JP2006049147A - Conductive paste - Google Patents

Conductive paste Download PDF

Info

Publication number
JP2006049147A
JP2006049147A JP2004229699A JP2004229699A JP2006049147A JP 2006049147 A JP2006049147 A JP 2006049147A JP 2004229699 A JP2004229699 A JP 2004229699A JP 2004229699 A JP2004229699 A JP 2004229699A JP 2006049147 A JP2006049147 A JP 2006049147A
Authority
JP
Japan
Prior art keywords
silver
powder
conductive paste
conductive
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004229699A
Other languages
Japanese (ja)
Other versions
JP4482930B2 (en
Inventor
Takashi Endo
隆 遠藤
Norihiro Baba
則弘 馬場
Yuji Akimoto
裕二 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2004229699A priority Critical patent/JP4482930B2/en
Publication of JP2006049147A publication Critical patent/JP2006049147A/en
Application granted granted Critical
Publication of JP4482930B2 publication Critical patent/JP4482930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosetting conductive paste which can form a conductive film with extremely high conductivity without decreasing adhesive property or film strength. <P>SOLUTION: The conductive paste includes at least (A) a conductive metal powder based on silver, (B) at least one kind selected from the group consisting of a silver carbonate powder, a silver oxide powder, and the silver salt of a fatty acid having total 1-24 carbon atoms, (C) an alkali metal ion, and (D) a binder resin including a thermosetting resin; and the weight ratio of (C) to (A) is 10-3,000 ppm. In the conductive paste, by blending the alkali metal ion controlled by the particular ratio with the component (B), without decreasing electric characteristics and reliability, the conductive film with high conductivity can be formed by heat treatment at low temperatures of around 100-250°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性金属粉末とバインダ樹脂を主成分とし、バインダ樹脂を加熱硬化させることにより、導電性被膜または導電性接合を形成しうる、加熱硬化型導電性ペーストに関するものである。   The present invention relates to a heat-curable conductive paste that has a conductive metal powder and a binder resin as main components and can form a conductive film or a conductive bond by heat-curing the binder resin.

加熱硬化型の導電性ペーストは、導電性粉末を、バインダ樹脂、および必要に応じて配合される硬化剤、触媒、溶剤その他の添加剤と混合し、均一に分散させてペースト状または塗料状としたものであり、一般に、スクリーン印刷、刷毛塗り、ディスペンサーによる塗布等の手段で基体に塗布し、100〜250℃程度、通常は120〜200℃程度の低温で熱処理することにより、バインダ樹脂を硬化させて、導電性の樹脂被膜を形成する。   The heat-curable conductive paste is prepared by mixing conductive powder with a binder resin and a curing agent, a catalyst, a solvent and other additives blended as necessary, and uniformly dispersing the paste into a paste or paint. In general, the binder resin is cured by applying it to the substrate by means of screen printing, brushing, applying with a dispenser, etc., and heat-treating at a low temperature of about 100 to 250 ° C., usually about 120 to 200 ° C. Thus, a conductive resin film is formed.

導電性粉末としては、銀、金、パラジウム、白金、銅、ニッケル等の金属粉末、これらの金属を含む合金粉末、無機質または有機質の粒子にこれらの金属を被覆した粉末、カーボン、もしくはITO等の導電性金属酸化物粉末等が使用されている。またバインダ樹脂としては、通常、エポキシ樹脂、フェノール樹脂、メラミン樹脂、アルキッド樹脂、不飽和ポリエステル樹脂、アクリル樹脂等の、熱硬化性樹脂や熱可塑性樹脂が使用されている。   Examples of the conductive powder include metal powders such as silver, gold, palladium, platinum, copper, and nickel, alloy powders containing these metals, powders obtained by coating these metals on inorganic or organic particles, carbon, or ITO. Conductive metal oxide powder or the like is used. Further, as the binder resin, a thermosetting resin or a thermoplastic resin such as an epoxy resin, a phenol resin, a melamine resin, an alkyd resin, an unsaturated polyester resin, or an acrylic resin is usually used.

このような硬化型導電性ペーストは、高温での焼付け処理が不要であるため、プラスチックやアモルファスシリコン等の耐熱性の乏しい基体上に、導電性被膜を形成することが可能である。このため、従来、半導体素子や電子部品を基板に実装するための導電性接着剤として、またプリント回路基板のジャンパー回路やスルーホール導体を含む導体回路の形成、抵抗器やコンデンサ等各種電子部品の電極の形成、各種表示素子の電極の形成、電磁波シールド用導電性被膜の形成等に用いられている。特に最近は、環境汚染の原因となる鉛を多量に含有するはんだに代わる、環境負荷が小さい接合材料として、導電性接着剤の需要が高まっている。さらに太陽電池の電極材料、特に耐熱性の低いアモルファスシリコン半導体を用いた太陽電池の電極材料としても注目されている。また、樹脂被膜は可撓性が大きいため、従来高温焼成型の導電性ペーストが用いられていた積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等チップ型セラミック電子部品の外部電極についても、加熱硬化型導電性ペーストで代替する動きがある。   Such a curable conductive paste does not require a baking process at a high temperature, so that a conductive film can be formed on a substrate having poor heat resistance such as plastic or amorphous silicon. For this reason, conventionally, as a conductive adhesive for mounting a semiconductor element or electronic component on a substrate, forming a conductive circuit including a jumper circuit or a through-hole conductor of a printed circuit board, and various electronic components such as resistors and capacitors. It is used for forming electrodes, forming electrodes for various display elements, forming a conductive film for electromagnetic wave shielding, and the like. In particular, recently, there is an increasing demand for conductive adhesives as a joining material with a low environmental load, which replaces solder containing a large amount of lead that causes environmental pollution. Furthermore, it has been attracting attention as an electrode material for solar cells, particularly as an electrode material for solar cells using an amorphous silicon semiconductor having low heat resistance. In addition, because the resin coating is highly flexible, the external electrodes of chip-type ceramic electronic components such as multilayer ceramic capacitors, multilayer ceramic inductors, multilayer ceramic actuators, etc., which conventionally used high-temperature fired conductive paste, are also heat-cured. There is a movement to replace with type conductive paste.

近年、回路基板や電子部品の小型化、高密度化の要求から、より膜厚が薄い、微細な導体回路を形成した場合でも良好な導通が維持されるよう、極めて高い導電性を示す導電性ペーストが求められている。しかし、従来の加熱硬化型の導電性ペーストは、導電性を改善する目的で導電性粉末の量を増加させると、樹脂の比率が減少するため接着性や被膜強度が大きく低下する。また、硬化後の導電性は導電性粒子同士の接触で実現されるので、導電性粉末の量を多くしても、導電性粒子同士の接触が最適でないと導電性の向上につながらない。このため、更に導電性を向上させようとしても限界があり、例えば導電性粉末として高導電性の銀粉末を用いた場合でも、2×10−5Ω・cmより低い比抵抗値を有する導電性ペーストを製造することは、極めて困難であった。 In recent years, due to demands for miniaturization and high density of circuit boards and electronic components, conductivity that exhibits extremely high conductivity so that good conduction can be maintained even when a fine conductor circuit with a thinner film thickness is formed. A paste is sought. However, when the amount of the conductive powder is increased for the purpose of improving the conductivity of the conventional heat-curable conductive paste, the adhesive ratio and the film strength are greatly reduced because the ratio of the resin is decreased. Moreover, since the electroconductivity after hardening is implement | achieved by the contact of electroconductive particles, even if the quantity of electroconductive powder is increased, unless the contact between electroconductive particles is optimal, it will not lead to an improvement in electroconductivity. For this reason, there is a limit to further improve the conductivity. For example, even when a highly conductive silver powder is used as the conductive powder, the conductivity having a specific resistance value lower than 2 × 10 −5 Ω · cm. It was extremely difficult to produce a paste.

特許文献1は、銀粉末と、カルボン酸銀、硝酸銀、酸化銀等の銀誘導体と、銀誘導体から銀を析出させる物質と、樹脂とからなる樹脂組成物を開示しており、硬化時に銀誘導体から析出した銀が、銀粒子同士を接続する役目を果たしたり、銀粒子間の距離を短縮させたりするため、導電性が向上し、銀粉末のみでは達成できない高い導電性が発現することが述べられている。   Patent Document 1 discloses a resin composition comprising silver powder, a silver derivative such as silver carboxylate, silver nitrate, and silver oxide, a substance that precipitates silver from the silver derivative, and a resin. It is stated that the silver deposited from the metal serves to connect the silver particles and shortens the distance between the silver particles, so that the conductivity is improved and high conductivity that cannot be achieved with silver powder alone is expressed. It has been.

