WO2012036537A2 - Apparatus and method for manufacturing graphene using a flash lamp or laser beam, and graphene manufactured by same - Google Patents

Apparatus and method for manufacturing graphene using a flash lamp or laser beam, and graphene manufactured by same Download PDF

Info

Publication number
WO2012036537A2
WO2012036537A2 PCT/KR2011/006917 KR2011006917W WO2012036537A2 WO 2012036537 A2 WO2012036537 A2 WO 2012036537A2 KR 2011006917 W KR2011006917 W KR 2011006917W WO 2012036537 A2 WO2012036537 A2 WO 2012036537A2
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
substrate
layer
flash lamp
manufacturing
Prior art date
Application number
PCT/KR2011/006917
Other languages
French (fr)
Korean (ko)
Other versions
WO2012036537A3 (en
Inventor
이건재
최인성
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100091640A external-priority patent/KR101198482B1/en
Priority claimed from KR1020110006115A external-priority patent/KR101172625B1/en
Priority claimed from KR1020110062484A external-priority patent/KR101260606B1/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2012036537A2 publication Critical patent/WO2012036537A2/en
Publication of WO2012036537A3 publication Critical patent/WO2012036537A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Definitions

  • the present invention relates to a graphene manufacturing apparatus, a manufacturing method using a flash lamp or a laser beam, and a graphene manufactured by using the same, and more particularly, to graphene having a large area using a flash lamp or a laser beam. It relates to a graphene manufacturing method, a manufacturing apparatus and a graphene produced using the same that can be economically produced.
  • Graphene refers to a planar monolayer structure in which carbon atoms are filled into a two-dimensional (2D) lattice, which forms the basis for all other dimensional graphite materials. That is, the graphene may be a basic structure of graphite stacked in a fullerene, a one-dimensional nanotube, or a three-dimensional structure.
  • 2D two-dimensional
  • graphene has unique physical properties due to its honeycomb crystal structure, two interpenetrating triangular sub lattice structures, and the thickness of one atomic size. Note that for example a zero bandgap is shown.
  • graphene has unique charge transport characteristics, which causes graphene to exhibit a unique phenomenon that has not been observed in the past.
  • the semi-integer quantum Hall effect, the bipolar supercurrent transistor effect, and the like are examples, and this is also considered to be due to the unique structure of the graphene described above.
  • Boron nitride is also a material having the same crystal structure as graphene, and attracts attention as the main material of the electronic device, but the boron nitride layer is laminated only in the same manner as chemical vapor deposition.
  • the organic solvent method is a technique for preventing aggregation between graphenes by using mutual energy between graphene-organic solvents at a level similar to mutual energy between graphene-graphene sheets.
  • the graphene sizes obtained in the prior arts 1 and 2 are only in the nanometer to micrometer level. Therefore, the prior arts 1 and 2 have a problem that they are not suitable for producing a large area of graphene.
  • Another method for producing graphene is a mechanical microfractionation method of physically peeling a graphene sheet from graphite by a tape or the like, and repeating and laminating it on a silicon substrate (prior art 3).
  • the size of the graphene obtained in the prior art 3 is only a few tens to hundreds of micron units, this also has a problem that is not suitable for producing a large-area graphene film.
  • Recently reported large-area graphene manufacturing method by chemical vapor deposition has the disadvantage of requiring a complicated process and expensive equipment.
  • the presently disclosed prior art has the limitation that it takes considerable time or is not economically suitable for producing large-area graphene film.
  • the problem to be solved by the present invention is to provide a graphene manufacturing apparatus and method capable of producing large-area graphene in a more economical manner than the prior art.
  • Another object of the present invention is to provide a graphene semiconductor device manufactured by the above-described method and apparatus.
  • the method comprises the steps of contacting the reaction gas on the substrate surface; Heating the substrate by irradiating light with a flash lamp or by irradiating a laser beam onto a region of the substrate to which the reaction gas is contacted; And transferring the substrate to grow a graphene layer repeatedly heating the other region of the substrate in sequence.
  • the present invention is a graphene manufacturing method, the method comprising the steps of irradiating light or a laser beam to the substrate with a flash lamp in a mixed gas atmosphere of carbon-containing gas and hydrogen; And it provides a graphene manufacturing method comprising the step of growing a graphene layer on the substrate.
  • the present invention is a graphene manufacturing method, the method comprises the steps of forming a graphene layer by irradiating a first light to the substrate with a flash lamp or a laser; And patterning the graphene by removing the irradiated graphene layer by irradiating the graphene layer with a flash lamp or a laser with a second light to provide the graphene semiconductor device manufacturing method.
  • the present invention also provides a graphene manufacturing method, the method comprising the steps of providing a SiC substrate; Irradiating light with a flash lamp or irradiating a laser beam onto a region on the SiC substrate and heating the light; And transferring the substrate, thereby repeatedly heating another region of the substrate to grow graphene.
  • the present invention is a graphene manufacturing apparatus, the apparatus comprises a chamber in which a substrate on which graphene is to be grown; An inlet part through which a reaction gas flows into one side of the substrate; A vacuum unit for applying a vacuum to the chamber; And a light source provided at an upper end of the chamber to irradiate light to the substrate.
  • graphene growth gas is reacted using heat of a flash lamp or a laser beam irradiated with a large area to grow graphene without a metal catalyst on a substrate.
  • the flexible substrate is transferred in a roll-to-roll manner, graphene is grown, and only the reaction gas is configured differently, thereby making a large amount of graphene semiconductor devices without mechanical deformation of graphene.
  • Figure 1a is a schematic diagram of a graphene manufacturing apparatus according to an embodiment of the present invention.
  • Figure 1b is a schematic diagram of a graphene manufacturing apparatus applied in a roll-to-roll method to the apparatus of Figure 1a.
  • 2 to 4 is a step-by-step cross-sectional view and a front view of a graphene manufacturing method according to an embodiment of the present invention.
  • 5 to 9 are step-by-step views illustrating a method of continuously growing a boron nitride layer and graphene in the apparatus shown in FIGS. 1A and 1B.
  • 10 to 14 illustrate a method of fabricating a nanoribbon-type graphene semiconductor device using a flash lamp of the device shown in FIGS. 1A and 1B.
  • 15 to 21 are views illustrating a method of manufacturing a graphene transistor according to an embodiment of the present invention.
  • 22 to 24 are steps illustrating a graphene manufacturing method according to another embodiment of the present invention.
  • 25 to 30 are views illustrating a graphene manufacturing method according to another embodiment of the present invention.
  • 31A and 31B are schematic views of a chamber for producing graphene of FIG. 25.
  • the graphene manufacturing method and apparatus manufacture graphene using a flash lamp that generates light energy according to an applied electrical energy.
  • graphene instead of focusing local energy (more precisely local thermal energy) by a laser that irradiates light at the nanosecond level, graphene is used by using a flash lamp that can supply heat energy in microseconds to milliseconds longer than lasers.
  • the advantages of the flash lamp that is, a large irradiation area, millisecond level of irradiation time, low production cost, it is possible to produce large area graphene.
  • the graphene growth method according to the present invention grows the graphene in a roll-to-roll manner, thereby significantly increasing the graphene production (growth) rate.
  • Figure 1a is a schematic diagram of a graphene manufacturing apparatus according to an embodiment of the present invention.
  • the graphene manufacturing apparatus according to the present invention is a chamber form, the substrate is provided with a graphene to be grown in the chamber.
  • the graphene manufacturing apparatus according to the present invention is provided on the top of the chamber, and includes a plurality of flash lamps that can supply heat energy by light.
  • the plurality of flash lamps are preferably spaced at predetermined intervals to irradiate light to all areas of the substrate provided on the front surface.
  • the manufacturing apparatus is provided on both sides of the substrate 10 and the substrate to be deposited, the graphene is grown, the inlet 20 through which the reaction gas for graphene growth and the vacuum unit to which the vacuum is applied ( 30).
  • the reaction gas includes various components such as methane and hydrogen, and the reaction gas is heated on the substrate 10 by thermal energy applied by a plurality of flash lamps (flash lamp bulbs) 40. It is decomposed and grown into graphene.
  • the substrate 10 may be made of a stable plastic substrate even at a relatively low temperature.
  • Figure 1b is a schematic diagram of a graphene manufacturing apparatus applied in a roll-to-roll method to the apparatus of Figure 1a.
  • the plastic substrate 10 may continuously move according to the rotation of the roll 60 provided below. Accordingly, the substrate 10 may move the light irradiation area from the fixed flash lamp 40, thereby growing the graphene at a very high speed even on a large area substrate. Therefore, in the present invention, the substrate 10 is laminated on a stage (not shown) formed between the roll and the roll which is the rotational transfer means, and the substrate 10 is moved according to the movement of the stage.
  • Graphene manufacturing apparatus further comprises a plurality of flash lamp 40 for generating light energy in accordance with the applied electrical energy spaced apart from the substrate 10.
  • the flash lamp uses a xenon (Xe) lamp, but the scope of the present invention is not limited thereto.
  • the graphene manufacturing apparatus may further include a reflecting means 50 provided at the rear end of the flash lamp to reflect the light irradiated to the front side to the front side, and in one embodiment of the present invention, the reflecting means ( 50 may be a curved mirror having a predetermined radius of curvature, but the scope of the present invention is now not limited.
  • Reference numeral 70 denotes a lamp irradiation area which schematically indicates an area irradiated on the substrate 10 by the flash lamp.
  • the graphene manufacturing apparatus of Figure 1a is equally applicable. Therefore, a graphene manufacturing method will be described based on the roll-to-roll type graphene manufacturing apparatus of FIG. 1B.
  • FIG. 2 to 4 is a step-by-step cross-sectional view and a front view of a graphene manufacturing method according to an embodiment of the present invention.
  • a plastic substrate is provided as the flexible substrate 101 on which graphene is grown and manufactured.
  • the flexible substrate cannot be used as a substrate for graphene growth.
  • the flash lamp and the laser since the entire flexible substrate receives heat, the flexible substrate cannot be used as a substrate for graphene growth.
  • the flash lamp and the laser generate heat only on the surface, and heat is usually generated within several ⁇ m on the surface of the flexible substrate having various thicknesses such as 25 ⁇ m to 125 ⁇ m, in the present invention using a light source, Enable the use of a flexible substrate.
  • the thin silicon oxide deposited on the flexible substrate may prevent the heat generated during the irradiation of the flash lamp and the laser from being conducted to the flexible substrate. There will be.
  • the substrate 101 may be a substrate having a SiO 2 on the flexible plastic substrate, but the scope of the present invention is not limited thereto.
  • a sapphire (Al 2 O 3 ) substrate, a metallized silicon substrate, and copper may be used.
  • Cu foil, MgO substrate, Al 2 O 3 substrate, Si substrate or the like is also possible.
  • a catalyst metal layer such as copper or nickel may be additionally laminated on the substrate so that these metal layers may function as a catalyst for graphite of the reaction gas.
  • the use of such a catalytic metal layer may be selectively applied depending on the growth rate and quality of the substrate or graphene applied.
  • the stacking method of the catalyst metal layer may be a method such as a sputtering process.
  • hydrogen and methane gas are injected through the gas inlet 20 into the apparatus illustrated in FIG. 1B without a separate catalyst metal layer or the like deposited on a substrate, and irradiated with a flash lamp. do.
  • the introduced reaction gas is decomposed by heat irradiated from the flash lamp and grows into graphene. That is, as a reaction gas containing a carbon source (methane gas, CH 4 ) is injected into the apparatus, and light is irradiated to the substrate 101 using a flash lamp, thermal energy by light is transmitted to the substrate 101.
  • a reaction gas containing a carbon source methane gas, CH 4
  • Methane which is a gaseous species containing reactant gas, in particular carbon, which is in contact with the substrate 101, is decomposed so that carbon is deposited on the substrate 101 surface, and hydrogen provided to make a reducing atmosphere is discharged in gaseous form. do. Thereafter, the stacked carbon gradually grows as the process progresses, and is converted into the graphene layer 102 uniformly grown over the entire substrate. Thereafter, the substrate 101 may be continuously moved in a roll-to-roll manner to grow graphene on the entire surface of the substrate (see FIG. 4).
  • An inert gas such as Ar gas may be supplied together with or separately from the hydrogen gas. The supply of such inert gas may serve as a purge gas to contribute to more uniform graphene growth.
  • Another embodiment of the present invention is to manufacture a graphene semiconductor device using the device shown in Figure 1b, which will be described in detail below.
  • FIG. 5 to 9 are step-by-step views illustrating a method of continuously growing a boron nitride layer (BN) and graphene in the device shown in FIG. 1B.
  • NH 3 , B 2 H 6 gas is injected into the apparatus of FIG. 1B on which the flexible substrate 201 movable in a roll-to-roll manner is deposited. Thereafter, a flash lamp is irradiated to make a boron nitride layer (BN layer) 202 on the substrate.
  • NH 3 gas is flowed to the nitrogen supply
  • B 2 H 6 gas is flowed to the boron source.
  • all gases containing Boron such as BCl 3 and BF 3
  • all gases including N may be used.
  • the present invention also discloses a technique for preparing a graphene layer in the form of nanoribbons with a flash lamp to form a band gap of graphene. That is, as the source, gate, and drain electrodes are connected through the nanoribbon-type graphene sheet, and a voltage is applied to the gate electrode, a transistor device having electrons flows into the nanoribbon-type graphene.
  • the problem is that there is a technical limitation in that the nano-sized ribbon-shaped graphene must be precisely manufactured on the substrate, but the present invention effectively solves the problem according to the prior art by using a flash lamp.
  • FIG. 10 to 14 illustrate a method of manufacturing a nanoribbon-type graphene semiconductor device using a flash lamp of the apparatus shown in FIG. 1.
  • the graphene layer 302 is grown with a flash lamp on the flexible substrate 301, which is done in the device shown in FIG. 1B.
  • oxygen is injected into the device to pattern the graphene layer 302, and light is irradiated with a flash lamp. .
  • the carbon of the graphene layer 302 irradiated with light from the flash lamp is activated to react with and remove oxygen. Thereafter, as shown in FIG.
  • Oxygen in the present invention means not only a gas atmosphere consisting of oxygen, but also collectively refers to a gas atmosphere containing oxygen, all belonging to the scope of the present invention.
  • the interval of graphene (20 nm or less) must be narrow.
  • An embodiment of the present invention achieves this shape of semiconductor graphene using a mask and a flash lamp.
  • a ribbon-shaped second mask M2 for patterning graphene in a ribbon shape (a wide end and a narrow middle part) is stacked on the graphene layer 320 region shown in FIG. 12.
  • the width of the ribbon is preferably 20nm or less, whereby the graphene has the characteristics as a semiconductor.
  • the second mask is a light blocking mask for blocking light from the flash lamp irradiated in the same manner as the first mask.
  • the graphene layer 302 of the region where the second mask is not formed is removed, thereby forming a ribbon-type graphene layer 303.
  • the graphene layer 303 having a narrow width in the ribbon form has semiconductor characteristics.
  • the present invention further provides a technique of doping boron and nitrogen by flowing an impurity doping gas such as B 2 H 6 or NH 3 .
  • an impurity doping gas such as B 2 H 6 or NH 3 .
  • FIG. 15 to 21 illustrate a method of manufacturing a graphene transistor on a flexible substrate according to an embodiment of the present invention.
  • the semiconductor graphene layer 303 desired for manufacturing the P-type semiconductor graphene among the formed semiconductor graphene layers 303 is exposed to the outside, and impurity doping is required. All of the remaining graphene layer 303 is not laminated to block the light.
  • a gas (B 2 H 6 ) containing boron, which is a dopant for forming a P-type semiconductor is injected into the apparatus together with hydrogen, and light is irradiated with a flash lamp.
  • boron is doped into the semiconductor graphene layer 303 which is not covered by the third mask layer M3, so that the boron-doped P-type graphene layer 304 is formed on the flexible substrate 301.
  • Nitrogen doping of the plurality of unit graphene devices formed on the substrate is performed in the same manner. To do this, another doping gas containing NH 3 and methane is flowed onto the substrate, and the device region to be doped is light-treated with a flash lamp. ( Figures 16-18).
  • boron is doped at both ends of the two left ends (304), and nitrogen is doped at both end areas (305).
  • the doped region ie, the center region of the ribbon
  • an insulating layer 306 such as HfO 2 is formed on the doped semiconductor graphene device region as a gate insulating film, and the source, gate, and drain electrodes of the unit graphene transistor are formed. (307). That is, the graphene transistor structure is formed by forming a gate electrode on the insulating layer 306 and source and drain electrodes on both ends of the graphene layer having a nano ribbon shape.
  • the P-type graphene transistor 308 and the N-type graphene transistor 309 may be selectively manufactured on the flexible substrate according to the type of impurities doped in the graphene layer.
  • FIG. 22 to 24 are steps illustrating a graphene manufacturing method according to another embodiment of the present invention.
  • a SiC substrate 401 containing carbon C in a substrate is used.
  • FIG. 23 light is irradiated onto a SiC substrate 401 by a flash lamp, from which heat is transferred to the substrate.
  • hydrogen may be injected in advance to make the chamber a reducing atmosphere.
  • the silicon of the SiC substrate is sublimated by the heat radiated from the flash lamp, and the carbon remaining on the substrate surface is grown on the surface in the form of graphene by the silicon sublimation.
  • a uniform graphene layer 302 (sheet) is grown on the entire substrate.
  • 25 to 30 are views illustrating a graphene manufacturing method according to another embodiment of the present invention, and illustrates a graphene forming method using a laser beam instead of the above-described flash lamp, which was used as a light source.
  • a sapphire (Al 2 O 3 ) substrate 101 is disclosed.
  • the substrate used in the present invention may be any substrate that can be subjected to a conventional semiconductor process, for example, a silicon substrate, a silicon oxide / silicon substrate, a metal deposited silicon substrate, a copper foil (Cu foil) and the like can also be used.
  • the laser beam is irradiated onto the substrate while simultaneously flowing a nitrogen-containing doping gas and a boron-containing doping gas on the substrate 101 (first laser beam irradiation).
  • the nitrogen-containing doping gas was ammonia (NH 3 )
  • the boron-containing doping gas was B 2 H 6 .
  • the scope of the present invention is not limited thereto, and various doping gases such as BCl 3 and BF 3 may be used.
  • the doping gas in the irradiated region is decomposed by the irradiated laser to form a boron nitride layer, which is caused by simultaneous decomposition of the boron-containing doping gas and the nitrogen-containing doping gas.
  • the boron nitride layer 102 ' is formed on the substrate 101.
  • the boron nitride layer forming region corresponds to the irradiation region of the laser beam.
  • the present invention provides a method of manufacturing a boron nitride layer 102 ', which is a lower substrate, on which a semiconductor device layer such as graphene is formed.
  • a general boron nitride layer is manufactured through a high thermal reaction such as plasma chemical vapor deposition, but the present invention forms the boron nitride layer 102 'on the substrate through a laser beam reaction rather than a high thermal reaction.
  • the boron nitride layer 102 ′ is formed on the entire substrate 101 by sequentially moving the laser beam irradiation region on the substrate 101. At this time, as described above, the nitrogen-containing doping gas and the boron-containing doping gas are continuously introduced.
  • an embodiment of the present invention forms a graphene semiconductor device on the boron nitride layer 102 'by using a laser beam on which the boron nitride layer 102' is formed, such a boron nitride layer-based graphene.
  • the fin semiconductor device has a considerably improved carrier mobility compared to the silicon substrate semiconductor device, and the present invention can manufacture a multilayer semiconductor device by irradiating the laser beam a plurality of times.
  • the reaction gas containing carbon flows on the boron nitride layer 102 ′, thereby contacting the boron nitride layer 102 ′.
  • the reaction gas includes an inert gas such as methane (CH 4 ), hydrogen (H 2 ) and argon (Ar).
  • methane supplies carbon for graphene growth, and hydrogen prevents oxidation of graphene through a reducing atmosphere.
  • laser beam irradiation is performed on the substrate (more specifically, the boron nitride layer 102 ') in contact with the reaction gas (second laser beam irradiation).
  • the reaction gas in particular, the carbon-containing gas species (methane) of the reaction gas is decomposed by the laser beam irradiated thereby, and thus graphene grows only in the region to which the laser beam is irradiated.
  • methane gas having a femtosecond decomposition rate is effectively decomposed on the substrate (silicon oxide layer) by nanosecond laser beam irradiation, and carbon is deposited on the substrate.
  • the power of the laser beam was 2 to 100W
  • the line width of the laser beam was 2 to 4
  • the length was several centimeters.
  • the scope of the present invention is not limited to the types and conditions of the above-described laser beam, a solid state laser or the like may also be used.
  • the laser may use not only pulse laser but also CW (continuous wave) laser.
  • the substrate region irradiated with the laser beam rises to 900 to 2000 ° C., whereby the methane gas of the reaction gas in contact with the elevated temperature substrate is decomposed.
  • the scope of the laser beam used in the present invention includes any laser beam capable of raising the temperature of the irradiated substrate to the level of 900 to 2000 ° C regardless of its type and dimension.
  • the graphene layer 103 grows in one region of the substrate according to the laser beam irradiation, as described above.
  • the laser beam is irradiated to other regions other than one region of the substrate on which graphene is grown. That is, the present invention moves the growth and stacking region of the graphene layer 103 by moving the laser beam irradiated to the substrate, for this purpose, both the laser beam or the substrate itself can be moved.
  • the graphene manufacturing method according to the present invention has the advantage of precise control of the graphene growth region due to the small line width of the laser beam, and the graphene layer 103 grown horizontally by the laser beam irradiation is the boron nitride layer. It is formed on (102 '), thereby producing a large area of graphene.
  • the chamber 13 of the semiconductor device manufacturing apparatus is in the form of a vacuum chamber cut off from the outside, and includes a first hole to which a vacuum line (not shown) outside the chamber 13 is connected. 15 and the plate 17 on which the substrate w is placed.
  • the plate 17 may further include a heating means (not shown) for raising the temperature of the substrate, thereby increasing the temperature of the target layer (boron nitride layer or graphene) only by irradiation with a laser beam. As it rises, graphene properties can be improved.
  • the outer wall of the chamber 13 is further provided with another second hole 19 for supplying a reaction gas therein.
  • FIG. 31B is a schematic view of another chamber for graphene manufacture of FIG. 25.
  • the laser beam generated from the laser beam generator 21 passes through the optical system 23 and the mask stage 25 and is then irradiated into the chamber 27 in which the target substrate is placed.
  • the chamber 27 is a process chamber in which a substrate is placed, and a separate reaction gas supply system may be connected.
  • the semiconductor device manufacturing apparatus according to the present invention may further include a means for moving the substrate itself or a means for moving the laser beam for the large-area boron nitride layer or graphene growth. This allows for selective device layer growth in the desired area.
  • the semiconductor device manufacturing apparatus by sequentially moving the irradiation region of the laser beam sequentially, it is possible to induce continuous object layer growth on a large area substrate. That is, according to the semiconductor device manufacturing apparatus according to the present invention by adjusting the irradiation time and the moving speed of the irradiation area, the boron nitride layer or graphene device layer of uniform height can be continuously grown two-dimensionally.
  • the laser beam moving means or substrate means can be any means used in the art, all of which are within the scope of the present invention.
  • the present invention largely describes a graphene manufacturing method using a flash lamp or a laser beam as a light source.
  • the above-described embodiments describe the same graphene manufacturing method except that the light source uses a flash lamp or a laser beam. Therefore, the pattern of the graphene and the method of manufacturing the graphene semiconductor device accordingly may be equally applicable to the method using the above-described flash lamp using the laser beam.
  • FIG. 32 is a diagram illustrating various configurations of a graphene semiconductor device according to the present invention, and shows that various types of semiconductor devices using graphene may be implemented.
  • the flash lamp since the flash lamp has a pulse duration of microseconds in milliseconds, thermal energy can be used for graphene growth longer than a pulse laser of nanoseconds.
  • the flash lamp can irradiate heat to a relatively larger area than the laser, there is an advantage that can reduce the process time when manufacturing a large area of graphene.
  • the flash lamp and the laser beam may each be selectively used as needed, and the present invention is characterized by presenting a method for producing such a light source and a graphene forming source gas.
  • the present invention using an optical means such as a lamp or a laser beam, and a roll-to-roll method can rapidly grow graphene on a flexible substrate.
  • graphene growth gas is reacted using heat of a flash lamp or a laser beam irradiated with a large area to grow graphene without a metal catalyst on a substrate.
  • the flexible substrate is transferred in a roll-to-roll manner, graphene is grown, and only the reaction gas is configured differently, thereby making a large amount of graphene semiconductor devices without mechanical deformation of graphene.

