl type epoxy resin (b2) is a polyhydric alcohol glycidyl type epoxy resin having an epoxy equivalent of 1000 g / eq or less.
  • the epoxy equivalent of the polyhydric alcohol-based glycidyl type epoxy resin (b2) is preferably 100 to 400 g / eq, and preferably 100 to 300 g / eq, because the viscosity at the time of screen printing becomes appropriate. More preferably.
  • the viscosity of the electrically conductive composition of this invention becomes favorable and printability becomes favorable, it is preferable that it is 100 g / eq or more.
  • polyhydric alcohol glycidyl type epoxy resin (b2) examples include, for example, ethylene glycol glycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether.
  • 1,6-hexanediol diglycidyl ether 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, polyneopentyl glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, trimethylolpropane polyglycidyl ether, propylene glycol diglycidyl ether, tri Propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, diethylene Recall diglycidyl ether, polyglycerin polyglycidyl ether, polyoxyethylene glycol diglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, polytetramethylene glycol diglycidyl ether, pentaerythritol diglycid
  • polyethylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether are preferable and more excellent because the hardness after curing of the conductive composition of the present invention becomes good and solderability to the cured product becomes better. It is more preferable to use polyethylene glycol diglycidyl ether because it can provide high conductivity.
  • the other epoxy resin (b3) is not particularly limited as long as it is a resin composed of a compound having two or more oxirane rings (epoxy groups) in one molecule.
  • Specific examples of the other epoxy resin (b3) include, for example, a bisphenol A type epoxy resin (excluding those corresponding to the bisphenol A type epoxy resin (b1)), a bisphenol F type epoxy resin, and a biphenyl type epoxy. Resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, diphenylfluorene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidylamine type epoxy resin, etc., and these can be used alone. Or two or more of them may be used in combination.
  • the content in the case of containing the other epoxy resin (b3) is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the epoxy resin (B).
  • the content of the epoxy resin (B) is appropriate for the hardness after curing of the conductive composition of the present invention, so that the adhesion to an adherend (for example, a circuit board) is good, Further, for the reason that the solderability to the cured product becomes better, the amount is preferably 4 to 10 parts by mass, more preferably 4 to 8 parts by mass with respect to 100 parts by mass of the silver powder (A). .
  • group glycidyl type epoxy resin (b2) is not specifically limited,
  • the hardness after hardening of the electrically conductive composition of this invention Is better, and it is easy to maintain excellent solderability to the cured product, so that the blending amount (mass) of the bisphenol A type epoxy resin (b1) is more than that of the polyhydric alcohol glycidyl type epoxy resin (b2). It is also preferable that there are many.
  • the curing agent (C) used in the conductive composition of the present invention is a sulfonium cation curing agent.
  • Examples of the curing agent (C) include sulfonium salts represented by the following formula (I).
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • R 2 is substituted with an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms.
  • R 3 represents an alkyl group having 1 to 4 carbon atoms
  • Q is represented by any of the following formulas (a) to (c):
  • X represents SbF 6 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N, BF 4 , B (C 6 F 5 ) 4 or Al (CF 3 SO 3 ) 4 .
  • R represents a hydrogen atom, an acetyl group, a methoxycarbonyl group or a benzyloxycarbonyl group.
  • X in the above formula (I) is represented by SbF 6 because the solderability to the cured product of the conductive composition of the present invention becomes better.
  • a sulfonium salt is preferable, and specific examples thereof include compounds represented by the following formulas (1) and (2).
  • cured material of the electrically conductive composition of this invention becomes favorable by using a sulfonium cation type
  • curing agent as said hardening
  • the degree of polymerization of the epoxy resin (B) is increased by using a sulfonium cationic curing agent that exhibits sufficient curability even at low temperatures (about 150 to 500 ° C.), compared to the case of using an imidazole curing agent, As a result, it is considered that the contact between the silver powders (A) increases.
  • the sulfonium cation-based curing agent has hexafluoroantimonate ion (SbF 6 ⁇ ) as an anion, it acts as a metal catalyst, so that solderability is considered to be better.
  • curing agent (C) is activated with a heat
  • the amount is preferably 1 to 10 parts by weight, more preferably 1 to 5 parts by weight.
  • the conductive composition of the present invention can form an electrode and the like even when fired at a lower temperature (about 150 to 200 ° C.), and further reduces damage to the silicon substrate due to heat. It preferably contains a salt (D).
  • the fatty acid silver salt (D) is not particularly limited as long as it is a silver salt of an organic carboxylic acid.
  • a silver salt (D2) Specifically, for example, as the fatty acid silver salt (D1), 2,2-bis (hydroxymethyl) -n-butyric acid silver salt and 2-hydroxyisobutyric acid silver salt can be preferably used.
  • the carboxylic acid silver salt (D2) 1,2,3,4-butanetetracarboxylic acid silver salt can be preferably used.
  • the content of the fatty acid silver salt (D) is 1 with respect to 100 parts by mass of the silver powder (A) because the printability is good and an electrode having a small volume resistivity can be formed.
  • the amount is preferably from 100 to 100 parts by mass, and more preferably from 5 to 80 parts by mass.
  • the conductive composition of the present invention preferably further contains a solvent from the viewpoint of workability such as printability.
  • the solvent is not particularly limited as long as the conductive composition of the present invention can be applied on a substrate, and specific examples thereof include butyl carbitol, methyl ethyl ketone, isophorone, ⁇ -terpineol, and the like. These may be used alone or in combination of two or more. Further, when the solvent is contained, the content is preferably 2 to 20 parts by mass, and more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the silver powder (A).
  • the electrically conductive composition of this invention may contain additives, such as metal powder other than the silver powder (A) mentioned above, a reducing agent, as needed.
  • the metal powder include copper and aluminum. Among them, copper is preferable. Further, a metal powder having a particle diameter of 0.01 to 10 ⁇ m is preferable.
  • Specific examples of the reducing agent include ethylene glycols.
  • the manufacturing method of the electroconductive composition of this invention is not specifically limited, The said silver powder (A), the said epoxy resin (B), the said hardening
  • the solar cell of the present invention comprises a light-receiving surface-side surface electrode, a semiconductor substrate, and a back electrode, and the surface electrode and / or the back electrode is formed using the above-described conductive composition of the present invention. It is a solar battery cell.
  • the solar battery cell of the present invention can be applied to the formation of the back electrode of the all back electrode type (so-called back contact type) solar battery because the above-described conductive composition of the present invention can be applied to the all back electrode.
  • the present invention can also be applied to a type solar cell. Below, the structure of the photovoltaic cell of this invention is demonstrated using FIG.
  • a solar cell 1 of the present invention includes a surface electrode 4 on the light-receiving surface side, a pn junction silicon substrate 7 in which a p layer 5 and an n layer 2 are joined, and a back electrode 6. It is. Further, as shown in FIG. 1, the solar battery cell 1 of the present invention is provided with an antireflection film 3 by, for example, etching the wafer surface to form a pyramidal texture in order to reduce the reflectance. Is preferred.
  • the electrode arrangement (pitch), shape, height, The width and the like are not particularly limited.
  • the front surface electrode and the back surface electrode usually have a plurality, but in the present invention, for example, only a part of the plurality of front surface electrodes is the conductive composition of the present invention. Or a part of the plurality of front surface electrodes and a part of the plurality of back surface electrodes may be formed of the conductive composition of the present invention.
  • the antireflection film that the solar battery cell of the present invention may have is a film (film thickness: about 0.05 to 0.1 ⁇ m) formed on a portion of the light receiving surface where the surface electrode is not formed.
  • a film film thickness: about 0.05 to 0.1 ⁇ m
  • the silicon substrate included in the solar battery cell of the present invention is not particularly limited, and a known silicon substrate (plate thickness: about 100 to 450 ⁇ m) for forming a solar battery can be used, and a single crystal or polycrystal Any silicon substrate may be used.
  • the silicon substrate has a pn junction, which means that a second conductivity type light-receiving surface impurity diffusion region is formed on the surface side of the first conductivity type semiconductor substrate.
  • the second conductivity type is p-type.
  • the impurity imparting p-type include boron and aluminum
  • examples of the impurity imparting n-type include phosphorus and arsenic.
  • the front electrode and / or the back electrode are formed using the conductive composition of the present invention, so that the solderability to each electrode (especially the bus bar portion) is good and modularized. Is easy.
  • the manufacturing method of the photovoltaic cell of the present invention is not particularly limited, a wiring forming step of forming the wiring by applying the conductive composition of the present invention on a silicon substrate, and heat treating the obtained wiring to form an electrode (surface A heat treatment step of forming an electrode and / or a back electrode).
  • an antireflection film can be formed by well-known methods, such as a plasma CVD method. Below, a wiring formation process and a heat treatment process are explained in full detail.
  • the said wiring formation process is a process of apply
  • specific examples of the coating method include inkjet, screen printing, gravure printing, offset printing, letterpress printing, and the like.
  • the heat treatment step is a step of obtaining a conductive wiring (electrode) by heat-treating the wiring obtained in the wiring forming step.
  • the heat treatment is not particularly limited, but is preferably a treatment of heating (firing) at a temperature of 150 to 800 ° C. for several seconds to several tens of minutes.
  • the temperature and time are within this range, even when an antireflection film is formed on the silicon substrate, the electrode can be easily formed by the fire-through method.
  • good heat treatment (firing) can be performed even at a low temperature (about 150 to 500 ° C.).
  • the heat treatment step may be performed by irradiation with ultraviolet rays or infrared rays.
  • solderability (solder wettability)>
  • the prepared conductive composition is applied on a silicon substrate (single crystal silicon wafer, LS-25TVA, 156 mm ⁇ 156 mm ⁇ 200 ⁇ m, manufactured by Shin-Etsu Chemical Co., Ltd.) by screen printing to form a test pattern (2 mm ⁇ 2 mm). did.
  • a solder flux was applied on the formed test pattern and then dried on a hot plate at 150 ° C. for 20 seconds. Next, it was dipped in a solder bath at 270 ° C. for 3 seconds and then pulled up, and the solderability was evaluated from the wettability (covering%) of the solder on the test pattern.
  • a test pattern having a solder coverage of 100% is evaluated as “A” as having extremely good solderability, and a test pattern solder coverage of 80% or more and less than 100%.
  • B was evaluated as having good solderability
  • C was evaluated as having poor solderability when solder coverage on the test pattern was less than 80%.
  • a wiring was formed by screen printing using the conductive composition prepared in Examples 1 and 10 to 12, and then dried in an oven for 30 minutes under three conditions of 200 ° C., 180 ° C. and 150 ° C. Samples of solar cells on which the wirings (electrodes) were formed were prepared. About the sample of each produced photovoltaic cell, the volume resistivity of the electrode was measured by a 4-terminal 4-probe method using a resistivity meter (Lorestar GP, manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 2 below.
  • Silver powder AgC-103 (shape: spherical, average particle size: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Powder Industry)
  • ⁇ ⁇ -Terpineol Solvent
  • Bisphenol A type epoxy resin YD-019 (epoxy equivalent: 2400-3300 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.)
  • Bisphenol A type epoxy resin YD-020N (epoxy equivalent: 3500 to 4000 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.)
  • Bisphenol A type epoxy resin YD-014 (epoxy equivalent: 900 to 1000 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.)
  • Polyhydric alcohol glycidyl type epoxy resin polyethylene glycol diglycidyl ether (EX-821, epoxy equivalent: 185 g / eq, manufactured by Nagase ChemteX Corporation)
  • Polyhydric alcohol glycidyl type epoxy resin diethylene glycol diglycidyl ether (EX-850, epoxy equivalent: 122 g / eq, manufactured by Nagase ChemteX Corporation)
  • Polyhydric alcohol glycidyl type epoxy resin ethylene glycol diglycidyl ether (EX-810, epoxy equivalent: 113 g / eq, manufactured by Nagase ChemteX Corporation)
  • Polyhydric alcohol glycidyl type epoxy resin 1,6-hexanediol diglycidyl ether (EX-212, epoxy equivalent: 151 g / eq, manufactured by Nagase ChemteX Corporation)
  • Curing agent Compound represented by the following formula (1) (Sl-100L, manufactured by Sanshin Chemical Industry Co., Ltd.) Curing agent: Compound represented by the following formula (2) (SI-150, manufactured by Sanshin Chemical Industry Co., Ltd.) Curing agent: Compound represented by the following formula (3) Curing agent: Compound represented by the following formula (4) (Boron trifluoride ethylamine, manufactured by Tokyo Chemical Industry Co., Ltd.)
  • R 4 represents a hydroxyl group
  • R 5 represents a methyl group
  • R 6 represents a methyl group
  • Silver salt of 2-hydroxyisobutyrate First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 45 g of 2-hydroxyisobutyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are placed in a ball mill and are allowed to stand at room temperature for 24 hours The reaction was allowed to stir. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 2-hydroxyisobutyric acid silver salt.
  • MEK methyl ethyl ketone
  • -1,2,3,4-butanetetracarboxylic acid silver salt First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 1,2,3,4-butanetetracarboxylic acid (manufactured by Shin Nippon Rika Co., Ltd.) 29 g and 300 g of methyl ethyl ketone (MEK) were placed in a ball mill and reacted by stirring at room temperature for 24 hours. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 1,2,3,4-butanetetracarboxylic acid silver salt.
  • MEK methyl ethyl ketone
  • the conductive compositions of Comparative Examples 4 and 5 prepared without blending either one of the bisphenol A type epoxy resin and the polyhydric alcohol glycidyl type epoxy resin are inferior in printability and in solderability. I understood.
  • the electroconductive composition of the comparative example 6 prepared by using together 2 types of bisphenol A type epoxy resins from which an epoxy equivalent differs is inferior to printability, and solderability.
  • the conductive compositions of Examples 1 to 10 prepared using a sulfonium cation curing agent in combination with a bisphenol A type epoxy resin and a polyhydric alcohol glycidyl type epoxy resin having a predetermined epoxy equivalent weight was found to be excellent in printability and solderability.
  • the conductive compositions of Examples 1 to 7 and 9 to 12 prepared using a curing agent having hexafluoroantimonate ion (SbF 6 ⁇ ) as an anion may have extremely good solderability. I understood.
  • the conductive compositions of Examples 1, 2, 4, 6 to 8, and 10 to 12 in which the blending amount of the bisphenol A type epoxy resin is larger than the blending amount of the polyhydric alcohol glycidyl type epoxy resin, have printability. It turns out that it tends to be very good. Further, from the results shown in Table 2, the conductive compositions of Examples 10 to 12 used in combination with the fatty acid silver salt have a volume resistivity independent of the firing temperature as compared with the conductive composition of Example 1. It turned out to be lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Hybrid Cells (AREA)

