WO2012042687A1 - 蓄熱装置及び該蓄熱装置を備えた空気調和機 - Google Patents

蓄熱装置及び該蓄熱装置を備えた空気調和機 Download PDF

Info

Publication number
WO2012042687A1
WO2012042687A1 PCT/JP2011/001088 JP2011001088W WO2012042687A1 WO 2012042687 A1 WO2012042687 A1 WO 2012042687A1 JP 2011001088 W JP2011001088 W JP 2011001088W WO 2012042687 A1 WO2012042687 A1 WO 2012042687A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
heat
compressor
heat exchanger
storage material
Prior art date
Application number
PCT/JP2011/001088
Other languages
English (en)
French (fr)
Inventor
大輔 川添
栗須谷 広治
今坂 俊之
清水 昭彦
赤嶺 育雄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to KR1020137011037A priority Critical patent/KR20130099983A/ko
Priority to EP11828257.3A priority patent/EP2623896B1/en
Priority to CN201180047357.XA priority patent/CN103154643B/zh
Priority to BR112013007273A priority patent/BR112013007273A2/pt
Publication of WO2012042687A1 publication Critical patent/WO2012042687A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/0213Heat exchangers immersed in a large body of liquid for heating or cooling a liquid in a tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage device that stores a heat storage material that stores heat generated by a compressor, and an air conditioner including the heat storage device.
  • FIGS. 10 and 11 are sectional views showing an example of a conventional heat storage device.
  • a heat storage device 100 is provided so as to surround a compressor 102 as a heating element, and a substantially hollow cylindrical heat storage sealing pack 106 filled with a heat storage material 104, and a heat storage sealing pack 106 are provided.
  • the heat exchanger 108 and the like for heat storage and heat dissipation.
  • the heat storage sealed pack 106 is formed in a substantially hollow cylindrical shape by sealing an outer plate 110 made of, for example, an aluminum thin plate at the upper end.
  • the outer plate 110 has a structure in which the heat storage material 104 is filled.
  • the heat exchanger 108 is formed, for example, by fixing, for example, aluminum fins 114 to the refrigerant passage pipe 112.
  • heat generated from the compressor 102 is transmitted to the heat storage seal pack 106 via the silicon oil 116 and stored in the heat storage material 104 in the heat storage seal pack 106. .
  • the refrigerant passage pipe 112 is disposed inside the heat storage device 100 over a wide range from the vicinity of the upper end of the heat storage device 100 to the vicinity of the lower end. .
  • piping constituting a refrigeration cycle such as a refrigerant passage pipe is formed by connecting a plurality of pipes using brazing, welding, flare joints, or the like. And in the said prior art, the special consideration is not made about the position of this joint part.
  • the fin tube type heat exchanger 108 as in the prior art generally has a hairpin-shaped copper tube inserted into a hole portion of an aluminum fin material by attaching a hairpin-shaped copper tube and a return bend to the end portion. It is manufactured integrally by brazing the seam with the return bend.
  • the present invention has been made in view of such problems of the prior art, can efficiently store heat in the heat storage material, or can efficiently extract the heat storage, and has long-term reliability. It aims at providing the heat storage apparatus which can be ensured.
  • the present invention accommodates a heat storage device that is disposed so as to surround a compressor and that stores heat generated by the compressor, and that stores a heat storage material that stores heat generated by the compressor. It comprises a heat storage tank and a heat storage heat exchanger accommodated in the heat storage tank, and is arranged so that the joint portion of the pipe constituting the refrigeration cycle is not immersed in the heat storage material.
  • the piping constituting the refrigeration cycle is used as the heat storage material. Even if the heat storage material may invade the pipe by the material constituting the heat storage material and the pipe by immersing, reliability can be ensured over a long period of time.
  • FIG. 1 is a diagram showing the configuration of an air conditioner equipped with a heat storage device according to the present invention.
  • FIG. 2 is a schematic diagram illustrating the operation and refrigerant flow during normal heating of the air conditioner of FIG.
  • FIG. 3 is a schematic diagram showing the operation of the air conditioner of FIG. 1 during defrosting / heating and the flow of refrigerant.
  • FIG. 4 is a perspective view of the heat storage device according to the present invention with the compressor and the accumulator attached.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is a diagram schematically showing a joint portion of the heat storage heat exchanger.
  • 10 is a cross-sectional view of a conventional heat storage device 11 is a cross-sectional view taken along line XX in FIG.
  • the present invention is arranged so as to surround a compressor, a heat storage device for storing heat generated by the compressor, a heat storage tank for storing a heat storage material for storing heat generated by the compressor, and a heat storage tank. It is comprised with the accommodated heat storage heat exchanger, and has arrange
  • glycol is contained in the heat storage material.
  • glycol has a relatively high specific heat and low corrosivity, and has an excellent characteristic as a heat storage material because it raises its boiling point and lowers its freezing point in an aqueous solution.
  • the joint is located outside the container filled with the heat storage material.
  • the heat storage material may come into contact with the seam portion even when the heat storage material flows due to vibration or when the outdoor unit is installed inclined. There is no risk of corrosion.
  • FIG. 1 shows a configuration of an air conditioner including a heat storage device according to the present invention, and the air conditioner is composed of an outdoor unit 2 and an indoor unit 4 that are connected to each other through a refrigerant pipe.
  • a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2.
  • a heat exchanger 16 is provided, and these are connected to each other via a refrigerant pipe to constitute a refrigeration cycle.
  • the compressor 6 and the indoor heat exchanger 16 are connected via a first pipe 18 provided with a four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are provided with a strainer 10.
  • the second pipe 20 is connected.
  • the expansion valve 12 and the outdoor heat exchanger 14 are connected via a third pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a fourth pipe 24.
  • a four-way valve 8 is disposed in the middle of the fourth pipe 24, and an accumulator 26 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided in the fourth pipe 24 on the refrigerant suction side of the compressor 6. ing.
  • the compressor 6 and the third pipe 22 are connected via a fifth pipe 28, and the first solenoid valve 30 is provided in the fifth pipe 28.
  • a heat storage tank 32 is provided around the compressor 6, and a heat storage heat exchanger 34 is provided inside the heat storage tank 32, and a heat storage material for exchanging heat with the heat storage heat exchanger 34 (for example, An ethylene glycol aqueous solution) 36 is filled, and the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 constitute a heat storage device.
  • a heat storage material for exchanging heat with the heat storage heat exchanger 34 for example, An ethylene glycol aqueous solution
  • the second pipe 20 and the heat storage heat exchanger 34 are connected via a sixth pipe 38, the heat storage heat exchanger 34 and the fourth pipe 24 are connected via a seventh pipe 40, and the sixth pipe 38. Is provided with a second electromagnetic valve 42.
  • an air blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 4, and indoor heat exchange is performed.
  • the unit 16 exchanges heat between the indoor air sucked into the interior of the indoor unit 4 by the blower fan and the refrigerant flowing through the interior of the indoor heat exchanger 16, and blows out the air warmed by heat exchange into the room during heating.
  • air cooled by heat exchange is blown into the room during cooling.
  • the upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.
  • the compressor 6, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 8, the expansion valve 12, the electromagnetic valves 30 and 42, etc. are electrically connected to a control device (not shown, for example, a microcomputer). Be controlled.
  • the refrigerant discharged from the discharge port of the compressor 6 passes from the four-way valve 8 to the indoor heat exchanger 16 through the first pipe 18.