Abstract

Provided are a method and an apparatus for manufacturing graphene using a flash lamp, and graphene manufactured by the same. The apparatus of the present invention comprises: a chamber in which a substrate for growing graphene is arranged; an inlet unit which introduces reaction gas to one side of the substrate; a vacuum unit which applies vacuum to the chamber; and a flash lamp or laser device arranged in an upper portion of the chamber to irradiate light to the substrate, wherein the substrate is transferred by a roll-to-roll transfer means. The method and apparatus for manufacturing graphene according to the present invention induces reaction gas for graphene growth using heat of the light irradiated over a large area from the flash lamp, so as to grow graphene on the substrate. In addition, a flexible substrate is transferred by a roll-to-roll transfer system to grow graphene thereon, and graphene-based semiconductor devices may be mass-produced just by varying the composition of reaction gas without deforming graphene.

Description

플래쉬 램프 또는 레이저 빔을 이용한 그래핀 제조장치, 제조방법 및 이를 이용하여 제조된 그래핀Graphene manufacturing apparatus, manufacturing method using a flash lamp or a laser beam and graphene manufactured using the same
본 발명은 플래쉬 램프 또는 레이저 빔을 이용한 그래핀 제조장치, 제조방법 및 이를 이용하여 제조된 그래핀에 관한 것으로, 보다 상세하게는 그래핀을 플래쉬 램프 또는 레이저 빔을 이용하여 대면적의 그래핀을 경제적으로 제조할 수 있는 그래핀 제조방법, 제조장치 및 이를 이용하여 제조된 그래핀에 관한 것이다. The present invention relates to a graphene manufacturing apparatus, a manufacturing method using a flash lamp or a laser beam, and a graphene manufactured by using the same, and more particularly, to graphene having a large area using a flash lamp or a laser beam. It relates to a graphene manufacturing method, a manufacturing apparatus and a graphene produced using the same that can be economically produced.
그래핀(graphene)은 탄소원자가 2차원(2D) 격자 내로 채워진 평면 단일층 구조를 의미하며, 이것은 모든 다른 차원구조의 흑연(graphite) 물질의 기본 구조를 이룬다. 즉, 상기 그래핀은 0차원 구조인 풀러린(fullerene), 1차원 구조인 나노튜브 또는 3차원 구조로 적층된 흑연의 기본 구조가 될 수 있다. 2004년 Novoselev 등은 SiO2/Si 기판의 상부 상에서 프리-스탠딩 그래핀 단일층을 수득하였다고 보고하였으며, 이것은 기계적인 미세 분할법에 의하여 실험적으로 발견되었다. Graphene refers to a planar monolayer structure in which carbon atoms are filled into a two-dimensional (2D) lattice, which forms the basis for all other dimensional graphite materials. That is, the graphene may be a basic structure of graphite stacked in a fullerene, a one-dimensional nanotube, or a three-dimensional structure. In 2004, Novoselev et al reported that a free-standing graphene monolayer was obtained on top of a SiO 2 / Si substrate, which was found experimentally by mechanical microfractionation.
최근 많은 연구그룹들이 그래핀이 갖는 허니콤(벌집) 형태의 결정 구조, 두 개의 상호침투하는 삼각 형태의 하위 격자 구조, 및 하나의 원자 크기에 해당하는 두께 등에 의하여 그래핀이 특이한 물리적 특성(예를 들면 제로 밴드갭)을 보이는 점에 주목한다. 또한 그래핀은 특이한 전하 운송 특성을 갖는데, 이로 인하여 그래핀은 종래에는 관찰되지 않았던 독특한 현상을 보여준다. 예를 들면, 반정수 양자 홀 효과 및 바이폴라 초전류 트랜지스터 효과 등이 그 예이며, 이 또한 상기 설명한 그래핀의 특유한 구조에 기인하는 것으로 여겨진다. In recent years, many research groups have identified graphene's unique physical properties due to its honeycomb crystal structure, two interpenetrating triangular sub lattice structures, and the thickness of one atomic size. Note that for example a zero bandgap is shown. In addition, graphene has unique charge transport characteristics, which causes graphene to exhibit a unique phenomenon that has not been observed in the past. For example, the semi-integer quantum Hall effect, the bipolar supercurrent transistor effect, and the like are examples, and this is also considered to be due to the unique structure of the graphene described above.
한편, 그래핀의 밴드갭을 제어하기 위한 연구가 활발히 이루어 지고 있다. 그래핀의 나노 패턴을 만드는 방법과 기판에 전기장을 걸어주는 방법을 통하여 밴드갭을 제어하는 연구들이 진행되고 있지만, 아직까지 그래핀의 밴드갭을 정확하게 제어하는 연구 결과 및 이에 따른 그래핀 반도체 제조방식은 발표되지 않고 있다. Meanwhile, researches for controlling the bandgap of graphene have been actively conducted. Although researches are being conducted to control the bandgap by making a nano pattern of graphene and applying an electric field to the substrate, the results of the research to accurately control the bandgap of graphene and the resulting graphene semiconductor manufacturing method Is not announced.
질화붕소(Boron Nitride(BN)) 또한 그래핀과 동일한 결정 구조를 가지는 물질로서, 전자 소자의 주요물질로 주목받고 있으나, 화학기상증착과 같은 방식으로만 질화붕소층이 적층되고 있다. Boron nitride (BN) is also a material having the same crystal structure as graphene, and attracts attention as the main material of the electronic device, but the boron nitride layer is laminated only in the same manner as chemical vapor deposition.
이러한 그래핀의 공정 처리와 응용에 있어서 그래핀의 응집 방지가 매우 중요하다. 즉, 하나의 원자 크기의 두께를 갖는 박편(시트)형태의 그래핀은 상호간의 표면 에너지에 기인하여 응집하려는 특성을 보이며, 이는 그래핀의 직접 제조, 특히 친수성 용매에서의 제조를 매우 어렵게 한다. 따라서, 현재 대부분의 연구그룹들은 변형된 Hummer법에 의하여 그래핀 산화물(graphine oxide, GO)을 먼저 제조한 후, 이를 다시 환원시키는, 비교적 복잡한 공정에 의하여 그래핀을 제조하고 있다(종래기술 1). 산화 공정에 의하여 제조된 그래핀 산화물 이외에, 또 다른 종래기술로서 N-메틸-피롤리돈, -부티로락톤 등과 같은 유기 용매에서의 흑연을 박리시키고, 이에 따라 얻어진 그래핀을 분산시키는 유기용매-기반 그래핀 제조방법이 개시되고 있다 (종래기술 2). 즉, 상기 유기용매법은 그래핀-그래핀 시트간의 상호 에너지와 유사한 수준의 그래핀-유기용매간의 상호 에너지를 이용하여, 그래핀간의 응집을 방지하는 기술이다. 하지만 종래 기술 1, 2에서 얻어지는 그래핀 크기는 나노미터에서 마이크로미터 수준에 불과하다. 따라서, 종래 기술 1, 2는 대면적의 그래핀을 제조하기에는 부적합하다는 문제가 있다. In the processing and application of graphene, it is very important to prevent the aggregation of graphene. In other words, graphene in the form of flakes (sheets) having a thickness of one atomic size exhibits a property to agglomerate due to mutual surface energy, which makes direct manufacture of graphene, especially in a hydrophilic solvent, very difficult. Therefore, most research groups are currently producing graphene by a relatively complicated process of preparing graphene oxide (GO) by a modified Hummer method and then reducing it again (Prior Art 1). . In addition to the graphene oxide prepared by the oxidation process, as another conventional technique, N-methyl-pyrrolidone,-an organic solvent for stripping graphite in an organic solvent such as butyrolactone and the like, thereby dispersing the obtained graphene- Based graphene manufacturing method has been disclosed (prior art 2). That is, the organic solvent method is a technique for preventing aggregation between graphenes by using mutual energy between graphene-organic solvents at a level similar to mutual energy between graphene-graphene sheets. However, the graphene sizes obtained in the prior arts 1 and 2 are only in the nanometer to micrometer level. Therefore, the prior arts 1 and 2 have a problem that they are not suitable for producing a large area of graphene.
또 다른 방식의 그래핀 제조방법은 테이프 등에 의하여 흑연으로부터 그래핀 시트를 물리적으로 박리시키고, 이를 다시 실리콘 기판상에서 반복, 적층시키는 기계적 미세분할법이다(종래기술 3). 하지만, 상기 종래기술 3에서 얻어지는 그래핀의 크기는 수십에서 수백 마이크론 단위에 불과하므로, 이 역시 대면적의 그래핀 필름을 제조하기에는 부적합하다는 문제가 있다. 최근에 보고된 화학기상증착 (chemical vapor deposition)에 의한 대면적 그래핀 제조 방법은 복잡한 공정 및 고가의 장치가 필요하다는 단점을 가지고 있다. 결국, 현재 개시된 종래 기술은 상당한 시간을 요하거나 경제적으로 대면적 그래핀 필름을 제조하기에는 부적합하다는 한계를 가지고 있다. Another method for producing graphene is a mechanical microfractionation method of physically peeling a graphene sheet from graphite by a tape or the like, and repeating and laminating it on a silicon substrate (prior art 3). However, since the size of the graphene obtained in the prior art 3 is only a few tens to hundreds of micron units, this also has a problem that is not suitable for producing a large-area graphene film. Recently reported large-area graphene manufacturing method by chemical vapor deposition has the disadvantage of requiring a complicated process and expensive equipment. As a result, the presently disclosed prior art has the limitation that it takes considerable time or is not economically suitable for producing large-area graphene film.
따라서, 본 발명이 해결하려는 과제는 종래 기술에 비하여 보다 경제적인 방식으로 대면적 그래핀 제조가 가능한 그래핀 제조장치 및 방법을 제공하는 것이다. Accordingly, the problem to be solved by the present invention is to provide a graphene manufacturing apparatus and method capable of producing large-area graphene in a more economical manner than the prior art.
본 발명이 해결하려는 또 다른 과제는 상술한 방법 및 장치에 의하여 제조된 그래핀 반도체 소자를 제공하는 것이다. Another object of the present invention is to provide a graphene semiconductor device manufactured by the above-described method and apparatus.
상기 과제를 해결하기 위하여, 그래핀 제조방법으로, 상기 방법은 기판 표면 상에 반응가스를 접촉시키는 단계; 반응가스가 접촉된 기판의 일 영역 상에 플래쉬 램프로 빛을 조사하거나 또는 레이저 빔을 조사하여 상기 기판을 가열하는 단계; 및 상기 기판을 이송시켜, 상기 기판의 또 다른 영역을 차례로 반복 가열하는 그래핀층을 성장시키는 단계를 포함하는 것을 특징으로 하는 그래핀 제조방법을 제공한다. In order to solve the above problems, as a graphene manufacturing method, the method comprises the steps of contacting the reaction gas on the substrate surface; Heating the substrate by irradiating light with a flash lamp or by irradiating a laser beam onto a region of the substrate to which the reaction gas is contacted; And transferring the substrate to grow a graphene layer repeatedly heating the other region of the substrate in sequence.
또한 본 발명은 그래핀 제조방법으로, 상기 방법은 탄소함유 가스 및 수소의 혼합가스 분위기에서, 기판에 플래쉬 램프로 빛을 조사하거나 또는 레이저 빔을 조사하는 단계; 및 그래핀층을 상기 기판 상에 성장시키는 단계를 포함하는 것을 특징으로 하는 그래핀 제조방법을 제공한다.In another aspect, the present invention is a graphene manufacturing method, the method comprising the steps of irradiating light or a laser beam to the substrate with a flash lamp in a mixed gas atmosphere of carbon-containing gas and hydrogen; And it provides a graphene manufacturing method comprising the step of growing a graphene layer on the substrate.
또한 본 발명은 그래핀 제조방법으로, 상기 방법은 기판에 플래쉬 램프 또는 레이저로 빛을 제 1 조사하여 그래핀층을 형성시키는 단계; 및 상기 그래핀층에 플래쉬 램프 또는 레이저로 빛을 제 2 조사하여 조사된 그래핀층을 제거함으로써 그래핀을 패터닝하는 단계를 포함하는 것을 특징으로 하는 그래핀 반도체 소자 제조방법을 제공한다.In addition, the present invention is a graphene manufacturing method, the method comprises the steps of forming a graphene layer by irradiating a first light to the substrate with a flash lamp or a laser; And patterning the graphene by removing the irradiated graphene layer by irradiating the graphene layer with a flash lamp or a laser with a second light to provide the graphene semiconductor device manufacturing method.
또한 본 발명은 그래핀 제조방법으로, 상기 방법은 SiC 기판을 제공하는 단계; 상기 SiC 기판 상의 일 영역 상에 플래쉬 램프로 빛을 조사하거나 또는 레이저 빔을 조사하여 가열하는 단계; 및 상기 기판을 이송시켜, 상기 기판의 또 다른 영역을 차례로 반복 가열하여 그래핀을 성장시키는 단계를 포함하는 것을 특징으로 하는 그래핀 제조방법을 제공한다. The present invention also provides a graphene manufacturing method, the method comprising the steps of providing a SiC substrate; Irradiating light with a flash lamp or irradiating a laser beam onto a region on the SiC substrate and heating the light; And transferring the substrate, thereby repeatedly heating another region of the substrate to grow graphene.