しかし、この文献において銀誘導体から銀を析出させるために、銀析出性物質として添加している亜リン酸、亜硫酸、ハイドロキノン、アルデヒド、ヒドラジン化合物等の還元剤成分は、化学的に不安定な物質であり、空気中の水分や酸素と結びつきやすく、導電性ペーストとしての諸特性を維持することが困難である。また、その導電性向上効果も十分でない。銀誘導体から加熱により銀を析出させることも記載されているが、銀誘導体の熱分解温度は、樹脂の硬化温度に比べて高く、特にカルボン酸銀等は熱分解温度が300℃を超える高温であるために、耐熱性の小さい樹脂基板上やアモルファスシリコン上には適用できないという問題がある。   However, reducing agents such as phosphorous acid, sulfurous acid, hydroquinone, aldehyde, and hydrazine compounds added as silver depositing substances in order to deposit silver from silver derivatives in this document are chemically unstable substances. It is easy to be combined with moisture and oxygen in the air, and it is difficult to maintain various characteristics as a conductive paste. Moreover, the electrical conductivity improvement effect is not enough. Although it is also described that silver is precipitated from a silver derivative by heating, the thermal decomposition temperature of the silver derivative is higher than the curing temperature of the resin. In particular, silver carboxylate or the like has a high thermal decomposition temperature exceeding 300 ° C. Therefore, there is a problem that it cannot be applied to a resin substrate with low heat resistance or amorphous silicon.

特許文献2は、銀粉および銀で表面被覆された金属粒子からなる群より選ばれる少なくとも1種の銀粒子、銀原子と有機部分とがヘテロ原子を介して結合した構造を有する含銀有機化合物、および有機絶縁性樹脂からなるバインダーを含有する導電性ペーストを開示している。含銀有機化合物は、加熱分解により銀粒子を生成し、生成された銀粒子は第1成分としての前記銀粒子同士を結合したり、同銀粒子を基材に結合する作用を有すると記載されている。しかしながら、含銀有機化合物は、加熱条件または化合物の種類によっては加熱分解が充分に行われず、充分な導電性向上効果が得られないという問題がある。更に、導電性膜の形成に際しては、ペーストを基材に塗布後、2段階熱処理が施されることから工程が煩雑になると共に、第2段目の熱処理温度が200℃より高く250℃以下であることから、基材もこの熱処理温度に適用可能な耐熱性を有するものに限定される。   Patent Document 2 discloses at least one silver particle selected from the group consisting of silver powder and silver-coated metal particles, a silver-containing organic compound having a structure in which a silver atom and an organic moiety are bonded via a hetero atom, And a conductive paste containing a binder made of an organic insulating resin. It is described that the silver-containing organic compound generates silver particles by thermal decomposition, and the generated silver particles have an action of binding the silver particles as the first component or binding the silver particles to the base material. ing. However, the silver-containing organic compound has a problem in that the thermal decomposition is not sufficiently performed depending on the heating conditions or the type of the compound, and a sufficient conductivity improving effect cannot be obtained. Furthermore, in forming the conductive film, the two-step heat treatment is performed after the paste is applied to the base material, so the process becomes complicated, and the second-stage heat treatment temperature is higher than 200 ° C. and lower than 250 ° C. For this reason, the substrate is also limited to those having heat resistance applicable to this heat treatment temperature.

本出願人による特願2004−167681においては、バインダ樹脂として特定のフタル酸系グリシジルエステル型エポキシ樹脂を用いることにより、極めて導電性が優れ、かつ接着性の良好な導電性被膜を形成し得る導電性ペーストが開示されている。
特開平61−62558号公報 特開2004−039379号公報 特願2004−167681号
In Japanese Patent Application No. 2004-166761 by the present applicant, by using a specific phthalic acid-based glycidyl ester type epoxy resin as a binder resin, it is possible to form a conductive film having extremely excellent conductivity and good adhesion. A sex paste is disclosed.
Japanese Patent Laid-Open No. 61-62558 JP 2004-039379 A Japanese Patent Application No. 2004-166761

本発明の目的は、接着性や、被膜強度を低下させることなく、極めて導電性の高い導電性被膜を形成し得る、加熱硬化型導電性ペーストを提供することを目的とする。特に、樹脂の比率の減少による接着強度の低下を招くことなく、電子回路や電子部品の導体に要求される機械的・電気的特性を十分に満足し、比抵抗が2×10‐5Ω・cm以下、特に10‐6Ω・cmオーダーの高導電性被膜を得ることも可能な、加熱硬化型導電性ペーストを提供することを目的とする。 An object of the present invention is to provide a heat-curable conductive paste that can form a conductive film having extremely high conductivity without reducing adhesiveness or film strength. In particular, it satisfies the mechanical and electrical characteristics required for electronic circuits and conductors of electronic components without causing a decrease in adhesive strength due to a decrease in the resin ratio, and a specific resistance of 2 × 10 −5 Ω · It is an object of the present invention to provide a heat-curable conductive paste capable of obtaining a highly conductive film of cm or less, particularly 10 −6 Ω · cm order.

また、本発明の他の目的は、100〜250℃程度の低温、特に120〜200℃での加熱処理により高導電性の被膜が形成でき、従って耐熱性の低い基体に熱的ダメージを加えることなく適用することが可能な、低温硬化型導電性ペーストを提供することにある。   Another object of the present invention is to form a highly conductive film by heat treatment at a low temperature of about 100 to 250 ° C., particularly 120 to 200 ° C., and thus to thermally damage a substrate having low heat resistance. An object of the present invention is to provide a low-temperature curable conductive paste that can be applied without any problems.

本発明は、以下の通りである。   The present invention is as follows.

(1)少なくとも(A)銀を主成分とする導電性金属粉末、
(B)炭酸銀粉末、酸化銀粉末、および総炭素数が1〜24の脂肪酸の銀塩より成る群から選ばれる少なくとも1種、
(C)アルカリ金属イオン、
(D)熱硬化性樹脂を含むバインダ樹脂
を含み、(A)に対する(C)の重量比率が10〜3000ppmであることを特徴とする導電性ペースト。
(1) At least (A) a conductive metal powder containing silver as a main component,
(B) at least one selected from the group consisting of silver carbonate powder, silver oxide powder, and a silver salt of a fatty acid having 1 to 24 total carbon atoms,
(C) alkali metal ions,
(D) A conductive paste comprising a binder resin containing a thermosetting resin, wherein the weight ratio of (C) to (A) is 10 to 3000 ppm.

(2)前記(1)に記載の導電性ペーストが、100〜250℃で加熱硬化するものである導電性ペースト。   (2) A conductive paste in which the conductive paste according to (1) is cured by heating at 100 to 250 ° C.

(3)(A)の重量に対する(C)の重量比が合計で30〜1000ppmである、前記(1)または(2)に記載の導電性ペースト。   (3) The conductive paste according to (1) or (2), wherein the weight ratio of (C) to the weight of (A) is 30 to 1000 ppm in total.

(4)(C)がナトリウムイオンおよび/またはカリウムイオンである、前記(1)ないし(3)のいずれかに記載の導電性ペースト。   (4) The conductive paste according to any one of (1) to (3), wherein (C) is sodium ion and / or potassium ion.

(5)(A)に対する(B)の重量比率が合計で0.5〜15%である、前記(1)ないし(4)のいずれかに記載の導電性ペースト。   (5) The conductive paste according to any one of (1) to (4), wherein the weight ratio of (B) to (A) is 0.5 to 15% in total.

(6)バインダ樹脂が、少なくともフタル酸系グリシジルエステル型エポキシ樹脂を含むものである、前記(1)ないし(5)のいずれかに記載の導電性ペースト。   (6) The conductive paste according to any one of (1) to (5), wherein the binder resin contains at least a phthalic acid-based glycidyl ester type epoxy resin.

