WO2012039428A1 - Process for producing polishing liquid composition - Google Patents

Process for producing polishing liquid composition Download PDF

Info

Publication number
WO2012039428A1
WO2012039428A1 PCT/JP2011/071501 JP2011071501W WO2012039428A1 WO 2012039428 A1 WO2012039428 A1 WO 2012039428A1 JP 2011071501 W JP2011071501 W JP 2011071501W WO 2012039428 A1 WO2012039428 A1 WO 2012039428A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
polishing
less
particles
filter aid
Prior art date
Application number
PCT/JP2011/071501
Other languages
French (fr)
Japanese (ja)
Inventor
米田康洋
平幸治
佐藤寛司
大島良暁
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011002537A external-priority patent/JP5698989B2/en
Priority claimed from JP2011202262A external-priority patent/JP5833390B2/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US13/824,235 priority Critical patent/US20130183889A1/en
Priority to CN201180045169.3A priority patent/CN103119122B/en
Publication of WO2012039428A1 publication Critical patent/WO2012039428A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to a method for producing a polishing liquid composition and a polishing liquid composition produced by the production method.
  • Recent memory hard disk drives are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced to reduce the unit recording area. Accordingly, the surface quality required after polishing in the manufacturing process of the magnetic disk substrate is becoming stricter year by year. That is, it is necessary to reduce the surface roughness, micro waviness, roll-off and protrusions according to the low flying height of the head, and the allowable number of scratches per substrate surface is small according to the decrease in the unit recording area, Its size and depth are getting smaller and smaller.
  • a filter using diatomaceous earth as a filter aid is used as a filter for a polishing composition used for circulating polishing of a glass substrate (Patent Document 3), or a silica fine particle dispersion used as a coating liquid for an ink jet recording sheet. (Patent Document 4).
  • JP 2006-075975 JP 2006-136996 A Japanese Unexamined Patent Publication No. 2007-098485 JP 2007-099586
  • silica particles used in the polishing liquid composition need to reduce coarse particles, and are often prepared by the filtration system shown in the schematic diagram of FIG. That is, silica slurry 6 obtained by subjecting general-purpose colloidal silica to centrifugal separation or the like is circulated and filtered with depth filter 3 (tank 1 ⁇ pipe P1 ⁇ depth filter 3 ⁇ pipe P5 ⁇ tank 1), and then with pleated filter 5 Silica particles for the polishing composition are prepared from a filtration system including filtration (depth filter 3 ⁇ pipe P6 ⁇ pleated filter 5 ⁇ pipe 4).
  • the present invention provides a polishing liquid composition that can economically manufacture a polishing liquid composition that has a small surface roughness of an object to be polished and that can effectively reduce particles that are important in densification.
  • a method and a polishing liquid composition produced by the production method are provided.
  • the present invention is a method for producing a polishing liquid composition
  • a method for producing a polishing liquid composition comprising a step of subjecting a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm to a filter containing a filter aid.
  • the filter aid relates to a method for producing a polishing liquid composition (hereinafter also referred to as “the production method of the present invention”) having an average pore diameter of 0.1 to 3.5 ⁇ m by mercury porosimetry.
  • the present invention further includes a step of subjecting a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm to a filter containing a filter aid, the filter aid being
  • the present invention relates to a polishing liquid composition (hereinafter also referred to as “the polishing liquid composition of the present invention”) that can be manufactured by a manufacturing method of a polishing liquid composition having an average pore diameter of 0.1 to 3.5 ⁇ m by mercury porosimetry.
  • coarse particles and starch in the silica dispersion can be effectively removed by the step of filtration with the filter containing the filter aid, and the silica dispersion of the filtration is included.
  • the polishing composition can effectively reduce scratches and particles during polishing.
  • polishing composition produced by the production method of the present invention when used, for example, in a polishing step of a precision component substrate for high density or high integration, fine scratches and particles can be effectively reduced, In addition, it is possible to economically manufacture precision component substrates such as high-quality memory hard disk substrates and semiconductor element substrates having excellent surface properties.
  • FIG. 1 is a schematic view for explaining an embodiment of the production method of the present invention.
  • FIG. 2 is a schematic view illustrating an example of a conventional method for producing a polishing liquid composition.
  • the method for producing a polishing liquid composition of the present invention comprises treating a silica dispersion containing colloidal silica having an average primary particle diameter of 1 to 100 nm with a filter containing a filter aid (hereinafter referred to as “filter aid containing filter”).
  • filter aid containing filter a filter aid
  • the average pore diameter of the filter aid by the mercury intrusion method is 0.1 to 3.5 ⁇ m.
  • the present inventors have found that starch in the polishing composition is a cause of particles.
  • the reason why the polishing composition that can reduce particles on the substrate surface after polishing is economically produced by the production method of the present invention is not clear, but the inside of the filter aid layer (cake layer) of the filter containing the filter aid In the sub-micron pores existing between the particles formed by the filter aid of several tens of ⁇ m, the sub-micron gaps of secondary aggregates, and the filter aid particles themselves, the starch causing the particles is efficiently removed. Estimated to be.
  • the term “coarse particles” refers to coarse colloidal silica particles having a particle diameter of 0.5 ⁇ m or more, and the number of coarse particles in the polishing composition is determined by the 0.45 ⁇ m filter described in Examples below.
  • the amount of liquid can be quantitatively evaluated as coarse particles in the polishing composition.
  • the colloidal silica particles in the polishing liquid composition include not only primary particles but also aggregated particles obtained by aggregating primary particles.
  • starch is a silica aggregate of 50 to 500 nm, and the amount of starch can be indirectly evaluated by ⁇ CV or polishing evaluation described later.
  • “scratch” is a physical property that is important for high density or high integration, particularly in a memory hard disk substrate or a semiconductor device substrate, having a depth of 1 nm or more, less than 100 nm, and a width of 5 nm or more. These are fine scratches on the substrate surface of less than 500 nm and a length of 100 ⁇ m or more. This scratch can be detected by an optical entire surface defect inspection machine (OSA6100: manufactured by KLA-Tencor) described in the examples described later, and can be quantitatively evaluated as the number of scratches. Further, the depth and width can be measured using an atomic force microscope (AFM).
  • OSA6100 manufactured by KLA-Tencor
  • particles are protrusions on a substrate, and can be quantitatively evaluated as the number of particles by measurement with an optical entire surface defect inspection machine (OSA6100: manufactured by KLA-Tencor) described in the examples described later.
  • OSA6100 optical entire surface defect inspection machine
  • Analyzing particle parts with a scanning electron microscope (SEM) enables identification of protrusions (silica, alumina, titania, Fe compounds (stainless steel), organic substances, nickel compounds (NiP polishing scrap, nickel hydroxide, etc.)) It is.
  • SEM scanning electron microscope
  • the length and width of the protrusion can be measured using an atomic force microscope (AFM).
  • Examples of the filter aid used in the production method of the present invention include insoluble mineral substances such as silicon dioxide, kaolin, acid clay, diatomaceous earth, perlite, bentonite, and talc. From the viewpoint of scratch and particle reduction, among the filter aids, silicon dioxide, diatomaceous earth, and pearlite are preferable, diatomaceous earth and pearlite are more preferable, and diatomaceous earth is more preferable.
  • the filter aid is preferably pretreated with an acid from the viewpoint of reducing scratches and particles and improving the productivity of the polishing composition.
  • the pretreatment with an acid is a treatment in which a filter aid is immersed in an aqueous acid solution such as an inorganic acid or an organic acid for a certain time.
  • an aqueous acid solution such as an inorganic acid or an organic acid for a certain time.
  • hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, oxalic acid, citric acid In view of scratches and particle reduction, treatment with hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and phosphonic acid is more preferred, and treatment with hydrochloric acid, sulfuric acid and phosphonic acid is more preferred.
  • the filter aid has an average pore diameter of 0.1 to 3.5 ⁇ m, preferably 0.1 to 3 ⁇ m by a mercury intrusion method, from the viewpoint of scratch and particle reduction and from the viewpoint of improving the productivity of the polishing composition.
  • the “average pore diameter by mercury intrusion method” is the average value of the volume-based pore diameters of the filter aid particles, and can be measured by the method described in the examples.
  • the cumulative pore volume of 0.5 ⁇ m or less by the mercury intrusion method of the filter aid is preferably 2.5 mL / g or more, more preferably 2.7 mL / g or more, more preferably from the viewpoint of scratching and particle reduction. 3.0 mL / g or more, even more preferably 4.0 mL / g or more, and even more preferably 4.5 mL / g or more. Further, from the viewpoint of improving the productivity of the polishing composition, it is preferably 1000 mL / g or less, more preferably 100 mL / g or less, still more preferably 50 mL / g or less, even more preferably 20 mL / g or less, and even more preferably.
  • the cumulative pore volume of 0.5 ⁇ m or less of the filter aid is preferably 2.5 mL / g or more, more preferably 2 from the viewpoint of scratch and particle reduction and the improvement of the productivity of the polishing composition.
  • the cumulative pore volume of 0.5 ⁇ m or less by the mercury intrusion method of the filter aid means the pore volume of 0.5 ⁇ m or less in the volume-based pore distribution of the filter aid particles by the mercury intrusion method. It is the sum and can be measured by the method described in the examples.
  • the BET specific surface area of the filter aid is preferably 4.0 m 2 / g or more, more preferably 10.0 m 2 / g or more, still more preferably 15.0 m 2 / g or more, from the viewpoint of scratch and particle reduction. Even more preferably, it is 18.0 m 2 / g or more.
  • the specific surface area is preferably 1000.0m 2 / g or less, more preferably 100.0 m 2 / g or less, more preferably 50.0 m 2 / g or less Even more preferably, it is 30.0 m 2 / g or less, and still more preferably 25.0 m 2 / g or less.
  • the specific surface area is preferably 4.0 ⁇ 1000.0m 2 / g, more preferably 10.0 ⁇ 100.0m 2 / g, more preferably 15.0 ⁇ 50.0m 2 / g, more preferably Is 15.0 to 30.0 m 2 / g, still more preferably 18.0 to 30.0 m 2 / g, still more preferably 18.0 to 25.0 m 2 / g.
  • the filter aid BET specific surface area can be determined by the method described in the examples.
  • the integrated pore volume of 0.15 ⁇ m or less by the nitrogen adsorption method of the filter aid is preferably 0.3 mL / g or more, more preferably 0.4 mL / g or more, and further preferably from the viewpoint of scratch and particle reduction. It is 0.6 mL / g or more.
  • the integrated pore volume is preferably 100.0 mL / g or less, more preferably 50.0 mL / g or less, still more preferably 10.0 mL / g or less, from the viewpoint of improving the productivity of the polishing composition.
  • the cumulative pore volume is preferably 0.3 to 100.0 mL / g, more preferably 0.4 to 50.0 mL / g, still more preferably 0.6 to 10.0 mL / g, and even more preferably.
  • the cumulative pore volume of 0.15 ⁇ m or less by the nitrogen adsorption method of the filter aid is the sum of the pore volumes of 0.15 ⁇ m or less in the volume-based pore distribution of the filter aid by the nitrogen adsorption method. Specifically, it can be determined by the method described in the examples.
  • the water permeability of the filter aid when water is filtered with respect to the filter aid at 0.015 MPa is scratch and particle. From the viewpoint of reduction, it is preferably 9.9 ⁇ 10 ⁇ 14 m 2 or less, more preferably 5.0 ⁇ 10 ⁇ 14 m 2 or less, and further preferably 3.0 ⁇ 10 ⁇ 14 m 2 or less. is there. From the viewpoint of improving the productivity of the polishing composition, the transmittance is preferably 2.0 ⁇ 10 ⁇ 15 m 2 or more, more preferably 5.0 ⁇ 10 ⁇ 15 m 2 or more, Preferably, it is 9.9 ⁇ 10 ⁇ 15 m 2 or more.
  • the transmittance is preferably 2.0 ⁇ 10 ⁇ 15 to 9.9 ⁇ 10 ⁇ 14 m 2 , more preferably 5.0 ⁇ 10 ⁇ 15 to 5.0 ⁇ 10 ⁇ 14 m 2 . More preferably 9.9 ⁇ 10 ⁇ 15 to 3.0 ⁇ 10 ⁇ 14 m 2 .
  • the transmittance of the filter aid can be specifically determined by the method described in Examples.
  • the laser average particle diameter of the filter aid is preferably 1 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 1 to 18 ⁇ m, still more preferably 1 to 16 ⁇ m, and still more preferably, from the viewpoint of scratching and particle reduction. Is 2 to 16 ⁇ m, even more preferably 5 to 16 ⁇ m, and even more preferably 7 to 16 ⁇ m.
  • the “laser average particle size” of the filter aid is the average particle size of the filter aid particles measured by a laser particle size distribution measuring device, and can be measured by the method described in the examples.
  • the filter aid-containing filter used in the production method of the present invention is not particularly limited as long as it contains the filter aid on the filter surface and / or inside the filter.
  • the filter aperture is preferably 1/10 or less of the average particle size of the filter aid, more preferably 1/20 or less, and even more preferably 1/30 or less.
  • a body feed may be further combined with the precoat.
  • the filter opening is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less, even more preferably 2 ⁇ m or less, and particularly preferably 1 ⁇ m or less from the viewpoint of preventing leakage of the filter aid.
  • pre-coating is a method for forming a cake filtration filter, which is to form a thin layer of a filter aid having a thickness of about several millimeters on a filter material (filter medium) described later.
  • a method of dispersing filter aid particles in water and scraping the filter aid with a filter medium to form a filter aid layer can be mentioned.
  • Body feed is a method in which a certain amount of filter aid is added to a stock solution that is subjected to cake filtration during filtration, and the purpose is to improve the filterability of the stock solution. This is effective for a stock solution that has a fine particle size and quickly maximizes the cake resistance (cannot be filtered).
  • the content of the filter aid in the filter aid containing filter (g / cm 2), from the viewpoint of the scratch and particle reduction is preferably 0.001 g / cm 2 or more, more preferably 0.005 g / cm 2 or more, further Preferably it is 0.01 g / cm 2 or more, even more preferably 0.02 g / cm 2 or more, even more preferably 0.04 g / cm 2 or more, and even more preferably 0.1 g / cm 2 or more. Further, from the viewpoint of improving the filtration rate, it is preferably 1 g / cm 2 or less, more preferably 0.8 g / cm 2 or less, still more preferably 0.6 g / cm 2 or less, and even more preferably 0.4 g / cm 2.
  • the content (g / cm 2 ) of the filter aid is preferably 0.001 to 1 g / cm 2 , more preferably 0.005 to 0.8 g / cm 2 , and still more preferably 0.01 to 0.00. 6 g / cm 2 , even more preferably 0.02 to 0.4 g / cm 2 , even more preferably 0.04 to 0.3 g / cm 2 , even more preferably 0.04 to 0.2 g / cm 2 , Even more preferably, it is 0.1 to 0.2 g / cm 2 .
  • the filter material of the filter aid-containing filter examples include filter paper, polyethylene, polypropylene, polyethersulfone, cellulose acetate, nylon, polycarbonate, Teflon (registered trademark) and other plastics, ceramics, and metal meshes.
  • plastics such as filter paper, polyethylene, polypropylene, polyethersulfone, cellulose acetate, nylon, polycarbonate, and Teflon (registered trademark) are preferable.
  • Filter paper, polyethylene, polypropylene, polyethersulfone, cellulose acetate, Nylon is more preferable, and filter paper, polyethylene, and polypropylene are more preferable.
  • the shape of the filter aid-containing filter is not particularly limited, but from the viewpoint of ease of handling, scratching and particle reduction, a sheet type, a cylindrical type, a disk type, and a folding type are preferable, and a sheet type, a disk type, and a folding type are more preferable. A disk type and a folding type are more preferable.
  • the conditions for filtration using the filter aid-containing filter are not particularly limited, but from the viewpoint of achieving both improved filtration accuracy and improved productivity, the differential pressure during filtration is preferably 0.01 to 10 MPa, and 0.05 to 1 MPa. Is more preferable, and 0.05 to 0.5 MPa is more preferable.
  • the number of stages of the filter aid-containing filter is preferably from 1 to 5 stages, more preferably from 1 to 3 stages, and further preferably from 1 to 2 stages, from the viewpoint of improving both filtration accuracy and productivity.
  • Filtration rate in terms of both productivity and the filtration accuracy is preferably 0.1 ⁇ 30L / (min ⁇ m 2), 0.5 ⁇ 25L / ( min ⁇ m 2), more preferably, 1 to 20 L / (min ⁇ m 2 ) is more preferable.
  • the silica dispersion it is preferable to filter the silica dispersion to be treated with a depth filter, and then filter with a filter aid-containing filter, and further filter with a filter aid-containing filter, and then pleats. It is more preferable to filter with a mold filter. By removing particularly large coarse particles with a depth type filter, it is presumed that the excellent performance of the filter aid-containing filter is more remarkably exhibited, and it is possible to efficiently remove coarse particles and starch.
  • the present invention provides, in other embodiments, step 1) a step of filtering a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm with a depth filter, and step 2 )
  • step 1) a step of filtering a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm with a depth filter
  • step 2 A method for producing a polishing liquid composition comprising a step of filtering the silica dispersion obtained in step 1 with a filter containing a filter aid having an average pore size of 0.1 to 3.5 ⁇ m by mercury porosimetry. (Hereinafter, also referred to as “production method (2) of the present invention”).
  • the amount of coarse particles having a particle diameter of 0.5 ⁇ m or more in the silica dispersion obtained by filtration with a depth filter in Step 1 extends the life of the filter aid-containing filter used in Step 2 and increases productivity. From the viewpoint of improving, 11.0 ⁇ 10 4 pieces / mL or less is preferable, more preferably 10.0 ⁇ 10 4 pieces / mL or less, still more preferably 7.0 ⁇ 10 4 pieces / mL or less, and even more preferably.
  • the present invention in still another aspect, comprises a step 1) silica dispersion to be treated containing colloidal silica having an average primary particle size of 1 to 100 nm, and a coarse particle amount of 11.0 ⁇ 10 4 particles / a filter containing a filter aid having a mean pore size of 0.1 to 3.5 ⁇ m by a mercury intrusion method, wherein the silica dispersion obtained in Step 2) and Step 1 is filtered.
  • the manufacturing method (3) of this invention of the polishing liquid composition including the process of filtering-processing by.
  • the amount of coarse particles in the silica dispersion obtained by the filtration treatment in Step 1 is 11.0 ⁇ 10 4 particles / mL is preferably 10.0 ⁇ 10 4 pieces / mL or less, more preferably 7.0 ⁇ 10 4 pieces / mL or less, still more preferably 6.0 ⁇ 10 4 pieces / mL or less, and even more preferably 5.0 ⁇ 10 4 pieces / mL or less, even more preferably 4.0 ⁇ 10 4 pieces / mL or less, and even more preferably 3.0 ⁇ 10 4 pieces / mL or less.
  • the type of filtration in Step 1 is not limited, but is preferably a filtration treatment using a depth filter from the viewpoint of improving the removal efficiency of coarse particles and reducing the cost.
  • FIG. 1 is a non-limiting embodiment of the production methods (2) and (3) of the present invention, and includes an embodiment including the steps shown in the schematic diagram of FIG.
  • FIG. 1 is a schematic view of a process for preparing silica particles used in the polishing liquid composition.
  • a depth type filter 3, a filter aid-containing filter 4, and a pleat type filter 5 are arranged in this order in the pipes P1 to P4. Are connected in series.
  • the silica dispersion 2 to be treated put into the tank 1 is filtered in one pass through a filtration system composed of a depth filter 3, a filter aid-containing filter 4, and a pleat filter 5, and is used for the polishing composition.
  • Silica particles Silica particles.
  • the silica dispersion obtained in Step 2 of the production methods (2) and (3) of the present invention is further used as Step 3. It is preferable to have the process of filtering with a pleated filter.
  • general-purpose colloidal silica refers to colloidal silica generally distributed in the market.
  • “general-purpose colloidal silica” has a coarse particle amount of, for example, 20.0 ⁇ 10 4 particles / mL or more, 30.0 ⁇ 10 4 particles / mL or more, or 34.0 ⁇ 10 4 particles.
  • Colloidal silica that is / mL or more. Examples of the upper limit of the amount of coarse particles include 200.0 ⁇ 10 4 particles / mL or less, 100.0 ⁇ 10 4 particles / mL or less, and 70.0 ⁇ 10 4 particles / mL or less.
  • the amount of coarse particles of the general-purpose colloidal silica used in the present invention is preferably 20.0 ⁇ 10 4 to 200.0 ⁇ 10 4 particles / mL, and 20.0 ⁇ 10 4 to 100.0 ⁇ 10 4 particles / mL. Is more preferably 30.0 ⁇ 10 4 to 100.0 ⁇ 10 4 / mL, even more preferably 34.0 ⁇ 10 4 to 100.0 ⁇ 10 4 / mL, and 34.0 ⁇ 10 even more preferably 4 ⁇ 70.0 ⁇ 10 4 cells / mL.
  • the depth type filter used in the production method of the present invention include a bag type (Sumitomo 3M Co., Ltd.) and a cartridge type filter (Advantech Toyo Co., Nippon Pole Co., CUNO Co., Daiwabo Co., Ltd.). Can be mentioned.
  • the depth type filter has a feature that the pore structure of the filter medium is rough on the inlet side, finer on the outlet side, and finer continuously or stepwise from the inlet side to the outlet side. That is, among coarse particles, large particles are collected in the vicinity of the inlet side, and small particles are collected in the vicinity of the outlet side, so that effective filtration is possible.
  • the shape of the depth filter may be a bag-like bag type or a hollow cylindrical cartridge type.
  • a filter medium having the above-described characteristics that is simply formed into a pleat shape has a function of a depth filter, and is therefore classified as a depth filter.
  • the depth type filter may be used in a single stage, or may be used in combination in multiple stages (for example, in a series arrangement). From the viewpoint of improving productivity, it is preferable to make filters of different diameters in multiple stages in a large order. . Moreover, you may use combining a bag type and a cartridge type.
  • the coarse particles to be removed are appropriately selected according to the number of coarse particles in the silica dispersion to be treated, by appropriately selecting the pore size of the filter and the structure of the filter medium, and further appropriately selecting the processing order of the filter. Particle size control (filtration accuracy) and economy can be improved. That is, when a filter having a large pore structure is used upstream (upstream) of a fine filter, there is an effect that the lifetime of the filter can be extended as a whole manufacturing process.
  • a filter medium is generally formed into a pleated shape (pleated shape) into a hollow cylindrical cartridge type (Advantech Toyo Co., Ltd., Nippon Pole Co., CUNO). Company, Daiwabo Co., Ltd.).
  • pleated filters are said to have a thin filter material and are mainly collected on the filter surface, and generally have high filtration accuracy. It is a feature.
  • the pleated filter may be used in one stage, or may be used in combination in multiple stages (for example, in a series arrangement).
  • multi-stage filtration appropriately selects the filter pore size and the structure of the filter medium, and appropriately selects the processing order of the filter, so that the productivity of the polishing liquid composition in the present invention is improved.
  • the filter used later can stabilize the quality in polishing liquid composition more by making the filter of the same hole diameter into a multistage.
  • the pore size of the depth type filter and the pleated type filter is generally expressed as a filtration accuracy capable of removing 99%.
  • a pore size of 1.0 ⁇ m indicates a filter capable of removing 99% of particles having a diameter of 1.0 ⁇ m.
  • the pore diameter preferably exceeds 0.0 ⁇ m in order to exhibit the function of the filter.
  • the pore size of the depth filter is preferably 5.0 ⁇ m or less, more preferably 3.0 ⁇ m or less, still more preferably 2.0 ⁇ m or less, and even more preferably 1.0 ⁇ m or less, from the viewpoint of reducing the coarse particle removal load. More preferably, it is 0.5 ⁇ m or less.
  • the depth filter is multistage (for example, in series)
  • the final filter has a pore size of submicron or less
  • the coarse particle removal load in the filtration process using the filter aid-containing filter is further increased. It can be reduced and productivity can be improved.
  • the pore size of the pleated filter is preferably 1.0 ⁇ m or less, more preferably 0.8 ⁇ m or less, further preferably 0.6 ⁇ m or less, and further preferably 0.5 ⁇ m or less from the viewpoint of reducing coarse particles.
  • the filtration method in the present invention may be a recirculation method that repeatedly filters or a one-pass method.
  • a batch method that repeats the one-pass method may be used.
  • the circulation method preferably uses a pump in the circulation type, and uses a pump in the one-pass system.
  • a pressure filtration with a small fluctuation range of the filter inlet pressure by introducing air pressure or the like into the tank. Can be used.
  • a general dispersion step or particle removal step may be provided in addition to using the depth type filter or the pleated type filter.
  • a dispersion process using a high-pressure dispersion apparatus such as a high-speed dispersion apparatus or a high-pressure homogenizer, or a coarse particle sedimentation process using a centrifugal separator or the like can be used.
  • a high-pressure dispersion apparatus such as a high-speed dispersion apparatus or a high-pressure homogenizer, or a coarse particle sedimentation process using a centrifugal separator or the like
  • each may be processed independently or may be processed in combination of two or more, and there is no limitation on the processing order of the combination. Further, the processing conditions and the number of processing times can be appropriately selected and used.
  • the “silica dispersion to be treated” refers to a silica slurry (silica dispersion) before being subjected to a filtration treatment with a filter aid-containing filter.
  • the “silica dispersion to be treated” may refer to a silica dispersion introduced into the first filter (first-stage filter) of the filtration system.
  • the silica dispersion to be treated includes one containing colloidal silica and water, for example, one comprising colloidal silica and water, one containing other components, or a slurry of general-purpose colloidal silica. Is mentioned.
  • the silica dispersion to be treated includes those prepared by mixing other components that can be blended in the polishing composition described below.
  • the state of the silica dispersion to be treated is preferably a state in which colloidal silica is dispersed.
  • a polishing liquid composition can be produced by subjecting a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm to filtration with a filter aid-containing filter. Specifically, the treated silica dispersion prepared by mixing colloidal silica, water, and other components is subjected to the filtration, or the treated silica dispersion containing colloidal silica and water is filtered. Then, the polishing composition can be produced by mixing other components with the obtained filtrate (filtered silica slurry).
  • the colloidal silica used in the present invention can be obtained, for example, by a production method produced from a silicic acid aqueous solution.
  • those obtained by surface modification or surface modification of these abrasive particles with functional groups, those obtained by compounding with surfactants or other abrasives, and the like can also be used.
  • the average particle diameter of the primary particles of colloidal silica is 1 to 100 nm from the viewpoint of reducing scratches and particles and from the viewpoint of reducing the surface roughness (centerline average roughness: Ra, Peak to Valley value: Rmax). 1 to 80 nm is preferable. From the viewpoint of simultaneously improving the polishing rate, the thickness is more preferably 3 to 80 nm, further preferably 4 to 50 nm, further preferably 5 to 40 nm, and further preferably 5 to 30 nm.
  • the average particle diameter of the primary particles of colloidal silica is a value measured by the method described in Examples.
  • the content of colloidal silica in the silica dispersion to be treated is preferably 1 to 50% by weight, more preferably 10 to 45% by weight, and still more preferably from the viewpoint of reducing scratches and particles and improving productivity. Is 20 to 40% by weight, still more preferably 30 to 40% by weight.
  • the content of coarse particles in the silica dispersion to be treated is usually 1 ⁇ 10 4 to 200 ⁇ 10 4 particles / mL, and from the viewpoint of reducing scratches and particles, 100 ⁇ 10 4 particles / mL.
  • the following is preferable, 70 ⁇ 10 4 pieces / mL or less is more preferable, 50 ⁇ 10 4 pieces / mL or less is further preferable, and 40 ⁇ 10 4 pieces / mL or less is even more preferable.
  • it is preferably 1 ⁇ 10 4 to 100 ⁇ 10 4 pieces / mL, more preferably 1 ⁇ 10 4 to 70 ⁇ 10 4 pieces / mL, and more preferably 1 ⁇ 10 4 to 50 ⁇ 10 4 pieces / mL, and even more preferably 1 ⁇ 10 4 to 40 ⁇ 10 4 pieces / mL.
  • the silica dispersion to be treated may be a slurry of general-purpose colloidal silica or the amount of coarse particles is 20.
  • the silica slurry may be 0 ⁇ 10 4 pieces / mL or more, 30.0 ⁇ 10 4 pieces / mL or more, or 34.0 ⁇ 10 4 pieces / mL or more. Therefore, from the viewpoint of reducing scratches and particles and improving productivity, it is preferably 20.0 ⁇ 10 4 to 200 ⁇ 10 4 particles / mL, more preferably 30.0 ⁇ 10 4 to 100 ⁇ . 10 4 pieces / mL, more preferably 34.0 ⁇ 10 4 to 70 ⁇ 10 4 pieces / mL.
  • the content of coarse particles in the silica dispersion to be treated is a value measured by the method described in Examples.
  • the 0.45 ⁇ m filter flow rate of the silica dispersion to be treated is usually 1 to 10 mL, preferably 2 to 10 mL, more preferably from the viewpoint of reducing scratches and particles and improving productivity. Is 3 to 10 mL, more preferably 4 to 10 mL, and even more preferably 5 to 10 mL.
  • the 0.45 ⁇ m filter flow rate of the silica dispersion to be treated is a value measured by the method described in the examples.
  • the ⁇ CV value of the silica dispersion to be treated is usually 1 to 20%, and preferably 1 to 15%, more preferably 1 to 13 from the viewpoint of reducing scratches and particles and improving productivity. %, More preferably 1 to 12%, still more preferably 1 to 11%.
  • the ⁇ CV value of the silica dispersion to be treated is obtained by dividing the standard deviation obtained by measurement based on the scattering intensity distribution at a detection angle of 30 degrees (forward scattering) by the dynamic light scattering method by the average particle diameter.
  • the coefficient of variation (CV30) multiplied by 100 and the coefficient of variation obtained by dividing the standard deviation by the average particle size and multiplying by 100, obtained by measurement based on the scattering intensity distribution at a detection angle of 90 degrees (side scatter). It is the difference ( ⁇ CV CV30 ⁇ CV90) from the value (CV90), and can be specifically measured by the method described in the examples.
  • the ⁇ CV value of the polishing liquid composition is It is considered that scratches and particles after polishing can be reduced by adjusting to a predetermined range (reference: JP 2011-13078).
  • the content of colloidal silica in the polishing composition when polishing the object to be polished is preferably 0.5% by weight or more, more preferably 1% by weight or more, and still more preferably 2 from the viewpoint of improving the polishing rate.
  • the content of the colloidal silica may be either the content at the time of polishing composition production or the content at the time of use. Usually, it is produced as a concentrated liquid and diluted when used. There are many.
  • water used in the polishing liquid composition examples include ion exchange water, distilled water, and ultrapure water.
  • the content of water in the polishing composition corresponds to the balance obtained by removing the abrasive and other components from 100% by weight, preferably 60 to 99% by weight, more preferably 80 to 97% by weight.
  • the pH of the silica dispersion to be treated is preferably 9 to 11, more preferably 9.2 to 10.8, and still more preferably 9.4 to from the viewpoint of suppressing the generation of coarse particles and improving the stability of colloidal silica. 10.6, even more preferably 9.5 to 10.5.
  • the pH of the polishing composition produced in the present invention is not particularly limited, but when the polishing composition is used for polishing, the pH is preferably 0.1 to 7. In alkaline, scratches tend to occur more easily than acidic. The generation mechanism is not clear, but in an alkaline atmosphere in which abrasive particles repel each other due to surface charges, aggregates of abrasive primary particles or coarse abrasive primary particles contained in the polishing composition are dense in the polishing part.
  • the pH is preferably determined according to the type of the object to be polished and the required characteristics.
  • the pH is preferably 6 or less, more preferably 5 from the viewpoint of improving the polishing rate.
  • it is further preferably 4 or less, still more preferably 3 or less, and still more preferably 2 or less.
  • it is preferably 0.5 or more, more preferably 1.0 or more, and still more preferably 1.4 or more.
  • the pH is 0.5 to 6 in consideration of the above viewpoint. More preferably, it is 1.0 to 5, still more preferably 1.4 to 4, still more preferably 1.4 to 3, and still more preferably 1.4 to 2.
  • the pH of the polishing composition can be adjusted as appropriate with the following acid, salt, or alkali, for example. Specifically, nitric acid, sulfuric acid, nitrous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid and other inorganic acids or salts thereof, 2-amino Ethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane- 1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2-
  • nitric acid, sulfuric acid, hydrochloric acid, perchloric acid or salts thereof are more preferable.
  • organic phosphonic acids or salts thereof 1-hydroxyethylidene-1,1-diphosphone is preferred. More preferred are acids, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) or salts thereof. You may use these individually or in mixture of 2 or more types.
  • the acid salt is not particularly limited, and specific examples include salts with metals, ammonia, and alkylamines.
  • Specific examples of the metal include metals belonging to 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8 of the periodic table (long period type). From the viewpoint of reducing scratches, ammonia or a metal belonging to Group 1A is preferable.
  • the polishing composition for polishing the object to be polished preferably contains a heterocyclic aromatic compound from the viewpoint of scratching the substrate after polishing and reducing particles.
  • the heterocyclic aromatic compound is preferably 1H-benzotriazole from the viewpoint of scratching the substrate after polishing and particle reduction.
  • the content of the heterocyclic aromatic compound in the polishing liquid composition is 0.01 to 10% by weight with respect to the total weight of the polishing liquid composition from the viewpoint of reducing scratches and particles on the substrate after polishing.
  • 0.02 to 5 wt% is more preferable, 0.05 to 2 wt% is further preferable, 0.06 to 1 wt% is even more preferable, 0.07 to 0.5 wt% is still more preferable, Even more preferred is 0.08-0.3 wt%.
  • the heterocyclic aromatic compound in the polishing composition may be one kind or two or more kinds.
  • a polishing liquid composition for polishing an object to be polished is a water-soluble polymer having an anionic group (AFM-Rmax) from the viewpoint of reducing scratches, particles and maximum surface roughness of the substrate after polishing (AFM-Rmax).
  • a polishing liquid composition for polishing an object to be polished is a water-soluble polymer having an anionic group (AFM-Rmax) from the viewpoint of reducing scratches, particles and maximum surface roughness of the substrate after polishing (AFM-Rmax).
  • a polishing liquid composition for polishing an object to be polished is a water-soluble polymer having an anionic group (AFM-Rmax) from the viewpoint of reducing scratches, particles and maximum surface roughness of the substrate after polishing (AFM-Rmax).
  • a polishing liquid composition for polishing an object to be polished is a water-soluble polymer having an anionic group (AFM-Rmax) from the viewpoint of reducing scratches, particles and maximum surface roughness of the substrate after polishing (AFM-Rmax).
  • anionic group of the anionic water-soluble polymer examples include a carboxylic acid group, a sulfonic acid group, a sulfuric acid ester group, a phosphoric acid ester group, and a phosphonic acid group.
  • the maximum value of scratches, particles, and surface roughness From the viewpoint of reducing (AFM-Rmax), those having a carboxylic acid group and / or a sulfonic acid group are more preferable, and those having a sulfonic acid group are more preferable.
  • These anionic groups may take the form of neutralized salts.
  • water-soluble polymers having a carboxylic acid group and / or a sulfonic acid group examples include (meth) acrylic acid / sulfonic acid copolymers, and (meth) acrylic acid / 2- (meth) acrylamido-2-methylpropanesulfonic acid.
  • a copolymer is preferred.
  • the weight average molecular weight of the anionic water-soluble polymer is preferably 500 or more and 100,000 or less, more preferably 500 or more and 50,000 or less, further preferably 500 or more and 20,000 or less, from the viewpoint of scratch and particle reduction and productivity maintenance. Even more preferably, it is 1000 or more and 10,000 or less, still more preferably 1000 or more and 8000 or less, still more preferably 1000 or more and 5000 or less, still more preferably 1000 or more and 4000 or less, and still more preferably 1000 or more and 3000 or less. Specifically, the weight average molecular weight is measured by the measurement method described in Examples.
  • the content of the anionic water-soluble polymer in the polishing composition is preferably 0.001 to 1% by weight or more, more preferably 0.005 to more preferably from the viewpoint of achieving both scratch and particle reduction and productivity. It is 0.5% by weight, more preferably 0.08 to 0.2% by weight, still more preferably 0.01 to 0.1% by weight, and still more preferably 0.01 to 0.075% by weight.
  • the polishing liquid composition for polishing the object to be polished preferably contains an aliphatic amine compound or an alicyclic amine compound from the viewpoint of scratching the substrate surface after polishing and reducing particles.
  • the aliphatic amine compound is preferably N-aminoethylethanolamine from the viewpoint of scratching the substrate surface after polishing and reducing particles.
  • the alicyclic amine compound is preferably N- (2-aminoethyl) piperazine and hydroxyethylpiperazine from the viewpoint of scratching the substrate surface after polishing and reducing particles.
  • the content of the aliphatic amine compound or alicyclic amine compound in the polishing liquid composition is 0.001 to the weight of the entire polishing liquid composition from the viewpoint of reducing scratches and particles on the substrate surface after polishing. It is preferably 10% by weight, more preferably 0.005 to 5% by weight, even more preferably 0.008 to 2% by weight, still more preferably 0.01 to 1% by weight, and 0.01 to 0.5%. % By weight is even more preferred, and 0.01 to 0.1% by weight is even more preferred.
  • the aliphatic amine compound or alicyclic amine compound in polishing liquid composition may be one type, and may be two or more types.
  • the polishing composition preferably contains an oxidizing agent from the viewpoint of improving the polishing rate.
  • an oxidizing agent that can be used in the polishing liquid composition of the present invention, from the viewpoint of improving the polishing rate, peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or an acid thereof Examples thereof include salts, metal salts, nitric acids, sulfuric acids and the like.
  • Examples of the peroxide include hydrogen peroxide, sodium peroxide, barium peroxide and the like.
  • Examples of permanganic acid or a salt thereof include potassium permanganate, and examples of chromic acid or a salt thereof include chromic acid metal salt and metal dichromate.
  • a peroxo acid or a salt thereof includes peroxo acid. Examples include disulfuric acid, ammonium peroxodisulfate, metal peroxodisulfate, peroxophosphoric acid, peroxosulfuric acid, sodium peroxoborate, performic acid, peracetic acid, perbenzoic acid, perphthalic acid, etc.
  • Hypochlorous acid, hypobromite, hypoiodous acid, chloric acid, bromic acid, iodic acid, sodium hypochlorite, calcium hypochlorite and the like, and metal salts include iron chloride (III ), Iron (III) sulfate, iron (III) nitrate, iron (III) citrate, and iron (III) ammonium sulfate.
  • the oxidizing agent include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) ammonium sulfate.
  • hydrogen peroxide is mentioned from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive.
  • These oxidizing agents may be used alone or in admixture of two or more.
  • the content of the oxidizing agent in the polishing liquid composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and further preferably 0.1% by weight or more from the viewpoint of improving the polishing rate. From the viewpoint of reducing the surface roughness of the substrate, it is preferably 4% by weight or less, more preferably 2% by weight or less, and still more preferably 1% by weight or less. Therefore, in order to improve the polishing rate while maintaining the surface quality, the content is preferably 0.01 to 4% by weight, more preferably 0.05 to 2% by weight, and still more preferably 0.1 to 1%. % By weight.
  • polishing liquid composition can be blended in the polishing liquid composition as necessary.
  • a thickener a dispersant, a rust inhibitor, a basic substance, a surfactant, and the like can be given.
  • the amount of the polishing composition liquid obtained by the production method of the present invention is preferably 25 mL or more, more preferably 30 mL or more, and 50 mL or more. More preferably, 70 mL or more is even more preferable, and 100 mL or more is even more preferable.
  • the amount of filter liquid passing through the polishing composition is a value measured by the method described in Examples.
  • the content of coarse particles in the polishing composition obtained by the production method of the present invention is preferably 0.5 ⁇ 10 4 to 10 ⁇ 10 4 from the viewpoints of scratch and particle reduction and productivity.
  • content of the coarse particle in polishing liquid composition is measured by the method as described in an Example.
  • the ⁇ CV value of the polishing composition obtained by the production method of the present invention is preferably 0.1 to 10%, more preferably 0.1 from the viewpoint of reducing scratches and particles and improving productivity. -5.0%, more preferably 0.1-4.0%, even more preferably 0.1-3.0%, still more preferably 0.1-2.5%.
  • the polishing liquid composition obtained by the production method of the present invention is supplied, for example, between a non-woven organic polymer polishing cloth or the like (polishing pad) and the substrate to be polished, that is, the polishing liquid composition is polished.
  • the substrate is supplied to a substrate polishing surface sandwiched between polishing pads with a pad attached thereto, and is used in the polishing step while contacting the substrate by moving the polishing plate and / or the substrate under a predetermined pressure. By this polishing, generation of scratches and particles can be remarkably suppressed.
  • the polishing liquid composition is particularly suitable for the production of precision component substrates.
  • it is suitable for polishing precision component substrates such as substrates of magnetic recording media such as magnetic disks and magneto-optical disks, optical disks, photomask substrates, optical lenses, optical mirrors, optical prisms, and semiconductor substrates.
  • the manufacturing method of the present invention is used in a polishing process of a silicon wafer (bare wafer), a formation process of a buried element isolation film, a planarization process of an interlayer insulating film, a formation process of a buried metal wiring, a formation process of a buried capacitor, etc.
  • the polishing liquid composition obtained in (1) can be used.
  • the polishing composition obtained by the production method of the present invention is particularly effective in the polishing process, but can be similarly applied to other polishing processes such as a lapping process.
  • Suitable materials for the polishing object using the polishing composition obtained by the production method of the present invention include, for example, metals or semi-metals such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, or the like.
  • metals or semi-metals such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, or the like.
  • glassy substances such as alloys, glass, glassy carbon, and amorphous carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resins.
  • a Ni—P plated aluminum alloy substrate or a glass substrate such as crystallized glass or tempered glass is more suitable
  • a Ni—P plated aluminum alloy substrate is more suitable.
  • the polishing liquid composition of the present invention has a shape having a flat portion such as a disk shape, a plate shape, a slab shape, a prism shape, or a shape having a curved surface portion such as a lens. Things are used. Among them, it is excellent for polishing a disk-shaped workpiece.
  • the surface roughness which is a measure of surface smoothness, is not limited in its evaluation method, but for example, it is evaluated as a roughness that can be measured at a short wavelength of 10 ⁇ m or less in an atomic force microscope (AFM), and the center line average It can be expressed as roughness Ra (AFM-Ra).
  • the polishing composition of the present invention is suitable for a polishing process for a magnetic disk substrate, and further for a polishing process for reducing the surface roughness (AFM-Ra) of the substrate after polishing to 2.0 mm or less.
  • the polishing composition obtained by the production method of the present invention after the second process, which significantly reduces scratches and particles, and is excellent. From the viewpoint of obtaining surface smoothness, it is more preferably used in the finish polishing step.
  • the finish polishing process refers to at least one final polishing process when there are a plurality of polishing processes.
  • polishing machines may be used, and when different polishing machines are used, a substrate is provided for each process. It is preferable to wash.
  • the polishing machine is not particularly limited.
  • the substrate produced in this manner has significantly reduced scratches and particles and is excellent in surface smoothness. That is, the surface roughness after polishing (AFM-Ra) is, for example, 1 mm or less, preferably 0.9 mm or less, more preferably 0.8 mm or less.
  • the surface property of the substrate before being subjected to the polishing step using the polishing composition after the filtration treatment using the filter aid-containing filter in the present invention is not particularly limited.
  • the AFM-Ra is 10 mm or less.
  • a substrate having surface properties is suitable.
  • the abrasive used in the production of such a substrate may be the same as that used in the polishing composition of the present invention.
  • the polishing step is preferably performed after the second step among the plurality of polishing steps, and particularly preferably performed in the finish polishing step.
  • the substrate produced as described above has excellent surface smoothness and a surface roughness (AFM-Ra) of, for example, 1.0 mm or less, preferably 0.9 mm or less, more preferably 0.8 mm or less. can get.
  • AFM-Ra surface roughness
  • the manufactured substrate has very few scratches. Therefore, when the substrate is, for example, a memory hard disk substrate, a recording density of 750 GB / Disk (3.5 inches), further 1 TB / Disk (3.5 inches) can be supported.
  • Example 1 to 9 Comparative Examples 1 to 8
  • the silica dispersion to be treated was filtered using a diatomaceous earth filter, and polishing compositions were produced by the production methods of Examples 1 to 9 and Comparative Examples 1 to 8.
  • the substrate was polished using the polishing composition, and the substrate surface after polishing was evaluated.
  • the silica dispersion to be treated, the diatomaceous earth filter, the filtration method, and the measurement methods for various parameters are as follows.
  • colloidal silica slurry B JGC Catalysts & Chemicals, Inc.
  • ⁇ Measuring method of average particle diameter of primary particles of colloidal silica> First, 1.5 g of the colloidal silica slurry A to C is collected in a 200 mL beaker, and 100 mL of ion exchange water is added and mixed with a stirrer. Next, the pH of the sample solution is adjusted to 3.0 with a 0.1 mol / L hydrochloric acid standard solution using a potentiometric titrator. Add 30.0 g of sodium chloride and dissolve with a stirrer, add ion-exchanged water up to the 150 mL mark of the beaker and mix with a stirrer. Immerse in a constant temperature water bath (20 ⁇ 2 ° C.) for about 30 minutes.
  • the measurement sample was a colloidal silica slurry before (or after) filtration with a filter containing a filter aid, sulfuric acid (special grade made by Wako Pure Chemical Industries), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid, Thermos Japan) and hydrogen peroxide (Asahi Denka Co., Ltd., concentration: 35% by weight) were added to an aqueous solution diluted with ion-exchanged water, mixed, and then filtered through a 1.20 ⁇ m filter (Minisart 17593, Sartorius). Prepared.
  • colloidal silica, sulfuric acid, HEDP, and hydrogen peroxide were 5 wt%, 0.4 wt%, 0.1 wt%, and 0.4 wt%, respectively.
  • 20 mL of the obtained measurement sample was put into a dedicated 21 ⁇ cylindrical cell and set in a dynamic light scattering apparatus DLS-6500 manufactured by Otsuka Electronics.
  • DLS-6500 manufactured by Otsuka Electronics.
  • the CV value (CV90) of colloidal silica at a detection angle of 90 degrees was calculated as a value obtained by dividing the standard deviation in the scattering intensity distribution measured according to the above measurement method by the particle size and multiplying by 100. Similar to the CV90 measurement method, the CV value (CV30) of colloidal silica at a detection angle of 30 degrees was measured, and the value obtained by subtracting CV90 from CV30 was determined as the ⁇ CV value of the silica particles.
  • ⁇ Measurement method of coarse particle amount The colloidal silica slurry before (or after) filtering the measurement sample with a filter containing a filter aid was injected into the following measuring device with a 6 mL syringe, and the amount of coarse particles was measured.
  • ⁇ Measurement method of filter flow rate> A colloidal silica slurry before (or after) filtering the measurement sample with a filter containing a filter aid is filtered with a predetermined filter (hydrophilic PTFE 0.45 ⁇ m filter, model: 25HP045AN, manufactured by Advantech) at an air pressure of 0.25 MPa. The solution was passed through the filter under a constant pressure, and the amount of solution passed until the filter was closed was determined.
  • a predetermined filter hydrophilic PTFE 0.45 ⁇ m filter, model: 25HP045AN, manufactured by Advantech
  • Measurement condition Measurement cell: Micromeritics 5cc-Powder (08-0444) Measurement method: Pressure control method (pressure table mode) Low Pressure equilibrium time 5secs High pressure equilibrium time 5secs Parameters relating to Hg: contact angle: 130 °, surface tension: 485 dynes / cm Stem Volume Used: Adjust the sample volume to about 50% below 100%
  • ⁇ Measurement method of BET specific surface area of filter aid About 1 g of each filter aid precisely weighed was set in ASAP2020 (manufactured by Shimadzu Corporation, specific surface area / pore distribution measuring device), the BET specific surface area was measured by a multipoint method, and the BET constant C was positive. Values were derived within a range. The sample was pretreated by raising the temperature at 10 ° C./min and holding at 100 ° C. for 2 hours. In addition, deaeration was performed up to 500 ⁇ m Hg at 60 ° C. Deaeration was performed.
  • ⁇ Method for measuring laser average particle size of filter aid The value obtained as a volume-based median diameter obtained by measuring each filter aid with a laser diffraction / scattering particle size distribution analyzer (trade name LA-920, manufactured by Horiba Seisakusho) was defined as the laser average particle diameter.
  • ⁇ Measurement method of integrated pore volume of 0.15 ⁇ m or less> The accumulated pore volume of 0.15 ⁇ m or less of the filter aid was measured by a nitrogen adsorption method. Specifically, about 1 g of each filter aid precisely weighed is set in ASAP2020 (manufactured by Shimadzu Corporation, specific surface area / pore distribution measuring device), and is obtained from the nitrogen adsorption isotherm by the Halsey equation of the BJH method. The total pore volume of 0.15 ⁇ m or less was defined as the cumulative pore volume of 0.15 ⁇ m or less. The sample was pretreated by raising the temperature at 10 ° C./min and holding at 100 ° C. for 2 hours. In addition, deaeration was performed up to 500 ⁇ m Hg at 60 ° C.
  • the filter aid is No. manufactured by Advantech. The plate was sandwiched between 5A filter papers and placed in a 90 mm ⁇ flat plate type SUS housing (INLET90-TL manufactured by Sumitomo 3M Co., Ltd., effective filtration area 55.4 cm 2 ) and filtered.
  • the transmittance k was calculated by introducing the following values ( ⁇ ⁇ L indicates a different value for each sample).
  • ⁇ Preparation of filter aid containing filter> (Filter aid)
  • the following a to k were used as filter aids.
  • c Radiolite DX-P5 (Laser average particle size 14.5 ⁇ m, diatomaceous earth, Showa Chemical Industry Co., Ltd.)
  • Radiolite No. 200 (Laser average particle size 13.9 ⁇ m, diatomaceous earth, Showa Chemical Industries, Ltd.)
  • the filter aid dispersion aqueous solution is filtered at a pressure of 0.1 MPa or less to form a uniform cake layer of the filter aid on the filter paper, and then washed with 1-2 L of ion exchange water. A filter containing diatomaceous earth was obtained.
  • the colloidal silica slurry A to C is filtered for 1 L at a pressure of 0.1 MPa while the diatomaceous earth-containing filter remains wet with washing water without being dried, and the filtered colloidal for use in a polishing liquid composition Silica was obtained.
  • ⁇ Measurement method of filter flow rate The filtered colloidal silica obtained by the above filtration is passed through the filter under a constant pressure of 0.25 MPa with a predetermined filter (hydrophilic PTFE 0.45 ⁇ m filter, model: 25HP045AN, manufactured by Advantech). The amount of liquid passing until the blockage was determined.
  • polishing liquid compositions (Examples 1 to 4). And Comparative Examples 1 to 4>
  • 0.1% by weight of benzotriazole Na salt 0.1% by weight of benzotriazole Na salt, 0.03% by weight of N-aminoethylethanolamine, acrylic acid / acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (molar ratio 90 / 10, weight average molecular weight 2000, manufactured by Toagosei Co., Ltd.) 0.02% by weight, sulfuric acid 0.4% by weight, 1-hydroxyethylidene-1,1-diphosphonic acid 0.05% by weight, hydrogen peroxide 0 4% by weight of the mixed aqueous solution was stirred, and the filtered colloidal silica filtered through the diatomaceous earth-containing filter was added to 5% by weight to prepare polishing liquid compositions (Examples 1 to 4). And Comparative Examples 1 to 4).
  • the pH of each polishing composition was 1.4 to 1.5.
  • polishing composition was prepared by adding silica at 5% by weight (Examples 5 to 9 and Comparative Examples 5 to 8). Note that the pH of each polishing composition was 1.3 to 1.5.
  • the weight average molecular weight of the anionic water-soluble polymer (acrylic acid / acrylamido-2-methylpropanesulfonic acid copolymer sodium salt) was measured by gel permeation chromatography (GPC) method under the following measurement conditions.
  • the substrate to be polished was polished using the polishing composition produced by the production methods of Examples 1 to 9 and Comparative Examples 1 to 8 prepared as described above, and washed with pure water to obtain a substrate for evaluation. .
  • the number of scratches and the number of particles of this evaluation substrate were evaluated.
  • the evaluation results are shown in Table 1 below.
  • a method for preparing the polishing liquid composition, a method for measuring each parameter, a polishing condition (polishing method), a cleaning condition, and an evaluation method are as follows.
  • a Ni—P plated aluminum alloy substrate having an outer diameter of 95 mm ⁇ and an inner diameter of 25 mm ⁇ having a thickness of 1.27 mm and roughly polished with a polishing solution containing an alumina abrasive in advance and having an AFM-Ra of 5 to 15 mm.
  • Polishing tester Speed Fam Co., double-sided 9B polishing machine
  • Polishing pad Fujibow Co., urethane finishing polishing pad
  • Upper plate rotation speed 32.5 r / min
  • Polishing liquid composition supply amount 100 mL / Minute / Main polishing time: 4 minutes / Main polishing load: 7.8 kPa ⁇ Number of loaded substrates: 10
  • Measurement equipment Candela OSA6100 manufactured by KLA-Tencor ⁇ Evaluation: Randomly select 4 out of the substrates put into the polishing tester, and divide the total number of particles (pieces) on both sides of each of the 4 substrates by 8 The number of particles was calculated.
  • Example 10 and Comparative Examples 9 to 10 The silica dispersion to be treated was filtered with a filtration system combining a depth filter, a diatomaceous earth-containing filter, and a pleated filter to produce a polishing composition (Example 10).
  • a polishing liquid composition was produced by filtering two types of silica dispersions using a filtration system that combines a circulation filtration of a depth filter and a pleated filter (Comparative Examples 9 and 10).
  • the substrate was polished using each polishing composition, and the substrate surface after polishing was evaluated. Unless otherwise specified, the measurement methods for various parameters described in Table 2 below were the same as those in Example 1.
  • the manufacturing method of the polishing liquid composition of Example 10 As a filtration system for obtaining the filtered colloidal silica used in the polishing liquid composition of Example 10, one depth filter is provided in the first stage, and one diatomaceous earth-containing filter (cake filter) is provided in the second stage. A filtration system in which one pleated filter was provided at the stage and these filters were arranged in three stages in this order was employed. As a schematic diagram of this filtration system, reference can be made to FIG. The filtered colloidal silica was obtained by carrying out 1-pass filtration of the colloidal silica slurry D which is a to-be-processed silica dispersion liquid with the said filtration system.
  • a polishing composition was prepared in the same manner as in Example 1.
  • the time required for processing 50 L of colloidal silica slurry D through the filtration system with a small diaphragm pump was 0.9 hours (average flow rate was 0.95 L / min, average filtration rate was 17.5). 9L / (min ⁇ m2)) (Table 2 below).
  • the filters used are as follows.
  • the manufacturing method of the polishing liquid composition of the comparative example 9> As the first-stage filtration system for obtaining the filtered colloidal silica used in the polishing liquid composition of Comparative Example 9, a circulation filtration system in which two depth filters were arranged was adopted. And the filtration system which has arrange
  • the colloidal silica after filtration was obtained by carrying out 1-pass filtration with the said 2nd stage filtration system.
  • a polishing composition was prepared in the same manner as in Example 1.
  • the time required to circulate 50 L of colloidal silica slurry D through the first-stage filtration system with a small diaphragm pump and to perform filtration equivalent to 8 passes was 3.3 hours (average flow rate was 2 0.0 L / min).
  • the time required for filtering the second stage filtration system in one pass was 0.4 hours. Therefore, the time required for the first and second stages of filtration was 3.7 hours in total (Table 2 below).
  • the depth type and pleat type filters used are the same as those in Example 10.
  • a polishing composition was prepared in the same manner as in Comparative Example 9, except that colloidal silica slurry E was used instead of colloidal silica slurry D, which is the silica dispersion to be treated.
  • the time required to circulate 50 L of colloidal silica slurry E through the first-stage filtration system with a small diaphragm pump and to perform filtration equivalent to 8 passes was 3.3 hours (average flow rate was 2 0.0 L / min).
  • the time required for filtering the second stage filtration system in one pass was 0.4 hours. Therefore, the time required for the first and second stages of filtration was 3.7 hours in total (Table 2 below).
  • the substrate to be polished was polished using the polishing composition produced by the production method of Example 10 and Comparative Examples 9 to 10, and the number of scratches and the number of particles of the polished substrate were evaluated.
  • the evaluation results are shown in Table 2 below.
  • the substrate to be polished, the polishing conditions (polishing method) and the evaluation method are the same as in Example 1.
  • Comparative Example 10 includes filtering a silica slurry (slurry E) obtained by subjecting a general-purpose colloidal silica slurry (slurry D) to an additional treatment (for example, a centrifugal separation treatment) with a circulation filter system of a depth type filter. It is a manufacturing method of the conventional polishing liquid composition. On the other hand, Example 10 is the manufacturing method of the polishing liquid composition which employ
  • the manufacturing method of Example 10 can use the general-purpose colloidal silica slurry (slurry E) as it is without performing an additional treatment (for example, a centrifugal separation treatment), so that costs and time can be reduced, and productivity can be reduced. Will improve.
  • Examples 11 to 13 and Comparative Example 11 A polishing composition was produced in the same manner as in Example 10 except that a depth type filter having a different history of filtration throughput was used as the depth type filter of Example 10 (Examples 11 to 13). Moreover, the polishing liquid composition was manufactured with the manufacturing method similar to Example 10 except not using a depth type filter (comparative example 11). The substrate was polished using each polishing composition, and the substrate surface after polishing was evaluated. Unless otherwise specified, the measurement methods for various parameters described in Table 3 below were the same as in Example 1.
  • a polishing composition was prepared in the same manner as in Example 1.
  • the depth type filter, diatomaceous earth-containing filter, and pleated type filter used are the same as in Example 10.
  • a depth type filter having a history of filtration amount in the order of Examples 11, 12, and 13 was used.
  • the depth filter has a reduced ability to remove coarse particles as its usage history (filtration history) increases. That is, the coarse particles contained in the silica dispersion after the first-stage depth filter filtration increase in the order of Examples 11, 12, and 13 (Table 3 below).
  • the amount that can be processed before the second stage diatomite filter is blocked is measured, and the results are shown in Table 3 below.
  • the substrate to be polished was polished using the polishing composition produced by the production methods of Examples 11 to 13 and Comparative Example 11 as described above, and the number of scratches and particles of the polished substrate were evaluated. The evaluation results are shown in Table 3 below.
  • the substrate to be polished, the polishing conditions (polishing method) and the evaluation method are the same as in Example 1.
  • the polishing composition produced by the production method of the present invention can be used, for example, in a polishing process of a precision component substrate for high density or high integration.
  • the present invention relates to: ⁇ 1> A method for producing a polishing composition comprising a step of subjecting a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm to a filter containing a filter aid, The method for producing a polishing composition, wherein the filter aid has an average pore size of 0.1 to 3.5 ⁇ m by a mercury intrusion method; ⁇ 2> The method for producing a polishing composition according to ⁇ 1>, wherein the filter aid is diatomaceous earth; ⁇ 3> The method for producing a polishing liquid composition according to ⁇ 1> or ⁇ 2>, wherein an accumulated pore volume of 0.5 ⁇ m or less by a mercury intrusion method of the filter aid is 2.5 mL / g or more; ⁇ 4> The filter aid has a BET specific surface area of 4.0 m 2 / g or more, and an integrated pore volume of 0.15 ⁇ m or less by a nitrogen ad
  • Step 2 A step of filtering the silica dispersion obtained in Step 1 with a filter containing a filter aid having an average pore size of 0.1 to 3.5 ⁇ m by mercury porosimetry.
  • the coarse particle amount is preferably 10.0 ⁇ 10 4 particles / mL or less, more preferably 7.0 ⁇ 10 4 particles / mL or less, and further preferably.
  • the amount of coarse particles having a particle diameter of 0.5 ⁇ m or more in the treated silica dispersion liquid is 20.0 ⁇ 10 4 particles / mL or more, according to any one of ⁇ 1> to ⁇ 13>.
  • a method for producing a polishing composition ⁇ 15>
  • the amount of coarse particles having a particle diameter of 0.5 ⁇ m or more in the silica dispersion to be treated is 200.0 ⁇ 10 4 particles / mL or less, according to any one of ⁇ 1> to ⁇ 14>.
  • a method for producing a polishing composition ⁇ 16> The method for producing a polishing liquid composition according to any one of ⁇ 1> to ⁇ 15>, wherein the content of colloidal silica in the silica dispersion to be treated is 1 to 50% by weight; ⁇ 17> The above ⁇ 1> to ⁇ 16>, wherein the content of coarse particles having a particle size of 0.5 ⁇ m or more in the obtained polishing liquid composition is 0.5 to 10 ⁇ 10 4 particles / mL
  • Production method ⁇ 19> The method for producing a polishing liquid composition according to any one of ⁇ 1> to ⁇ 18>, wherein a differential pressure during filtration in the filtration treatment using the filter containing the filter aid is 0.01 to 10 MPa. ; ⁇ 20> The polishing composition according to any one of ⁇ 1> to ⁇ 19>, wherein a filtration rate in a filtration treatment using the filter containing the filter aid is 0.1 to 30 L / (min ⁇ m 2 ). Manufacturing method; ⁇ 21> The average pore diameter of the filter aid by mercury porosimetry is preferably 0.1 to 3.0 ⁇ m, more preferably 0.1 to 2.7 ⁇ m, still more preferably 1.0 to 2.7 ⁇ m, and even more.
  • the manufacturing method of the polishing liquid composition in any one of ⁇ 1> to ⁇ 20>; ⁇ 22>
  • the cumulative pore volume of 0.5 ⁇ m or less by a mercury intrusion method of the filter aid is preferably 2.5 to 1000 mL / g, more preferably 2.7 to 100 mL / g, and still more preferably 3.0 to 50 mL / g, even more preferably 4.0 to 20 mL / g, even more preferably 4.5 to 10 mL / g, and even more preferably 4.5 to 6 mL / g.
  • the method for producing a polishing composition according to any one of ⁇ 1> to ⁇ 21>, which is 2.5 mL / g or more; ⁇ 23> BET specific surface area of the filter aid is preferably 4.0 ⁇ 1000.0m 2 / g, more preferably 10.0 ⁇ 100.0m 2 / g, more preferably 15.0 ⁇ 50.0 m 2 / G, more preferably 15.0 to 30.0 m 2 / g, even more preferably 18.0 to 30.0 m 2 / g, still more preferably 18.0 to 25.0 m 2 / g, 1> to ⁇ 22> a method for producing the polishing composition according to any one of the above; ⁇ 24> An integrated pore volume of 0.15 ⁇ m or less by nitrogen adsorption method is preferably 0.3 to 100.0 mL / g, more preferably 0.4 to 50.0 mL / g, and still more preferably 0.6 to 10.0 mL / g, even more preferably 0.6-5.0
  • step 1 the silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm is used in a coarse particle amount of 0.5 ⁇ m or more, preferably 10.0 ⁇ 10.
  • the amount of coarse particles having a particle diameter of 0.5 ⁇ m or more in the silica dispersion to be treated is preferably 20.0 ⁇ 10 4 to 200.0 ⁇ 10 4 particles / mL, more preferably 20.0 ⁇ 10.
  • the content of coarse particles having a particle size of 0.5 ⁇ m or more in the obtained polishing composition is preferably 0.5 ⁇ 10 4 to 5 ⁇ 10 4 particles / mL, more preferably 0.5 ⁇ 10.
  • polishing composition according to any one of ⁇ 1> to ⁇ 27>, which is 4 to 4 ⁇ 10 4 pieces / mL, more preferably 0.5 ⁇ 10 4 to 3 ⁇ 10 4 pieces / mL.
  • Method; ⁇ 29> A polishing composition produced by the production method according to any one of ⁇ 1> to ⁇ 28>; ⁇ 30> The description ⁇ 29>, further comprising an acid, an oxidizing agent, a water-soluble polymer having an anionic group, a heterocyclic aromatic compound, and an aliphatic amine compound or an alicyclic amine compound.
  • a polishing liquid composition of ⁇ 31> A polishing composition is produced by the production method according to any one of ⁇ 1> to ⁇ 28>, and the polishing composition is supplied to a surface to be polished of a substrate to be polished, and the polishing is performed.
  • a method of manufacturing a magnetic disk substrate comprising bringing a polishing pad into contact with a target surface and moving the polishing pad and / or the substrate to be polished to polish the polishing target surface.