Abstract

The present invention provides an electroconductive composition having excellent solderability to cured products, a solar battery cell having electrodes formed by using said electroconductive composition, and a method for producing a solar battery. The electroconductive composition contains silver powder (A), epoxy resins (B), and a curing agent (C). The epoxy resins (B) are at least a bisphenol-A-type epoxy resin (b1) having an epoxy equivalent of 1500 to 4000 g/eq and a polyol-glycidyl-type epoxy resin (b2) having an epoxy equivalent of 1000 g/eq or less. The curing agent (C) is a sulfonium cationic curing agent.

Description

導電性組成物、太陽電池セルおよび太陽電池セルの製造方法Conductive composition, solar cell, and method for producing solar cell
  本発明は、導電性組成物、それを用いて電極を形成した太陽電池セルおよび太陽電池の製造方法に関する。 The present invention relates to a conductive composition, a solar battery cell using the conductive composition, and a method for manufacturing a solar battery.
 従来、銀粒子などの導電性粒子に熱可塑性樹脂(例えば、アクリル樹脂、酢酸ビニル樹脂等)や熱硬化性樹脂(例えば、エポキシ樹脂、不飽和ポリエステル樹脂等)などからなるバインダ、有機溶剤、硬化剤、触媒等を添加し混合して得られる銀ペースト(導電性組成物)を、合成樹脂基材上(例えば、ポリエステルフィルム等)に所定の回路パターンとなるように印刷し、これらを加熱して導体回路をなす導電性配線を形成し、回路基板を製造する方法が知られている。 Conventionally, conductive particles such as silver particles, a binder made of a thermoplastic resin (eg, acrylic resin, vinyl acetate resin, etc.) or a thermosetting resin (eg, epoxy resin, unsaturated polyester resin, etc.), organic solvent, cured Silver paste (conductive composition) obtained by adding and mixing agents, catalysts, etc., is printed on a synthetic resin substrate (for example, a polyester film) so as to have a predetermined circuit pattern, and these are heated. There is known a method of manufacturing a circuit board by forming a conductive wiring forming a conductor circuit.
 例えば、エポキシ樹脂系のペースト材料として、特許文献1には、「分子量が900以上のエポキシ樹脂と、前記エポキシ樹脂に対する重量比率が4~10の範囲内である銀粉末と、前記エポキシ樹脂を硬化させるのに最低限必要な添加量の2倍以上の添加量のイミダゾール系硬化剤とを含むことを特徴とする導電ペースト。」が記載されている。 For example, as an epoxy resin-based paste material, Patent Document 1 states that “an epoxy resin having a molecular weight of 900 or more, a silver powder having a weight ratio within a range of 4 to 10 with respect to the epoxy resin, and curing the epoxy resin. The conductive paste is characterized in that it contains an imidazole-based curing agent in an amount of addition of at least twice the minimum amount required to make it.
 また、特許文献2には、「(A)エポキシ樹脂、(B)オキセタン樹脂、(C)カチオン重合系硬化剤および(D)導電性粉末を配合してなることを特長とする導電性ペースト。」が記載されている。 Further, Patent Document 2 discloses that “(A) an epoxy resin, (B) an oxetane resin, (C) a cationic polymerization curing agent, and (D) a conductive paste characterized by blending conductive powder. Is described.
 更に、特許文献3には、「銀粉末と加熱硬化性成分と溶剤とを含む導電性ペースト組成物において、前記加熱硬化性成分が、エポキシ当量が2000ないし3500g/eqのビスフェノールA型エポキシ樹脂と、エポキシ当量が1000g/eq以下で粘性率が10ないし100mPa・sの多価アルコール系のグリシジル型エポキシ樹脂と、硬化剤とを含有し、前記多価アルコール系のグリシジル型エポキシ樹脂が、以下の化1の構造式を有するアルキルジオール系または以下の化2の構造式を有するポリエチレングリコール系で、化1の構造式と化2の構造式におけるnが3ないし9であり、前記ビスフェノールA型エポキシ樹脂対多価アルコール系のグリシジル型エポキシ樹脂の重量混合比率が、1対1ないし1対3であることを特徴とする導電性ペースト組成物。」が記載されている。 Further, in Patent Document 3, “in a conductive paste composition containing silver powder, a thermosetting component, and a solvent, the thermosetting component is a bisphenol A type epoxy resin having an epoxy equivalent of 2000 to 3500 g / eq; And a polyhydric alcohol-based glycidyl-type epoxy resin having an epoxy equivalent of 1000 g / eq or less and a viscosity of 10 to 100 mPa · s, and a curing agent, wherein the polyhydric alcohol-based glycidyl-type epoxy resin comprises: An alkyldiol system having the structural formula of Chemical Formula 1 or a polyethylene glycol system having the structural formula of Chemical Formula 2 below, wherein n in the structural formula of Chemical Formula 1 and the structural formula of Chemical Formula 2 is 3 to 9, and the bisphenol A type epoxy The weight mixing ratio of the resin to the polyhydric alcohol-based glycidyl type epoxy resin is 1 to 1 to 1 to 3. Electroconductive paste composition and symptoms. "Is described.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 更にまた、特許文献4~6には、「銀粉末と、エポキシ樹脂およびその硬化剤(フェノールノボラック化合物)と、溶剤とを含有する銀ペースト」が記載されている。 Furthermore, Patent Documents 4 to 6 describe “a silver paste containing silver powder, an epoxy resin and its curing agent (phenol novolac compound), and a solvent”.
特開平8-92506号公報JP-A-8-92506 特開2004-87268号公報JP 2004-87268 A 特開2009-146584号公報JP 2009-14658 A 特開2010-53168号公報JP 2010-53168 A 特開2010-55787号公報JP 2010-55787 A 特開2010-55788号公報JP 2010-55788 A
 しかしながら、本発明者が、特許文献1~6に記載されたエポキシ樹脂系のペースト材料について検討したところ、スクリーン印刷を用いてペースト材料から形成される配線や電極(以下、「電極等」ともいう。)に対する半田付け性(半田濡れ性)が劣り、例えば、太陽電池セルの集電電極を形成した場合にはモジュール化することが困難であることが明らかとなった。 However, the present inventor examined the epoxy resin-based paste materials described in Patent Documents 1 to 6, and found that wirings and electrodes (hereinafter also referred to as “electrodes”) formed from the paste material using screen printing. )) Is inferior in solderability (solder wettability), and for example, when the collector electrode of a solar battery cell is formed, it has become clear that it is difficult to make a module.
 そこで、本発明は、硬化物に対する半田付け性が良好な導電性組成物、それを用いて電極を形成した太陽電池セルおよび太陽電池の製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a conductive composition having good solderability to a cured product, a solar battery cell in which an electrode is formed using the conductive composition, and a method for manufacturing a solar battery.
本発明者は、上記課題を解決するため鋭意検討した結果、特定の2種類のエポキシ樹脂に対してスルホニウムカチオン系硬化剤を配合すると、硬化物に対する半田付け性が良好な導電性組成物になることを見出し、本発明を完成させた。即ち、本発明は、
 (1)銀粉(A)と、エポキシ樹脂(B)と、硬化剤(C)とを含有し、
 上記エポキシ樹脂(B)が、少なくとも、エポキシ当量が1500~4000g/eqのビスフェノールA型エポキシ樹脂(b1)およびエポキシ当量が1000g/eq以下の多価アルコール系グリシジル型エポキシ樹脂(b2)であり、
 上記硬化剤(C)が、スルホニウムカチオン系硬化剤である導電性組成物、を提供する。
As a result of intensive studies to solve the above problems, the present inventor, when a sulfonium cation-based curing agent is blended with two specific types of epoxy resins, becomes a conductive composition with good solderability to a cured product. As a result, the present invention has been completed. That is, the present invention
(1) contains silver powder (A), epoxy resin (B), and curing agent (C),
The epoxy resin (B) is at least a bisphenol A type epoxy resin (b1) having an epoxy equivalent of 1500 to 4000 g / eq and a polyhydric alcohol-based glycidyl type epoxy resin (b2) having an epoxy equivalent of 1000 g / eq or less,
Provided is a conductive composition in which the curing agent (C) is a sulfonium cationic curing agent.
 また、本発明は、
 (2)受光面側の表面電極、半導体基板および裏面電極を具備し、
 上記表面電極および/または上記裏面電極が、太陽電池電極用ペーストに用いる上記(1)に記載の導電性組成物を用いて形成される太陽電池セル、を提供する。
 さらに、本発明は、
 (3)上記(1)に記載の導電性組成物をシリコン基板上に塗布して配線を形成する配線形成工程と、
 得られた上記配線を熱処理して受光面側の表面電極および/または裏面電極を形成する熱処理工程と、を有する太陽電池セルの製造方法、を提供する。
The present invention also provides:
(2) It comprises a surface electrode on the light receiving surface side, a semiconductor substrate and a back electrode,
Provided is a solar cell in which the front electrode and / or the back electrode is formed using the conductive composition according to (1) above used for a solar cell electrode paste.
Furthermore, the present invention provides
(3) a wiring forming step of forming a wiring by applying the conductive composition according to (1) above on a silicon substrate;
There is provided a method for manufacturing a solar battery cell, comprising: a heat treatment step of heat-treating the obtained wiring to form a front-surface electrode and / or a back-surface electrode on a light-receiving surface side.
 以下に示すように、本発明によれば、硬化物に対する半田付け性が良好な導電性組成物、それを用いて電極を形成した太陽電池セルおよび太陽電池の製造方法を提供することができる。
 また、本発明の導電性組成物は、低温(150~500℃程度)焼成であっても、断線やニジミ等の発生を抑制して電極等を形成することができる。
 更に、本発明の導電性組成物を用いれば、シリコン基板のみならず、耐熱性の低い基材上にも電極等を形成することができるため非常に有用である。
As shown below, according to the present invention, it is possible to provide a conductive composition having good solderability to a cured product, a solar battery cell in which an electrode is formed using the conductive composition, and a method for manufacturing a solar battery.
In addition, the conductive composition of the present invention can form an electrode or the like while suppressing the occurrence of disconnection or blurring even when firing at a low temperature (about 150 to 500 ° C.).
Furthermore, the use of the conductive composition of the present invention is very useful because an electrode or the like can be formed not only on a silicon substrate but also on a substrate having low heat resistance.
図1は太陽電池セルの好適な実施態様の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a preferred embodiment of a solar battery cell. 図2は銀粉(AgC-103、福田金属箔粉工業社製)を走査型電子顕微鏡(SEM)で撮影した写真である。FIG. 2 is a photograph of silver powder (AgC-103, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.) taken with a scanning electron microscope (SEM). 図3は銀粉(AgC-2011、福田金属箔粉工業社製)を走査型電子顕微鏡(SEM)で撮影した写真である。FIG. 3 is a photograph of silver powder (AgC-2011, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.) taken with a scanning electron microscope (SEM).
 本発明の導電性組成物は、銀粉(A)と、エポキシ樹脂(B)と、硬化剤(C)とを含有し、上記エポキシ樹脂(B)が、少なくとも、エポキシ当量が1500~4000g/eqのビスフェノールA型エポキシ樹脂(b1)およびエポキシ当量が1000g/eq以下の多価アルコール系グリシジル型エポキシ樹脂(b2)であり、上記硬化剤(C)が、スルホニウムカチオン系硬化剤である導電性組成物である。
 以下に、銀粉(A)、エポキシ樹脂(B)および硬化剤(C)について詳述する。
The conductive composition of the present invention contains silver powder (A), an epoxy resin (B), and a curing agent (C), and the epoxy resin (B) has at least an epoxy equivalent of 1500 to 4000 g / eq. A bisphenol A type epoxy resin (b1) and a polyhydric alcohol glycidyl type epoxy resin (b2) having an epoxy equivalent of 1000 g / eq or less, and the curing agent (C) is a sulfonium cation type curing agent. It is a thing.
