WO2012037843A1 - 织物型压力传感器的制造方法及用于制造织物型压力传感器的工具 - Google Patents

织物型压力传感器的制造方法及用于制造织物型压力传感器的工具 Download PDF

Info

Publication number
WO2012037843A1
WO2012037843A1 PCT/CN2011/078742 CN2011078742W WO2012037843A1 WO 2012037843 A1 WO2012037843 A1 WO 2012037843A1 CN 2011078742 W CN2011078742 W CN 2011078742W WO 2012037843 A1 WO2012037843 A1 WO 2012037843A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
sensing
sensing fabric
wire
conversion layer
Prior art date
Application number
PCT/CN2011/078742
Other languages
English (en)
French (fr)
Inventor
陶肖明
华涛
王杨勇
李乔
周绮君
Original Assignee
香港纺织及成衣研发中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港纺织及成衣研发中心 filed Critical 香港纺织及成衣研发中心
Priority to US13/825,124 priority Critical patent/US9488536B2/en
Publication of WO2012037843A1 publication Critical patent/WO2012037843A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • G01L11/025Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means using a pressure-sensitive optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49004Electrical device making including measuring or testing of device or component part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble

Definitions

  • the present invention relates to the field of sensor manufacturing, and more particularly to a method of fabricating a fabric type pressure sensor and a manufacturing tool therefor.
  • Pressure sensors have a wide range of applications in industrial and personal use, but most pressure sensors are not suitable for users to wear due to their large size, heavy weight, hard touch and inconvenient use. This limits the use of pressure sensors in personal use, such as sportswear, smart clothing, and footwear, where pressure is measured in close contact with the human body.
  • the fabric type pressure sensor is a new type of pressure sensor. Because it is mainly composed of a resistive fabric sensing element and a flexible structural material, it has a soft touch, a light weight, a long service life, and is suitable for three-dimensional and large-area measurement. Fabric pressure sensors and their products are used in a wide range of applications in apparel and footwear, health rehabilitation and clinical medicine, physical fitness, safety and protection, automotive, aerospace and construction.
  • FIGS 1 and 2 are schematic views of two fabric type pressure sensors.
  • the fabric pressure sensor adopts a sandwich structure comprising an intermediate resistive fabric sensing element 1-1, an upper silicone-based 2-1 or a silica-fiber composite (silica gel 2-2, fabric 2-3) up-conversion layer, Lower layer of silica gel base 3-1 or silica gel-fabric composite (silica gel 3-2, fabric 3-3), conditioning column 4-1 and sensing fabric connecting wire 5-1.
  • the upper and lower conversion layers convert the sensed external pressure into a deformation of the intermediate sensing fabric, thereby causing a change in the resistance of the sensing fabric and outputting.
  • the contours in the middle of the upper and lower conversion layers may be in the form of teeth or other shapes as illustrated by the application.
  • the stiffness of the material used as the adjustment column 4-1 can be adjusted to suit different measurement requirements.
  • the fabric pressure sensor of Figure 1 uses a silica-based up-and-down conversion layer, while the fabric pressure sensor of Figure 2 uses a silica-textile composite-based conversion layer.
  • fabric-type pressure sensors are composed of flexible materials that are easily deformed during the manufacturing process. Therefore, it is necessary to invent and establish corresponding manufacturing methods, equipment, and manufacturing tools for flexible pressure sensors.
  • the technical problem to be solved by the present invention is to provide a fabric type pressure sensor capable of manufacturing the above-mentioned fabric type pressure sensor, which is simple and capable of controlling the processing quality and the yield, without the manufacturing difficulty of the prior art fabric type pressure sensor and the corresponding special manufacturing tool. Manufacturing methods and corresponding manufacturing tools.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to construct a manufacturing method of a fabric type pressure sensor, which comprises the steps of:
  • step S1 the steps are included between step S1 and step S2:
  • step S4 the method further comprises the steps of:
  • the invention also constructs an electrical performance measuring instrument for measuring the electrical properties of a sensing fabric, the electrical performance measuring instrument comprising an adjustable test electrode (11) for contacting both ends of the sensing fabric and for reading
  • the resistance device (12) for sensing a fabric resistance further includes a sample stage (13) and a holder for fixing the sensing fabric and applying a tensile force and a predetermined strain to both ends of the sensing fabric ( 17).
  • the electrical performance measuring instrument further comprises an adjusting block (14) for applying pressure to the test electrode (11), the applied pressure for changing the measurement Contact between the electrode (11) and the sensing fabric.
  • the present invention also contemplates a wire bonding tool for connecting a sensing fabric and a wire, the wire bonding tool comprising a wire distance control hole (21) intermediate the wire bonding tool and for fixing the sensing fabric A fixed platform (22) connecting the sensing fabric and the wire is sewn.
  • the surface of the fixed platform (22) further includes a wire indicating line (23) for indicating the position of the wire.
  • the present invention also contemplates a sensor structural component assembly tool for assembling a fabric type pressure sensor, the sensor structural component assembly tool comprising: a clamp locator (31) for securing the sensing fabric under a predetermined tension a lower conversion layer positioning cartridge (32) for bonding the lower conversion layer and the sensing fabric, and for bonding the adjustment column and the sensing fabric, the adhesive up-conversion layer, and the adjustment column Conversion layer positioning box (33).
  • the sensor structural component combination tool further includes a function between the down conversion layer, the sensing fabric, the adjustment pillar, and the upconversion layer
