WO2012038432A1 - Installation de cristallisation et procédé de cristallisation pour fabriquer un bloc à partir d'un matériau dont la masse en fusion est électroconductrice - Google Patents

Installation de cristallisation et procédé de cristallisation pour fabriquer un bloc à partir d'un matériau dont la masse en fusion est électroconductrice Download PDF

Info

Publication number
WO2012038432A1
WO2012038432A1 PCT/EP2011/066332 EP2011066332W WO2012038432A1 WO 2012038432 A1 WO2012038432 A1 WO 2012038432A1 EP 2011066332 W EP2011066332 W EP 2011066332W WO 2012038432 A1 WO2012038432 A1 WO 2012038432A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
container
magnet
crystallization
segments
Prior art date
Application number
PCT/EP2011/066332
Other languages
German (de)
English (en)
Inventor
Natascha Dropka
Christiane Frank-Rotsch
Peter Rudolph
Ralph-Peter Lange
Uwe Rehse
Original Assignee
Forschungsverbund Berlin E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungsverbund Berlin E.V. filed Critical Forschungsverbund Berlin E.V.
Publication of WO2012038432A1 publication Critical patent/WO2012038432A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/007Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • C30B28/06Production of homogeneous polycrystalline material with defined structure from liquids by normal freezing or freezing under temperature gradient
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Definitions