  • the refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 passes through the second pipe 20 through the indoor heat exchanger 16, expands through the strainer 10 that prevents foreign matter from entering the expansion valve 12.
  • To valve 12. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the third pipe 22, and the refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 14 is the fourth pipe 24 and the four-way valve 8. And returns to the suction port of the compressor 6 through the accumulator 26.
  • the fifth pipe 28 branched from the compressor 6 discharge port of the first pipe 18 and the four-way valve 8 is connected to the expansion valve 12 of the third pipe 22 and the outdoor heat exchanger 14 via the first electromagnetic valve 30. I am joining in between.
  • the heat storage tank 32 in which the heat storage material 36 and the heat storage heat exchanger 34 are housed is disposed so as to be in contact with and surround the compressor 6, and the heat generated in the compressor 6 is accumulated in the heat storage material 36, and the second The sixth pipe 38 branched from the pipe 20 between the indoor heat exchanger 16 and the strainer 10 reaches the inlet of the heat storage heat exchanger 34 via the second electromagnetic valve 42 and exits from the outlet of the heat storage heat exchanger 34.
  • the seventh pipe 40 joins between the four-way valve 8 and the accumulator 26 in the fourth pipe 24.
  • FIG. 2 schematically showing the operation during normal heating and the flow of the refrigerant of the air conditioner shown in FIG.
  • the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to be closed, and the refrigerant discharged from the discharge port of the compressor 6 as described above passes through the first pipe 18 and the four-way valve 8.
  • the indoor heat exchanger 16 The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 exits the indoor heat exchanger 16, passes through the second pipe 20, reaches the expansion valve 12, and the refrigerant decompressed by the expansion valve 12 is the third refrigerant. It reaches the outdoor heat exchanger 14 through the pipe 22.
  • the refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 14 returns from the four-way valve 8 to the suction port of the compressor 6 through the fourth pipe 24.
  • the heat generated in the compressor 6 is accumulated in the heat storage material 36 housed in the heat storage tank 32 from the outer wall of the compressor 6 through the outer wall of the heat storage tank 32.
  • FIG. 3 schematically showing the operation of the air conditioner shown in FIG. 1 during defrosting / heating and the flow of refrigerant.
  • the solid line arrows indicate the flow of the refrigerant used for heating
  • the broken line arrows indicate the flow of the refrigerant used for defrosting.
  • the air conditioner according to the present invention is provided with a temperature sensor 44 that detects the piping temperature of the outdoor heat exchanger 14, and the evaporation temperature is lower than that during non-frosting. When this is detected by the temperature sensor 44, an instruction from the normal heating operation to the defrosting / heating operation is output from the control device.
  • the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to open, and in addition to the refrigerant flow during the normal heating operation described above, the first solenoid valve 30 and the second electromagnetic valve 42 are discharged from the discharge port of the compressor 6. After a part of the vapor-phase refrigerant passes through the fifth pipe 28 and the first electromagnetic valve 30 and merges with the refrigerant passing through the third pipe 22, the outdoor heat exchanger 14 is heated, condensed, and converted into a liquid phase. Through the fourth pipe 24, the four-way valve 8 and the accumulator 26 are returned to the suction port of the compressor 6.
  • a part of the liquid-phase refrigerant that is divided between the indoor heat exchanger 16 and the strainer 10 in the second pipe 20 passes through the sixth pipe 38 and the second electromagnetic valve 42, and then is stored in the heat storage material 36 in the heat storage heat exchanger 34. From the accumulator 26 and returns to the suction port of the compressor 6 through the seventh pipe 40 and the refrigerant that passes through the fourth pipe 24.
  • the place where it joins may be between the accumulator 26 and the compressor 6, and in that case, it can be avoided that heat is taken away by the heat capacity of the accumulator 26 itself.
  • the refrigerant returning to the accumulator 26 includes the liquid phase refrigerant returning from the outdoor heat exchanger 14. By mixing this with the high-temperature gas phase refrigerant returning from the heat storage heat exchanger 34, The evaporation of the phase refrigerant is promoted, and the liquid phase refrigerant does not return to the compressor 6 through the accumulator 26, so that the reliability of the compressor 6 can be improved.
  • the temperature of the outdoor heat exchanger 14 that has become below freezing due to the attachment of frost at the start of defrosting and heating is heated by the gas-phase refrigerant discharged from the discharge port of the compressor 6, and the frost is melted near zero degrees.
  • the temperature of the outdoor heat exchanger 14 begins to rise again.
  • the control device outputs an instruction from the defrosting / heating operation to the normal heating operation.
  • FIG. 4 and 5 show a heat storage device, and the heat storage device includes the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 as described above.
  • FIG. 4 shows a state where the compressor 6 and the accumulator 26 assembled to the compressor 6 are attached to the heat storage device.
  • FIG. 5 is an exploded perspective view of the heat storage device.
  • the heat storage tank 32 has a side wall 46 a and a bottom wall (not shown) and has a resin-made heat storage tank main body 46 that opens upward, and the upper opening of the heat storage tank main body 46 is closed. And a packing 50 made of silicon rubber or the like interposed between the heat storage tank body 46 and the lid body 48, and the lid body 48 is screwed to the heat storage tank body 46.
  • a part of the side wall 46a of the heat storage tank main body 46 that is, a part facing the compressor 6 at the side wall 46a
  • the peripheral edge of the opening 46b is in close contact with the outer peripheral surface of the compressor 6.
  • a close contact member 52 is joined.
  • the contact member 52 includes a frame body 54 and a sheet member 56, and has a shape in which a part of a cylinder having a predetermined diameter is cut out as a whole. Since the compressor 6 is accommodated inside the contact member 52, the inner diameter of the contact member 52 is set slightly larger than the outer diameter of the compressor 6 in consideration of mounting tolerances and the like.
  • an opening 54a is formed in the frame 54 from the middle part in the vertical direction to the lower part, and the sheet member 56 is joined to the frame 54 so as to close the opening 54a.
  • the heat storage tank 32 is tightly fixed to the compressor 6 with a band 33.
  • the side wall 46a has the opening 46b.
  • the present invention is not limited to this configuration, and the opening 46b may be omitted.
  • a resin-made sheet member for example, silicon
  • elasticity and excellent heat transfer performance is used as the heat storage tank 32 and the compressor 6. It is good to interpose between.
  • the heat storage heat exchanger 34 is, for example, a copper tube or the like bent in a serpentine shape, and is housed inside the heat storage tank body 46, and both ends of the heat storage heat exchanger 34 are extended upward from the lid 48. One end is connected to the sixth pipe 38 (see FIG. 1), while the other end is connected to the seventh pipe 40 (see FIG. 1).
  • the heat storage heat exchanger 34 is accommodated, and the heat storage material 36 is filled in the internal space of the heat storage tank main body 46 surrounded by the side wall 46 a, the bottom wall, and the contact member 52.
  • the heat storage device is provided with stirring means for stirring the heat storage material 36 filled therein, or otherwise, the temperature distribution of the heat storage material 36 is not uniform.
  • the heat storage heat exchanger 34 bent so as to meander is preferably disposed in the upper part of the heat storage tank 32.
  • the heat storage heat exchanger 34 having the straight portions 34b extending linearly upward from both ends of the bent portion 34a is configured so that the entire bent portion 34a extends along the inner wall surface of the heat storage tank main body 46 within a predetermined range above the heat storage tank 32. It is arranged to be curved.