  • the bonded area is pressure-applied to position the bonded weight panel (34).
  • the positioning adhesive weight plate (34) includes a projection (341) for applying pressure to a selected bonding region.
  • the manufacturing method of the fabric type pressure sensor embodying the present invention has the following advantageous effects: since the fabric type pressure sensor is manufactured by the manufacturing method of the present invention, the fabric type pressure sensor can be easily and conveniently manufactured, and the manufacturing quality can be monitored and the flexibility can be improved. Manufacturing precision and yield of fabric-like pressure sensors.
  • the electrical performance measuring instrument can measure the resistance and tensile strain relationship of different lengths of sensing fabric.
  • the adjustment block setting can measure the strain and resistance relationship of the sensing fabric under different contact pressures, and calculate the sensitivity of the sensing fabric.
  • the wire connection tool can well control the distance between the two ends of the sensing fabric to be tested, and ensure that the distance between the two ends of the sensing fabric to be tested is uniform.
  • the wire indicator line improves the accuracy of the parallelism and spacing of the wires during the joining process, thereby improving the quality and consistency of the connection.
  • the sensor structural component combination tool can ensure that the sensing fabric is fixedly placed in the pressure sensor at a predetermined pre-tension under a predetermined pre-tension, and the layers of the fabric-type pressure sensor can be well connected and accurately positioned.
  • the setting of the nose allows accurate positioning of the bond area and application of positioning pressure.
  • the pressure between the up-converting layer, the sensing fabric, and the down-converting layer is made stronger by positioning the adhesive weight plate, and no misalignment is generated.
  • Figure 1 is a schematic structural view of a fabric type pressure sensor
  • FIG. 2 is a schematic structural view of another fabric type pressure sensor
  • Figure 3 is a flow chart showing a first preferred embodiment of the method of manufacturing a fabric type pressure sensor of the present invention
  • Figure 4 is a flow chart showing a second preferred embodiment of the method of manufacturing the fabric type pressure sensor of the present invention.
  • Figure 5 is a flow chart showing a third preferred embodiment of the method of manufacturing the fabric type pressure sensor of the present invention.
  • Figure 6 is a schematic structural view of a preferred embodiment of the electrical performance measuring instrument of the present invention.
  • Figure 7 is a schematic structural view of a preferred embodiment of the wire bonding tool of the present invention.
  • Figure 8 is a schematic view showing the structure of a preferred embodiment of the sensor structural member assembly tool of the present invention.
  • the manufacturing method of the fabric type pressure sensor starts at step 300, and after step 300, it proceeds to step 301,
  • the sensing fabric is cut to a predetermined size and the flexible conductive wires and the wires of the sensing fabric are joined by sewing.
  • the sensing fabric is fixed by a clamp locator under a predetermined tension.
  • the down conversion layer and the sensing fabric are bonded by a down conversion layer positioning box.
  • the adjustment column and the sensing fabric are bonded by the up-conversion layer positioning cartridge, and the up-conversion layer and the adjustment column are bonded by the up-conversion layer positioning box.
  • the method ends at step 305. Since the fabric type pressure sensor is manufactured by the manufacturing method of the present invention, the fabric type pressure sensor can be manufactured simply and conveniently.
  • the manufacturing method of the fabric type pressure sensor starts at step 400, and after step 400, it proceeds to step 401,
  • the sensing fabric is cut to a predetermined size and the flexible conductive wires and the wires of the sensing fabric are joined by sewing.
  • the electrical conductivity and sensitivity of the sensing fabric are measured using an electrical performance meter.
  • the sensing fabric and the wires are joined by a wire bonding tool and a sewing method.
  • the quality of the connection between the sensing fabric and the wire is judged based on the conductivity and sensitivity of the sensing fabric using a resistor.
  • the sensing fabric is fixed by a clamp locator under a predetermined tension.
  • the down conversion layer and the sensing fabric are bonded by a down conversion layer positioning box.
  • the adjustment column and the sensing fabric are bonded by the up-conversion layer positioning cartridge, and the up-conversion layer and the adjustment column are bonded by the up-conversion layer positioning box.
  • the fabric type pressure sensor is manufactured by the manufacturing method of the present invention, the fabric type pressure sensor can be manufactured simply and conveniently. Measuring the conductivity and sensitivity of the sensing fabric prior to manufacture allows the sensing fabric to be better connected to the upconverting layer, the downconverting layer, and to ensure good contact with the wires.
  • the manufacturing method of the fabric type pressure sensor starts at step 500, and after step 500, it proceeds to step 501,
  • the sensing fabric is cut to a predetermined size and the flexible conductive wires and the wires of the sensing fabric are joined by sewing.
  • the electrical conductivity and sensitivity of the sensing fabric are measured using an electrical performance meter.
  • the sensing fabric and the wires are joined by a wire bonding tool and a sewing method.
  • the quality of the connection between the sensing fabric and the wire is judged based on the conductivity and sensitivity of the sensing fabric using a resistance meter.
  • the sensing fabric is fixed by a clamp locator under a predetermined tension.
  • the down conversion layer and the sensing fabric are bonded by a down conversion layer positioning box.