  • the invention relates to a crystallization plant for producing a block from a material whose melt is electrically conductive, as well as an associated
  • Containers can be prepared in a vertical temperature gradient with a certain growth rate (K.Nakajima, N. Usami (Eds.), Crystal Growth of Si for Solar Cells, Springer, Berlin, Heidelberg 2009).
  • K.Nakajima, N. Usami (Eds.), Crystal Growth of Si for Solar Cells, Springer, Berlin, Heidelberg 2009 Depending on whether the container is moved downwards by a constant temperature gradient or whether the gradient is electronically controlled by a stationary melting container or the progressive cooling takes place at the bottom by a cooling fluid with a constant or increasing flow rate, a distinction between the underlying breeding method in Bridgman compiler, Vertical Gradient Freeze (VGF) or Heater Exchange Method (HEM), respectively (JC
  • Foreign phase particles form when the accumulated impurities chemically react with each other and exceed the solubility limits of the new undesirable phases become.
  • Such compounds are, for example, in the silicon crystallization SiC and Si 3 N 4 (T.
  • the most effective measure for reducing the diffusion boundary layer is a continuous homogeneous mixing of the melt. This is the barely occurring natural
  • TMF in the vertical Bridgman or Vertical Gradient Freeze method
  • the magnetic field either separately from the heater outside the culture vessel (R. Lantzsch et al., J. Crystal Growth 305 (2007) 249) or simultaneously in a coil-shaped heater is produced in the immediate vicinity of the melt container (Ch Frank-Rotsch, P. Rudolph, J. Crystal Growth 31 1 (2009) 2294, DE 10349339, DE 10 2007 020 239, DE 10 2007 028 547, DE 10 2007 028th 548).
  • the latter variant is energetically and economically clearly advantageous (P. Rudolph, J. Crystal Growth 310 (2008) 1298).
  • the use of such combined heater-magnet modules in the crystallization of solar silicon in rectangular containers has only been analyzed since 2009 (N. Dropka, J. Crystal Growth, 312 (2010) 1407; M. Zschorsch et al., 3rd International Workshop on Crystalline Silicon Solar Cells, Sintef / NTNU, Trondheim 2009, p.1, electronic release).
  • Phase boundary can take out.
  • Flow toroids are only available in cylindrical containers, with rectangular vessels without magnetic field there is a centered one
  • Rotating or traveling magnetic fields are used in metallurgical processes, such as the continuous casting of steel.
  • an arrangement of a multi-phase electromagnetic coil for generating a traveling field is perpendicular to
  • Decelerate speed values to compensate for the negative effects of stirring - a deflection and turbulence of the free surface.
  • Document DE 3 730 300 describes a method for calming the free bath surface. It is assumed that the resulting magnetic field inside the melt simultaneously maintains an intense stirring motion. In the two cited documents, very wide ranges, namely between 1 and 30 s are given for the cycle times in which the current direction is to be changed. This cycle time or period or the frequency of the sign change of the current is an important parameter with a great influence on the forming flow. However, both publications do not specify any requirements with regard to a period duration as a function of the magnetic field strength, the geometry of the arrangement or the material properties of the molten metal.
  • a device and a method for intensively stirring a melt contained in a cylindrical container in which a rotating magnetic field and a traveling magnetic field are used simultaneously are described in JP 2003 220323.
  • the rotating magnetic field is generated by surrounding the container vertically distributed over the circumference current loops (radial coils).
  • Magnetic field is generated by a longitudinal coil, the windings of which extend in a jacketed section in an axial direction and annularly surround the container shell, wherein the longitudinal coil between the container shell and the radial coil is arranged.
  • the radial coil generates a rotational movement and the longitudinal coil generates an axial movement of the liquid melt in the container.
  • WO 2008/155137 relates to a device for producing crystals from electrically conductive melts, at least one of them in a growth chamber
  • a melt crucible with a crucible bottom containing a melt crucible with a crucible bottom, a surrounding the crucible heater, which is designed as a multi-coil arrangement of superimposed coils and for simultaneously generating a traveling magnetic field, wherein the coils electrically with at least one outside of the cultivation chamber arranged energy supply device through the
  • Breeding chamber guided coil terminals are electrically connected. It is envisaged that walls of the multi-coil arrangement are at a distance from one imaginary one
  • Tiegelffenachse have to the inner edge of the Wndonne, at least one turn different from the other Wndache at the same or different
  • Winding cross sections is. Furthermore, a method for producing crystals of electrically conductive melts is provided.
  • the object of the invention is to provide an apparatus for the production of crystals of electrically conductive melts, in which a more effective coupling of Lorentz forces in the melt and thereby a more effective containment of buoyant convection in the melt is achieved and thus the perfection of the crystals to be produced is improved ,
  • Such a device should also be easy to handle and be installed in existing breeding plants without costly retrofitting.
  • DE 103 49 339 A1 a device is described in which the generation of a traveling magnetic field from top to bottom (or vice versa) takes place within the arranged in the high-pressure boiler Wderstandsharders.
  • DE 103 49 339 A1 describes the generation of a traveling magnetic field from top to bottom (or vice versa) within the resistance heater arranged in the high-pressure vessel by arranging the RST three-phase current required for heating in three superimposed
  • Coil segments simultaneously generates a longitudinally migrating magnetic field.
  • the aim of this solution is to contain the natural convection flows, their fluctuations and the control of the shape of the phase boundary.
  • Phase shift of the three-phase components resulted in a transversely rotating magnetic field, which generated a circulating Lorentz force in the electrically conductive melt, which in turn caused their rotation without crucible rotation.
  • the disadvantage is that control of the shape of the phase boundary by influencing the convective vertical currents is not achieved.
  • Ciscato et al. (Ciscato D., Dughiero F., Forzan M., EPM 2009, A Comparison between Resistance and Induction DSS Furnace for SoGSi Production] was based on a
  • Coil arrangement in bottom and top induction heating referenced in Si-Ingot plants which can both heat and cool.
  • the coils are fed with AC current at high frequency (2 kHz) and without a phase shift and are therefore unsuitable for the mixing of the melt and the influence of the shape of the phase boundary.
  • the crystallization plant includes:
  • a) comprising a bottom heater arranged below the container with a plurality of heater magnet coils arranged in 3 or more heater magnet segments, the heater magnet segments comprising a base area provided for heating the container and for generating magnetic fields form the bottom heater, but do not have a common geometric center in the base of the floor heater;
  • b) comprises a ceiling heater arranged above the container with a plurality of heater magnet coils arranged in 3 or more heater magnet segments, the heater magnet segments comprising a base area provided for heating the container and for generating magnetic fields of the ceiling heater, but not a common geometric
  • control and power supply unit with which the heater magnet segments can be assigned separately with a predefinable current intensity, frequency and phase shift, wherein the control and power supply unit is designed to generate at least one carousel magnetic field (KMF) by sequential occupancy of the heater
  • the invention is based on the finding that a segmented structure of the
  • the bottom heater or ceiling heater consists of three or more heater magnet segments. On each segment, one or more heater magnet spirals are arranged, which usually follow the predetermined by the segments contour.
  • the heater magnet coils of different segments are controlled separately from each other via a control and power supply unit, that is, for each segment current, frequency and phase shift can be individually specified.
  • the segments of the heater together make up the entire footprint of the heater used to heat / generate a traveling magnetic field. However, the segments have no common geometric center in the base of the heater. In other words, the segments are not arranged concentrically about an axis passing through the center of the ground
  • Ceiling heater and containers goes. With the help of the control of the power supply unit, the heater magnet spirals are controlled on the individual segments such that a magnetic traveling field circulating in the melt is generated, which in turn causes a crystallization front of the melt with (slightly) convex contour. A W-form of the crystallization front, which is typical with the use of side magnet heaters and downward Lorentz forces, can be avoided in this way.
  • the method is suitable for cylindrical, rectangular as well as all other polygonal containers.
  • the floor or ceiling heater is made up of three or more segments. This modular design also has the advantage that the heater through
