WO2012039245A1 - 非接触式電力伝送用のコイルモジュール、およびこれを具備する電池パックおよび充電装置 - Google Patents

非接触式電力伝送用のコイルモジュール、およびこれを具備する電池パックおよび充電装置 Download PDF

Info

Publication number
WO2012039245A1
WO2012039245A1 PCT/JP2011/069581 JP2011069581W WO2012039245A1 WO 2012039245 A1 WO2012039245 A1 WO 2012039245A1 JP 2011069581 W JP2011069581 W JP 2011069581W WO 2012039245 A1 WO2012039245 A1 WO 2012039245A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coil module
module
magnetic sheet
protrusion
Prior art date
Application number
PCT/JP2011/069581
Other languages
English (en)
French (fr)
Inventor
恭平 加田
山下 幹弘
鈴木 一敬
宇宙 松元
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012039245A1 publication Critical patent/WO2012039245A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention includes a first coil wound in a planar shape and a magnetic sheet on which the first coil is disposed, and the first coil and a second coil disposed to face the first coil.
  • the present invention relates to a coil module for non-contact power transmission that transmits power by electromagnetic induction between and a battery pack and a charging device including the coil module.
  • a coil module for non-contact power transmission that performs power transmission without using a connection terminal is known.
  • Such a coil module performs power transmission by the action of electromagnetic induction generated between two coils arranged opposite to each other.
  • both the coil modules 100 and 200 are arranged to face each other in the vertical direction in FIG. 7, and the side from the coil module 200 toward the coil module 100 is referred to as “upper side”, and the coil module 100 toward the coil module 200. Let the side be “lower”.
  • the coil module 100 includes a magnetic sheet 110 and a planar first coil 120 provided on the lower surface 111 of the sheet 110.
  • the coil module 200 includes a magnetic sheet 210 and a planar second coil 220 provided on the upper surface 211 of the sheet 210.
  • the present invention has been made in view of such a situation, and the purpose thereof is a coil module for non-contact power transmission capable of reducing the amount of leakage magnetic flux between coils arranged facing each other, Another object of the present invention is to provide a battery pack and a charging device including the same.
  • the first aspect of the present invention is a coil module for non-contact power transmission.
  • the coil module includes a first coil wound in a planar shape and a magnetic sheet on which the first coil is disposed, and a second coil disposed opposite to the first coil. Electric power is transmitted to and from the coil by electromagnetic induction.
  • the magnetic sheet includes a protrusion that protrudes toward the second coil at the center of the first coil and at least one outside the first coil. According to this configuration, the amount of leakage magnetic flux between the first and second coils arranged to face each other is reduced.
  • a second aspect of the present invention is a battery pack that includes the above-described coil module for non-contact power transmission and a secondary battery that is charged by an induced electromotive force generated in a first coil of the coil module. .
  • a third aspect of the present invention is a charging device including the coil module for non-contact power transmission and a circuit board that supplies an alternating current to the first coil of the coil module.
  • Sectional drawing which shows the cross-section of the mobile telephone provided with the battery pack which incorporated the coil module for non-contact-type electric power transmission concerning 1st Embodiment of this invention, and a charging device.
  • the disassembled perspective view which shows the structure of the coil module of FIG. 1 incorporated in the battery pack.
  • FIG. 2 is a cross-sectional structure diagram showing a magnetic flux formed between the coil module of FIG. 1 built in the battery pack and the coil module disposed in the charging device facing the coil module.
  • Sectional drawing which shows the cross-section of the coil module for non-contact-type electric power transmission concerning 2nd Embodiment of this invention.
  • (A) And (b) is sectional drawing which shows the cross-section of the coil module for non-contact-type electric power transmission concerning other embodiment of this invention.
  • (A) And (b) is sectional drawing which shows the cross-section of the coil module for non-contact-type electric power transmission concerning other embodiment of this invention. Sectional drawing which shows the cross-section of the conventional coil module for non-contact-type electric power transmission, and the coil module facing this. Sectional drawing which shows the cross-section of the coil module for non-contact-type electric power transmission of a comparative example.
  • FIG. 1 shows each cross-sectional structure of the mobile phone 1 in which the battery pack 33 is built in and the charging device 2 for charging the secondary battery 36 of the battery pack 33.
  • FIG. 1 shows a state where the mobile phone 1 is placed on the upper side of the charging device 2 in order to charge the mobile phone 1.
  • the mobile phone 1 includes a housing 30 made of a non-magnetic material such as a resin material.
  • the housing 30 is provided with a display unit 31 for displaying various information and an operation unit 32 for operating the mobile phone 1.
  • a battery pack 33 serving as a power source for the mobile phone 1 is detachably housed in the housing 30.
  • the battery pack 33 includes a coil module 35, a secondary battery 36 electrically connected to the coil module 35, and a case 34 for storing these.
  • the charging device 2 includes a housing 10 made of a non-magnetic material such as a resin material, and the housing 10 is provided with a coil module 11 and a circuit board 12.
  • the coil module 11 is referred to as a primary coil module 11
  • the coil module 35 is referred to as a secondary coil module 35.
  • the primary side coil module 11 or the secondary side coil module 35 corresponds to a “coil module for non-contact power transmission”.
  • the primary coil module 11 of the charging device 2 and the secondary coil module 35 of the mobile phone 1 face each other in close proximity.
  • an alternating current having a predetermined frequency is supplied from the circuit board 12 to the primary coil module 11, an alternating magnetic flux is generated in the primary coil module 11. Due to this alternating magnetic flux, an induced electromotive force having the same frequency as the above-mentioned frequency is generated in the secondary coil module 35.
  • the alternating current generated by the induced electromotive force is rectified into a direct current, and the direct current is supplied to the secondary battery 36, whereby the secondary battery 36 is charged. Then, based on the secondary battery 36 being fully charged, the charging apparatus 2 stops charging the mobile phone 1.