  • the adjustment column and the sensing fabric are bonded by the up-conversion layer positioning cartridge, and the up-conversion layer and the adjustment column are bonded by the up-conversion layer positioning box.
  • step 508 pressure is applied to the bonded area by positioning the bonded weight plate, and finally the method ends at step 509.
  • the pressure between the up-converting layer, the sensing fabric, and the down-converting layer is made stronger by positioning the adhesive weight plate, and no misalignment is generated.
  • the electrical property measuring instrument includes a resistor 12, a sample stage 13, and a test electrode 11.
  • the test electrode 11 is used to contact both ends of the sensing fabric
  • the resistor 12 is used to read the resistance of the sensing fabric
  • the sample stage 13 is used to fix the sensing fabric and apply tension to both ends of the sensing fabric.
  • the resistive sensing fabric sample 15 to be tested was placed flat on the sample stage, and a tensile force was applied to both ends of the fabric to achieve the set fabric strain and read out from the scale on the sample stage.
  • the applied fabric strain can be adjusted by adjusting the tension at both ends of the fabric.
  • Test electrode 11 was placed on sensing fabric conductive layer 16 for testing of fabric resistance.
  • the pitch of the test electrodes 11 can be adjusted to test the resistance of different sample lengths.
  • the contact pressure between the measuring electrode 11 and the sensing fabric conductive layer 16 can be adjusted by adjusting the adjustment block 14 of the pressure applied to the upper portion of the electrode.
  • the resistance of the sensing fabric is read by the resistor 12.
  • the sensitivity coefficient of the sensing fabric can be calculated from the resistance change rate and the strain amount of the fabric sample 15. The calculation formula is:
  • K is the sensitivity coefficient of the sensing fabric
  • R0 is the initial resistance of the sensing fabric
  • ⁇ R is the amount of resistance change of the sensing fabric.
  • is the strain applied to the sensing fabric.
  • the electrical performance measuring instrument can measure the resistance and tensile strain relationship of different lengths of the sensing fabric; the adjustment block 14 can measure the strain and resistance relationship of the sensing fabric under different contact pressures, and calculate the sensitivity of the sensing fabric. .
  • the wire bonding tool includes a wire distance control hole 21, a fixed platform 22, and a wire indicating line 23.
  • the wire distance control hole 21 is located in the middle of the wire connecting tool for controlling the distance between the wires.
  • the fixing platform 22 fixes the sensing fabric and is used for sewing and connecting the sensing fabric and the wire.
  • the wire indicating wire 23 is located on the surface of the fixed platform 22, Indicates the position of the wire.
  • the sensing fabric When the wires are connected, the sensing fabric is first placed flat on the fixed platform 22 under a certain pre-tension, across the wire distance control hole 21 and the two ends of the fabric are fixed on the fixed platform 22, so that the fabric is The wire is not easily deformed during the sewing connection and maintains the consistency of the sample.
  • the wire indicator line 23 assists in the placement of the fabric strips perpendicular to the wires and determines where the wires are attached to the sensing fabric.
  • the wire indicator line 23 also improves the accuracy of the parallelism and spacing of the two connecting wires during the joining process, thereby improving the quality and consistency of the connection.
  • the wire connection of the flexible conductive wire and the sensing fabric is achieved by a sewing method. This method is reliable and does not affect the flexibility of the sensing fabric itself.
  • the sensor structural component combination tool includes a clamping positioner 31, a down conversion positioning box 32, an up conversion positioning box 33, and positioning. Bonding weight plate 34.
  • the sensing fabric, the adhesive up-converting layer and the adjustment post, the positioning adhesive weight plate 34 is used between the lower conversion layer, the sensing fabric, the adjustment column, and the up-conversion layer
  • the bonding areas exert pressure to ensure a firm connection between them.
  • the sensing fabric 35 is fixedly placed on the holding positioner 31 at a predetermined position under a predetermined pretension. And clamp the ends of the sensing fabric with a cloth clip.
  • the cable positioning slot 37 is used to sense the positioning of the fabric web when the clamp locator 31 is secured.
  • the lower transfer layer is placed in the transfer layer positioning box 32 under the sensor structural component combination tool, and an appropriate amount of adhesive is applied to both ends of the lower transfer layer and the sensing fabric.
  • the grip locator 31 and the lower transfer layer locating cassette 32 are then inlaid in combination such that the sensing fabric 35 is positioned over the lower transfer layer and positioned accurately.
  • the upper transfer layer positioning cassette 33 is placed over the lower transfer positioning cassette 32 and the sensing fabric 35 and positioned accurately.
  • the upper and lower transfer layer positioning boxes and the positioning adhesive weight plates 34 have positioning holes 36, 38 and 39 for accurate positioning of the components in the sensor structural component combination tool.
  • the positioning adhesive weight panel 34 includes a nose 341 that applies pressure to selected areas.
  • the positioning adhesive weight plate 34 When the positioning adhesive weight plate 34 is placed on the upper transfer layer positioning box, positioning is performed on the bonding areas of the upper and lower transfer layers, the sensing fabric and the adjustment column by positioning the projections 341 on the adhesive weight plate 34. Pressure to make it bond.
  • the arrangement of the nose 341 allows accurate positioning of the bond area and application of a positioning pressure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