  • the shape of the base of the heater should correspond to the basic shape of the container, that is, for cylindrical containers are heaters with a cylindrical base and for rectangular containers heaters with a corresponding rectangular base are preferred.
  • carousel magnetic field refers to a nonstationary magnetic field that is comparable to a rotating magnetic field but rotates in a plane above and below the melt and not peripherally thereabout, producing the vertically oriented Lorentz forces that are around Turn a central vertical axis of the melt around.
  • a cross-sectional area of a heater-magnet coil within a heater-magnet segment increases radially from the center of the container.
  • the cross section of the heater magnet coils increases in a segment from inside to outside.
  • the cross-sectional areas of the heater-magnet coils within a heater-magnet segment are preferably constant and the cross-sectional areas of heater-magnet coils of different heater-magnet segments increase radially from the center of the container.
  • Heater coils within a single segment The cross section of the heater magnet coils, however, is greater, the further outward the segment is arranged in the base of the heater.
  • the cross sectional areas of the heater magnet coils within a heater magnet segment may be constant and the heater magnet coils may be arranged in the heater magnet segment such that a distance of the heater magnet coils from the center of the container Containers increases in the radial direction.
  • the heater magnet coils are arranged with a predetermined inclination to the container bottom, the distance from the center of the base of the heater decreases towards the outside.
  • the heater magnet spirals have a cooling channel.
  • the heater-magnet segments are preferably arranged in a housing through which a coolant can flow. According to this embodiment, it is accordingly provided, the individual segments in a common housing
  • Another aspect of the invention is to provide a crystallization process for producing a block from a material whose melt is electrically conductive.
  • the method comprises the method steps:
  • the segments are usually driven in such a sequential manner that they generate a circulating magnetic traveling field in the melt.
  • the frequency significantly affects the penetration depth and strength of the Lorentz forces; it is also possible to influence the direction of the Lorentz forces.
  • the penetration depth decreases and the intensity of the Lorentz forces and the inclination angle of the Lorentz force to the winding surface increase.
  • Small frequencies for silicon f ⁇ 10 Hz
  • the choice of frequency also depends on the electrical conductivity of the melt and thus also on the desired
  • Preferred frequencies for the bottom heater are as low as possible, for example at 10 to 20 Hz for silicon, to increase the penetration depth.
  • the frequency is much higher to specify, for example, about 200 Hz for silicon in order to avoid too high a penetration depth, so as not to contaminants in
  • the penetration depth should not be higher than the height of the melt by specifying the frequency of the bottom heater.
  • the frequency in these cases should be set so that the penetration depth is about 10% of the melt height.
  • Segments of the floor heater are preferably occupied with the same frequency or with a rising from the inner segments to the outside frequency.
  • phase shift affects the Lorentz force intensity only relatively weakly (weak at low frequencies, but the influence of the phase shift increases at larger frequencies). The influence of the phase shift on the direction of the
  • Phase shift can be set such that the resulting Lorentz force is perpendicular to the container floor or with a slight inclination to the central vertical axis of the melt.
  • the current amplitude directly determines the Lorentz force intensity; with increasing amplitude, the Lorentz force increases sharply.
  • the Lorentz force should be higher than the buoyancy force in the melt.
  • the heater magnet spirals preferably have the same cross-sectional area in parallel over the entire area of the container floor. In floor heaters, embodiments are preferred in which the cross-sectional area increases from the inside to the outside or a distance between the heater-magnet spirals increases from the inside to the outside.
  • Figure 1 is a schematic sectional view through a crystallization plant with
  • Figure 2 is a plan view of a bottom heater consisting of four spiral-type heater magnet segments and sectional views of three embodiments of this bottom heater;
  • Figure 3 is a schematic representation of heater-magnet spiral coils having a cooling channel;
  • Figure 4 is a schematic sectional view through a crystallization plant, in which the segments are arranged in a housing through which a coolant can flow;
  • FIG. 1 shows in a highly schematic manner a sectional view through a
  • Crystallization plant comprises a container 8 for receiving a melt 10.
  • a ceiling heater is arranged, which consists of a total of four heater magnet segments with a square contour. In the sectional view are only the two
  • the crystallization plant shown in Figure 1 further comprises a bottom heater, which in turn consists of four heater magnet segments each having a square contour
  • the crystallization front should have a slightly convex contour, as shown schematically.
  • Soil heaters are induced by two carousel magnetic fields KMF A and KMF B.
  • FIG. 2 initially shows in the upper part a schematic plan view, which is shown both for the ceiling heater shown in FIG. 1 and for the one shown in FIG.
  • the heaters consist of four spiral segments 1, 2, 3, 4, the different contour of which will now be explained in more detail on the basis of the sections along the lines A, B, C.
  • the bottom right in FIG. 2 shows the various sections through the ceiling heater. As can be seen, the cross-sectional area and inclination is in the range of
  • Ceiling heater constant. At the bottom left in FIG. 2, three sectional views are illustrated by a bottom heater, as shown in FIG. As can be seen, a cross-sectional area of the heater-magnet coils in the individual segments 1, 2, 3, 4 increases from the inside to the outside.
  • the bottom heater can also - as shown at the bottom of the figure in the middle and provided with the reference numeral 1 b, 3b, 4b - are designed.
  • the heater magnet spirals of the individual segments 1 to 4 have a varying distance to
  • FIG. 3 Highly schematic cross sections are shown by heater magnet spiral windings having a cooling channel.
  • the heater magnet spirals can be made in two parts from U-shaped elements 5a to 7a or 5b to 7b
  • a cooling medium such as argon
  • FIG. 4 schematically illustrates a further embodiment of the crystallization plant, in which all segments of the bottom heater are accommodated in a common housing 9, through which a suitable coolant flows.
  • FIGS. 5 to 14 numerous variants for the design of the floor covering or ceiling heater can be seen in which the number and contour of the individual segments varies.
  • Figure 5 shows a bottom heater of three segments 12 to 14, wherein the segment 12 has a pentagonal shape and the two remaining segments 13, 14 have an irregular quadrangular shape.
  • the coils applied to the segments 12 to 14 follow the contour of the segments 12 to 14.
  • Each of these coils is driven, for example, with the same frequency and amplitude, but out of phase, to produce the carousel magnetic field KMF.
  • the illustrated embodiment is particularly suitable for rectangular containers.
  • Figure 6 also shows a heater with three segments 19 to 21, the shape of which, however, is identical and correspond to circle segments which, when combined, form a circular base of the heater.
  • the configuration shown is particularly suitable for cylindrical containers. An activation of the individual segments 19 to 21 can take place analogously to FIG.
  • Figure 7 shows schematically a further heater with four segments 22 to 25, which is particularly suitable for cylindrical containers.
  • Figure 8 illustrates a further heater with a total of nine square segments 26 to 34.
  • the heater is suitable for rectangular containers.
  • Segments 43 to 46 square.
  • the inner segments 43 to 46 are surrounded by middle segments 39 to 42, which in turn are comprised of four outer segments 35 to 38.
  • the inner, middle and outer segments are controlled independently of each other, that is, they can vary in frequency, amplitude and phase.
  • the resulting carousel magnetic fields KMF A , KMF B , KMF C as shown, rotate in opposite directions.
  • FIG. 10 shows a bottom heater with a total of 36 segments 47 to 82, wherein the inner segments 79 to 82, the middle segments 67 to 78 and the outer segments 47 to 66 are switched separately from one another such that again three carousel magnetic fields KM F A , KM F B , KM F c are induced in the melt.
  • Figure 1 1 shows a variant of a heater with four segments 83 to 86, the
  • FIG. 12 illustrates another variant of a circular base heater suitable for a cylindrical container.
  • the inner segments 93 to 95, the middle segments 90 to 92 and the outer segments 87 to 89 can be controlled separately, so that three carousel magnetic fields KMF A , KMF B , KMF C form in the melt with different orientation.
  • Figure 13 illustrates schematically a further heater with a circular base, which is suitable for cylindrical containers. The heater has a total of twelve segments 96 to 107, which are controlled in the same way as described in Figure 12.
  • Figure 14 shows a variant of a heater with a square base.
  • the inner segments 12 to 15 form a circle in a composite, while the outer segments 108 to 11 are designed so that overall the desired square base area is formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

