WO2012026026A1 - 車両用制御装置およびディーゼルハイブリッド車両システム - Google Patents

車両用制御装置およびディーゼルハイブリッド車両システム Download PDF

Info

Publication number
WO2012026026A1
WO2012026026A1 PCT/JP2010/064508 JP2010064508W WO2012026026A1 WO 2012026026 A1 WO2012026026 A1 WO 2012026026A1 JP 2010064508 W JP2010064508 W JP 2010064508W WO 2012026026 A1 WO2012026026 A1 WO 2012026026A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
inverter
generator
storage device
Prior art date
Application number
PCT/JP2010/064508
Other languages
English (en)
French (fr)
Inventor
啓太 畠中
高央 丸山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201080068761.0A priority Critical patent/CN103068654B/zh
Priority to KR1020137007509A priority patent/KR101500886B1/ko
Priority to PCT/JP2010/064508 priority patent/WO2012026026A1/ja
Priority to EP10856430.3A priority patent/EP2610125B1/en
Priority to US13/817,391 priority patent/US8786116B2/en
Priority to JP2011505271A priority patent/JPWO2012026026A1/ja
Publication of WO2012026026A1 publication Critical patent/WO2012026026A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/34Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the absence of energy storing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a diesel hybrid vehicle system and a vehicle control device applied to a diesel hybrid vehicle system.
  • a generator is driven by a diesel engine, AC power generated by the generator is converted into DC power by a converter, and DC power converted by the converter and DC power by a power storage device are used in combination.
  • the DC power is converted into AC power by an inverter, and a driving force is given to the vehicle by driving the motor with the converted AC power (for example, Patent Document 1).
  • the conventional diesel hybrid vehicle system has a problem that if the inverter becomes unusable due to a failure or the like, the motor cannot be driven and the operation of the vehicle cannot be continued.
  • the auxiliary power supply (SIV) becomes unusable due to a failure or the like, there is a problem that the use of the auxiliary machine becomes impossible and troubles in operation continuation occur.
  • the present invention has been made in view of the above, and is a vehicle control device that enables continuous operation of a vehicle even when at least one of an inverter and an auxiliary power supply device becomes unusable due to a failure or the like. And it aims at providing a diesel hybrid vehicle system.
  • a vehicle control device includes a diesel engine, a motor that drives the vehicle, a generator that generates AC power from the output of the diesel engine, and a DC A power storage device that charges and discharges power, a converter that converts AC power generated by the generator into DC power and outputs it, DC power that the power storage device discharges or DC power that the converter outputs is AC power And an inverter that drives the motor by converting the converter into an inverter, and the converter operates as an inverter to drive the motor when the inverter cannot be used.
  • the vehicle control device of the present invention there is an effect that the operation of the vehicle can be continued even when the inverter becomes unusable due to a failure or the like.
  • FIG. 1 is a diagram showing a configuration example of a diesel hybrid vehicle system including a vehicle control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of first to fourth switches used in the diesel hybrid vehicle system according to the first embodiment.
  • FIG. 3 is a chart showing the operating state of the diesel hybrid vehicle system and the states of the first to fourth switchers and the first to third contactors corresponding to the operating state.
  • FIG. 4 is a diagram illustrating a connection state of the diesel hybrid vehicle system when all of the converter, the inverter, and the auxiliary power supply device are normal.
  • FIG. 5 is a diagram showing a connection state of the diesel hybrid vehicle system when the inverter fails.
  • FIG. 1 is a diagram showing a configuration example of a diesel hybrid vehicle system including a vehicle control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of first to fourth switches used in the diesel hybrid vehicle system according to the first embodiment
  • FIG. 6 is a diagram showing a connection state different from that in FIG. 5 of the diesel hybrid vehicle system at the time of failure of the inverter.
  • FIG. 7 is a diagram illustrating a connection state of the diesel hybrid vehicle system when the auxiliary power supply device fails.
  • FIG. 8 is a diagram showing a different connection state of FIG. 7 of the diesel hybrid vehicle system when the auxiliary power supply device fails.
  • FIG. 9 is a diagram showing a connection state of the diesel hybrid vehicle system at the time of failure of the converter.
  • FIG. 10 is a diagram showing a connection state different from that of FIG. 9 of the diesel hybrid vehicle system at the time of failure of the converter.