[根据细则37.2由ISA制定的发明名称] 织物型压力传感器的制造方法及用于制造织物型压力传感器的工具 技术领域
本发明涉及传感器制造领域,更具体地说,涉及一种织物型压力传感器的制造方法及其制造工具。
背景技术
压力传感器在工业和个人使用方面都有着广泛的应用空间,但是大多数的压力传感器由于体积大、重量重、触感硬以及使用不方便等缺陷导致其不适合使用者穿戴使用。因此限制了压力传感器在个人使用方面的应用,如运动服装、智能服装以及鞋类等与人体紧密接触场合的压力测量。织物型压力传感器是一种新型压力传感器,由于其主要由电阻型织物传感元件和柔性结构材料组成,因此其具有触感柔软、轻巧、使用寿命长、适用于三维和大面积测量等特点。织物压力传感器及其产品在服装和鞋、保健康复和临床医学、体育健身运动、安全和防护、汽车、宇航和建筑等领域有广泛的应用。
图1和图2是两种织物型压力传感器的示意图。织物压力传感器采用三明治结构,它包括中间的电阻型织物传感元件1-1、上部的硅胶基2-1或硅胶-织物复合基(硅胶2-2,织物2-3)的上转换层、下部的硅胶基3-1或硅胶-织物复合基(硅胶3-2,织物3-3)的下转换层、调节柱4-1和传感织物连接导线5-1。其中上、下转换层将感受到的外部压力转换成中间传感织物的变形,从而引起传感织物电阻的变化并输出。上、下转换层中部的轮廓可按应用要求采用图示的齿状或其他形状。用作调节柱4-1的材料的刚度可以调节,以适应不同的测量要求。图1中的织物压力传感器采用硅胶基上、下转换层,而图2中的织物压力传感器采用硅胶-织物复合基转换层。
与传统的硅基和薄膜型压力传感器不同,织物型压力传感器由柔性材料组成,它们在制造过程中,容易变形,因此需要发明和建立相应的柔性压力传感器的制造方法、设备和制造工具。
发明内容
本发明要解决的技术问题在于,针对现有技术的织物型压力传感器的制造困难以及没有相应的专门的制造工具,提供一种能够简单而且控制加工质量和成品率的制造上述织物型压力传感器的制造方法以及相应的制造工具。
本发明解决其技术问题所采用的技术方案是:构造一种织物型压力传感器的制造方法,其中包括步骤:
S1、将传感织物裁剪成预定的尺寸, 通过缝纫的方法连接柔性导电线与所述传感织物的导线;
S2、通过夹持***在预定的张力下固定所述传感织物;
S3、通过下转换层定位盒粘合下转换层和所述传感织物;
S4、通过上转换层定位盒粘合调节柱和所述传感织物,通过上转换层定位盒粘合上转换层和所述调节柱。
在本发明所述的织物型压力传感器的制造方法中,在步骤S1和步骤S2之间包括步骤:
S11、采用电学性能测量仪测量所述传感织物的导电率和灵敏度;
S12、采用导线连接工具连接所述传感织物和导线;
S13、采用电阻仪根据所述传感织物的导电率和灵敏度判断所述传感织物和所述导线之间的连接质量。
在本发明所述的织物型压力传感器的制造方法中,步骤S4之后还包括步骤:
S5、通过定位粘合重量板对所述下转换层、所述传感织物、所述调节柱以及所述上转换层之间的粘合区域施加压力。
本发明还构造一种用于测量传感织物电学性能的电学性能测量仪,所述电学性能测量仪包括用于接触所述传感织物两端的可调节的测试电极(11)和用于读取所述传感织物阻值的电阻仪(12),还包括用于固定所述传感织物并对所述传感织物两端施加拉力和预定应变的试样台(13)和夹持器(17)。
在本发明所述的电学性能测量仪中,所述电学性能测量仪还包括用于对所述测试电极(11)施加压力的调节块(14),所述施加的压力用于改变所述测量电极(11)和所述传感织物之间的接触。
本发明还构造一种用于连接传感织物和导线的导线连接工具,所述导线连接工具包括位于所述导线连接工具中间的导线距离控制孔(21)以及用于固定所述传感织物并用于缝纫连接所述传感织物和所述导线的固定平台(22)。
在本发明所述的导线连接工具中,所述固定平台(22)表面还包括用于指示所述导线位置的导线指示线(23)。
本发明还构造一种用于组装织物型压力传感器的传感器结构部件组合工具,所述传感器结构部件组合工具包括:用于在预定的张力下固定所述传感织物的夹持***(31),用于粘合下转换层和所述传感织物的下转换层定位盒(32),以及用于粘合调节柱和所述传感织物、粘合上转换层和所述调节柱的上转换层定位盒(33)。
在本发明所述的传感器结构部件组合工具中,所述传感器结构部件组合工具还包括用于对所述下转换层、所述传感织物、所述调节柱以及所述上转换层之间的粘合区域施加压力的定位粘合重量板(34)。
在本发明所述的传感器结构部件组合工具中,所述定位粘合重量板(34)包括用于对选定的粘合区域施加压力的凸头(341)。