L'invention concerne une installation de cristallisation pour fabriquer un bloc à partir d'un matériau dont la masse en fusion est électroconductrice ainsi qu'un procédé de cristallisation correspondant. L'installation de cristallisation comprend à cet effet: un récipient pour recevoir une masse en fusion du matériau; - un module élément chauffant-aimant qui comprend a) un élément chauffant de fond disposé en dessous du récipient, comprenant une pluralité de spirales élément chauffant-aimant disposées en au moins 3 segments élément chauffant-aimant, les segments élément chauffant-aimant formant ensemble une surface de base de l'élément chauffant de fond prête pour chauffer le récipient et pour générer des champs magnétiques mais n'ayant toutefois pas de point central géométrique commun dans la surface de base de l'élément chauffant de fond, et/ou b) un élément chauffant de couverture disposé au-dessus du récipient, comprenant une pluralité de spirales élément chauffant-aimant disposées en au moins 3 segments élément chauffant-aimant, les segments élément chauffant-aimant formant ensemble une surface de base de l'élément chauffant de couverture prête pour chauffer le récipient et pour générer des champs magnétiques mais n'ayant toutefois pas de point central géométrique commun dans la surface de base de l'élément chauffant de couverture; et une unité de commande et d'alimentation électrique avec laquelle il est possible d'appliquer séparément aux segments élément chauffant-aimant une intensité de courant, une fréquence et un déphasage prédéfinissables, l'unité de commande et d'alimentation en courant étant conçue pour produire au moins un champ magnétique carrousel (KMF) par application séquentielle aux segments élément chauffant-aimant d'une intensité de courant, d'une fréquence et d'un déphasage prédéfinissables de telle manière qu'un front de cristallisation de la masse en fusion se forme avec un contour convexe.
PCT/EP2011/066332 2010-09-20 2011-09-20 Installation de cristallisation et procédé de cristallisation pour fabriquer un bloc à partir d'un matériau dont la masse en fusion est électroconductrice WO2012038432A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010041061 DE102010041061B4 (de) 2010-09-20 2010-09-20 Kristallisationsanlage und Kristallisationsverfahren zur Herstellung eines Blocks aus einem Material, dessen Schmelze elektrisch leitend ist
DE102010041061.6 2010-09-20