Abstract

Provided is a process for producing a polishing liquid composition with which it is possible to give a polished work that has a reduced surface roughness and a reduced amount of particles. The process for producing a polishing liquid composition involves a step in which a raw silica dispersion containing colloidal silica having an average primary-particle diameter of 1-100 nm is filtered through a filter including a filter aid, the filter aid having an average pore diameter, as measured by the mercury intrusion method, of 0.1-3.5 µm.

Description

研磨液組成物の製造方法Method for producing polishing composition
 本発明は、研磨液組成物の製造方法及び該製造方法により製造される研磨液組成物に関する。 The present invention relates to a method for producing a polishing liquid composition and a polishing liquid composition produced by the production method.
 近年のメモリーハードディスクドライブには、高容量・小径化が求められ、記録密度を上げるために磁気ヘッドの浮上量を低下させて、単位記録面積を小さくすることが求められている。それに伴い、磁気ディスク用基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきている。即ち、ヘッドの低浮上化に応じて、表面粗さ、微小うねり、ロールオフ及び突起を低減する必要があり、単位記録面積の減少に応じて、許容される基板面当たりのスクラッチ数は少なく、その大きさと深さはますます小さくなってきている。 Recent memory hard disk drives are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced to reduce the unit recording area. Accordingly, the surface quality required after polishing in the manufacturing process of the magnetic disk substrate is becoming stricter year by year. That is, it is necessary to reduce the surface roughness, micro waviness, roll-off and protrusions according to the low flying height of the head, and the allowable number of scratches per substrate surface is small according to the decrease in the unit recording area, Its size and depth are getting smaller and smaller.
 また、半導体分野においても、高集積化と高速化が進んでおり、特に高集積化では配線の微細化が要求されている。その結果、半導体基板の製造プロセスにおいては、フォトレジストに露光する際の焦点深度が浅くなり、より一層の表面平滑性が望まれている。 Also in the semiconductor field, high integration and high speed are advancing, and in particular high integration requires the miniaturization of wiring. As a result, in the manufacturing process of a semiconductor substrate, the depth of focus when exposing to a photoresist becomes shallow, and further surface smoothness is desired.
 このような要求に対して、表面平滑性の向上を目的に、被研磨物の表面に生じる傷(スクラッチ)の低減を図るべく、研磨材スラリー原料の遠心分離処理や、デプスフィルター及びプリーツフィルターを用いた循環ろ過及び多段ろ過処理により、研磨粒子の粗大粒子数を低減することが提案されている(特許文献1及び2)。 In order to improve the surface smoothness in response to such demands, a centrifugal treatment of the abrasive slurry raw material, a depth filter and a pleated filter are performed in order to reduce scratches generated on the surface of the object to be polished. It has been proposed to reduce the number of coarse particles of abrasive particles by the used circulation filtration and multistage filtration treatment (Patent Documents 1 and 2).
 また、ろ過助剤として珪藻土を利用したフィルターは、ガラス基板の循環研磨に使用する研磨液組成物のフィルターとして用いられたり(特許文献3)、インクジェット記録シート用塗布液として使用するシリカ微粒子分散液の製造工程において用いられたりする(特許文献4)。 A filter using diatomaceous earth as a filter aid is used as a filter for a polishing composition used for circulating polishing of a glass substrate (Patent Document 3), or a silica fine particle dispersion used as a coating liquid for an ink jet recording sheet. (Patent Document 4).
特開2006-075975号公報JP 2006-075975 特開2006-136996号公報JP 2006-136996 A 特開2007-098485号公報Japanese Unexamined Patent Publication No. 2007-098485 特開2007-099586号公報JP 2007-099586
 より高容量、高集積といった高密度化に対応するためには、基板表面のスクラッチのみならず、基板表面のパーティクルをも低減する必要がある。そのため、研磨液組成物に使用するシリカ粒子は、粗大粒子を低減させる必要があり、図2の概略図に示すろ過システムで調製されることが多い。すなわち、汎用コロイダルシリカに遠心分離処理等を施したシリカスラリー6をデプス型フィルター3で循環ろ過し(槽1→管P1→デプス型フィルター3→管P5→槽1)、次いでプリーツ型フィルター5でろ過すること(デプス型フィルター3→管P6→プリーツ型フィルター5→管4)を含むろ過システムより研磨液組成物用のシリカ粒子が調製されている。しかしながら、このような従来の方法では、汎用コロイダルシリカに対するろ過前の処理(例えば、遠心分離処理)に時間及びコストが掛かり、また、デプス型フィルターの循環ろ過処理にも時間がかかる。すなわち、研磨液組成物に使用するシリカ粒子の調製工程は、研磨液組成物の生産時間が長く、高コストとなる一因となっている。 In order to cope with higher density such as higher capacity and higher integration, it is necessary to reduce not only scratches on the substrate surface but also particles on the substrate surface. Therefore, the silica particles used in the polishing liquid composition need to reduce coarse particles, and are often prepared by the filtration system shown in the schematic diagram of FIG. That is, silica slurry 6 obtained by subjecting general-purpose colloidal silica to centrifugal separation or the like is circulated and filtered with depth filter 3 (tank 1 → pipe P1 → depth filter 3 → pipe P5 → tank 1), and then with pleated filter 5 Silica particles for the polishing composition are prepared from a filtration system including filtration (depth filter 3 → pipe P6 → pleated filter 5 → pipe 4). However, in such a conventional method, it takes time and cost to process the general-purpose colloidal silica before filtration (for example, centrifugation), and it also takes time to circulate and filter the depth type filter. That is, the process of preparing the silica particles used in the polishing liquid composition is one factor that increases the production time of the polishing liquid composition and increases the cost.
 したがって、本発明は、研磨後の被研磨物の表面粗さが小さく、且つ高密度化において重要となるパーティクルを効果的に低減できる研磨液組成物を経済的に製造できる研磨液組成物の製造方法、及び該製造方法により製造される研磨液組成物を提供する。 Therefore, the present invention provides a polishing liquid composition that can economically manufacture a polishing liquid composition that has a small surface roughness of an object to be polished and that can effectively reduce particles that are important in densification. A method and a polishing liquid composition produced by the production method are provided.
 即ち、本発明は、一次粒子の平均粒子径が1~100nmのコロイダルシリカを含有する被処理シリカ分散液を、ろ過助剤を含むフィルターでろ過処理する工程を有する研磨液組成物の製造方法であって、前記ろ過助剤は水銀圧入法による平均細孔径が0.1~3.5μmである、研磨液組成物の製造方法(以下、「本発明の製造方法」ともいう。)に関する。 That is, the present invention is a method for producing a polishing liquid composition comprising a step of subjecting a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm to a filter containing a filter aid. The filter aid relates to a method for producing a polishing liquid composition (hereinafter also referred to as “the production method of the present invention”) having an average pore diameter of 0.1 to 3.5 μm by mercury porosimetry.
 また、本発明は、一次粒子の平均粒子径が1~100nmのコロイダルシリカを含有する被処理シリカ分散液を、ろ過助剤を含有するフィルターでろ過処理する工程を有し、前記ろ過助剤は水銀圧入法による平均細孔径が0.1~3.5μmである研磨液組成物の製造方法により製造されうる研磨液組成物(以下、「本発明の研磨液組成物」ともいう。)に関する。 The present invention further includes a step of subjecting a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm to a filter containing a filter aid, the filter aid being The present invention relates to a polishing liquid composition (hereinafter also referred to as “the polishing liquid composition of the present invention”) that can be manufactured by a manufacturing method of a polishing liquid composition having an average pore diameter of 0.1 to 3.5 μm by mercury porosimetry.
 本発明の製造方法によれば、前記ろ過助剤を含むフィルターでろ過処理する工程によりシリカ分散液中の粗大粒子及び澱を効果的に除去することができ、前記ろ過処理のシリカ分散液を含む研磨液組成物は、研磨時のスクラッチ及びパーティクルを効果的に低減できる。また、本発明の製造方法によれば、汎用コロイダルシリカに対するろ過前の処理(例えば、遠心分離処理)や、循環ろ過をしなくても、粗大粒子及び澱を効率的に除去されたシリカ分散液を得ることができるため、設備負荷の低減、研磨液組成物の生産時間の短縮、コスト低減が可能である。 According to the production method of the present invention, coarse particles and starch in the silica dispersion can be effectively removed by the step of filtration with the filter containing the filter aid, and the silica dispersion of the filtration is included. The polishing composition can effectively reduce scratches and particles during polishing. Moreover, according to the production method of the present invention, a silica dispersion in which coarse particles and starch are efficiently removed without performing a pre-filtration treatment (for example, a centrifugal separation process) on general-purpose colloidal silica or circulation filtration. Therefore, the equipment load can be reduced, the production time of the polishing composition can be shortened, and the cost can be reduced.
 したがって、本発明の製造方法で製造された研磨液組成物を、例えば、高密度化又は高集積化用の精密部品基板の研磨工程に用いると、微細なスクラッチ及びパーティクルを効果的に低減でき、且つ、表面性状に優れた高品質のメモリーハードディスク基板及び半導体素子用基板等の精密部品基板を経済的に製造することができる。 Therefore, when the polishing composition produced by the production method of the present invention is used, for example, in a polishing step of a precision component substrate for high density or high integration, fine scratches and particles can be effectively reduced, In addition, it is possible to economically manufacture precision component substrates such as high-quality memory hard disk substrates and semiconductor element substrates having excellent surface properties.
図1は、本発明の製造方法の一実施形態を説明する概略図である。FIG. 1 is a schematic view for explaining an embodiment of the production method of the present invention. 図2は、従来の研磨液組成物の製造方法の一例を説明する概略図である。FIG. 2 is a schematic view illustrating an example of a conventional method for producing a polishing liquid composition.
 本発明の研磨液組成物の製造方法は、一次粒子の平均粒子径が1~100nmのコロイダルシリカを含有する被処理シリカ分散液を、ろ過助剤を含むフィルター(以下、「ろ過助剤含有フィルター」ということがある。)でろ過処理する工程を有する研磨液組成物の製造方法であって、前記ろ過助剤の水銀圧入法による平均細孔径が0.1~3.5μmであることを特徴とする。本発明の製造方法で得られる研磨液組成物によれば、基板表面のパーティクルを効果的に低減でき、優れた表面平滑性を有する基板を提供することができる。 The method for producing a polishing liquid composition of the present invention comprises treating a silica dispersion containing colloidal silica having an average primary particle diameter of 1 to 100 nm with a filter containing a filter aid (hereinafter referred to as “filter aid containing filter”). In which the average pore diameter of the filter aid by the mercury intrusion method is 0.1 to 3.5 μm. And According to the polishing composition obtained by the production method of the present invention, particles on the substrate surface can be effectively reduced, and a substrate having excellent surface smoothness can be provided.
 本発明者らは、研磨液組成物中の澱がパーティクルの原因であることを見出した。本発明の製造方法により研磨後の基板表面のパーティクルを低減できる研磨液組成物を経済的に製造できる理由は明らかではないが、ろ過助剤を含有するフィルターのろ過助剤層(ケーク層)内部で、数十μmのろ過助剤により形成される粒子間や2次凝集体のサブミクロン間隙やろ過助剤粒子自体に存在するサブミクロン小孔により、パーティクルの原因となる澱が効率的に除去されるためと推定している。 The present inventors have found that starch in the polishing composition is a cause of particles. The reason why the polishing composition that can reduce particles on the substrate surface after polishing is economically produced by the production method of the present invention is not clear, but the inside of the filter aid layer (cake layer) of the filter containing the filter aid In the sub-micron pores existing between the particles formed by the filter aid of several tens of μm, the sub-micron gaps of secondary aggregates, and the filter aid particles themselves, the starch causing the particles is efficiently removed. Estimated to be.
 本明細書において「粗大粒子」とは、粒子径が0.5μm以上の粗大なコロイダルシリカ粒子であり、研磨液組成物中の粗大粒子数は、後述の実施例に記載の0.45μmフィルター通液量により研磨液組成物中の粗大粒子として定量評価できる。なお、本明細書中、研磨液組成物中のコロイダルシリカ粒子とは、一次粒子のみならず、一次粒子が凝集した凝集粒子をも含むものとする。また、本明細書において「澱」とは、50~500nmのシリカ凝集体であり、後述するΔCVや研磨評価により澱の量を間接的に評価することができる。 In the present specification, the term “coarse particles” refers to coarse colloidal silica particles having a particle diameter of 0.5 μm or more, and the number of coarse particles in the polishing composition is determined by the 0.45 μm filter described in Examples below. The amount of liquid can be quantitatively evaluated as coarse particles in the polishing composition. In the present specification, the colloidal silica particles in the polishing liquid composition include not only primary particles but also aggregated particles obtained by aggregating primary particles. In the present specification, “starch” is a silica aggregate of 50 to 500 nm, and the amount of starch can be indirectly evaluated by ΔCV or polishing evaluation described later.
 本明細書において「スクラッチ」とは、特に、メモリーハードディスク基板又は半導体素子用基板において、高密度化又は高集積化に重要となる物性であり、深さが1nm以上、100nm未満、幅が5nm以上、500nm未満、長さが100μm以上の基板表面の微細な傷である。このスクラッチは、後述の実施例に記載の光学式全面欠陥検査機(OSA6100:KLA-Tencor製)で検出することができ、スクラッチ本数として定量評価できる。さらに原子間力顕微鏡(AFM)を用いて深さと幅を計測することができる。 In this specification, “scratch” is a physical property that is important for high density or high integration, particularly in a memory hard disk substrate or a semiconductor device substrate, having a depth of 1 nm or more, less than 100 nm, and a width of 5 nm or more. These are fine scratches on the substrate surface of less than 500 nm and a length of 100 μm or more. This scratch can be detected by an optical entire surface defect inspection machine (OSA6100: manufactured by KLA-Tencor) described in the examples described later, and can be quantitatively evaluated as the number of scratches. Further, the depth and width can be measured using an atomic force microscope (AFM).
 本明細書において「パーティクル」とは、基板上の突起物であり、後述の実施例に記載の光学式全面欠陥検査機(OSA6100:KLA-Tencor製)による測定でパーティクル数として定量評価できる。パーティクル部分を走査型電子顕微鏡(SEM)で分析することで、突起物(シリカ、アルミナ、チタニア、Fe化合物(ステンレス)、有機物、ニッケル化合物(NiP研磨くず、水酸化ニッケル等))の同定が可能である。さらに原子間力顕微鏡(AFM)を用いて突起物の長さと幅を計測することができる。 In the present specification, “particles” are protrusions on a substrate, and can be quantitatively evaluated as the number of particles by measurement with an optical entire surface defect inspection machine (OSA6100: manufactured by KLA-Tencor) described in the examples described later. Analyzing particle parts with a scanning electron microscope (SEM) enables identification of protrusions (silica, alumina, titania, Fe compounds (stainless steel), organic substances, nickel compounds (NiP polishing scrap, nickel hydroxide, etc.)) It is. Furthermore, the length and width of the protrusion can be measured using an atomic force microscope (AFM).
 本発明の製造方法に用いられるろ過助剤としては、例えば、二酸化ケイ素、カオリン、酸性白土、珪藻土、パーライト、ベントナイト、タルク等の不溶性の鉱物性物質が挙げられる。スクラッチ及びパーティクル低減の観点から、前記ろ過助剤のうち、二酸化ケイ素、珪藻土、パーライトが好ましく、珪藻土、パーライトがより好ましく、珪藻土がさらに好ましい。 Examples of the filter aid used in the production method of the present invention include insoluble mineral substances such as silicon dioxide, kaolin, acid clay, diatomaceous earth, perlite, bentonite, and talc. From the viewpoint of scratch and particle reduction, among the filter aids, silicon dioxide, diatomaceous earth, and pearlite are preferable, diatomaceous earth and pearlite are more preferable, and diatomaceous earth is more preferable.
 前記ろ過助剤は、スクラッチ及びパーティクルの低減並びに研磨液組成物の生産性向上の観点から、酸で前処理されていることが好ましい。酸による前処理とは、ろ過助剤を無機酸や有機酸等の酸水溶液に一定時間浸漬させる処理のことであり、例えば、塩酸、硫酸、硝酸、リン酸、ホスホン酸、シュウ酸、クエン酸による処理等が挙げられるが、スクラッチ及びパーティクル低減の観点から、塩酸、硫酸、硝酸、リン酸、ホスホン酸による処理がより好ましく、塩酸、硫酸、ホスホン酸による処理がさらに好ましい。 The filter aid is preferably pretreated with an acid from the viewpoint of reducing scratches and particles and improving the productivity of the polishing composition. The pretreatment with an acid is a treatment in which a filter aid is immersed in an aqueous acid solution such as an inorganic acid or an organic acid for a certain time. For example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, oxalic acid, citric acid In view of scratches and particle reduction, treatment with hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and phosphonic acid is more preferred, and treatment with hydrochloric acid, sulfuric acid and phosphonic acid is more preferred.
 前記ろ過助剤は、スクラッチ及びパーティクル低減の観点並びに研磨液組成物の生産性向上の観点から、水銀圧入法による平均細孔径が0.1~3.5μmであり、好ましくは0.1~3.0μm、より好ましくは0.1~2.7μm、さらに好ましくは1.0~2.7μm、さらにより好ましくは2.0~2.7μm、さらにより好ましくは2.1~2.7μm、さらにより好ましくは2.2~2.6μm、さらにより好ましくは2.2~2.4μmである。なお、本発明において「水銀圧入法による平均細孔径」とは、ろ過助剤粒子の容積基準の細孔径の平均値であり、実施例に記載の方法により測定することができる。 The filter aid has an average pore diameter of 0.1 to 3.5 μm, preferably 0.1 to 3 μm by a mercury intrusion method, from the viewpoint of scratch and particle reduction and from the viewpoint of improving the productivity of the polishing composition. 0.0 μm, more preferably 0.1 to 2.7 μm, even more preferably 1.0 to 2.7 μm, even more preferably 2.0 to 2.7 μm, even more preferably 2.1 to 2.7 μm, More preferably, it is 2.2 to 2.6 μm, and still more preferably 2.2 to 2.4 μm. In the present invention, the “average pore diameter by mercury intrusion method” is the average value of the volume-based pore diameters of the filter aid particles, and can be measured by the method described in the examples.
 前記ろ過助剤の水銀圧入法による0.5μm以下の積算細孔容積は、スクラッチ及びパーティクル低減の観点から、好ましくは2.5mL/g以上、より好ましくは2.7mL/g以上、さらに好ましくは3.0mL/g以上、さらにより好ましくは4.0mL/g以上、さらにより好ましくは4.5mL/g以上である。また、研磨液組成物の生産性向上の観点からは、好ましくは1000mL/g以下、より好ましくは100mL/g以下、さらに好ましくは50mL/g以下、さらにより好ましくは20mL/g以下、さらにより好ましくは10mL/g以下、さらにより好ましくは6mL/g以下である。したがって、前記ろ過助剤の0.5μm以下の積算細孔容積は、スクラッチ及びパーティクル低減の観点及び研磨液組成物の生産性向上の観点から、2.5mL/g以上が好ましく、より好ましくは2.5~1000mL/g、さらに好ましくは2.7~100mL/g、さらにより好ましくは3.0~50mL/g、さらにより好ましくは4.0~20mL/g、さらにより好ましくは4.5~10mL/g、さらにより好ましくは4.5~6mL/gである。ここで、ろ過助剤の「水銀圧入法による0.5μm以下の積算細孔容積」とは、水銀圧入法によるろ過助剤粒子の容積基準の細孔分布における0.5μm以下の細孔容積の総和であり、実施例に記載の方法により測定することができる。 The cumulative pore volume of 0.5 μm or less by the mercury intrusion method of the filter aid is preferably 2.5 mL / g or more, more preferably 2.7 mL / g or more, more preferably from the viewpoint of scratching and particle reduction. 3.0 mL / g or more, even more preferably 4.0 mL / g or more, and even more preferably 4.5 mL / g or more. Further, from the viewpoint of improving the productivity of the polishing composition, it is preferably 1000 mL / g or less, more preferably 100 mL / g or less, still more preferably 50 mL / g or less, even more preferably 20 mL / g or less, and even more preferably. Is 10 mL / g or less, and even more preferably 6 mL / g or less. Therefore, the cumulative pore volume of 0.5 μm or less of the filter aid is preferably 2.5 mL / g or more, more preferably 2 from the viewpoint of scratch and particle reduction and the improvement of the productivity of the polishing composition. 0.5 to 1000 mL / g, more preferably 2.7 to 100 mL / g, even more preferably 3.0 to 50 mL / g, even more preferably 4.0 to 20 mL / g, even more preferably 4.5 to 10 mL / g, even more preferably 4.5 to 6 mL / g. Here, “the cumulative pore volume of 0.5 μm or less by the mercury intrusion method” of the filter aid means the pore volume of 0.5 μm or less in the volume-based pore distribution of the filter aid particles by the mercury intrusion method. It is the sum and can be measured by the method described in the examples.
 前記ろ過助剤のBET比表面積は、スクラッチ及びパーティクル低減の観点から、4.0m/g以上が好ましく、より好ましくは10.0m/g以上、さらに好ましくは15.0m/g以上、さらにより好ましくは18.0m/g以上である。また、研磨液組成物の生産性向上の観点から、前記比表面積は、好ましくは1000.0m/g以下、より好ましくは100.0m/g以下、さらに好ましくは50.0m/g以下、さらにより好ましくは30.0m/g以下、さらにより好ましくは25.0m/g以下である。したがって、前記比表面積は、好ましくは4.0~1000.0m/g、より好ましくは10.0~100.0m/g、さらに好ましくは15.0~50.0m/g、さらに好ましくは15.0~30.0m/g、さらにより好ましくは18.0~30.0m/g、さらに好ましくは18.0~25.0m/gである。なお、ろ過助剤BET比表面積は、実施例に記載の方法により求めることができる。 The BET specific surface area of the filter aid is preferably 4.0 m 2 / g or more, more preferably 10.0 m 2 / g or more, still more preferably 15.0 m 2 / g or more, from the viewpoint of scratch and particle reduction. Even more preferably, it is 18.0 m 2 / g or more. From the viewpoint of improving the productivity of the polishing composition, the specific surface area is preferably 1000.0m 2 / g or less, more preferably 100.0 m 2 / g or less, more preferably 50.0 m 2 / g or less Even more preferably, it is 30.0 m 2 / g or less, and still more preferably 25.0 m 2 / g or less. Therefore, the specific surface area is preferably 4.0 ~ 1000.0m 2 / g, more preferably 10.0 ~ 100.0m 2 / g, more preferably 15.0 ~ 50.0m 2 / g, more preferably Is 15.0 to 30.0 m 2 / g, still more preferably 18.0 to 30.0 m 2 / g, still more preferably 18.0 to 25.0 m 2 / g. The filter aid BET specific surface area can be determined by the method described in the examples.
 前記ろ過助剤の窒素吸着法よる0.15μm以下の積算細孔容積は、スクラッチ及びパーティクル低減の観点から、0.3mL/g以上が好ましく、より好ましくは0.4mL/g以上、さらに好ましくは0.6mL/g以上である。また、前記積算細孔容積は、研磨液組成物の生産性向上の観点から、好ましくは100.0mL/g以下、より好ましくは50.0mL/g以下、さらに好ましくは10.0mL/g以下、さらにより好ましくは5.0mL/g以下、さらにより好ましくは2.0mL/g以下、さらにより好ましくは1.0mL/g以下、さらにより好ましくは0.7mL/g以下である。したがって、前記積算細孔容積は、好ましくは0.3~100.0mL/g、より好ましくは0.4~50.0mL/g、さらに好ましくは0.6~10.0mL/g、さらにより好ましくは0.6~5.0mL/g、さらにより好ましくは0.6~2.0mL/g、さらにより好ましくは0.6~1.0mL/g、さらにより好ましくは0.6~0.7mL/gである。ここで、ろ過助剤の窒素吸着法による0.15μm以下の積算細孔容積とは、窒素吸着法によるろ過助剤の容積基準の細孔分布における0.15μm以下の細孔容積の総和であり、具体的には、実施例に記載の方法により求めることができる。 The integrated pore volume of 0.15 μm or less by the nitrogen adsorption method of the filter aid is preferably 0.3 mL / g or more, more preferably 0.4 mL / g or more, and further preferably from the viewpoint of scratch and particle reduction. It is 0.6 mL / g or more. In addition, the integrated pore volume is preferably 100.0 mL / g or less, more preferably 50.0 mL / g or less, still more preferably 10.0 mL / g or less, from the viewpoint of improving the productivity of the polishing composition. Even more preferably 5.0 mL / g or less, still more preferably 2.0 mL / g or less, even more preferably 1.0 mL / g or less, and even more preferably 0.7 mL / g or less. Therefore, the cumulative pore volume is preferably 0.3 to 100.0 mL / g, more preferably 0.4 to 50.0 mL / g, still more preferably 0.6 to 10.0 mL / g, and even more preferably. Is 0.6 to 5.0 mL / g, even more preferably 0.6 to 2.0 mL / g, even more preferably 0.6 to 1.0 mL / g, and even more preferably 0.6 to 0.7 mL / g. Here, the cumulative pore volume of 0.15 μm or less by the nitrogen adsorption method of the filter aid is the sum of the pore volumes of 0.15 μm or less in the volume-based pore distribution of the filter aid by the nitrogen adsorption method. Specifically, it can be determined by the method described in the examples.
 前記ろ過助剤に対して0.015MPaの条件で水をろ過させたときの前記ろ過助剤の水の透過率(以下、「前記ろ過助剤の透過率」とも言う。)は、スクラッチ及びパーティクル低減の観点から、好ましくは9.9×10-14以下であり、より好ましくは5.0×10-14以下であり、さらに好ましくは3.0×10-14以下である。また、研磨組成物の生産性向上の観点から、前記透過率は、好ましくは2.0×10-15以上であり、より好ましくは5.0×10-15以上であり、さらに好ましくは9.9×10-15以上である。したがって、前記透過率は、好ましくは2.0×10-15~9.9×10-14であり、より好ましくは5.0×10-15~5.0×10-14であり、さらに好ましくは9.9×10-15~3.0×10-14である。ここで、前記ろ過助剤の透過率は、具体的には、実施例に記載の方法により求めることができる。 The water permeability of the filter aid when water is filtered with respect to the filter aid at 0.015 MPa (hereinafter also referred to as “permeability of the filter aid”) is scratch and particle. From the viewpoint of reduction, it is preferably 9.9 × 10 −14 m 2 or less, more preferably 5.0 × 10 −14 m 2 or less, and further preferably 3.0 × 10 −14 m 2 or less. is there. From the viewpoint of improving the productivity of the polishing composition, the transmittance is preferably 2.0 × 10 −15 m 2 or more, more preferably 5.0 × 10 −15 m 2 or more, Preferably, it is 9.9 × 10 −15 m 2 or more. Therefore, the transmittance is preferably 2.0 × 10 −15 to 9.9 × 10 −14 m 2 , more preferably 5.0 × 10 −15 to 5.0 × 10 −14 m 2 . More preferably 9.9 × 10 −15 to 3.0 × 10 −14 m 2 . Here, the transmittance of the filter aid can be specifically determined by the method described in Examples.
 前記ろ過助剤のレーザー平均粒径は、スクラッチ及びパーティクル低減の観点から、好ましくは1~30μm、より好ましくは1~20μm、さらに好ましくは1~18μm、さらにより好ましくは1~16μm、さらにより好ましくは2~16μm、さらにより好ましくは5~16μm、さらにより好ましくは7~16μmである。ここで、ろ過助剤の「レーザー平均粒径」とは、レーザー式粒度分布測定装置により測定されたろ過助剤粒子の平均粒径であり、実施例に記載の方法により測定することができる。 The laser average particle diameter of the filter aid is preferably 1 to 30 μm, more preferably 1 to 20 μm, still more preferably 1 to 18 μm, still more preferably 1 to 16 μm, and still more preferably, from the viewpoint of scratching and particle reduction. Is 2 to 16 μm, even more preferably 5 to 16 μm, and even more preferably 7 to 16 μm. Here, the “laser average particle size” of the filter aid is the average particle size of the filter aid particles measured by a laser particle size distribution measuring device, and can be measured by the method described in the examples.
 本発明の製造方法に用いられるろ過助剤含有フィルターは、前記ろ過助剤をフィルター表面及び/又はフィルター内部に含有するものであれば特に制限されない。スクラッチ及びパーティクル低減の観点から、フィルター目開きがろ過助剤の平均粒径の1/10以下であることが好ましく、1/20以下がより好ましく、1/30以下がさらに好ましい。本発明の製造方法においては、プレコートにさらにボディーフィードを組み合わせて用いてもよい。フィルター目開きは、ろ過助剤の漏れを防ぐ観点から、10μm以下が好ましく、より好ましくは5μm以下、さらに好ましくは、3μm以下、さらにより好ましくは2μm以下、特に好ましくは1μm以下である。また、フィルター通液速度向上の観点から、0.1μm以上が好ましく、さらに好ましくは0.2μm以上、さらにより好ましくは0.3μm以上、特に好ましくは0.5μm以上である。ここでプレコートとは、ケークろ過フィルターの形成方法であり、後述のフィルター材料(濾材)の上に厚さ数mm程度のろ過助剤の薄い層を形成することである。例えば、水にろ過助剤粒子を分散させ、濾材でろ過助剤をこしとりろ過助剤層を形成する手法が挙げられる。又、ボディーフィードとは、ろ過の際にケークろ過される原液にろ過助剤を一定量投入しながらろ過処理する方法であり、目的は、原液のろ過性の改善である。粒径が細かくすぐにケーク抵抗が極大化する(ろ過ができなくなる)ような原液に対して有効である。 The filter aid-containing filter used in the production method of the present invention is not particularly limited as long as it contains the filter aid on the filter surface and / or inside the filter. From the viewpoint of scratching and particle reduction, the filter aperture is preferably 1/10 or less of the average particle size of the filter aid, more preferably 1/20 or less, and even more preferably 1/30 or less. In the production method of the present invention, a body feed may be further combined with the precoat. The filter opening is preferably 10 μm or less, more preferably 5 μm or less, still more preferably 3 μm or less, even more preferably 2 μm or less, and particularly preferably 1 μm or less from the viewpoint of preventing leakage of the filter aid. Further, from the viewpoint of improving the filter flow rate, it is preferably 0.1 μm or more, more preferably 0.2 μm or more, still more preferably 0.3 μm or more, and particularly preferably 0.5 μm or more. Here, pre-coating is a method for forming a cake filtration filter, which is to form a thin layer of a filter aid having a thickness of about several millimeters on a filter material (filter medium) described later. For example, a method of dispersing filter aid particles in water and scraping the filter aid with a filter medium to form a filter aid layer can be mentioned. Body feed is a method in which a certain amount of filter aid is added to a stock solution that is subjected to cake filtration during filtration, and the purpose is to improve the filterability of the stock solution. This is effective for a stock solution that has a fine particle size and quickly maximizes the cake resistance (cannot be filtered).
 前記ろ過助剤含有フィルターにおけるろ過助剤の含有量(g/cm)は、スクラッチ及びパーティクル低減の観点から、好ましくは0.001g/cm以上、より好ましく0.005g/cm以上、さらに好ましくは0.01g/cm以上、さらにより好ましくは0.02g/cm以上、さらにより好ましくは0.04g/cm以上、さらにより好ましくは0.1g/cm以上である。また、ろ過速度向上の観点からは、好ましくは1g/cm以下、より好ましくは0.8g/cm以下、さらに好ましくは0.6g/cm以下、さらにより好ましくは0.4g/cm以下、さらにより好ましくは0.3g/cm以下、さらにより好ましくは0.2g/cm以下である。したがって、ろ過助剤の含有量(g/cm)は、好ましくは0.001~1g/cm、より好ましくは0.005~0.8g/cm、さらに好ましくは0.01~0.6g/cm、さらにより好ましくは0.02~0.4g/cm、さらにより好ましくは0.04~0.3g/cm、さらにより好ましくは0.04~0.2g/cm、さらにより好ましくは0.1~0.2g/cmである。 The content of the filter aid in the filter aid containing filter (g / cm 2), from the viewpoint of the scratch and particle reduction is preferably 0.001 g / cm 2 or more, more preferably 0.005 g / cm 2 or more, further Preferably it is 0.01 g / cm 2 or more, even more preferably 0.02 g / cm 2 or more, even more preferably 0.04 g / cm 2 or more, and even more preferably 0.1 g / cm 2 or more. Further, from the viewpoint of improving the filtration rate, it is preferably 1 g / cm 2 or less, more preferably 0.8 g / cm 2 or less, still more preferably 0.6 g / cm 2 or less, and even more preferably 0.4 g / cm 2. Hereinafter, it is still more preferably 0.3 g / cm 2 or less, and still more preferably 0.2 g / cm 2 or less. Therefore, the content (g / cm 2 ) of the filter aid is preferably 0.001 to 1 g / cm 2 , more preferably 0.005 to 0.8 g / cm 2 , and still more preferably 0.01 to 0.00. 6 g / cm 2 , even more preferably 0.02 to 0.4 g / cm 2 , even more preferably 0.04 to 0.3 g / cm 2 , even more preferably 0.04 to 0.2 g / cm 2 , Even more preferably, it is 0.1 to 0.2 g / cm 2 .