实施本发明的织物型压力传感器的制造方法,具有以下有益效果:由于采用本发明的制造方法制造织物型压力传感器,使得可以简单方便的制造织物型压力传感器,而且可以监控制造质量,提高了柔性类织物型压力传感器的制造精度和成品率。
制造前测量传感织物的导电率和灵敏度可以更好地控制压力传感器的质量并可按压力传感器的使用要求选择合适的传感织物。电学性能测量仪可以对不同长度的传感织物进行电阻和张力应变关系的测量。调节块的设置可以对传感织物进行不同接触压力下应变和电阻关系的测量,计算出传感织物的灵敏度。导线连接工具可以很好地控制传感织物待测两端的距离,并保证传感织物待测两端的距离统一。导线指示线提高连接加工过程中导线的平行度和间距的精度,从而提高连接质量和一致性。传感器结构部件组合工具可以保证传感织物在规定的预张力下按规定位置固定放置于压力传感器中,并使得织物型压力传感器的各层可以很好的连接并准确定位。凸头的设置可对粘合区准确定位,施加定位压力。通过定位粘合重量板施压使得上转换层、传感织物、下转换层之间的连接更加牢固,不会产生错位移动。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是一种织物型压力传感器的结构示意图;
图2是另一种织物型压力传感器的结构示意图;
图3是本发明织物型压力传感器的制造方法的第一优选实施例的流程图;
图4是本发明织物型压力传感器的制造方法的第二优选实施例的流程图;
图5是本发明织物型压力传感器的制造方法的第三优选实施例的流程图;
图6是本发明电学性能测量仪的优选实施例的结构示意图;
图7是本发明导线连接工具的优选实施例的结构示意图;
图8是本发明传感器结构部件组合工具的优选实施例的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图3所示,在本发明织物型压力传感器的制造方法的第一优选实施例的流程图中,所述织物型压力传感器的制造方法开始于步骤300,步骤300之后进行到步骤301,将传感织物裁剪成预定的尺寸,并通过缝纫的方法连接柔性导电线与传感织物的导线。随后,到下一步骤302,通过夹持***在预定的张力下固定所述传感织物。随后,到下一步骤303,通过下转换层定位盒粘合下转换层和所述传感织物。随后,到下一步骤304,通过上转换层定位盒粘合调节柱和所述传感织物,通过上转换层定位盒粘合上转换层和所述调节柱。最后该方法结束于步骤305。由于采用本发明的制造方法制造织物型压力传感器,使得可以简单方便的制造织物型压力传感器。
如图4所示,在本发明织物型压力传感器的制造方法的第二优选实施例的流程图中,所述织物型压力传感器的制造方法开始于步骤400,步骤400之后进行到步骤401,将传感织物裁剪成预定的尺寸,并通过缝纫的方法连接柔性导电线与传感织物的导线。随后,到下一步骤402,采用电学性能测量仪测量所述传感织物的导电率和灵敏度。随后,到下一步骤403,采用导线连接工具和缝纫的方法连接所述传感织物和导线。随后,到下一步骤404,采用电阻仪根据传感织物的导电率和灵敏度判断传感织物和导线之间的连接质量。随后,到下一步骤405,通过夹持***在预定的张力下固定所述传感织物。随后,到下一步骤406,通过下转换层定位盒粘合下转换层和所述传感织物。随后,到下一步骤407,通过上转换层定位盒粘合调节柱和传感织物,通过上转换层定位盒粘合上转换层和调节柱。最后该方法结束于步骤408。由于采用本发明的制造方法制造织物型压力传感器,使得可以简单方便的制造织物型压力传感器。制造前测量传感织物的导电率和灵敏度使得传感织物可以更好的与上转换层、下转换层连接,并保证与导线的良好接触。
如图5所示,在本发明织物型压力传感器的制造方法的第三优选实施例的流程图中,所述织物型压力传感器的制造方法开始于步骤500,步骤500之后进行到步骤501,将传感织物裁剪成预定的尺寸,并通过缝纫的方法连接柔性导电线与传感织物的导线。随后,到下一步骤502,采用电学性能测量仪测量所述传感织物的导电率和灵敏度。随后,到下一步骤503,采用导线连接工具和缝纫的方法连接所述传感织物和导线。随后,到下一步骤504,采用电阻仪根据传感织物的导电率和灵敏度判断传感织物和导线之间的连接质量。随后,到下一步骤505,通过夹持***在预定的张力下固定所述传感织物。随后,到下一步骤506,通过下转换层定位盒粘合下转换层和所述传感织物。随后,到下一步骤507,通过上转换层定位盒粘合调节柱和传感织物,通过上转换层定位盒粘合上转换层和调节柱。随后,到下一步骤508,通过定位粘合重量板对粘合区域施加压力,最后该方法结束于步骤509。通过定位粘合重量板施压使得上转换层、传感织物、下转换层之间的连接更加牢固,不会产生错位移动。