Publications (1)

Publication Number Publication Date
WO2012038432A1 true WO2012038432A1 (fr) 2012-03-29

Family

ID=44675582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/066332 WO2012038432A1 (fr) 2010-09-20 2011-09-20 Installation de cristallisation et procédé de cristallisation pour fabriquer un bloc à partir d'un matériau dont la masse en fusion est électroconductrice

Country Status (2)

Country Link
DE (1) DE102010041061B4 (fr)
WO (1) WO2012038432A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216847A (zh) * 2022-07-21 2022-10-21 西北工业大学 多磁场辅助定向凝固制备金属材料的方法及装置
CN115558984A (zh) * 2022-09-21 2023-01-03 中国电子科技集团公司第十三研究所 一种无坩埚制备大尺寸半导体晶体的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013211769A1 (de) * 2013-06-21 2014-12-24 Forschungsverbund Berlin E.V. Kristallisationsanlage und Kristallisationsverfahren zur Kristallisation aus elektrisch leitenden Schmelzen sowie über das Verfahren erhältliche Ingots
DE102019206489A1 (de) 2019-05-06 2020-11-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Tiegel zur Herstellung von partikel- und stickstoff-freien Silicium-Ingots mittels gerichteter Erstarrung, Silicium-Ingot und die Verwendung des Tiegels