 前記ろ過助剤含有フィルターのフィルター材料としては、ろ紙、ポリエチレン、ポリプロピレン、ポリエーテルサルフォン、セルロースアセテート、ナイロン、ポリカーボネート、テフロン(登録商標)などのプラスティック、セラミック、金属メッシュ等が挙げられるが、スクラッチ及びパーティクル低減の観点から、ろ紙、ポリエチレン、ポリプロピレン、ポリエーテルサルフォン、セルロースアセテート、ナイロン、ポリカーボネート、テフロン(登録商標)などのプラスティックが好ましく、ろ紙、ポリエチレン、ポリプロピレン、ポリエーテルサルフォン、セルロースアセテート、ナイロンがより好ましく、ろ紙、ポリエチレン、ポリプロピレンがさらに好ましい。 Examples of the filter material of the filter aid-containing filter include filter paper, polyethylene, polypropylene, polyethersulfone, cellulose acetate, nylon, polycarbonate, Teflon (registered trademark) and other plastics, ceramics, and metal meshes. From the viewpoint of particle reduction, plastics such as filter paper, polyethylene, polypropylene, polyethersulfone, cellulose acetate, nylon, polycarbonate, and Teflon (registered trademark) are preferable. Filter paper, polyethylene, polypropylene, polyethersulfone, cellulose acetate, Nylon is more preferable, and filter paper, polyethylene, and polypropylene are more preferable.
 前記ろ過助剤含有フィルターの形状は特に限定されないが、取り扱い易さ、スクラッチ及びパーティクル低減の観点から、シート型、円筒型、円盤型、折込型が好ましく、シート型、円盤型、折込型がより好ましく、円盤型、折込型がさらに好ましい。 The shape of the filter aid-containing filter is not particularly limited, but from the viewpoint of ease of handling, scratching and particle reduction, a sheet type, a cylindrical type, a disk type, and a folding type are preferable, and a sheet type, a disk type, and a folding type are more preferable. A disk type and a folding type are more preferable.
 前記ろ過助剤含有フィルターによるろ過の条件は、特に限定されないが、ろ過精度向上と生産性向上の両立の観点から、ろ過時の差圧は、0.01~10MPaが好ましく、0.05~1MPaがより好ましく、0.05~0.5MPaがさらに好ましい。ろ過助剤含有フィルターの段数は、ろ過精度向上と生産性向上の両立の観点から、1~5段が好ましく、1~3段がより好ましく、1~2段がさらに好ましい。ろ過速度は、ろ過精度向上と生産性向上の両立の観点から、0.1~30L/(分・m)が好ましく、0.5~25L/(分・m)がより好ましく、1~20L/(分・m)がさらに好ましい。 The conditions for filtration using the filter aid-containing filter are not particularly limited, but from the viewpoint of achieving both improved filtration accuracy and improved productivity, the differential pressure during filtration is preferably 0.01 to 10 MPa, and 0.05 to 1 MPa. Is more preferable, and 0.05 to 0.5 MPa is more preferable. The number of stages of the filter aid-containing filter is preferably from 1 to 5 stages, more preferably from 1 to 3 stages, and further preferably from 1 to 2 stages, from the viewpoint of improving both filtration accuracy and productivity. Filtration rate, in terms of both productivity and the filtration accuracy is preferably 0.1 ~ 30L / (min · m 2), 0.5 ~ 25L / ( min · m 2), more preferably, 1 to 20 L / (min · m 2 ) is more preferable.
 本発明の製造方法では、研磨液組成物の製造に従来から用いられているデプス型フィルターやプリーツ型フィルターをさらに組み合わせて使用することが、スクラッチ及びパーティクル低減の観点から好ましい。 In the production method of the present invention, it is preferable to use a combination of a depth type filter and a pleat type filter conventionally used for producing a polishing liquid composition from the viewpoint of scratching and particle reduction.
 本発明の製造方法の好ましい態様としては、デプス型フィルターで被処理シリカ分散液をろ過した後、ろ過助剤含有フィルターでろ過処理することが好ましく、ろ過助剤含有フィルターでろ過した後、さらにプリーツ型フィルターでろ過することがより好ましい。デプス型フィルターで特に大きな粗大粒子を除去することで、ろ過助剤含有フィルターの優れた性能がさらに顕著に発揮され、効率的な粗大粒子及び澱の除去を可能にすると推定される。 As a preferred embodiment of the production method of the present invention, it is preferable to filter the silica dispersion to be treated with a depth filter, and then filter with a filter aid-containing filter, and further filter with a filter aid-containing filter, and then pleats. It is more preferable to filter with a mold filter. By removing particularly large coarse particles with a depth type filter, it is presumed that the excellent performance of the filter aid-containing filter is more remarkably exhibited, and it is possible to efficiently remove coarse particles and starch.
 したがって、本発明は、その他の態様において、工程1)一次粒子の平均粒子径が1~100nmのコロイダルシリカを含有する被処理シリカ分散液を、デプス型フィルターでろ過処理する工程、及び、工程2)工程1で得られたシリカ分散液を、水銀圧入法による平均細孔径が0.1~3.5μmであるろ過助剤を含むフィルターでろ過処理する工程を含む、研磨液組成物の製造方法(以下、「本発明の製造方法(2)」ともいう。)に関する。 Therefore, in another aspect, the present invention provides, in other embodiments, step 1) a step of filtering a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm with a depth filter, and step 2 ) A method for producing a polishing liquid composition comprising a step of filtering the silica dispersion obtained in step 1 with a filter containing a filter aid having an average pore size of 0.1 to 3.5 μm by mercury porosimetry. (Hereinafter, also referred to as “production method (2) of the present invention”).
 前記工程1におけるデプス型フィルターでのろ過処理で得られるシリカ分散液中の粒子径が0.5μm以上の粗大粒子量は、前記工程2で使用するろ過助剤含有フィルターの寿命を延ばし生産性を向上させる観点から、11.0×10個/mL以下が好ましく、より好ましくは10.0×10個/mL以下、さらに好ましくは7.0×10個/mL以下、さらにより好ましくは6.0×10個/mL以下、さらにより好ましくは5.0×10個/mL以下、さらにより好ましくは4.0×10個/mL以下、さらにより好ましくは3.0×10個/mL以下である。 The amount of coarse particles having a particle diameter of 0.5 μm or more in the silica dispersion obtained by filtration with a depth filter in Step 1 extends the life of the filter aid-containing filter used in Step 2 and increases productivity. From the viewpoint of improving, 11.0 × 10 4 pieces / mL or less is preferable, more preferably 10.0 × 10 4 pieces / mL or less, still more preferably 7.0 × 10 4 pieces / mL or less, and even more preferably. 6.0 × 10 4 pieces / mL or less, even more preferably 5.0 × 10 4 pieces / mL or less, even more preferably 4.0 × 10 4 pieces / mL or less, and even more preferably 3.0 × 10 4 pieces / mL or less.
 したがって、本発明は、さらにその他の態様において、工程1)一次粒子の平均粒子径が1~100nmのコロイダルシリカを含有する被処理シリカ分散液を、粗大粒子量が11.0×10個/mL以下になるようにろ過処理する工程、及び、工程2)工程1で得られたシリカ分散液を、水銀圧入法による平均細孔径が0.1~3.5μmであるろ過助剤を含むフィルターでろ過処理する工程を含む、研磨液組成物の製造方法(以下、「本発明の製造方法(3)」ともいう。)に関する。 Therefore, the present invention, in still another aspect, comprises a step 1) silica dispersion to be treated containing colloidal silica having an average primary particle size of 1 to 100 nm, and a coarse particle amount of 11.0 × 10 4 particles / a filter containing a filter aid having a mean pore size of 0.1 to 3.5 μm by a mercury intrusion method, wherein the silica dispersion obtained in Step 2) and Step 1 is filtered. It is related with the manufacturing method (henceforth "the manufacturing method (3) of this invention") of the polishing liquid composition including the process of filtering-processing by.
 前記工程1のろ過処理で得られるシリカ分散液中の粗大粒子量は、前記工程2で使用するろ過助剤含有フィルターの寿命を延ばし生産性を向上させる観点から、11.0×10個/mL以下が好ましく、10.0×10個/mL以下が好ましく、より好ましくは7.0×10個/mL以下、さらに好ましくは6.0×10個/mL以下、さらにより好ましくは5.0×10個/mL以下、さらにより好ましくは4.0×10個/mL以下、さらにより好ましくは3.0×10個/mL以下である。また、前記工程1のろ過の種類は限定されないが、粗大粒子の除去効率向上及びコスト低減の観点から、デプス型フィルターを用いたろ過処理であることが好ましい。 From the viewpoint of extending the life of the filter aid-containing filter used in Step 2 and improving the productivity, the amount of coarse particles in the silica dispersion obtained by the filtration treatment in Step 1 is 11.0 × 10 4 particles / mL is preferably 10.0 × 10 4 pieces / mL or less, more preferably 7.0 × 10 4 pieces / mL or less, still more preferably 6.0 × 10 4 pieces / mL or less, and even more preferably 5.0 × 10 4 pieces / mL or less, even more preferably 4.0 × 10 4 pieces / mL or less, and even more preferably 3.0 × 10 4 pieces / mL or less. The type of filtration in Step 1 is not limited, but is preferably a filtration treatment using a depth filter from the viewpoint of improving the removal efficiency of coarse particles and reducing the cost.
 本発明の製造方法(2)及び(3)の制限されない実施形態として、図1の概略図に示す工程を含む実施形態が挙げられる。図1は、研磨液組成物に使用するシリカ粒子を調製する工程の概略図であって、デプス型フィルター3、ろ過助剤含有フィルター4、及びプリーツ型フィルター5が、この順で管P1~4により直列に接続されている。槽1に投入された被処理シリカ分散液2は、デプス型フィルター3、ろ過助剤含有フィルター4、及びプリーツ型フィルター5で構成されるろ過システムを1パスろ過され、研磨液組成物に使用するシリカ粒子となる。 1 is a non-limiting embodiment of the production methods (2) and (3) of the present invention, and includes an embodiment including the steps shown in the schematic diagram of FIG. FIG. 1 is a schematic view of a process for preparing silica particles used in the polishing liquid composition. A depth type filter 3, a filter aid-containing filter 4, and a pleat type filter 5 are arranged in this order in the pipes P1 to P4. Are connected in series. The silica dispersion 2 to be treated put into the tank 1 is filtered in one pass through a filtration system composed of a depth filter 3, a filter aid-containing filter 4, and a pleat filter 5, and is used for the polishing composition. Silica particles.
 したがって、本発明の製造方法(2)及び(3)のその他の実施形態として、さらに、工程3として、本発明の製造方法(2)及び(3)の工程2で得られたシリカ分散液をプリーツ型フィルターでろ過処理する工程を有することが好ましい。 Therefore, as another embodiment of the production methods (2) and (3) of the present invention, the silica dispersion obtained in Step 2 of the production methods (2) and (3) of the present invention is further used as Step 3. It is preferable to have the process of filtering with a pleated filter.
 本発明の製造方法(2)及び(3)の図1に示される実施形態を、図2に示される従来のシリカ粒子の調製方法と比較すると、デプス型フィルター3の循環ろ過を省いて1パスろ過としても、従来の調製方法と同等又はそれ以上の品質(粗大粒子数の少なさ、及び/又は、研磨後のスクラッチ及びパーティクルの少なさ)のシリカ粒子及び研磨液組成物を製造することができ、製造時間が短縮され生産性が向上するという利点がある。さらに、被処理シリカ分散液2として、図2のシリカスラリー6のように付加的な処理が加えられたシリカスラリーを用いることなく、安価な汎用コロイダルシリカのスラリーを使用しても従来の調製方法と同等又はそれ以上の品質のシリカ粒子及び研磨液組成物を製造することができ、製造時間が短縮され生産性が向上するという利点がある。 When the embodiment shown in FIG. 1 of the production methods (2) and (3) of the present invention is compared with the conventional method for preparing silica particles shown in FIG. As for filtration, it is possible to produce silica particles and a polishing liquid composition having a quality equivalent to or higher than that of a conventional preparation method (small number of coarse particles and / or few scratches and particles after polishing). There is an advantage that the manufacturing time is shortened and the productivity is improved. Furthermore, the conventional preparation method can be used even when an inexpensive general-purpose colloidal silica slurry is used as the silica dispersion 2 to be treated without using a silica slurry subjected to additional treatment such as the silica slurry 6 of FIG. The silica particles and the polishing liquid composition having the same or higher quality can be produced, and the production time is shortened and the productivity is improved.
 本明細書において「汎用コロイダルシリカ」とは、市場に一般的に流通するコロイダルシリカをいう。或いは、本明細書において「汎用コロイダルシリカ」とは粗大粒子量が、例えば、20.0×10個/mL以上、30.0×10個/mL以上、又は34.0×10個/mL以上であるコロイダルシリカをいう。粗大粒子量の上限としては、例えば、200.0×10個/mL以下、100.0×10個/mL以下、70.0×10個/mL以下などが挙げられる。したがって、本発明に用いる汎用コロイダルシリカの粗大粒子量は、20.0×10~200.0×10個/mLが好ましく、20.0×10~100.0×10個/mLがより好ましく、30.0×10~100.0×10個/mLがさらに好ましく、34.0×10~100.0×10個/mLがさらにより好ましく、34.0×10~70.0×10個/mLがさらにより好ましい。 In the present specification, “general-purpose colloidal silica” refers to colloidal silica generally distributed in the market. Alternatively, in this specification, “general-purpose colloidal silica” has a coarse particle amount of, for example, 20.0 × 10 4 particles / mL or more, 30.0 × 10 4 particles / mL or more, or 34.0 × 10 4 particles. Colloidal silica that is / mL or more. Examples of the upper limit of the amount of coarse particles include 200.0 × 10 4 particles / mL or less, 100.0 × 10 4 particles / mL or less, and 70.0 × 10 4 particles / mL or less. Therefore, the amount of coarse particles of the general-purpose colloidal silica used in the present invention is preferably 20.0 × 10 4 to 200.0 × 10 4 particles / mL, and 20.0 × 10 4 to 100.0 × 10 4 particles / mL. Is more preferably 30.0 × 10 4 to 100.0 × 10 4 / mL, even more preferably 34.0 × 10 4 to 100.0 × 10 4 / mL, and 34.0 × 10 even more preferably 4 ~ 70.0 × 10 4 cells / mL.
 本発明の製造方法に用いられるデプス型のフィルターの具体例としては、バッグ式(住友スリーエム社等)の他、カートリッジ式(アドバンテック東洋社、日本ポール社、CUNO社、ダイワボウ社等)のフィルターが挙げられる。 Specific examples of the depth type filter used in the production method of the present invention include a bag type (Sumitomo 3M Co., Ltd.) and a cartridge type filter (Advantech Toyo Co., Nippon Pole Co., CUNO Co., Daiwabo Co., Ltd.). Can be mentioned.
 デプス型フィルターとは、ろ過材の孔構造が入口側で粗く、出口側で細かく、且つ入口側から出口側へ向かうにつれて連続的に又は段階的に細かくなる特徴を持つ。即ち、粗大粒子の中でも大きな粒子は入口側付近で捕集され、小さな粒子は出口側付近で捕集されるため、効果的なろ過が可能である。デプス型フィルターの形状は、袋状のバッグタイプでもよく、また、中空円筒形状のカートリッジタイプでもよい。また、前記特徴を有するろ過材を単にヒダ状に成形加工したものは、デプス型フィルターの機能を有するためデプス型フィルターに分類される。 The depth type filter has a feature that the pore structure of the filter medium is rough on the inlet side, finer on the outlet side, and finer continuously or stepwise from the inlet side to the outlet side. That is, among coarse particles, large particles are collected in the vicinity of the inlet side, and small particles are collected in the vicinity of the outlet side, so that effective filtration is possible. The shape of the depth filter may be a bag-like bag type or a hollow cylindrical cartridge type. In addition, a filter medium having the above-described characteristics that is simply formed into a pleat shape has a function of a depth filter, and is therefore classified as a depth filter.
 デプス型フィルターは、1段で用いてもよく、多段で組み合わせて(例えば直列配置で)用いてもよいが、生産性向上の観点からは異なる径のフィルターを大きい順番に多段にすることが好ましい。また、バッグタイプとカートリッジタイプとを組み合わせて用いてもよい。多段ろ過は、被処理シリカ分散液中の粗大粒子数に応じ、適宜フィルターの孔径とろ過材の構造を適切に選択し、さらに該フィルターの処理順序を適切に選択することで、除去する粗大粒子の粒径制御(ろ過精度)と経済性を向上できる。即ち、孔構造が大きいフィルターを細かいフィルターより前段(上流側)で用いると、フィルターの寿命を製造工程全体として長くできる効果がある。 The depth type filter may be used in a single stage, or may be used in combination in multiple stages (for example, in a series arrangement). From the viewpoint of improving productivity, it is preferable to make filters of different diameters in multiple stages in a large order. . Moreover, you may use combining a bag type and a cartridge type. In the multistage filtration, the coarse particles to be removed are appropriately selected according to the number of coarse particles in the silica dispersion to be treated, by appropriately selecting the pore size of the filter and the structure of the filter medium, and further appropriately selecting the processing order of the filter. Particle size control (filtration accuracy) and economy can be improved. That is, when a filter having a large pore structure is used upstream (upstream) of a fine filter, there is an effect that the lifetime of the filter can be extended as a whole manufacturing process.
 本発明の製造方法に用いられるプリーツ型フィルターとしては、一般にろ過材をヒダ状(プリーツ状)に成形加工して、中空円筒形状のカートリッジタイプ式にしたもの(アドバンテック東洋社、日本ポール社、CUNO社、ダイワボウ社等)を用いることができる。プリーツ型フィルターは、厚み方向の各部分で捕集するデプス型フィルターと異なり、ろ過材の厚みが薄く、フィルター表面での捕集が主体と言われており、一般的にろ過精度が高いことが特徴である。 As a pleated filter used in the production method of the present invention, a filter medium is generally formed into a pleated shape (pleated shape) into a hollow cylindrical cartridge type (Advantech Toyo Co., Ltd., Nippon Pole Co., CUNO). Company, Daiwabo Co., Ltd.). Unlike depth filters that collect in each part in the thickness direction, pleated filters are said to have a thin filter material and are mainly collected on the filter surface, and generally have high filtration accuracy. It is a feature.
 プリーツ型フィルターは、1段で用いてもよく、多段で組合せて(例えば直列配置で)用いてもよい。また、多段ろ過は、粗大粒子数に応じ、適宜フィルターの孔径とろ過材の構造を適切に選択し、該フィルターの処理順序を適切に選択することで、本発明における研磨液組成物の生産性を向上することができる。即ち、孔構造が大きいフィルターを細かいフィルターより前段(上流側)で用いると、フィルターの寿命を全体として長くできる。さらに、後に用いるフィルターは、同孔径のフィルターを多段にすることで、研磨液組成物中の品質をより安定化させることができる。 The pleated filter may be used in one stage, or may be used in combination in multiple stages (for example, in a series arrangement). In addition, according to the number of coarse particles, multi-stage filtration appropriately selects the filter pore size and the structure of the filter medium, and appropriately selects the processing order of the filter, so that the productivity of the polishing liquid composition in the present invention is improved. Can be improved. That is, if a filter having a large pore structure is used upstream (upstream) of a fine filter, the life of the filter can be extended as a whole. Furthermore, the filter used later can stabilize the quality in polishing liquid composition more by making the filter of the same hole diameter into a multistage.
 ろ過工程全体では、デプス型フィルターろ過、ろ過助剤含有フィルターろ過、プリーツ型フィルターろ過の順に用いると、フィルターの寿命を全体として長くでき、本発明における研磨液組成物を経済的に生産できるため好ましい。 In the entire filtration step, it is preferable to use depth filter filtration, filter aid-containing filter filtration, and pleated filter filtration in this order because the filter life can be extended as a whole and the polishing composition in the present invention can be produced economically. .
 前記デプス型フィルター及びプリーツ型フィルターの孔径は、一般に99%除去可能なろ過精度として表され、例えば孔径1.0μmとは、直径1.0μmの粒子を99%除去可能なフィルターを示している。前記孔径は、フィルターの機能を発揮するために0.0μmを超えることが好ましい。 The pore size of the depth type filter and the pleated type filter is generally expressed as a filtration accuracy capable of removing 99%. For example, a pore size of 1.0 μm indicates a filter capable of removing 99% of particles having a diameter of 1.0 μm. The pore diameter preferably exceeds 0.0 μm in order to exhibit the function of the filter.
 前記デプス型フィルターの孔径は、粗大粒子除去負荷軽減の観点から、好ましくは5.0μm以下、より好ましくは3.0μm以下、さらに好ましくは2.0μm以下、さらにより好ましくは1.0μm以下、さらにより好ましくは0.5μm以下である。 The pore size of the depth filter is preferably 5.0 μm or less, more preferably 3.0 μm or less, still more preferably 2.0 μm or less, and even more preferably 1.0 μm or less, from the viewpoint of reducing the coarse particle removal load. More preferably, it is 0.5 μm or less.
 また、前記デプス型フィルターを多段(例えば直列配置)にする場合は、最終フィルターの孔径がサブミクロン以下のものを用いると、前記ろ過助剤含有フィルターを用いたろ過処理における粗大粒子除去負荷がさらに軽減し、より生産性の向上を図ることができる。 In addition, when the depth filter is multistage (for example, in series), if the final filter has a pore size of submicron or less, the coarse particle removal load in the filtration process using the filter aid-containing filter is further increased. It can be reduced and productivity can be improved.
 前記プリーツ型フィルターの孔径は、粗大粒子低減の観点から1.0μm以下が好ましく、より好ましくは0.8μm以下、さらに好ましくは0.6μm以下、さらに好ましくは0.5μm以下である。 The pore size of the pleated filter is preferably 1.0 μm or less, more preferably 0.8 μm or less, further preferably 0.6 μm or less, and further preferably 0.5 μm or less from the viewpoint of reducing coarse particles.
 本発明におけるろ過方法としては、繰り返しろ過する循環式でもよく、1パス方式でもよい。また、1パス方式を繰り返すバッチ式を用いてもよい。通液方法は、加圧するために、循環式では好ましくはポンプが用いられ、1パス方式ではポンプを用いる他に、タンクに空気圧等を導入することでフィルター入口圧力の変動幅が小さい加圧ろ過法を用いることが出来る。 The filtration method in the present invention may be a recirculation method that repeatedly filters or a one-pass method. Alternatively, a batch method that repeats the one-pass method may be used. In order to pressurize, the circulation method preferably uses a pump in the circulation type, and uses a pump in the one-pass system. In addition, a pressure filtration with a small fluctuation range of the filter inlet pressure by introducing air pressure or the like into the tank. Can be used.
 本発明の製造方法において、前記デプス型フィルターやプリーツ型フィルターを用いる他、一般的な分散工程あるいは粒子除去工程を設けてもよい。例えば、高速分散装置や高圧ホモジナイザー等の高圧分散装置を用いた分散工程や、遠心分離装置等による粗大粒子の沈降工程も利用できる。これらを用いて処理する場合、それぞれ単独で処理しても2種以上を組み合わせて処理しても良く、組み合わせの処理順序についても何ら制限はない。また、その処理条件や処理回数についても、適宜選択して使用することができる。 In the production method of the present invention, a general dispersion step or particle removal step may be provided in addition to using the depth type filter or the pleated type filter. For example, a dispersion process using a high-pressure dispersion apparatus such as a high-speed dispersion apparatus or a high-pressure homogenizer, or a coarse particle sedimentation process using a centrifugal separator or the like can be used. When processing using these, each may be processed independently or may be processed in combination of two or more, and there is no limitation on the processing order of the combination. Further, the processing conditions and the number of processing times can be appropriately selected and used.
 本明細書において「被処理シリカ分散液」は、ろ過助剤含有フィルターによるろ過処理に供される前のシリカスラリー(シリカ分散液)をいう。また、前記ろ過助剤含有フィルターと前記デプス型フィルター及び/又はプリーツ型フィルターとを組み合わせたろ過システムでろ過することを含む場合(例えば、本発明の製造方法(2)及び本発明の製造方法(3)の場合)、「被処理シリカ分散液」は、前記ろ過システムの最初のフィルター(1段目のフィルター)に導入するシリカ分散液を指し得る。被処理シリカ分散液は、一実施形態において、コロイダルシリカと水とを含むものが挙げられ、例えば、コロイダルシリカと水とからなるもの、さらに他の成分を含むもの、又は、汎用コロイダルシリカのスラリーが挙げられる。被処理シリカ分散液は、その他の実施形態において、後述の研磨液組成物に配合され得る他の成分を混合して製造されたものが挙げられる。被処理シリカ分散液の状態としては、コロイダルシリカが分散した状態が好ましい。 In the present specification, the “silica dispersion to be treated” refers to a silica slurry (silica dispersion) before being subjected to a filtration treatment with a filter aid-containing filter. Moreover, when including the filtration with the filtration system which combined the said filter aid containing filter, the said depth type filter, and / or a pleat type filter (For example, the manufacturing method (2) of this invention, and the manufacturing method of this invention ( In the case of 3)), the “silica dispersion to be treated” may refer to a silica dispersion introduced into the first filter (first-stage filter) of the filtration system. In one embodiment, the silica dispersion to be treated includes one containing colloidal silica and water, for example, one comprising colloidal silica and water, one containing other components, or a slurry of general-purpose colloidal silica. Is mentioned. In other embodiments, the silica dispersion to be treated includes those prepared by mixing other components that can be blended in the polishing composition described below. The state of the silica dispersion to be treated is preferably a state in which colloidal silica is dispersed.
 本発明においては、一次粒子の平均粒子径が1~100nmのコロイダルシリカを含有する被処理シリカ分散液をろ過助剤含有フィルターによるろ過に供することで、研磨液組成物を製造することができる。具体的には、コロイダルシリカ、水、及び他の成分を混合して製造された被処理シリカ分散液を前記ろ過に供したり、或いは、コロイダルシリカ及び水を含有した被処理シリカ分散液を前記ろ過に供した後、得られたろ過物(ろ過済みシリカスラリー)に他の成分を混合したりすることで研磨液組成物を製造することができる。 In the present invention, a polishing liquid composition can be produced by subjecting a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm to filtration with a filter aid-containing filter. Specifically, the treated silica dispersion prepared by mixing colloidal silica, water, and other components is subjected to the filtration, or the treated silica dispersion containing colloidal silica and water is filtered. Then, the polishing composition can be produced by mixing other components with the obtained filtrate (filtered silica slurry).
 本発明において使用されるコロイダルシリカは、例えば珪酸水溶液から生成させる製法によって得ることができる。また、これら研磨粒子を官能基で表面修飾あるいは表面改質したもの、界面活性剤や他の研磨材で複合粒子化したもの等も用いることができる。 The colloidal silica used in the present invention can be obtained, for example, by a production method produced from a silicic acid aqueous solution. In addition, those obtained by surface modification or surface modification of these abrasive particles with functional groups, those obtained by compounding with surfactants or other abrasives, and the like can also be used.
 コロイダルシリカの一次粒子の平均粒子径は、スクラッチ及びパーティクルを低減する観点及び表面粗さ(中心線平均粗さ:Ra、Peak to Valley値:Rmax)を低減する観点から、1~100nmであり、1~80nmが好ましい。同時に研磨速度を向上させる観点から、より好ましくは3~80nm、さらに好ましくは4~50nm、さらに好ましくは5~40nm、さらに好ましくは5~30nmである。ここで、コロイダルシリカの一次粒子の平均粒子径は、実施例に記載の方法により測定される値である。 The average particle diameter of the primary particles of colloidal silica is 1 to 100 nm from the viewpoint of reducing scratches and particles and from the viewpoint of reducing the surface roughness (centerline average roughness: Ra, Peak to Valley value: Rmax). 1 to 80 nm is preferable. From the viewpoint of simultaneously improving the polishing rate, the thickness is more preferably 3 to 80 nm, further preferably 4 to 50 nm, further preferably 5 to 40 nm, and further preferably 5 to 30 nm. Here, the average particle diameter of the primary particles of colloidal silica is a value measured by the method described in Examples.
 前記被処理シリカ分散液中のコロイダルシリカの含有量は、スクラッチ及びパーティクルを低減する観点及び生産性を向上する観点から、好ましくは1~50重量%、より好ましくは10~45重量%、さらに好ましくは20~40重量%、さらにより好ましくは、30~40重量%である。 The content of colloidal silica in the silica dispersion to be treated is preferably 1 to 50% by weight, more preferably 10 to 45% by weight, and still more preferably from the viewpoint of reducing scratches and particles and improving productivity. Is 20 to 40% by weight, still more preferably 30 to 40% by weight.
 また、前記被処理シリカ分散液中の粗大粒子の含有量は、通常、1×10~200×10個/mLであり、スクラッチ及びパーティクルを低減する観点から、100×10個/mL以下が好ましく、70×10個/mL以下がより好ましく、50×10個/mL以下がさらに好ましく、40×10個/mL以下がさらにより好ましい。スクラッチ及びパーティクルを低減する観点及び生産性を向上する観点から、好ましくは1×10~100×10個/mL、より好ましくは1×10~70×10個/mL、さらに好ましくは1×10~50×10個/mL、さらにより好ましくは1×10~40×10個/mLである。 Further, the content of coarse particles in the silica dispersion to be treated is usually 1 × 10 4 to 200 × 10 4 particles / mL, and from the viewpoint of reducing scratches and particles, 100 × 10 4 particles / mL. The following is preferable, 70 × 10 4 pieces / mL or less is more preferable, 50 × 10 4 pieces / mL or less is further preferable, and 40 × 10 4 pieces / mL or less is even more preferable. From the viewpoint of reducing scratches and particles and improving productivity, it is preferably 1 × 10 4 to 100 × 10 4 pieces / mL, more preferably 1 × 10 4 to 70 × 10 4 pieces / mL, and more preferably 1 × 10 4 to 50 × 10 4 pieces / mL, and even more preferably 1 × 10 4 to 40 × 10 4 pieces / mL.
 一方、本発明の製造方法(2)及び(3)においては、生産性向上の観点から、被処理シリカ分散液は汎用コロイダルシリカのスラリーであってもよく、或いは、粗大粒子量が、20.0×10個/mL以上、30.0×10個/mL以上、又は34.0×10個/mL以上であるシリカスラリーであってもよい。従って、スクラッチ及びパーティクルを低減する観点、及び、生産性を向上する観点から、好ましくは、20.0×10~200×10個/mL、より好ましくは30.0×10~100×10個/mL、さらに好ましくは34.0×10~70×10個/mLである。ここで、被処理シリカ分散液中の粗大粒子の含有量は、実施例に記載の方法により測定される値である。 On the other hand, in the production methods (2) and (3) of the present invention, from the viewpoint of improving productivity, the silica dispersion to be treated may be a slurry of general-purpose colloidal silica or the amount of coarse particles is 20. The silica slurry may be 0 × 10 4 pieces / mL or more, 30.0 × 10 4 pieces / mL or more, or 34.0 × 10 4 pieces / mL or more. Therefore, from the viewpoint of reducing scratches and particles and improving productivity, it is preferably 20.0 × 10 4 to 200 × 10 4 particles / mL, more preferably 30.0 × 10 4 to 100 ×. 10 4 pieces / mL, more preferably 34.0 × 10 4 to 70 × 10 4 pieces / mL. Here, the content of coarse particles in the silica dispersion to be treated is a value measured by the method described in Examples.
 また、前記被処理シリカ分散液の0.45μmフィルター通液量は、通常、1~10mLであり、スクラッチ及びパーティクルを低減する観点及び生産性を向上する観点から、好ましくは2~10mL、より好ましくは3~10mL、さらに好ましくは4~10mL、さらにより好ましくは、5~10mLである。ここで、被処理シリカ分散液の0.45μmフィルター通液量は、実施例に記載の方法により測定される値である。 Further, the 0.45 μm filter flow rate of the silica dispersion to be treated is usually 1 to 10 mL, preferably 2 to 10 mL, more preferably from the viewpoint of reducing scratches and particles and improving productivity. Is 3 to 10 mL, more preferably 4 to 10 mL, and even more preferably 5 to 10 mL. Here, the 0.45 μm filter flow rate of the silica dispersion to be treated is a value measured by the method described in the examples.
 また、前記被処理シリカ分散液のΔCV値は、通常1~20%であり、スクラッチ及びパーティクルを低減する観点及び生産性を向上する観点から、好ましくは1~15%、より好ましくは1~13%、さらに好ましくは1~12%、さらにより好ましくは、1~11%である。 Further, the ΔCV value of the silica dispersion to be treated is usually 1 to 20%, and preferably 1 to 15%, more preferably 1 to 13 from the viewpoint of reducing scratches and particles and improving productivity. %, More preferably 1 to 12%, still more preferably 1 to 11%.
 ここで、前記被処理シリカ分散液のΔCV値とは、動的光散乱法による検出角30度(前方散乱)の散乱強度分布に基づく測定で得られる、標準偏差を平均粒径で除して100を掛けた変動係数の値(CV30)と、検出角90度(側方散乱)の散乱強度分布に基づく測定で得られる、標準偏差を平均粒径で除して100を掛けた変動係数の値(CV90)との差(ΔCV=CV30-CV90)であり、具体的には実施例に記載の方法により測定することができる。 Here, the ΔCV value of the silica dispersion to be treated is obtained by dividing the standard deviation obtained by measurement based on the scattering intensity distribution at a detection angle of 30 degrees (forward scattering) by the dynamic light scattering method by the average particle diameter. The coefficient of variation (CV30) multiplied by 100 and the coefficient of variation obtained by dividing the standard deviation by the average particle size and multiplying by 100, obtained by measurement based on the scattering intensity distribution at a detection angle of 90 degrees (side scatter). It is the difference (ΔCV = CV30−CV90) from the value (CV90), and can be specifically measured by the method described in the examples.
 研磨液組成物のΔCV値と、粗大粒子や澱に由来すると考えられるコロイダルシリカ凝集体(非球状粒子)の含有量との間には相関関係があるため、研磨液組成物のΔCV値を前記所定範囲に調整することで、研磨後のスクラッチ及びパーティクルを低減できると考えられる(参考:特開2011-13078)。 Since there is a correlation between the ΔCV value of the polishing liquid composition and the content of colloidal silica aggregates (non-spherical particles) that are considered to be derived from coarse particles and starch, the ΔCV value of the polishing liquid composition is It is considered that scratches and particles after polishing can be reduced by adjusting to a predetermined range (reference: JP 2011-13078).