또한 본 발명은 그래핀 제조장치로서, 상기 장치는 그래핀이 성장되어야 하는 기판이 내부에 구비되는 챔버; 상기 기판의 일 측면으로 반응가스가 유입되는 유입부; 상기 챔버에 진공을 인가하는 위한 진공부; 및 상기 챔버 상단에 구비되어, 상기 기판에 빛을 조사하기 위한 광원을 포함하는 그래핀 제조장치를 제공한다.In another aspect, the present invention is a graphene manufacturing apparatus, the apparatus comprises a chamber in which a substrate on which graphene is to be grown; An inlet part through which a reaction gas flows into one side of the substrate; A vacuum unit for applying a vacuum to the chamber; And a light source provided at an upper end of the chamber to irradiate light to the substrate.
본 발명에 따른 그래핀 제조방법 및 장치는 대면적으로 조사되는 플래쉬 램프 또는 레이저 빔의 열을 이용, 그래핀 성장가스를 반응시켜 기판 상에서 메탈촉매 없이 그래핀을 성장시킨다. In the graphene manufacturing method and apparatus according to the present invention, graphene growth gas is reacted using heat of a flash lamp or a laser beam irradiated with a large area to grow graphene without a metal catalyst on a substrate.
또한 롤투롤 방식으로 플렉서블 기판을 이송시켜, 그래핀을 성장시키고, 또한 반응가스만을 달리 구성하여, 그래핀의 기계적 변형 없이도 그래핀 반도체 소자를 대량으로 제조할 수 있다.In addition, the flexible substrate is transferred in a roll-to-roll manner, graphene is grown, and only the reaction gas is configured differently, thereby making a large amount of graphene semiconductor devices without mechanical deformation of graphene.
도 1a는 본 발명의 일 실시예에 따른 그래핀 제조장치의 모식도이다. Figure 1a is a schematic diagram of a graphene manufacturing apparatus according to an embodiment of the present invention.
도 1b는 도 1a의 장치에 롤투롤 방식으로 적용한 그래핀 제조 장치의 모식도이다.Figure 1b is a schematic diagram of a graphene manufacturing apparatus applied in a roll-to-roll method to the apparatus of Figure 1a.
도 2 내지 4는 본 발명의 일 실시예에 따른 그래핀 제조방법의 단계별 단면도 및 정면도이다. 2 to 4 is a step-by-step cross-sectional view and a front view of a graphene manufacturing method according to an embodiment of the present invention.
도 5 내지 9는 질화붕소층과 그래핀을 도 1A 및 도 1B에 도시된 장치 내에서 연속적으로 성장시키는 방법을 설명하는 단계별 도면이다.5 to 9 are step-by-step views illustrating a method of continuously growing a boron nitride layer and graphene in the apparatus shown in FIGS. 1A and 1B.
도 10 내지 14는 도 1A 및 도 1B에 도시된 장치의 플래쉬 램프를 이용하여, 나노리본 형태의 그래핀 반도체 소자를 제조하는 방식을 설명하는 도면이다.10 to 14 illustrate a method of fabricating a nanoribbon-type graphene semiconductor device using a flash lamp of the device shown in FIGS. 1A and 1B.
도 15 내지 21은 본 발명의 일 실시예에 따라 그래핀 트랜지스터를 제조하는 방법을 설명하는 도면이다.15 to 21 are views illustrating a method of manufacturing a graphene transistor according to an embodiment of the present invention.
도 22 내지 24는 본 발명의 또 다른 일 실시예에 따른 그래핀 제조방법을 설명하는 단계도이다. 22 to 24 are steps illustrating a graphene manufacturing method according to another embodiment of the present invention.
도 25 내지 30은 본 발명의 또 다른 일 실시예에 따른 그래핀 제조방법을 설명하는 도면이다. 25 to 30 are views illustrating a graphene manufacturing method according to another embodiment of the present invention.
도 31a 및 31b는 도 25의 그래핀 제조를 위한 챔버의 모식도이다. 31A and 31B are schematic views of a chamber for producing graphene of FIG. 25.
도 32은 상술한 그래핀 반도체 구조로부터 유도할 수 있는 다양한 방식의 그래핀 트랜지스터 단면도이다.32 is a cross-sectional view of graphene transistors in various ways that may be derived from the graphene semiconductor structure described above.
이하, 본 발명의 도면을 참조하여 상세하게 설명하고자 한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 본 명세서 전반에 걸쳐 표시되는 약어는 본 명세서 내에서 별도의 다른 지칭이 없다면 당업계에서 통용되어, 이해되는 수준으로 해석되어야 한다. Hereinafter, with reference to the drawings of the present invention will be described in detail. The following embodiments are provided as examples to ensure that the spirit of the present invention to those skilled in the art will fully convey. Therefore, the present invention is not limited to the embodiments described below and may be embodied in other forms. In the drawings, the width, length, thickness, etc. of the components may be exaggerated for convenience. In addition, the abbreviations shown throughout this specification should be interpreted to the level understood in the art, unless otherwise indicated herein.
상술한 바와 같이 본 발명에 따른 그래핀 제조방법 및 제조장치는 인가되는 전기에너지에 따라 빛 에너지를 발생시키는 플래쉬 램프를 이용하여 그래핀을 제조한다. 즉, 나노초 수준으로 빛을 조사하는 레이저에 의한 국소 에너지(보다 정확하게는 국소 열 에너지) 집중 방식 대신, 레이저 등에 비하여 장시간인 마이크로초에서 밀리초 단위로 열 에너지 공급이 가능한 플래쉬 램프를 사용하여 그래핀을 제조한다. 따라서, 플래쉬 램프의 장점, 즉, 넓은 조사면적, 밀리초 수준의 조사 시간, 저렴한 제조비용을 활용하여, 대면적 그래핀 제조가 가능하다. 더 나아가, 본 발명에 따른 그래핀 성장 방법은 롤투롤 방식으로 그래핀을 성장시키며, 이로써 그래핀 제조(성장) 속도가 확기적으로 증가된다. As described above, the graphene manufacturing method and apparatus according to the present invention manufacture graphene using a flash lamp that generates light energy according to an applied electrical energy. In other words, instead of focusing local energy (more precisely local thermal energy) by a laser that irradiates light at the nanosecond level, graphene is used by using a flash lamp that can supply heat energy in microseconds to milliseconds longer than lasers. To prepare. Therefore, utilizing the advantages of the flash lamp, that is, a large irradiation area, millisecond level of irradiation time, low production cost, it is possible to produce large area graphene. Furthermore, the graphene growth method according to the present invention grows the graphene in a roll-to-roll manner, thereby significantly increasing the graphene production (growth) rate.
도 1a는 본 발명의 일 실시예에 따른 그래핀 제조장치의 모식도이다. 도 1a를 참조하면, 본 발명에 따른 그래핀 제조장치는 챔버 형태로서, 상기 챔버 내에는 그래핀이 성장되어야 하는 기판이 구비된다. 또한, 본 발명에 따른 그래핀 제조장치는 상기 챔버 상단에 구비되며, 빛에 의하여 열 에너지를 공급할 수 있는 복수 개의 플래쉬 램프를 포함한다. 본 발명의 일 실시예에서 상기 복수 개의 플래쉬 램프는 소정 간격으로 이격되어 전면에 구비된 기판의 모든 영역에 빛을 조사하는 것이 바람직하다.Figure 1a is a schematic diagram of a graphene manufacturing apparatus according to an embodiment of the present invention. Referring to Figure 1a, the graphene manufacturing apparatus according to the present invention is a chamber form, the substrate is provided with a graphene to be grown in the chamber. In addition, the graphene manufacturing apparatus according to the present invention is provided on the top of the chamber, and includes a plurality of flash lamps that can supply heat energy by light. In one embodiment of the present invention, the plurality of flash lamps are preferably spaced at predetermined intervals to irradiate light to all areas of the substrate provided on the front surface.
상기 제조장치는 그래핀이 성장하여, 증착되는 기판(10) 및 상기 기판의 양 측면에 각각 구비되어, 그래핀 성장을 위한 반응가스가 유입되는 유입부(20) 및 진공이 인가되는 진공부(30)를 포함한다. 본 발명의 일 실시예에서 상기 반응가스는 메탄과 수소 등의 다양한 성분을 포함하며, 다수의 플래쉬 램프(플래쉬 램프 벌브, 40)에 의하여 인가되는 열 에너지에 의하여 상기 반응가스는 기판(10) 상에서 분해되어, 그래핀으로 성장된다. 본 발명의 일 실시예에서 상기 기판(10)은 비교적 낮은 온도에서도 안정한 플라스틱 기판으로 구성할 수 있다. The manufacturing apparatus is provided on both sides of the substrate 10 and the substrate to be deposited, the graphene is grown, the inlet 20 through which the reaction gas for graphene growth and the vacuum unit to which the vacuum is applied ( 30). In an embodiment of the present invention, the reaction gas includes various components such as methane and hydrogen, and the reaction gas is heated on the substrate 10 by thermal energy applied by a plurality of flash lamps (flash lamp bulbs) 40. It is decomposed and grown into graphene. In one embodiment of the present invention, the substrate 10 may be made of a stable plastic substrate even at a relatively low temperature.
도 1b는 도 1a의 장치에 롤투롤 방식으로 적용한 그래핀 제조 장치의 모식도이다. 도 1b를 참조하면, 본 발명에서 상기 플라스틱 기판(10)은 아래에 구비된 롤(60)의 회전에 따라 연속적으로 이동할 수 있다. 따라서, 고정된 플래쉬 램프(40)으로부터의 빛 조사영역을 상기 기판(10)이 이동할 수 있으며, 이로써 대면적 기판에서도 매우 빠른 속도로 그래핀을 성장시킬 수 있다. 따라서, 본 발명에서 상기 기판(10)은 회전이송수단인 롤과 롤 사이에 형성된 스테이지(미도시)상에 적층되며, 상기 스테이지의 이동에 따라 기판(10)이 이동된다. Figure 1b is a schematic diagram of a graphene manufacturing apparatus applied in a roll-to-roll method to the apparatus of Figure 1a. Referring to FIG. 1B, in the present invention, the plastic substrate 10 may continuously move according to the rotation of the roll 60 provided below. Accordingly, the substrate 10 may move the light irradiation area from the fixed flash lamp 40, thereby growing the graphene at a very high speed even on a large area substrate. Therefore, in the present invention, the substrate 10 is laminated on a stage (not shown) formed between the roll and the roll which is the rotational transfer means, and the substrate 10 is moved according to the movement of the stage.
본 발명에 일 실시에에 따른 그래핀 제조 장치는 기판(10)으로부터 이격되어 인가되는 전기에너지에 따라 빛 에너지를 발생시키는 복수 개의 플래쉬 램프(40)를 더 포함한다. 본 발명의 일 실시예에서 상기 플래쉬 램프는 제논(Xe) 램프를 사용하였으나, 본 발명의 범위는 이에 제한되지 않는다. Graphene manufacturing apparatus according to an embodiment of the present invention further comprises a plurality of flash lamp 40 for generating light energy in accordance with the applied electrical energy spaced apart from the substrate 10. In one embodiment of the present invention, the flash lamp uses a xenon (Xe) lamp, but the scope of the present invention is not limited thereto.
본 발명에 따른 그래핀 제조장치는 또한 플래쉬 램프 후단에 구비되어 후면으로 조사되는 빛을 전면으로 반사시키기 위한 반사 수단(50)이 더 구비될 수 있으며, 본 발명의 일 실시예에서 상기 반사 수단(50)은 소정의 곡률 반경을 갖는 곡면 거울일 수 있으나, 본 발명의 범위는 이제 제한되지 않는다. 도면부호 70은 플래쉬 램프에 의해 기판(10)상에 조사되는 영역을 개략적으로 표시하는 램프 조사 영역을 나타내고 있다. 이하, 도 1b의 롤투롤 방식으로 적용한 그래핀 제조 장치를 언급하고 있지만, 도 1a의 그래핀 제조 장치 역시 동일하게 적용 가능함은 통상의 지식을 가진자에게 용이하게 이해될 수 있을 것이다. 따라서, 도 1B의 롤투롤 방식의 그래핀 제조 장치를 근간으로 그래핀 제조 방법이 설명될 것이다. The graphene manufacturing apparatus according to the present invention may further include a reflecting means 50 provided at the rear end of the flash lamp to reflect the light irradiated to the front side to the front side, and in one embodiment of the present invention, the reflecting means ( 50 may be a curved mirror having a predetermined radius of curvature, but the scope of the present invention is now not limited. Reference numeral 70 denotes a lamp irradiation area which schematically indicates an area irradiated on the substrate 10 by the flash lamp. Hereinafter, although referring to the graphene manufacturing apparatus applied in the roll-to-roll method of Figure 1b, it can be easily understood by those skilled in the art that the graphene manufacturing apparatus of Figure 1a is equally applicable. Therefore, a graphene manufacturing method will be described based on the roll-to-roll type graphene manufacturing apparatus of FIG. 1B.