如图6所示,在本发明的电学性能测量仪的优选实施例的结构示意图中,所述电学性能测量仪包括电阻仪12、试样台13和测试电极11。测试电极11用于接触所述传感织物两端,电阻仪12用于读取传感织物阻值,试样台13用于固定传感织物并对传感织物两端施加拉力。测试时,将待测的电阻型传感织物试样15平放于试样台上,并在织物两端施加拉力,以达到设定的织物应变,并由试样台上的标尺读出。通过调节织物两端的拉力,可调整施加的织物应变。随后,用两端的夹持器17将织物夹持住。将测试电极11置于传感织物导电层16上进行织物电阻的测试。测试电极11的间距可以调节,可测试不同试样长度的电阻。测量电极11与传感织物导电层16之间的接触压力可通过调整电极上部施加的压力的调节块14加以调节。传感织物的电阻由电阻仪12读出。同时,根据织物试样15的电阻变化率和应变量可计算出传感织物的灵敏度系数。计算公式为:
K=(ΔR/R0)/ε (1)
式中:K是传感织物的灵敏度系数, R0是传感织物的初始电阻, ΔR是传感织物的电阻变化量, ε是对传感织物施加的应变。电学性能测量仪可以对不同长度的传感织物进行电阻和张力应变关系的测量;调节块14的设置可以对传感织物进行不同接触压力下应变和电阻关系的测量,计算出传感织物的灵敏度。
如图7所示,在本发明导线连接工具的优选实施例的结构示意图中,所述导线连接工具包括导线距离控制孔21、固定平台22以及导线指示线23。导线距离控制孔21位于所述导线连接工具中间,用来控制导线之间的距离,固定平台22固定传感织物并用于缝纫连接传感织物和导线,导线指示线23位于固定平台22表面,用于指示导线的位置。导线连接时,首先将传感织物在一定的预张力下平整地放置在固定平台22上,横跨过导线距离控制孔21并将织物两端固定于固定平台22上,这样可使得织物在与导线的缝纫连接过程中不易变形并保持试样的一致性。导线指示线23可帮助织物放置时,织物导电条与导线互相垂直,并确定导线在传感织物上的连接位置。导线指示线23也可提高连接加工过程中两根连接导线的平行度和间距的精度,从而提高连接质量和一致性。采用缝纫的方法实现柔性导电线与传感织物的导线连接。该方法连接可靠,而且不会影响传感织物本身的柔性。
如图8所述,在本发明传感器结构部件组合工具的优选实施例的结构示意图中,所述传感器结构部件组合工具包括夹持***31、下转换定位盒32、上转换定位盒33以及定位粘合重量板34。夹持***31用于在预定的张力下固定所述传感织物,下转换定位盒32用于粘合下转换层和所述传感织物,上转换定位盒33用于粘合调节柱和所述传感织物、粘合上转换层和所述调节柱,定位粘合重量板34用于对所述下转换层、所述传感织物、所述调节柱以及所述上转换层之间的粘合区域施加压力保证它们之间的牢固连接。在压力传感器组合加工时,将传感织物35在规定的预张力下按规定位置固定放置于夹持***31上。并用布夹将传感织物两端夹持住。连接线定位槽37用于传感织物放置于夹持***31固定时传感织物连接导线的定位。同时,将下转移层放于传感器结构部件组合工具下转移层定位盒32中,并在下转移层与传感织物连接粘合的两端涂上适量的粘合剂。然后,将夹持***31和下转移层定位盒32镶嵌组合,使得传感织物35位于下转移层上面,并定位准确。将上转移层定位盒33放置于下转移定位盒32和传感织物35之上,并准确定位。在调节柱和上转移层的粘合区涂上适量粘合剂,按先后放入上转移层定位盒的放入槽孔中。然后,将定位粘合重量板34放置于上转移层定位盒之上,对上、下转移层、传感织物和调节柱各粘合区施加定位压力,使之粘合。上、下转移层定位盒和定位粘合重量板34上定位孔36、38和39用于传感器结构部件组合工具中各部件组合时的准确定位。通过以上工具和加工步骤,完成织物压力传感器的制作。传感器结构部件组合工具使得织物型压力传感器的各层可以很好的连接。
如图8所示,作为本发明传感器结构部件组合工具的优选实施例,定位粘合重量板34包括对选定区域施加压力的凸头341。将定位粘合重量板34放置于上转移层定位盒之上时,通过定位粘合重量板34上的凸头341,对上、下转移层、传感织物和调节柱各粘合区施加定位压力,使之粘合。凸头341的设置可对粘合区准确定位,施加定位压力。
下面结合一个具体实施例说明织物型压力传感器制造的整个过程。
1) 电阻型传感织物的制作;
2) 采用本发明的电学性能测量仪测试和评价传感织物的导电率和灵敏度;
3) 将传感织物裁剪成规定的尺寸;
4) 用本发明的导线连接工具并通过缝纫的方法进行传感织物导线的连接加工;