 被研磨物を研磨する際の研磨液組成物中のコロイダルシリカの含有量は、研磨速度を向上させる観点から、好ましくは0.5重量%以上、より好ましくは1重量%以上、さらに好ましくは2重量%以上、さらに好ましくは3重量%以上であり、さらにより好ましくは5重量%以上であり、また、経済的に表面品質を向上させる観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは13重量%以下、さらにより好ましくは10重量%以下である。従って、研磨速度を向上させ、且つ経済的に表面品質を向上させる観点からは、好ましくは0.5~20重量%、より好ましくは1~15重量%、さらに好ましくは2~13重量%、さらにより好ましくは3~10重量%、さらにより好ましくは5~10重量%である。ここで、コロイダルシリカの含有量は、研磨液組成物製造時における含有量あるいは使用時における含有量のいずれであってもよく、通常、濃縮液として製造され、これを使用時に希釈して用いる場合が多い。 The content of colloidal silica in the polishing composition when polishing the object to be polished is preferably 0.5% by weight or more, more preferably 1% by weight or more, and still more preferably 2 from the viewpoint of improving the polishing rate. % By weight or more, more preferably 3% by weight or more, still more preferably 5% by weight or more, and preferably 20% by weight or less, more preferably 15% by weight from the viewpoint of economically improving the surface quality. % Or less, more preferably 13% by weight or less, still more preferably 10% by weight or less. Therefore, from the viewpoint of improving the polishing rate and economically improving the surface quality, it is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, still more preferably 2 to 13% by weight, More preferably, it is 3 to 10% by weight, and still more preferably 5 to 10% by weight. Here, the content of the colloidal silica may be either the content at the time of polishing composition production or the content at the time of use. Usually, it is produced as a concentrated liquid and diluted when used. There are many.
 研磨液組成物に使用される水としては、イオン交換水、蒸留水、超純水等が挙げられる。研磨液組成物中の水の含有量は、100重量%から研磨材及び他の成分を除いた残部に相当し、60~99重量%が好ましく、80~97重量%がより好ましい。 Examples of water used in the polishing liquid composition include ion exchange water, distilled water, and ultrapure water. The content of water in the polishing composition corresponds to the balance obtained by removing the abrasive and other components from 100% by weight, preferably 60 to 99% by weight, more preferably 80 to 97% by weight.
 前記被処理シリカ分散液のpHは、粗大粒子の発生抑制及びコロイダルシリカの安定性向上の観点から、好ましくは9~11、より好ましくは9.2~10.8、さらに好ましくは9.4~10.6、さらにより好ましくは、9.5~10.5である。また、本発明において製造される研磨液組成物のpHについて特に制限はないが、当該研磨液組成物を研磨に使用する場合、pHは0.1~7で使用することが好ましい。アルカリ性においては、酸性に比べてスクラッチが発生しやすい傾向にある。その発生機構は明らかではないが、研磨粒子同士が表面電荷によって強く反発し合うアルカリ性雰囲気下では、研磨液組成物中に含有される研磨一次粒子の凝集物あるいは粗大研磨一次粒子が研磨部において密な充填ができずに、研磨圧力下で局部荷重を受けやすくなるためと推定される。pHは、被研磨物の種類や要求特性に応じて決定することが好ましく、被研磨物の材質が金属材料では、研磨速度を向上させる観点から、pHは、好ましくは6以下、より好ましくは5以下、さらに好ましくは4以下、さらにより好ましくは3以下、さらにより好ましくは2以下である。また、人体への影響や研磨装置の腐食防止の観点から、好ましくは0.5以上、より好ましくは1.0以上、さらに好ましくは1.4以上である。特に、ニッケル-リン(Ni-P)メッキされたアルミニウム合金基板のように被研磨物の材質が金属材料の精密部品用基板においては、前記観点を考慮してpHは、0.5~6が好ましく、より好ましくは1.0~5、さらに好ましくは1.4~4、さらにより好ましくは1.4~3、さらにより好ましくは1.4~2である。 The pH of the silica dispersion to be treated is preferably 9 to 11, more preferably 9.2 to 10.8, and still more preferably 9.4 to from the viewpoint of suppressing the generation of coarse particles and improving the stability of colloidal silica. 10.6, even more preferably 9.5 to 10.5. Further, the pH of the polishing composition produced in the present invention is not particularly limited, but when the polishing composition is used for polishing, the pH is preferably 0.1 to 7. In alkaline, scratches tend to occur more easily than acidic. The generation mechanism is not clear, but in an alkaline atmosphere in which abrasive particles repel each other due to surface charges, aggregates of abrasive primary particles or coarse abrasive primary particles contained in the polishing composition are dense in the polishing part. This is presumed to be due to the fact that the local load cannot be easily filled under the polishing pressure. The pH is preferably determined according to the type of the object to be polished and the required characteristics. When the material of the object to be polished is a metal material, the pH is preferably 6 or less, more preferably 5 from the viewpoint of improving the polishing rate. Hereinafter, it is further preferably 4 or less, still more preferably 3 or less, and still more preferably 2 or less. Further, from the viewpoint of the influence on the human body and the prevention of corrosion of the polishing apparatus, it is preferably 0.5 or more, more preferably 1.0 or more, and still more preferably 1.4 or more. In particular, in the case of a precision component substrate whose material to be polished is a metal material, such as a nickel-phosphorus (Ni-P) plated aluminum alloy substrate, the pH is 0.5 to 6 in consideration of the above viewpoint. More preferably, it is 1.0 to 5, still more preferably 1.4 to 4, still more preferably 1.4 to 3, and still more preferably 1.4 to 2.
 前記研磨液組成物のpHは、例えば、以下の酸や塩、又はアルカリによって適宜調整することができる。具体的には、硝酸、硫酸、亜硝酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸又はそれらの塩、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸、α-メチルホスホノコハク酸等の有機ホスホン酸又はそれらの塩、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸又はそれらの塩、シュウ酸、ニトロ酢酸、マレイン酸、オキサロ酢酸等のカルボン酸又はそれらの塩、などが挙げられる。中でもスクラッチを低減する観点から、無機酸又は有機ホスホン酸及びそれらの塩が好ましい。 The pH of the polishing composition can be adjusted as appropriate with the following acid, salt, or alkali, for example. Specifically, nitric acid, sulfuric acid, nitrous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid and other inorganic acids or salts thereof, 2-amino Ethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane- 1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2- Diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane- , 3,4-tricarboxylic acid, organic phosphonic acids such as α-methylphosphonosuccinic acid or their salts, aminocarboxylic acids such as glutamic acid, picolinic acid, aspartic acid or their salts, oxalic acid, nitroacetic acid, maleic acid And carboxylic acids such as oxaloacetic acid or salts thereof. Among these, from the viewpoint of reducing scratches, inorganic acids or organic phosphonic acids and salts thereof are preferable.
 前記無機酸又はそれらの塩の中では、硝酸、硫酸、塩酸、過塩素酸又はそれらの塩がより好ましく、前記有機ホスホン酸又はそれらの塩の中では、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)又はそれらの塩がより好ましい。これらは単独で又は2種類以上を混合して用いてもよい。 Among the inorganic acids or salts thereof, nitric acid, sulfuric acid, hydrochloric acid, perchloric acid or salts thereof are more preferable. Among the organic phosphonic acids or salts thereof, 1-hydroxyethylidene-1,1-diphosphone is preferred. More preferred are acids, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) or salts thereof. You may use these individually or in mixture of 2 or more types.
 前記酸の塩としては、特に限定はなく、具体的には、金属、アンモニア、アルキルアミンとの塩が挙げられる。金属の具体的な例としては、周期律表(長周期型)の1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。スクラッチを低減する観点から、アンモニア又は1A族に属する金属が好ましい。 The acid salt is not particularly limited, and specific examples include salts with metals, ammonia, and alkylamines. Specific examples of the metal include metals belonging to 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8 of the periodic table (long period type). From the viewpoint of reducing scratches, ammonia or a metal belonging to Group 1A is preferable.
 被研磨物を研磨する際の研磨液組成物は、研磨後の基板のスクラッチ及びパーティクルの低減の観点から、複素環芳香族化合物を含有することが好ましい。 The polishing composition for polishing the object to be polished preferably contains a heterocyclic aromatic compound from the viewpoint of scratching the substrate after polishing and reducing particles.
 前記複素環芳香族化合物は、研磨後の基板のスクラッチ及びパーティクル低減の観点から、1H-ベンゾトリアゾールが好ましい。 The heterocyclic aromatic compound is preferably 1H-benzotriazole from the viewpoint of scratching the substrate after polishing and particle reduction.
 研磨液組成物における複素環芳香族化合物の含有量は、研磨後の基板のスクラッチ及びパーティクルの低減の観点から、研磨液組成物全体の重量に対して0.01~10重量%であることが好ましく、0.02~5重量%がより好ましく、0.05~2重量%がさらに好ましく、0.06~1重量%がさらにより好ましく、0.07~0.5重量%がさらにより好ましく、0.08~0.3重量%がさらにより好ましい。なお、研磨液組成物中の複素環芳香族化合物は1種類であってもよく、2種類以上であってもよい。 The content of the heterocyclic aromatic compound in the polishing liquid composition is 0.01 to 10% by weight with respect to the total weight of the polishing liquid composition from the viewpoint of reducing scratches and particles on the substrate after polishing. Preferably, 0.02 to 5 wt% is more preferable, 0.05 to 2 wt% is further preferable, 0.06 to 1 wt% is even more preferable, 0.07 to 0.5 wt% is still more preferable, Even more preferred is 0.08-0.3 wt%. In addition, the heterocyclic aromatic compound in the polishing composition may be one kind or two or more kinds.
 被研磨物を研磨する際の研磨液組成物は、研磨後の基板のスクラッチ、パーティクル及び表面粗さの最大値(AFM‐Rmax)の低減の観点から、アニオン性基を有する水溶性高分子(以下、アニオン性水溶性高分子ともいう)を含有することが好ましい。該高分子は、研磨時の摩擦振動を低減して研磨パッドの開孔部からのシリカ凝集体の脱落を防止し、研磨後の基板のスクラッチ及び表面粗さの最大値(AFM‐Rmax)を低減するものと推定される。 A polishing liquid composition for polishing an object to be polished is a water-soluble polymer having an anionic group (AFM-Rmax) from the viewpoint of reducing scratches, particles and maximum surface roughness of the substrate after polishing (AFM-Rmax). Hereinafter, it is preferable to contain an anionic water-soluble polymer). The polymer reduces frictional vibration during polishing to prevent the silica agglomerates from dropping from the openings of the polishing pad, and increases the maximum value (AFM-Rmax) of the scratch and surface roughness of the substrate after polishing. It is estimated to decrease.
 アニオン性水溶性高分子のアニオン性基としては、カルボン酸基、スルホン酸基、硫酸エステル基、リン酸エステル基、ホスホン酸基等が挙げられるが、スクラッチ、パーティクル及び表面粗さの最大値(AFM‐Rmax)の低減の観点から、カルボン酸基及び/又はスルホン酸基を有するものがより好ましく、スルホン酸基を有するものがさらに好ましい。なお、これらのアニオン性基は中和された塩の形態を取ってもよい。 Examples of the anionic group of the anionic water-soluble polymer include a carboxylic acid group, a sulfonic acid group, a sulfuric acid ester group, a phosphoric acid ester group, and a phosphonic acid group. The maximum value of scratches, particles, and surface roughness ( From the viewpoint of reducing (AFM-Rmax), those having a carboxylic acid group and / or a sulfonic acid group are more preferable, and those having a sulfonic acid group are more preferable. These anionic groups may take the form of neutralized salts.
 カルボン酸基及び又はスルホン酸基を有する水溶性高分子として、(メタ)アクリル酸/スルホン酸共重合体が挙げられ、(メタ)アクリル酸/2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸共重合体が好ましい。 Examples of water-soluble polymers having a carboxylic acid group and / or a sulfonic acid group include (meth) acrylic acid / sulfonic acid copolymers, and (meth) acrylic acid / 2- (meth) acrylamido-2-methylpropanesulfonic acid. A copolymer is preferred.
 アニオン性水溶性高分子の重量平均分子量は、スクラッチ及びパーティクル低減及び生産性維持の観点から、500以上10万以下が好ましく、より好ましくは500以上5万以下、さらに好ましくは500以上2万以下、さらにより好ましくは1000以上1万以下、さらにより好ましくは1000以上8000以下、さらにより好ましくは1000以上5000以下、さらにより好ましくは1000以上4000以下、さらにより好ましくは1000以上3000以下である。該重量平均分子量は、具体的には、実施例に記載の測定方法により測定される。 The weight average molecular weight of the anionic water-soluble polymer is preferably 500 or more and 100,000 or less, more preferably 500 or more and 50,000 or less, further preferably 500 or more and 20,000 or less, from the viewpoint of scratch and particle reduction and productivity maintenance. Even more preferably, it is 1000 or more and 10,000 or less, still more preferably 1000 or more and 8000 or less, still more preferably 1000 or more and 5000 or less, still more preferably 1000 or more and 4000 or less, and still more preferably 1000 or more and 3000 or less. Specifically, the weight average molecular weight is measured by the measurement method described in Examples.
 研磨液組成物中における、アニオン性水溶性高分子の含有量は、スクラッチ及びパーティクル低減と生産性との両立の観点から、0.001~1重量%以上が好ましく、より好ましくは0.005~0.5重量%、さらに好ましくは0.08~0.2重量%、さらにより好ましくは0.01~0.1重量%、さらにより好ましくは0.01~0.075重量%である。 The content of the anionic water-soluble polymer in the polishing composition is preferably 0.001 to 1% by weight or more, more preferably 0.005 to more preferably from the viewpoint of achieving both scratch and particle reduction and productivity. It is 0.5% by weight, more preferably 0.08 to 0.2% by weight, still more preferably 0.01 to 0.1% by weight, and still more preferably 0.01 to 0.075% by weight.
 被研磨物を研磨する際の研磨液組成物は、研磨後の基板表面のスクラッチ及びパーティクルの低減の観点から、脂肪族アミン化合物又は脂環式アミン化合物を含有することが好ましい。 The polishing liquid composition for polishing the object to be polished preferably contains an aliphatic amine compound or an alicyclic amine compound from the viewpoint of scratching the substrate surface after polishing and reducing particles.
 前記脂肪族アミン化合物としては、研磨後の基板表面のスクラッチ及びパーティクルの低減の観点から、N-アミノエチルエタノールアミンが好ましい。 The aliphatic amine compound is preferably N-aminoethylethanolamine from the viewpoint of scratching the substrate surface after polishing and reducing particles.
 前記脂環式アミン化合物としては、研磨後の基板表面のスクラッチ及びパーティクルの低減の観点から、N-(2-アミノエチル)ピペラジン及びヒドロキシエチルピペラジンが好ましい。 The alicyclic amine compound is preferably N- (2-aminoethyl) piperazine and hydroxyethylpiperazine from the viewpoint of scratching the substrate surface after polishing and reducing particles.
 前記研磨液組成物における脂肪族アミン化合物又は脂環式アミン化合物の含有量は、研磨後の基板表面のスクラッチ及びパーティクルの低減の観点から、研磨液組成物全体の重量に対して0.001~10重量%であることが好ましく、0.005~5重量%がより好ましく、0.008~2重量%がさらに好ましく、0.01~1重量%がさらにより好ましく、0.01~0.5重量%がさらにより好ましく、0.01~0.1重量%がさらにより好ましい。なお、研磨液組成物中の脂肪族アミン化合物又は脂環式アミン化合物は1種類であってもよく、2種類以上であってもよい。 The content of the aliphatic amine compound or alicyclic amine compound in the polishing liquid composition is 0.001 to the weight of the entire polishing liquid composition from the viewpoint of reducing scratches and particles on the substrate surface after polishing. It is preferably 10% by weight, more preferably 0.005 to 5% by weight, even more preferably 0.008 to 2% by weight, still more preferably 0.01 to 1% by weight, and 0.01 to 0.5%. % By weight is even more preferred, and 0.01 to 0.1% by weight is even more preferred. In addition, the aliphatic amine compound or alicyclic amine compound in polishing liquid composition may be one type, and may be two or more types.
 前記研磨液組成物は、研磨速度向上の観点から、酸化剤を含有することが好ましい。本発明の研磨液組成物に使用できる酸化剤としては、研磨速度を向上させる観点から、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、金属塩類、硝酸類、硫酸類等が挙げられる。 The polishing composition preferably contains an oxidizing agent from the viewpoint of improving the polishing rate. As an oxidizing agent that can be used in the polishing liquid composition of the present invention, from the viewpoint of improving the polishing rate, peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or an acid thereof Examples thereof include salts, metal salts, nitric acids, sulfuric acids and the like.
 前記過酸化物としては、過酸化水素、過酸化ナトリウム、過酸化バリウム等が挙げられる。過マンガン酸又はその塩としては、過マンガン酸カリウム等が挙げられ、クロム酸又はその塩としては、クロム酸金属塩、重クロム酸金属塩等が挙げられ、ペルオキソ酸又はその塩としては、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸金属塩、ペルオキソリン酸、ペルオキソ硫酸、ペルオキソホウ酸ナトリウム、過ギ酸、過酢酸、過安息香酸、過フタル酸等が挙げられ、酸素酸又はその塩としては、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、塩素酸、臭素酸、ヨウ素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等が挙げられ、金属塩類としては、塩化鉄(III)、硫酸鉄(III)、硝酸鉄(III)、クエン酸鉄(III)、硫酸アンモニウム鉄(III)等が挙げられる。 Examples of the peroxide include hydrogen peroxide, sodium peroxide, barium peroxide and the like. Examples of permanganic acid or a salt thereof include potassium permanganate, and examples of chromic acid or a salt thereof include chromic acid metal salt and metal dichromate. A peroxo acid or a salt thereof includes peroxo acid. Examples include disulfuric acid, ammonium peroxodisulfate, metal peroxodisulfate, peroxophosphoric acid, peroxosulfuric acid, sodium peroxoborate, performic acid, peracetic acid, perbenzoic acid, perphthalic acid, etc. , Hypochlorous acid, hypobromite, hypoiodous acid, chloric acid, bromic acid, iodic acid, sodium hypochlorite, calcium hypochlorite and the like, and metal salts include iron chloride (III ), Iron (III) sulfate, iron (III) nitrate, iron (III) citrate, and iron (III) ammonium sulfate.
 好ましい酸化剤としては、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)等が挙げられる。より好ましい酸化剤としては、表面に金属イオンが付着せず汎用に使用され安価であるという観点から過酸化水素が挙げられる。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。 Preferred examples of the oxidizing agent include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) ammonium sulfate. As a more preferable oxidizing agent, hydrogen peroxide is mentioned from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive. These oxidizing agents may be used alone or in admixture of two or more.
 前記研磨液組成物中における前記酸化剤の含有量は、研磨速度向上の観点から、好ましくは0.01重量%以上、より好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上であり、基板の表面粗さ低減の観点から、好ましくは4重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。従って、表面品質を保ちつつ研磨速度を向上させるためには、上記含有量は、好ましくは0.01~4重量%、より好ましくは0.05~2重量%、さらに好ましくは0.1~1重量%である。 The content of the oxidizing agent in the polishing liquid composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and further preferably 0.1% by weight or more from the viewpoint of improving the polishing rate. From the viewpoint of reducing the surface roughness of the substrate, it is preferably 4% by weight or less, more preferably 2% by weight or less, and still more preferably 1% by weight or less. Therefore, in order to improve the polishing rate while maintaining the surface quality, the content is preferably 0.01 to 4% by weight, more preferably 0.05 to 2% by weight, and still more preferably 0.1 to 1%. % By weight.
 また、前記研磨液組成物には、必要に応じて他の成分を配合することができる。例えば、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。 In addition, other components can be blended in the polishing liquid composition as necessary. For example, a thickener, a dispersant, a rust inhibitor, a basic substance, a surfactant, and the like can be given.
 本発明の製造方法により得られる研磨液組成物のフィルター(孔径0.45μm)通液量は、スクラッチ及びパーティクル低減の観点から、25mL以上であることが好ましく、30mL以上がより好ましく、50mL以上がさらに好ましく、70mL以上がさらにより好ましく、100mL以上がさらにより好ましい。ここで、研磨液組成物のフィルター通液量とは、実施例に記載の方法により測定される値である。 From the viewpoint of scratching and particle reduction, the amount of the polishing composition liquid obtained by the production method of the present invention (pore diameter 0.45 μm) is preferably 25 mL or more, more preferably 30 mL or more, and 50 mL or more. More preferably, 70 mL or more is even more preferable, and 100 mL or more is even more preferable. Here, the amount of filter liquid passing through the polishing composition is a value measured by the method described in Examples.
 また、本発明の製造方法により得られる研磨液組成物における粗大粒子の含有量は、スクラッチ及びパーティクル低減の観点、及び生産性向上の観点から、好ましくは0.5×10~10×10個/mL、より好ましくは0.5×10~5×10個/mL、さらに好ましくは0.5×10~4×10個/mL、さらにより好ましくは0.5×10~3×10個/mLである。ここで、研磨液組成物における粗大粒子の含有量は、実施例に記載の方法により測定される。 In addition, the content of coarse particles in the polishing composition obtained by the production method of the present invention is preferably 0.5 × 10 4 to 10 × 10 4 from the viewpoints of scratch and particle reduction and productivity. Pieces / mL, more preferably 0.5 × 10 4 to 5 × 10 4 pieces / mL, still more preferably 0.5 × 10 4 to 4 × 10 4 pieces / mL, and even more preferably 0.5 × 10 4 ˜3 × 10 4 cells / mL. Here, content of the coarse particle in polishing liquid composition is measured by the method as described in an Example.
 また、本発明の製造方法により得られる研磨液組成物のΔCV値は、スクラッチ及びパーティクルを低減する観点及び生産性を向上する観点から、好ましくは0.1~10%、より好ましくは0.1~5.0%、さらに好ましくは0.1~4.0%、さらにより好ましくは0.1~3.0%、さらにより好ましくは、0.1~2.5%である。 The ΔCV value of the polishing composition obtained by the production method of the present invention is preferably 0.1 to 10%, more preferably 0.1 from the viewpoint of reducing scratches and particles and improving productivity. -5.0%, more preferably 0.1-4.0%, even more preferably 0.1-3.0%, still more preferably 0.1-2.5%.
 本発明の製造方法にて得られた研磨液組成物は、例えば、不織布の有機高分子系研磨布等(研磨パッド)と被研磨基板との間に供給され、即ち、研磨液組成物が研磨パッドを貼り付けた研磨盤で挟み込まれた基板研磨面に供給され、所定の圧力の下で研磨盤及び/又は基板を動かすことにより、基板に接触しながら研磨工程に用いられる。この研磨によりスクラッチ及びパーティクルの発生を顕著に抑えることができる。 The polishing liquid composition obtained by the production method of the present invention is supplied, for example, between a non-woven organic polymer polishing cloth or the like (polishing pad) and the substrate to be polished, that is, the polishing liquid composition is polished. The substrate is supplied to a substrate polishing surface sandwiched between polishing pads with a pad attached thereto, and is used in the polishing step while contacting the substrate by moving the polishing plate and / or the substrate under a predetermined pressure. By this polishing, generation of scratches and particles can be remarkably suppressed.
 前記研磨液組成物は、特に精密部品用基板の製造に好適である。例えば磁気ディスク、光磁気ディスク等の磁気記録媒体の基板、光ディスク、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板などの精密部品基板の研磨に適している。半導体基板の製造においては、シリコンウエハ(ベアウエハ)のポリッシング工程、埋め込み素子分離膜の形成工程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成工程、埋め込みキャパシタ形成工程等において本発明の製造方法にて得られた研磨液組成物を用いることができる。 The polishing liquid composition is particularly suitable for the production of precision component substrates. For example, it is suitable for polishing precision component substrates such as substrates of magnetic recording media such as magnetic disks and magneto-optical disks, optical disks, photomask substrates, optical lenses, optical mirrors, optical prisms, and semiconductor substrates. In the manufacture of a semiconductor substrate, the manufacturing method of the present invention is used in a polishing process of a silicon wafer (bare wafer), a formation process of a buried element isolation film, a planarization process of an interlayer insulating film, a formation process of a buried metal wiring, a formation process of a buried capacitor, etc. The polishing liquid composition obtained in (1) can be used.
 本発明の製造方法にて得られた研磨液組成物は、ポリッシング工程において特に効果があるが、これ以外の研磨工程、例えばラッピング工程等にも同様に適用することができる。 The polishing composition obtained by the production method of the present invention is particularly effective in the polishing process, but can be similarly applied to other polishing processes such as a lapping process.
 本発明の製造方法にて得られた研磨液組成物を用いる好適な被研磨物の材質としては、例えばシリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属若しくは半金属、又はこれらの合金、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中でも、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金を含有する被研磨物に好適である。例えば、Ni-Pメッキされたアルミニウム合金基板や結晶化ガラス、強化ガラス等のガラス基板により適しており、Ni-Pメッキされたアルミニウム合金基板がさらに適している。 Suitable materials for the polishing object using the polishing composition obtained by the production method of the present invention include, for example, metals or semi-metals such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, or the like. Examples thereof include glassy substances such as alloys, glass, glassy carbon, and amorphous carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resins. Among these, it is suitable for an object to be polished containing a metal such as aluminum, nickel, tungsten, or copper and an alloy mainly composed of these metals. For example, a Ni—P plated aluminum alloy substrate or a glass substrate such as crystallized glass or tempered glass is more suitable, and a Ni—P plated aluminum alloy substrate is more suitable.
 被研磨物の形状には特に制限は無く、例えばディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状のものに本発明の研磨液組成物は用いられる。中でも、ディスク状の被研磨物の研磨に優れている。 There is no particular limitation on the shape of the object to be polished. For example, the polishing liquid composition of the present invention has a shape having a flat portion such as a disk shape, a plate shape, a slab shape, a prism shape, or a shape having a curved surface portion such as a lens. Things are used. Among them, it is excellent for polishing a disk-shaped workpiece.
 表面平滑性の尺度である表面粗さについては、その評価方法は限られないが、例えば原子間力顕微鏡(AFM)における波長10μm以下の短い波長で測定可能な粗さとして評価し、中心線平均粗さRaとして表すことができる(AFM-Ra)。本発明の研磨液組成物は、磁気ディスク基板の研磨工程、さらには研磨後の基板の表面粗さ(AFM-Ra)を2.0Å以下にする研磨工程に適している。 The surface roughness, which is a measure of surface smoothness, is not limited in its evaluation method, but for example, it is evaluated as a roughness that can be measured at a short wavelength of 10 μm or less in an atomic force microscope (AFM), and the center line average It can be expressed as roughness Ra (AFM-Ra). The polishing composition of the present invention is suitable for a polishing process for a magnetic disk substrate, and further for a polishing process for reducing the surface roughness (AFM-Ra) of the substrate after polishing to 2.0 mm or less.
 基板の製造工程において、複数の研磨工程がある場合、2工程目以降に本発明の製造方法にて得られた研磨液組成物を用いるのが好ましく、スクラッチ及びパーティクルを顕著に低減し、優れた表面平滑性を得る観点から、仕上げ研磨工程に用いられるのがより好ましい。仕上げ研磨工程とは、複数の研磨工程がある場合、少なくとも一つの最後の研磨工程を指す。 In the production process of the substrate, when there are a plurality of polishing processes, it is preferable to use the polishing composition obtained by the production method of the present invention after the second process, which significantly reduces scratches and particles, and is excellent. From the viewpoint of obtaining surface smoothness, it is more preferably used in the finish polishing step. The finish polishing process refers to at least one final polishing process when there are a plurality of polishing processes.
 その際、前工程の研磨材や研磨液組成物の混入を避けるために、それぞれ別の研磨機を使用してもよく、またそれぞれ別の研磨機を使用した場合では、各工程毎に基板を洗浄することが好ましい。なお、研磨機としては、特に限定されない。このようにして製造された基板は、スクラッチ及びパーティクルが顕著に低減されており、且つ表面平滑性に優れたものである。即ち、研磨後の表面粗さ(AFM-Ra)は、例えば1Å以下、好ましくは0.9Å以下、より好ましくは0.8Å以下である。 At that time, in order to avoid mixing of the polishing material and polishing liquid composition in the previous process, different polishing machines may be used, and when different polishing machines are used, a substrate is provided for each process. It is preferable to wash. The polishing machine is not particularly limited. The substrate produced in this manner has significantly reduced scratches and particles and is excellent in surface smoothness. That is, the surface roughness after polishing (AFM-Ra) is, for example, 1 mm or less, preferably 0.9 mm or less, more preferably 0.8 mm or less.
 尚、本発明におけるろ過助剤含有フィルターを用いたろ過処理の後の研磨液組成物を用いた研磨工程に供する前の基板の表面性状は特に限定しないが、例えば、AFM-Raが10Å以下の表面性状を有する基板が適する。 The surface property of the substrate before being subjected to the polishing step using the polishing composition after the filtration treatment using the filter aid-containing filter in the present invention is not particularly limited. For example, the AFM-Ra is 10 mm or less. A substrate having surface properties is suitable.
 かかる基板の製造において使用される研磨材としては、前記の本発明の研磨液組成物に使用されるものと同一のものであればよい。前記研磨工程は、複数研磨工程の中でも2工程目以降に行われるのが好ましく、仕上げ研磨工程に行われるのが特に好ましい。 The abrasive used in the production of such a substrate may be the same as that used in the polishing composition of the present invention. The polishing step is preferably performed after the second step among the plurality of polishing steps, and particularly preferably performed in the finish polishing step.
 以上のようにして、製造された基板は、表面平滑性に優れ、表面粗さ(AFM-Ra)が例えば1.0Å以下、好ましくは0.9Å以下、より好ましくは0.8Å以下のものが得られる。 The substrate produced as described above has excellent surface smoothness and a surface roughness (AFM-Ra) of, for example, 1.0 mm or less, preferably 0.9 mm or less, more preferably 0.8 mm or less. can get.
 また、製造された基板はスクラッチが極めて少ないものである。従って、該基板が、例えば、メモリーハードディスク基板である場合には、記録密度750GB/Disk(3.5インチ)、さらには1TB/Disk(3.5インチ)のものにも対応することができる。 Also, the manufactured substrate has very few scratches. Therefore, when the substrate is, for example, a memory hard disk substrate, a recording density of 750 GB / Disk (3.5 inches), further 1 TB / Disk (3.5 inches) can be supported.
 1.[実施例1~9、比較例1~8]
 珪藻土フィルターを用いて被処理シリカ分散液をろ過し、実施例1~9及び比較例1~8の製造方法で研磨液組成物を製造した。該研磨液組成物を使用して基板の研磨を行い、研磨後の基板表面を評価した。被処理シリカ分散液及び珪藻土フィルター並びにろ過方法及び各種パラメータの測定方法は以下のとおり。
1. [Examples 1 to 9, Comparative Examples 1 to 8]
The silica dispersion to be treated was filtered using a diatomaceous earth filter, and polishing compositions were produced by the production methods of Examples 1 to 9 and Comparative Examples 1 to 8. The substrate was polished using the polishing composition, and the substrate surface after polishing was evaluated. The silica dispersion to be treated, the diatomaceous earth filter, the filtration method, and the measurement methods for various parameters are as follows.