  • the height from the bottom surface of the heat storage tank 32 is H1
  • H3 and H4 are set to a predetermined height or distance.
  • the center of gravity position CoB in the height direction of the heat storage heat exchanger 34 is set above the center position H2 in the height direction of the heat storage tank 32.
  • the center-of-gravity position CoB in the height direction of the heat storage heat exchanger 34 is the center-of-gravity position of the portion where the bent portion 34a and the straight portion 34b of the heat storage exchanger 34 are combined.
  • the heat from the compressor 6 is accumulated in the heat storage material 36, but the heat storage material 36 above the heat storage tank 32 has a higher temperature than the heat storage material 36 below.
  • the center of gravity position of the heat storage heat exchanger 34 is set higher than the center position in the height direction of the heat storage tank 32, so that the heat storage heat exchanger 34 is mainly relative to the heat storage material 36. Exchange heat with hot parts. In other words, the heat storage heat exchanger 34 can efficiently exchange heat with the heat storage material 36.
  • the height H3 of the lower end of the heat storage heat exchanger 34 is set so as to be positioned below the center position H2 in the height direction of the heat storage tank 32 and in the vicinity of the center position H2. .
  • all of the heat storage heat exchanger 34 comes into contact with the heat storage material 36 that is as hot as possible.
  • the heat storage heat exchanger 34 can perform heat exchange with the heat storage material 36 more efficiently.
  • the distance H4 from the upper surface of the heat storage tank 32 to the upper end of the bent portion 34a of the heat storage heat exchanger 34 is determined in consideration of the inclination of the heat storage tank 32. That is, the compressor 6 and the heat storage tank 32 are usually accommodated in the outdoor unit 2, and the outdoor unit 2 may be installed outside in an inclined state.
  • the heat storage tank 32 is set at a predetermined angle (for example, installed).
  • the upper end of the bent portion 34a of the heat storage heat exchanger 34 is connected to the heat storage tank 32 so that the bent portion 34a of the heat storage heat exchanger 34 is always immersed in the heat storage material 36 even when inclined to about 7 ° with respect to the surface.
  • the heat storage heat exchanger 34 is installed inside the heat storage tank 32 so as to be positioned below the upper surface by a predetermined distance H4.
  • the heat storage material 36 is filled with about 80% of the maximum volume of the heat storage tank 32 at room temperature.
  • ethylene glycol aqueous solution when used for the heat storage material 36, when ethylene glycol is exposed to a high temperature for a long time, it reacts with dissolved oxygen in the aqueous solution to generate glycolic acid, and glycolic acid further reacts with dissolved oxygen. Oxalic acid is generated, and various organic acids are generated, such as formic acid generated from oxalic acid.
  • an additive such as a pH adjuster or an antioxidant may be added to the heat storage material 36.
  • additives such as pH adjusters and antioxidants are also limited in the amount to be added to the heat storage material 36, the effectiveness of the additive decreases with time, and the amount of organic acid produced gradually increases. The pH of the heat storage material 36 gradually decreases due to the generation of the organic acid.
  • a minute gap 34g is formed in the joint portion 34j. Will occur.
  • the organic acid having corrosive properties When the organic acid having corrosive properties enters the minute gap 34g, the organic acid is difficult to diffuse throughout the heat storage material 36, and thus tends to stay.
  • glycolic acid has a strong affinity with copper, which is a metal material constituting the piping member, and has a coordinate bond with copper, so that it is difficult for glycolic acid to flow out when entering the minute gap 34g. For this reason, the concentration of glycolic acid tends to gradually increase as compared with the heat storage material 36 outside the minute gap 34g.
  • the joint portion 34j of the pipes of the heat storage heat exchanger 34 is heated to a high temperature in the brazing or welding process by the metal constituting the pipes of the heat storage heat exchanger 34.
  • the crystal grain size becomes large, and the metal structure in the vicinity of the heating becomes non-uniform.
  • the heat storage heat exchanger 34 is immersed in the heat storage material 36 that is an electrolyte generated with an organic acid, a local battery is more easily formed. Compared with a portion that has not undergone a heating process by brazing or welding. , More susceptible to corrosion.
  • the heat storage material 36 may corrode members (for example, copper) constituting the refrigeration cycle such as pipes and heat exchangers to some extent due to the effect of the generated organic acid.
  • the joint 34j and the heat storage material 36 are in contact with each other.
  • the seam portion is more easily corroded by the above-described gap corrosion than the pipe main body 34p, and thus is a weak point in terms of reliability.
  • coolant since the internal pressure is applied with the refrigerant
  • the portion immersed in the heat storage material 36 of the heat storage heat exchanger 34 is formed by bending a seamless copper tube without using brazing.
  • a brazing part is arrange
  • the vibration of the heat storage tank generated when the air conditioner is operated may cause the liquid surface of the heat storage material 36 to rise or fall and the splash of the heat storage material 36 may adhere to the brazed portion. It is desirable to prevent the seam portion and the heat storage material 36 from contacting each other, for example, by coating the seam portion or providing a cover.
  • the heat storage device is configured to be detachable from the compressor 6.
  • the outer shell of the compressor 6 and the heat storage tank main body 46 are made of metal, and both are fixed by welding or the like. It doesn't matter.
  • heat generated by the compressor 6 is stored in the heat storage tank 32 from the outer wall of the compressor 6 through the outer wall of the heat storage tank 32.
  • the material 36 is configured to accumulate.
  • the compressor 6 When the compressor 6 is used as a heat source, the waste heat of the compressor 6 is stored in the heat storage material 36. Therefore, unlike the case where a separate heater is used as the heat source, for example, energy can be stored with energy saving. .
  • the operating frequency of the compressor 6 is controlled so as to optimize the air conditioning capacity according to the operating state of the air conditioner.
  • the heat generation amount and temperature of the compressor 6 may not always be maintained at an optimum value for storing heat.
  • the compressor 6 continues to operate at a high frequency, and as a result, the compressor 6 is maintained at a high temperature.
  • the heat storage material 36 may be exposed to a high temperature for a long period of time, it is particularly preferable not to immerse the joint portion in the heat storage material 36 in the form in which the waste heat is recovered by the compressor 6 in the heat storage material 36. desirable.
  • the gravity center position of the heat storage heat exchanger 34 was arrange
  • the thermal storage tank 32 is extended also above the compressor 6, and a heat capacity
  • glycol used for the heat storage material 36
  • other materials may be used.
  • the metal touches the electrolyte solution a local battery is formed, and corrosion progresses due to electrochemical action. Therefore, a material containing various electrolytes, or various materials generated by the electrolyte over time, is stored in the heat storage material 36. Useful when used. In addition to the electrolyte, it is also useful when a material having corrosiveness to various metals is used as the heat storage material 36.
  • the heat storage device according to the present invention is useful for air conditioners, refrigerators, water heaters, heat pump washing machines, and the like because the position of the joint portion of the heat storage heat exchanger is appropriately set in consideration of improving reliability. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 圧縮機で発生した熱を蓄積するための蓄熱装置であって、圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱槽32と、該蓄熱槽32に収容された蓄熱熱交換器34とを備え、蓄熱熱交換器の継ぎ目部分を、蓄熱材に浸漬させないように配置した。