5) 采用电阻仪进行传感织物连接质量的评价;
6) 压力传感器上、下转移层和调节柱的制作和外观质量评价;
7) 将传感织物在规定的预张力下固定放置在传感器结构部件组合工具的夹持***31上;
8) 将传感器下转移层放入传感器结构部件组合工具下转移层定位盒32中,并在下转移层两端涂上粘合剂;
9) 将夹持***31与下转移层定位盒32镶嵌放置;
10)将传感器结构部件组合工具中的上转移层定位盒33放置于下转移层定位盒32和传感织物上,在调节柱和上转移层的粘合区涂上粘合剂,并按先后放入下转移层定位盒32;
11) 采用定位粘合重量板34对传感织物与下转移层、调节柱,调节柱和上转移层的粘合区施加压力,使之粘合;
12) 完成织物压力传感器的制作并进行性能评价。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种织物型压力传感器的制造方法,其特征在于,包括步骤:
    S1、将传感织物裁剪成预定的尺寸, 通过缝纫的方法连接柔性导电线与所述传感织物的导线;
    S2、通过夹持***在预定的张力下固定所述传感织物;
    S3、通过下转换层定位盒粘合下转换层和所述传感织物;
    S4、通过上转换层定位盒粘合调节柱和所述传感织物,通过上转换层定位盒粘合上转换层和所述调节柱。
  2. 根据权利要求1所述的织物型压力传感器的制造方法,其特征在于,在步骤S1和步骤S2之间包括步骤:
    S11、采用电学性能测量仪测量所述传感织物的导电率和灵敏度;
    S12、采用导线连接工具连接所述传感织物和导线;
    S13、采用电阻仪根据所述传感织物的导电率和灵敏度判断所述传感织物和所述导线之间的连接质量。
  3. 根据权利要求1所述的织物型压力传感器的制造方法,其特征在于,步骤S4之后还包括步骤:
    S5、通过定位粘合重量板对所述下转换层、所述传感织物、所述调节柱以及所述上转换层之间的粘合区域施加压力。
  4. 一种用于测量传感织物电学性能的电学性能测量仪,其特征在于,所述电学性能测量仪包括用于接触所述传感织物两端的可调节的测试电极(11)和用于读取所述传感织物阻值的电阻仪(12),还包括用于固定所述传感织物并对所述传感织物两端施加拉力和预定应变的试样台(13)和夹持器(17)。
  5. 根据权利要求4所述的电学性能测量仪,其特征在于,所述电学性能测量仪还包括用于对所述测试电极(11)施加压力的调节块(14),所述施加的压力用于改变所述测量电极(11)和所述传感织物之间的接触。
  6. 一种用于连接传感织物和导线的导线连接工具,其特征在于,所述导线连接工具包括位于所述导线连接工具中间的导线距离控制孔(21)以及用于固定所述传感织物并用于缝纫连接所述传感织物和所述导线的固定平台(22)。
  7. 根据权利要求6所述的导线连接工具,其特征在于,所述固定平台(22)表面还包括用于指示所述导线位置的导线指示线(23)。
  8. 一种用于组装织物型压力传感器的传感器结构部件组合工具,其特征在于,所述传感器结构部件组合工具包括:用于在预定的张力下固定所述传感织物的夹持***(31),用于粘合下转换层和所述传感织物的下转换层定位盒(32),以及用于粘合调节柱和所述传感织物、粘合上转换层和所述调节柱的上转换层定位盒(33)。
  9. 根据权利要求8所述的传感器结构部件组合工具,其特征在于,所述传感器结构部件组合工具还包括用于对所述下转换层、所述传感织物、所述调节柱以及所述上转换层之间的粘合区域施加压力的定位粘合重量板(34)。
  10. 根据权利要求9所述的传感器结构部件组合工具,其特征在于,所述定位粘合重量板(34)包括用于对选定的粘合区域施加压力的凸头(341)。
PCT/CN2011/078742 2010-09-20 2011-08-23 织物型压力传感器的制造方法及用于制造织物型压力传感器的工具 WO2012037843A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/825,124 US9488536B2 (en) 2010-09-20 2011-08-23 Process for manufacturing fabric pressure sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010287822.4A CN102410895B (zh) 2010-09-20 2010-09-20 一种织物型压力传感器的制造方法以及制造工具
CN201010287822.4 2010-09-20