  • FIG. 11 is a diagram illustrating a connection state of the diesel hybrid vehicle system when the converter and the inverter are out of order.
  • FIG. 12 is a diagram showing a connection state different from that in FIG. 11 of the diesel hybrid vehicle system when the converter and the inverter fail.
  • FIG. 13 is a diagram showing a connection state different from that in FIGS. 11 and 12 of the diesel hybrid vehicle system when the converter and the inverter are out of order.
  • FIG. 14 is a diagram illustrating a connection state of the diesel hybrid vehicle system when the converter and the auxiliary power supply device are out of order.
  • FIG. 15 is a diagram showing a connection state different from that of FIG. 14 of the diesel hybrid vehicle system at the time of failure of the converter and the auxiliary power supply device.
  • FIG. 16 is a diagram showing a connection state different from that of FIGS. 14 and 15 of the diesel hybrid vehicle system when the converter and the auxiliary power supply device are out of order.
  • FIG. 17 is a diagram illustrating a connection state of the diesel hybrid vehicle system when the inverter and the auxiliary power supply device are out of order.
  • FIG. 18 is a diagram showing a connection state different from that in FIG. 17 of the diesel hybrid vehicle system when the inverter and the auxiliary power supply device are out of order.
  • FIG. 19 is a diagram showing a connection state different from that in FIGS. 17 and 18 of the diesel hybrid vehicle system at the time of failure of the inverter and the auxiliary power supply device.
  • FIG. 20 is a diagram illustrating a connection state of the diesel hybrid vehicle system when the converter, the inverter, and the auxiliary power supply device are out of order.
  • FIG. 21 is a diagram showing a connection state different from that of FIG.
  • FIG. 22 is a diagram illustrating a configuration example of a diesel engine system according to the second preferred embodiment that is used in the diesel hybrid vehicle system according to the first preferred embodiment.
  • FIG. 23 is a diagram illustrating a configuration example when the diesel engine system according to Embodiment 2 is applied to a water-cooled aftercooler system.
  • FIG. 24 is a diagram illustrating a configuration example when the diesel engine system according to Embodiment 2 is applied to an air-cooled aftercooler system.
  • FIG. 1 is a diagram showing a configuration example of a diesel hybrid vehicle system including a vehicle control device according to Embodiment 1 of the present invention.
  • the diesel hybrid vehicle system according to Embodiment 1 includes a diesel engine 1, a generator 2, a converter (CNV) 3, an inverter (INV) 4 as a first inverter, a motor 5, and power storage.
  • CNV converter
  • INV inverter
  • the apparatus 6, the auxiliary power unit (SIV) 7 as the second inverter, the auxiliary machine 8, and the control unit 50 that controls the operation of the entire diesel hybrid vehicle system are configured as main components, and between the main components
  • voltage detectors 25 to 27 which are sensors for detecting a voltage, and rotation detectors 28 and 29 for detecting the rotation speeds of the generator and the motor are provided.
  • the vehicle control device according to the first embodiment includes a converter (CNV) 3, an inverter (INV) 4, and an auxiliary power supply device (SIV) 7.
  • filter capacitors 20 and 21 that are detection targets of the voltage detectors 26 and 27 are also shown.
  • the diesel engine 1 is one of the driving sources that generate driving force, and is connected to the generator 2.
  • the generator 2 generates AC power from the output of the diesel engine 1.
  • the power storage device 6 is an electrical energy storage device that uses a lithium ion battery, a nickel metal hydride battery, an electric double layer capacitor, a lithium ion capacitor, a flywheel, or the like as a storage means, and is another driving source that generates a driving force. Yes, connected to the converter 3, the inverter 4, and the connection part (DC voltage part) to charge / discharge DC power.
  • the converter 3 converts AC power generated by the generator 2 into DC power, while converting DC power discharged by the power storage device 6 into AC power.
  • the inverter 4 converts the DC power supplied from the converter 3 or the power storage device 6 into AC power.
  • the motor 5 receives a supply of AC power from the inverter 4 and generates a driving force (propulsive force).
  • the auxiliary power supply device 7 is connected to a DC voltage unit, converts DC power into AC power having a constant voltage and a constant frequency, and supplies the AC power to the auxiliary machine 8.
  • the auxiliary machine 8 is a generic name for load devices other than the drive device.