本発明は、銀を主成分とする導電性金属粉末とバインダ樹脂からなる導電性ペーストに、特定の銀化合物粉末および/または脂肪酸銀と、アルカリ金属イオンを導電性金属粉末に対する重量比で10〜3000ppmとなるように配合することにより以下の効果が得られる。
・ 硬化後、極めて高導電性の導電性被膜が得られる。
・ バインダ樹脂の量を低減することなく、従って基体に対する接着強度や膜強度を低下させることなく、導電性を向上させることができる。
・ このため特に従来、樹脂をバインダとする加熱硬化型ペーストでは、銀系でも得られにくかった、比抵抗が2×10‐5Ω・cm以下、特に10‐6Ω・cmオーダーの高導電性を得ることが可能となった。
・ 100〜250℃程度、特に120〜200℃での加熱処理により、高導電性の被膜が形成できるので、樹脂基板やアモルファスシリコン等の耐熱性の低い基体にも適用することができる。
The present invention provides a conductive paste composed of a conductive metal powder mainly composed of silver and a binder resin, and a specific silver compound powder and / or fatty acid silver and an alkali metal ion in a weight ratio of 10 to 10 with respect to the conductive metal powder. The following effects are acquired by mix | blending so that it may become 3000 ppm.
-After curing, an extremely highly conductive film can be obtained.
-The conductivity can be improved without reducing the amount of the binder resin, and thus without lowering the adhesion strength and film strength to the substrate.
For this reason, in particular, with a thermosetting paste using a resin as a binder, it has been difficult to obtain even in a silver-based paste, and has a high resistivity of 2 × 10 −5 Ω · cm or less, especially 10 −6 Ω · cm order. It became possible to get.
-Since a highly conductive film can be formed by heat treatment at about 100 to 250 ° C., particularly 120 to 200 ° C., it can be applied to a substrate having low heat resistance such as a resin substrate or amorphous silicon.

従来、加熱硬化型の導電性ペーストにおいては、アルカリ金属イオンはプリント回路基板や電子部品、半導体素子等の電気特性、信頼性に悪影響を与えるものとして忌避されており、アルカリ金属系の不純物成分を極力減らすことが望まれていたが、本発明者等は、鋭意研究した結果、低温硬化型導電性ペーストに、特定比率の制御された量のアルカリ金属イオンを、特定の銀化合物粉末、脂肪酸銀と組み合わせて配合することにより、電気特性、信頼性を低下させることなく導電性の向上を達成できることを見出したものである。   Conventionally, in heat-curable conductive pastes, alkali metal ions have been evaded as adversely affecting the electrical properties and reliability of printed circuit boards, electronic components, semiconductor elements, etc. Although it was desired to reduce as much as possible, the present inventors have intensively studied, and as a result, the low-temperature curable conductive paste was supplied with a specific amount of alkali metal ions in a specific ratio, a specific silver compound powder, a fatty acid silver. It has been found that, by blending in combination with the above, improvement in conductivity can be achieved without deteriorating electrical characteristics and reliability.

導電性ペーストにおける上記のアルカリ金属イオンによる高導電性発現メカニズムは、必ずしも明確ではないが、本発明者等は次のように考えた。   The mechanism of high conductivity due to the alkali metal ions in the conductive paste is not necessarily clear, but the present inventors considered as follows.

樹脂の硬化処理時の加熱により
・ (B)の銀化合物粉末、脂肪酸銀は樹脂の硬化時に部分的に分解し、極めて活性な銀の微粒子を析出する。析出した銀微粒子は、導電性金属粒子同士の隙間を埋め、あるいは導電性金属粒子同士を融着させることにより、硬化被膜の導電性を向上させる。
・ (C)は、この分解反応において触媒的に作用し、(B)の分解を促進すると考えられる。このため(C)を含まない場合より導電性が著しく改善される。
・ 特に(B)が通常のペーストの硬化温度である150〜200℃程度では熱分解しにくいものであっても、(C)の作用により、低い温度で分解を始め、活性な銀粒子の析出が促進される。このため、ペーストを(B)の分解温度よりも低い温度で硬化させた場合においても、高い導電性を有する導電性被膜が得ることができる。
・ また(C)は銀粉末表面を活性化させる。このため(C)の介在で、銀化合物粉末や脂肪酸銀と導電性金属粉末との間で、銀イオンの溶出とその還元が生じ、活性な金属銀の析出が起こる。この導電性金属粉末粒子間に析出した銀微粒子は、同様に導電性を向上させる。
By heating at the time of curing the resin, the silver compound powder (B) and the fatty acid silver are partially decomposed at the time of curing of the resin to precipitate extremely active silver fine particles. The deposited silver fine particles improve the conductivity of the cured film by filling the gaps between the conductive metal particles or by fusing the conductive metal particles together.
(C) is considered to act catalytically in this decomposition reaction and promote the decomposition of (B). For this reason, the conductivity is remarkably improved as compared with the case where (C) is not included.
・ Even if (B) is hard to be thermally decomposed at a normal paste curing temperature of about 150 to 200 ° C., the action of (C) causes decomposition at a low temperature and precipitation of active silver particles. Is promoted. For this reason, even when the paste is cured at a temperature lower than the decomposition temperature of (B), a conductive film having high conductivity can be obtained.
(C) activates the silver powder surface. For this reason, elution and reduction of silver ions occur between the silver compound powder or fatty acid silver and the conductive metal powder through the presence of (C), and active metallic silver is deposited. The silver fine particles deposited between the conductive metal powder particles similarly improve the conductivity.

特に(A)の重量に対する(C)の金属換算の重量が合計で30〜1000ppmである場合、最も優れた導電性向上効果を奏し、かつ電子部品や半導体素子に対して悪影響を与えることがない。   In particular, when the weight in terms of metal in (C) with respect to the weight in (A) is 30 to 1000 ppm in total, the most excellent electrical conductivity improving effect is achieved and no adverse effect is exerted on electronic components and semiconductor elements. .

また、(A)に対する(B)の重量を合計で0.5〜15重量%、特に好ましくは0.8〜10重量%とすることにより、高導電性の硬化被膜が得られる。   Moreover, a highly conductive cured film can be obtained by setting the total weight of (B) to (A) to 0.5 to 15% by weight, particularly preferably 0.8 to 10% by weight.

(A)導電性金属粉末
銀を主成分とする導電性金属粉末(以下単に「導電性金属粉末」ということもある。)としては、特に限定されず、銀粉末の他、銀−銅合金、銀−パラジウム−銅合金、銀−銅−ニッケル合金等の銀合金粉末や、金属、金属化合物、ガラス、セラミック、カーボン等の無機質粉末や樹脂等の有機質粉末の表面に銀または銀合金を被覆した複合粉末等の1種又は2種以上が使用される。また銀粉末と銀以外の金属粉末の混合粉末でもよい。銀以外の導電性金属粉末としては、例えば、金、パラジウム、白金等の貴金属や銅、ニッケル等の卑金属の粉末、またはこれらの金属を含む合金の粉末や複合粉末等が挙げられる。
(A) Conductive metal powder The conductive metal powder containing silver as a main component (hereinafter sometimes simply referred to as “conductive metal powder”) is not particularly limited, and besides silver powder, a silver-copper alloy, Silver or silver alloy is coated on the surface of silver alloy powder such as silver-palladium-copper alloy, silver-copper-nickel alloy, inorganic powder such as metal, metal compound, glass, ceramic, carbon, or organic powder such as resin. 1 type, or 2 or more types, such as composite powder, are used. Also, a mixed powder of silver powder and metal powder other than silver may be used. Examples of conductive metal powders other than silver include noble metals such as gold, palladium and platinum, and powders of base metals such as copper and nickel, or powders and composite powders of alloys containing these metals.

導電性金属粉末の粒径は、特に限定されないが、ペースト中での分散性、塗布性、および導電性の点から平均粒径0.1〜30μmであることが望ましい。しかし、粒径100nmより小さい超微粉末が少量存在していると、より導電性が向上する傾向があるので、好ましい。   The particle size of the conductive metal powder is not particularly limited, but it is desirable that the average particle size is 0.1 to 30 μm from the viewpoint of dispersibility in the paste, applicability, and conductivity. However, the presence of a small amount of ultrafine powder having a particle size of less than 100 nm is preferable because the conductivity tends to be further improved.

導電性金属粉末の形状にも制限はなく、球状、フレーク状、樹枝状、繊維状等種々の形状のものが、目的、塗布方法、要求特性に応じて使用される。   There is no restriction | limiting also in the shape of electroconductive metal powder, The thing of various shapes, such as spherical shape, flake shape, dendritic shape, and fiber shape, is used according to the objective, the application | coating method, and a required characteristic.