  • the configuration of the secondary coil module 35 will be described with reference to FIGS.
  • the secondary coil module 35 includes a planar first coil 41 and a magnetic sheet 40 on which the first coil 41 is disposed.
  • the magnetic sheet 40 is formed by sintering soft magnetic ferrite powder.
  • the first coil 41 is formed by winding a conductive wire in an annular shape. In the center of the first coil 41, an air core portion 45 which is a hollow space is provided.
  • the magnetic sheet 40 on which the first coil 41 is disposed includes a flat portion 42 formed in an annular shape in plan view.
  • a cylindrical outer protrusion 44 is provided on the outer peripheral edge of the flat portion 42 so as to protrude upward from the flat portion 42, that is, toward the primary coil module 11 (see FIG. 1).
  • the inner projecting portion 43 and the outer projecting portion 44 project perpendicularly to the plane portion 42.
  • the inner protrusion 43 is formed with a recess 47 that opens upward and is recessed downward in the cross-sectional shape. It should be noted that the thickness T1 of the flat portion 42 and the thickness T2 of the inner protrusion 43 are equal to each other.
  • the outer protrusion 44 is provided with an annular extension 46 extending outward from the lower end thereof. The thickness T3 of the outer protrusion 44 and the thickness T1 of the flat surface 42 are equal to each other.
  • the inner protrusion 43 is inserted through the air core 45.
  • the outer peripheral surface of the inner protrusion 43 and the inner periphery of the air core 45 are close to each other.
  • the inner peripheral surface of the outer protrusion 44 and the outer peripheral edge of the first coil 41 are close to each other. That is, the inner peripheral surface of the outer protrusion 44 and the outer periphery of the first coil 41 are in contact with each other, or the outer protrusion via a slight gap due to a dimensional error of the outer protrusion 44 and the first coil 41 or the like.
  • the inner peripheral surface of the portion 44 and the outer peripheral edge of the first coil 41 are adjacent to each other.
  • the primary coil module 11 is formed by sintering soft magnetic ferrite powder in the same manner as the secondary coil module 35.
  • the primary coil module 11 includes a magnetic sheet 50 and a planar second coil 51 attached to the magnetic sheet 50. Since the magnetic sheet 50 and the second coil 51 are substantially the same in configuration as the magnetic sheet 40 and the first coil 41, the corresponding parts are denoted by reference numerals in the 50s and the description thereof is omitted. . As shown in FIG. 3, the outer dimension of the inner protrusion 43 of the magnetic sheet 40 is larger than the outer dimension of the inner protrusion 53 of the magnetic sheet 50.
  • a magnetic circuit formed between the primary coil module 11 and the secondary coil module 35 will be described.
  • the second coil 51 moves from the inner peripheral side of the first coil 41 toward the inner peripheral side of the first coil 41, and the second coil from the outer peripheral side of the first coil 41 through the magnetic sheet 40.
  • a magnetic path is formed which faces the outer peripheral side of 51 and returns to the inner peripheral side of the second coil 51 via the magnetic sheet 50.
  • a magnetic circuit having a magnetic flux flow opposite to that of the magnetic circuit is formed.
  • the above-mentioned magnetic circuit and the magnetic flux opposite to this magnetic circuit is formed alternately.
  • the magnetic flux generated in the second coil 51 passes through the inner protrusion 53 and toward the inner protrusion 43.
  • the magnetic flux toward the air core portion 55 of the second coil 51 is directed toward the secondary coil module 35 by passing through the inner protrusion portion 53.
  • the magnetic flux emitted from the inner protrusion 53 is directed toward the inner protrusion 43.
  • the magnetic flux of the primary coil module 11 reaches the secondary coil module 35
  • the magnetic flux passes through the flat portion 42 via the inner protrusion 43, and then passes from the outer protrusion 44 to the second coil. Head to 51.
  • the outer protruding portion 44 reduces the amount of leakage magnetic flux that flows outside the secondary coil module 35.
  • the magnetic flux which goes to the 2nd coil 51 from the outer side projection part 44 goes to the outer side projection part 54 of the magnetic sheet 50, the quantity of the leakage magnetic flux which flows outside both the coil modules 11 and 35 decreases.
  • the magnetic sheet 40 when the magnetic flux is directed from the secondary coil module 35 to the primary coil module 11, the magnetic sheet 40 is directed toward the air core 45 of the first coil 41.
  • the flowing magnetic flux flows from the inner protrusion 43 toward the primary coil module 11. Therefore, the amount of leakage magnetic flux between the two coil modules 11 and 35 can be reduced.
  • the primary coil module 11 is similarly provided with an inner protrusion 53 and an outer protrusion 54. Therefore, the magnetic flux between the coil modules 11 and 35 flows between the inner protrusions 43 and 53 and between the outer protrusions 44 and 54, respectively. Therefore, the amount of leakage magnetic flux between both the coil modules 11 and 35 can be further reduced.
  • the air core coil 310 is attached to the magnetic sheet 300 formed into a flat plate shape, and the portion 320 outside the air core coil 310 of the magnetic sheet 300. It is conceivable to bend and attach to the case 34. According to such a configuration, the amount of leakage magnetic flux can be reduced as compared with the configuration shown in FIG.
  • the portion 320 is inclined outward in the radial direction toward the upper side, when the magnetic flux from the portion 320 flows toward the primary coil module 11 (see FIG. 3), the magnetic flux is along the portion 320. The magnetic flux may flow and spread outward. As a result, the effect of reducing the leakage magnetic flux flowing outside the coil modules 11 and 35 is reduced. Note that the same problem occurs even when the configuration of FIG. 8 is applied to the primary coil module 11.
  • the magnetic flux flowing from the outer protrusion 44 is lower than the configuration shown in FIG. (See Fig. 3). For this reason, the amount of leakage magnetic flux between the two coil modules 11 and 35 can be reduced as compared with the configuration shown in FIG.
  • the secondary coil module 35 is built in the battery pack 33. Therefore, the charging efficiency of the secondary battery 36 of the battery pack 33 by the charging device 2 can be improved.