  • the first to fourth switches 9 to 12 have three connection ends a to c, and between any two connection ends among the three connection ends a to c.
  • Has the function of connecting
  • this switch is constituted by an ON / OFF switch
  • the switch between ca is controlled to be ON
  • the switch between ab is OFF
  • the switch between bc is OFF.
  • the example which comprised this switch with the switch is the same figure (c).
  • the a switch is tilted to the c side and the c switch is tilted to the a side (the position of the b switch is arbitrary).
  • the first switch 9 is inserted between the three of the generator 2, the converter 3 and the fourth switch 12, and two of these three are selected and connected.
  • the second switch 10 is inserted between the inverter 4, the motor 5 and the fourth switch 12, and the third switch 11 includes the auxiliary power unit 7, the auxiliary machine 8, and the fourth switch 12.
  • the fourth switcher 12 is inserted between the three of the first switcher 9, the second switcher 10 and the third switcher 11, Has a function of selecting and connecting two of the three parties.
  • the first to third contactors 13 to 15 have two connection ends and have a function of turning on / off the connection between the components connected to the two connection ends.
  • the first contactor 13 is connected between the connection part 30 of the power storage device 6 in the DC voltage unit and the converter 3
  • the second contactor 14 is connected between the connection part 30 and the inverter 4.
  • the third contactor 15 is connected between the connecting portion 30 and the auxiliary power supply device 7.
  • the current detector 22 detects the current flowing between the generator 2 and the converter 3 as the generator current IG
  • the current detector 23 detects the current flowing between the inverter 4 and the motor 5 as the motor current IM
  • the device 24 detects the current flowing into and out of the power storage device 6 as the battery current IB.
  • the voltage detector 25 detects the voltage at the connection end of the converter 3 and the generator 2 as the generator voltage VG
  • the voltage detector 26 detects the voltage of the filter capacitor 20 as the first DC voltage EFCD, thereby detecting the voltage.
  • the detector 27 detects the voltage of the filter capacitor 21 as the second DC voltage EFC.
  • the rotation detector 28 detects the rotation speed of the generator 2 as the generator rotation speed FRG, and the rotation detector 29 detects the rotation speed of the motor 5 as the motor rotation speed RN.
  • the detection values (sensor information) detected by these sensors are input to the control unit 50.
  • state information STB representing the state of the power storage device 6 is input to the control unit 50.
  • the state information includes output voltage (battery voltage) of the power storage device 6, information (SOC: State Of Charge) indicating the charging (storage) state of the power storage device 6, and whether the power storage device 6 is in a charged state or discharged. Information on whether or not it is in a state (operation information) is included.
  • information (operation information) indicating the operation content is input to the control unit 50.
  • This operation information includes, for example, information indicating an operation operation (powering, braking, coasting, stopping) of an electric vehicle, information indicating a power reception start operation of the vehicle system, and the like.
  • the control unit 50 controls the sensor information (generator current IG, motor current IM, battery current IB, generator voltage VG, first DC voltage EFCD, second DC voltage EFC, generator rotation speed FRG, motor rotation speed).
  • RN the state information STB of the power storage device 6 and the operation information CMD from the outside, the gate signal GSC for controlling the switch element provided in the converter 3 and the switch element provided in the inverter 4 are controlled.
  • a gate signal GSS for controlling a switching element included in the auxiliary power supply device 7 are generated and output to the converter 3, the inverter 4 and the auxiliary power supply device 7, respectively, and the rotation of the diesel engine 1 is generated.
  • a rotational speed control signal RD for controlling the number is generated and output to the diesel engine 1.
  • the control unit 50 generates a switching signal corresponding to a failure mode described later and outputs the switching signal to the first to fourth switching devices 9 to 12 and the first to third contactors 13 to 15. In FIG. 1, illustration of switching signals for the first to fourth switching devices 9 to 12 and the first to third contactors 13 to 15 is omitted to avoid complication.
  • FIG. 3 is a chart showing the operation state of the diesel hybrid vehicle system and the states of the first to fourth switchers and the first to third contactors corresponding to the operation state.
  • the lower case alphabets shown in the columns of the first to fourth switches 9 to 12 represent the connection states of the terminals shown in FIG. 2A.
  • “ab” The notation means that the connection ends a and b are connected.