導電性金属粉末は、従来法により種々の脂肪酸類やカップリング剤等で表面処理して用いてもよい。表面処理剤として用いられる脂肪酸類は、パルミチン酸、ステアリン酸、オレイン酸、リノール酸等の総炭素数が8〜30程度の高級直鎖脂肪酸またはこれらの金属塩を用いるのが一般的であるが、ピバリン酸、ネオヘプタン酸、ネオノナン酸、ネオデカン酸等の三級脂肪酸も好ましく使用される。   The conductive metal powder may be used after being surface-treated with various fatty acids, a coupling agent or the like by a conventional method. The fatty acids used as the surface treatment agent are generally higher linear fatty acids having a total carbon number of about 8 to 30 such as palmitic acid, stearic acid, oleic acid, linoleic acid, or metal salts thereof. Tertiary fatty acids such as pivalic acid, neoheptanoic acid, neononanoic acid and neodecanoic acid are also preferably used.

(B)炭酸銀粉末、酸化銀粉末、脂肪酸の銀塩
炭酸銀粉末、酸化銀粉末(以下「銀化合物粉末」ということもある。)は、いかなる方法で製造されたものでもよい。銀化合物粉末としては平均粒径が0.1〜100μm程度の粉末を使用することが望ましい。
(B) Silver carbonate powder, silver oxide powder, silver salt of fatty acid The silver carbonate powder and silver oxide powder (hereinafter sometimes referred to as “silver compound powder”) may be produced by any method. As the silver compound powder, it is desirable to use a powder having an average particle size of about 0.1 to 100 μm.

本発明における総炭素数が1〜24の脂肪酸の銀塩(以下「脂肪酸銀」ということもある。)の脂肪酸成分としては、具体的には、蟻酸、酢酸、オクチル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の飽和脂肪酸、オレイン酸、リノール酸、リノレン酸等の不飽和脂肪酸、ピバリン酸、ネオヘプタン酸、ネオノナン酸、ネオデカン酸等の三級脂肪酸、コハク酸、マロン酸等のジカルボン酸等が挙げられる。分解後に生成する脂肪酸が揮発しやすいものが望ましい。この点で、特に総炭素数が1〜18の飽和脂肪酸や、総炭素数が 3〜18の不飽和脂肪酸が好ましく使用される。この中でも、オクチル酸、カプリン酸、ラウリン酸等の飽和脂肪酸やネオヘプタン酸、ネオノナン酸、ネオデカン酸の三級脂肪酸は、導電性向上効果が大きく、かつ分解後に生成する脂肪酸が硬化後の導電性被膜内に残存しないので好ましい。本発明において、脂肪酸銀は、単独でも、また2種以上を併用してもよい。   Specific examples of the fatty acid component of a silver salt of a fatty acid having 1 to 24 carbon atoms in the present invention (hereinafter sometimes referred to as “fatty acid silver”) include formic acid, acetic acid, octylic acid, capric acid, and lauric acid. , Saturated fatty acids such as myristic acid, palmitic acid, stearic acid, unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, tertiary fatty acids such as pivalic acid, neoheptanoic acid, neononanoic acid, neodecanoic acid, succinic acid, malonic acid And the like. It is desirable that the fatty acid generated after decomposition is volatile. In this respect, saturated fatty acids having 1 to 18 carbon atoms in total and unsaturated fatty acids having 3 to 18 carbon atoms are preferably used. Among them, saturated fatty acids such as octylic acid, capric acid and lauric acid, and tertiary fatty acids such as neoheptanoic acid, neononanoic acid and neodecanoic acid have a large effect of improving conductivity, and the conductive film after the fatty acid produced after decomposition is cured. It is preferable because it does not remain inside. In this invention, fatty acid silver may be individual or may use 2 or more types together.

これら脂肪酸銀は、いかなる方法で製造されたものでもよい。一般的に知られている方法では、例えば脂肪酸をアルカリで中和し、これに硝酸、炭酸、硫酸等の無機酸の銀塩やハロゲン化銀と反応させる。また、脂肪酸と前記無機酸の銀塩とを直接反応させる方法もある。無機酸の銀塩に代えて、金属銀や酸化銀、有機酸の銀塩、銀錯体等も使用される。   These fatty acid silvers may be produced by any method. In a generally known method, for example, a fatty acid is neutralized with an alkali and reacted with a silver salt or silver halide of an inorganic acid such as nitric acid, carbonic acid or sulfuric acid. There is also a method in which a fatty acid and a silver salt of the inorganic acid are directly reacted. Instead of the silver salt of an inorganic acid, metallic silver, silver oxide, a silver salt of an organic acid, a silver complex, or the like is also used.

(B)の含有量は、(A)の導電性金属粉末の重量に対して合計で0.5〜15重量%とすることが望ましい。0.5重量%よりも少ないと高導電性が得られにくくなる。また15重量%よりも多いと、逆に導電性が低下してくる傾向がある。特には、0.8〜10重量%が好ましい。なお、脂肪酸銀が単独で用いられる場合は、(A)に対して1重量%以上となるように添加することが望ましく、特には2重量%以上とすることが好ましい。特に(B)の量を少量にして最大の効果を得るためには、脂肪酸銀は炭酸銀粉末や酸化銀粉末と共に用いられることが望ましい。   The content of (B) is desirably 0.5 to 15% by weight in total with respect to the weight of the conductive metal powder of (A). When the amount is less than 0.5% by weight, high conductivity is hardly obtained. On the other hand, if it exceeds 15% by weight, the conductivity tends to decrease. In particular, 0.8 to 10 weight% is preferable. In addition, when fatty acid silver is used independently, it is desirable to add so that it may become 1 weight% or more with respect to (A), and it is preferable to set it as 2 weight% or more especially. In particular, in order to obtain the maximum effect by reducing the amount of (B), the fatty acid silver is desirably used together with silver carbonate powder or silver oxide powder.

(C)アルカリ金属イオン
本発明のペーストに配合されるアルカリ金属イオンとしては特に限定はなく、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオンの1種または2種以上が使用される。特に、化学的活性が高く、かつ硬化後は導電性被膜中に安定に存在し、溶出しにくいものが好ましい。この点で、特にナトリウムイオン、カリウムイオンが好ましい。中でもカリウムイオンは、硬化被膜中でのイオン移動度が小さいため、エレクトロニクス用には適していると考えられる。
(C) Alkali Metal Ion The alkali metal ion blended in the paste of the present invention is not particularly limited, and one or more of lithium ion, sodium ion, potassium ion, rubidium ion, and cesium ion are used. In particular, those having high chemical activity and stable presence in the conductive film after curing and being difficult to elute are preferred. In this respect, sodium ion and potassium ion are particularly preferable. Among these, potassium ions are considered suitable for electronics because of their low ion mobility in the cured coating.

アルカリ金属イオンの添加形態に制限はなく、例えばアルカリ金属の炭酸塩、重炭酸塩、硫酸塩、硝酸塩、水酸化物、カルボン酸塩、β−ジケトン錯体、スルホン酸塩、アルコシキド等、各種の無機化合物または有機化合物の形で、ペーストに添加、混合される。ペースト中でアルカリ金属がイオン化しやすい化合物を用いることが望ましい。中でもアルカリ金属の炭酸塩、重炭酸塩、シュウ酸塩、β−ジケトン錯体、アルコシキド等は、アルカリ金属がイオン化しやすく、かつ電子部品や半導体素子に悪影響を与える元素を含まないので、最も好ましく使用される。   There are no restrictions on the form of addition of alkali metal ions, and various inorganic such as alkali metal carbonates, bicarbonates, sulfates, nitrates, hydroxides, carboxylates, β-diketone complexes, sulfonates, alkoxides, etc. It is added to and mixed with the paste in the form of a compound or an organic compound. It is desirable to use a compound in which the alkali metal is easily ionized in the paste. Among them, alkali metal carbonates, bicarbonates, oxalates, β-diketone complexes, alkoxides, etc. are most preferably used because alkali metals are easily ionized and do not contain elements that adversely affect electronic components and semiconductor elements. Is done.

アルカリ金属イオンの量は、(A)の導電性金属粉末の重量に対して、合計で10〜3000ppm配合される。このように制御された量のアルカリ金属イオンを配合することにより、信頼性を低下させることなく、極めて高い導電性を得ることができる。このような範囲より低い配合割合では、前記の効果が十分でない。また、このような範囲よりも高い配合割合では、接着強度が低下し、さらに導電性も低下する。また、電子部品や半導体素子に対して悪影響を与える恐れがある。特に30〜1000ppmの範囲で配合されるのが望ましい。   The total amount of alkali metal ions is 10 to 3000 ppm based on the weight of the conductive metal powder (A). By blending the controlled amount of alkali metal ions, extremely high conductivity can be obtained without deteriorating reliability. If the blending ratio is lower than the above range, the above effect is not sufficient. Further, when the blending ratio is higher than such a range, the adhesive strength is lowered and the conductivity is further lowered. Moreover, there is a risk of adversely affecting electronic components and semiconductor elements. In particular, it is desirable to blend in the range of 30 to 1000 ppm.