 <被処理シリカ分散液>
 被処理シリカ分散液として、コロイダルシリカスラリーA(日揮触媒化成社製、一次粒子の平均粒径24nm、シリカ粒子濃度40重量%品、pH=10.0)、コロイダルシリカスラリーB(日揮触媒化成社製、一次粒子の平均粒径50nm、シリカ粒子濃度40重量%品、pH=9.7)、及びコロイダルシリカスラリーC(日揮触媒化成社製、一次粒子の平均粒径24nm、シリカ粒子濃度40重量%品、pH=10.0)を用いた。
<Silica dispersion to be treated>
As a silica dispersion to be treated, colloidal silica slurry A (manufactured by JGC Catalysts & Chemicals, Inc., average particle size of primary particles 24 nm, silica particle concentration 40% by weight, pH = 10.0), colloidal silica slurry B (JGC Catalysts & Chemicals, Inc.) Manufactured, average particle size of primary particles 50 nm, silica particle concentration 40 wt% product, pH = 9.7), and colloidal silica slurry C (manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle size of primary particles 24 nm, silica particle concentration 40 wt. % Product, pH = 10.0).
 <コロイダルシリカの一次粒子の平均粒子径の測定方法>
 まず、前記コロイダルシリカスラリーA~Cを固形分で1.5g分を200mLビーカーに採取し、イオン交換水100mLを加えてスターラーで混合する。次に、電位差滴定装置を用いて、0.1mol/Lの塩酸標準溶液で試料溶液のpHを3.0に調整する。塩化ナトリウム30.0gを加えスターラーで溶解して、ビーカーの150mLの標線までイオン交換水を加えスターラーで混合する。恒温水槽(20±2℃)に約30分間浸漬する。電位差滴定装置を用いて、0.1mol/Lの水酸化ナトリウム標準溶液で滴定をおこない、pHが4.0から9.0に変化したときの水酸化ナトリウム標準溶液の消費量(A)を読み取る。同時に空試験をおこない、空試験の滴定に要した水酸化ナトリウム標準溶液の消費量(B)を読み取る。そして、下記計算式により平均粒子径(nm)を算出する。
平均粒子径(nm)= 3100÷26.5×(A-B)÷試料採取量(g)
<Measuring method of average particle diameter of primary particles of colloidal silica>
First, 1.5 g of the colloidal silica slurry A to C is collected in a 200 mL beaker, and 100 mL of ion exchange water is added and mixed with a stirrer. Next, the pH of the sample solution is adjusted to 3.0 with a 0.1 mol / L hydrochloric acid standard solution using a potentiometric titrator. Add 30.0 g of sodium chloride and dissolve with a stirrer, add ion-exchanged water up to the 150 mL mark of the beaker and mix with a stirrer. Immerse in a constant temperature water bath (20 ± 2 ° C.) for about 30 minutes. Titration with a 0.1 mol / L sodium hydroxide standard solution using a potentiometric titrator, and reading the consumption (A) of the sodium hydroxide standard solution when the pH changes from 4.0 to 9.0. . At the same time, a blank test is performed, and the consumption (B) of the sodium hydroxide standard solution required for the titration of the blank test is read. And an average particle diameter (nm) is computed by the following formula.
Average particle diameter (nm) = 3100 ÷ 26.5 × (AB) ÷ sampled amount (g)
 <ΔCV値の測定方法>
 測定試料は、ろ過助剤を含むフィルターでろ過処理する前(又は後)のコロイダルシリカスラリーを、硫酸(和光純薬工業社製 特級)、HEDP(1-ヒドロキシエチリデン-1,1-ジホスホン酸、サーモスジャパン製)、過酸化水素水(旭電化製 濃度:35重量%)をイオン交換水で希釈した水溶液に添加し、これらを混合した後に1.20μmフィルター(ザルトリウス社製 Minisart 17593)でろ過して調製した。コロイダルシリカ、硫酸、HEDP、過酸化水素の含有量は、それぞれ、5重量%、0.4重量%、0.1重量%、0.4重量%とした。得られた測定試料20mLを専用の21φ円筒セルに入れて、大塚電子社製動的光散乱装置DLS-6500にセットした。同装置に添付された説明書に従い、200回積算した際の検出角90度におけるCumulant法によって得られる散乱強度分布の面積が全体の50%となる粒径を求めた。また、検出角90度におけるコロイダルシリカのCV値(CV90)を、上記測定法に従って測定した散乱強度分布における標準偏差を前記粒径で除して100をかけた値として算出した。前記CV90の測定法と同様に、検出角30度におけるコロイダルシリカのCV値(CV30)を測定し、CV30からCV90を引いた値を求め、シリカ粒子のΔCV値とした。
(DLS-6500の測定条件)
検出角:90°
Sampling time : 4(μm)
Correlation Channel : 256(ch)
Correlation Method : TI
Sampling temperature: 26.0(℃)
検出角:30°
Sampling time : 10(μm)
Correlation Channel : 1024(ch)
Correlation Method : TI
Sampling temperature: 26.0(℃)
<Measuring method of ΔCV value>
The measurement sample was a colloidal silica slurry before (or after) filtration with a filter containing a filter aid, sulfuric acid (special grade made by Wako Pure Chemical Industries), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid, Thermos Japan) and hydrogen peroxide (Asahi Denka Co., Ltd., concentration: 35% by weight) were added to an aqueous solution diluted with ion-exchanged water, mixed, and then filtered through a 1.20 μm filter (Minisart 17593, Sartorius). Prepared. The contents of colloidal silica, sulfuric acid, HEDP, and hydrogen peroxide were 5 wt%, 0.4 wt%, 0.1 wt%, and 0.4 wt%, respectively. 20 mL of the obtained measurement sample was put into a dedicated 21φ cylindrical cell and set in a dynamic light scattering apparatus DLS-6500 manufactured by Otsuka Electronics. In accordance with the instructions attached to the apparatus, the particle size at which the area of the scattering intensity distribution obtained by the Cumulant method at a detection angle of 90 degrees when accumulated 200 times is 50% of the total was determined. Further, the CV value (CV90) of colloidal silica at a detection angle of 90 degrees was calculated as a value obtained by dividing the standard deviation in the scattering intensity distribution measured according to the above measurement method by the particle size and multiplying by 100. Similar to the CV90 measurement method, the CV value (CV30) of colloidal silica at a detection angle of 30 degrees was measured, and the value obtained by subtracting CV90 from CV30 was determined as the ΔCV value of the silica particles.
(Measurement conditions for DLS-6500)
Detection angle: 90 °
Sampling time: 4 (μm)
Correlation Channel: 256 (ch)
Correlation Method: TI
Sampling temperature: 26.0 (° C)
Detection angle: 30 °
Sampling time: 10 (μm)
Correlation Channel: 1024 (ch)
Correlation Method: TI
Sampling temperature: 26.0 (° C)
 <粗大粒子量の測定方法>
 測定試料を、ろ過助剤を含むフィルターでろ過処理する前(又は後)のコロイダルシリカスラリーを6mLのシリンジで下記測定機器に注入し、粗大粒子量を測定した。
・測定機器:PSS社製「アキュサイザー780APS」
・インジェクション・ループ・ボリューム(Injection Loop Volume):1mL
・フローレート(Flow Rate):60mL/分
・データ・コレクション・タイム(Data Collection Time):60 sec
・チャンネル数(Number Channels):128
<Measurement method of coarse particle amount>
The colloidal silica slurry before (or after) filtering the measurement sample with a filter containing a filter aid was injected into the following measuring device with a 6 mL syringe, and the amount of coarse particles was measured.
・ Measuring equipment: “Accurizer 780APS” manufactured by PSS
・ Injection Loop Volume: 1mL
・ Flow Rate: 60 mL / min ・ Data Collection Time: 60 sec
・ Number of channels: 128
 <フィルター通液量の測定方法>
 測定試料を、ろ過助剤を含むフィルターでろ過処理する前(又は後)のコロイダルシリカスラリーを所定のフィルター(アドバンテック社製 親水性PTFE0.45μmフィルター、型式:25HP045AN)で、エアー圧力0.25MPaの一定圧力の下でフィルターに通液させ、フィルターが閉塞するまでの通液量を求めた。
<Measurement method of filter flow rate>
A colloidal silica slurry before (or after) filtering the measurement sample with a filter containing a filter aid is filtered with a predetermined filter (hydrophilic PTFE 0.45 μm filter, model: 25HP045AN, manufactured by Advantech) at an air pressure of 0.25 MPa. The solution was passed through the filter under a constant pressure, and the amount of solution passed until the filter was closed was determined.
 <ろ過助剤の平均細孔径及び0.5μm以下の積算細孔容積の測定方法>
 各ろ過助剤を4桁天秤で約0.1~0.3g精秤し、水銀をヘキサンでよく洗浄した5cc粉末用測定セルにステム内やスリ部にサンプルを付着させないように入れ、AutoPoreIV-9500(島津製作所社製 水銀圧入法 細孔分布測定装置)にセルをセットした。次に、パソコンでアプリケーション(AutoPoreIV-9500 ver1.07)を立上げ、Sample Information(先に測定したろ過助剤の重量)、Analysis Condition(Standardを選択)、Penetrometer Property(セル重量)、Report condition(Standardを選択)に必要事項をInputし、測定を行った。低圧部、高圧部の順に測定を行い、自動的にMedian Pore Diameter (Volume)(μm)と各Pore Size Diameter(μm)に対するLog Differential Pore Volume(mL/g)の結果を得た。
<Measuring method of average pore diameter of filter aid and cumulative pore volume of 0.5 μm or less>
Each filter aid is precisely weighed about 0.1 to 0.3 g with a 4-digit balance, and the mercury is thoroughly washed with hexane and placed in a 5 cc powder measurement cell so that the sample does not adhere to the stem or the threads. The cell was set in 9500 (Mercury intrusion method pore distribution measuring device manufactured by Shimadzu Corporation). Next, start up the application (AutoPoreIV-9500 ver1.07) on a personal computer, Sample Information (weight of filter aid measured earlier), Analysis Condition (select Standard), Penetrometer Property (cell weight), Report condition ( The necessary items were input to “Standard” and measurement was performed. The measurement was performed in the order of the low-pressure part and the high-pressure part, and the result of Log Differential Pore Volume (mL / g) for Median Pore Diameter (Volume) (μm) and each Pore Size Diameter (μm) was automatically obtained.
 (測定条件)
測定セル:Micromeritics社製 5cc-Powder(08-0444)
測定方式:圧力制御方式(圧力テーブルモード)
 Low Pressure equilibrium time 5secs
 High pressure equilibrium time 5secs
Hgに関するパラメータ:接触角:130°、表面張力:485dynes/cm
Stem Volume Used:100%以下で約50%にサンプル量を調整
(Measurement condition)
Measurement cell: Micromeritics 5cc-Powder (08-0444)
Measurement method: Pressure control method (pressure table mode)
Low Pressure equilibrium time 5secs
High pressure equilibrium time 5secs
Parameters relating to Hg: contact angle: 130 °, surface tension: 485 dynes / cm
Stem Volume Used: Adjust the sample volume to about 50% below 100%
 (平均細孔径の算出方法)
Median Pore Diameter (Volume)をろ過助剤の平均細孔径(μm)とした。
(Calculation method of average pore diameter)
Median Pore Diameter (Volume) was defined as the average pore diameter (μm) of the filter aid.
 (0.5μm以下の積算細孔容積の算出方法)
0.55μm以下のLog Differential Pore Volume(mL/g)の値を積算して0.5μm以下の積算細孔容積とした。
(Calculation method of integrated pore volume of 0.5 μm or less)
The value of Log Differential Pore Volume (mL / g) of 0.55 μm or less was integrated to obtain an integrated pore volume of 0.5 μm or less.
 <ろ過助剤のBET比表面積の測定方法>
 精秤した約1gの各ろ過助剤をASAP2020(株式会社島津製作所社製、比表面積・細孔分布測定装置)にセットし、多点法でBET比表面積を測定し、BET定数Cが正になる範囲で値を導出した。なお、試料の前処理は、10℃/分で昇温させ100℃で2時間保持させて行った。また、60℃の時点で500μmHgまで脱気を行なった。脱気を行なった。
<Measurement method of BET specific surface area of filter aid>
About 1 g of each filter aid precisely weighed was set in ASAP2020 (manufactured by Shimadzu Corporation, specific surface area / pore distribution measuring device), the BET specific surface area was measured by a multipoint method, and the BET constant C was positive. Values were derived within a range. The sample was pretreated by raising the temperature at 10 ° C./min and holding at 100 ° C. for 2 hours. In addition, deaeration was performed up to 500 μm Hg at 60 ° C. Deaeration was performed.
 <ろ過助剤のレーザー平均粒径の測定方法>
 各ろ過助剤をレーザー回折/散乱式粒度分布計(商品名LA-920、堀場製作所製)で測定して得られた体積基準のメジアン径として得られた値をレーザー平均粒径とした。
<Method for measuring laser average particle size of filter aid>
The value obtained as a volume-based median diameter obtained by measuring each filter aid with a laser diffraction / scattering particle size distribution analyzer (trade name LA-920, manufactured by Horiba Seisakusho) was defined as the laser average particle diameter.
 <0.15μm以下の積算細孔容積の測定方法>
 ろ過助剤の0.15μm以下の積算細孔容積は、窒素吸着法により測定した。具体的には、精秤した約1gの各ろ過助剤をASAP2020(株式会社島津製作所社製、比表面積・細孔分布測定装置)にセットし、窒素吸着等温線からBJH法のHalsey式により求めた0.15μm以下の細孔容積の総和を、0.15μm以下の積算細孔容積とした。なお、試料の前処理は、10℃/分で昇温させ100℃で2時間保持させて行った。また、60℃の時点で500μmHgまで脱気を行なった。
<Measurement method of integrated pore volume of 0.15 μm or less>
The accumulated pore volume of 0.15 μm or less of the filter aid was measured by a nitrogen adsorption method. Specifically, about 1 g of each filter aid precisely weighed is set in ASAP2020 (manufactured by Shimadzu Corporation, specific surface area / pore distribution measuring device), and is obtained from the nitrogen adsorption isotherm by the Halsey equation of the BJH method. The total pore volume of 0.15 μm or less was defined as the cumulative pore volume of 0.15 μm or less. The sample was pretreated by raising the temperature at 10 ° C./min and holding at 100 ° C. for 2 hours. In addition, deaeration was performed up to 500 μm Hg at 60 ° C.
 <ろ過助剤の透過率の測定方法>
 アドバンテック社製 親水性PTFE0.20μmフィルター(25HP020AN)でろ過した超純水を0.015MPaの条件下で、ろ過助剤を用いてろ過測定を行なった。このときの超純水のろ過時間から、ろ過助剤の透過率を下記数式(1)より算出した。
 k=1/A * dV/dθ* uL/P  ・・・(1)
A:透過層断面積〔m
V:透過量〔m
θ:透過時間〔s〕
k:透過率〔m
P:透過層の圧力損失〔Pa〕
u:透過流体の粘度〔Pa・s〕
L:透過層厚さ〔m〕
 なお、ろ過を行なう際、ろ過助剤はアドバンテック社製No.5A濾紙により上下で挟み90mmφの平板型SUS製ハウジング(住友3M社製INLET90-TL、有効ろ過面積55.4cm)にセットし、ろ過を行なった。
今回の実験系では、以下の値を導入して透過率kを算出した(θ・Lはサンプルごとで異なる値を示す)。
A:0.0055〔m
V:0.0005〔m
θ:変数
P:15000〔Pa〕
u:0.001〔Pa・s〕
L:変数
<Measurement method of transmittance of filter aid>
The ultrapure water filtered with a hydrophilic PTFE 0.20 μm filter (25HP020AN) manufactured by Advantech Co., Ltd. was subjected to filtration using a filter aid under the condition of 0.015 MPa. From the filtration time of ultrapure water at this time, the transmittance of the filter aid was calculated from the following mathematical formula (1).
k = 1 / A * dV / dθ * uL / P (1)
A: Transmission layer cross-sectional area [m 2 ]
V: Transmission amount [m 2 ]
θ: Transmission time [s]
k: Transmittance [m 2 ]
P: Pressure loss of transmission layer [Pa]
u: Viscosity of the permeating fluid [Pa · s]
L: Transmission layer thickness [m]
When performing filtration, the filter aid is No. manufactured by Advantech. The plate was sandwiched between 5A filter papers and placed in a 90 mmφ flat plate type SUS housing (INLET90-TL manufactured by Sumitomo 3M Co., Ltd., effective filtration area 55.4 cm 2 ) and filtered.
In the present experimental system, the transmittance k was calculated by introducing the following values (θ · L indicates a different value for each sample).
A: 0.0055 [m 2 ]
V: 0.0005 [m 2 ]
θ: Variable P: 15000 [Pa]
u: 0.001 [Pa · s]
L: Variable
 <ろ過助剤含有フィルターの作製>
 (ろ過助剤)
 ろ過助剤には、以下a~kを用いた。
a:CelpureP65(レーザー平均粒径12.7μm、珪藻土、SIGMA-ALDRICH社製)
b:ラジオライト No.100(レーザー平均粒径15.7μm、珪藻土、昭和化学工業社製)
c:ラジオライト DX-P5(レーザー平均粒径14.5μm、珪藻土、昭和化学工業社製)
d:ラジオライト No.200(レーザー平均粒径13.9μm、珪藻土、昭和化学工業社製)
e:ラジオライト No.500(レーザー平均粒径28.4μm、珪藻土、昭和化学工業社製)
f:ラジオライト No.600(レーザー平均粒径21.9μm、珪藻土、昭和化学工業社製)
g:ラジオライト New Ace(レーザー平均粒径31.6μm、珪藻土、昭和化学工業社製)
h:Celite500 fine(レーザー平均粒径15.0μm、珪藻土、SIGMA-ALDRICH社製)
i:Celpure300(レーザー平均粒径12.6μm、珪藻土、SIGMA-ALDRICH社製)
j:NA-500(レーザー平均粒径13.5μm、珪藻土、ADVANTEC社製)
k:ラジオライト Dx-W50(レーザー平均粒径25.2μm、珪藻土、昭和化学工業社製)
<Preparation of filter aid containing filter>
(Filter aid)
The following a to k were used as filter aids.
a: CelpureP65 (Laser average particle size 12.7μm, diatomaceous earth, manufactured by SIGMA-ALDRICH)
b: Radiolite No. 100 (Laser average particle size 15.7 μm, diatomaceous earth, Showa Chemical Industry Co., Ltd.)
c: Radiolite DX-P5 (Laser average particle size 14.5μm, diatomaceous earth, Showa Chemical Industry Co., Ltd.)
d: Radiolite No. 200 (Laser average particle size 13.9 μm, diatomaceous earth, Showa Chemical Industries, Ltd.)
e: Radiolite No. 500 (Laser average particle diameter 28.4μm, diatomaceous earth, Showa Chemical Industry Co., Ltd.)
f: Radiolite No.600 (Laser average particle diameter 21.9μm, diatomaceous earth, Showa Chemical Industry Co., Ltd.)
g: Radiolite New Ace (Laser average particle size 31.6μm, diatomaceous earth, Showa Chemical Industry Co., Ltd.)
h: Celite500 fine (laser average particle size 15.0μm, diatomaceous earth, manufactured by SIGMA-ALDRICH)
i: Celpure300 (Laser average particle size 12.6μm, diatomaceous earth, manufactured by SIGMA-ALDRICH)
j: NA-500 (Laser average particle size 13.5μm, diatomaceous earth, manufactured by ADVANTEC)
k: Radiolite Dx-W50 (Laser average particle size 25.2μm, diatomaceous earth, Showa Chemical Industries, Ltd.)
 (酸処理)
 上記a~kの各ろ過助剤50gに17.5%塩酸水溶液200mLに加え、撹拌・混合する。撹拌を止めて48時間ほど静置した後、上澄みを除去する。イオン交換水を加えてスターラーで5分間撹拌し、上澄みが透明になるまで静置した後、上澄み液を除去し、ろ過助剤を洗浄した。この操作を上澄みが中性(pH=5~8)になるまで繰り返した。最後にろ紙上にろ過して自然乾燥させ、酸処理したろ過助剤を得た。
(Acid treatment)
Add 50 mL of the above-mentioned filter aids a to k to 200 mL of 17.5% aqueous hydrochloric acid, and stir and mix. Stirring is stopped and the mixture is allowed to stand for about 48 hours, and then the supernatant is removed. Ion exchange water was added and stirred for 5 minutes with a stirrer, and allowed to stand until the supernatant became transparent. Then, the supernatant was removed and the filter aid was washed. This operation was repeated until the supernatant became neutral (pH = 5 to 8). Finally, it was filtered on a filter paper and naturally dried to obtain an acid-treated filter aid.
 (ろ過助剤を含有するフィルターの作製)
 前記酸処理したろ過助剤10gに100mLのイオン交換水を加え、撹拌・混合しろ過助剤分散水溶液を得た。次に、90mmφの平板型SUS製ハウジング(住友3M社製INLET90-TL、有効ろ過面積55.4cm)にろ紙(No.5A:アドバンテック社製、目開きと相関する保留粒子径は7μm、セルロース製)をセットし、0.1MPa以下の圧力でろ過助剤分散水溶液をろ過して濾紙上にろ過助剤の均一なケーク層を形成させた後、1~2Lのイオン交換水で洗浄し、珪藻土含有フィルターを得た。
(Preparation of filter containing filter aid)
100 mL of ion-exchanged water was added to 10 g of the acid-treated filter aid, and the mixture was stirred and mixed to obtain a filter aid-dispersed aqueous solution. Next, a 90 mmφ flat plate type SUS housing (INLET90-TL manufactured by Sumitomo 3M, effective filtration area 55.4 cm 2 ) and filter paper (No. 5A: manufactured by Advantech Co., Ltd., the retained particle diameter correlating with the opening is 7 μm, The filter aid dispersion aqueous solution is filtered at a pressure of 0.1 MPa or less to form a uniform cake layer of the filter aid on the filter paper, and then washed with 1-2 L of ion exchange water. A filter containing diatomaceous earth was obtained.
 <コロイダルシリカA~Cのろ過>
 前記珪藻土含有フィルターを乾燥させずに洗浄水で濡れたままの状態で、0.1MPaの圧力で前記コロイダルシリカスラリーA~Cを1L分ろ過し、研磨液組成物に使用するためのろ過済みコロイダルシリカを得た。
<Filtration of colloidal silica A to C>
The colloidal silica slurry A to C is filtered for 1 L at a pressure of 0.1 MPa while the diatomaceous earth-containing filter remains wet with washing water without being dried, and the filtered colloidal for use in a polishing liquid composition Silica was obtained.
 <フィルター通液量の測定方法>
 上記ろ過により得られたろ過済みコロイダルシリカを所定のフィルター(アドバンテック社製 親水性PTFE0.45μmフィルター、型式:25HP045AN、)で、エアー圧力0.25MPaの一定圧力の下でフィルターに通液させ、フィルターが閉塞するまでの通液量を求めた。
<Measurement method of filter flow rate>
The filtered colloidal silica obtained by the above filtration is passed through the filter under a constant pressure of 0.25 MPa with a predetermined filter (hydrophilic PTFE 0.45 μm filter, model: 25HP045AN, manufactured by Advantech). The amount of liquid passing until the blockage was determined.
 <研磨液組成物の調製:実施例1~4及び比較例1~4>
 イオン交換水に、ベンゾトリアゾールNa塩を0.1重量%、N-アミノエチルエタノールアミンを0.03重量%、アクリル酸/アクリルアミド-2-メチルプロパンスルホン酸共重合体ナトリウム塩(モル比90/10、重量平均分子量2000、東亞合成社製)を0.02重量%、硫酸を0.4重量%、1-ヒドロキシエチリデン-1,1-ジホスホン酸を0.05重量%、過酸化水素を0.4重量%添加、混合した水溶液の撹拌下に、前記珪藻土含有フィルターでろ過したろ過済みコロイダルシリカを5重量%になるように添加して、研磨液組成物を調製した(実施例1~4及び比較例1~4)。なおいずれの研磨液組成物もpHは1.4~1.5であった。
<Preparation of polishing liquid composition: Examples 1 to 4 and Comparative Examples 1 to 4>
In ion-exchanged water, 0.1% by weight of benzotriazole Na salt, 0.03% by weight of N-aminoethylethanolamine, acrylic acid / acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (molar ratio 90 / 10, weight average molecular weight 2000, manufactured by Toagosei Co., Ltd.) 0.02% by weight, sulfuric acid 0.4% by weight, 1-hydroxyethylidene-1,1-diphosphonic acid 0.05% by weight, hydrogen peroxide 0 4% by weight of the mixed aqueous solution was stirred, and the filtered colloidal silica filtered through the diatomaceous earth-containing filter was added to 5% by weight to prepare polishing liquid compositions (Examples 1 to 4). And Comparative Examples 1 to 4). The pH of each polishing composition was 1.4 to 1.5.
 <研磨液組成物の調製:実施例5~9及び比較例5~8>
 イオン交換水に、アクリル酸/アクリルアミド-2-メチルプロパンスルホン酸共重合体ナトリウム塩(モル比90/10、重量平均分子量2000、東亞合成社製)を0.02重量%、硫酸を0.4重量%、1-ヒドロキシエチリデン-1,1-ジホスホン酸を0.05重量%、過酸化水素を0.4重量%添加、混合した水溶液の撹拌下に、前記珪藻土含有フィルターでろ過したろ過済みコロイダルシリカを5重量%になるように添加して、研磨液組成物を調製した(実施例5~9及び比較例5~8)。なおいずれの研磨液組成物もpHは1.3~1.5であった。
<Preparation of polishing liquid composition: Examples 5 to 9 and Comparative Examples 5 to 8>
In ion-exchanged water, acrylic acid / acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (molar ratio 90/10, weight average molecular weight 2000, manufactured by Toagosei Co., Ltd.) was 0.02% by weight, and sulfuric acid was 0.4%. 1% by weight, 1% hydroxyethylidene-1,1-diphosphonic acid 0.05% by weight, hydrogen peroxide 0.4% by weight, and the filtered colloidal filtered through the diatomaceous earth-containing filter while stirring the mixed aqueous solution A polishing composition was prepared by adding silica at 5% by weight (Examples 5 to 9 and Comparative Examples 5 to 8). Note that the pH of each polishing composition was 1.3 to 1.5.
 <アニオン性水溶性高分子の重量平均分子量の測定方法>
アニオン性水溶性高分子(アクリル酸/アクリルアミド-2-メチルプロパンスルホン酸共重合体ナトリウム塩)の重量平均分子量は、下記測定条件におけるゲルパーミエーションクロマトグラフィー(GPC)法により測定した。
(GPC条件)
カラム:TSKgel G4000PWXL+TSKgel G2500PWXL(東ソー製)
ガードカラム:TSKguardcolumn PWXL(東ソー製)
溶離液:0.2Mリン酸バッファー/CHCN=9/1(体積比)
温度:40℃
流速:1.0mL/分
試料サイズ:5mg/mL
検出器:RI
換算標準:ポリアクリル酸Na(分子量(Mp):11.5万、2.8万、4100、1250(創和科学及びAmerican Polymer Standards Corp.製))
<Method for measuring weight average molecular weight of anionic water-soluble polymer>
The weight average molecular weight of the anionic water-soluble polymer (acrylic acid / acrylamido-2-methylpropanesulfonic acid copolymer sodium salt) was measured by gel permeation chromatography (GPC) method under the following measurement conditions.
(GPC conditions)
Column: TSKgel G4000PWXL + TSKgel G2500PWXL (Tosoh)
Guard column: TSKguardcolumn PWXL (manufactured by Tosoh)
Eluent: 0.2 M phosphate buffer / CH 3 CN = 9/1 (volume ratio)
Temperature: 40 ° C
Flow rate: 1.0 mL / min Sample size: 5 mg / mL
Detector: RI
Conversion standard: Polyacrylic acid Na (Molecular weight (Mp): 115,000, 288,000, 4100, 1250 (manufactured by Soka Kagaku and American Polymer Standards Corp.))
 上記のように調製した実施例1~9及び比較例1~8の製造方法で製造した研磨液組成物を用いて被研磨基板を研磨し、純水によって洗浄を行って評価用基板を得た。この評価用基板のスクラッチ数及びパーティクル数を評価した。評価結果を下記表1に示す。研磨液組成物の調製方法、各パラメータの測定方法、研磨条件(研磨方法)、洗浄条件及び評価方法は以下のとおりである。被研磨基板として、アルミナ研磨材を含有する研磨液であらかじめ粗研磨し、AFM-Raが5~15Åとした、厚さ1.27mmの外径95mmφで内径25mmφのNi-Pメッキアルミニウム合金基板を用いた。 The substrate to be polished was polished using the polishing composition produced by the production methods of Examples 1 to 9 and Comparative Examples 1 to 8 prepared as described above, and washed with pure water to obtain a substrate for evaluation. . The number of scratches and the number of particles of this evaluation substrate were evaluated. The evaluation results are shown in Table 1 below. A method for preparing the polishing liquid composition, a method for measuring each parameter, a polishing condition (polishing method), a cleaning condition, and an evaluation method are as follows. As a substrate to be polished, a Ni—P plated aluminum alloy substrate having an outer diameter of 95 mmφ and an inner diameter of 25 mmφ having a thickness of 1.27 mm and roughly polished with a polishing solution containing an alumina abrasive in advance and having an AFM-Ra of 5 to 15 mm. Using.
 <研磨条件>
・研磨試験機:スピードファム社製、両面9B研磨機
・研磨パッド:フジボウ社製、ウレタン製仕上げ研磨用パッド
・上定盤回転数:32.5r/分
・研磨液組成物供給量:100mL/分
・本研磨時間:4分
・本研磨荷重:7.8kPa
  ・ 投入した基板の枚数:10枚
<Polishing conditions>
・ Polishing tester: Speed Fam Co., double-sided 9B polishing machine ・ Polishing pad: Fujibow Co., urethane finishing polishing pad ・ Upper plate rotation speed: 32.5 r / min ・ Polishing liquid composition supply amount: 100 mL / Minute / Main polishing time: 4 minutes / Main polishing load: 7.8 kPa
・ Number of loaded substrates: 10
<洗浄条件>
研磨した基板をヒカリ社製Sub基板洗浄機で、以下の工程で洗浄した。
(1)US(超音波)浸漬洗浄 (950kHz)
(2)スクラブ洗浄 スポンジブラシ3段
(3)USシャワー洗浄 (950kHz)
(4)スピンリンス
(5)スピンドライ
<Cleaning conditions>
The polished substrate was cleaned in the following steps with a Sub substrate cleaning machine manufactured by Hikari.
(1) US (ultrasonic) immersion cleaning (950kHz)
(2) Scrub cleaning Sponge brush 3 steps (3) US shower cleaning (950 kHz)
(4) Spin rinse (5) Spin dry
 <スクラッチの測定条件>
・測定機器:KLA-Tencor社製 Candela OSA6100
・評価:研磨試験機に投入した基板の中、無作為に4枚を選択し、各々の基板を10000rpmにてレーザーを照射してスクラッチを測定した。その4枚の基板の各々両面にあるスクラッチ数(本)の合計を8で除して、基板面当たりのスクラッチ数を算出した。
<Scratch measurement conditions>
・ Measurement equipment: Candela OSA6100 manufactured by KLA-Tencor
Evaluation: Four substrates were randomly selected from the substrates put into the polishing tester, and each substrate was irradiated with a laser at 10,000 rpm to measure scratches. The total number of scratches (both) on each of the four substrates was divided by 8 to calculate the number of scratches per substrate surface.
 <パーティクルの測定条件>
・測定機器:KLA-Tencor社製 Candela OSA6100
・評価:研磨試験機に投入した基板の中、無作為に4枚を選択し、その4枚の基板の各々両面にあるパーティクル数(個)の合計を8で除して、基板面当たりのパーティクル数を算出した。
<Measurement conditions of particles>
・ Measurement equipment: Candela OSA6100 manufactured by KLA-Tencor
・ Evaluation: Randomly select 4 out of the substrates put into the polishing tester, and divide the total number of particles (pieces) on both sides of each of the 4 substrates by 8 The number of particles was calculated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例1~9で得られた研磨液組成物は、比較例1~8で得られた研磨液組成物に比べて、0.45μmフィルターの通液量が顕著に増加して処理前の10倍を超え、スクラッチ及びパーティクルを効果的に低減できることがわかる。 As is clear from the results in Table 1, the polishing liquid compositions obtained in Examples 1 to 9 were compared with the polishing liquid compositions obtained in Comparative Examples 1 to 8, with a 0.45 μm filter flow rate. As can be seen from the figure, the number of the particles increases significantly, exceeding 10 times that before the treatment, and scratches and particles can be effectively reduced.
 2.[実施例10及び比較例9~10]
 デプス型フィルターと珪藻土含有フィルターとプリーツ型フィルターとを組み合わせたろ過システムで被処理シリカ分散液をろ過して研磨液組成物を製造した(実施例10)。また、デプス型フィルターの循環ろ過とプリーツ型フィルターとを組み合わせたろ過システムで2種類の被処理シリカ分散液をろ過して研磨液組成物を製造した(比較例9及び10)。各研磨液組成物を使用して基板の研磨を行い、研磨後の基板表面を評価した。特に記載のない場合は、下記表2に記載の各種パラメータの測定方法は、実施例1と同様とした。
2. [Example 10 and Comparative Examples 9 to 10]
The silica dispersion to be treated was filtered with a filtration system combining a depth filter, a diatomaceous earth-containing filter, and a pleated filter to produce a polishing composition (Example 10). In addition, a polishing liquid composition was produced by filtering two types of silica dispersions using a filtration system that combines a circulation filtration of a depth filter and a pleated filter (Comparative Examples 9 and 10). The substrate was polished using each polishing composition, and the substrate surface after polishing was evaluated. Unless otherwise specified, the measurement methods for various parameters described in Table 2 below were the same as those in Example 1.
 <被処理シリカ分散液>
 被処理シリカ分散液として、汎用コロイダルシリカスラリーD(日揮触媒化成社製、一次粒子の平均粒径24nm、粗大粒子量47.9×10個/mL、シリカ粒子濃度40重量%品、pH=9.9)、及び、コロイダルシリカスラリーDを遠心処理して粗大粒子量を低減したコロイダルシリカスラリーE(一次粒子の平均粒径24nm、粗大粒子量6.9×10個/mL、シリカ粒子濃度40重量%品、pH=9.9)を使用した。
<Silica dispersion to be treated>
As the silica dispersion to be treated, general-purpose colloidal silica slurry D (manufactured by JGC Catalysts & Chemicals, Inc., average particle size of primary particles 24 nm, coarse particle amount 47.9 × 10 4 particles / mL, silica particle concentration 40% by weight, pH = 9.9) and colloidal silica slurry E obtained by centrifuging colloidal silica slurry D to reduce the amount of coarse particles (average particle size of primary particles 24 nm, amount of coarse particles 6.9 × 10 4 particles / mL, silica particles) A 40% strength by weight product, pH = 9.9) was used.
 <実施例10の研磨液組成物の製造方法>
 実施例10の研磨液組成物に使用するろ過済みコロイダルシリカを得るためのろ過システムとして、1段目にデプス型フィルターを1本、2段目に珪藻土含有フィルター(ケークフィルター)を1本、3段目にプリーツ型フィルターを1本備え、これらのフィルターがこの順で3段直列に配置されたろ過システムを採用した。このろ過システムの概略図として図1を参照できる。被処理シリカ分散液であるコロイダルシリカスラリーDを前記ろ過システムで1パスろ過することにより、ろ過済みコロイダルシリカを得た。得られたろ過済みコロイダルシリカを用い、実施例1と同様にして、研磨液組成物を作製した。50LのコロイダルシリカスラリーDを小型ダイアフラムポンプで前記ろ過システムに通液させて処理するのに要した時間は、0.9時間(平均通液量は0.95L/分、平均ろ過速度は17.9L/(分・m2))であった(下記表2)。なお、使用したフィルターは下記のとおりである。
デプス型フィルター:長さ250mmの日本ポール社製「プロファイルII-003」(孔径0.3um)、ポリプロピレン製
ケークフィルター:アドバンテック東洋社製多用途ディスクフォルダーKS-293-UH(有効ろ過面積:530cm2)にろ紙(No.5A:アドバンテック東洋社製、セルロース製)をセットし、前記珪藻土ろ過助剤a(酸処理なし)(100g)の水分散液をプレコートし均一なケーク層を形成させた後、10Lのイオン交換水でろ過助剤の洗浄を行って作製したフィルター。
プリーツ型フィルター:長さ250mmのアドバンテック東洋社製「TCS-045」(孔径0.45um)、ポリエーテルスルホン製
<The manufacturing method of the polishing liquid composition of Example 10>