Publications (1)

Publication Number Publication Date
WO2012037843A1 true WO2012037843A1 (zh) 2012-03-29

Family

ID=45873428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078742 WO2012037843A1 (zh) 2010-09-20 2011-08-23 织物型压力传感器的制造方法及用于制造织物型压力传感器的工具

Country Status (3)

Country Link
US (1) US9488536B2 (zh)
CN (1) CN102410895B (zh)
WO (1) WO2012037843A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110987249A (zh) * 2019-12-09 2020-04-10 武汉纺织大学 性能可控的织物型压力传感器及压力传感性能的调控方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063347B (zh) * 2012-12-30 2014-12-03 韩雪峰 一种柔性测压定位分析仪
CN105841851A (zh) * 2015-01-13 2016-08-10 香港纺织及成衣研发中心有限公司 柔性压力传感器及其制造方法及柔性压力传感阵列
CN105769138B (zh) * 2016-03-21 2019-01-01 天津工业大学 基于多层复合织物结构的光纤脉搏传感织物及其服装
CN106235495A (zh) * 2016-08-30 2016-12-21 赛纳(苏州)安防用品有限公司 一种基于织物压力传感器的智能安全鞋
CN107144379A (zh) * 2017-04-28 2017-09-08 东华大学 一种电阻式压力分布织物传感器
CN110148337A (zh) * 2019-04-29 2019-08-20 东华大学 线圈循环原理纬编针织织物电极电阻理论模型构建方法
CN111308204A (zh) * 2019-12-24 2020-06-19 东华大学 一种织物面电阻测试方法及测试夹具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1884987A (zh) * 2006-05-29 2006-12-27 天之音公司 压敏器件及其制造方法
CN1938677A (zh) * 2004-03-31 2007-03-28 皇家飞利浦电子股份有限公司 织物结构接触传感器
CN1985761A (zh) * 2006-12-14 2007-06-27 东华大学 一种用于电子织物的应变式柔性呼吸传感器及其应用
CN101393058A (zh) * 2008-11-03 2009-03-25 东华大学 一种具有机织结构的柔性电阻式压力传感器及其应用
CN101479582A (zh) * 2006-07-06 2009-07-08 英古拉达纺织品创新私人基金会 纺织物的扭曲和/或张力和/或压力传感器
CN101598529A (zh) * 2008-05-19 2009-12-09 香港理工大学 制备织物应变传感器的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1410967A (en) * 1972-12-21 1975-10-22 Schmaus S H A Pressure sensors for fluids
JPH0659488B2 (ja) * 1986-01-10 1994-08-10 川崎製鉄株式会社 孔型連続圧延の初期設定方法
JPH0659488A (ja) * 1992-08-10 1994-03-04 Nippon Shinkan Kk 感光ドラム用のドラムの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1938677A (zh) * 2004-03-31 2007-03-28 皇家飞利浦电子股份有限公司 织物结构接触传感器
CN1884987A (zh) * 2006-05-29 2006-12-27 天之音公司 压敏器件及其制造方法
CN101479582A (zh) * 2006-07-06 2009-07-08 英古拉达纺织品创新私人基金会 纺织物的扭曲和/或张力和/或压力传感器
CN1985761A (zh) * 2006-12-14 2007-06-27 东华大学 一种用于电子织物的应变式柔性呼吸传感器及其应用
CN101598529A (zh) * 2008-05-19 2009-12-09 香港理工大学 制备织物应变传感器的方法
CN101393058A (zh) * 2008-11-03 2009-03-25 东华大学 一种具有机织结构的柔性电阻式压力传感器及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110987249A (zh) * 2019-12-09 2020-04-10 武汉纺织大学 性能可控的织物型压力传感器及压力传感性能的调控方法

Also Published As

Publication number Publication date
US9488536B2 (en) 2016-11-08
CN102410895B (zh) 2014-07-23
US20130269172A1 (en) 2013-10-17
CN102410895A (zh) 2012-04-11

Similar Documents

Publication Publication Date Title
WO2012037843A1 (zh) 织物型压力传感器的制造方法及用于制造织物型压力传感器的工具
Kumar et al. Design principles and considerations for the ‘ideal’silicon piezoresistive pressure sensor: a focused review
Doll et al. Piezoresistor design and applications
CN105829849B (zh) 半导体压力传感器
WO2016197429A1 (zh) 电阻应变片及电阻应变式传感器
Lee et al. A flexible encapsulated MEMS pressure sensor system for biomechanical applications
Mohammed et al. Development and experimental evaluation of a novel piezoresistive MEMS strain sensor
Fung et al. Fabrication of CNT-based MEMS piezoresistive pressure sensors using DEP nanoassembly
CN107747902A (zh) 一种形状记忆合金应变传感器的应变值的测定方法
CN100440543C (zh) 一种基于绝缘体上硅片的应力传感器芯片
JP4958102B2 (ja) 触覚センサー及びその製造方法
Carnevale et al. Conductive textile element embedded in a wearable device for joint motion monitoring
JP4875916B2 (ja) 筋力測定装置
US10288499B2 (en) Process for manufacturing fabric pressure sensor and tool for manufacturing fabric pressure sensor
JP2014081309A (ja) 引張試験装置及び引張試験方法
Kayed et al. A new temperature transducer for local temperature compensation for piezoresistive 3-D stress sensors
Baumann et al. Piezoresistive CMOS sensors for out-of-plane shear stress
JPH0659269A (ja) 液晶表示パネルユニットの電気接続の試験方法
De Rossi et al. Dressware: wearable piezo-and thermoresistive fabrics for ergonomics and rehabilitation
Tian et al. Design, fabrication, and calibration of a piezoresistive stress sensor on SOI wafers for electronic packaging applications
Mayer et al. Complete set of piezoresistive coefficients of CMOS-diffusion
Fischer et al. Modeling package-induced effects on molded Hall sensors
Schwizer et al. Packaging test chip for flip-chip and wire bonding process characterization
Shah et al. Online methods to measure breaking force of bonding wire using a CMOS stress sensor and a proximity sensor
Hautamaki et al. Calibration of MEMS strain sensors fabricated on silicon: Theory and experiments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13825124

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11826370

Country of ref document: EP

Kind code of ref document: A1