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962341A1 (fr) 1969-12-12 1971-06-24
DE2107646A1 (de) 1970-02-18 1971-10-07 Nippon Electric Co Vorrichtung zum Züchten von Einkristallen aus Schmelzen
DE2401145A1 (de) 1973-04-18 1974-10-31 Nippon Steel Corp Verfahren und vorrichtung zum kontinuierlichen giessen
EP0247297A2 (fr) 1986-04-28 1987-12-02 International Business Machines Corporation Croissance d'un cristal semi-conducteur via une rotation variable du bain fondu
DE3730300A1 (de) 1987-09-10 1989-03-23 Aeg Elotherm Gmbh Verfahren und vorrichtung zum elektromagnetischen ruehren von metallschmelzen in einer stranggiesskokille
EP0854209A1 (fr) * 1996-12-17 1998-07-22 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Procédé de préparation d'un monocristal de silicium et dispositif de chauffage pour la mise en oeuvre de ce procédé
DE10102126A1 (de) 2001-01-18 2002-08-22 Wacker Siltronic Halbleitermat Verfahren und Vorrichtung zum Herstellen eines Einkristalls aus Silicium
US20030106667A1 (en) 2000-06-27 2003-06-12 Leonid Beitelman Method and device for continuous casting of metals in a mold
JP2003220323A (ja) 2002-01-31 2003-08-05 Univ Tohoku 電磁撹拌装置及び電磁撹拌方法
DE10349339A1 (de) 2003-10-23 2005-06-16 Crystal Growing Systems Gmbh Kristallzüchtungsanlage
DE102007020239A1 (de) 2006-04-24 2007-10-25 Forschungsverbund Berlin E.V. Vorrichtung zur Herstellung von Kristallen aus elektrisch leitfähigen Schmelzen
WO2008148542A1 (fr) * 2007-06-06 2008-12-11 Freiberger Compound Materials Gmbh Dispositif et procédé de fabrication d'un cristal à partir d'une masse en fusion d'une matière première et monocristal
DE102007028547A1 (de) 2007-06-18 2008-12-24 Forschungsverbund Berlin E.V. Vorrichtung zur Herstellung von Kristallen aus elektrisch leitenden Schmelzen
DE102007028548A1 (de) 2007-06-18 2008-12-24 Forschungsverbund Berlin E.V. Vorrichtung und Verfahren zur Herstellung von Kristallen aus elektrisch leitenden Schmelzen
DE102007038281B4 (de) 2007-08-03 2009-06-18 Forschungszentrum Dresden - Rossendorf E.V. Verfahren und Einrichtung zum elektromagnetischen Rühren von elektrisch leitenden Flüssigkeiten
DE102008039457A1 (de) 2008-08-25 2009-09-17 Schott Ag Vorrichtung und Verfahren zum gerichteten Erstarren einer Schmelze

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006020234A1 (de) * 2006-04-27 2007-10-31 Deutsche Solar Ag Ofen für Nichtmetall-Schmelzen