As a filtration system for obtaining the filtered colloidal silica used in the polishing liquid composition of Example 10, one depth filter is provided in the first stage, and one diatomaceous earth-containing filter (cake filter) is provided in the second stage. A filtration system in which one pleated filter was provided at the stage and these filters were arranged in three stages in this order was employed. As a schematic diagram of this filtration system, reference can be made to FIG. The filtered colloidal silica was obtained by carrying out 1-pass filtration of the colloidal silica slurry D which is a to-be-processed silica dispersion liquid with the said filtration system. Using the obtained filtered colloidal silica, a polishing composition was prepared in the same manner as in Example 1. The time required for processing 50 L of colloidal silica slurry D through the filtration system with a small diaphragm pump was 0.9 hours (average flow rate was 0.95 L / min, average filtration rate was 17.5). 9L / (min · m2)) (Table 2 below). The filters used are as follows.
Depth-type filter: 250 mm long “Pole II-003” (pore size 0.3 um) made by Nippon Pole, polypropylene cake filter: Advantech Toyo multi-purpose disc folder KS-293-UH (effective filtration area: 530 cm 2 ) After setting a filter paper (No.5A: manufactured by Advantech Toyo Co., Ltd., made of cellulose) and pre-coating the aqueous dispersion of the diatomaceous earth filter aid a (without acid treatment) (100 g) to form a uniform cake layer, A filter produced by washing the filter aid with 10 L of ion exchange water.
Pleated filter: Advantech Toyo Co., Ltd. “TCS-045” (pore size 0.45um), polyethersulfone, 250mm long
 <比較例9の研磨液組成物の製造方法>
 比較例9の研磨液組成物に使用するろ過済みコロイダルシリカを得るための1段目のろ過システムとして、デプス型フィルターを2本配置した循環ろ過システムを採用した。そして、2段目のろ過システムとしてプリーツ型フィルターを1本配置したろ過システムを採用した。このろ過システムの概略図として図2を参照できる。被処理シリカ分散液であるコロイダルシリカスラリーDを前記1段目のろ過システムで循環通液ろ過を行い、見掛け上8パス相当のろ過を行った。その後、前記2段目のろ過システムで1パスろ過することにより、ろ過済みコロイダルシリカを得た。得られたろ過済みコロイダルシリカを用い、実施例1と同様にして、研磨液組成物を作製した。50LのコロイダルシリカスラリーDを小型ダイアフラムポンプで前記1段目のろ過システムに循環通液させ見掛け上8パス相当のろ過をするのに要した時間は、3.3時間(平均通液量は2.0L/分)であった。また、前記2段目のろ過システムを1パスでろ過するのに要した時間は0.4時間であった。したがって、1段目及び2段目のろ過で要した時間はトータル3.7時間であった(下記表2)。なお、使用したデプス型及びプリーツ型フィルターは実施例10と同じである。
<The manufacturing method of the polishing liquid composition of the comparative example 9>
As the first-stage filtration system for obtaining the filtered colloidal silica used in the polishing liquid composition of Comparative Example 9, a circulation filtration system in which two depth filters were arranged was adopted. And the filtration system which has arrange | positioned one pleat type filter as a 2nd-stage filtration system was employ | adopted. As a schematic diagram of this filtration system, reference can be made to FIG. The colloidal silica slurry D, which is the silica dispersion to be treated, was circulated and filtered through the first-stage filtration system, and apparently filtered for 8 passes. Then, the colloidal silica after filtration was obtained by carrying out 1-pass filtration with the said 2nd stage filtration system. Using the obtained filtered colloidal silica, a polishing composition was prepared in the same manner as in Example 1. The time required to circulate 50 L of colloidal silica slurry D through the first-stage filtration system with a small diaphragm pump and to perform filtration equivalent to 8 passes was 3.3 hours (average flow rate was 2 0.0 L / min). The time required for filtering the second stage filtration system in one pass was 0.4 hours. Therefore, the time required for the first and second stages of filtration was 3.7 hours in total (Table 2 below). The depth type and pleat type filters used are the same as those in Example 10.
 <比較例10の研磨液組成物の製造方法>
 被処理シリカ分散液であるコロイダルシリカスラリーDに換えてコロイダルシリカスラリーEを使用したほかは、比較例9と同様にして研磨液組成物を作製した。50LのコロイダルシリカスラリーEを小型ダイアフラムポンプで前記1段目のろ過システムに循環通液させ見掛け上8パス相当のろ過をするのに要した時間は、3.3時間(平均通液量は2.0L/分)であった。また、前記2段目のろ過システムを1パスでろ過するのに要した時間は0.4時間であった。したがって、1段目及び2段目のろ過で要した時間はトータル3.7時間であった(下記表2)。
<The manufacturing method of the polishing liquid composition of the comparative example 10>
A polishing composition was prepared in the same manner as in Comparative Example 9, except that colloidal silica slurry E was used instead of colloidal silica slurry D, which is the silica dispersion to be treated. The time required to circulate 50 L of colloidal silica slurry E through the first-stage filtration system with a small diaphragm pump and to perform filtration equivalent to 8 passes was 3.3 hours (average flow rate was 2 0.0 L / min). The time required for filtering the second stage filtration system in one pass was 0.4 hours. Therefore, the time required for the first and second stages of filtration was 3.7 hours in total (Table 2 below).
 上記のように実施例10及び比較例9~10の製造方法で製造した研磨液組成物を用いて被研磨基板の研磨を行い、研磨後の基板のスクラッチ数及びパーティクル数を評価した。評価結果を下記表2に示す。被研磨基板、研磨条件(研磨方法)及び評価方法は、実施例1と同様である。 As described above, the substrate to be polished was polished using the polishing composition produced by the production method of Example 10 and Comparative Examples 9 to 10, and the number of scratches and the number of particles of the polished substrate were evaluated. The evaluation results are shown in Table 2 below. The substrate to be polished, the polishing conditions (polishing method) and the evaluation method are the same as in Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例10は、汎用コロイダルシリカのスラリー(スラリーD)に付加的な処理(例えば、遠心分離処理)を施したシリカスラリー(スラリーE)を、デプス型フィルターの循環ろ過システムでろ過することを含む従来の研磨液組成物の製造方法である。一方、実施例10は、比較例10のデプス型フィルターの循環ろ過システムに換え、デプス型フィルターと珪藻土含有フィルターとを組み合せたろ過システムを採用する研磨液組成物の製造方法である。表2の結果から明らかなように、実施例10の製造方法によれば、従来の製造方法(比較例10)で製造された研磨液組成物と同等又はそれ以上の品質(粗大粒子量、スクラッチ、及びパーティクルの低減)の研磨液組成物を、生産性よく製造できる。すなわち、実施例10の製造方法は、汎用コロイダルシリカスラリー(スラリーE)を付加的な処理(例えば、遠心分離処理)を施すことなくそのまま使用できるため、コストや時間を低減可能であり、生産性が向上する。表2の結果から明らかなように、従来の製造方法(比較例10)で付加的な処理を施したシリカスラリー(スラリーE)に換えて汎用コロイダルシリカスラリー(スラリーD)を使用すると、製造される研磨液組成物の品質が大きく低下する(比較例9)。また、実施例10の製造方法は、デプス型フィルターの循環ろ過(比較例9及び10)に換えて1パスろ過とすることができるから、研磨液組成物の製造に掛かる時間を大きく低減することができ、生産性が向上する。 Comparative Example 10 includes filtering a silica slurry (slurry E) obtained by subjecting a general-purpose colloidal silica slurry (slurry D) to an additional treatment (for example, a centrifugal separation treatment) with a circulation filter system of a depth type filter. It is a manufacturing method of the conventional polishing liquid composition. On the other hand, Example 10 is the manufacturing method of the polishing liquid composition which employ | adopts the filtration system which replaced with the circulation filtration system of the depth type filter of the comparative example 10, and combined the depth type filter and the diatomaceous earth containing filter. As is clear from the results in Table 2, according to the production method of Example 10, the quality (coarse particle amount, scratch) equal to or higher than that of the polishing liquid composition produced by the conventional production method (Comparative Example 10). , And particle reduction) can be produced with high productivity. That is, the manufacturing method of Example 10 can use the general-purpose colloidal silica slurry (slurry E) as it is without performing an additional treatment (for example, a centrifugal separation treatment), so that costs and time can be reduced, and productivity can be reduced. Will improve. As is apparent from the results in Table 2, when a general-purpose colloidal silica slurry (slurry D) is used instead of the silica slurry (slurry E) subjected to additional treatment by the conventional production method (Comparative Example 10), The quality of the polishing composition is greatly reduced (Comparative Example 9). Moreover, since the manufacturing method of Example 10 can be set as 1-pass filtration instead of the circulation filtration of the depth type filter (Comparative Examples 9 and 10), the time required for manufacturing the polishing composition is greatly reduced. Can improve productivity.
 3.[実施例11~13及び比較例11]
 実施例10のデプス型フィルターとしてろ過処理量の履歴が異なるデプス型フィルターを用いたこと以外は実施例10と同様な製造方法で、研磨液組成物を製造した(実施例11~13)。また、デプス型フィルターを使用しないこと以外は実施例10と同様な製造方法で、研磨液組成物を製造した(比較例11)。各研磨液組成物を使用して基板の研磨を行い、研磨後の基板表面を評価した。特に記載のない場合は、下記表3に記載の各種パラメータの測定方法は、実施例1と同様とした。
3. [Examples 11 to 13 and Comparative Example 11]
A polishing composition was produced in the same manner as in Example 10 except that a depth type filter having a different history of filtration throughput was used as the depth type filter of Example 10 (Examples 11 to 13). Moreover, the polishing liquid composition was manufactured with the manufacturing method similar to Example 10 except not using a depth type filter (comparative example 11). The substrate was polished using each polishing composition, and the substrate surface after polishing was evaluated. Unless otherwise specified, the measurement methods for various parameters described in Table 3 below were the same as in Example 1.
 <被処理シリカ分散液>
 被処理シリカ分散液として、汎用コロイダルシリカスラリーF(日揮触媒化成社製、一次粒子の平均粒径24nm、粗大粒子量55.3万個/mL、シリカ粒子濃度40重量%品、pH=9.9)を使用した。
<Silica dispersion to be treated>
As the silica dispersion to be treated, general-purpose colloidal silica slurry F (manufactured by JGC Catalysts & Chemicals, Inc., average particle size of primary particles 24 nm, coarse particle amount 553,000 / mL, silica particle concentration 40% by weight, pH = 9. 9) was used.
 <実施例11~13の研磨液組成物の製造>
 実施例11~13の研磨液組成物に使用するろ過済みコロイダルシリカを得るためのろ過システムとして、1段目にデプス型フィルターを1本、2段目に珪藻土含有フィルター(ケークフィルター)を1本、3段目にプリーツ型フィルターを1本備え、これらのフィルターがこの順で3段直列に配置されたろ過システムを採用した。このろ過システムの概略図として図1を参照できる。被処理シリカ分散液であるコロイダルシリカスラリーFを前記ろ過システムで1パスろ過することにより、ろ過済みコロイダルシリカを得た。得られたろ過済みコロイダルシリカを用い、実施例1と同様にして、研磨液組成物を作製した。使用したデプス型フィルター、珪藻土含有フィルター、及びプリーツ型フィルターは、実施例10と同様である。但し、デプス型フィルターは、実施例11、12、13の順で、ろ過処理量の履歴が多いものを使用した。デプス型フィルターは使用履歴(ろ過処理量履歴)が多くなるにつれ、粗大粒子の除去能力が低下していく。すなわち、1段目のデプス型フィルターろ過後のシリカ分散液中に含まれる粗大粒子は、実施例11、12、13の順で増加する(下記表3)。これらのデプス型フィルターを使用した場合に、2段目の珪藻土フィルターが閉塞するまでに処理できる量を測定し、その結果を下記表3に示す。
<Manufacture of polishing composition of Examples 11-13>
As a filtration system for obtaining the filtered colloidal silica used in the polishing liquid compositions of Examples 11 to 13, one depth type filter is provided in the first stage, and one filter containing diatomaceous earth (cake filter) is provided in the second stage. A filtration system in which one pleated filter was provided in the third stage and these filters were arranged in three stages in this order was employed. As a schematic diagram of this filtration system, reference can be made to FIG. The colloidal silica slurry F, which is the silica dispersion to be treated, was subjected to one-pass filtration with the filtration system to obtain filtered colloidal silica. Using the obtained filtered colloidal silica, a polishing composition was prepared in the same manner as in Example 1. The depth type filter, diatomaceous earth-containing filter, and pleated type filter used are the same as in Example 10. However, a depth type filter having a history of filtration amount in the order of Examples 11, 12, and 13 was used. The depth filter has a reduced ability to remove coarse particles as its usage history (filtration history) increases. That is, the coarse particles contained in the silica dispersion after the first-stage depth filter filtration increase in the order of Examples 11, 12, and 13 (Table 3 below). When these depth filters are used, the amount that can be processed before the second stage diatomite filter is blocked is measured, and the results are shown in Table 3 below.
 <比較例11の研磨液組成物の製造>
 比較例11の研磨液組成物に使用するろ過済みコロイダルシリカを得るためのろ過システムとして、1段目に珪藻土含有フィルター(ケークフィルター)を1本、2段目にプリーツ型フィルターを1本備え、これらのフィルターがこの順で2段直列に配置されたろ過システムを採用した。すなわち、被処理シリカ分散液であるコロイダルシリカスラリーFを、デプス型フィルターでろ過することなく、1段目のケークフィルターに導入して1パスろ過することにより、ろ過済みコロイダルシリカを得た。得られたろ過済みコロイダルシリカを用い、実施例1と同様にして、研磨液組成物を作製した。使用した珪藻土含有フィルター、及びプリーツ型フィルターは、実施例10と同様である。1段目のケークフィルターが閉塞するまでに処理できる量を測定し、その結果を下記表3に示す。
<Production of Polishing Liquid Composition of Comparative Example 11>
As a filtration system for obtaining the filtered colloidal silica used in the polishing liquid composition of Comparative Example 11, one diatomaceous earth-containing filter (cake filter) is provided in the first stage, and one pleated filter is provided in the second stage. A filtration system in which these filters are arranged in two stages in this order was employed. That is, colloidal silica slurry F, which is a silica dispersion to be treated, was introduced into the first stage cake filter without being filtered through a depth filter and filtered through one pass to obtain filtered colloidal silica. Using the obtained filtered colloidal silica, a polishing composition was prepared in the same manner as in Example 1. The used diatomaceous earth-containing filter and pleated filter are the same as in Example 10. The amount that can be processed before the first-stage cake filter is blocked is measured, and the results are shown in Table 3 below.
 上記のように実施例11~13及び比較例11の製造方法で製造した研磨液組成物を用いて被研磨基板の研磨を行い、研磨後の基板のスクラッチ数及びパーティクル数を評価した。評価結果を下記表3に示す。被研磨基板、研磨条件(研磨方法)及び評価方法は、実施例1と同様である。 The substrate to be polished was polished using the polishing composition produced by the production methods of Examples 11 to 13 and Comparative Example 11 as described above, and the number of scratches and particles of the polished substrate were evaluated. The evaluation results are shown in Table 3 below. The substrate to be polished, the polishing conditions (polishing method) and the evaluation method are the same as in Example 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の実施例11~13と比較例11の結果を比べると、デプス型フィルターによるろ過により、珪藻土含有フィルターの寿命が向上することが分かる。さらに、デプス型フィルターによって取り除かれる粗大粒子の量が多いほど(すなわち、珪藻土含有フィルターに導入されるシリカ分散液中の粗大粒子量が少ないほど)、珪藻土含有フィルターの寿命が向上することが分かる。例えば、1段目のデプス型フィルター処理後のシリカ分散液中の粗大粒子量が10.0×10個/mL以下になると(実施例11及び12)、粗大粒子量が10.0×10個/mL以上の場合(実施例13)に比べ、珪藻土含有フィルターの寿命が大幅に向上し、研磨液組成物の生産性向上に寄与できる。 Comparing the results of Examples 11 to 13 and Comparative Example 11 in Table 3, it can be seen that the life of the diatomaceous earth-containing filter is improved by filtration with a depth filter. Furthermore, it can be seen that the greater the amount of coarse particles removed by the depth filter (ie, the smaller the amount of coarse particles in the silica dispersion introduced into the diatomaceous earth-containing filter), the longer the life of the diatomaceous earth-containing filter. For example, when the amount of coarse particles in the silica dispersion after the first-stage depth filter treatment is 10.0 × 10 4 particles / mL or less (Examples 11 and 12), the amount of coarse particles is 10.0 × 10. Compared with the case of 4 pieces / mL or more (Example 13), the lifetime of the diatomaceous earth-containing filter is significantly improved, which can contribute to the improvement of the productivity of the polishing composition.
 本発明の製造方法により製造される研磨液組成物は、例えば、高密度化又は高集積化用の精密部品基板の研磨工程に用いることができる。 The polishing composition produced by the production method of the present invention can be used, for example, in a polishing process of a precision component substrate for high density or high integration.
 本発明は、下記に関する;
<1>一次粒子の平均粒子径が1~100nmのコロイダルシリカを含有する被処理シリカ分散液を、ろ過助剤を含むフィルターでろ過処理する工程を有する研磨液組成物の製造方法であって、前記ろ過助剤は水銀圧入法による平均細孔径が0.1~3.5μmである、研磨液組成物の製造方法;
<2>ろ過助剤が珪藻土である、前記<1>記載の研磨液組成物の製造方法;
<3>ろ過助剤の水銀圧入法による0.5μm以下の積算細孔容積が2.5mL/g以上である、前記<1>又は<2>に記載の研磨液組成物の製造方法;
<4>前記ろ過助剤は、BET比表面積が4.0m/g以上であり、且つ窒素吸着法による0.15μm以下の積算細孔容積が0.3mL/g以上である、前記<1>から<3>のいずれかに記載の研磨液組成物の製造方法;
<5>前記ろ過助剤に対して0.015MPaの条件で水をろ過させたときの前記ろ過助剤の水の透過率が、5.0×10-14以下である、前記<1>から<4>の研磨液組成物の製造方法;
<6>下記工程1及び2を有する、前記<1>から<5>のいずれかに記載の研磨液組成物の製造方法;
工程1)一次粒子の平均粒子径が1~100nmのコロイダルシリカを含有する被処理シリカ分散液を、粒子径が0.5μm以上の粗大粒子量が11.0×10個/mL以下になるようにろ過処理する工程。
工程2)工程1で得られたシリカ分散液を、水銀圧入法による平均細孔径が0.1~3.5μmであるろ過助剤を含むフィルターでろ過処理する工程。
<7>前記工程1において、前記被処理シリカ分散液を、前記粗大粒子量が好ましくは10.0×10個/mL以下、より好ましくは7.0×10個/mL以下、さらに好ましくは6.0×10個/mL以下、さらにより好ましくは5.0×10個/mL以下、さらにより好ましくは4.0×10個/mL以下、さらにより好ましくは3.0×10個/mL以下になるようにろ過処理する、前記<6>記載の研磨液組成物の製造方法;
<8>前記工程1におけるろ過処理が、デプス型フィルターを用いたろ過処理である、前記<6>又は<7>に記載の研磨液組成物の製造方法;
<9>前記デプス型フィルターの孔径が、5.0μm以下である、前記<8>記載の研磨液組成物の製造方法;
<10>前記工程1におけるろ過処理が、前記デプス型フィルターを用いた多段のろ過処理である、前記<8>又は<9>に記載の研磨液組成物の製造方法;
<11>さらに下記工程3を有する、前記<6>から<10>のいずれかに記載の研磨液組成物の製造方法;
工程3)前記工程2で得られたシリカ分散液を、プリーツ型フィルターでろ過処理する工程。
<12>前記プリーツ型フィルターの孔径が、1.0μm以下である、前記<11>記載の研磨液組成物の製造方法;
<13>前記工程1及び前記工程2におけるろ過処理を1パスで行う、前記<6>から<12>のいずれかに記載の研磨液組成物の製造方法;
<14>前記被処理シリカ分散液における粒子径が0.5μm以上の粗大粒子量が、20.0×10個/mL以上である、前記<1>から<13>のいずれかに記載の研磨液組成物の製造方法;
<15>前記被処理シリカ分散液における粒子径が0.5μm以上の粗大粒子量が、200.0×10個/mL以下である、前記<1>から<14>のいずれかに記載の研磨液組成物の製造方法;
<16>前記被処理シリカ分散液におけるコロイダルシリカの含有量が、1~50重量%である、前記<1>から<15>のいずれかに記載の研磨液組成物の製造方法;
<17>得られる研磨液組成物における粒子径が0.5μm以上の粗大粒子の含有量が、0.5~10×10個/mLである、前記<1>から<16>のいずれかに記載の研磨液組成物の製造方法;
<18>前記ろ過助剤を含むフィルターにおける前記ろ過助剤の含有量が、0.001~1g/cmである、前記<1>から<17>のいずれかに記載の研磨液組成物の製造方法;
<19>前記ろ過助剤を含むフィルターによるろ過処理におけるろ過時の差圧が、0.01~10MPaである、前記<1>から<18>のいずれかに記載の研磨液組成物の製造方法;
<20>前記ろ過助剤を含むフィルターによるろ過処理におけるろ過速度が、0.1~30L/(分・m)である、前記<1>から<19>のいずれかに記載の研磨液組成物の製造方法;
<21>ろ過助剤の水銀圧入法による平均細孔径が、好ましくは0.1~3.0μm、より好ましくは0.1~2.7μm、さらに好ましくは1.0~2.7μm、さらにより好ましくは2.0~2.7μm、さらにより好ましくは2.1~2.7μm、さらにより好ましくは2.2~2.6μm、さらにより好ましくは2.2~2.4μmである、前記<1>から<20>のいずれかに記載の研磨液組成物の製造方法;
<22>ろ過助剤の水銀圧入法による0.5μm以下の積算細孔容積が、好ましくは2.5~1000mL/g、より好ましくは2.7~100mL/g、さらに好ましくは3.0~50mL/g、さらにより好ましくは4.0~20mL/g、さらにより好ましくは4.5~10mL/g、さらにより好ましくは4.5~6mL/gである。2.5mL/g以上である、前記<1>から<21>のいずれかに記載の研磨液組成物の製造方法;
<23>ろ過助剤のBET比表面積が、好ましくは4.0~1000.0m/g、より好ましくは10.0~100.0m/g、さらに好ましくは15.0~50.0m/g、さらに好ましくは15.0~30.0m/g、さらにより好ましくは18.0~30.0m/g、さらに好ましくは18.0~25.0m/gである、前記<1>から<22>のいずれかに記載の研磨液組成物の製造方法;
<24>窒素吸着法による0.15μm以下の積算細孔容積が、好ましくは0.3~100.0mL/g、より好ましくは0.4~50.0mL/g、さらに好ましくは0.6~10.0mL/g、さらにより好ましくは0.6~5.0mL/g、さらにより好ましくは0.6~2.0mL/g、さらにより好ましくは0.6~1.0mL/g、さらにより好ましくは0.6~0.7mL/gである、前記<1>から<23>のいずれかに記載の研磨液組成物の製造方法;
<25>前記ろ過助剤に対して0.015MPaの条件で水をろ過させたときの前記ろ過助剤の水の透過率が、好ましくは2.0×10-15~9.9×10-14、より好ましくは5.0×10-15~5.0×10-14であり、さらに好ましくは9.9×10-15~3.0×10-14である、前記<1>から<24>のいずれかに記載の研磨液組成物の製造方法;
<26>工程1が、一次粒子の平均粒子径が1~100nmのコロイダルシリカを含有する被処理シリカ分散液を、粒子径が0.5μm以上の粗大粒子量が、好ましくは10.0×10個/mL以下、より好ましくは7.0×10個/mL以下、さらに好ましくは6.0×10個/mL以下、さらにより好ましくは5.0×10個/mL以下、さらにより好ましくは4.0×10個/mL以下、さらにより好ましくは3.0×10個/mL以下になるようにろ過処理する工程である、前記<1>から<25>のいずれかに記載の研磨液組成物の製造方法;
<27>前記被処理シリカ分散液における粒子径が0.5μm以上の粗大粒子量が、好ましくは20.0×10~200.0×10個/mL、より好ましくは20.0×10~100.0×10個/mL、さらに好ましくは30.0×10~100.0×10個/mL、さらにより好ましくは34.0×10~100.0×10個/mL、さらにより好ましくは34.0×10~70.0×10個/mLである、前記<1>から<26>のいずれかに記載の研磨液組成物の製造方法;
<28>得られる研磨液組成物における粒子径が0.5μm以上の粗大粒子の含有量が、好ましくは0.5×10~5×10個/mL、より好ましくは0.5×10~4×10個/mL、さらに好ましくは0.5×10~3×10個/mLである、前記<1>から<27>のいずれかに記載の研磨液組成物の製造方法;
<29>前記<1>から<28>のいずれかに記載の製造方法により製造される研磨液組成物;
<30>さらに、酸と、酸化剤と、アニオン性基を有する水溶性高分子と、複素環芳香族化合物と、脂肪族アミン化合物又は脂環式アミン化合物とを含有する、前記<29>記載の研磨液組成物;
<31>前記<1>から<28>のいずれかに記載の製造方法により研磨液組成物を製造すること、及び、前記研磨液組成物を被研磨基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板を動かして、前記研磨対象面を研磨することを含む、磁気ディスク基板の製造方法。
The present invention relates to:
<1> A method for producing a polishing composition comprising a step of subjecting a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm to a filter containing a filter aid, The method for producing a polishing composition, wherein the filter aid has an average pore size of 0.1 to 3.5 μm by a mercury intrusion method;
<2> The method for producing a polishing composition according to <1>, wherein the filter aid is diatomaceous earth;
<3> The method for producing a polishing liquid composition according to <1> or <2>, wherein an accumulated pore volume of 0.5 μm or less by a mercury intrusion method of the filter aid is 2.5 mL / g or more;
<4> The filter aid has a BET specific surface area of 4.0 m 2 / g or more, and an integrated pore volume of 0.15 μm or less by a nitrogen adsorption method is 0.3 mL / g or more, <1 > To <3> a method for producing a polishing composition according to any one of the above;
<5> The water permeability of the filter aid when water is filtered with respect to the filter aid at 0.015 MPa is 5.0 × 10 −14 m 2 or less, <1 > To <4> a method for producing the polishing composition;
<6> The method for producing a polishing composition according to any one of <1> to <5>, comprising the following steps 1 and 2;
Step 1) A treated silica dispersion containing colloidal silica having an average primary particle size of 1 to 100 nm has a coarse particle size of 11.0 × 10 4 particles / mL or less with a particle size of 0.5 μm or more. The filtration process.
Step 2) A step of filtering the silica dispersion obtained in Step 1 with a filter containing a filter aid having an average pore size of 0.1 to 3.5 μm by mercury porosimetry.
<7> In the step 1, in the silica dispersion to be treated, the coarse particle amount is preferably 10.0 × 10 4 particles / mL or less, more preferably 7.0 × 10 4 particles / mL or less, and further preferably. Is 6.0 × 10 4 pieces / mL or less, even more preferably 5.0 × 10 4 pieces / mL or less, even more preferably 4.0 × 10 4 pieces / mL or less, and even more preferably 3.0 × The method for producing the polishing composition according to <6>, wherein the filtration treatment is performed so that the concentration is 10 4 pieces / mL or less;
<8> The method for producing a polishing composition according to <6> or <7>, wherein the filtration treatment in Step 1 is a filtration treatment using a depth filter;
<9> The method for producing a polishing composition according to <8>, wherein the depth filter has a pore size of 5.0 μm or less;
<10> The method for producing a polishing liquid composition according to <8> or <9>, wherein the filtration treatment in the step 1 is a multistage filtration treatment using the depth filter;
<11> The method for producing a polishing composition according to any one of <6> to <10>, further comprising the following step 3;
Step 3) A step of filtering the silica dispersion obtained in Step 2 with a pleated filter.
<12> The method for producing a polishing composition according to <11>, wherein the pore size of the pleated filter is 1.0 μm or less;
<13> The method for producing a polishing composition according to any one of <6> to <12>, wherein the filtration in Step 1 and Step 2 is performed in one pass;
<14> The amount of coarse particles having a particle diameter of 0.5 μm or more in the treated silica dispersion liquid is 20.0 × 10 4 particles / mL or more, according to any one of <1> to <13>. A method for producing a polishing composition;
<15> The amount of coarse particles having a particle diameter of 0.5 μm or more in the silica dispersion to be treated is 200.0 × 10 4 particles / mL or less, according to any one of <1> to <14>. A method for producing a polishing composition;
<16> The method for producing a polishing liquid composition according to any one of <1> to <15>, wherein the content of colloidal silica in the silica dispersion to be treated is 1 to 50% by weight;
<17> The above <1> to <16>, wherein the content of coarse particles having a particle size of 0.5 μm or more in the obtained polishing liquid composition is 0.5 to 10 × 10 4 particles / mL A method for producing the polishing composition according to claim 1;
<18> The polishing composition according to any one of <1> to <17>, wherein a content of the filter aid in the filter containing the filter aid is 0.001 to 1 g / cm 2 . Production method;
<19> The method for producing a polishing liquid composition according to any one of <1> to <18>, wherein a differential pressure during filtration in the filtration treatment using the filter containing the filter aid is 0.01 to 10 MPa. ;
<20> The polishing composition according to any one of <1> to <19>, wherein a filtration rate in a filtration treatment using the filter containing the filter aid is 0.1 to 30 L / (min · m 2 ). Manufacturing method;
<21> The average pore diameter of the filter aid by mercury porosimetry is preferably 0.1 to 3.0 μm, more preferably 0.1 to 2.7 μm, still more preferably 1.0 to 2.7 μm, and even more. Preferably it is 2.0 to 2.7 μm, even more preferably 2.1 to 2.7 μm, even more preferably 2.2 to 2.6 μm, even more preferably 2.2 to 2.4 μm, The manufacturing method of the polishing liquid composition in any one of <1> to <20>;
<22> The cumulative pore volume of 0.5 μm or less by a mercury intrusion method of the filter aid is preferably 2.5 to 1000 mL / g, more preferably 2.7 to 100 mL / g, and still more preferably 3.0 to 50 mL / g, even more preferably 4.0 to 20 mL / g, even more preferably 4.5 to 10 mL / g, and even more preferably 4.5 to 6 mL / g. The method for producing a polishing composition according to any one of <1> to <21>, which is 2.5 mL / g or more;
<23> BET specific surface area of the filter aid is preferably 4.0 ~ 1000.0m 2 / g, more preferably 10.0 ~ 100.0m 2 / g, more preferably 15.0 ~ 50.0 m 2 / G, more preferably 15.0 to 30.0 m 2 / g, even more preferably 18.0 to 30.0 m 2 / g, still more preferably 18.0 to 25.0 m 2 / g, 1> to <22> a method for producing the polishing composition according to any one of the above;
<24> An integrated pore volume of 0.15 μm or less by nitrogen adsorption method is preferably 0.3 to 100.0 mL / g, more preferably 0.4 to 50.0 mL / g, and still more preferably 0.6 to 10.0 mL / g, even more preferably 0.6-5.0 mL / g, even more preferably 0.6-2.0 mL / g, even more preferably 0.6-1.0 mL / g, even more The method for producing a polishing composition according to any one of <1> to <23>, preferably 0.6 to 0.7 mL / g;
<25> The water permeability of the filter aid when water is filtered at 0.015 MPa with respect to the filter aid is preferably 2.0 × 10 −15 to 9.9 × 10 −. 14 m 2 , more preferably 5.0 × 10 −15 to 5.0 × 10 −14 m 2 , and even more preferably 9.9 × 10 −15 to 3.0 × 10 −14 m 2 . The method for producing a polishing composition according to any one of <1> to <24>;
<26> In step 1, the silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm is used in a coarse particle amount of 0.5 μm or more, preferably 10.0 × 10. 4 pieces / mL or less, more preferably 7.0 × 10 4 pieces / mL or less, further preferably 6.0 × 10 4 pieces / mL or less, still more preferably 5.0 × 10 4 pieces / mL or less, further Any one of the above items <1> to <25>, which is a step of filtration to more preferably 4.0 × 10 4 cells / mL or less, and even more preferably 3.0 × 10 4 cells / mL or less. A method for producing the polishing composition according to claim 1;
<27> The amount of coarse particles having a particle diameter of 0.5 μm or more in the silica dispersion to be treated is preferably 20.0 × 10 4 to 200.0 × 10 4 particles / mL, more preferably 20.0 × 10. 4 to 100.0 × 10 4 pieces / mL, more preferably 30.0 × 10 4 to 100.0 × 10 4 pieces / mL, even more preferably 34.0 × 10 4 to 100.0 × 10 4 pieces / ML, and even more preferably 34.0 × 10 4 to 70.0 × 10 4 / mL, the method for producing a polishing composition according to any one of <1> to <26>above;
<28> The content of coarse particles having a particle size of 0.5 μm or more in the obtained polishing composition is preferably 0.5 × 10 4 to 5 × 10 4 particles / mL, more preferably 0.5 × 10. The production of the polishing composition according to any one of <1> to <27>, which is 4 to 4 × 10 4 pieces / mL, more preferably 0.5 × 10 4 to 3 × 10 4 pieces / mL. Method;
<29> A polishing composition produced by the production method according to any one of <1> to <28>;
<30> The description <29>, further comprising an acid, an oxidizing agent, a water-soluble polymer having an anionic group, a heterocyclic aromatic compound, and an aliphatic amine compound or an alicyclic amine compound. A polishing liquid composition of
<31> A polishing composition is produced by the production method according to any one of <1> to <28>, and the polishing composition is supplied to a surface to be polished of a substrate to be polished, and the polishing is performed. A method of manufacturing a magnetic disk substrate, comprising bringing a polishing pad into contact with a target surface and moving the polishing pad and / or the substrate to be polished to polish the polishing target surface.