  • the outer protrusion 44 is provided with an extension 46. Therefore, when the magnetic flux flows from the primary side coil module 11 toward the secondary side coil module 35 as compared with the outer side protruding part in which the extension part 46 is omitted, it flows from the outer side protruding part 54 toward the outer side protruding part 44. The area receiving the magnetic flux increases. For this reason, the amount of leakage magnetic flux between the two coil modules 11 and 35 can be further reduced. Further, when the magnetic flux flows from the secondary coil module 35 toward the primary coil module 11, an effect similar to the effect produced by the extension 46 of the outer projection 44 is obtained by the extension 56 of the outer projection 54. .
  • the thickness T1 of the planar portion 42 of the magnetic sheet 40, the thickness T2 of the inner protrusion 43, and the thickness T3 of the outer protrusion 44 are formed to be equal to each other.
  • a magnetic sheet 60 is used instead of the magnetic sheet 40.
  • the magnetic sheet 60 is formed so that the thickness of each part of the sheet 60 is different. The configuration described below can also be applied to the primary coil module 11.
  • the magnetic sheet 60 includes a flat surface portion 62 in which the air-core coil 61 is disposed and formed in an annular shape in plan view.
  • An inner protrusion 63 having a cylindrical outer shape extending from the flat portion 62 toward the opening is provided on the inner peripheral edge of the flat portion 62.
  • a cylindrical outer protrusion 64 is provided on the outer peripheral edge of the flat portion 62 and extends from the flat portion 62 toward the opening.
  • the inner protrusion 63 has a protruding shape that protrudes from the bottom surface 66 of the magnetic sheet 60 in the cross-sectional shape.
  • the inner protrusion 63 is not formed with a recess like the inner protrusion 43 of the first embodiment.
  • the inner projecting portion 63 is formed so that the portion corresponding to the air core portion 65 of the air core coil 61 is directed to the opening side and the thickness is increased more than the flat surface portion 62. Therefore, the thickness H1 of the inner protrusion 63 is thicker than the thickness T1 of the flat portion 62. Further, the thickness H3 of the inner protrusion 63 is thicker than the thickness T1 of the flat portion 62.
  • the outer protruding portion 64 has a protruding shape that protrudes from the bottom surface 66 of the magnetic sheet 60 toward the opening in the cross-sectional shape. That is, the outer protrusion 64 is formed so that the outer peripheral edge of the flat portion 62 is thicker than the portion of the flat portion 62 where the air-core coil 61 is disposed. Therefore, the thickness H2 of the outer protrusion 64 is thicker than the thickness T1 of the flat portion 62. Further, the thickness H4 of the outer protrusion 64 is thicker than the thickness T1 of the flat portion 62.
  • the inner protrusion 63 is formed by locally increasing the thickness of the magnetic sheet 60. For this reason, the amount of magnetic flux flowing from the air core coil 61 toward the air core portion 65 can be increased by the inner protrusion portion 63 as compared with the inner protrusion portion 43 of the first embodiment. For this reason, the amount of leakage magnetic flux between the coil modules 11 and 35 can be further reduced.
  • the outer protrusion 64 is formed by locally increasing the thickness of the magnetic sheet 60. For this reason, compared with the structure in which the recessed part like the inner side projection part 43 is provided, the magnetic flux amount which flows into the outer side projection part 64 can be increased. For this reason, the amount of leakage magnetic flux between the coil modules 11 and 35 can be further reduced.
  • the outer side protrusion part 44 can also be abbreviate
  • the flat portion 42 extends outward from the outer peripheral edge of the first coil 41 in the radial direction of the first coil 41.
  • the inner protrusion 43 can be omitted from the magnetic sheet 40.
  • an effect according to the effect (1) of the first embodiment can be obtained.
  • the configurations shown in FIGS. 5A and 5B can also be applied to the primary coil module 11.
  • the primary coil module 11 having both the protrusions 53 and 54 is referred to as a “first primary coil module”, and the one having only the inner protrusion 53 is referred to as a “second primary coil module”.
  • the one having only the outer projection 54 is referred to as a “third primary coil module”.
  • the secondary coil module 35 having both protrusions 43 and 44 is referred to as a “first secondary coil module”, and the one having only the inner protrusion 43 is referred to as a “second secondary coil module”.
  • a module having only the outer projection 44 is referred to as a “third secondary coil module”.
  • the outer protrusion 64 can be omitted from the magnetic sheet 60 as shown in FIG. In this case, it is preferable that the planar portion 62 extends outward from the outer peripheral edge of the first coil 61 in the radial direction of the first coil 61.
  • the amount of magnetic flux leakage to the outside in the radial direction of the first coil 61 can be reduced as compared with the coil modules 100 and 200 shown in FIG. Further, as shown in FIG. 6B, the inner protrusion 63 can be omitted from the magnetic sheet 60. Also in the configuration shown in FIGS. 6A and 6B, the effect according to the effect (1) of the first embodiment can be obtained.
  • the configurations shown in FIGS. 6A and 6B can also be applied to the primary coil module 11.
  • the outer protrusions 44, 54, 64 may be shaped to incline outward in the radial direction from the flat portions 42, 52, 62 toward the opening side. Even in this case, the effect (1) of the first embodiment can be achieved.
  • the magnetic sheets 40, 50, 60 are formed by sintering ferrite powder having soft magnetism, but the forming method of the magnetic sheets 40-60 is not limited thereto.
  • the ferrite powder can be formed into a sheet by using a polymer material such as rubber as a binding material.
  • the material forming the magnetic sheets 40 to 60 is not limited to ferrite powder, and may be other soft magnetic materials such as silicon steel plate, permalloy, iron and the like.
  • information indicating the charging state of the secondary battery 36 between the charging device 2 and the mobile phone 1 by the electromagnetic induction between the primary coil module 11 and the secondary coil module 35 is an electric signal. Can also be sent and received.
  • input / output of power for charging the secondary battery 36 as in each of the above embodiments is omitted by electromagnetic induction between the coil module for non-contact power transmission and the coil module facing the coil module. Thus, only the transmission and reception of the electric signal can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 非接触式電力伝送用のコイルモジュール(35)は、平面状に巻回された第1のコイル(41)と、この第1のコイルが配設される磁性シート(40)とを備え、第1のコイルとこれに対向して配置される第2のコイル(51)との間で電磁誘導による電力の伝送を行う。磁性シート(40)は、第1のコイル(41)の中央および第1のコイル(41)の外側の少なくとも一方において、第2のコイル(51)に向けて突出する突起部(43; 44)を含む。