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962341A1 (fr) 1969-12-12 1971-06-24
DE2107646A1 (de) 1970-02-18 1971-10-07 Nippon Electric Co Vorrichtung zum Züchten von Einkristallen aus Schmelzen
DE2401145A1 (de) 1973-04-18 1974-10-31 Nippon Steel Corp Verfahren und vorrichtung zum kontinuierlichen giessen
EP0247297A2 (fr) 1986-04-28 1987-12-02 International Business Machines Corporation Croissance d'un cristal semi-conducteur via une rotation variable du bain fondu
DE3730300A1 (de) 1987-09-10 1989-03-23 Aeg Elotherm Gmbh Verfahren und vorrichtung zum elektromagnetischen ruehren von metallschmelzen in einer stranggiesskokille
EP0854209A1 (fr) * 1996-12-17 1998-07-22 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Procédé de préparation d'un monocristal de silicium et dispositif de chauffage pour la mise en oeuvre de ce procédé
US20030106667A1 (en) 2000-06-27 2003-06-12 Leonid Beitelman Method and device for continuous casting of metals in a mold
DE10102126A1 (de) 2001-01-18 2002-08-22 Wacker Siltronic Halbleitermat Verfahren und Vorrichtung zum Herstellen eines Einkristalls aus Silicium
JP2003220323A (ja) 2002-01-31 2003-08-05 Univ Tohoku 電磁撹拌装置及び電磁撹拌方法
DE10349339A1 (de) 2003-10-23 2005-06-16 Crystal Growing Systems Gmbh Kristallzüchtungsanlage
DE102007020239A1 (de) 2006-04-24 2007-10-25 Forschungsverbund Berlin E.V. Vorrichtung zur Herstellung von Kristallen aus elektrisch leitfähigen Schmelzen
WO2008148542A1 (fr) * 2007-06-06 2008-12-11 Freiberger Compound Materials Gmbh Dispositif et procédé de fabrication d'un cristal à partir d'une masse en fusion d'une matière première et monocristal
DE102007028547A1 (de) 2007-06-18 2008-12-24 Forschungsverbund Berlin E.V. Vorrichtung zur Herstellung von Kristallen aus elektrisch leitenden Schmelzen
DE102007028548A1 (de) 2007-06-18 2008-12-24 Forschungsverbund Berlin E.V. Vorrichtung und Verfahren zur Herstellung von Kristallen aus elektrisch leitenden Schmelzen
WO2008155137A1 (fr) 2007-06-18 2008-12-24 Forschungsverbund Berlin E.V. Dispositif et procédé de production de cristaux à partir de bains fondus électriquement conducteurs
DE102007038281B4 (de) 2007-08-03 2009-06-18 Forschungszentrum Dresden - Rossendorf E.V. Verfahren und Einrichtung zum elektromagnetischen Rühren von elektrisch leitenden Flüssigkeiten
DE102008039457A1 (de) 2008-08-25 2009-09-17 Schott Ag Vorrichtung und Verfahren zum gerichteten Erstarren einer Schmelze

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
"Crystal Growth of Si for Solar Cells", 2009, SPRINGER
CH. FRANK-ROTSCH, P. RUDOLPH, J. CRYSTAL GROWTH, vol. 311, 2009, pages 2294
CISCATO D., DUGHIERO F., FORZAN M.: "A Comparison between resistance and induction DSS furnace for SoGSi production", EPM, 2009
DUGHIERO F ET AL: "A new DSS furnace for energy saving in the production of multi-crystalline Silicon", 35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 20-25 JUNE 2010, HONOLULU, HI [US], 20 June 2010 (2010-06-20), IEEE, PISCATAWAY, NJ [US], pages 2165 - 2170, XP031785393, ISSN: 0160-8371, ISBN: 978-1-4244-5890-5, DOI: 10.1109/PVSC.2010.5615883 *
F. ROSENBERGER: "Fundamentals of Crystal Growth I", 1979, SPRINGER
J.C. BRICE, P. RUDOLPH: "Crystal Growth in: Ullmanns Encyclopedia of Industrial Chemistry", vol. 10, 2003, WILEY-VCH, pages: 47 - 98
K. DADZIS ET AL., PROC. EPM 2009, 2009, pages 887
K.-TH. WILKE, J. BOHM: "Kristallzüchtung", 1988, VLG. HARRI DEUTSCH-THUN
LIU ET AL., J. CRYSTAL GROWTH, vol. 310, 2008, pages 2192
M. KIRPO ET AL., PROC. EPM 2009, 2009, pages 553
M. ZSCHORSCH ET AL., 3RD INTERN. WORKSHOP ON CRYSTALLINE SILICON SOLAR CELLS, SINTEF/ NTNU, 2009, pages 1
N. DROPKA, J. CRYSTAL GROWTH, vol. 312, 2010, pages 1407
P. RUDOLPH, J. CRYSTAL GROWTH, vol. 310, 2008, pages 1298
PROCEEDINGS 6TH INT. CONF. ON ELECTROMAGNETIC PROCESSING OF MATERIALS, EPM 2009, 2009
R. LANTZSCH ET AL., J. CRYSTAL GROWTH, vol. 305, 2007, pages 249
S. ECKERT ET AL., INT. J. CAST METALS RES., vol. 22, 2009, pages 78
T. BUONASSISI ET AL., J. CRYSTAL GROWTH, vol. 287, 2006, pages 402
VON HOSHIKAWA ET AL., JPN. J. APPL. PHYS., vol. 19, 1980, pages 133