Description

蓄熱装置及び該蓄熱装置を備えた空気調和機
 本発明は、圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱装置及びこの蓄熱装置を備えた空気調和機に関するものである。
 従来、ヒートポンプ式空気調和機による暖房運転時、室外熱交換器に着霜した場合には、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、室内ファンは停止するものの、室内機から冷気が徐々に放出されることから暖房感が失われるという欠点がある。
 そこで、室外機に設けられた圧縮機に蓄熱装置を設け、暖房運転中に蓄熱槽に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献1参照)。
 図10及び図11は、従来の蓄熱装置の一例を示す断面図である。図10及び図11において、蓄熱装置100は、発熱体としての圧縮機102を取り巻くように設けられ、蓄熱材104を充填した略中空円筒状の蓄熱用密封パック106と、蓄熱用密封パック106内に収容された蓄熱及び放熱用の熱交換器108等とから構成されている。
 蓄熱用密封パック106は、図10の線X-Xに沿った断面図である図11に示されるように、例えばアルミ薄板製の外板110を上端部で密封して略中空円筒状に形成し、外板110の内部に蓄熱材104を充填した構造を有している。また、熱交換器108は、例えば冷媒通路用パイプ112に、例えばアルミ製のフィン114を固着して形成される。
 上記構成の蓄熱装置100では、圧縮機102の運転中、圧縮機102から発生する熱はシリコン油116を介して蓄熱用密封パック106に伝わり、蓄熱用密封パック106内の蓄熱材104に蓄えられる。
実開平2-128065号公報
 特許文献1に記載の蓄熱装置100においては、図11に示されるように、冷媒通路用パイプ112は、蓄熱装置100の上端近傍から下端近傍の広範囲にわたって蓄熱装置100の内部に配設されている。
 一般に、冷媒通路用パイプ等の冷凍サイクルを構成する配管は、ロー付けや溶接もしくはフレア継ぎ手などを用いて、複数の配管を接続して形成されている。そして、上記従来技術では、この継ぎ手部分の位置について特別の考慮はなされていない。
 また上記従来技術のようなフィンチューブ型の熱交換器108は、一般的にはヘアピン形状の銅管をアルミフィン材の穴部に貫入させ、端部にリターンベンド取り付けてヘアピン形状の銅管とリターンベンドとの継ぎ目部をロー付けして一体に製造されている。
 熱を効率的に蓄熱乃至は吸熱するために、熱交換器を蓄熱材に浸漬させる場合、継ぎ目部を蓄熱材に浸漬させると、継ぎ手部分はその他の部分より腐蝕されやすいため、冷凍サイクルの信頼性に課題があった。
 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、蓄熱材に効率的に熱を蓄熱でき、もしくは蓄熱を効率的に取り出すことができ、かつ長期にわたり信頼性を確保できる蓄熱装置を提供することを目的とする。
 上記目的を達成するため、本発明は、圧縮機を囲むように配設され、圧縮機で発生した熱を蓄積するための蓄熱装置を、圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱槽と、蓄熱槽に収容された蓄熱熱交換器とで構成し、冷凍サイクルを構成する配管の継ぎ目部分を、蓄熱材に浸漬させないように配置している。
 上記構成の蓄熱装置において、配管に比較し腐蝕が発生しやすく機能を維持する上でのボトルネックとなる配管同士の継ぎ目部分を蓄熱材に浸漬させないので、冷凍サイクルを構成する配管を蓄熱材に浸漬させることで蓄熱材および配管を構成する材料により蓄熱材が配管を侵すことがあったとしても、長期にわたり信頼性を確保することができる。
図1は本発明に係る蓄熱装置を備えた空気調和機の構成を示す図 図2は図1の空気調和機の通常暖房時の動作及び冷媒の流れを示す模式図 図3は図1の空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式図 図4は圧縮機とアキュームレータを取り付けた状態の本発明に係る蓄熱装置の斜視図 図5は図4の蓄熱装置の分解斜視図 図6は図4の蓄熱装置の斜視図 図7は図6における線VII-VIIに沿った断面図 図8は図6における線VIII-VIIIに沿った断面図 図9は蓄熱熱交換器の継ぎ目部分を模式的に示す図 図10は従来の蓄熱装置の横断面図 図11は図10における線X-Xに沿った断面図
 本発明は、圧縮機を囲むように配設され、圧縮機で発生した熱を蓄積するための蓄熱装置を、圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱槽と、蓄熱槽に収容された蓄熱熱交換器とで構成し、冷凍サイクルを構成する配管の継ぎ目部分を、蓄熱材に浸漬させないように配置している。
 この構成により、配管に比較し腐蝕が発生しやすく機能を維持する上でのボトルネックとなる配管同士の継ぎ目部分を蓄熱材に浸漬させないので、蓄熱材を構成する材料が継ぎ目部分を侵すものであったとしても、長期にわたり信頼性を確保することができる。
 また、蓄熱熱交換器は、蓄熱材にグリコールが含まれるのが好ましい。これにより、グリコールは比熱が比較的高く低腐食性であり、また水溶液で沸点上昇・凝固点降下するため蓄熱材として優れた特性を持つ。
 また、継ぎ目部分は蓄熱材を満たした容器の外部に位置する。これにより、継ぎ目部を蓄熱材を満たした容器の外側に形成すると、振動で蓄熱材が流動した場合や、室外機が傾いて設置された場合においても、継ぎ目部に蓄熱材が接触することがなく、腐蝕の恐れがない。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、本発明に係る蓄熱装置を備えた空気調和機の構成を示しており、空気調和機は、冷媒配管で互いに接続された室外機2と室内機4とで構成されている。
 図1に示されるように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられ、室内機4の内部には、室内熱交換器16が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。