  • “ON” and “OFF” shown in the columns of the first to third contactors 13 to 15 represent the conduction states of the first to third contactors, and “ON” represents the conduction state. It means that there is something, and “OFF” means that it is in a non-conducting state.
  • FIG. 4 is a diagram showing a connection state of the diesel hybrid vehicle system when all of the converter (CNV), the inverter (INV), and the auxiliary power supply device (SIV) are normal, and the first to fourth switches and the first switch
  • the connection state in the case where the first to third contactors are controlled in the normal state is shown.
  • FIGS. 1 and 4 the basic operation of the diesel hybrid vehicle system will be described with reference to FIGS. 1 and 4. In this basic operation description, a case where a diesel hybrid vehicle system mounted on a railway vehicle travels between stations is taken as an example.
  • the first and second switching devices 9 and 10 are connected between the connection ends a and b, and the third switching devices 11 and 12 are controlled by the control unit 50. Is connected between the connection ends b and c, and the first to third contactors 13 to 15 are controlled to be ON.
  • the fourth switch 12 is connected between the connection ends b and c, but this connection is optional (see No. 1 in FIG. 3).
  • the control unit 50 When the speed of the vehicle reaches a constant speed (for example, 20 km / h), the control unit 50 operates the converter 3 as an inverter and controls the voltage amplitude and frequency of the AC power supplied to the generator 2.
  • the converter 3 operates as an inverter, and the generator 2 operates as a motor by converting the DC power supplied from the power storage device 6 into AC power and supplying it to the generator 2.
  • the diesel engine 1 When the generator 2 is driven, the diesel engine 1 starts. When the diesel engine 1 is started, the generator 2 operates as an original generator. When the diesel engine 1 starts and generates an output necessary for powering the vehicle, the AC power generated by the generator 2 is converted into DC power by the converter 3 and supplied to the inverter 4. At this time, the DC power discharged from the power storage device 6 decreases and the current (discharge current) from the power storage device 6 does not flow.
  • Control unit 50 stops inverter 4 and the vehicle enters a coasting state.
  • the power consumption of the auxiliary machine 8 is supplied from the auxiliary power supply device 7. Note that, when the generator 2 does not generate AC power, power to the auxiliary power supply device 7 is supplied from the power storage device 6. On the other hand, when the generator 2 generates AC power, the AC power generated by the generator 2 is converted into DC power by the converter 3 and supplied to the auxiliary power supply device 7.
  • the control unit 50 stops the converter 3 and stops the diesel engine 1 and the generator 2. Moreover, the control part 50 operates the motor 5 as a generator by operating the inverter 4 as a converter. At this time, the inverter 4 converts the AC power regenerated from the motor 5 into DC power, supplies necessary power to the auxiliary power supply device 7 and charges the power storage device 6 using surplus power.
  • the above control by the control unit 50 is performed by the sensor information (the generator current IG, the motor current IM, the battery current IB, the generator voltage VG, the first DC voltage EFCD, the second DC) input to the control unit 50. Needless to say, this is preferably performed based on the voltage EFC, the generator rotational speed FRG, the motor rotational speed RN) and the state information STB of the power storage device 6.
  • the first to third switches 9 to 11 are connected between the connection ends b and c, and the fourth switch 12 Is connected between the connection ends a and b, the first and third contactors 13 and 15 are controlled to be ON, and the second contactor 14 is controlled to be OFF (see No. 2 in FIG. 3).
  • the generator 2 and the converter 3 are disconnected, the converter 3 and the inverter 4 are also disconnected, the converter 3 and the motor 5 are connected, and the auxiliary power supply device 7 and the auxiliary machine 8 are connected.
  • Power storage device 6 is connected to each of converter 3 and auxiliary power supply device 7.
  • control unit 50 When the diesel hybrid vehicle system is connected as shown in FIG. 5, control unit 50 operates converter 3 as an inverter, converts DC power supplied from power storage device 6 to AC power, and drives motor 5. . By driving the motor 5, the operation of the vehicle can be continued. In addition, since the auxiliary machine 8 is connected to the power storage device 6 via the auxiliary power supply device 7, the power supply to the auxiliary machine 8 can be continued.
  • the connection may be made as shown in FIG.
  • the first and fourth switches 9 and 12 are connected between the connection ends a and b, and the second and third switches 10 and 11 are connected between the connection ends b and c.