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216847A (zh) * 2022-07-21 2022-10-21 西北工业大学 多磁场辅助定向凝固制备金属材料的方法及装置
CN115558984A (zh) * 2022-09-21 2023-01-03 中国电子科技集团公司第十三研究所 一种无坩埚制备大尺寸半导体晶体的方法

Also Published As

Publication number Publication date
DE102010041061A1 (de) 2012-03-22
DE102010041061B4 (de) 2013-10-24

Similar Documents

Publication Publication Date Title
EP2028292B1 (fr) Procédé de fabrication de corps métallique ou semi-métalliques monocristallins
DE102006017621B4 (de) Vorrichtung und Verfahren zur Herstellung von multikristallinem Silizium
DE68919737T2 (de) Vorrichtung und Verfahren zur Züchtung von grossen Einkristallen in Platten-/Scheibenform.
DE19607098C2 (de) Verfahren und Vorrichtung zum gerichteten Erstarren einer Schmelze aus Silizium zu einem Block in einem bodenlosen metallischen Kaltwandtiegel
DE102006060359B4 (de) Verfahren und Vorrichtung zur Herstellung von Halbleiterscheiben aus Silicium
EP2379783B1 (fr) Procédé et dispositif de fabrication de barres de silicium fines
DE2242111A1 (de) Verfahren und vorrichtung zum giessen von gegenstaenden mit gerichtet erstarrtem gefuege
EP0527477A1 (fr) Procédé pour contrôler la teneur en oxygène des cristaux de silicium
EP2242874B1 (fr) Dispositif et procédé de fabrication de corps cristallins par solidification directionnelle
DE102007049778A1 (de) Verfahren zum Herstellen eines Halbleitereinkristalls durch das Czochralski-Verfahren sowie Einkristallrohling und Wafer, die unter Verwendung derselben hergestellt werden
DE102010041061B4 (de) Kristallisationsanlage und Kristallisationsverfahren zur Herstellung eines Blocks aus einem Material, dessen Schmelze elektrisch leitend ist
EP1866466A1 (fr) Procede pour produire une tranche de silicium monocristalline a section pratiquement polygonale et tranche de silicium monocristalline correspondante
DE102009045680B4 (de) Vorrichtung und Verfahren zur Herstellung von Siliziumblöcken aus der Schmelze durch gerichtete Erstarrung
DE102008034029A1 (de) Vorrichtung und Verfahren zur Züchtung von Kristallen aus elektrisch leitenden Schmelzen in Mehrtiegelanordnungen
DE102008059521A1 (de) Verfahren zum Erstarren einer Nichtmetall-Schmelze
DE1100887B (de) Verfahren und Vorrichtung zur Herstellung von Rohren aus durchsichtigem, reinem Quarz
WO2011076157A1 (fr) Procédé et agencement permettant d'influer sur la convection dans une masse fondue lors de la fabrication d'un corps solide à partir d'une masse fondue électroconductrice
DE102010028173B4 (de) Verfahren zur Herstellung von Kristallblöcken hoher Reinheit
DE102010052522B4 (de) Verfahren und Vorrichtung zur Herstellung von Einkristallen aus Halbleitermaterial
DE102011076860B4 (de) Verfahren zur gerichteten Kristallisation von Ingots
EP2880205B1 (fr) Dispositif de fabrication d'un monocristal par cristallisation dudit monocristal au niveau d'une zone de fusion
DE102009027436A1 (de) Verfahren und Vorrichtung zur Züchtung von Kristallen aus elektrisch leitenden Schmelzen, die in der Diamant- oder Zinkblendestruktur kristallisieren
WO2014202284A1 (fr) Dispositif et procédé de cristallisation pour la cristallisation à partir de masses fondues électriquement conductrices ainsi que lingots pouvant être obtenus par le procédé
WO2013004745A1 (fr) Procédé et dispositif de solidification dirigée d'une masse fondue non métallique
DE102013203740B4 (de) Vorrichtung und Vefahren zur Herstellung von Silizium-Blöcken

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11760761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11760761

Country of ref document: EP

Kind code of ref document: A1