 さらに詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた第1配管18を介して接続され、室内熱交換器16と膨張弁12は、ストレーナ10が設けられた第2配管20を介して接続されている。また、膨張弁12と室外熱交換器14は第3配管22を介して接続され、室外熱交換器14と圧縮機6は第4配管24を介して接続されている。
 第4配管24の中間部には四方弁8が配置されており、圧縮機6の冷媒吸入側における第4配管24には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けられている。また、圧縮機6と第3配管22は、第5配管28を介して接続されており、第5配管28には第1電磁弁30が設けられている。
 さらに、圧縮機6の周囲には蓄熱槽32が設けられ、蓄熱槽32の内部には、蓄熱熱交換器34が設けられるとともに、蓄熱熱交換器34と熱交換するための蓄熱材(例えば、エチレングリコール水溶液)36が充填されており、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とで蓄熱装置を構成している。
 また、第2配管20と蓄熱熱交換器34は第6配管38を介して接続され、蓄熱熱交換器34と第4配管24は第7配管40を介して接続されており、第6配管38には第2電磁弁42が設けられている。
 室内機4の内部には、室内熱交換器16に加えて、送風ファン(図示せず)と上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器16は、送風ファンにより室内機4の内部に吸込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機4から吹き出される空気の方向を必要に応じて左右に変更する。
 なお、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12、電磁弁30,42等は制御装置(図示せず、例えばマイコン)に電気的に接続され、制御装置により制御される。
 上記構成の本発明に係る冷凍サイクル装置において、各部品の相互の接続関係と機能とを、暖房運転時を例にとり冷媒の流れとともに説明する。
 圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16へと至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て第2配管20を通り、膨張弁12への異物侵入を防止するストレーナ10を通って、膨張弁12に至る。膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至り、室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24と四方弁8とアキュームレータ26を通って圧縮機6の吸入口へと戻る。
 また、第1配管18の圧縮機6吐出口と四方弁8の間から分岐した第5配管28は、第1電磁弁30を介して第3配管22の膨張弁12と室外熱交換器14の間に合流している。
 さらに、内部に蓄熱材36と蓄熱熱交換器34を収納した蓄熱槽32は、圧縮機6に接して取り囲むように配置され、圧縮機6で発生した熱を蓄熱材36に蓄積し、第2配管20から室内熱交換器16とストレーナ10の間で分岐した第6配管38は、第2電磁弁42を経て蓄熱熱交換器34の入口へと至り、蓄熱熱交換器34の出口から出た第7配管40は、第4配管24における四方弁8とアキュームレータ26の間に合流する。
 次に、図1に示される空気調和機の通常暖房時の動作及び冷媒の流れを模式的に示す図2を参照しながら通常暖房時の動作を説明する。
 通常暖房運転時、第1電磁弁30と第2電磁弁42は閉制御されており、上述したように圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て、第2配管20を通り膨張弁12に至り、膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24を通って四方弁8から圧縮機6の吸入口へと戻る。
 また、圧縮機6で発生した熱は、圧縮機6の外壁から蓄熱槽32の外壁を介して蓄熱槽32の内部に収容された蓄熱材36に蓄積される。
 次に、図1に示される空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式的に示す図3を参照しながら除霜・暖房時の動作を説明する。図中、実線矢印は暖房に供する冷媒の流れを示しており、破線矢印は除霜に供する冷媒の流れを示している。
 上述した通常暖房運転中に室外熱交換器14に着霜し、着霜した霜が成長すると、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の蒸発温度が低下する。本発明に係る空気調和機には、図3に示されるように、室外熱交換器14の配管温度を検出する温度センサ44が設けられており、非着霜時に比べて、蒸発温度が低下したことを温度センサ44で検出すると、制御装置から通常暖房運転から除霜・暖房運転への指示が出力される。
 通常暖房運転から除霜・暖房運転に移行すると、第1電磁弁30と第2電磁弁42は開制御され、上述した通常暖房運転時の冷媒の流れに加え、圧縮機6の吐出口から出た気相冷媒の一部は第5配管28と第1電磁弁30を通り、第3配管22を通る冷媒に合流して、室外熱交換器14を加熱し、凝縮して液相化した後、第4配管24を通って四方弁8とアキュームレータ26を介して圧縮機6の吸入口へと戻る。
 また、第2配管20における室内熱交換器16とストレーナ10の間で分流した液相冷媒の一部は、第6配管38と第2電磁弁42を経て、蓄熱熱交換器34で蓄熱材36から吸熱し蒸発、気相化して、第7配管40を通って第4配管24を通る冷媒に合流し、アキュームレータ26から圧縮機6の吸入口へと戻る。なお、合流する場所はアキュームレータ26と圧縮機6の間でも良く、その場合、アキュームレータ26自身が持つ熱容量によって熱を奪われること避けることができる。
 アキュームレータ26に戻る冷媒には、室外熱交換器14から戻ってくる液相冷媒が含まれているが、これに蓄熱熱交換器34から戻ってくる高温の気相冷媒を混合することで、液相冷媒の蒸発が促され、アキュームレータ26を通過して液相冷媒が圧縮機6に戻ることがなくなり、圧縮機6の信頼性の向上を図ることができる。
 除霜・暖房開始時に霜の付着により氷点下となった室外熱交換器14の温度は、圧縮機6の吐出口から出た気相冷媒によって加熱されて、零度付近で霜が融解し、霜の融解が終わると、室外熱交換器14の温度は再び上昇し始める。この室外熱交換器14の温度上昇を温度センサ44で検出すると、除霜が完了したと判断し、制御装置から除霜・暖房運転から通常暖房運転への指示が出力される。