도 2 내지 4는 본 발명의 일 실시예에 따른 그래핀 제조방법의 단계별 단면도 및 정면도이다. 도 2를 참조하면, 그래핀이 성장, 제조되는 플렉서블 기판(101)으로 플라스틱 기판이 제공된다. 기존의 CVD 또는 PECVD 성장법에서는 플렉서블 기판 전체가 열을 받기 때문에 그래핀 성장을 위한 기판으로서 플렉서블 기판이 사용될 수 없다는 단점이 있었다. 그러나, 본 발명에서는 플래쉬 램프와 레이저는 표면에서만 열이 발생하고, 통상 25㎛ ~ 125㎛ 등의 다양한 두께를 가지는 플렉서블 기판 표면에서 수 ㎛ 이내에서 열이 발생하기 때문에, 광원을 사용하는 본 발명에서는 플렉서블 기판의 사용을 가능하게 한다. 부가적으로, 상기 플렉서블 기판 상에 SiO2를 1㎛ ~ 2㎛ 정도 증착하게 되면, 플렉서블 기판위에 증착된 얇은 실리콘 옥사이드가 플래쉬 램프와 레이저 조사시 발생하는 열을 플렉서블 기판으로 전도되지 않도록 막아줄 수도 있을 것이다.2 to 4 is a step-by-step cross-sectional view and a front view of a graphene manufacturing method according to an embodiment of the present invention. Referring to FIG. 2, a plastic substrate is provided as the flexible substrate 101 on which graphene is grown and manufactured. In the conventional CVD or PECVD growth method, since the entire flexible substrate receives heat, the flexible substrate cannot be used as a substrate for graphene growth. However, in the present invention, since the flash lamp and the laser generate heat only on the surface, and heat is usually generated within several μm on the surface of the flexible substrate having various thicknesses such as 25 μm to 125 μm, in the present invention using a light source, Enable the use of a flexible substrate. In addition, by depositing SiO 2 on the flexible substrate by about 1 μm to 2 μm, the thin silicon oxide deposited on the flexible substrate may prevent the heat generated during the irradiation of the flash lamp and the laser from being conducted to the flexible substrate. There will be.
한편, 상기 기판(101)은 플렉서블 플라스틱 기판이 SiO2를 상부에 가지는 기판일 수 도 있으나, 발명의 범위는 이에 제한되지 않으며, 사파이어(Al2O3) 기판, 메탈리 증착된 실리콘 기판, 구리 호일(Cu foil), MgO 기판, Al2O3기판, 또는 Si 기판 등도 가능하다. 또한 상기 기판 상에 구리 또는 니켈과 같은 촉매금속층을 부가적으로 적층하여 이들 금속층이 반응가스의 그래파이트화를 위한 촉매로서의 기능을 수행하게 할 수 있다. 이러한 촉매금속층의 사용은 적용되는 기판 또는 그래핀의 성장 속도 및 질에 따라 선택적으로 적용될 수 있을 것이다. 상기 촉매금속층의 적층방식은 스퍼터링 공정 등의 방식이 될 수 있다. 상기 기판 자체가 구리 포일일 경우, 빛이 조사되는 일 면은 포일 중 구리가 도포된 일 면일 수 있다. Meanwhile, the substrate 101 may be a substrate having a SiO 2 on the flexible plastic substrate, but the scope of the present invention is not limited thereto. A sapphire (Al 2 O 3 ) substrate, a metallized silicon substrate, and copper may be used. Cu foil, MgO substrate, Al 2 O 3 substrate, Si substrate or the like is also possible. In addition, a catalyst metal layer such as copper or nickel may be additionally laminated on the substrate so that these metal layers may function as a catalyst for graphite of the reaction gas. The use of such a catalytic metal layer may be selectively applied depending on the growth rate and quality of the substrate or graphene applied. The stacking method of the catalyst metal layer may be a method such as a sputtering process. When the substrate itself is a copper foil, one side to which light is irradiated may be one side to which copper is coated.
도 3을 참조하면, 별도의 촉매금속층 등을 기판상에 적층하지 않은 상태에서, 도 1b에서 도시된 장치 내에 수소 및 메탄 가스를 가스유입부(20)를 통하여 주입시키고, 플래쉬 램프로 빛을 조사한다. 이로써, 유입된 반응가스는 플래쉬 램프로부터 조사되는 열에 의하여 분해되어, 그래핀으로 성장한다. 즉, 탄소공급원(메탄가스, CH4)을 포함하는 반응가스를 장치 내에 주입하고, 플래쉬 램프를 이용, 빛을 기판(101)에 조사함에 따라, 빛에 의한 열 에너지가 상기 기판(101)에 인가되고, 이에 의하여 기판(101)과 접촉하는 반응가스, 특히 탄소를 함유하는 기체종인 메탄은 분해되어, 탄소가 기판(101) 표면에 적층되고, 환원분위기를 만들기 위해 제공된 수소는 기체 형태로 배출된다. 이후, 적층된 탄소는 공정 진행에 따라 점차 성장하여, 기판 전체에 걸쳐 균일하게 성장한 그래핀층(102)으로 전환된다. 이후, 상기 기판(101)을 롤투롤 방식으로 연속적으로 이동시켜, 기판 전면에서 그래핀을 성장시킬 수 있다(도 4 참조). 상기 수소 가스와 함께 또는 개별적으로 Ar 가스와 같은 불활성 가스도 공급될 수 있을 것이다. 이러한 불활성 가스의 공급은 퍼지(purge) 가스로서의 기능을 수행하여 보다 균일도가 높은 그래핀 성장에 기여할 수 있을 것이다.Referring to FIG. 3, hydrogen and methane gas are injected through the gas inlet 20 into the apparatus illustrated in FIG. 1B without a separate catalyst metal layer or the like deposited on a substrate, and irradiated with a flash lamp. do. As a result, the introduced reaction gas is decomposed by heat irradiated from the flash lamp and grows into graphene. That is, as a reaction gas containing a carbon source (methane gas, CH 4 ) is injected into the apparatus, and light is irradiated to the substrate 101 using a flash lamp, thermal energy by light is transmitted to the substrate 101. Methane, which is a gaseous species containing reactant gas, in particular carbon, which is in contact with the substrate 101, is decomposed so that carbon is deposited on the substrate 101 surface, and hydrogen provided to make a reducing atmosphere is discharged in gaseous form. do. Thereafter, the stacked carbon gradually grows as the process progresses, and is converted into the graphene layer 102 uniformly grown over the entire substrate. Thereafter, the substrate 101 may be continuously moved in a roll-to-roll manner to grow graphene on the entire surface of the substrate (see FIG. 4). An inert gas such as Ar gas may be supplied together with or separately from the hydrogen gas. The supply of such inert gas may serve as a purge gas to contribute to more uniform graphene growth.
본 발명의 또 다른 실시태양은 도 1b에 도시된 장치를 이용하여, 그래핀 반도체 소자를 제조하는 것으로, 이하 이를 상세히 설명한다. Another embodiment of the present invention is to manufacture a graphene semiconductor device using the device shown in Figure 1b, which will be described in detail below.
도 5 내지 9는 질화붕소층(BN)과 그래핀을 도 1B에 도시된 장치 내에서 연속적으로 성장시키는 방법을 설명하는 단계별 도면이다. 도 5 내지 7을 참조하면, 롤투롤(roll-to-roll) 방식으로 이동가능한 플렉서블 기판(201)이 적치된 도 1B의 장치 내에 NH3, B2H6 가스를 주입한다. 이후, 질화붕소층(BN층, 202)을 상기 기판 상에 만들기 위해서, 플래쉬 램프를 조사한다. 본 발명의 일 실시예에서 질소공급원으로 NH3 가스를 흘려주고, 동시에 붕소공급원으로 B2H6 가스를 흘려준다. 또한 B2H6 이외에도 BCl3, BF3 등 Boron 이 포함된 모든 가스가 이용이 가능하고, NH3 가스 이외에도 N 이 포함된 모든 가스가 이용될 수 있다.5 to 9 are step-by-step views illustrating a method of continuously growing a boron nitride layer (BN) and graphene in the device shown in FIG. 1B. 5 to 7, NH 3 , B 2 H 6 gas is injected into the apparatus of FIG. 1B on which the flexible substrate 201 movable in a roll-to-roll manner is deposited. Thereafter, a flash lamp is irradiated to make a boron nitride layer (BN layer) 202 on the substrate. In an embodiment of the present invention, NH 3 gas is flowed to the nitrogen supply, and B 2 H 6 gas is flowed to the boron source. In addition to B 2 H 6 , all gases containing Boron, such as BCl 3 and BF 3 , may be used. In addition to NH 3 gas, all gases including N may be used.
도 8을 참조하면, BN층(202)이 형성된 기판에 메탄과 수소를 흘리면서 플래쉬 램프로부터 빛을 제 1 조사한다. 이후, 롤투롤(roll to roll) 방식으로 기판만을 이동시켜, 그래핀층(203)을 BN층(202) 상에 기판 전면으로 성장시키며, 이는 플래쉬 램프에 의한 빛의 제 2 조사에 의하여 진행된다(도 9 참조). Referring to FIG. 8, light is first irradiated from the flash lamp while flowing methane and hydrogen to the substrate on which the BN layer 202 is formed. Thereafter, only the substrate is moved in a roll to roll manner, and the graphene layer 203 is grown on the BN layer 202 to the entire surface of the substrate, which proceeds by a second irradiation of light by a flash lamp ( 9).
본 발명은 또한 나노리본 형태의 그래핀층을 플래쉬 램프로 제조하여, 그래핀의 밴드 갭을 형성시키는 기술을 개시한다. 즉, 나노리본 형태의 그래핀 시트를 통하여 소스, 게이트, 드레인 전극을 연결하고, 게이트 전극에 전압을 인가에 함에 따라 나노리본 형태의 그래핀으로 전자가 흐르는 방식의 트랜지스터 소자가 가능하다. 하지만, 문제는 나노 사이즈의 리본 형태 그래핀을 기판 위에서 정밀히 제조되어야 하는 점에서, 기술적 한계가 있으나, 본 발명은 플래쉬 램프를 이용, 종래 기술에 따른 문제를 효과적으로 해결하였다. The present invention also discloses a technique for preparing a graphene layer in the form of nanoribbons with a flash lamp to form a band gap of graphene. That is, as the source, gate, and drain electrodes are connected through the nanoribbon-type graphene sheet, and a voltage is applied to the gate electrode, a transistor device having electrons flows into the nanoribbon-type graphene. However, the problem is that there is a technical limitation in that the nano-sized ribbon-shaped graphene must be precisely manufactured on the substrate, but the present invention effectively solves the problem according to the prior art by using a flash lamp.
도 10 내지 14는 도 1에 도시된 장치의 플래쉬 램프를 이용하여, 나노리본 형태의 그래핀 반도체 소자를 제조하는 방식을 설명하는 도면이다. 도 10을 참조하면, 플렉서블 기판(301) 상에 플래쉬 램프로 그래핀층(302)을 성장시키며, 이는 도 1B에 도시된 장치에서 이루어진다. 도 11을 참조하면, 제 1 마스크(M1)를 상기 그래핀층(302)의 소정 영역에 적층한 후, 그래핀층(302)을 패터닝하기 위하여 산소를 장치 내에 주입하고, 플래쉬 램프로 빛을 조사한다. 이로써, 플래쉬 램프로부터 빛이 조사된 그래핀층(302)의 탄소는 활성화되어, 산소와 반응, 제거된다. 이후, 제 1 마스크의 제거를 통하여, 도 12에서 도시된 바와 같이 제 1 마스크층(M)이 형성 영역에 대응하는 그래핀층(302)만이 플렉서블 기판(301)위에 남게 된다. 본 발명에서 산소라 함은 산소로만 이루어진 기체 분위기를 의미할 뿐만 아니라, 산소를 포함하는 기체 분위기를 모두 총칭하며, 이는 모두 본 발명의 범위에 속한다.10 to 14 illustrate a method of manufacturing a nanoribbon-type graphene semiconductor device using a flash lamp of the apparatus shown in FIG. 1. Referring to FIG. 10, the graphene layer 302 is grown with a flash lamp on the flexible substrate 301, which is done in the device shown in FIG. 1B. Referring to FIG. 11, after the first mask M1 is stacked on a predetermined region of the graphene layer 302, oxygen is injected into the device to pattern the graphene layer 302, and light is irradiated with a flash lamp. . As a result, the carbon of the graphene layer 302 irradiated with light from the flash lamp is activated to react with and remove oxygen. Thereafter, as shown in FIG. 12, only the graphene layer 302 corresponding to the formation region of the first mask layer M remains on the flexible substrate 301 through the removal of the first mask. Oxygen in the present invention means not only a gas atmosphere consisting of oxygen, but also collectively refers to a gas atmosphere containing oxygen, all belonging to the scope of the present invention.
그래핀 반도체 소자를 형성하기 위해서는 그래핀의 간격(20㎚ 이하)이 좁아야 하는데, 본 발명의 일 실시예는 반도체 그래핀의 이러한 형상을 마스크와 플래쉬 램프를 이용하여 달성하였다. In order to form a graphene semiconductor device, the interval of graphene (20 nm or less) must be narrow. An embodiment of the present invention achieves this shape of semiconductor graphene using a mask and a flash lamp.
도 13을 참조하면, 다시 리본 형태(넓은 단부, 좁은 중간부)로 그래핀을 패터닝하기 위한 리본 형태의 제 2 마스크(M2)를 도 12에 도시된 그래핀층(320) 영역상에 적층시킨다. 이때 상기 리본의 너비는 20㎚ 이하인 것이 바람직하며, 이로써 그래핀은 반도체로서의 특성을 갖는다. 또한, 상기 제 2 마스크는 제 1 마스크와 동일하게 조사되는 플래쉬 램프로부터의 빛을 차단하기 위한 광차단용 마스크이다.Referring to FIG. 13, a ribbon-shaped second mask M2 for patterning graphene in a ribbon shape (a wide end and a narrow middle part) is stacked on the graphene layer 320 region shown in FIG. 12. At this time, the width of the ribbon is preferably 20nm or less, whereby the graphene has the characteristics as a semiconductor. In addition, the second mask is a light blocking mask for blocking light from the flash lamp irradiated in the same manner as the first mask.