Description

非接触式電力伝送用のコイルモジュール、およびこれを具備する電池パックおよび充電装置
 本発明は、平面状に巻回された第1のコイルと、この第1のコイルが配設される磁性シートとを備え、第1のコイルとこれに対向して配置される第2のコイルとの間で電磁誘導による電力の伝送を行う非接触式電力伝送用のコイルモジュール、およびこれを具備する電池パックおよび充電装置に関する。
 例えば特許文献1に記載されるように、接続端子を用いずに電力伝送を行う非接触式電力伝送用のコイルモジュールが知られている。このようなコイルモジュールは、互いに対向して配置される2つのコイル間に生じる電磁誘導の作用により電力伝送を行う。
 図7を参照して、従来の非接触式電力伝送用のコイルモジュール100およびこのコイルモジュール100に対向して配置されるコイルモジュール200の構成について説明する。以下では、図7中の上下方向に両コイルモジュール100,200が対向して配置されるとともに、コイルモジュール200からコイルモジュール100に向かう側を「上側」とし、コイルモジュール100からコイルモジュール200に向かう側を「下側」とする。
 コイルモジュール100は、磁性シート110と、同シート110の下面111に設けられた平面状の第1のコイル120とにより構成されている。また、コイルモジュール200は、磁性シート210と、同シート210の上面211に設けられた平面状の第2のコイル220とにより構成されている。
特開2009-27025号公報
 ところで、上記の両コイルモジュール100,200では、図7の一点鎖線の矢印に示すように、各コイル120,220の中心を通過することなく外部に漏洩する漏れ磁束の量が多くなる。このため、こうした漏れ磁束の存在により電力の伝送効率を向上させるうえでなお改善の余地を残すものとなっていた。
 本発明はこのような実情に鑑みてなされたものであり、その目的は、互いに対向して配置されるコイル間の漏れ磁束の量を少なくすることのできる非接触式電力伝送用のコイルモジュール、およびこれを具備する電池パックおよび充電装置を提供することにある。
 本発明の第一の態様は、非接触式電力伝送用のコイルモジュールである。該コイルモジュールは、平面状に巻回された第1のコイルと、この第1のコイルが配設される磁性シートとを備え、第1のコイルとこれに対向して配置される第2のコイルとの間で電磁誘導による電力の伝送を行う。磁性シートは、第1のコイルの中央および第1のコイルよりも外側の少なくとも一方において、第2のコイルに向けて突出する突起部を含む。この構成によれば、互いに対向して配置される第1及び第2コイル間の漏れ磁束の量が低減される。
 本発明の第二の態様は、上記の非接触式電力伝送用のコイルモジュールと、同コイルモジュールの第1のコイルに発生する誘導起電力により充電される二次電池とを含む電池パックである。
 本発明の第三の態様は、上記の非接触式電力伝送用のコイルモジュールと、同コイルモジュールの第1のコイルに交流電流を供給する回路基板とを含む充電装置である。
本発明の第1実施形態にかかる非接触式電力伝送用のコイルモジュールを内蔵した電池パックを備えた携帯電話および充電装置の断面構造を示す断面図。 電池パックに内蔵された図1のコイルモジュールの構造を示す分解斜視図。 電池パックに内蔵された図1のコイルモジュールとこれに対向して充電装置内に配置されるコイルモジュールとの間に形成される磁束を示す断面構造図。 本発明の第2実施形態にかかる非接触式電力伝送用のコイルモジュールの断面構造を示す断面図。 (a)および(b)は本発明のその他の実施形態にかかる非接触式電力伝送用のコイルモジュールの断面構造を示す断面図。 (a)および(b)は本発明のその他の実施形態にかかる非接触式電力伝送用のコイルモジュールの断面構造を示す断面図。 従来の非接触式電力伝送用のコイルモジュールとこれに対向するコイルモジュールとの断面構造を示す断面図。 比較例の非接触式電力伝送用のコイルモジュールの断面構造を示す断面図。
 (第1実施形態)
 図1~図3を参照して、本発明の第1実施形態について説明する。
 図1は、電池パック33が内蔵された携帯電話1、およびその電池パック33の二次電池36を充電するための充電装置2の各断面構造を示している。なお、図1では、携帯電話1を充電するために充電装置2の上側に携帯電話1が置かれた状態を示している。
 携帯電話1は、樹脂材料等の非磁性体からなるハウジング30を含む。例えば、ハウジング30には、各種情報を表示する表示部31と、携帯電話1を操作する操作部32とが設けられている。携帯電話1の電源となる電池パック33は、このハウジング30に着脱可能に収納されている。
 電池パック33は、コイルモジュール35と、コイルモジュール35に電気的に接続される二次電池36と、これらを収納するケース34とを含む。
 充電装置2は、樹脂材料等の非磁性体からなるハウジング10を含み、ハウジング10には、コイルモジュール11および回路基板12が設けられている。以下、本明細書では、コイルモジュール11を1次側コイルモジュール11といい、コイルモジュール35を2次側コイルモジュール35という。なお、1次側コイルモジュール11または2次側コイルモジュール35が、「非接触式電力伝送用のコイルモジュール」に相当する。
 携帯電話1の電池パック33を充電装置2によって充電する際の充電動作を説明する。
 携帯電話1が充電装置2のハウジング10上に載置されると、充電装置2の1次側コイルモジュール11と携帯電話1の2次側コイルモジュール35とが対向して近接した状態となる。
 ここで、回路基板12から1次側コイルモジュール11に所定周波数の交流電流が供給されると、1次側コイルモジュール11に交番磁束が発生する。この交番磁束により2次側コイルモジュール35には上記周波数と同じ周波数の誘導起電力が発生する。この誘導起電力により発生する交流電流が直流電流に整流され、その直流電流が二次電池36に供給されることにより、二次電池36は充電される。そして、二次電池36が満充電になったことに基づいて、充電装置2は携帯電話1の充電を停止する。
 図2および図3を参照して、2次側コイルモジュール35の構成について説明する。
 図2に示すように、2次側コイルモジュール35は、平面状の第1のコイル41と、これが配設される磁性シート40とを含む。磁性シート40は、軟磁性のフェライト粉末を焼結させることにより成形されている。
 第1のコイル41は、導電線を環状に巻回することで形成されている。第1のコイル41の中央には、中空空間である空芯部45が設けられている。
 第1のコイル41が配置される磁性シート40は、平面視において円環状に形成される平面部42を含む。図2に示すように、平面部42の内周縁には、平面部42から上側に、つまり1次側コイルモジュール11(図1参照)に向かい突出する円柱状の外形を有する内側突起部43が設けられている。平面部42の外周縁には、平面部42から上側に、つまり1次側コイルモジュール11(図1参照)に向かい突出する円筒形状の外側突起部44が設けられている。内側突起部43および外側突起部44は、平面部42に対して垂直に突出している。