 図4及び図5は蓄熱装置を示しており、蓄熱装置は、上述したように、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とで構成されている。なお、図4は、圧縮機6と、圧縮機6に組み付けられるアキュームレータ26を蓄熱装置に取り付けた状態を示している。また、図5は蓄熱装置の分解斜視図である。
 図5に示されるように、蓄熱槽32は、側壁46aと底壁(図示せず)を有し上方が開口した樹脂製の蓄熱槽本体46と、この蓄熱槽本体46の上方開口部を閉塞する樹脂製の蓋体48と、蓄熱槽本体46と蓋体48の間に介装されシリコンゴム等で作製されたパッキン50とを備え、蓋体48は蓄熱槽本体46に螺着される。また、蓄熱槽本体46の側壁46aの一部(つまり、側壁46aで圧縮機6と対向する部分)は開口しており、この開口部46bの周縁には、圧縮機6の外周面と密着するための密着部材52が接合される。
 密着部材52は、枠体54とシート部材56とで構成されており、全体として所定の直径の円筒の一部を切り欠いた形状を呈している。なお、密着部材52の内側には、圧縮機6が収容されることから、取付公差等を考慮して密着部材52の内径は圧縮機6の外径より僅かに大きく設定される。
 また、枠体54には、上下方向の中間部から下部にかけて開口部54aが形成されており、この開口部54aを閉塞するようにシート部材56は枠体54に接合される。
 蓄熱槽32はバンド33で圧縮機6に密着固定されている。
 また、図5では側壁46aに開口部46bがある例で説明したが、本発明はこの構成に限定されるものではなく、このような開口部46bがないものであっても良い。この場合、蓄熱槽32の伝熱部と圧縮機6との密着性を良くするため、弾性があり伝熱性能に優れた樹脂製(例えばシリコンなど)のシート部材を蓄熱槽32と圧縮機6との間に介在させると良い。
 蓄熱熱交換器34は、例えば銅管等を蛇行状に折曲したもので、蓄熱槽本体46の内部に収容されており、蓄熱熱交換器34の両端は蓋体48から上方に延出され、一端は第6配管38(図1参照)に接続される一方、他端は第7配管40(図1参照)に接続される。また、蓄熱熱交換器34が収容され、側壁46aと底壁と密着部材52で囲繞された蓄熱槽本体46の内部空間には、蓄熱材36が充填される。
 ここで、蓄熱装置には、内部に充填された蓄熱材36を撹拌するための撹拌手段を設けるか、あるいは、そうでない場合には、蓄熱材36の温度分布は均一ではないことから、本発明においては、効率的な熱交換を考慮して、蛇行するように折曲された蓄熱熱交換器34を蓄熱槽32の上部に配置するのが好ましい。
 後者の場合においては、すなわち、蓄熱熱交換器34の内部を通過する冷媒と、冷媒と熱交換を行う蓄熱材36は、温度差が大きいほど熱交換量が大きくなり、除霜時間も短くなるが、高温の蓄熱材36は蓄熱槽32内の上方に集まり、低温の蓄熱材36は蓄熱槽32内の下方に集まることから、図6乃至図8に示されるように、屈曲部34aと、屈曲部34aの両端より上方に直線状に延びる直線部34bを有する蓄熱熱交換器34は、屈曲部34aの全体が蓄熱槽32の上部の所定の範囲で蓄熱槽本体46の内壁面に沿うように湾曲して配置されている。
 図7を参照しながらさらに詳述すると、蓄熱槽32の底面からの高さをH1、蓄熱槽32の底面からの高さ方向の中心位置をH2(H2=H1/2)、蓄熱槽32の底面からの蓄熱熱交換器34の屈曲部34aの下端の高さをH3、蓄熱槽32の上面からの蓄熱熱交換器34の屈曲部34aの上端までの距離をH4とすると、本発明においては、H3及びH4を所定の高さあるいは距離に設定している。
 蓄熱熱交換器34の高さ方向の重心位置CoBは蓄熱槽32の高さ方向の中心位置H2よりも上方に設定される。なお、蓄熱熱交換器34の高さ方向の重心位置CoBは、蓄熱交換器34の屈曲部34aと直線部34bを合わせた部分の重心位置のことである。ここで、蓄熱装置において、圧縮機6からの熱は蓄熱材36に蓄積されるが、蓄熱槽32の上方の蓄熱材36の方が下方の蓄熱材36よりも高温になる。本蓄積装置では、蓄熱熱交換器34の重心位置が蓄熱槽32の高さ方向の中心位置よりも上方に設定されているので、蓄熱熱交換器34は、主として、蓄熱材36において相対的に高温部分と熱交換を行う。言い換えると、本蓄熱熱交換器34は、蓄熱材36と効率的に熱交換を行うことができる。
 また、本実施形態では、蓄熱熱交換器34の下端の高さH3は、蓄熱槽32の高さ方向の中心位置H2よりも下方で、中心位置H2の近傍に位置するように設定している。その結果、蓄熱熱交換器34のすべてができるだけ高温の蓄熱材36に接触するようになる。これにより、蓄熱熱交換器34は、蓄熱材36とより効率的に熱交換を行うことができる。
 一方、蓄熱槽32の上面からの蓄熱熱交換器34の屈曲部34aの上端までの距離H4は、蓄熱槽32の傾斜を考慮して決定される。すなわち、圧縮機6や蓄熱槽32は通常室外機2に収容され、室外機2は傾いた状態で室外に設置されることがある。このような傾きを想定して、蓋体48が蓄熱材36の液面に浸からない程度に、蓄熱材36を蓄熱槽32に入れた場合に、蓄熱槽32が所定の角度(例えば、設置面に対し約7°)まで傾斜しても、蓄熱熱交換器34の屈曲部34aが常に蓄熱材36に浸漬するように、蓄熱熱交換器34の屈曲部34aの上端が、蓄熱槽32の上面から所定の距離H4だけ下方に位置するように、蓄熱熱交換器34は蓄熱槽32の内部に設置される。なお、蓄熱材36は、常温で蓄熱槽32の最大容積の8割程度の量を充填している。
 例えば蓄熱材36にエチレングリコール水溶液を用いた場合、エチレングリコールは高温度に長期間さらされると、水溶液中の溶存酸素と反応してグリコール酸を発生し、グリコール酸はさらに溶存酸素と反応してシュウ酸を生じ、またシュウ酸からは蟻酸が生成されるなど、各種の有機酸を発生させる。
 この有機酸の生成の防止、もしくは発生した有機酸の影響を防止するために、例えばpH調整剤や酸化防止剤等の添加剤を蓄熱材36に加えることがある。しかしながら、pH調整剤や酸化防止剤等の添加剤も、蓄熱材36への投入量に限りがあるため、その効能は時間経過とともに低下していき、生成する有機酸の量は次第に増加するため、この有機酸の発生により蓄熱材36のpHは徐々に低下していくことになる。
 蓄熱材36内での有機酸の発生量が多いほどpHは低下し、pHが低いほど金属に対する腐蝕作用も強くなる。