Below, silver powder (A), an epoxy resin (B), and a hardening | curing agent (C) are explained in full detail.
 <銀粉(A)>
 本発明の導電性組成物で用いる銀粉(A)は特に限定されず、従来公知の導電性ペーストで配合されているものを使用することができる。
<Silver powder (A)>
The silver powder (A) used by the electrically conductive composition of this invention is not specifically limited, What is mix | blended with the conventionally well-known electrically conductive paste can be used.
 上記銀粉(A)は、印刷性が良好となり、体積抵抗率の小さい電極等を形成することができる理由から、平均粒子径が0.5~10μmの球状の銀粉末であるのが好ましい。
 ここで、球状とは、長径/短径の比率が2以下の粒子の形状をいう。
 また、平均粒子径とは、球状の銀粉末の粒子径の平均値をいい、レーザー回折式粒度分布測定装置を用いて測定された50%体積累積径(D50)をいう。なお、平均値を算出する基になる粒子径は、球状の銀粉末の断面が楕円形である場合はその長径と短径の合計値を2で割った平均値をいい、正円形である場合はその直径をいう。
 例えば、後述する実施例で使用する銀粉(AgC-103、福田金属箔粉工業社製)の写真(図2)で示されるものは球状の銀粉末に該当するが、銀粉(AgC-2011、福田金属箔粉工業社製)の写真(図3)で示されるものは球状の銀粉末には該当せず、フレーク(鱗片)状の銀粉末に該当するものである。
The silver powder (A) is preferably a spherical silver powder having an average particle diameter of 0.5 to 10 μm because it has good printability and can form an electrode having a small volume resistivity.
Here, the term “spherical” refers to the shape of a particle having a major axis / minor axis ratio of 2 or less.
Moreover, an average particle diameter means the average value of the particle diameter of spherical silver powder, and means the 50% volume cumulative diameter (D50) measured using the laser diffraction type particle size distribution measuring apparatus. In addition, when the cross section of the spherical silver powder is elliptical, the particle diameter that is the basis for calculating the average value is the average value obtained by dividing the total value of the major axis and the minor axis by 2, and is a regular circle Refers to its diameter.
For example, a silver powder (AgC-103, manufactured by Fukuda Metal Foil Powder Co., Ltd.) used in the examples described later corresponds to a spherical silver powder, but silver powder (AgC-2011, Fukuda). What is shown by the photograph (FIG. 3) of a metal foil powder industry company does not correspond to spherical silver powder, but corresponds to flake (scale) -like silver powder.
 また、上記銀粉(A)の平均粒子径は、印刷性がより良好となる理由から、0.7~5μmであるのが好ましく、焼結速度が適当となり作業性に優れる理由から、1~3μmであるのがより好ましい。 The average particle size of the silver powder (A) is preferably 0.7 to 5 μm for the reason that printability is better, and 1 to 3 μm for the reason that the sintering speed is appropriate and the workability is excellent. It is more preferable that
 本発明においては、このような銀粉(A)として市販品を用いることができ、その具体例としては、AgC-102(形状:球状、平均粒子径:1.5μm、福田金属箔粉工業社製)、AgC-103(形状:球状、平均粒子径:1.5μm、福田金属箔粉工業社製)、AG4-8F(形状:球状、平均粒子径:2.2μm、DOWAエレクトロニクス社製)、AG2-1C(形状:球状、平均粒子径:1.0μm、DOWAエレクトロニクス社製)、AG3-11F(形状:球状、平均粒子径:1.4μm、DOWAエレクトロニクス社製)、EHD(形状:球状、平均粒子径:0.5μm、三井金属社製)、AgC-2011(形状:フレーク状、平均粒子径:2~10μm、福田金属箔粉工業社製)等が挙げられる。 In the present invention, a commercially available product can be used as such silver powder (A). Specific examples thereof include AgC-102 (shape: spherical, average particle size: 1.5 μm, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.). ), AgC-103 (shape: spherical, average particle diameter: 1.5 μm, manufactured by Fukuda Metal Foil Powder Industries), AG4-8F (shape: spherical, average particle diameter: 2.2 μm, manufactured by DOWA Electronics), AG2 -1C (shape: spherical, average particle size: 1.0 μm, manufactured by DOWA Electronics), AG3-11F (shape: spherical, average particle size: 1.4 μm, manufactured by DOWA Electronics), EHD (shape: spherical, average Particle diameter: 0.5 μm, manufactured by Mitsui Kinzoku Co., Ltd.), AgC-2011 (shape: flake shape, average particle diameter: 2-10 μm, manufactured by Fukuda Metal Foil Co., Ltd.), and the like.
 <エポキシ樹脂(B)>
 本発明の導電性組成物で用いるエポキシ樹脂(B)は、少なくとも、エポキシ当量が1500~4000g/eqのビスフェノールA型エポキシ樹脂(b1)およびエポキシ当量が1000g/eq以下の多価アルコール系グリシジル型エポキシ樹脂(b2)であるが、これらのエポキシ樹脂とともに更に他のエポキシ樹脂(b3)を併用してもよい。
 ここで、エポキシ樹脂(B)のエポキシ当量は、日本工業規格JIS
K-7236:2001の「エポキシ樹脂のエポキシ当量の求め方」に従って算出した値をいう。
<Epoxy resin (B)>
The epoxy resin (B) used in the conductive composition of the present invention comprises at least a bisphenol A type epoxy resin (b1) having an epoxy equivalent of 1500 to 4000 g / eq and a polyhydric alcohol glycidyl type having an epoxy equivalent of 1000 g / eq or less. Although it is an epoxy resin (b2), you may use together another epoxy resin (b3) with these epoxy resins.
Here, the epoxy equivalent of the epoxy resin (B) is the Japanese Industrial Standard JIS.
This is a value calculated according to “How to determine epoxy equivalent of epoxy resin” in K-7236: 2001.
 (ビスフェノールA型エポキシ樹脂(b1))
 上記ビスフェノールA型エポキシ樹脂(b1)は、エポキシ当量が1500~4000g/eqのビスフェノールA型エポキシ樹脂である。
 上記ビスフェノールA型エポキシ樹脂(b1)のエポキシ当量が上記範囲であると、本発明の導電性組成物の硬化後の硬度が良好となり、硬化物に対する優れた半田付け性を維持することができる。
 また、上記ビスフェノールA型エポキシ樹脂(b1)のエポキシ当量は、本発明の導電性組成物の硬化物に対する半田付け性がより良好となり、硬化収縮の割合が小さく被着体(例えば、回路基板等)の反りを抑えることができる理由から、2000~4000g/eqであるのが好ましく、2000~3500g/eqであるのがより好ましい。
(Bisphenol A type epoxy resin (b1))
The bisphenol A type epoxy resin (b1) is a bisphenol A type epoxy resin having an epoxy equivalent of 1500 to 4000 g / eq.
When the epoxy equivalent of the bisphenol A-type epoxy resin (b1) is within the above range, the hardness of the conductive composition of the present invention after curing becomes good, and excellent solderability for the cured product can be maintained.
Further, the epoxy equivalent of the bisphenol A type epoxy resin (b1) has better solderability to the cured product of the conductive composition of the present invention, and the rate of cure shrinkage is small, such as an adherend (for example, a circuit board) ) Is preferably 2000 to 4000 g / eq, more preferably 2000 to 3500 g / eq.
 (多価アルコール系グリシジル型エポキシ樹脂(b2))
 上記多価アルコール系グリシジル型エポキシ樹脂(b2)は、エポキシ当量が1000g/eq以下の多価アルコール系グリシジル型エポキシ樹脂である。
 上記多価アルコール系グリシジル型エポキシ樹脂(b2)のエポキシ当量が上記範囲であると、本発明の導電性組成物の粘度が良好となり、印刷性が良好となる。
 また、上記多価アルコール系グリシジル型エポキシ樹脂(b2)のエポキシ当量は、スクリーン印刷をする際の粘度が適当になる理由から、100~400g/eqであるのが好ましく、100~300g/eqであるのがより好ましい。また、本発明の導電性組成物の粘度が良好となり、印刷性が良好となる理由から、100g/eq以上であることが好ましい。
(Polyhydric alcohol glycidyl type epoxy resin (b2))
The polyhydric alcohol glycidyl type epoxy resin (b2) is a polyhydric alcohol glycidyl type epoxy resin having an epoxy equivalent of 1000 g / eq or less.
When the epoxy equivalent of the polyhydric alcohol-based glycidyl type epoxy resin (b2) is within the above range, the viscosity of the conductive composition of the present invention is good, and the printability is good.
The epoxy equivalent of the polyhydric alcohol-based glycidyl type epoxy resin (b2) is preferably 100 to 400 g / eq, and preferably 100 to 300 g / eq, because the viscosity at the time of screen printing becomes appropriate. More preferably. Moreover, since the viscosity of the electrically conductive composition of this invention becomes favorable and printability becomes favorable, it is preferable that it is 100 g / eq or more.
 上記多価アルコール系グリシジル型エポキシ樹脂(b2)としては、具体的には、例えば、エチレングリコールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリネオペンチルグリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリグリセリンポリグリシジルエーテル、ポリオキシエチレングリコールジグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、ポリペンタエリスリトールポリグリシジルエーテル、トリメチルプロパンジグリシジルエーテル、テトラキス(グリシジルオキシフェニル)エタン、トリス(グリシジルオキシ)メタン等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the polyhydric alcohol glycidyl type epoxy resin (b2) include, for example, ethylene glycol glycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether. 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, polyneopentyl glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, trimethylolpropane polyglycidyl ether, propylene glycol diglycidyl ether, tri Propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, diethylene Recall diglycidyl ether, polyglycerin polyglycidyl ether, polyoxyethylene glycol diglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, polytetramethylene glycol diglycidyl ether, pentaerythritol diglycidyl ether, Examples include pentaerythritol triglycidyl ether, polypentaerythritol polyglycidyl ether, trimethylpropanediglycidyl ether, tetrakis (glycidyloxyphenyl) ethane, tris (glycidyloxy) methane, and these may be used alone. More than one species may be used in combination.
 これらのうち、本発明の導電性組成物の硬化後の硬度が良好となり、硬化物に対する半田付け性がより良好となる理由から、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルが好ましく、更に優れた導電性を付与することができる理由から、ポリエチレングリコールジグリシジルエーテルであるのがより好ましい。 Among these, polyethylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether are preferable and more excellent because the hardness after curing of the conductive composition of the present invention becomes good and solderability to the cured product becomes better. It is more preferable to use polyethylene glycol diglycidyl ether because it can provide high conductivity.
 (他のエポキシ樹脂(b3))
 上記他のエポキシ樹脂(b3)は、1分子中に2個以上のオキシラン環(エポキシ基)を有する化合物からなる樹脂であれば特に限定されない。
 上記他のエポキシ樹脂(b3)としては、具体的には、例えば、ビスフェノールA型エポキシ樹脂(上記ビスフェノールA型エポキシ樹脂(b1)に該当するものを除く)、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジフェニルフルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 上記他のエポキシ樹脂(b3)を含有する場合の含有量は、エポキシ樹脂(B)全体の質量に対して、10質量%以下であるのが好ましく、5質量%以下であるのがより好ましい。
(Other epoxy resin (b3))
The other epoxy resin (b3) is not particularly limited as long as it is a resin composed of a compound having two or more oxirane rings (epoxy groups) in one molecule.
Specific examples of the other epoxy resin (b3) include, for example, a bisphenol A type epoxy resin (excluding those corresponding to the bisphenol A type epoxy resin (b1)), a bisphenol F type epoxy resin, and a biphenyl type epoxy. Resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, diphenylfluorene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidylamine type epoxy resin, etc., and these can be used alone. Or two or more of them may be used in combination.