 図3に示すように、内側突起部43には、断面形状において上側に開口するとともに下側に凹む凹部47が形成されている。なお、平面部42の厚さT1と内側突起部43の厚さT2とは互いに等しい。また、外側突起部44には、その下端部から外側に向けて延びる円環状の延長部46が設けられている。この外側突起部44の厚さT3と平面部42の厚さT1とは互いに等しい。
 磁性シート40に第1のコイル41を取り付けた状態において、内側突起部43は空芯部45に挿通されている。このとき、内側突起部43の外周面と空芯部45の内周縁とは近接している。また、外側突起部44の内周面と第1のコイル41の外周縁とは近接している。すなわち、外側突起部44の内周面と第1のコイル41の外周縁とは接触しているか、もしくは外側突起部44および第1のコイル41の寸法誤差等により僅かな隙間を介して外側突起部44の内周面と第1のコイル41の外周縁とが隣り合っている。
 1次側コイルモジュール11は、2次側コイルモジュール35と同様に軟磁性のフェライト粉末を焼結させることにより成形されている。1次側コイルモジュール11は、磁性シート50と、磁性シート50に取り付けられる平面状の第2のコイル51とを含む。磁性シート50および第2のコイル51は、磁性シート40および第1のコイル41とその構成が概ね共通しているため、対応する部位の符号を50番台の数字を付してその説明を省略する。なお、図3に示すように、磁性シート40の内側突起部43の外形寸法は、磁性シート50の内側突起部53の外形寸法よりも大きい。
 1次側コイルモジュール11と2次側コイルモジュール35との間に形成される磁気回路について説明する。
 1次側コイルモジュール11と2次側コイルモジュール35とが近接した状態において、第2のコイル51に交流電流が供給されたときには、以下の磁気回路が形成する。すなわち、図3に示すように、第2のコイル51の内周側から第1のコイル41の内周側に向かい、磁性シート40を介して第1のコイル41の外周側から第2のコイル51の外周側に向かい、磁性シート50を介して第2のコイル51の内周側に戻る磁路が形成される。なお、第2のコイル51の電流の向きによっては、上記磁気回路とは反対の磁束の流れとなる磁気回路が形成される。すなわち、1次側コイルモジュール11と2次側コイルモジュール35との間で、1次側コイルモジュール11に供給される交流電流に基づいて、上述の磁気回路と、この磁気回路とは反対の磁束の流れとなる磁気回路とが交番的に形成されるようになる。
 このように、第2のコイル51に生じる磁束は、内側突起部53を通るとともに内側突起部43に向かう。このとき、第2のコイル51の空芯部55に向かう磁束は内側突起部53を通過することにより2次側コイルモジュール35に向かうようになる。そして、内側突起部53から出る磁束は、内側突起部43に向かうようになる。
 また、1次側コイルモジュール11の磁束が2次側コイルモジュール35に到達したとき、同磁束は、内側突起部43を介して平面部42を通過した後、外側突起部44から第2のコイル51に向かう。このとき、外側突起部44は、2次側コイルモジュール35よりも外側に流れる漏れ磁束の量を低減する。そして、外側突起部44から第2のコイル51に向かう磁束は、磁性シート50の外側突起部54に向かうため、両コイルモジュール11,35よりも外側に向かい流れる漏れ磁束の量が少なくなる。
 第1実施形態によれば、以下の効果を奏することができる。
 (1)磁性シート40に外側突起部44が設けられることにより、2次側コイルモジュール35よりも外側に向かい流れる漏れ磁束の量を少なくすることができる。
 さらに、磁性シート40に内側突起部43が設けられることにより、磁束が2次側コイルモジュール35から1次側コイルモジュール11に向かう場合には、第1のコイル41の空芯部45に向けて流れる磁束が、内側突起部43から1次側コイルモジュール11に向けて流れるようになる。したがって、両コイルモジュール11,35間の漏れ磁束の量を少なくすることができる。
 加えて、1次側コイルモジュール11にも同様に内側突起部53および外側突起部54が設けられている。このため、両コイルモジュール11,35との間の磁束は、内側突起部43,53間および外側突起部44,54間にそれぞれ流れる。したがって、両コイルモジュール11,35間の漏れ磁束の量を一層少なくすることができる。
 (2)図8に示すように、2次側コイルモジュール35の構成として、平板状に成形した磁性シート300に空芯コイル310を取り付け、磁性シート300の空芯コイル310よりも外側の部位320を折り曲げてケース34に取り付けるものが考えられる。このような構成によれば、図7に示す構成と比較して漏れ磁束の量を低減することができる。
 ただし、上記部位320が上側に向かうにつれて径方向の外側に傾斜するため、上記部位320からの磁束が1次側コイルモジュール11(図3参照)に向かい流れるとき、磁束が上記部位320に沿って流れて磁束が外側に広がるおそれがある。その結果、両コイルモジュール11,35の外側に流れる漏洩磁束を少なくする効果が低くなる。なお、図8の構成を1次側コイルモジュール11に適用しても同様の問題が生じることとなる。
 その点、第1実施形態では、外側突起部44が平面部42に対して垂直に突出する形状であるため、図8に示す構成と比較して、外側突起部44から流れる磁束は垂直下側に向かい流れる(図3参照)。このため、図8に示す構成よりも両コイルモジュール11,35間の漏れ磁束の量を少なくすることができる。
 (3)2次側コイルモジュール35が電池パック33に内蔵されている。したがって、充電装置2による電池パック33の二次電池36の充電効率を向上させることができる。
 また、2次側コイルモジュール35と1次側コイルモジュール11との間で電圧信号の送受信を行う場合には、両コイルモジュール11,35間での漏れ磁束の量が少ないため、より適切に電圧信号の送受信を行うことができる。
 (4)外側突起部44には延長部46が設けられている。したがって、延長部46が省略された外側突起部と比較して、1次側コイルモジュール11から2次側コイルモジュール35に向けて磁束が流れるとき、外側突起部54から外側突起部44に向かい流れる磁束を受ける面積が大きくなる。このため、両コイルモジュール11,35間の漏れ磁束の量をより一層少なくすることができる。また、2次側コイルモジュール35から1次側コイルモジュール11に向けて磁束が流れるときには、外側突起部54の延長部56により外側突起部44の延長部46が奏する効果と同様の効果が得られる。
 (第2実施形態)
 図4を参照して、本発明の第2実施形態について説明する。第2実施形態では、第1実施形態と比較して異なる部分について詳細に説明するとともに、同一構成には同一符号を付してその説明を省略する。