도 14를 참조하면, 산소 분위기에서 플래쉬 램프로 빛을 조사하여, 제 2 마스크가 형성되지 않은 영역의 그래핀층(302)은 제거되며, 이로써 리본 형태의 그래핀층(303)이 형성된다. 상술한 바와 같이 리본 형태 중 좁은 너비의 그래핀층(303)은 반도체 특성을 갖게 된다. Referring to FIG. 14, by irradiating light with a flash lamp in an oxygen atmosphere, the graphene layer 302 of the region where the second mask is not formed is removed, thereby forming a ribbon-type graphene layer 303. As described above, the graphene layer 303 having a narrow width in the ribbon form has semiconductor characteristics.
본 발명은 더 나아가, B2H6 또는 NH3와 같은 불순물 도핑가스를 흘려서 붕소와 질소를 도핑시키는 기술을 제공한다. 특히 고온에서 진행되는 도핑인 경우, 그래핀의 고유 구조가 깨어지며, 이로써 그래핀의 물성 저하가 발생하는 문제가 있으나, 플래쉬 램프를 이용하는 본 발명의 경우 이러한 종래 기술에 따른 문제를 효과적으로 해결할 수 있는데, 이하 이를 상세히 설명한다. The present invention further provides a technique of doping boron and nitrogen by flowing an impurity doping gas such as B 2 H 6 or NH 3 . In particular, when the doping proceeds at a high temperature, the inherent structure of the graphene is broken, thereby causing a problem that the physical properties of the graphene, but in the case of the present invention using a flash lamp can effectively solve the problems according to the prior art This will be described in detail below.
도 15 내지 21은 본 발명의 일 실시예에 따라 플렉서블 기판 상에 그래핀 트랜지스터를 제조하는 방법을 설명하는 도면이다. 도 15를 참조하면, 이후 P 타입 반도체 그래핀을 형성하기 위하여, 상기 형성된 반도체 그래핀층(303) 중 P 타입 반도체 그래핀 제조를 원하는 반도체 그래핀층(303)을 외부로 노출시키고, 불순물 도핑이 요구되지 않은 나머지 그래핀층(303)에는 모두 제 3 마스크를 적층하여 빛을 차단한다. 이후, P 타입 반도체 형성을 위한 도판트인 붕소를 함유하는 가스(B2H6)를 수소와 함께 장치 내에 주입하고, 플래쉬 램프로 빛을 조사한다. 이로써 제 3 마스크층(M3)에 의하여 커버되지 않은 반도체 그래핀층(303)에는 붕소가 도핑되어, 붕소 도핑 P타입 그래핀층(304)가 플렉서블 기판(301) 상에 형성된다. 동일한 방식으로 기판에 형성된 복수 개의 단위 그래핀 소자에 대한 질소 도핑을 진행하는데, 이를 위하여 NH3 및 메탄을 포함하는 또 다른 도핑가스를 기판에 흘리면서, 도핑되어야 하는 소자 영역을 플래쉬 램프로 빛 처리한다(도 16 내지 18). 이로써 4개의 나노리본 형태의 그래핀 단위 소자에서, 좌측 두 개는 양 끝 영역에 붕소가 도핑되며(304), 우측 두 개는 양 끝 영역에 질소가 도핑된다(305). 상기 도핑 영역(즉, 리본의 중심영역)은 단위 트랜지스터의 채널 영역이 되고, 채널 위에 게이트 절연막과 전극을 형성시킨다.15 to 21 illustrate a method of manufacturing a graphene transistor on a flexible substrate according to an embodiment of the present invention. Referring to FIG. 15, in order to form the P-type semiconductor graphene, the semiconductor graphene layer 303 desired for manufacturing the P-type semiconductor graphene among the formed semiconductor graphene layers 303 is exposed to the outside, and impurity doping is required. All of the remaining graphene layer 303 is not laminated to block the light. Thereafter, a gas (B 2 H 6 ) containing boron, which is a dopant for forming a P-type semiconductor, is injected into the apparatus together with hydrogen, and light is irradiated with a flash lamp. As a result, boron is doped into the semiconductor graphene layer 303 which is not covered by the third mask layer M3, so that the boron-doped P-type graphene layer 304 is formed on the flexible substrate 301. Nitrogen doping of the plurality of unit graphene devices formed on the substrate is performed in the same manner. To do this, another doping gas containing NH 3 and methane is flowed onto the substrate, and the device region to be doped is light-treated with a flash lamp. (Figures 16-18). As a result, in the graphene unit device having four nanoribbons, boron is doped at both ends of the two left ends (304), and nitrogen is doped at both end areas (305). The doped region (ie, the center region of the ribbon) becomes a channel region of a unit transistor, and forms a gate insulating layer and an electrode on the channel.
도 19및 20을 참조하면, 마스크층 제거 후 상기 도핑 반도체 그래핀 소자 영역 상에 게이트 절연막으로 HfO2 등과 같은 절연층(306)을 형성시키고, 단위 그래핀 트랜지스터의 소스, 게이트 및 드레인 전극을 형성시킨다(307). 즉, 상기 절연층(306)상에는 게이트 전극을, 나노 리본 형태의 그래핀층 양 단부에는 소스, 드레인 전극을 형성시켜, 그래핀 트랜지스터 구조를 형성시킨다. 19 and 20, after removing the mask layer, an insulating layer 306 such as HfO 2 is formed on the doped semiconductor graphene device region as a gate insulating film, and the source, gate, and drain electrodes of the unit graphene transistor are formed. (307). That is, the graphene transistor structure is formed by forming a gate electrode on the insulating layer 306 and source and drain electrodes on both ends of the graphene layer having a nano ribbon shape.
이로써 그래핀층에 도핑된 불순물의 종류에 따라 P타입 그래핀 트랜지스터(308)과 N 타입 그래핀 트랜지스터(309)가 플렉서블 기판상에 선택적으로 제조될 수 있다. As a result, the P-type graphene transistor 308 and the N-type graphene transistor 309 may be selectively manufactured on the flexible substrate according to the type of impurities doped in the graphene layer.
도 22 내지 24은 본 발명의 또 다른 일 실시예에 따른 그래핀 제조방법을 설명하는 단계도이다. 도 22를 참조하면, 탄소(C)가 기판에 함유된 SiC 기판(401)이 사용된다. 도 23을 참조하면, SiC 기판(401)에 플래쉬 램프로 빛이 조사되며, 이로부터 열이 기판에 전달된다. 이때 수소를 미리 주입하여, 챔버 내를 환원분위기로 만들 수도 있다. 플래쉬 램프로부터 조사되는 열에 의하여 SiC 기판의 실리콘은 승화되며, 실리콘이 승화됨으로써 기판 표면에 잔류하는 탄소는 그래핀 형태로 표면에서 성장한다. 소정 시간 경과 후, 도 24에 도시된 바와 같이 기판 전체에 균일한 그래핀층(302, 시트)이 성장한다. 22 to 24 are steps illustrating a graphene manufacturing method according to another embodiment of the present invention. Referring to FIG. 22, a SiC substrate 401 containing carbon C in a substrate is used. Referring to FIG. 23, light is irradiated onto a SiC substrate 401 by a flash lamp, from which heat is transferred to the substrate. In this case, hydrogen may be injected in advance to make the chamber a reducing atmosphere. The silicon of the SiC substrate is sublimated by the heat radiated from the flash lamp, and the carbon remaining on the substrate surface is grown on the surface in the form of graphene by the silicon sublimation. After a predetermined time elapses, as shown in FIG. 24, a uniform graphene layer 302 (sheet) is grown on the entire substrate.
도 25 내지 30은 본 발명의 또 다른 일 실시예에 따른 그래핀 제조방법을 설명하는 도면으로, 광원으로 사용되었던 전술한 플래쉬 램프 대신 레이저 빔을 이용한 그래핀 형성 방법을 도시하고 있다. 도 25를 참조하면, 사파이어(Al2O3) 기판(101)이 개시된다. 하지만, 본 발명에 사용되는 기판은 통상의 반도체 공정이 진행될 수 있는 임의의 모든 기판이 될 수 있으며, 예를 들면, 실리콘 기판, 실리콘산화물/실리콘 기판, 메탈이 증착된 실리콘 기판, 구리 호일(Cu foil) 등도 사용될 수 있다.25 to 30 are views illustrating a graphene manufacturing method according to another embodiment of the present invention, and illustrates a graphene forming method using a laser beam instead of the above-described flash lamp, which was used as a light source. Referring to FIG. 25, a sapphire (Al 2 O 3 ) substrate 101 is disclosed. However, the substrate used in the present invention may be any substrate that can be subjected to a conventional semiconductor process, for example, a silicon substrate, a silicon oxide / silicon substrate, a metal deposited silicon substrate, a copper foil (Cu foil) and the like can also be used.
상기 기판(101)위에 질소 함유 도핑가스 및 붕소 함유 도핑가스를 동시에 흘리면서, 레이저 빔을 상기 기판에 조사한다(제 1 레이저 빔 조사). 본 발명의 일 실시예에서 상기 질소 함유 도핑가스는 암모니아(NH3)이었으며, 붕소 함유 도핑가스는 B2H6이었다. 하지만, 본 발명의 범위는 이에 제한되지 않으며, BCl3, BF3 등의 다양한 도핑가스가 사용가능하다. The laser beam is irradiated onto the substrate while simultaneously flowing a nitrogen-containing doping gas and a boron-containing doping gas on the substrate 101 (first laser beam irradiation). In one embodiment of the present invention, the nitrogen-containing doping gas was ammonia (NH 3 ), and the boron-containing doping gas was B 2 H 6 . However, the scope of the present invention is not limited thereto, and various doping gases such as BCl 3 and BF 3 may be used.
조사되는 레이저에 의하여 해당 조사영역의 도핑가스는 분해되어, 질화붕소층을 형성하는데, 이는 붕소 함유 도핑가스와 질소 함유 도핑가스의 동시 분해에 의한 것이다. 이로써, 기판(101) 상에 질화붕소층(102')이 형성되는데, 상기 질화붕소층 형성영역은 레이저 빔의 조사 영역에 대응된다. The doping gas in the irradiated region is decomposed by the irradiated laser to form a boron nitride layer, which is caused by simultaneous decomposition of the boron-containing doping gas and the nitrogen-containing doping gas. As a result, the boron nitride layer 102 'is formed on the substrate 101. The boron nitride layer forming region corresponds to the irradiation region of the laser beam.
본 발명은 이와 같이 그래핀 등과 같은 반도체 소자층이 상부에 형성되는 하부 기판인 질화붕소층(102')을 레이저 빔으로 제조하는 방식을 제공한다. 일반적인 질화붕소층은 플라즈마 화학증착법과 같은 고열 반응을 통하여 제조되나, 본 발명은 고열 반응이 아닌 레이저 빔 반응을 통하여 질화붕소층(102')을 기판 상에 형성시킨다. As described above, the present invention provides a method of manufacturing a boron nitride layer 102 ', which is a lower substrate, on which a semiconductor device layer such as graphene is formed. A general boron nitride layer is manufactured through a high thermal reaction such as plasma chemical vapor deposition, but the present invention forms the boron nitride layer 102 'on the substrate through a laser beam reaction rather than a high thermal reaction.
도 26 및 27를 참조하면, 순차적으로 레이저 빔의 조사 영역을 기판(101) 상에서 이동시켜, 기판(101) 전체에 질화붕소층(102')을 형성시킨다. 이때, 상술한 바와 같이 질소 함유 도핑가스와 붕소 함유 도핑가스는 지속적으로 유입되는 상태이다.Referring to FIGS. 26 and 27, the boron nitride layer 102 ′ is formed on the entire substrate 101 by sequentially moving the laser beam irradiation region on the substrate 101. At this time, as described above, the nitrogen-containing doping gas and the boron-containing doping gas are continuously introduced.
더 나아가, 본 발명의 일 실시예는 질화붕소층(102')을 형성시킨 레이저 빔을 이용, 상기 질화붕소층(102') 상에 그래핀 반도체 소자를 형성시키는데, 이러한 질화붕소층-기반 그래핀 반도체 소자는 실리콘 기판 반도체 소자에 비하여 캐리어 이동도가 상당 수준 향상되는데, 본 발명은 이를 레이저 빔의 복수 회 조사를 통하여 다층 반도체 소자를 제조할 수 있다. Furthermore, an embodiment of the present invention forms a graphene semiconductor device on the boron nitride layer 102 'by using a laser beam on which the boron nitride layer 102' is formed, such a boron nitride layer-based graphene. The fin semiconductor device has a considerably improved carrier mobility compared to the silicon substrate semiconductor device, and the present invention can manufacture a multilayer semiconductor device by irradiating the laser beam a plurality of times.