 ここで、図9に示すように、一般に、配管同士を接続した継ぎ目部分34jには、その接続方法にロー付けや溶接、フレア継ぎ手のいずれを用いたとしても、その継ぎ目部分34jに微少隙間34gが発生することになる。
 腐食性を有する有機酸は、この微少隙間34gに入り込んだ場合には、有機酸は蓄熱材36全体に拡散しづらいため、滞留する傾向がある。
 特にグリコール酸は配管部材を構成する金属材料である銅との親和力が強く、銅に対し配位結合をするため、グリコール酸が微少隙間34gに入り込むと流出しづらくなる。このため、微少隙間34g外の蓄熱材36に比較しグリコール酸の濃度が徐々に高くなる傾向がある。
 さらに、蓄熱材36にpH調整剤や酸化防止剤等の添加剤を加えた場合においても、この微少隙間34gにはpH調整剤や酸化防止剤等の添加剤が新たに流入しにくいために、微少隙間34gにおいては添加剤の充分な効果が期待できない。したがって、微少隙間34gにおいて、局所的に酸濃度が高くなることにより、蓄熱材36のpHが局所的に低下するため、本実施形態のような継ぎ目のない(シームレスな)銅管部分に比べ、継ぎ目部分34jは腐蝕しやすい。
 また、微少隙間34gでは溶存酸素がグリコールと反応し消費されてしまうと、新たな溶存酸素が流入しづらいことから、微少隙間34g内部と外部の蓄熱材36中の溶存酸素濃度が異なるため、酸素濃淡電池が形成される。その結果、継ぎ目部分34jは腐蝕しやすい。
 また、特にロー付けまたは溶接により配管同士を接続する場合、蓄熱熱交換器34の配管の継ぎ目部分34jは、蓄熱熱交換器34の配管を構成する金属がロー付けまたは溶接の工程で高温に加熱されたことにより、結晶粒径が大きくなるため、加熱した近傍の金属組織が不均一となる。このため蓄熱熱交換器34は有機酸の発生した電解質である蓄熱材36に浸漬しているので、局部電池がより形成されやすくなるため、ロー付けまたは溶接による加熱工程を経ていない部分と比較し、より腐蝕されやすくなる。
 蓄熱材36は発生した有機酸の影響で、配管・熱交換器など冷凍サイクルを構成する部材(例えば銅)を若干なりとも腐蝕する場合があるが、仮に、継ぎ目部34jと蓄熱材36を接触させる構成とした場合には、配管本体34pに比較し、特に継ぎ目部分の方が、上述の隙間腐蝕により腐蝕しやすいため、信頼性面で弱点となる。そして、蓄熱熱交換器は冷媒により内圧がかかっているので破れやすくなってしまう。
 したがって、本実施形態では、信頼性向上の観点から、蓄熱熱交換器34の蓄熱材36に浸漬させる部分は、ロー付けを用いず、シームレスの銅管を屈曲させて形成している。そして、ロー付け部は、蓄熱材36が一切かからない位置に配置される。より具体的には、蓄熱材36を満たす容器である蓄熱槽32の外部に位置するよう構成するのが好ましい。なお、蓄熱槽32への蓄熱材36の充填量を調整するなどして、蓄熱槽32内部において蓄熱材36に浸漬されない位置がある場合には、この位置であれば、蓄熱槽32の内部にロー付け部などの継ぎ目部が位置するように構成してもよい。
 この場合は、空気調和機を運転した際に発生する蓄熱槽の振動により、蓄熱材36の液面の上下や蓄熱材36の飛沫がロー付け部に付着する可能性があり得るため、エポキシ樹脂等で継ぎ目部をコーティングしたり、カバーを設けるなどにより、継ぎ目部と蓄熱材36が接触しないようにすることが望ましい。
 また、本実施の形態では、蓄熱装置を圧縮機6に対し着脱自在の構成としているが、圧縮機6の外殻と蓄熱槽本体46とを金属製とし、両者を溶接等で固着するようにしても構わない。
 ここで本実施の形態の蓄熱装置においては、上述のように、圧縮機6で発生した熱が、圧縮機6の外壁から蓄熱槽32の外壁を介して蓄熱槽32の内部に収容された蓄熱材36に蓄積するように構成されている。
 圧縮機6を熱源に用いた場合は、圧縮機6の廃熱を蓄熱材36に蓄熱しているために、熱源に例えば別途ヒータを用いた場合と異なり、省エネで蓄熱することが可能である。
 ここで圧縮機6の運転周波数は、空気調和機としての運転状態に応じて、空調能力が最適になるように制御される。
 ゆえに、例えば熱源にヒータを用いた場合と異なり、圧縮機6を熱源に用いた場合は、圧縮機6の発熱量や温度を必ずしも蓄熱する上で最適な値に維持できない場合があり得る。
 例えば、空調負荷が高い条件においては、高い暖房能力が要求されるため、圧縮機6が高周波数で動作し続け、その結果、圧縮機6が高温に維持されることになる。
 このように蓄熱材36が高温度に長期間さらされることが発生し得るため、圧縮機6に廃熱を蓄熱材36に回収する形態においては、継ぎ目部を蓄熱材36に浸漬させないことが特に望ましい。
 また、本実施の形態では、蓄熱熱交換器34の重心位置をH2より上方に配置していたが、これに限らず、蓄熱熱交換器34の全管長の中心位置をH2よりも上方に配置しても構わないし、蓄熱熱交換器34の重心位置又は中心位置を、H2、あるいはH2の下方に配置しても構わない。
 また、図4及び図6に示すように、蓄熱槽32を圧縮機6の上方にも延在させ、当該延在部にも蓄熱熱交換器34を設けることで、熱容量を確保することができる。
 また、本実施の形態では、蓄熱材36にグリコールを用いた場合について説明したが、それ以外の材料を用いても良い。金属は電解質溶液に触れることにより局部電池を形成し、電気化学的作用により腐食が進行するので、各種の電解質が含まれる材料、もしくは時間経過にともない電解質が生成する各種の材料を蓄熱材36に用いた際に有用である。また電解質以外にも、各種の金属に対する腐食性を有する材料を蓄熱材36として用いた際にも有用である。
 本発明に係る蓄熱装置は、信頼性向上を考慮して、蓄熱熱交換器の継ぎ目部分の位置を適宜設定しているので、空気調和機、冷蔵庫、給湯器、ヒートポンプ式洗濯機等に有用である。
2 室外機、 4 室内機、 6 圧縮機、 8 四方弁、
10 ストレーナ、 12 膨張弁、 14 室外熱交換器、
16 室内熱交換器、 18 第1配管、 20 第2配管、
22 第3配管、 24 第4配管、 26 アキュームレータ、
28 第5配管、 30 第1電磁弁、 32 蓄熱槽、 33 バンド、
34 蓄熱熱交換器、 34a 屈曲部、 34b 直線部、
36 蓄熱材、 38 第6配管、 40 第7配管、
42 第2電磁弁、 44 温度センサ、 46 蓄熱槽本体、
46a 側壁、 46b 側壁開口部、 48 蓋体、 50 パッキン、
52 密着部材、 54 枠体、 54a 開口部、 56 シート部材。