Claims (23)

  1.  一次粒子の平均粒子径が1~100nmのコロイダルシリカを含有する被処理シリカ分散液を、ろ過助剤を含むフィルターでろ過処理する工程を有する研磨液組成物の製造方法であって、前記ろ過助剤は水銀圧入法による平均細孔径が0.1~3.5μmである、研磨液組成物の製造方法。 A method for producing a polishing liquid composition comprising a step of filtering a silica dispersion to be treated containing colloidal silica having an average primary particle diameter of 1 to 100 nm with a filter containing a filter aid, the method comprising: The method for producing a polishing composition, wherein the agent has an average pore size of 0.1 to 3.5 μm by mercury porosimetry.
  2.  ろ過助剤が珪藻土である、請求項1記載の研磨液組成物の製造方法。 The method for producing a polishing composition according to claim 1, wherein the filter aid is diatomaceous earth.
  3.  ろ過助剤の水銀圧入法による0.5μm以下の積算細孔容積が2.5mL/g以上である、請求項1又は2記載の研磨液組成物の製造方法。 The method for producing a polishing composition according to claim 1 or 2, wherein the cumulative pore volume of 0.5 µm or less by a mercury intrusion method of the filter aid is 2.5 mL / g or more.
  4.  前記ろ過助剤は、BET比表面積が4.0m/g以上であり、且つ窒素吸着法による0.15μm以下の積算細孔容積が0.3mL/g以上である、請求項1から3のいずれかに記載の研磨液組成物の製造方法。 4. The filter aid according to claim 1, wherein the filter aid has a BET specific surface area of 4.0 m 2 / g or more and an integrated pore volume of 0.15 μm or less by a nitrogen adsorption method is 0.3 mL / g or more. The manufacturing method of the polishing liquid composition in any one.
  5.  前記ろ過助剤に対して0.015MPaの条件で水をろ過させたときの前記ろ過助剤の水の透過率が、5.0×10-14以下である、請求項1から4のいずれかに記載の研磨液組成物の製造方法。 The water permeability of the filter aid when water is filtered with a condition of 0.015 MPa with respect to the filter aid is 5.0 × 10 −14 m 2 or less. The manufacturing method of the polishing liquid composition in any one.
  6.  下記工程1及び2を有する、請求項1から5のいずれかに記載の研磨液組成物の製造方法。
    工程1)一次粒子の平均粒子径が1~100nmのコロイダルシリカを含有する被処理シリカ分散液を、粒子径が0.5μm以上の粗大粒子量が11.0×10個/mL以下になるようにろ過処理する工程。
    工程2)工程1で得られたシリカ分散液を、水銀圧入法による平均細孔径が0.1~3.5μmであるろ過助剤を含むフィルターでろ過処理する工程。
    The manufacturing method of the polishing composition in any one of Claim 1 to 5 which has the following process 1 and 2.
    Step 1) A treated silica dispersion containing colloidal silica having an average primary particle size of 1 to 100 nm has a coarse particle size of 11.0 × 10 4 particles / mL or less with a particle size of 0.5 μm or more. The filtration process.
    Step 2) A step of filtering the silica dispersion obtained in Step 1 with a filter containing a filter aid having an average pore size of 0.1 to 3.5 μm by mercury porosimetry.
  7.  前記工程1において、前記被処理シリカ分散液を、前記粗大粒子量が7.0×10個/mL以下になるようにろ過処理する、請求項6記載の研磨液組成物の製造方法。 The manufacturing method of the polishing liquid composition of Claim 6 which filters the said to-be-processed silica dispersion liquid in the said process 1 so that the said coarse particle amount may be 7.0 * 10 < 4 > piece / mL or less.
  8.  前記工程1におけるろ過処理が、デプス型フィルターを用いたろ過処理である、請求項6又は7に記載の研磨液組成物の製造方法。 The method for producing a polishing composition according to claim 6 or 7, wherein the filtration treatment in Step 1 is a filtration treatment using a depth filter.
  9.  前記デプス型フィルターの孔径が、5.0μm以下である、請求項8記載の研磨液組成物の製造方法。 The method for producing a polishing composition according to claim 8, wherein the pore size of the depth filter is 5.0 µm or less.
  10.  前記工程1におけるろ過処理が、前記デプス型フィルターを用いた多段のろ過処理である、請求項8又は9に記載の研磨液組成物の製造方法。 The method for producing a polishing composition according to claim 8 or 9, wherein the filtration treatment in the step 1 is a multistage filtration treatment using the depth filter.
  11.  さらに下記工程3を有する、請求項6から10のいずれかに記載の研磨液組成物の製造方法。
    工程3)前記工程2で得られたシリカ分散液を、プリーツ型フィルターでろ過処理する工程。
    Furthermore, the manufacturing method of the polishing liquid composition in any one of Claim 6 to 10 which has the following process 3.
    Step 3) A step of filtering the silica dispersion obtained in Step 2 with a pleated filter.
  12.  前記プリーツ型フィルターの孔径が、1.0μm以下である、請求項11記載の研磨液組成物の製造方法。 The method for producing a polishing composition according to claim 11, wherein the pore size of the pleated filter is 1.0 μm or less.
  13.  前記工程1及び前記工程2におけるろ過処理を1パスで行う、請求項6から12のいずれかに記載の研磨液組成物の製造方法。 The method for producing a polishing liquid composition according to any one of claims 6 to 12, wherein the filtration treatment in the step 1 and the step 2 is performed in one pass.
  14.  前記被処理シリカ分散液における粒子径が0.5μm以上の粗大粒子量が、20.0×10個/mL以上である、請求項1から13のいずれかに記載の研磨液組成物の製造方法。 14. The production of a polishing liquid composition according to claim 1, wherein the amount of coarse particles having a particle diameter of 0.5 μm or more in the silica dispersion to be treated is 20.0 × 10 4 particles / mL or more. Method.
  15.  前記被処理シリカ分散液における粒子径が0.5μm以上の粗大粒子量が、200.0×10個/mL以下である、請求項1から14のいずれかに記載の研磨液組成物の製造方法。 The production of the polishing composition according to any one of claims 1 to 14, wherein the amount of coarse particles having a particle diameter of 0.5 µm or more in the treated silica dispersion is 200.0 × 10 4 particles / mL or less. Method.
  16.  前記被処理シリカ分散液におけるコロイダルシリカの含有量が、1~50重量%である、請求項1から15のいずれかに記載の研磨液組成物の製造方法。 The method for producing a polishing composition according to any one of claims 1 to 15, wherein the colloidal silica content in the silica dispersion to be treated is 1 to 50% by weight.
  17.  得られる研磨液組成物における粒子径が0.5μm以上の粗大粒子の含有量が、0.5×10~10×10個/mLである、請求項1から16のいずれかに記載の研磨液組成物の製造方法。 The content of coarse particles having a particle diameter of 0.5 μm or more in the obtained polishing liquid composition is 0.5 × 10 4 to 10 × 10 4 particles / mL, according to any one of claims 1 to 16. Manufacturing method of polishing liquid composition.
  18.  前記ろ過助剤を含むフィルターにおける前記ろ過助剤の含有量が、0.001~1g/cmである、請求項1から17のいずれかに記載の研磨液組成物の製造方法。 The method for producing a polishing composition according to any one of claims 1 to 17, wherein the content of the filter aid in the filter containing the filter aid is 0.001 to 1 g / cm 2 .
  19.  前記ろ過助剤を含むフィルターによるろ過処理におけるろ過時の差圧が、0.01~10MPaである、請求項1から18のいずれかに記載の研磨液組成物の製造方法。 The method for producing a polishing composition according to any one of claims 1 to 18, wherein a differential pressure during filtration in a filtration treatment with a filter containing the filter aid is 0.01 to 10 MPa.
  20.  前記ろ過助剤を含むフィルターによるろ過処理におけるろ過速度が、0.1~30L/(分・m)である、請求項1から19のいずれかに記載の研磨液組成物の製造方法。 The method for producing a polishing composition according to any one of claims 1 to 19, wherein a filtration rate in a filtration treatment with a filter containing the filter aid is 0.1 to 30 L / (min · m 2 ).
  21.  請求項1から20いずれか記載の製造方法により製造される研磨液組成物。 A polishing composition produced by the production method according to claim 1.
  22.  さらに、酸と、酸化剤と、アニオン性基を有する水溶性高分子と、複素環芳香族化合物と、脂肪族アミン化合物又は脂環式アミン化合物と、を含有する請求項21に記載の研磨液組成物。 The polishing liquid according to claim 21, further comprising an acid, an oxidizing agent, a water-soluble polymer having an anionic group, a heterocyclic aromatic compound, and an aliphatic amine compound or an alicyclic amine compound. Composition.
  23.  請求項1から20いずれか記載の製造方法により研磨液組成物を製造すること、及び、
     前記研磨液組成物を被研磨基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板を動かして、前記研磨対象面を研磨することを含む、磁気ディスク基板の製造方法。
     