이어서, 도 28을 참조하면, 질화붕소층(102') 상에 탄소를 포함하는 반응가스를 흘림으로써, 상기 질화붕소층(102')에 접촉시킨다. 상기 반응가스는 메탄(CH4), 수소(H2) 및 아르곤(Ar)과 같은 불활성가스를 포함한다. 여기에서, 메탄은 그래핀 성장을 위한 탄소를 공급하며, 수소는 환원분위기를 통하여, 그래핀의 산화를 방지한다. 이후, 반응가스와 접촉하는 기판(보다 구체적으로는 질화붕소층(102'))에 대하여 레이저 빔 조사를 진행한다(제 2 레이저 빔 조사). 이로써 조사되는 레이저 빔에 의하여 해당 기판 영역과 접촉하는 반응가스, 특히 반응가스의 탄소함유 기체종(메탄)은 분해되고, 이에 따라 그래핀이 레이저 빔이 조사된 영역에서만 성장한다. 이로써 펨토초 수준의 분해속도를 갖는 메탄 가스는 나노초 수준의 레이저 빔 조사에 의하여 기판(실리콘 산화물층)상에서 효과적으로 분해되어, 탄소가 기판위에 적층된다. 본 발명의 일 실시예에서 상기 레이저 빔의 파워는 2 내지 100W 수준이었고, 레이저 빔의 라인 폭은 2 내지 4, 길이는 수 센티미터 수준이었다. 하지만, 본 발명의 범위는 상술한 레이저 빔의 종류와 조건에 제한되지 않으며, 고체 레이저 등도 사용될 수 있다. 예를 들면 레이저는 펄스 레이저뿐만 아니라 CW(continuous wave) 레이저도 이용이 가능하다.Next, referring to FIG. 28, the reaction gas containing carbon flows on the boron nitride layer 102 ′, thereby contacting the boron nitride layer 102 ′. The reaction gas includes an inert gas such as methane (CH 4 ), hydrogen (H 2 ) and argon (Ar). Here, methane supplies carbon for graphene growth, and hydrogen prevents oxidation of graphene through a reducing atmosphere. Thereafter, laser beam irradiation is performed on the substrate (more specifically, the boron nitride layer 102 ') in contact with the reaction gas (second laser beam irradiation). The reaction gas, in particular, the carbon-containing gas species (methane) of the reaction gas is decomposed by the laser beam irradiated thereby, and thus graphene grows only in the region to which the laser beam is irradiated. As a result, methane gas having a femtosecond decomposition rate is effectively decomposed on the substrate (silicon oxide layer) by nanosecond laser beam irradiation, and carbon is deposited on the substrate. In one embodiment of the present invention, the power of the laser beam was 2 to 100W, the line width of the laser beam was 2 to 4, and the length was several centimeters. However, the scope of the present invention is not limited to the types and conditions of the above-described laser beam, a solid state laser or the like may also be used. For example, the laser may use not only pulse laser but also CW (continuous wave) laser.
레이저 빔의 조사에 따라 레이저 빔이 조사된 기판 영역은 900 내지 2000℃로 상승하며, 이에 따라 온도 상승된 기판과 접촉하는 반응가스의 메탄가스는 분해된다. 따라서, 본 발명에서 사용된 레이저 빔의 범위는 그 종류와 치수에 관계없이 조사된 기판의 온도를 900 내지 2000℃ 수준으로 상승시킬 수 있는 임의의 모든 레이저 빔을 다 포함한다.According to the irradiation of the laser beam, the substrate region irradiated with the laser beam rises to 900 to 2000 ° C., whereby the methane gas of the reaction gas in contact with the elevated temperature substrate is decomposed. Thus, the scope of the laser beam used in the present invention includes any laser beam capable of raising the temperature of the irradiated substrate to the level of 900 to 2000 ° C regardless of its type and dimension.
도 29를 참조하면, 레이저 빔 조사에 따라 기판의 일 영역에서 그래핀층(103)이 성장하며, 이는 상술한 바와 같다. Referring to FIG. 29, the graphene layer 103 grows in one region of the substrate according to the laser beam irradiation, as described above.
도 30을 참조하면, 레이저 빔이 조사되어 그래핀이 성장한 기판의 일 영역 이외의 타 영역으로 레이저 빔이 조사된다. 즉, 본 발명은 기판에 조사되는 레이저 빔을 이동시킴으로써, 그래핀층(103)의 성장, 적층 영역을 이동시키는데, 이를 위하여 레이저 빔이 이동하거나 또는 기판 자체가 이동하는 방식 모두 가능하다. 특히 본 발명에 따른 그래핀 제조방법은 레이저 빔이 가지는 작은 라인 폭 때문에, 그래핀 성장 영역의 정밀한 제어가 가능하다는 장점이 있으며, 레이저 빔 조사에 따라 수평으로 성장한 그래핀층(103)이 질화붕소층(102') 상에 형성되며, 이로써 대면적의 그래핀이 제조가능하다. Referring to FIG. 30, the laser beam is irradiated to other regions other than one region of the substrate on which graphene is grown. That is, the present invention moves the growth and stacking region of the graphene layer 103 by moving the laser beam irradiated to the substrate, for this purpose, both the laser beam or the substrate itself can be moved. In particular, the graphene manufacturing method according to the present invention has the advantage of precise control of the graphene growth region due to the small line width of the laser beam, and the graphene layer 103 grown horizontally by the laser beam irradiation is the boron nitride layer. It is formed on (102 '), thereby producing a large area of graphene.
도 31a 및 31b는 도 25의 그래핀 제조를 위한 챔버의 모식도이다. 도 31A를 참조하면, 본 발명 일 실시예에 따른 반도체 소자 제조장치의 챔버(13)는 외부와 차단된 진공 챔버 형태로서, 챔버(13) 외부의 진공라인(미도시)가 연결되는 제 1 홀(15) 및 기판(w)이 놓이는 플레이트(17)을 포함한다. 상기 플레이트(17)에는 기판의 온도를 상승시킬 수 있는 가열수단(미도시)이 더 구비될 수 있으며, 이로써 레이저 빔에 의한 조사만으로 대상층(질화붕소층 또는 그래핀)을 성장시키는 경우에 비하여 온도상승에 따라 그래핀 특성을 향상시킬 수 있다. 또한, 상기 챔버(13)의 외벽에는 내부에 반응가스를 공급하기 위한 또 다른 제 2 홀(19)이 더 구비된다. 31A and 31B are schematic views of a chamber for producing graphene of FIG. 25. Referring to FIG. 31A, the chamber 13 of the semiconductor device manufacturing apparatus according to the exemplary embodiment of the present invention is in the form of a vacuum chamber cut off from the outside, and includes a first hole to which a vacuum line (not shown) outside the chamber 13 is connected. 15 and the plate 17 on which the substrate w is placed. The plate 17 may further include a heating means (not shown) for raising the temperature of the substrate, thereby increasing the temperature of the target layer (boron nitride layer or graphene) only by irradiation with a laser beam. As it rises, graphene properties can be improved. In addition, the outer wall of the chamber 13 is further provided with another second hole 19 for supplying a reaction gas therein.
도 31b는 도 25의 그래핀 제조를 위한 또 다른 챔버의 전체 모식도이다. 도 31B를 참조하면, 레이저 빔 발생부(21)로부터 생성된 레이저 빔은 광학시스템(23) 및 마스크 스테이지(25)를 거친 후, 대상 기판이 내부에 적치된 챔버(27)로 조사된다. 상기 챔버(27)는 기판이 올려지는 공정챔버로서, 별도의 반응가스 공급 시스템이 연결될 수 있다. 본 발명에 따른 반도체 소자 제조장치는 대면적으로의 질화붕소층 또는 그래핀 성장을 위하여, 기판 자체를 이동시키는 수단 또는 레이저 빔을 이동시키는 수단을 더 포함할 수 있다. 이로써 원하는 영역에서의 선택적인 소자층 성장이 가능하다. 즉, 연속적으로 레이저 빔의 조사 영역을 순차적으로 이동시킴으로써, 대면적 기판에서 연속적인 대상층 성장을 유도할 수 있다. 즉, 본 발명에 따른 반도체 소자 제조장치에 따라 조사시간과 조사영역의 이동속도를 조절하여, 균일한 높이의 질화붕소층 또는 그래핀의 소자층이 2차원적으로 연속 성장할 수 있다. 상기 레이저 빔 이동수단 또는 기판 수단은 당업계에 사용되는 임의의 모든 수단일 수 있으며, 이는 모두 본 발명의 범위에 속한다. 이상 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.FIG. 31B is a schematic view of another chamber for graphene manufacture of FIG. 25. Referring to FIG. 31B, the laser beam generated from the laser beam generator 21 passes through the optical system 23 and the mask stage 25 and is then irradiated into the chamber 27 in which the target substrate is placed. The chamber 27 is a process chamber in which a substrate is placed, and a separate reaction gas supply system may be connected. The semiconductor device manufacturing apparatus according to the present invention may further include a means for moving the substrate itself or a means for moving the laser beam for the large-area boron nitride layer or graphene growth. This allows for selective device layer growth in the desired area. That is, by sequentially moving the irradiation region of the laser beam sequentially, it is possible to induce continuous object layer growth on a large area substrate. That is, according to the semiconductor device manufacturing apparatus according to the present invention by adjusting the irradiation time and the moving speed of the irradiation area, the boron nitride layer or graphene device layer of uniform height can be continuously grown two-dimensionally. The laser beam moving means or substrate means can be any means used in the art, all of which are within the scope of the present invention. Although the above has been described with reference to the preferred embodiment of the present invention, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention described in the claims below. You will understand.
본 발명은 크게 광원으로서 플래쉬 램프 또는 레이저 빔을 사용하는 그래핀 제조 방법을 설명하고 있다. 그러나, 광원이 플래쉬 램프 또는 레이저 빔이 사용된 다는 차이점을 제외하고는 전술한 실시예들은 동일한 그래핀 제조 방법을 설명하고 있다. 따라서, 그패핀의 패턴 및 이에 따른 그래핀 반도체 소자의 제조 방법은 전술한 플래쉬 램프를 이용한 방법이 레이저 빔을 사용한 방법에서도 동일하게 적용 될 수 있을 것이다. 참고로, 도 32은 본 발명에 따른 그래핀 반도체 소자의 다양한 구성을 도시한 도면으로, 그래핀을 이용한 다양한 형태의 반도체 소자가 구현 가능함을 보여주고 있다. The present invention largely describes a graphene manufacturing method using a flash lamp or a laser beam as a light source. However, the above-described embodiments describe the same graphene manufacturing method except that the light source uses a flash lamp or a laser beam. Therefore, the pattern of the graphene and the method of manufacturing the graphene semiconductor device accordingly may be equally applicable to the method using the above-described flash lamp using the laser beam. For reference, FIG. 32 is a diagram illustrating various configurations of a graphene semiconductor device according to the present invention, and shows that various types of semiconductor devices using graphene may be implemented.
한편, 플래쉬 램프는 펄스 듀레이션(pulse duration) 이 마이크로에서 밀리초 단위이기 때문에 나노초 단위의 펄스(pulse) 레이저 보다는 오랫동안 열에너지를 그래핀 성장에 이용할 수 있다. 또한 플래쉬 램프는 상대적으로 레이저보다 넓은 영역에 열을 조사할 수 있으므로, 대면적의 그래핀 제조시 공정시간을 줄일 수 있는 장점이 있다. 그러나, 플래쉬 램프와 레이저 빔은 각각 필요에 따라 선택적으로 이용될 수 있을 것이고, 본 발명은 이러한 광원 및 그래핀 형성 소스 기체를 제조 방법을 제시하는데 그 특징이 있다.On the other hand, since the flash lamp has a pulse duration of microseconds in milliseconds, thermal energy can be used for graphene growth longer than a pulse laser of nanoseconds. In addition, since the flash lamp can irradiate heat to a relatively larger area than the laser, there is an advantage that can reduce the process time when manufacturing a large area of graphene. However, the flash lamp and the laser beam may each be selectively used as needed, and the present invention is characterized by presenting a method for producing such a light source and a graphene forming source gas.
이상 살핀 바와 같이 램프 또는 레이저 빔 등과 같은 광학 수단과, 롤투롤(roll to roll) 방식을 이용한 본 발명은 플렉서블 기판에서의 그래핀 성장을 매우 빠르게 진행할 수 있다. 이상 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, the present invention using an optical means such as a lamp or a laser beam, and a roll-to-roll method can rapidly grow graphene on a flexible substrate. Although the above has been described with reference to the preferred embodiment of the present invention, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention described in the claims below. You will understand.
본 발명에 따른 그래핀 제조방법 및 장치는 대면적으로 조사되는 플래쉬 램프 또는 레이저 빔의 열을 이용, 그래핀 성장가스를 반응시켜 기판 상에서 메탈촉매 없이 그래핀을 성장시킨다. In the graphene manufacturing method and apparatus according to the present invention, graphene growth gas is reacted using heat of a flash lamp or a laser beam irradiated with a large area to grow graphene without a metal catalyst on a substrate.
또한 롤투롤 방식으로 플렉서블 기판을 이송시켜, 그래핀을 성장시키고, 또한 반응가스만을 달리 구성하여, 그래핀의 기계적 변형 없이도 그래핀 반도체 소자를 대량으로 제조할 수 있다.In addition, the flexible substrate is transferred in a roll-to-roll manner, graphene is grown, and only the reaction gas is configured differently, thereby making a large amount of graphene semiconductor devices without mechanical deformation of graphene.