(D)バインダ樹脂
本発明のバインダ樹脂は、少なくとも1種の熱硬化性樹脂を含むものであれば特に制限はない。熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、アルキッド樹脂、不飽和ポリエステル樹脂、ユリア樹脂、アミノ樹脂、キシレン樹脂、ポリイミド樹脂、シリコーン樹脂、ウレタン樹脂、ポリエステル・ポリオール樹脂、アクリル樹脂等、用途、要求特性に応じて適宜選択して用いられる。 特に接着性、硬化性、導電性の点で、エポキシ樹脂やフェノール樹脂が好ましい。本発明においては、本発明者等が先に出願した特願2004−167681に記載されたフタル酸系グリシジルエステル型エポキシ樹脂も、好ましく使用される。この樹脂を使用することにより導電性をさらに向上させることができる。フタル酸系グリシジルエステル型エポキシ樹脂としては、ジグリシジルフタレート、ジメチルグリシジルフタレート、ジグリシジルヘキサヒドロフタレート、ジグリシジルテトラヒドロフタレート、ジグリシジルメチルテトラヒドロフタレート等がある。
(D) Binder resin
The binder resin of the present invention is not particularly limited as long as it contains at least one thermosetting resin. Examples of thermosetting resins include epoxy resins, phenol resins, alkyd resins, unsaturated polyester resins, urea resins, amino resins, xylene resins, polyimide resins, silicone resins, urethane resins, polyester / polyol resins, acrylic resins, etc. Depending on the required characteristics, they are appropriately selected and used. In particular, an epoxy resin or a phenol resin is preferable in terms of adhesiveness, curability, and conductivity. In the present invention, a phthalic acid glycidyl ester type epoxy resin described in Japanese Patent Application No. 2004-166761 filed earlier by the present inventors is also preferably used. By using this resin, the conductivity can be further improved. Examples of the phthalic acid-based glycidyl ester type epoxy resin include diglycidyl phthalate, dimethyl glycidyl phthalate, diglycidyl hexahydrophthalate, diglycidyl tetrahydrophthalate, and diglycidyl methyl tetrahydrophthalate.

これらの熱硬化性樹脂は、単独であるいは2種以上を混合して使用してもよい。また、熱可塑性樹脂を併用してもよい。熱可塑性樹脂としては、例えば、ブチラール樹脂、アクリル樹脂、メタクリル樹脂、ノボラック型フェノール樹脂、アクリルスチレン樹脂、飽和ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、熱可塑性のキシレン樹脂、ヒドロキシスチレン系重合体、セルロース誘導体等が挙げられる。   These thermosetting resins may be used alone or in admixture of two or more. Further, a thermoplastic resin may be used in combination. Examples of the thermoplastic resin include butyral resin, acrylic resin, methacrylic resin, novolac type phenol resin, acrylic styrene resin, saturated polyester resin, polyurethane resin, polyamide resin, thermoplastic xylene resin, hydroxystyrene polymer, and cellulose derivative. Etc.

バインダ樹脂の配合割合は、樹脂の種類、要求特性等により適宜決定される設計事項であるが、最適範囲は、導電性金属粉末100重量部に対して5〜30重量部である。30重量部を越えると抵抗値が高くなる傾向がある。また、5重量部より少ないと被膜の強度、接着性が不十分となるとともに、これに起因して抵抗値も増大する傾向がある。   The blending ratio of the binder resin is a design matter that is appropriately determined depending on the type of resin, required characteristics, and the like, but the optimum range is 5 to 30 parts by weight with respect to 100 parts by weight of the conductive metal powder. If it exceeds 30 parts by weight, the resistance value tends to increase. On the other hand, when the amount is less than 5 parts by weight, the strength and adhesiveness of the film become insufficient, and the resistance value tends to increase due to this.

(その他の添加成分)
本発明の導電性ペーストには、上記成分のほか、さらに通常必要に応じて添加されることのある溶媒、硬化剤等を、適宜配合することができる。
(Other additive components)
In addition to the above components, the conductive paste of the present invention can be appropriately mixed with a solvent, a curing agent, and the like that are usually added as necessary.

バインダ樹脂が常温で液状の場合は、溶剤を用いることは必須ではないが、粘度や塗布性等を調節するために、必要に応じて溶剤が配合される。溶剤としては、例えばアルコール系溶剤、エステル系溶剤、エーテル系溶剤、ケトン系溶剤、炭化水素系溶剤、脂肪酸系溶剤、反応性希釈剤等、公知のものが使用される。具体的には、例えば、ベンゼン、トルエン、ヘキサノン、メチルエチルケトン、メチルイソブチルケトン、エチルカルビトールアセテート、ブチルカルビトールアセテート、ブチルカルビトール、ブチルセロソルブ、ブチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノブチルエーテル、イソホロン、テルピネオール等の有機溶剤が挙げられるが、これらに限定されない。   When the binder resin is in a liquid state at room temperature, it is not essential to use a solvent, but a solvent is blended as necessary in order to adjust the viscosity, coating properties, and the like. As the solvent, for example, known solvents such as alcohol solvents, ester solvents, ether solvents, ketone solvents, hydrocarbon solvents, fatty acid solvents, reactive diluents and the like are used. Specifically, for example, benzene, toluene, hexanone, methyl ethyl ketone, methyl isobutyl ketone, ethyl carbitol acetate, butyl carbitol acetate, butyl carbitol, butyl cellosolve, butyl cellosolve acetate, propylene glycol monomethyl ether acetate, triethylene glycol monobutyl ether, Examples include, but are not limited to, organic solvents such as isophorone and terpineol.

硬化剤としては、前記熱硬化性樹脂の硬化剤として通常使用されるものであればよく、硬化時間や硬化温度に合わせて適宜選択される。例えばエポキシ樹脂の硬化剤としては、酸無水物系硬化剤、イミダゾール系硬化剤、アミン系硬化剤、フェノール樹脂等が挙げられる。配合量は、バインダ樹脂100重量部に対して1〜100重量部程度である。硬化促進剤、硬化触媒を併用することもできる。   The curing agent may be any one that is normally used as a curing agent for the thermosetting resin, and is appropriately selected according to the curing time and the curing temperature. For example, as an epoxy resin curing agent, an acid anhydride curing agent, an imidazole curing agent, an amine curing agent, a phenol resin, and the like can be given. A compounding quantity is about 1-100 weight part with respect to 100 weight part of binder resin. A curing accelerator and a curing catalyst can be used in combination.

この他、界面活性剤、消泡剤、可塑剤、揺変剤、分散剤、還元剤、紫外線吸収剤、キレート剤、カップリング剤、無機フィラー等を適宜添加してもよい。これらにより、ペーストの塗布性や形成される導電性被膜の耐熱性、耐水性、耐環境性、可撓性、はんだ付け性、はんだ耐熱性等の特性を適切に調整することができ、種々の用途に適用することが可能となる。   In addition, surfactants, antifoaming agents, plasticizers, thixotropic agents, dispersants, reducing agents, ultraviolet absorbers, chelating agents, coupling agents, inorganic fillers, and the like may be added as appropriate. With these, it is possible to appropriately adjust properties such as paste coating properties, heat resistance, water resistance, environmental resistance, flexibility, solderability, solder heat resistance, etc. of the conductive film to be formed. It becomes possible to apply to a use.

(導電性ペーストの製造)
本発明の導電性ペーストは、前記の成分を、常法に従って混合し、ロールミル等を用いて均一に分散させてペースト状とすることにより製造される。
(Manufacture of conductive paste)
The electrically conductive paste of this invention is manufactured by mixing the said component according to a conventional method, and making it disperse | distribute uniformly using a roll mill etc ..

(導電性被膜の形成)
本発明の導電性ペーストは、スクリーン印刷、転写印刷、ディッピング、刷毛塗り、ディスペンサーを用いた塗布等、種々の手段で基体に塗布される。基体としては、樹脂基板、セラミック基板、ガラス基板、セラミック電子部品、シリコン半導体や化合物半導体等、種々のものに適用できる。基体上に塗布された導電性ペーストは、公知の方法で加熱処理され、樹脂を硬化させることにより、導電性被膜を得る。最適な硬化条件は、樹脂や硬化剤により異なるが、通常100〜250℃以下、好ましくは120〜200℃の温度で、数十秒〜2時間程度で硬化処理を行う。
(Formation of conductive film)
The conductive paste of the present invention is applied to the substrate by various means such as screen printing, transfer printing, dipping, brush coating, and application using a dispenser. The substrate can be applied to various substrates such as a resin substrate, a ceramic substrate, a glass substrate, a ceramic electronic component, a silicon semiconductor, and a compound semiconductor. The conductive paste applied on the substrate is heat-treated by a known method to cure the resin, thereby obtaining a conductive film. Optimum curing conditions vary depending on the resin and the curing agent, but the curing treatment is usually performed at a temperature of 100 to 250 ° C. or less, preferably 120 to 200 ° C. for about several tens of seconds to 2 hours.