 第1実施形態では、磁性シート40の平面部42の厚さT1と、内側突起部43の厚さT2および外側突起部44の厚さT3とが互いに等しくなるように形成されていた。これに対して、第2実施形態では、磁性シート40に代えて磁性シート60を用いている。磁性シート60は、同シート60の各部位の厚みが異なるように形成されている。なお、以下に説明する構成は、1次側コイルモジュール11にも適用することが可能である。
 図4に示すように、磁性シート60は、空芯コイル61が配置されるとともに平面視において円環状に形成される平面部62を含む。
 平面部62の内周縁には、同平面部62から開口部側に向かい延びる円柱状の外形を有する内側突起部63が設けられている。平面部62の外周縁には、同平面部62から開口部側に向かい延びる円筒形状の外側突起部64が設けられている。
 内側突起部63は、断面形状において磁性シート60の底面66から突出する突形状となる。すなわち、内側突起部63には、第1実施形態の内側突起部43のような凹部が形成されていない。換言すれば、内側突起部63は、空芯コイル61の空芯部65に対応する部分を開口部側に向けて平面部62よりも厚みを増大させるように形成されている。それゆえ、内側突起部63の厚さH1は、平面部62の厚さT1よりも厚い。また、内側突起部63の厚さH3は、平面部62の厚さT1よりも厚い。
 外側突起部64は、断面形状において磁性シート60の底面66から開口部側に突起する突形状となる。すなわち、外側突起部64は、平面部62の外周縁を同平面部62の空芯コイル61が配置される部位よりも厚みを増大させるように形成されている。それゆえ、外側突起部64の厚さH2は、平面部62の厚さT1よりも厚い。また、外側突起部64の厚さH4は、平面部62の厚さT1よりも厚い。
 第2実施形態によれば第1実施形態の効果(1)~(3)に加え、以下の効果を奏することができる。
 (5)内側突起部63は、磁性シート60の厚みを局所的に増大させることにより形成されている。このため、第1実施形態の内側突起部43と比較して、空芯コイル61から空芯部65に向かい流れる磁束量を内側突起部63によって増大させることができる。このため、両コイルモジュール11,35間の漏れ磁束の量を一層少なくすることができる。
 (6)外側突起部64は、磁性シート60の厚みを局所的に増大させることにより形成されている。このため、内側突起部43のような凹部が設けられる構成と比較して、外側突起部64に流れる磁束量を増大させることができる。このため、両コイルモジュール11,35間の漏れ磁束の量を一層少なくすることができる。
 (その他の実施形態)
 本発明の非接触式電力伝送用のコイルモジュールおよびこれを備える電池パックの具体的な構成は、上記各実施形態の内容に限定されるものではなく、例えば以下の変更が可能である。また、以下の変形例は、上記各実施形態についてのみ適用されるものではなく、異なる変形例同士を互いに組み合わせて実施することもできる。
 ・第1実施形態において、図5(a)に示すように、磁性シート40から外側突起部44を省略することもできる。この場合、第1のコイル41の径方向において、平面部42が第1のコイル41の外周縁よりも外側に延びることが好ましい。このような構成により、図7のコイルモジュール100,200と比較して、第1のコイル41の径方向の外側への漏れ磁束の量を少なくすることができる。また、図5(b)に示すように、磁性シート40から内側突起部43を省略することもできる。図5(a)、(b)に示す構成においても、第1実施形態の効果(1)に準じた効果を奏することができる。なお、図5(a)、(b)に示す構成は1次側コイルモジュール11についても適用することができる。
 ・第1実施形態においては、両突起部53,54を有する1次側コイルモジュール11と両突起部43,44を有する2次側コイルモジュール35との組み合わせであったが、両コイルモジュール11,35の組み合わせはこれに限られない。以下にその他のコイルモジュールの組み合わせについて説明する。
 ここでは、両突起部53,54を有する1次側コイルモジュール11を「第1の1次側コイルモジュール」とし、内側突起部53のみを有するものを「第2の1次側コイルモジュール」とし、外側突起部54のみを有するものを「第3の1次側コイルモジュール」とする。一方、両突起部43,44を有する2次側コイルモジュール35を「第1の2次側コイルモジュール」とし、内側突起部43のみを有するものを「第2の2次側コイルモジュール」とし、外側突起部44のみを有するものを「第3の2次側コイルモジュール」とする。このとき、その他のコイルモジュールの組み合わせは以下の通りとなる。
(A)第1の1次側コイルモジュールと第2の2次側コイルモジュール
(B)第1の1次側コイルモジュールと第3の2次側コイルモジュール
(C)第2の1次側コイルモジュールと第1の2次側コイルモジュール
(D)第2の1次側コイルモジュールと第2の2次側コイルモジュール
(E)第2の1次側コイルモジュールと第3の2次側コイルモジュール
(F)第3の1次側コイルモジュールと第1の2次側コイルモジュール
(G)第3の1次側コイルモジュールと第2の2次側コイルモジュール
(H)第3の1次側コイルモジュールと第3の2次側コイルモジュール
 ・第2実施形態において、図6(a)に示すように、磁性シート60から外側突起部64を省略することもできる。この場合、第1のコイル61の径方向において、平面部62が第1のコイル61の外周縁よりも外側に延びることが好ましい。このような構成により、図7に示すコイルモジュール100,200と比較して、第1のコイル61の径方向の外側への漏れ磁束の量を少なくすることができる。また、図6(b)に示すように、磁性シート60から内側突起部63を省略することもできる。図6(a)、(b)に示す構成においても、第1実施形態の効果(1)に準じた効果を奏することができる。なお、図6(a)、(b)に示す構成は1次側コイルモジュール11についても適用することができる。
 ・上記各実施形態において、外側突起部44,54,64は、平面部42,52,62から開口部側に向かうにつれて径方向の外側に傾斜する形状とすることもできる。この場合においても、第1実施形態の効果(1)を奏することができる。
 ・上記各実施形態では、軟磁性を有するフェライト粉末を焼結することにより磁性シート40,50,60を成形したが、磁性シート40~60の成形方法はこれに限られない。例えば、ゴム等の高分子素材を結合材料として用いることによりフェライト粉末をシート状に成形することもできる。また、磁性シート40~60を形成する材料は、フェライト粉末に限られず、ケイ素鋼板、パーマロイ、鉄等の他の軟磁性材料であってもよい。
 ・上記各実施形態において、1次側コイルモジュール11と2次側コイルモジュール35との電磁誘導により、充電装置2と携帯電話1との間で二次電池36の充電状態を示す情報を電気信号として送受信を行うこともできる。また、このような非接触式電力伝送用のコイルモジュールと、これに対向するコイルモジュールとの電磁誘導により、上記各実施形態のような二次電池36を充電するための電力の入出力を省略して、上記電気信号の送受信のみを行うこともできる。