Claims (18)

  1. 그래핀 제조방법으로, 상기 방법은Graphene manufacturing method, the method
    기판 표면 상에 반응가스를 접촉시키는 단계; Contacting the reaction gas on the substrate surface;
    반응가스가 접촉된 기판의 일 영역 상에 플래쉬 램프로 빛을 조사하거나 또는 레이저 빔을 조사하여 상기 기판을 가열하는 단계; 및 Heating the substrate by irradiating light with a flash lamp or by irradiating a laser beam onto a region of the substrate to which the reaction gas is contacted; And
    상기 기판을 이송시켜, 상기 기판의 또 다른 영역을 차례로 반복 가열하는 그래핀층을 성장시키는 단계를 포함하는 것을 특징으로 하는 그래핀 제조방법.Transferring the substrate to grow a graphene layer that is repeatedly heated in sequence to another region of the substrate.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 기판은 플레서블 기판, 사파이어(Al2O3) 기판, 실리콘산화물층을 상부층으로 포함하는 기판, 금속층이 증착된 실리콘 기판, MgO 기판, Al2O3기판, 또는 Si 기판 중 어느 하나로 이루어지는 것을 특징으로 하는 그래핀 제조방법.The substrate may be any one of a flexible substrate, a sapphire (Al 2 O 3 ) substrate, a substrate including a silicon oxide layer as an upper layer, a silicon substrate on which a metal layer is deposited, an MgO substrate, an Al 2 O 3 substrate, or a Si substrate. Graphene manufacturing method characterized in that.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 기판은, The substrate,
    상기 기판 상에 형성된 금속촉매층을 포함하는 것을 특징으로 하는 그래핀 제조방법.Graphene manufacturing method comprising a metal catalyst layer formed on the substrate.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 반응가스는 메탄 및 수소를 포함하는 것을 특징으로 하는 그래핀 제조방법.The reaction gas is graphene manufacturing method characterized in that it comprises methane and hydrogen.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 그래핀층을 성장시키기 전, 붕소 및 질소 함유 가스 분위기에서 상기 플렉서블 기판에 플래쉬 램프로 빛을 조사하여, 질화붕소층을 상기 플렉서블 기판 상에 형성시키는 단계를 더 포함하는 것을 특징으로 하는 그래핀 제조방법.Before the graphene layer is grown, graphene manufacturing further comprises the step of forming a boron nitride layer on the flexible substrate by irradiating light with a flash lamp on the flexible substrate in a boron and nitrogen-containing gas atmosphere. Way.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 따른 방법에 의하여 제조된 그래핀.Graphene prepared by the method according to any one of claims 1 to 5.
  7. 그래핀 제조방법으로, 상기 방법은Graphene manufacturing method, the method
    탄소함유 가스 및 수소의 혼합가스 분위기에서, 기판에 플래쉬 램프로 빛을 조사하거나 또는 레이저 빔을 조사하는 단계; 및Irradiating a substrate with a flash lamp or a laser beam in a mixed gas atmosphere of a carbon-containing gas and hydrogen; And
    그래핀층을 상기 기판 상에 성장시키는 단계를 포함하는 것을 특징으로 하는 그래핀 제조방법.The graphene manufacturing method comprising the step of growing a graphene layer on the substrate.
  8. 제 7 항에 있어서, The method of claim 7, wherein
    상기 기판은 금속촉매층을 포함하는 것을 특징으로 하는 그래핀 제조방법.The substrate is a graphene manufacturing method comprising a metal catalyst layer.
  9. 제 7 항에 있어서, The method of claim 7, wherein
    상기 기판은 플레서블 기판, 사파이어(Al2O3) 기판, 실리콘산화물층을 상부층으로 포함하는 기판, 메탈이 증착된 실리콘 기판, 구리 호일(Cu foil), MgO 기판, Al2O3기판, 또는 Si 기판 중 어느 하나로 이루어지는 것을 특징으로 하는 그래핀 제조방법.The substrate may include a flexible substrate, a sapphire (Al 2 O 3 ) substrate, a substrate including a silicon oxide layer as an upper layer, a silicon substrate on which metal is deposited, a copper foil, a MgO substrate, an Al 2 O 3 substrate, or Graphene manufacturing method comprising any one of Si substrates.
  10. 그래핀 반도체 소자 제조방법으로, 상기 방법은 Graphene semiconductor device manufacturing method, the method
    기판에 플래쉬 램프 또는 레이저로 빛을 제 1 조사하여 그래핀층을 형성시키는 단계; 및Firstly irradiating light onto the substrate with a flash lamp or a laser to form a graphene layer; And
    상기 그래핀층에 플래쉬 램프 또는 레이저로 빛을 제 2 조사하여 조사된 그래핀층을 제거함으로써 그래핀을 패터닝하는 단계를 포함하는 것을 특징으로 하는 그래핀 반도체 소자 제조방법.And graphing the graphene by removing the irradiated graphene layer by irradiating the graphene layer with a flash lamp or a laser with a second light. 2.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 그래핀층의 형성은 탄소함유 가스 및 수소의 혼합가스 분위기에서 진행되는 것을 특징으로 하는 그래핀 반도체 소자 제조방법.Formation of the graphene layer is a graphene semiconductor device manufacturing method, characterized in that proceed in a mixed gas atmosphere of carbon-containing gas and hydrogen.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 그래핀층의 패터닝은 산소 분위기에서 진행되며, 상기 패턴된 그래핀층은 나노리본 형태인 것을 특징으로 하는 그래핀 반도체 소자 제조방법.The patterning of the graphene layer is performed in an oxygen atmosphere, the patterned graphene layer is a graphene semiconductor device manufacturing method, characterized in that the nanoribbon form.
  13. 제 12 항에 있어서, 상기 방법은The method of claim 12, wherein the method is
    상기 그래핀층의 패터닝 후, 도핑 가스를 이용하여 나노리본 형태의 그래핀층에 질소와 붕소를 도핑하는 단계; 및 After the patterning of the graphene layer, doping nitrogen and boron to the graphene layer of the nanoribbon type using a doping gas; And
    상기 도핑된 그래핀층 위에 절연층을 형성하는 단계; 및 Forming an insulating layer on the doped graphene layer; And
    상기 도핑된 그래핀층에 소스, 드레인, 게이트 전극을 증착하여 트랜지스터 소자를 제조하는 단계를 더 포함하는 것을 특징으로 하는 그래핀 반도체 소자 제조방법.And depositing a source, a drain, and a gate electrode on the doped graphene layer to manufacture a transistor device.
  14. 제 10 항 내지 제 13 항 중 어느 한 항에 따른 방법에 의하여 제조된 그래핀 트랜지스터.A graphene transistor manufactured by the method according to any one of claims 10 to 13.
  15. 그래핀 제조방법으로, 상기 방법은Graphene manufacturing method, the method
    SiC 기판을 제공하는 단계; Providing a SiC substrate;
    상기 SiC 기판 상의 일 영역 상에 플래쉬 램프로 빛을 조사하거나 또는 레이저 빔을 조사하여 가열하는 단계; 및 Irradiating light with a flash lamp or irradiating a laser beam onto a region on the SiC substrate and heating the light; And
    상기 기판을 이송시켜, 상기 기판의 또 다른 영역을 차례로 반복 가열하여 그래핀을 성장시키는 단계를 포함하는 것을 특징으로 하는 그래핀 제조방법.Transferring the substrate to grow the graphene by repeatedly heating another region of the substrate in sequence.
  16. 그래핀 제조장치로서, 상기 장치는 Graphene manufacturing apparatus, the apparatus is
    그래핀이 성장되어야 하는 기판이 내부에 구비되는 챔버;A chamber having a substrate on which graphene is to be grown;
    상기 기판의 일 측면으로 반응가스가 유입되는 유입부;An inlet part through which a reaction gas flows into one side of the substrate;
    상기 챔버에 진공을 인가하는 위한 진공부; 및A vacuum unit for applying a vacuum to the chamber; And
    상기 챔버 상단에 구비되어, 상기 기판에 빛을 조사하기 위한 광원을 포함하는 그래핀 제조장치.Graphene manufacturing apparatus is provided on the chamber, including a light source for irradiating light to the substrate.
  17. 제 16 항에 있어서, 상기 그래핀 제조장치는 The method of claim 16, wherein the graphene manufacturing apparatus
    상기 광원으로서 플래쉬 램프가 상단에 구비되며, 상기 플래쉬 램프로부터 조사된 빛을 전면으로 반사시키기 위한 반사 수단이 더 구비되는 것을 특징으로 하는 그래핀 제조장치.A flash lamp is provided at the top as the light source, and the graphene manufacturing apparatus further comprises a reflecting means for reflecting the light emitted from the flash lamp to the front.
  18. 제 16 항에 있어서, 상기 그래핀 제조장치는 The method of claim 16, wherein the graphene manufacturing apparatus
    상기 광원으로서 레이저 빔 발생장치가 구비되며, 상기 레이저 빔 발생장치로부터 조사된 레이저 빔이 기판에 전달되는 것을 특징으로 하는 그래핀 제조장치.A laser beam generator is provided as the light source, and the graphene manufacturing apparatus, characterized in that the laser beam irradiated from the laser beam generator is transmitted to the substrate.
PCT/KR2011/006917 2010-09-17 2011-09-19 Apparatus and method for manufacturing graphene using a flash lamp or laser beam, and graphene manufactured by same WO2012036537A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020100091640A KR101198482B1 (en) 2010-09-17 2010-09-17 Manufacturing apparatus and method for graphene using flash ramp, and graphene manufactured by the same
KR10-2010-0091640 2010-09-17
KR1020110006115A KR101172625B1 (en) 2011-01-21 2011-01-21 Method for manufacturing semiconductor device, graphene semiconductor and transistor manufactured by the same
KR10-2011-0006115 2011-01-21
KR1020110062484A KR101260606B1 (en) 2011-06-27 2011-06-27 Manufacturing apparatus and method for graphene using flash ramp, and grapheme semiconductor manufactured by the same
KR10-2011-0062484 2011-06-27