The content in the case of containing the other epoxy resin (b3) is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the epoxy resin (B).
 本発明においては、上記エポキシ樹脂(B)の含有量は、本発明の導電性組成物の硬化後の硬度が適当となるため被着体(例えば、回路基板等)に対する密着性が良好となり、また、硬化物に対する半田付け性がより良好となる理由から、上記銀粉(A)100質量部に対して、4~10質量部であるのが好ましく、4~8質量部であるのがより好ましい。 In the present invention, the content of the epoxy resin (B) is appropriate for the hardness after curing of the conductive composition of the present invention, so that the adhesion to an adherend (for example, a circuit board) is good, Further, for the reason that the solderability to the cured product becomes better, the amount is preferably 4 to 10 parts by mass, more preferably 4 to 8 parts by mass with respect to 100 parts by mass of the silver powder (A). .
 また、本発明においては、上記ビスフェノールA型エポキシ樹脂(b1)と上記多価アルコール系グリシジル型エポキシ樹脂(b2)との割合は特に限定されないが、本発明の導電性組成物の硬化後の硬度がより良好となり、硬化物に対する優れた半田付け性を維持しやすいという理由から、上記ビスフェノールA型エポキシ樹脂(b1)の配合量(質量)が上記多価アルコール系グリシジル型エポキシ樹脂(b2)よりも多いのが好ましい。 Moreover, in this invention, although the ratio of the said bisphenol A type epoxy resin (b1) and the said polyhydric alcohol type | system | group glycidyl type epoxy resin (b2) is not specifically limited, The hardness after hardening of the electrically conductive composition of this invention Is better, and it is easy to maintain excellent solderability to the cured product, so that the blending amount (mass) of the bisphenol A type epoxy resin (b1) is more than that of the polyhydric alcohol glycidyl type epoxy resin (b2). It is also preferable that there are many.
 <硬化剤(C)>
 本発明の導電性組成物で用いる硬化剤(C)は、スルホニウムカチオン系硬化剤である。
 上記硬化剤(C)としては、例えば、下記式(I)で表されるスルホニウム塩等が挙げられる。
<Curing agent (C)>
The curing agent (C) used in the conductive composition of the present invention is a sulfonium cation curing agent.
Examples of the curing agent (C) include sulfonium salts represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000003
(式中、R1は、水素原子、炭素数1~4のアルキル基またはハロゲン原子を表し、R2は、炭素数1~4のアルキル基、炭素数1~4のアルキル基で置換されていてもよいベンジル基またはα-ナフチルメチル基を表し、R3は、炭素数1~4のアルキル基を表す。また、Qは、下記式(a)~(c)のいずれかで表される基を表し、Xは、SbF6、PF6、CF3SO3、(CF3SO22N、BF4、B(C654またはAl(CF3SO34を表す。)
Figure JPOXMLDOC01-appb-C000003
Wherein R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a halogen atom, and R 2 is substituted with an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms. Represents an optionally substituted benzyl group or α-naphthylmethyl group, R 3 represents an alkyl group having 1 to 4 carbon atoms, and Q is represented by any of the following formulas (a) to (c): X represents SbF 6 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N, BF 4 , B (C 6 F 5 ) 4 or Al (CF 3 SO 3 ) 4 . )
Figure JPOXMLDOC01-appb-C000004
(式(a)中、Rは、水素原子、アセチル基、メトキシカルボニル基またはベンジルオキシカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000004
(In the formula (a), R represents a hydrogen atom, an acetyl group, a methoxycarbonyl group or a benzyloxycarbonyl group.)
 上記式(I)で表されるスルホニウム塩のうち、本発明の導電性組成物の硬化物に対する半田付け性がより良好となる理由から、上記式(I)中のXがSbF6で表されるスルホニウム塩であるのが好ましく、その具体例としては、下記式(1)および(2)で表される化合物が挙げられる。 Among the sulfonium salts represented by the above formula (I), X in the above formula (I) is represented by SbF 6 because the solderability to the cured product of the conductive composition of the present invention becomes better. A sulfonium salt is preferable, and specific examples thereof include compounds represented by the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本発明においては、上記硬化剤(C)としてスルホニウムカチオン系硬化剤を用いることにより、本発明の導電性組成物の硬化物に対する半田付け性が良好となる。
 これは、低温(150~500℃程度)でも十分な硬化性を示すスルホニウムカチオン系硬化剤を使用することにより、イミダゾール系硬化剤を使用した場合よりもエポキシ樹脂(B)の重合度が上がり、その結果、銀粉(A)同士の接触が多くなるためであると考えられる。特に、スルホニウムカチオン系硬化剤がアニオンとして六フッ化アンチモン酸イオン(SbF6 )を有すると、これが金属触媒としても作用するため半田付け性がより良好になると考えられる。
In this invention, the solderability with respect to the hardened | cured material of the electrically conductive composition of this invention becomes favorable by using a sulfonium cation type | system | group hardening | curing agent as said hardening | curing agent (C).
This is because the degree of polymerization of the epoxy resin (B) is increased by using a sulfonium cationic curing agent that exhibits sufficient curability even at low temperatures (about 150 to 500 ° C.), compared to the case of using an imidazole curing agent, As a result, it is considered that the contact between the silver powders (A) increases. In particular, when the sulfonium cation-based curing agent has hexafluoroantimonate ion (SbF 6 ) as an anion, it acts as a metal catalyst, so that solderability is considered to be better.
 また、本発明においては、上記硬化剤(C)の含有量は、熱により活性化してエポキシ基の開環反応を十分に進行させることができるという理由から、上記エポキシ樹脂(B)100質量部に対して1~10質量部であるのが好ましく、1~5質量部であるのがより好ましい。 Moreover, in this invention, content of the said hardening | curing agent (C) is activated with a heat | fever, and since the ring-opening reaction of an epoxy group can fully advance, 100 mass parts of said epoxy resins (B) The amount is preferably 1 to 10 parts by weight, more preferably 1 to 5 parts by weight.
 <脂肪酸銀塩(D)>
 本発明の導電性組成物は、より低温(150~200℃程度)の焼成であっても電極等を形成することができ、シリコン基板への熱によるダメージをより軽減できる理由から、更に脂肪酸銀塩(D)を含有するのが好ましい。
<Fatty acid silver salt (D)>
The conductive composition of the present invention can form an electrode and the like even when fired at a lower temperature (about 150 to 200 ° C.), and further reduces damage to the silicon substrate due to heat. It preferably contains a salt (D).
 上記脂肪酸銀塩(D)は、有機カルボン酸の銀塩であれば特に限定されず、例えば、日本公開特許公報第2008-198595号の段落[0063]~[0068]に記載された脂肪酸金属塩(特に3級脂肪酸銀塩)、日本特許公報第4482930号の段落[0030]に記載された脂肪酸銀、日本公開特許公報第2010-92684号の段落[0029]~[0045]に記載された水酸基を1個以上有する脂肪酸銀塩、同公報の段落[0046]~[0056]に記載された2級脂肪酸銀塩等を用いることができる。
 これらのうち、カルボキシ銀塩基(-COOAg)と水酸基(-OH)とをそれぞれ1個以上有する脂肪酸銀塩(D1)、および/または、カルボキシ銀塩基(-COOAg)を3個以上有するポリカルボン酸銀塩(D2)を用いるのが好ましい。
 具体的には、例えば、上記脂肪酸銀塩(D1)としては、2,2-ビス(ヒドロキシメチル)-n-酪酸銀塩、2-ヒドロキシイソ酪酸銀塩を好適に用いることができ、上記ポリカルボン酸銀塩(D2)としては、1,2,3,4-ブタンテトラカルボン酸銀塩を好適に用いることができる。
The fatty acid silver salt (D) is not particularly limited as long as it is a silver salt of an organic carboxylic acid. For example, the fatty acid metal salt described in paragraphs [0063] to [0068] of Japanese Patent Application Publication No. 2008-198595. (Particularly tertiary fatty acid silver salt), fatty acid silver described in paragraph [0030] of Japanese Patent Publication No. 4482930, and hydroxyl groups described in paragraphs [0029] to [0045] of Japanese Published Patent Publication No. 2010-92684 Or a fatty acid silver salt described in paragraphs [0046] to [0056] of the same publication.
Among these, a fatty acid silver salt (D1) having at least one carboxy silver base (—COOAg) and a hydroxyl group (—OH) and / or a polycarboxylic acid having at least three carboxy silver bases (—COOAg) It is preferable to use a silver salt (D2).
Specifically, for example, as the fatty acid silver salt (D1), 2,2-bis (hydroxymethyl) -n-butyric acid silver salt and 2-hydroxyisobutyric acid silver salt can be preferably used. As the carboxylic acid silver salt (D2), 1,2,3,4-butanetetracarboxylic acid silver salt can be preferably used.
 本発明においては、上記脂肪酸銀塩(D)の含有量は、印刷性が良好となり、体積抵抗率が小さい電極を形成することができる理由から、上記銀粉(A)100質量部に対して1~100質量部であるのが好ましく、5~80質量部であるのがより好ましい。 In the present invention, the content of the fatty acid silver salt (D) is 1 with respect to 100 parts by mass of the silver powder (A) because the printability is good and an electrode having a small volume resistivity can be formed. The amount is preferably from 100 to 100 parts by mass, and more preferably from 5 to 80 parts by mass.
 <溶媒>
 本発明の導電性組成物は、印刷性等の作業性の観点から、更に溶媒を含有するのが好ましい。
 上記溶媒は、本発明の導電性組成物を基材上に塗布することができるものであれば特に限定されず、その具体例としては、ブチルカルビトール、メチルエチルケトン、イソホロン、α-テルピネオール等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 また、上記溶媒を含有する場合の含有量は、上記銀粉(A)100質量部に対して、2~20質量部であるのが好ましく、5~15質量部であるのがより好ましい。
<Solvent>
The conductive composition of the present invention preferably further contains a solvent from the viewpoint of workability such as printability.
The solvent is not particularly limited as long as the conductive composition of the present invention can be applied on a substrate, and specific examples thereof include butyl carbitol, methyl ethyl ketone, isophorone, α-terpineol, and the like. These may be used alone or in combination of two or more.
Further, when the solvent is contained, the content is preferably 2 to 20 parts by mass, and more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the silver powder (A).
 <添加剤>
 本発明の導電性組成物は、必要に応じて、上述した銀粉(A)以外の金属粉、還元剤等の添加剤を含有していてもよい。
 上記金属粉としては、具体的には、例えば、銅、アルミニウム等が挙げられ、中でも、銅であるのが好ましい。また、0.01~10μmの粒径の金属粉であるのが好ましい。
 上記還元剤としては、具体的には、例えば、エチレングリコール類等が挙げられる。
<Additives>
The electrically conductive composition of this invention may contain additives, such as metal powder other than the silver powder (A) mentioned above, a reducing agent, as needed.
Specific examples of the metal powder include copper and aluminum. Among them, copper is preferable. Further, a metal powder having a particle diameter of 0.01 to 10 μm is preferable.
Specific examples of the reducing agent include ethylene glycols.
 本発明の導電性組成物の製造方法は特に限定されず、上記銀粉(A)、上記エポキシ樹脂(B)および上記硬化剤(C)ならびに所望により含有してもよい上記脂肪酸銀塩(D)、上記溶媒および添加剤を、ロール、ニーダー、押出し機、万能かくはん機等により混合する方法が挙げられる。 The manufacturing method of the electroconductive composition of this invention is not specifically limited, The said silver powder (A), the said epoxy resin (B), the said hardening | curing agent (C), and the said fatty acid silver salt (D) which may be contained depending on necessity. And a method of mixing the solvent and additives with a roll, a kneader, an extruder, a universal agitator or the like.
 本発明の太陽電池セルは、受光面側の表面電極、半導体基板および裏面電極を具備し、上記表面電極および/または上記裏面電極が、上述した本発明の導電性組成物を用いて形成される太陽電池セルである。