    Producing a polishing composition by the production method according to any one of claims 1 to 20, and
    Supplying the polishing composition to a surface to be polished of a substrate to be polished, bringing the polishing pad into contact with the surface to be polished, and moving the polishing pad and / or the substrate to be polished to polish the surface to be polished; A method for manufacturing a magnetic disk substrate, comprising:
PCT/JP2011/071501 2010-09-24 2011-09-21 Process for producing polishing liquid composition WO2012039428A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/824,235 US20130183889A1 (en) 2010-09-24 2011-09-21 Process for producing polishing liquid composition
CN201180045169.3A CN103119122B (en) 2010-09-24 2011-09-21 Manufacturing method of polishing liquid composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010214083 2010-09-24
JP2010-214083 2010-09-24
JP2011002537A JP5698989B2 (en) 2011-01-07 2011-01-07 Method for producing polishing composition
JP2011-002537 2011-01-07
JP2011-202262 2011-09-15
JP2011202262A JP5833390B2 (en) 2010-09-24 2011-09-15 Method for producing polishing composition

Publications (1)

Publication Number Publication Date
WO2012039428A1 true WO2012039428A1 (en) 2012-03-29

Family

ID=45873912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071501 WO2012039428A1 (en) 2010-09-24 2011-09-21 Process for producing polishing liquid composition

Country Status (1)

Country Link
WO (1) WO2012039428A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140248823A1 (en) * 2013-03-04 2014-09-04 Cabot Microelectronics Corporation Composition and method for polishing glass
US9080080B2 (en) 2010-12-24 2015-07-14 Kao Corporation Method for producing polishing liquid composition
JP2017117847A (en) * 2015-12-21 2017-06-29 花王株式会社 Method for manufacturing silica fluid dispersion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165006A (en) * 1997-10-03 1999-06-22 Kyushu Electric Power Co Inc Treatment of electric power plant heater drain water
JP2003190780A (en) * 2001-12-25 2003-07-08 Asahi Kasei Corp Filter aid
JP2003190781A (en) * 2001-12-27 2003-07-08 Mitsubishi Chemicals Corp Silica gel for filter aid
JP2006136996A (en) * 2004-10-12 2006-06-01 Kao Corp Polishing composition manufacturing method
JP2007099586A (en) * 2005-10-07 2007-04-19 Oji Paper Co Ltd Method for producing silica particulate-dispersed liquid, silica particulate-dispersed liquid and ink jet recording sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165006A (en) * 1997-10-03 1999-06-22 Kyushu Electric Power Co Inc Treatment of electric power plant heater drain water
JP2003190780A (en) * 2001-12-25 2003-07-08 Asahi Kasei Corp Filter aid
JP2003190781A (en) * 2001-12-27 2003-07-08 Mitsubishi Chemicals Corp Silica gel for filter aid
JP2006136996A (en) * 2004-10-12 2006-06-01 Kao Corp Polishing composition manufacturing method
JP2007099586A (en) * 2005-10-07 2007-04-19 Oji Paper Co Ltd Method for producing silica particulate-dispersed liquid, silica particulate-dispersed liquid and ink jet recording sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080080B2 (en) 2010-12-24 2015-07-14 Kao Corporation Method for producing polishing liquid composition
US20140248823A1 (en) * 2013-03-04 2014-09-04 Cabot Microelectronics Corporation Composition and method for polishing glass
US9358659B2 (en) * 2013-03-04 2016-06-07 Cabot Microelectronics Corporation Composition and method for polishing glass
JP2017117847A (en) * 2015-12-21 2017-06-29 花王株式会社 Method for manufacturing silica fluid dispersion

Similar Documents

Publication Publication Date Title
JP5833390B2 (en) Method for producing polishing composition
US20130183889A1 (en) Process for producing polishing liquid composition
JP5698989B2 (en) Method for producing polishing composition
JP5844135B2 (en) Method for producing polishing composition
JP2006136996A (en) Polishing composition manufacturing method
US20100190413A1 (en) Polishing composition
JP6304841B2 (en) Method for producing polishing composition
JP4836441B2 (en) Polishing liquid composition
JP6033077B2 (en) Method for producing polishing composition
WO2012039428A1 (en) Process for producing polishing liquid composition
JP2015127987A (en) Manufacturing method of polishing liquid composition
JP2007320031A (en) Polishing liquid composition
JP4214093B2 (en) Polishing liquid composition
JP5377117B2 (en) Method for detecting non-spherical particles in a particle dispersion
JP5473587B2 (en) Polishing liquid composition for magnetic disk substrate
JP2003211351A (en) Method of reducing micro projections
JP4648367B2 (en) Polishing liquid composition
JP6680652B2 (en) Abrasive dispersion, polishing composition kit containing the same, and method for producing polishing composition, polishing composition, polishing method, and method for producing magnetic disk substrate using the same
JP6081317B2 (en) Manufacturing method of magnetic disk substrate
JP6425965B2 (en) Method of manufacturing polishing composition
JP4640981B2 (en) Substrate manufacturing method
JP6251567B2 (en) Method for producing polishing composition
JP4214107B2 (en) Polishing liquid composition
JP6418915B2 (en) Method for producing polishing composition
JP6562510B2 (en) Method for producing containerized silica dispersion

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045169.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824235

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826873

Country of ref document: EP

Kind code of ref document: A1