Publications (2)

Publication Number Publication Date
WO2012036537A2 true WO2012036537A2 (en) 2012-03-22
WO2012036537A3 WO2012036537A3 (en) 2012-09-20

Family

ID=45833050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006917 WO2012036537A2 (en) 2010-09-17 2011-09-19 Apparatus and method for manufacturing graphene using a flash lamp or laser beam, and graphene manufactured by same

Country Status (1)

Country Link
WO (1) WO2012036537A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495821A (en) * 2014-12-16 2015-04-08 重庆墨希科技有限公司 Method and device for preparing single-layer continuous graphene film coiled material
CN104495822A (en) * 2014-12-16 2015-04-08 重庆墨希科技有限公司 Method and device for preparing graphene film coiled material
CN110155994A (en) * 2019-04-04 2019-08-23 江苏大学 A kind of device and method directly preparing composite patterning graphene
CN113380949A (en) * 2021-06-07 2021-09-10 天津大学 Method for preparing transient electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070187694A1 (en) * 2006-02-16 2007-08-16 Pfeiffer Loren N Devices including graphene layers epitaxially grown on single crystal substrates
US20080128397A1 (en) * 2006-11-06 2008-06-05 Unidym, Inc. Laser patterning of nanostructure-films
KR20090043418A (en) * 2007-10-29 2009-05-06 삼성전자주식회사 Graphene sheet and process for preparing the same
US20100102292A1 (en) * 2007-03-02 2010-04-29 Nec Corporation Semiconductor device using graphene and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070187694A1 (en) * 2006-02-16 2007-08-16 Pfeiffer Loren N Devices including graphene layers epitaxially grown on single crystal substrates
US20080128397A1 (en) * 2006-11-06 2008-06-05 Unidym, Inc. Laser patterning of nanostructure-films
US20100102292A1 (en) * 2007-03-02 2010-04-29 Nec Corporation Semiconductor device using graphene and method of manufacturing the same
KR20090043418A (en) * 2007-10-29 2009-05-06 삼성전자주식회사 Graphene sheet and process for preparing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOHIDE TAKAMI ET AL. E-J. SCI. NANOTECH. vol. 7, 12 December 2009, pages 882 - 890 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495821A (en) * 2014-12-16 2015-04-08 重庆墨希科技有限公司 Method and device for preparing single-layer continuous graphene film coiled material
CN104495822A (en) * 2014-12-16 2015-04-08 重庆墨希科技有限公司 Method and device for preparing graphene film coiled material
CN110155994A (en) * 2019-04-04 2019-08-23 江苏大学 A kind of device and method directly preparing composite patterning graphene
CN110155994B (en) * 2019-04-04 2023-01-17 江苏大学 Device and method for directly preparing composite patterned graphene
CN113380949A (en) * 2021-06-07 2021-09-10 天津大学 Method for preparing transient electronic device
CN113380949B (en) * 2021-06-07 2023-04-07 天津大学 Method for preparing transient electronic device

Also Published As

Publication number Publication date
WO2012036537A3 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
US20120068161A1 (en) Method for forming graphene using laser beam, graphene semiconductor manufactured by the same, and graphene transistor having graphene semiconductor
Kang et al. Inking elastomeric stamps with micro‐patterned, single layer graphene to create high‐performance OFETs
US8354323B2 (en) Doped graphene electronic materials
Wang et al. In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition
US8278643B2 (en) Doped graphene electronic materials
EP2281779B1 (en) Graphene base and method of preparing the same
KR101680761B1 (en) Graphene-polymer layered composite and process for preparing the same
DE112012001217B4 (en) Graphene nanostrips, method for making graphene nanostrips, field effect transistor (FET) structure and method for making a field effect transistor (FET)
WO2012008789A9 (en) Method for producing graphene at a low temperature, method for direct transfer of graphene using same, and graphene sheet
JP5956645B2 (en) Crystal surface structure and manufacturing method thereof
US8563965B2 (en) Doped graphene electronic materials
WO2011081440A2 (en) Roll-to-roll doping method of graphene film, and doped graphene film
KR101513136B1 (en) Method for manufacturing graphene film, graphene film manufactured by the method, electronic devices comprising the graphene film
EP2857550A1 (en) Amine precursors for depositing graphene
US8426842B2 (en) Doped graphene electronic materials
JP2010241680A (en) Method for producing graphene
KR20100093965A (en) Graphene sheet comprising intercalation compounds and process for preparing the same
WO2012036537A2 (en) Apparatus and method for manufacturing graphene using a flash lamp or laser beam, and graphene manufactured by same
KR101172625B1 (en) Method for manufacturing semiconductor device, graphene semiconductor and transistor manufactured by the same
WO2012169720A1 (en) Graphene transistor and method for manufacturing same
KR101206136B1 (en) Method for improving graphene property, method for manufacturing graphene using the same, graphene manufactured by the same
US8455981B2 (en) Doped graphene electronic materials
KR101260606B1 (en) Manufacturing apparatus and method for graphene using flash ramp, and grapheme semiconductor manufactured by the same
Dai et al. Spatial confinement approach using ni to modulate local carbon supply for the growth of uniform transfer-free graphene monolayers
KR101127742B1 (en) Method for manufacturing graphene, graphene manufactured by the same, manufacturing device for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825497

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825497

Country of ref document: EP

Kind code of ref document: A2