 ここで、本発明の太陽電池セルは、上述した本発明の導電性組成物が全裏面電極型(いわゆるバックコンタクト型)太陽電池の裏面電極の形成にも適用することができるため、全裏面電極型の太陽電池にも適用することができる。
 以下に、本発明の太陽電池セルの構成について図1を用いて説明する。
The solar cell of the present invention comprises a light-receiving surface-side surface electrode, a semiconductor substrate, and a back electrode, and the surface electrode and / or the back electrode is formed using the above-described conductive composition of the present invention. It is a solar battery cell.
Here, the solar battery cell of the present invention can be applied to the formation of the back electrode of the all back electrode type (so-called back contact type) solar battery because the above-described conductive composition of the present invention can be applied to the all back electrode. The present invention can also be applied to a type solar cell.
Below, the structure of the photovoltaic cell of this invention is demonstrated using FIG.
 図1に示すように、本発明の太陽電池セル1は、受光面側の表面電極4と、p層5およびn層2が接合したpn接合シリコン基板7と、裏面電極6とを具備するものである。
 また、図1に示すように、本発明の太陽電池セル1は、反射率低減のため、例えば、ウェハー表面にエッチングを施して、ピラミッド状のテクスチャを形成し、反射防止膜3を具備するのが好ましい。
As shown in FIG. 1, a solar cell 1 of the present invention includes a surface electrode 4 on the light-receiving surface side, a pn junction silicon substrate 7 in which a p layer 5 and an n layer 2 are joined, and a back electrode 6. It is.
Further, as shown in FIG. 1, the solar battery cell 1 of the present invention is provided with an antireflection film 3 by, for example, etching the wafer surface to form a pyramidal texture in order to reduce the reflectance. Is preferred.
 <表面電極/裏面電極>
 本発明の太陽電池セルが具備する表面電極および裏面電極は、いずれか一方または両方が本発明の導電性組成物を用いて形成されていれば、電極の配置(ピッチ)、形状、高さ、幅等は特に限定されない。
 ここで、表面電極および裏面電極は、図1に示すように、通常、複数個有するものであるが、本発明においては、例えば、複数の表面電極の一部のみが本発明の導電性組成物で形成されたものであってもよく、複数の表面電極の一部と複数の裏面電極の一部が本発明の導電性組成物で形成されたものであってもよい。
<Front electrode / Back electrode>
If either one or both of the front electrode and the back electrode included in the solar battery cell of the present invention are formed using the conductive composition of the present invention, the electrode arrangement (pitch), shape, height, The width and the like are not particularly limited.
Here, as shown in FIG. 1, the front surface electrode and the back surface electrode usually have a plurality, but in the present invention, for example, only a part of the plurality of front surface electrodes is the conductive composition of the present invention. Or a part of the plurality of front surface electrodes and a part of the plurality of back surface electrodes may be formed of the conductive composition of the present invention.
 <反射防止膜>
 本発明の太陽電池セルが具備していてもよい反射防止膜は、受光面の表面電極が形成されていない部分に形成される膜(膜厚:0.05~0.1μm程度)であって、例えば、シリコン酸化膜、シリコン窒化膜、酸化チタン膜、これらの積層膜等から構成されるものである。
<Antireflection film>
The antireflection film that the solar battery cell of the present invention may have is a film (film thickness: about 0.05 to 0.1 μm) formed on a portion of the light receiving surface where the surface electrode is not formed. For example, a silicon oxide film, a silicon nitride film, a titanium oxide film, or a laminated film thereof.
 <シリコン基板>
 本発明の太陽電池セルが具備するシリコン基板は特に限定されず、太陽電池を形成するための公知のシリコン基板(板厚:100~450μm程度)を用いることができ、また、単結晶または多結晶のいずれのシリコン基板であってもよい。
<Silicon substrate>
The silicon substrate included in the solar battery cell of the present invention is not particularly limited, and a known silicon substrate (plate thickness: about 100 to 450 μm) for forming a solar battery can be used, and a single crystal or polycrystal Any silicon substrate may be used.
 また、上記シリコン基板はpn接合を有するが、これは、第1導電型の半導体基板の表面側に第2導電型の受光面不純物拡散領域が形成されていることを意味する。なお、第1導電型がn型の場合には、第2導電型はp型であり、第1導電型がp型の場合には、第2導電型はn型である。
 ここで、p型を与える不純物としては、ホウ素、アルミニウム等が挙げられ、n型を与える不純物としては、リン、砒素などが挙げられる。
The silicon substrate has a pn junction, which means that a second conductivity type light-receiving surface impurity diffusion region is formed on the surface side of the first conductivity type semiconductor substrate. When the first conductivity type is n-type, the second conductivity type is p-type. When the first conductivity type is p-type, the second conductivity type is n-type.
Here, examples of the impurity imparting p-type include boron and aluminum, and examples of the impurity imparting n-type include phosphorus and arsenic.
 本発明の太陽電池セルは、表面電極および/または裏面電極が本発明の導電性組成物を用いて形成されているため、各電極(特にバスバー部)に対する半田付け性が良好となり、モジュール化することが容易である。 In the solar battery cell of the present invention, the front electrode and / or the back electrode are formed using the conductive composition of the present invention, so that the solderability to each electrode (especially the bus bar portion) is good and modularized. Is easy.
 本発明の太陽電池セルの製造方法は特に限定されないが、本発明の導電性組成物をシリコン基板上に塗布して配線を形成する配線形成工程と、得られた配線を熱処理して電極(表面電極および/または裏面電極)を形成する熱処理工程とを有する方法が挙げられる。
 なお、本発明の太陽電池セルが反射防止層を具備する場合、反射防止膜は、プラズマCVD法等の公知の方法により形成することができる。
 以下に、配線形成工程、熱処理工程について詳述する。
Although the manufacturing method of the photovoltaic cell of the present invention is not particularly limited, a wiring forming step of forming the wiring by applying the conductive composition of the present invention on a silicon substrate, and heat treating the obtained wiring to form an electrode (surface A heat treatment step of forming an electrode and / or a back electrode).
In addition, when the photovoltaic cell of this invention comprises an antireflection layer, an antireflection film can be formed by well-known methods, such as a plasma CVD method.
Below, a wiring formation process and a heat treatment process are explained in full detail.
 <配線形成工程>
 上記配線形成工程は、本発明の導電性組成物をシリコン基材上に塗布して配線を形成する工程である。
 ここで、塗布方法としては、具体的には、例えば、インクジェット、スクリーン印刷、グラビア印刷、オフセット印刷、凸版印刷等が挙げられる。
<Wiring formation process>
The said wiring formation process is a process of apply | coating the electrically conductive composition of this invention on a silicon base material, and forming wiring.
Here, specific examples of the coating method include inkjet, screen printing, gravure printing, offset printing, letterpress printing, and the like.
 <熱処理工程>
 上記熱処理工程は、上記配線形成工程で得られた配線を熱処理して導電性の配線(電極)を得る工程である。
 ここで、上記熱処理は特に限定されないが、150~800℃の温度で、数秒~数十分間、加熱(焼成)する処理であるのが好ましい。温度および時間がこの範囲であると、シリコン基板上に反射防止膜を形成した場合であっても、ファイヤースルー法により容易に電極を形成することができる。
 本発明においては、本発明の導電性組成物を用いているため、低温(150~500℃程度)であっても、良好な熱処理(焼成)を施すことができる。
<Heat treatment process>
The heat treatment step is a step of obtaining a conductive wiring (electrode) by heat-treating the wiring obtained in the wiring forming step.
Here, the heat treatment is not particularly limited, but is preferably a treatment of heating (firing) at a temperature of 150 to 800 ° C. for several seconds to several tens of minutes. When the temperature and time are within this range, even when an antireflection film is formed on the silicon substrate, the electrode can be easily formed by the fire-through method.
In the present invention, since the conductive composition of the present invention is used, good heat treatment (firing) can be performed even at a low temperature (about 150 to 500 ° C.).
 なお、本発明においては、上記配線形成工程で得られた配線は、紫外線または赤外線の照射でも電極を形成することができるため、上記熱処理工程は、紫外線または赤外線の照射によるものであってもよい。 In the present invention, since the wiring obtained in the wiring formation step can form electrodes even by irradiation with ultraviolet rays or infrared rays, the heat treatment step may be performed by irradiation with ultraviolet rays or infrared rays. .
 以下、実施例を用いて、本発明の導電性組成物について詳細に説明する。ただし、本発明はこれに限定されるものではない。 Hereinafter, the conductive composition of the present invention will be described in detail using examples. However, the present invention is not limited to this.
 (実施例1~12、比較例1~6)
 ボールミルに、下記第1表に示す銀粉等を下記第1表中に示す組成比となるように添加し、これらを混合することにより導電性組成物を調製した。
(Examples 1 to 12, Comparative Examples 1 to 6)
To the ball mill, silver powder and the like shown in Table 1 below were added so as to have the composition ratio shown in Table 1 below, and these were mixed to prepare a conductive composition.
 <スクリーン印刷性>
 調製した導電性組成物を、シリコン基板(単結晶シリコンウェハー、LS-25TVA、156mm×156mm×200μm、信越化学工業社製)上に、スクリーン印刷で塗布して配線(線幅:70μm、長さ:5cm)を形成した。
 スクリーン印刷で形成した乾燥(焼成)前の配線を光学顕微鏡で観察した。
 その結果、断線、蛇行、ニジミおよびメッシュ跡のいずれも確認されない場合を印刷性が極めて良好なものとして「A」と評価し、断線は確認されないが、蛇行、ニジミおよびメッシュ跡のいずれか1つが確認された場合を印刷性が良好なものとして「B」と評価し、断線は確認されないが、蛇行、ニジミおよびメッシュ跡のいずれか2つ以上が確認された場合を印刷性が劣るものとして「C」と評価し、断線が確認された場合を印刷性が極めて劣るものとして「D」と評価した。これらの結果を下記第1表に示す。
<Screen printability>
The prepared conductive composition was applied on a silicon substrate (single crystal silicon wafer, LS-25TVA, 156 mm × 156 mm × 200 μm, manufactured by Shin-Etsu Chemical Co., Ltd.) by screen printing and wiring (line width: 70 μm, length) : 5 cm).
Wiring before drying (firing) formed by screen printing was observed with an optical microscope.
As a result, the case where none of the disconnection, meandering, bleeding and mesh marks is confirmed is evaluated as “A” as the printability is extremely good. When confirmed, the printability is evaluated as “B”, and disconnection is not confirmed. However, when any two or more of meandering, bleeding and mesh marks are confirmed, the printability is inferior. The case where the disconnection was confirmed was evaluated as “D” because the printability was extremely inferior. These results are shown in Table 1 below.
 <半田付け性(半田濡れ性)>
 調製した導電性組成物を、シリコン基板(単結晶シリコンウェハー、LS-25TVA、156mm×156mm×200μm、信越化学工業社製)上に、スクリーン印刷で塗布してテストパターン(2mm×2mm)を形成した。
 形成したテストパターン上に半田フラックスを塗布した後、150℃のホットプレート上で20秒間乾燥させた。
 次いで、270℃の半田槽中に3秒間浸漬させ後に引き上げ、テストパターン上の半田の濡れ性(被覆%)から半田付け性を評価した。
 テストパターン上の半田の被覆面積が100%であるものを半田付け性が極めて良好なものとして「A」と評価し、テストパターン上の半田の被覆面積が80%以上100%未満であるものを半田付け性が良好なものとして「B」と評価し、テストパターン上の半田の被覆面積が80%未満であるものを半田付け性が劣るものとして「C」と評価した。これらの結果を下記第1表に示す。