Claims (5)

  1. 圧縮機で発生した熱を蓄積するための蓄熱装置であって、前記圧縮機で発生した熱を蓄積する蓄熱材と、蓄熱熱交換器と、前記蓄熱材及び前記蓄熱熱交換器を収容する蓄熱槽と、を備え、前記蓄熱熱交換器の継ぎ目部分を、前記蓄熱材に浸漬させないように配置したことを特徴とする蓄熱装置。
  2. 前記蓄熱材にグリコールが含まれることを特徴とする請求項1に記載の蓄熱装置。
  3. 前記継ぎ目部分はロー付け乃至は溶接により接続されていることを特徴とする請求項1または2に記載の蓄熱装置。
  4. 前記継ぎ目部分は前記蓄熱槽の外部に位置することを特徴とする請求項1から3のいずれかに1項に記載の蓄熱装置。
  5. 請求項1~4のいずれか1項に記載の蓄熱装置を備えた空気調和機。
PCT/JP2011/001088 2010-09-30 2011-02-25 蓄熱装置及び該蓄熱装置を備えた空気調和機 WO2012042687A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137011037A KR20130099983A (ko) 2010-09-30 2011-02-25 축열 장치 및 상기 축열 장치를 구비한 공기 조화기
EP11828257.3A EP2623896B1 (en) 2010-09-30 2011-02-25 Air conditioner having a heat storage device
CN201180047357.XA CN103154643B (zh) 2010-09-30 2011-02-25 蓄热装置和具备该蓄热装置的空气调节机
BR112013007273A BR112013007273A2 (pt) 2010-09-30 2011-02-25 dispositivo de armazenamento de calor e condicionador de ar tendo o mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010221138A JP2012077939A (ja) 2010-09-30 2010-09-30 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2010-221138 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012042687A1 true WO2012042687A1 (ja) 2012-04-05

Family

ID=45892190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001088 WO2012042687A1 (ja) 2010-09-30 2011-02-25 蓄熱装置及び該蓄熱装置を備えた空気調和機

Country Status (6)

Country Link
EP (1) EP2623896B1 (ja)
JP (1) JP2012077939A (ja)
KR (1) KR20130099983A (ja)
CN (1) CN103154643B (ja)
BR (1) BR112013007273A2 (ja)
WO (1) WO2012042687A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014401283A1 (en) * 2014-07-17 2017-02-02 Electrolux (Hangzhou) Home Appliance Co., Ltd. Heat pump system
ITUA20162463A1 (it) 2016-04-11 2017-10-11 Begafrost S R L Sistema di sbrinamento dell'evaporatore esterno per impianti a pompa di calore.
EP3244141A1 (en) * 2016-05-09 2017-11-15 Vaillant GmbH Defrosting with heat generated by compressor driver

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024148A (ja) * 1988-06-10 1990-01-09 Daikin Ind Ltd 空気調和機
JPH02251052A (ja) * 1989-03-22 1990-10-08 Daikin Ind Ltd 冷凍装置用圧縮機
JPH04340057A (ja) * 1991-05-16 1992-11-26 Sharp Corp 空気調和機
JPH0674618A (ja) * 1992-08-28 1994-03-18 Daikin Ind Ltd 空気調和機
JP2000088297A (ja) * 1998-09-17 2000-03-31 Hitachi Ltd 氷蓄熱式空気調和装置及び氷蓄熱槽
JP2001330386A (ja) * 2000-05-22 2001-11-30 Hitachi Ltd 製氷用熱交換器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1416502A (fr) * 1964-09-16 1965-11-05 Hotchkiss Brandt Méthode pour activer l'évaporation de l'eau de dégivrage d'un réfrigérateur
JPH01118080A (ja) * 1987-10-30 1989-05-10 Matsushita Electric Ind Co Ltd ヒートポンプ式空気調和機
JP2717106B2 (ja) * 1989-11-17 1998-02-18 京セラ株式会社 蓄熱装置
JPH0510605A (ja) * 1991-07-04 1993-01-19 Daikin Ind Ltd 圧縮機用蓄熱装置
JPH0576925A (ja) * 1991-09-21 1993-03-30 Furukawa Electric Co Ltd:The 多穴管の製造方法
JPH05302771A (ja) * 1992-04-27 1993-11-16 Daikin Ind Ltd 空気調和機
JPH08247627A (ja) * 1995-03-14 1996-09-27 Matsushita Refrig Co Ltd 蒸発装置
JPH09144991A (ja) * 1995-11-24 1997-06-03 Furukawa Electric Co Ltd:The アルミニウム樹脂複合管及びその製造方法
JP3360637B2 (ja) * 1998-03-02 2002-12-24 三菱電機株式会社 冷凍空調装置
DE10323851A1 (de) * 2003-05-26 2004-12-16 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit Tauwsserverdampfer
JP4367237B2 (ja) * 2004-05-31 2009-11-18 ダイキン工業株式会社 空気調和装置
US7693402B2 (en) * 2004-11-19 2010-04-06 Active Power, Inc. Thermal storage unit and methods for using the same to heat a fluid
DE202007014887U1 (de) * 2007-10-05 2009-02-19 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024148A (ja) * 1988-06-10 1990-01-09 Daikin Ind Ltd 空気調和機
JPH02251052A (ja) * 1989-03-22 1990-10-08 Daikin Ind Ltd 冷凍装置用圧縮機
JPH04340057A (ja) * 1991-05-16 1992-11-26 Sharp Corp 空気調和機
JPH0674618A (ja) * 1992-08-28 1994-03-18 Daikin Ind Ltd 空気調和機
JP2000088297A (ja) * 1998-09-17 2000-03-31 Hitachi Ltd 氷蓄熱式空気調和装置及び氷蓄熱槽
JP2001330386A (ja) * 2000-05-22 2001-11-30 Hitachi Ltd 製氷用熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623896A4 *

Also Published As

Publication number Publication date
KR20130099983A (ko) 2013-09-06
EP2623896B1 (en) 2021-04-14
CN103154643B (zh) 2016-08-03
EP2623896A4 (en) 2016-03-09
EP2623896A1 (en) 2013-08-07
BR112013007273A2 (pt) 2016-06-14
JP2012077939A (ja) 2012-04-19
CN103154643A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4760996B1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP5110136B2 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP4634530B1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
WO2012042687A1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012078012A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP5083394B2 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
EP2623912B1 (en) Heat storage device and air conditioner using same
WO2011099060A1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2011163662A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2014085021A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP5585348B2 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JPH10220828A (ja) 蓄熱容器
WO2011099062A1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012072934A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012072963A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP5067460B2 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
WO2013099163A1 (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012072958A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP2012077937A (ja) 蓄熱装置及び該蓄熱装置を備えた空気調和機
JP4286042B2 (ja) 氷蓄熱式空気調和装置
JP2012072928A (ja) 蓄熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047357.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137011037

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011828257

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007273

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013007273

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130327