(用途)
本発明の導電性ペーストは、様々な用途に使用することができる。代表的な用途例としては、プリント回路基板のジャンパー回路やスルーホール導体、アディティブ回路、タッチパネルの導体回路、抵抗端子、太陽電池の電極、タンタルコンデンサの電極、フィルムコンデンサの電極、チップ型セラミック電子部品の外部電極や内部電極等の形成、電磁波シールドとしての使用等が挙げられる。また、はんだの代替として、半導体素子や電子部品を基板に実装するための導電性接着剤としての使用のほか、太陽電池の高温焼成した銀電極の表面をはんだで被覆するタイプのグリッド電極の、はんだ部分の代替として使用することもできる。
(Use)
The conductive paste of the present invention can be used for various applications. Typical application examples include jumper circuits and through-hole conductors for printed circuit boards, additive circuits, conductor circuits for touch panels, resistance terminals, solar cell electrodes, tantalum capacitor electrodes, film capacitor electrodes, and chip-type ceramic electronic components. Formation of external electrodes and internal electrodes, and use as an electromagnetic wave shield. Moreover, as an alternative to solder, in addition to the use as a conductive adhesive for mounting semiconductor elements and electronic components on a substrate, a grid electrode of a type that covers the surface of a high-temperature-baked silver electrode of a solar cell with solder, It can also be used as an alternative to the solder part.

以下に実施例を示してより具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited thereto.

各実施例で用いた材料は下記のとおりである。   The materials used in each example are as follows.

フレーク状銀粉末としては、球状銀粉末を、滑剤としてネオデカン酸を用いて粉砕処理した後、アルコール洗浄し、乾燥して得られた、平均粒径約2.1μm、比表面積約1m/gのフレーク状銀粉末を使用した。なお銀粉末表面のネオデカン酸の残存量は、銀粉末に対して約0.3重量%であった。 As the flaky silver powder, an average particle size of about 2.1 μm and a specific surface area of about 1 m 2 / g obtained by pulverizing a spherical silver powder using neodecanoic acid as a lubricant, washing with alcohol and drying. Flaky silver powder was used. The residual amount of neodecanoic acid on the surface of the silver powder was about 0.3% by weight with respect to the silver powder.

銀超微粉末としては、平均粒径約80nmの銀粉末を使用した。   As the ultrafine silver powder, silver powder having an average particle diameter of about 80 nm was used.

炭酸銀粉末としては、不純物としてアルカリ金属成分を含まない市販の試薬鹿特級AgCO粉末を使用した。 As the silver carbonate powder, a commercially available reagent deer grade Ag 2 CO 3 powder containing no alkali metal component as an impurity was used.

酸化銀粉末としては、不純物としてアルカリ金属成分を含まない、市販の試薬特級AgO粉末を使用した。 As the silver oxide powder, a commercially available reagent-grade Ag 2 O powder that does not contain an alkali metal component as an impurity was used.

ネオデカン酸銀、オクチル酸銀としては、ネオデカン酸、オクチル酸をそれぞれアルカリで中和した後、硝酸銀と反応させて合成し、アルカリ金属イオンを溶媒抽出法により除去したものを使用した。   As silver neodecanoate and silver octylate, neodecanoic acid and octylic acid were neutralized with alkali, then synthesized by reacting with silver nitrate, and alkali metal ions were removed by a solvent extraction method.

アルカリ金属イオン源としては、市販の試薬1級のKCO粉末、NaCO粉末およびLiCO粉末を使用した。表に示したアルカリ金属イオンの量は、フレーク状銀粉末の重量或いは銀超微粉末が使用される場合はフレーク状銀粉末と銀超微粉末との合計重量に対しての、アルカリ金属としての合計量である。 As the alkali metal ion source, commercially available reagent grade K 2 CO 3 powder, Na 2 CO 3 powder and Li 2 CO 3 powder were used. The amount of alkali metal ions shown in the table is the amount of alkali metal ions as the alkali metal relative to the weight of the flaky silver powder or the total weight of the flaky silver powder and the silver ultrafine powder when silver ultrafine powder is used. Total amount.

実施例1〜20、比較例1〜6
表1に示す配合比率のフレーク状銀粉末、銀超微粉末、炭酸銀粉末、酸化銀粉末、脂肪酸銀およびアルカリ金属イオン源となる化合物粉末を、バインダ樹脂、硬化剤、溶剤と混合し、三本ロールミルにより混練して導電性ペーストを得た。
Examples 1-20, Comparative Examples 1-6
The flaky silver powder, the silver ultrafine powder, the silver carbonate powder, the silver oxide powder, the fatty acid silver and the compound powder that becomes the alkali metal ion source having the blending ratio shown in Table 1 are mixed with a binder resin, a curing agent, and a solvent. The conductive paste was obtained by kneading with this roll mill.

なお、バインダ樹脂としては、フレーク状銀粉末100重量部に対し、ジメチルグリシジルフタレート系エポキシ樹脂(大日本インキ化学工業(株)製エピクロン200)9.4重量部とブチラール樹脂(積水化学工業(株)製エスレックBL3)の28%エチルカルビトールアセテート溶液2.6重量部の混合物を用い、硬化剤としては酸無水物系硬化剤0.5重量部とフェノール樹脂系硬化剤3.1重量部を併用した。溶剤としてはエチルカルビトールアセテートを適宜配合して、粘度調整を行った。   As binder resin, 9.4 parts by weight of dimethylglycidyl phthalate epoxy resin (Epicron 200 manufactured by Dainippon Ink & Chemicals, Inc.) and butyral resin (Sekisui Chemical Co., Ltd.) with respect to 100 parts by weight of flaky silver powder. ) Made from a mixture of 2.6 parts by weight of 28% ethyl carbitol acetate solution of S-Rec BL3), 0.5 parts by weight of an acid anhydride curing agent and 3.1 parts by weight of a phenol resin curing agent were used as curing agents. Used together. As a solvent, ethyl carbitol acetate was appropriately blended to adjust the viscosity.

得られたそれぞれの導電性ペーストを、ガラス基板上にスクリーン印刷法で塗布し、200℃で60分間熱処理し、樹脂を硬化させて導電性銀被膜を形成した。   Each of the obtained conductive pastes was applied on a glass substrate by a screen printing method, heat-treated at 200 ° C. for 60 minutes, and the resin was cured to form a conductive silver film.

得られた銀被膜の比抵抗値を四端子法で測定した。また、JIS−K5400 8.5.2碁盤目試験に準じてクロスカット試験を行って接着性を評価し、結果を表1に併せて示した。   The specific resistance value of the obtained silver coating was measured by the four probe method. Moreover, the crosscut test was done according to JIS-K5400 8.5.2 cross cut test, and adhesiveness was evaluated, and the result was combined with Table 1 and shown.