<Solderability (solder wettability)>
The prepared conductive composition is applied on a silicon substrate (single crystal silicon wafer, LS-25TVA, 156 mm × 156 mm × 200 μm, manufactured by Shin-Etsu Chemical Co., Ltd.) by screen printing to form a test pattern (2 mm × 2 mm). did.
A solder flux was applied on the formed test pattern and then dried on a hot plate at 150 ° C. for 20 seconds.
Next, it was dipped in a solder bath at 270 ° C. for 3 seconds and then pulled up, and the solderability was evaluated from the wettability (covering%) of the solder on the test pattern.
A test pattern having a solder coverage of 100% is evaluated as “A” as having extremely good solderability, and a test pattern solder coverage of 80% or more and less than 100%. “B” was evaluated as having good solderability, and “C” was evaluated as having poor solderability when solder coverage on the test pattern was less than 80%. These results are shown in Table 1 below.
 <体積抵抗率(比抵抗)>
 実施例1および10~12で調製した導電性組成物を用いて、スクリーン印刷で配線を形成した後、オーブンにて200℃、180℃および150℃の3つの条件で30分間乾燥し、導電性の配線(電極)を形成させた太陽電池セルのサンプルを作製した。
 作製した各太陽電池セルのサンプルについて、電極の体積抵抗率を抵抗率計(ロレスターGP、三菱化学社製)を用いた4端子4探針法により測定した。この結果を下記第2表に示す。
<Volume resistivity (specific resistance)>
A wiring was formed by screen printing using the conductive composition prepared in Examples 1 and 10 to 12, and then dried in an oven for 30 minutes under three conditions of 200 ° C., 180 ° C. and 150 ° C. Samples of solar cells on which the wirings (electrodes) were formed were prepared.
About the sample of each produced photovoltaic cell, the volume resistivity of the electrode was measured by a 4-terminal 4-probe method using a resistivity meter (Lorestar GP, manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 第1表および第2表中の各成分は、以下のものを使用した。
 ・銀粉:AgC-103(形状:球状、平均粒子径:1.5μm、福田金属箔粉工業社製)
 ・α-テルピネオール:溶媒
The following were used for each component in Table 1 and Table 2.
Silver powder: AgC-103 (shape: spherical, average particle size: 1.5 μm, manufactured by Fukuda Metal Foil Powder Industry)
・ Α-Terpineol: Solvent
 ・ビスフェノールA型エポキシ樹脂:YD-019(エポキシ当量:2400~3300g/eq、新日鐵化学社製)
 ・ビスフェノールA型エポキシ樹脂:YD-020N(エポキシ当量:3500~4000g/eq、新日鐵化学社製)
 ・ビスフェノールA型エポキシ樹脂:YD-014(エポキシ当量:900~1000g/eq、新日鐵化学社製)
 ・ビスフェノールA型エポキシ樹脂:EP-4100E(エポキシ当量:190g/eq、ADEKA社製)
Bisphenol A type epoxy resin: YD-019 (epoxy equivalent: 2400-3300 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.)
Bisphenol A type epoxy resin: YD-020N (epoxy equivalent: 3500 to 4000 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.)
Bisphenol A type epoxy resin: YD-014 (epoxy equivalent: 900 to 1000 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.)
Bisphenol A type epoxy resin: EP-4100E (epoxy equivalent: 190 g / eq, manufactured by ADEKA)
 ・多価アルコール系グリシジル型エポキシ樹脂:ポリエチレングリコールジグリシジルエーテル(EX-821、エポキシ当量:185g/eq、ナガセケムテックス社製)
 ・多価アルコール系グリシジル型エポキシ樹脂:ジエチレングリコールジグリシジルエーテル(EX-850、エポキシ当量:122g/eq、ナガセケムテックス社製)
 ・多価アルコール系グリシジル型エポキシ樹脂:エチレングリコールジグリシジルエーテル(EX-810、エポキシ当量:113g/eq、ナガセケムテックス社製)
 ・多価アルコール系グリシジル型エポキシ樹脂:1,6-ヘキサンジオールジグリシジルエーテル(EX-212、エポキシ当量:151g/eq、ナガセケムテックス社製)
Polyhydric alcohol glycidyl type epoxy resin: polyethylene glycol diglycidyl ether (EX-821, epoxy equivalent: 185 g / eq, manufactured by Nagase ChemteX Corporation)
Polyhydric alcohol glycidyl type epoxy resin: diethylene glycol diglycidyl ether (EX-850, epoxy equivalent: 122 g / eq, manufactured by Nagase ChemteX Corporation)
Polyhydric alcohol glycidyl type epoxy resin: ethylene glycol diglycidyl ether (EX-810, epoxy equivalent: 113 g / eq, manufactured by Nagase ChemteX Corporation)
Polyhydric alcohol glycidyl type epoxy resin: 1,6-hexanediol diglycidyl ether (EX-212, epoxy equivalent: 151 g / eq, manufactured by Nagase ChemteX Corporation)
 ・硬化剤:下記式(1)で表される化合物(Sl-100L、三新化学工業社製)
 ・硬化剤:下記式(2)で表される化合物(SI-150、三新化学工業社製)
 ・硬化剤:下記式(3)で表される化合物
 ・硬化剤:下記式(4)で表される化合物(三フッ化ホウ素エチルアミン、東京化成社製)
Curing agent: Compound represented by the following formula (1) (Sl-100L, manufactured by Sanshin Chemical Industry Co., Ltd.)
Curing agent: Compound represented by the following formula (2) (SI-150, manufactured by Sanshin Chemical Industry Co., Ltd.)
Curing agent: Compound represented by the following formula (3) Curing agent: Compound represented by the following formula (4) (Boron trifluoride ethylamine, manufactured by Tokyo Chemical Industry Co., Ltd.)
Figure JPOXMLDOC01-appb-C000006
 式(3)中、R4は、水酸基を表し、R5は、メチル基を表し、R6は、メチル基を表す。
Figure JPOXMLDOC01-appb-C000006
In formula (3), R 4 represents a hydroxyl group, R 5 represents a methyl group, and R 6 represents a methyl group.
 ・2,2-ビス(ヒドロキシメチル)-n-酪酸銀塩:まず、酸化銀(東洋化学工業社製)50g、2,2-ビス(ヒドロキシメチル)-n-酪酸(東京化成社製)64gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、白色の2,2-ビス(ヒドロキシメチル)-n-酪酸銀塩を調製した。 ・ 2,2-bis (hydroxymethyl) -n-butyric acid silver salt: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 64 g of 2,2-bis (hydroxymethyl) -n-butyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) Then, 300 g of methyl ethyl ketone (MEK) was put into a ball mill and reacted by stirring at room temperature for 24 hours. Next, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 2,2-bis (hydroxymethyl) -n-butyric acid silver salt.
 ・2-ヒドロキシイソ酪酸銀塩:まず、酸化銀(東洋化学工業社製)50g、2-ヒドロキシイソ酪酸(東京化成社製)45gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、白色の2-ヒドロキシイソ酪酸銀塩を調製した。 Silver salt of 2-hydroxyisobutyrate: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 45 g of 2-hydroxyisobutyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are placed in a ball mill and are allowed to stand at room temperature for 24 hours The reaction was allowed to stir. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 2-hydroxyisobutyric acid silver salt.
 ・1,2,3,4-ブタンテトラカルボン酸銀塩:まず、酸化銀(東洋化学工業社製)50g、1,2,3,4-ブタンテトラカルボン酸(新日本理化社製)25.29gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることによって、白色の1,2,3,4-ブタンテトラカルボン酸銀塩を調製した。 -1,2,3,4-butanetetracarboxylic acid silver salt: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 1,2,3,4-butanetetracarboxylic acid (manufactured by Shin Nippon Rika Co., Ltd.) 29 g and 300 g of methyl ethyl ketone (MEK) were placed in a ball mill and reacted by stirring at room temperature for 24 hours. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 1,2,3,4-butanetetracarboxylic acid silver salt.
 第1表に示す結果から、エポキシ当量が1500未満のビスフェノールA型エポキシ樹脂を用いて調製した比較例1の導電性組成物は、半田付け性は良好であるものの印刷性が劣ることが分かった。
 また、エポキシ当量が低い汎用のビスフェノールA型エポキシ樹脂を用いて調製した比較例2の導電性組成物は、印刷性は極めて良好だが、半田付け性が劣ることが分かった。
 また、スルホニウムカチオン系ではない硬化剤を用いて調製した比較例3の導電性組成物は、印刷性は極めて良好だが、半田付け性が劣ることが分かった。
 また、ビスフェノールA型エポキシ樹脂および多価アルコール系グリシジル型エポキシ樹脂のいずれか一方を配合せずに調製した比較例4および5の導電性組成物は、印刷性に劣り、半田付け性も劣ることが分かった。
 また、エポキシ当量の異なる2種のビスフェノールA型エポキシ樹脂を併用して調製した比較例6の導電性組成物は、印刷性に劣り、半田付け性も劣ることが分かった。
From the results shown in Table 1, it was found that the conductive composition of Comparative Example 1 prepared using a bisphenol A type epoxy resin having an epoxy equivalent of less than 1500 had poor solderability but good printability. .
Moreover, it turned out that the electroconductive composition of the comparative example 2 prepared using the general purpose bisphenol A type epoxy resin with a low epoxy equivalent has very good printability, but is inferior in solderability.
Moreover, it turned out that the electroconductive composition of the comparative example 3 prepared using the hardening | curing agent which is not a sulfonium cation type | system | group is very good in printability, but inferior in solderability.
In addition, the conductive compositions of Comparative Examples 4 and 5 prepared without blending either one of the bisphenol A type epoxy resin and the polyhydric alcohol glycidyl type epoxy resin are inferior in printability and in solderability. I understood.
Moreover, it turned out that the electroconductive composition of the comparative example 6 prepared by using together 2 types of bisphenol A type epoxy resins from which an epoxy equivalent differs is inferior to printability, and solderability.
 これに対し、所定のエポキシ当量のビスフェノールA型エポキシ樹脂および多価アルコール系グリシジル型エポキシ樹脂を併用し、スルホニウムカチオン系硬化剤を用いて調製した実施例1~10の導電性組成物は、いずれも印刷性に優れ、半田付け性も良好となることが分かった。
 特に、六フッ化アンチモン酸イオン(SbF6 -)をアニオンとして有する硬化剤を用いて調製した実施例1~7、9~12の導電性組成物は、半田付け性も極めて良好となることが分かった。
 また、ビスフェノールA型エポキシ樹脂の配合量が多価アルコール系グリシジル型エポキシ樹脂の配合量よりも多い実施例1,2,4,6~8および10~12の導電性組成物は、印刷性が極めて良好となる傾向があることが分かった。
 また、第2表に示す結果から、脂肪酸銀塩を併用した実施例10~12の導電性組成物は、実施例1の導電性組成物と比較して、焼成温度に依らず体積抵抗率が低くなることが分かった。
On the other hand, the conductive compositions of Examples 1 to 10 prepared using a sulfonium cation curing agent in combination with a bisphenol A type epoxy resin and a polyhydric alcohol glycidyl type epoxy resin having a predetermined epoxy equivalent weight Was found to be excellent in printability and solderability.
In particular, the conductive compositions of Examples 1 to 7 and 9 to 12 prepared using a curing agent having hexafluoroantimonate ion (SbF 6 ) as an anion may have extremely good solderability. I understood.
In addition, the conductive compositions of Examples 1, 2, 4, 6 to 8, and 10 to 12, in which the blending amount of the bisphenol A type epoxy resin is larger than the blending amount of the polyhydric alcohol glycidyl type epoxy resin, have printability. It turns out that it tends to be very good.
Further, from the results shown in Table 2, the conductive compositions of Examples 10 to 12 used in combination with the fatty acid silver salt have a volume resistivity independent of the firing temperature as compared with the conductive composition of Example 1. It turned out to be lower.
 1  太陽電池セル
 2  n層
 3  反射防止膜
 4  表面電極
 5  p層
 6  裏面電極
 7  シリコン基板
DESCRIPTION OF SYMBOLS 1 Solar cell 2 N layer 3 Antireflection film 4 Surface electrode 5 P layer 6 Back electrode 7 Silicon substrate