Claims (6)

  1.  平面状に巻回された第1のコイルと、この第1のコイルが配設される磁性シートとを備え、前記第1のコイルとこれに対向して配置される第2のコイルとの間で電磁誘導による電力の伝送を行う非接触式電力伝送用のコイルモジュールにおいて、
     前記磁性シートは、前記第1のコイルの中央および前記第1のコイルよりも外側の少なくとも一方において、前記第2のコイルに向けて突出する突起部を含むことを特徴とする非接触式電力伝送用のコイルモジュール。
  2.  前記突起部は、前記磁性シートの厚さを局所的に増大させることにより形成されてなる請求項1に記載の非接触式電力伝送用のコイルモジュール。
  3.  前記突起部は、前記磁性シートの底面から垂直に突出していることを特徴とする請求項1に記載の非接触式電力伝送用のコイルモジュール。
  4.  前記第1のコイルの外側において前記磁性シートに形成される前記突起部は、前記第1のコイルの径方向外側に延出する延長部を含むことを特徴とする請求項1に記載の非接触式電力伝送用のコイルモジュール。
  5.  請求項1~4のいずれか一項に記載の非接触式電力伝送用のコイルモジュールと、同コイルモジュールの前記第1のコイルに発生する誘導起電力により充電される二次電池とを含む電池パック。
  6.  請求項1~4のいずれか一項に記載の非接触式電力伝送用のコイルモジュールと、同コイルモジュールの前記第1のコイルに交流電流を供給する回路基板とを含む充電装置。
PCT/JP2011/069581 2010-09-24 2011-08-30 非接触式電力伝送用のコイルモジュール、およびこれを具備する電池パックおよび充電装置 WO2012039245A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-213949 2010-09-24
JP2010213949A JP2012070557A (ja) 2010-09-24 2010-09-24 非接触式電力伝送用のコイルモジュールおよびこれを具備する電池パック

Publications (1)

Publication Number Publication Date
WO2012039245A1 true WO2012039245A1 (ja) 2012-03-29

Family

ID=45873735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069581 WO2012039245A1 (ja) 2010-09-24 2011-08-30 非接触式電力伝送用のコイルモジュール、およびこれを具備する電池パックおよび充電装置

Country Status (3)

Country Link
JP (1) JP2012070557A (ja)
TW (1) TW201214915A (ja)
WO (1) WO2012039245A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199436A (zh) * 2018-01-15 2018-06-22 杭州电子科技大学 无线充电***
CN108306428A (zh) * 2018-01-15 2018-07-20 杭州电子科技大学 基于无线充电的充电设备位置检测方法
CN108321946A (zh) * 2018-01-15 2018-07-24 杭州电子科技大学 无线充电装置
CN108390463A (zh) * 2018-01-15 2018-08-10 杭州电子科技大学 基于无线充电的充电设备位置检测装置
CN108565982A (zh) * 2018-06-13 2018-09-21 北京有感科技有限责任公司 线圈绕组结构和无线供电***
WO2019051109A1 (en) 2017-09-06 2019-03-14 Wireless Advanced Vehicle Electrification, Inc. FERRITE CHIMNEY WIRELESS POWER TRANSFER MAT
EP3525220A4 (en) * 2016-10-06 2020-04-08 LG Innotek Co., Ltd. REEL BLOCK FOR WIRELESS CHARGING AND METHOD FOR THE PRODUCTION THEREOF
US11437855B2 (en) 2017-12-22 2022-09-06 Wireless Advanced Vehicle Electrification, Llc Wireless power transfer pad with multiple windings and magnetic pathway between windings