Figure 2006049147
Figure 2006049147

Claims (6)

少なくとも(A)銀を主成分とする導電性金属粉末、
(B)炭酸銀粉末、酸化銀粉末、および総炭素数が1〜24の脂肪酸の銀塩より成る群から選ばれる少なくとも1種、
(C)アルカリ金属イオン、
(D)熱硬化性樹脂を含むバインダ樹脂
を含み、(A)に対する(C)の重量比率が10〜3000ppmであることを特徴とする導電性ペースト。
At least (A) a conductive metal powder mainly composed of silver,
(B) at least one selected from the group consisting of silver carbonate powder, silver oxide powder, and a silver salt of a fatty acid having 1 to 24 total carbon atoms,
(C) alkali metal ions,
(D) A conductive paste comprising a binder resin containing a thermosetting resin, wherein the weight ratio of (C) to (A) is 10 to 3000 ppm.
請求項1に記載の導電性ペーストが、100〜250℃で加熱硬化するものである導電性ペースト。 The conductive paste according to claim 1, wherein the conductive paste is heat-cured at 100 to 250 ° C. (A)の重量に対する(C)の重量比が合計で30〜1000ppmである、請求項1または2に記載の導電性ペースト。 The electrically conductive paste of Claim 1 or 2 whose weight ratio of (C) with respect to the weight of (A) is 30-1000 ppm in total. (C)がナトリウムイオンおよび/またはカリウムイオンである、請求項1ないし3のいずれかに記載の導電性ペースト。 The electrically conductive paste in any one of Claim 1 thru | or 3 whose (C) is a sodium ion and / or a potassium ion. (A)に対する(B)の重量比率が合計で0.5〜15%である、請求項1ないし4のいずれかに記載の導電性ペースト。 The electrically conductive paste in any one of Claims 1 thru | or 4 whose weight ratio of (B) with respect to (A) is 0.5 to 15% in total. バインダ樹脂が、少なくともフタル酸系グリシジルエステル型エポキシ樹脂を含むものである、請求項1ないし5のいずれかに記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 5, wherein the binder resin contains at least a phthalic acid-based glycidyl ester type epoxy resin.
JP2004229699A 2004-08-05 2004-08-05 Conductive paste Active JP4482930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229699A JP4482930B2 (en) 2004-08-05 2004-08-05 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229699A JP4482930B2 (en) 2004-08-05 2004-08-05 Conductive paste

Publications (2)

Publication Number Publication Date
JP2006049147A true JP2006049147A (en) 2006-02-16
JP4482930B2 JP4482930B2 (en) 2010-06-16

Family

ID=36027450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229699A Active JP4482930B2 (en) 2004-08-05 2004-08-05 Conductive paste

Country Status (1)

Country Link
JP (1) JP4482930B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204778A (en) * 2006-01-31 2007-08-16 Ebara Corp Joining material
JP2007284497A (en) * 2006-04-13 2007-11-01 Fukuda Metal Foil & Powder Co Ltd Electroconductive coating
JP2008176951A (en) * 2007-01-16 2008-07-31 Mitsubishi Chemicals Corp Silver-based particulate ink paste
US7429341B2 (en) 2006-04-11 2008-09-30 The Yokohama Rubber Co., Ltd. Electroconductive composition, method for producing electroconductive film, and electroconductive film
WO2008135632A1 (en) * 2007-05-03 2008-11-13 Valtion Teknillinen Tutkimuskeskus Conductive ink and conductor
JP2009087939A (en) * 2007-09-28 2009-04-23 Wc Heraeus Gmbh Connecting method of metal surfaces, and paste therefor
JP2010504612A (en) * 2007-01-30 2010-02-12 イグザクス インコーポレイテッド Silver paste for conductive film formation
JP2010505230A (en) * 2007-01-30 2010-02-18 イグザクス インコーポレイテッド Metal paste for conductive film formation
JP2010109334A (en) * 2008-09-30 2010-05-13 Mitsubishi Materials Corp Conductive ink composition and solar cell module formed using the same
US20100186999A1 (en) * 2008-01-17 2010-07-29 Masafumi Kuramoto Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US7766218B2 (en) * 2005-09-21 2010-08-03 Nihon Handa Co., Ltd. Pasty silver particle composition, process for producing solid silver, solid silver, joining method, and process for producing printed wiring board
JP2011124040A (en) * 2009-12-09 2011-06-23 Yokohama Rubber Co Ltd:The Conductive composition, forming method of conductive wiring, and conductive wiring
JP2011146591A (en) * 2010-01-15 2011-07-28 Yokohama Rubber Co Ltd:The Paste for solar cell electrode and single solar cell
US20110186340A1 (en) * 2009-07-21 2011-08-04 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, and light-emitting device
JP2012023084A (en) * 2010-07-12 2012-02-02 Yokohama Rubber Co Ltd:The Paste for solar battery electrode and solar battery cell
JP2012060114A (en) * 2010-09-03 2012-03-22 Heraeus Materials Technology Gmbh & Co Kg Contacting means and method for contacting electronic components
WO2012042780A1 (en) * 2010-09-29 2012-04-05 横浜ゴム株式会社 Electroconductive composition, solar battery cell, and method for producing solar battery cell
JP2012084514A (en) * 2010-09-03 2012-04-26 Heraeus Materials Technology Gmbh & Co Kg Use of aliphatic hydrocarbon and paraffin as solvent in silver paste to be sintered
JP2012518056A (en) * 2009-02-16 2012-08-09 サイテク・テクノロジー・コーポレーシヨン Co-curing conductive surface film for lightning and electromagnetic interference shielding of thermosetting composites
WO2012118061A1 (en) * 2011-03-01 2012-09-07 ナミックス株式会社 Electrically conductive composition
JP2013504148A (en) * 2009-09-04 2013-02-04 ヘレウス マテリアルズ テクノロジー ゲーエムベーハー ウント カンパニー カーゲー Metal paste containing oxidizer
JP2013149596A (en) * 2011-12-21 2013-08-01 Shoei Chem Ind Co Heat-curable conductive paste
JP2014510803A (en) * 2011-02-11 2014-05-01 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Conductive adhesive comprising at least one metal precursor
TWI447181B (en) * 2011-06-09 2014-08-01 Yokohama Rubber Co Ltd Paste and solar cell for solar cell electrodes
JP2017071707A (en) * 2015-10-08 2017-04-13 信越化学工業株式会社 Liquid thermally conductive resin composition and electronic component
WO2019065221A1 (en) * 2017-09-27 2019-04-04 京セラ株式会社 Paste composition, semiconductor device, and electrical/electronic component
WO2019043674A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2019043671A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2019043673A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
CN111066098A (en) * 2017-08-30 2020-04-24 住友金属矿山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
KR20200066067A (en) * 2018-11-30 2020-06-09 엘에스니꼬동제련 주식회사 Conductive paste for electrode of solar cell, and solar cell producted by using the same
CN116741431A (en) * 2023-08-09 2023-09-12 常州聚和新材料股份有限公司 Thin gate silver paste suitable for thin Poly layer on back of N-type TOPCO battery and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038846A (en) * 2010-08-05 2012-02-23 Yokohama Rubber Co Ltd:The Paste for solar cell electrode, and solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162558A (en) * 1984-09-04 1986-03-31 Muromachi Kagaku Kogyo Kk Electroconductive resin composition
JP2001049086A (en) * 1999-08-09 2001-02-20 Sumitomo Metal Mining Co Ltd Electrically conductive resin composition
JP2002265920A (en) * 2001-03-13 2002-09-18 Namics Corp Electroconductive adhesive and circuit using the same
JP2004039379A (en) * 2002-07-02 2004-02-05 Sumitomo Electric Ind Ltd Conductive paste, conductive membrane, and manufacturing method of conductive membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162558A (en) * 1984-09-04 1986-03-31 Muromachi Kagaku Kogyo Kk Electroconductive resin composition
JP2001049086A (en) * 1999-08-09 2001-02-20 Sumitomo Metal Mining Co Ltd Electrically conductive resin composition
JP2002265920A (en) * 2001-03-13 2002-09-18 Namics Corp Electroconductive adhesive and circuit using the same
JP2004039379A (en) * 2002-07-02 2004-02-05 Sumitomo Electric Ind Ltd Conductive paste, conductive membrane, and manufacturing method of conductive membrane