Claims (12)

  1.  銀粉(A)と、エポキシ樹脂(B)と、硬化剤(C)とを含有し、
     前記エポキシ樹脂(B)が、少なくとも、エポキシ当量が1500~4000g/eqのビスフェノールA型エポキシ樹脂(b1)およびエポキシ当量が1000g/eq以下の多価アルコール系グリシジル型エポキシ樹脂(b2)であり、
     前記硬化剤(C)が、スルホニウムカチオン系硬化剤である導電性組成物。
    Contains silver powder (A), epoxy resin (B), and curing agent (C),
    The epoxy resin (B) is at least a bisphenol A type epoxy resin (b1) having an epoxy equivalent of 1500 to 4000 g / eq and a polyhydric alcohol glycidyl type epoxy resin (b2) having an epoxy equivalent of 1000 g / eq or less,
    The electrically conductive composition whose said hardening | curing agent (C) is a sulfonium cation type hardening | curing agent.
  2.  前記硬化剤(C)が、下記式(I)で表されるスルホニウム塩である請求項1に記載の導電性組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式中、R1は、水素原子、炭素数1~4のアルキル基またはハロゲン原子を表し、R2は、炭素数1~4のアルキル基、炭素数1~4のアルキル基で置換されていてもよいベンジル基またはα-ナフチルメチル基を表し、R3は、炭素数1~4のアルキル基を表す。また、Qは、下記式(a)~(c)のいずれかで表される基を表し、Xは、SbF6、PF6、CF3SO3、(CF3SO22N、BF4、B(C654またはAl(CF3SO34を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(a)中、Rは、水素原子、アセチル基、メトキシカルボニル基またはベンジルオキシカルボニル基を表す。)
    The conductive composition according to claim 1, wherein the curing agent (C) is a sulfonium salt represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000007
    Wherein R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a halogen atom, and R 2 is substituted with an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms. Represents an optionally substituted benzyl group or α-naphthylmethyl group, R 3 represents an alkyl group having 1 to 4 carbon atoms, and Q is represented by any of the following formulas (a) to (c): X represents SbF 6 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N, BF 4 , B (C 6 F 5 ) 4 or Al (CF 3 SO 3 ) 4 . )
    Figure JPOXMLDOC01-appb-C000008
    (In the formula (a), R represents a hydrogen atom, an acetyl group, a methoxycarbonyl group or a benzyloxycarbonyl group.)
  3.  前記硬化剤(C)が、前記式(I)中のXがSbF6で表される請求項2に記載の導電性組成物。 The conductive composition according to claim 2, wherein the curing agent (C) is such that X in the formula (I) is represented by SbF 6 .
  4.  前記硬化剤(C)の含有量が、前記エポキシ樹脂(B)100質量部に対して1~10質量部である請求項1~3のいずれかに記載の導電性組成物。 The conductive composition according to any one of claims 1 to 3, wherein the content of the curing agent (C) is 1 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin (B).
  5.  前記ビスフェノールA型エポキシ樹脂(b1)は、エポキシ当量が2000~3500g/eqである請求項1~4のいずれかに記載の導電性組成物。 The conductive composition according to any one of claims 1 to 4, wherein the bisphenol A type epoxy resin (b1) has an epoxy equivalent of 2000 to 3500 g / eq.
  6.  前記多価アルコール系グリシジル型エポキシ樹脂(b2)が、ポリエチレングリコールジグリシジルエーテルである請求項1~5のいずれかに記載の導電性組成物。 The conductive composition according to any one of claims 1 to 5, wherein the polyhydric alcohol glycidyl type epoxy resin (b2) is polyethylene glycol diglycidyl ether.
  7.  前記エポキシ樹脂(B)の含有量が、前記銀粉(A)100質量部に対して4~10質量部である請求項1~6のいずれかに記載の導電性組成物。 The conductive composition according to any one of claims 1 to 6, wherein the content of the epoxy resin (B) is 4 to 10 parts by mass with respect to 100 parts by mass of the silver powder (A).
  8.  更に、脂肪酸銀塩(D)を含有し、
     前記脂肪酸銀塩(D)が、カルボキシ銀塩基(-COOAg)と水酸基(-OH)とをそれぞれ1個以上有する脂肪酸銀塩(D1)、および/または、カルボキシ銀塩基(-COOAg)を3個以上有するポリカルボン酸銀塩(D2)である請求項1~7のいずれかに記載の導電性組成物。
    Furthermore, it contains a fatty acid silver salt (D),
    The fatty acid silver salt (D) includes three fatty acid silver salts (D1) having at least one carboxy silver base (—COOAg) and one hydroxyl group (—OH) and / or three carboxy silver bases (—COOAg). The conductive composition according to any one of claims 1 to 7, which is a polycarboxylic acid silver salt (D2) having the above.
  9.  前記脂肪酸銀塩(D)の含有量が、前記銀粉(A)100質量部に対して1~100質量部である請求項8に記載の導電性組成物。 The conductive composition according to claim 8, wherein the content of the fatty acid silver salt (D) is 1 to 100 parts by mass with respect to 100 parts by mass of the silver powder (A).
  10.  太陽電池電極用ペーストに用いる請求項1~9のいずれかに記載の導電性組成物。 10. The conductive composition according to claim 1, which is used for a solar cell electrode paste.
  11.  受光面側の表面電極、半導体基板および裏面電極を具備し、
     前記表面電極および/または前記裏面電極が、請求項10に記載の導電性組成物を用いて形成される太陽電池セル。
    It comprises a surface electrode on the light receiving surface side, a semiconductor substrate and a back electrode,
    The photovoltaic cell in which the said surface electrode and / or the said back surface electrode are formed using the electrically conductive composition of Claim 10.
  12.  請求項1~10のいずれかに記載の導電性組成物をシリコン基板上に塗布して配線を形成する配線形成工程と、
     得られた前記配線を熱処理して受光面側の表面電極および/または裏面電極を形成する熱処理工程と、を備える太陽電池セルの製造方法。
    A wiring forming step of forming a wiring by applying the conductive composition according to any one of claims 1 to 10 on a silicon substrate;
    A heat treatment step of heat-treating the obtained wiring to form a front-surface electrode and / or a back-surface electrode on the light-receiving surface side.
PCT/JP2011/005260 2010-09-29 2011-09-16 Electroconductive composition, solar battery cell, and method for producing solar battery cell WO2012042780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180025135.8A CN102918105B (en) 2010-09-29 2011-09-16 The manufacture method of conductive composition, solar battery cell and solar battery cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-218813 2010-09-29
JP2010218813A JP5045803B2 (en) 2010-09-29 2010-09-29 Conductive composition and solar battery cell