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130293191A1 (en) 2011-01-26 2013-11-07 Panasonic Corporation Non-contact charging module and non-contact charging instrument
WO2012172812A1 (ja) 2011-06-14 2012-12-20 パナソニック株式会社 通信装置
JP5988146B2 (ja) * 2011-11-15 2016-09-07 パナソニックIpマネジメント株式会社 伝送コイル及び携帯無線端末
US10204734B2 (en) 2011-11-02 2019-02-12 Panasonic Corporation Electronic device including non-contact charging module and near field communication antenna
JP2013169122A (ja) 2012-02-17 2013-08-29 Panasonic Corp 非接触充電モジュール及びそれを備えた携帯端末
WO2013153736A1 (ja) 2012-04-10 2013-10-17 パナソニック株式会社 無線電力伝送装置、送電装置、および受電装置
JP5885570B2 (ja) * 2012-04-13 2016-03-15 キヤノン株式会社 無線電力伝送システム、無線電力伝送装置、無線電力伝送方法、無線電力伝送装置の制御方法、プログラム。
JP6112383B2 (ja) 2012-06-28 2017-04-12 パナソニックIpマネジメント株式会社 携帯端末
JP6094016B2 (ja) * 2013-10-10 2017-03-15 ホシデン株式会社 無接点給電機構および無接点給電機構用二次コイル
US9852844B2 (en) * 2014-03-24 2017-12-26 Apple Inc. Magnetic shielding in inductive power transfer
KR102166881B1 (ko) * 2014-04-03 2020-10-16 엘지이노텍 주식회사 무선 전력 송신 장치
JP2016061656A (ja) * 2014-09-17 2016-04-25 株式会社東芝 自動分析装置
CN104319076B (zh) * 2014-10-08 2018-03-23 中兴通讯股份有限公司 一种非接触变压器
US11990271B2 (en) 2017-03-28 2024-05-21 Tdk Corporation Soft magnetic ribbon for magnetic core, magnetic core, coil unit, and wireless power transmission unit
JP7318309B2 (ja) * 2019-05-28 2023-08-01 京セラドキュメントソリューションズ株式会社 画像形成装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235862A (ja) * 2007-02-20 2008-10-02 Seiko Epson Corp コイルユニット及び電子機器
WO2008156025A1 (ja) * 2007-06-20 2008-12-24 Panasonic Electric Works Co., Ltd. 非接触電力伝送装置及びそれの二次側の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235862A (ja) * 2007-02-20 2008-10-02 Seiko Epson Corp コイルユニット及び電子機器
WO2008156025A1 (ja) * 2007-06-20 2008-12-24 Panasonic Electric Works Co., Ltd. 非接触電力伝送装置及びそれの二次側の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525220A4 (en) * 2016-10-06 2020-04-08 LG Innotek Co., Ltd. REEL BLOCK FOR WIRELESS CHARGING AND METHOD FOR THE PRODUCTION THEREOF
WO2019051109A1 (en) 2017-09-06 2019-03-14 Wireless Advanced Vehicle Electrification, Inc. FERRITE CHIMNEY WIRELESS POWER TRANSFER MAT
EP3679639A4 (en) * 2017-09-06 2021-06-02 Wireless Advanced Vehicle Electrification, Inc. WIRELESS POWER TRANSFER PAD WITH FERRITE CHIMNEY
US11437855B2 (en) 2017-12-22 2022-09-06 Wireless Advanced Vehicle Electrification, Llc Wireless power transfer pad with multiple windings and magnetic pathway between windings
US11764613B2 (en) 2017-12-22 2023-09-19 Wireless Advanced Vehicle Electrification, Llc Wireless power transfer pad with multiple windings and magnetic pathway between windings
CN108199436A (zh) * 2018-01-15 2018-06-22 杭州电子科技大学 无线充电***
CN108306428A (zh) * 2018-01-15 2018-07-20 杭州电子科技大学 基于无线充电的充电设备位置检测方法
CN108321946A (zh) * 2018-01-15 2018-07-24 杭州电子科技大学 无线充电装置
CN108390463A (zh) * 2018-01-15 2018-08-10 杭州电子科技大学 基于无线充电的充电设备位置检测装置
CN108565982A (zh) * 2018-06-13 2018-09-21 北京有感科技有限责任公司 线圈绕组结构和无线供电***
CN108565982B (zh) * 2018-06-13 2024-01-09 合肥有感科技有限责任公司 线圈绕组结构和无线供电***

Also Published As

Publication number Publication date
TW201214915A (en) 2012-04-01
JP2012070557A (ja) 2012-04-05

Similar Documents

Publication Publication Date Title
WO2012039245A1 (ja) 非接触式電力伝送用のコイルモジュール、およびこれを具備する電池パックおよび充電装置
US10218222B2 (en) Non-contact charging module having a wireless charging coil and a magnetic sheet
US10291069B2 (en) Mobile terminal and chargeable communication module
JP5118394B2 (ja) 非接触電力伝送機器
US20180109139A1 (en) Mobile terminal including wireless charging module
JP5942084B2 (ja) 非接触充電モジュール及びこれを用いた非接触充電機器と携帯機器
JP5845405B2 (ja) 受信側非接触充電モジュール及び受信側非接触充電機器
US20140306656A1 (en) Non-contact charging module and portable terminal provided with same
JP5721001B2 (ja) コイル部品並びにそれを用いた給電装置及び充電装置
JP4835795B1 (ja) 受信側非接触充電モジュール及び受信側非接触充電機器
JP4835796B1 (ja) 受信側非接触充電モジュール及び受信側非接触充電機器
US20150326055A1 (en) Mobile terminal
CN107800197B (zh) 无线电力传输模块及具有该无线电力传输模块的电子设备
KR101489391B1 (ko) 연자성 시트
JP4900525B1 (ja) 非接触充電モジュール及びこれを備えた送信側非接触充電機器と受信側非接触充電機器
JP5700289B2 (ja) 伝送コイル装置並びにそれを用いた受電装置及び給電装置
JP6394534B2 (ja) 受電装置および送電装置
JP5003834B1 (ja) 送信側非接触充電モジュール及びこれを用いた送信側非接触充電機器
JP5845407B2 (ja) 受信側非接触充電モジュール及び受信側非接触充電機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826691

Country of ref document: EP

Kind code of ref document: A1