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7766218B2 (en) * 2005-09-21 2010-08-03 Nihon Handa Co., Ltd. Pasty silver particle composition, process for producing solid silver, solid silver, joining method, and process for producing printed wiring board
JP2007204778A (en) * 2006-01-31 2007-08-16 Ebara Corp Joining material
US7429341B2 (en) 2006-04-11 2008-09-30 The Yokohama Rubber Co., Ltd. Electroconductive composition, method for producing electroconductive film, and electroconductive film
JP2007284497A (en) * 2006-04-13 2007-11-01 Fukuda Metal Foil & Powder Co Ltd Electroconductive coating
JP2008176951A (en) * 2007-01-16 2008-07-31 Mitsubishi Chemicals Corp Silver-based particulate ink paste
JP2010504612A (en) * 2007-01-30 2010-02-12 イグザクス インコーポレイテッド Silver paste for conductive film formation
JP2010505230A (en) * 2007-01-30 2010-02-18 イグザクス インコーポレイテッド Metal paste for conductive film formation
WO2008135632A1 (en) * 2007-05-03 2008-11-13 Valtion Teknillinen Tutkimuskeskus Conductive ink and conductor
US9631106B2 (en) 2007-05-03 2017-04-25 Teknologian Tutkimuskeskus Vtt Conductive ink and conductor
US8753544B2 (en) 2007-05-03 2014-06-17 Valtion Teknillinen Tutkimuskeskus Conductive ink and conductor
CN102430875A (en) * 2007-09-28 2012-05-02 W.C.贺利氏有限公司 Process and paste for contacting metal surfaces
CN102430875B (en) * 2007-09-28 2016-07-06 W.C.贺利氏有限公司 Method and mastic for multiple metal covering contactings
JP2009087939A (en) * 2007-09-28 2009-04-23 Wc Heraeus Gmbh Connecting method of metal surfaces, and paste therefor
US8968608B2 (en) * 2008-01-17 2015-03-03 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US9812624B2 (en) 2008-01-17 2017-11-07 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US10573795B2 (en) 2008-01-17 2020-02-25 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US11652197B2 (en) 2008-01-17 2023-05-16 Nichia Corporation Method for producing an electronic device
US10950770B2 (en) 2008-01-17 2021-03-16 Nichia Corporation Method for producing an electronic device
EP2239743B1 (en) * 2008-01-17 2020-03-11 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for manufacturing light-emitting device
US20100186999A1 (en) * 2008-01-17 2010-07-29 Masafumi Kuramoto Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
JP2010109334A (en) * 2008-09-30 2010-05-13 Mitsubishi Materials Corp Conductive ink composition and solar cell module formed using the same
JP2012518056A (en) * 2009-02-16 2012-08-09 サイテク・テクノロジー・コーポレーシヨン Co-curing conductive surface film for lightning and electromagnetic interference shielding of thermosetting composites
CN102473485A (en) * 2009-07-21 2012-05-23 日亚化学工业株式会社 Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, and light-emitting device
JPWO2011010659A1 (en) * 2009-07-21 2013-01-07 日亜化学工業株式会社 Manufacturing method of conductive material, conductive material obtained by the method, electronic device including the conductive material, and light emitting device
EP2407980A1 (en) * 2009-07-21 2012-01-18 Nichia Corporation Method for producing conductive material, conductive material obtained by the same method, electronic device containing the conductive material, and light-emitting device
US20110186340A1 (en) * 2009-07-21 2011-08-04 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, and light-emitting device
TWI509630B (en) * 2009-07-21 2015-11-21 Nichia Corp A method of manufacturing a conductive material, a conductive material obtained by the method, an electronic device containing the conductive material, and a light-emitting device
EP2407980A4 (en) * 2009-07-21 2014-09-03 Nichia Corp Method for producing conductive material, conductive material obtained by the same method, electronic device containing the conductive material, and light-emitting device
JP5673536B2 (en) * 2009-07-21 2015-02-18 日亜化学工業株式会社 Manufacturing method of conductive material, conductive material obtained by the method, electronic device including the conductive material, and light emitting device
US9011728B2 (en) * 2009-07-21 2015-04-21 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, and light-emitting device
JP2013504148A (en) * 2009-09-04 2013-02-04 ヘレウス マテリアルズ テクノロジー ゲーエムベーハー ウント カンパニー カーゲー Metal paste containing oxidizer
JP2011124040A (en) * 2009-12-09 2011-06-23 Yokohama Rubber Co Ltd:The Conductive composition, forming method of conductive wiring, and conductive wiring
JP2011146591A (en) * 2010-01-15 2011-07-28 Yokohama Rubber Co Ltd:The Paste for solar cell electrode and single solar cell
JP2012023084A (en) * 2010-07-12 2012-02-02 Yokohama Rubber Co Ltd:The Paste for solar battery electrode and solar battery cell
KR20140014328A (en) * 2010-09-03 2014-02-06 헤레우스 머티어리얼즈 테크놀로지 게엠베하 운트 코 카게 Contacting means and method for contacting electrical components
JP2012060114A (en) * 2010-09-03 2012-03-22 Heraeus Materials Technology Gmbh & Co Kg Contacting means and method for contacting electronic components
JP2012084514A (en) * 2010-09-03 2012-04-26 Heraeus Materials Technology Gmbh & Co Kg Use of aliphatic hydrocarbon and paraffin as solvent in silver paste to be sintered
KR101690336B1 (en) * 2010-09-03 2016-12-27 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Contacting means and method for contacting electrical components
WO2012042780A1 (en) * 2010-09-29 2012-04-05 横浜ゴム株式会社 Electroconductive composition, solar battery cell, and method for producing solar battery cell
US10000671B2 (en) 2011-02-11 2018-06-19 Henkel Ag & Co. Kgaa Electrically conductive adhesives comprising at least one metal precursor
JP2014510803A (en) * 2011-02-11 2014-05-01 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Conductive adhesive comprising at least one metal precursor
WO2012118061A1 (en) * 2011-03-01 2012-09-07 ナミックス株式会社 Electrically conductive composition
JP5927177B2 (en) * 2011-03-01 2016-06-01 ナミックス株式会社 Die bonding agent
TWI447181B (en) * 2011-06-09 2014-08-01 Yokohama Rubber Co Ltd Paste and solar cell for solar cell electrodes
JP2013149596A (en) * 2011-12-21 2013-08-01 Shoei Chem Ind Co Heat-curable conductive paste
JP2017071707A (en) * 2015-10-08 2017-04-13 信越化学工業株式会社 Liquid thermally conductive resin composition and electronic component
CN111386579B (en) * 2017-08-30 2023-12-12 住友金属矿山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2019043673A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2019043671A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2019043674A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
CN111066098A (en) * 2017-08-30 2020-04-24 住友金属矿山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
CN111066098B (en) * 2017-08-30 2022-10-14 住友金属矿山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
CN111386579A (en) * 2017-08-30 2020-07-07 住友金属矿山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
CN111033640A (en) * 2017-09-27 2020-04-17 京瓷株式会社 Paste composition, semiconductor device, and electrical/electronic component
JPWO2019065221A1 (en) * 2017-09-27 2020-12-03 京セラ株式会社 Paste composition, semiconductor devices and electrical / electronic components
JP7100651B2 (en) 2017-09-27 2022-07-13 京セラ株式会社 Paste compositions, semiconductor devices and electrical / electronic components
TWI686450B (en) * 2017-09-27 2020-03-01 日商京瓷股份有限公司 Paste composition, semiconductor device and electrical and electronic parts
WO2019065221A1 (en) * 2017-09-27 2019-04-04 京セラ株式会社 Paste composition, semiconductor device, and electrical/electronic component
KR102152837B1 (en) 2018-11-30 2020-09-07 엘에스니꼬동제련 주식회사 Conductive paste for electrode of solar cell, and solar cell producted by using the same
KR20200066067A (en) * 2018-11-30 2020-06-09 엘에스니꼬동제련 주식회사 Conductive paste for electrode of solar cell, and solar cell producted by using the same
CN116741431A (en) * 2023-08-09 2023-09-12 常州聚和新材料股份有限公司 Thin gate silver paste suitable for thin Poly layer on back of N-type TOPCO battery and preparation method thereof
CN116741431B (en) * 2023-08-09 2023-11-14 常州聚和新材料股份有限公司 Thin gate silver paste suitable for thin Poly layer on back of N-type TOPCO battery and preparation method thereof

Also Published As

Publication number Publication date
JP4482930B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4482930B2 (en) Conductive paste
JP4507750B2 (en) Conductive paste
TWI284328B (en) Conductive paste
JP5505695B2 (en) Metal paste for conductive film formation
JP4935592B2 (en) Thermosetting conductive paste
JP5887086B2 (en) Conductive material
KR20140094690A (en) Electroconductive ink comoposition and method for forming an electrode by using the same
JPWO2013161966A1 (en) Conductive composition
WO2014054618A1 (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP2004063445A (en) Conductive paste
JP2011187194A (en) Conductive paste
JP4235888B2 (en) Conductive paste
JP4951948B2 (en) Conductor formation method
JP2006032165A (en) Conductive metal particles and conductive resin composition using them, and conductive adhesive
JP2010090264A (en) Functional electroconductive coating and method for production of printed circuit board using the same
JPH06136299A (en) Conductive paste enabling strong soldering
JP4482873B2 (en) Conductive paste, circuit board, solar cell, and chip-type ceramic electronic component
JP5034577B2 (en) Conductive paste
US11270810B2 (en) Electrically conductive paste
JP4235885B2 (en) Conductive paste
JP2006041008A (en) Electronic component mounting method
JP5861600B2 (en) Conductive adhesive composition and electronic device using the same
CN110809806B (en) Conductive paste
JP2001273816A (en) Conductive paste
JPH0619075B2 (en) Conductive paint that can be soldered

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100314

R150 Certificate of patent or registration of utility model

Ref document number: 4482930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250