  • the first and third contactors 13 and 15 are controlled to be ON, and the second contactor 14 is controlled to be OFF (see No. 3 in FIG. 3).
  • the generator 2 and the converter 3 are connected, the converter 3 and the inverter 4 are disconnected, and the auxiliary power supply device 7 and the auxiliary machine 8 are connected. That is, the motor 5 is disconnected from the power supply source.
  • the power storage device 6 is connected to the generator 2 via the converter 3, and the auxiliary machine 8 is connected to the power storage device 6 via the auxiliary power supply device 7.
  • the power storage device 6 can be charged using the generated power of the generator 2.
  • the auxiliary machine 8 is connected to the power storage device 6 via the auxiliary power supply device 7, it is possible to continue power supply to the auxiliary machine 8.
  • control unit 50 When the diesel hybrid vehicle system is connected as shown in FIG. 7, the control unit 50 operates the inverter 4 to convert the DC power supplied from the power storage device 6 into AC power and drive the motor 5. By driving the motor 5, the operation of the vehicle can be continued.
  • control unit 50 operates the converter 3 as an inverter, converts the DC power supplied from the power storage device 6 into AC power, and supplies the AC power to the auxiliary machine 8. Therefore, the power supply to the auxiliary machine 8 can be continued.
  • the power storage device 6 can be charged using the regenerative power of the motor 5.
  • the inverter 4 operates as a converter.
  • the generator 2 and the converter 3 may be connected as shown in FIG.
  • the first to third switches 9 to 11 are connected between the connection ends a and b
  • the fourth switch 12 is connected between the connection ends b and c.
  • the contactors 13 and 14 are controlled to be ON, and the third contactor 15 is controlled to be OFF (see No. 5 in FIG. 3).
  • the generator 2 and the converter 3 are connected, the converter 3 and the inverter 4 are connected, and the inverter 4 and the motor 5 are connected.
  • the power storage device 6 is connected to the generator 2 via the converter 3.
  • the motor 5 can be driven using the power generated by the generator 2 and the operation of the vehicle can be continued.
  • the power storage device 6 can be charged using the generated power of the generator 2.
  • the power storage device 6 can be charged by operating the inverter 4 as a converter.
  • the control unit 50 operates the inverter 4 as a converter, converts AC power supplied from the generator 2 into DC power, and is required for the auxiliary power supply device 7.
  • the power storage device 6 is charged using surplus power while performing a sufficient power supply. For this reason, the power supply to the auxiliary machine 8 becomes possible.
  • the converter is connected as shown in FIG. 10 in the event of a failure of the converter, it is possible to supply power to the motor 5 and the auxiliary machine 8.
  • the first switch 9 is connected between the connection ends a and c
  • the second and fourth switches 10 and 12 are connected between the connection ends a and b
  • the third switch 11 is connected. Is connected between the connection ends b and c, the first contactor 13 is controlled to be OFF, and the second and third contactors 14 and 15 are controlled to be ON (see No. 7 in FIG. 3).
  • the generator 2 is disconnected from the motor 5, but the inverter 4 and the motor 5 are connected, and the auxiliary device 8 is connected to the power storage device 6 via the auxiliary power supply device 7.
  • the motor 5 can be driven using the DC power of the power storage device 6, and the operation of the vehicle can be continued.
  • auxiliary machine 8 is also connected to the power storage device 6 via the auxiliary power supply device 7, power can be supplied to the auxiliary machine 8.
  • the generator 2 and the converter 3 are disconnected, the inverter 4 and the motor 5 are also disconnected, and the converter 3 and the inverter 4 are also disconnected from the power storage device 6.
  • the motor 5 is connected to the generator 2, and the auxiliary machine 8 is connected to the power storage device 6 via the auxiliary power supply device 7.
  • the regenerative electric power of the motor 5 is supplied to the generator 2 so that the diesel engine 1 can be started.
  • the rotational speed of the diesel engine 1 is controlled to control the AC power from the generator 2 to a desired AC power.
  • the motor 5 can be driven and the operation of the vehicle can be continued.
  • the power storage device 6 can be charged.
  • the first and third switching devices 9 and 11 are connected between the connection ends a and c
  • the second and fourth switching devices 10 and 12 are connected between the connection ends b and c.
  • the first and second contactors 13 and 14 are controlled to be OFF
  • the third contactor 15 is controlled to be ON (see No. 9 in FIG. 3).