Publications (1)

Publication Number Publication Date
WO2012042780A1 true WO2012042780A1 (en) 2012-04-05

Family

ID=45892274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005260 WO2012042780A1 (en) 2010-09-29 2011-09-16 Electroconductive composition, solar battery cell, and method for producing solar battery cell

Country Status (4)

Country Link
JP (1) JP5045803B2 (en)
CN (1) CN102918105B (en)
TW (1) TW201217455A (en)
WO (1) WO2012042780A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203897A1 (en) * 2013-06-19 2014-12-24 横浜ゴム株式会社 Electrically conductive composition and solar cell
WO2023048098A1 (en) * 2021-09-24 2023-03-30 住友ベークライト株式会社 Conductive paste, cured product, sintering accelerator and method for accelerating sintering

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5877133B2 (en) * 2012-07-09 2016-03-02 デクセリアルズ株式会社 Conductive adhesive for solar cell, solar cell module, and manufacturing method thereof
JP5304932B1 (en) * 2012-07-18 2013-10-02 横浜ゴム株式会社 Conductive composition and solar battery cell
KR101956734B1 (en) * 2012-09-19 2019-03-11 엘지전자 주식회사 Solar cell and manufacturing method thereof
JP6620744B2 (en) * 2014-07-11 2019-12-18 横浜ゴム株式会社 Conductive composition for forming solar battery collecting electrode, solar battery cell and solar battery module
JPWO2018020941A1 (en) * 2016-07-29 2019-05-16 名古屋ファインケミカル株式会社 Epoxy composition, curing method thereof and storage method thereof
CN110249001A (en) * 2017-01-26 2019-09-17 横滨橡胶株式会社 Conductive composition
JP6361843B1 (en) * 2017-01-26 2018-07-25 横浜ゴム株式会社 Conductive composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289038A (en) * 2001-03-23 2002-10-04 Kyoto Elex Kk Conductive paste composition for use in filling via
JP2006049147A (en) * 2004-08-05 2006-02-16 Shoei Chem Ind Co Conductive paste
JP2007224191A (en) * 2006-02-24 2007-09-06 Sanyo Electric Co Ltd Electroconductive paste composition, solar battery cell using the paste composition, and solar battery module using the cell
JP2009146584A (en) * 2007-12-11 2009-07-02 Kyoto Elex Kk Conductive paste composition
JP2010092684A (en) * 2008-10-07 2010-04-22 Yokohama Rubber Co Ltd:The Conductive composition, method of forming conductive coating film, and conductive coating film
JP2011071057A (en) * 2009-09-28 2011-04-07 Kyoto Elex Kk Heating curing type conductive paste composition, electrode using conductive paste composition, and method of forming wiring pattern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289038A (en) * 2001-03-23 2002-10-04 Kyoto Elex Kk Conductive paste composition for use in filling via
JP2006049147A (en) * 2004-08-05 2006-02-16 Shoei Chem Ind Co Conductive paste
JP2007224191A (en) * 2006-02-24 2007-09-06 Sanyo Electric Co Ltd Electroconductive paste composition, solar battery cell using the paste composition, and solar battery module using the cell
JP2009146584A (en) * 2007-12-11 2009-07-02 Kyoto Elex Kk Conductive paste composition
JP2010092684A (en) * 2008-10-07 2010-04-22 Yokohama Rubber Co Ltd:The Conductive composition, method of forming conductive coating film, and conductive coating film
JP2011071057A (en) * 2009-09-28 2011-04-07 Kyoto Elex Kk Heating curing type conductive paste composition, electrode using conductive paste composition, and method of forming wiring pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203897A1 (en) * 2013-06-19 2014-12-24 横浜ゴム株式会社 Electrically conductive composition and solar cell
WO2023048098A1 (en) * 2021-09-24 2023-03-30 住友ベークライト株式会社 Conductive paste, cured product, sintering accelerator and method for accelerating sintering
JP7260079B1 (en) * 2021-09-24 2023-04-18 住友ベークライト株式会社 Conductive paste, cured product, sintering accelerator, and sintering acceleration method

Also Published As

Publication number Publication date
CN102918105B (en) 2016-05-25
TW201217455A (en) 2012-05-01
JP5045803B2 (en) 2012-10-10
JP2012074288A (en) 2012-04-12
CN102918105A (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5045803B2 (en) Conductive composition and solar battery cell
WO2014013872A1 (en) Conductive composition and solar cell
JP5527901B2 (en) Conductive composition for forming solar battery collecting electrode and solar battery cell
JP2009146584A (en) Conductive paste composition
WO2018139463A1 (en) Electrically conductive composition
WO2016021535A1 (en) Conductive composition, solar cell, and solar cell module
JP5707754B2 (en) Conductive composition and solar battery cell
JP2016030794A (en) Conductive composition, solar cell and solar cell module
TW201434988A (en) Conductive compositions and solar cell
JP2016160415A (en) Conductive composition, solar cell, and solar cell module
JP6579108B2 (en) Conductive composition, solar battery cell and solar battery module
JP6620744B2 (en) Conductive composition for forming solar battery collecting electrode, solar battery cell and solar battery module
JP2016032022A (en) Conductive composition, solar battery cell and solar battery module
JP2016160413A (en) Conductive composition, solar cell, and solar cell module
JP2022052765A (en) Heat-dissipating resin composition for protective films, protective film, and electronic component
JP4413700B2 (en) Conductive paste composition for collecting electrode for solar cell
WO2014203897A1 (en) Electrically conductive composition and solar cell
WO2015118760A1 (en) Electroconductive composition, solar cell, and solar cell module
JP2012178456A (en) Conductive composition for solar cell collecting electrode formation and solar cell
CN103531267A (en) Conductive composition used for forming collecting electrode of solar cell and solar cell unit
KR20140019100A (en) Conductive composition for forming solar cell collecting electrode and solar cell
JP6361843B1 (en) Conductive composition
KR20140007041A (en) Conductive composition for making current collecting electrode for solar cell and solar cell
JP2023071376A (en) Conductive paste and solar cell including electrode composed of cured product thereof
WO2020166137A1 (en) Electroconductive composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025135.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828346

Country of ref document: EP

Kind code of ref document: A1