  • the generator 2 is disconnected from the motor 5, but is connected to the power storage device 6 via the auxiliary power supply device 7.
  • the auxiliary power supply device 7 is operated as a converter, the power storage device 6 can be charged using the power generated by the generator 2. Contrary to this control, the auxiliary power supply device 7 is operated as a normal inverter, the DC power supplied from the power storage device 6 is converted into AC power and supplied to the generator 2, thereby generating the generator 2. If the engine is operated as a motor, the diesel engine 1 can be started in advance.
  • the converter and the inverter when the converter and the inverter are out of order, they may be connected as shown in FIG.
  • the first, third, and fourth switching devices 9, 11, and 12 are connected between the connection ends a and c
  • the second switching device 10 is connected between the connection ends b and c
  • the first and second contactors 13 and 14 are controlled to be OFF
  • the third contactor 15 is controlled to be ON (see No. 10 in FIG. 3).
  • the generator 2 is disconnected from the motor 5, but the motor 5 is connected to the power storage device 6 via the auxiliary power supply device 7.
  • the motor 5 can be driven using the DC power of the power storage device 6, and the operation of the vehicle can be continued.
  • converter 3 is disconnected from generator 2
  • inverter 4 and power storage device 6 and auxiliary power supply device 7 is disconnected from converter 3, inverter 4 and power storage device 6.
  • the motor 5 is connected to the inverter 4, and the auxiliary machine 8 is connected to the generator 2.
  • the AC power from the generator 2 can be supplied to the auxiliary machine 8, and the electric power can be supplied to the auxiliary machine 8.
  • the power storage device 6 can be charged.
  • the first and second switches 9 and 10 are connected between the connection ends a and c, and the third and fourth switches 11 and 12 are connected between the connection ends a and b.
  • the first and third contactors 13 and 15 are controlled to be OFF, and the second contactor 14 is controlled to be ON (see No. 12 in FIG. 3). With this control, the generator 2 is connected to the power storage device 6 via the inverter 4.
  • the power storage device 6 can be charged using the power generated by the generator 2.
  • the power can be supplied to the auxiliary machine 8 by connecting as shown in FIG.
  • the first, second, and fourth switching devices 9, 10, and 12 are connected between the connection ends a and c
  • the third switching device 11 is connected between the connection ends a and b
  • the first and third contactors 13 and 15 are controlled to be OFF
  • the second contactor 14 is controlled to be ON (see No. 13 in FIG. 3).
  • the inverter 4 is connected to the auxiliary machine 8.
  • AC power can be supplied to the auxiliary machine 8 using the DC power of the power storage device 6, and power can be supplied to the auxiliary machine 8.
  • the control unit 50 controls the first and second switching devices 9 and 10 to be connected between the connection ends b and c as shown in FIG. 17, for example, and the third and fourth switching devices. 11 and 12 are connected between the connection ends a and b, the first contactor 13 is controlled to be ON, and the second and third contactors 14 and 15 are controlled to be OFF (No. 14 in FIG. 3). reference).
  • inverter 4 is disconnected from converter 3 and power storage device 6, and auxiliary power supply device 7 is disconnected from converter 3 and power storage device 6.
  • the motor 5 is connected to the converter 3.
  • the motor 5 can be driven using the direct current power of the power storage device 6, and the operation of the vehicle can be continued. It becomes.
  • the inverter and the auxiliary power supply device fail, if the connection is made as shown in FIG. 18, the power storage device 6 can be charged.
  • the first, third, and fourth switching devices 9, 11, and 12 are connected between the connection ends a and b, and the second switching device 10 is connected between the connection ends b and c.
  • the first contactor 13 is controlled to ON, and the second and third contactors 14 and 15 are controlled to OFF (see No. 15 in FIG. 3). With this control, the generator 2 is connected to the power storage device 6 via the converter 3.
  • the power storage device 6 can be charged using the power generated by the generator 2.
  • the power can be supplied to the auxiliary machine 8 by connecting them as shown in FIG.
  • the first, second, and fourth switching devices 9, 10, and 12 are connected between the connection ends b and c
  • the third switching device 11 is connected between the connection ends a and b
  • the first contactor 13 is controlled to be ON
  • the second and third contactors 14 and 15 are controlled to be OFF (see No. 16 in FIG. 3).
  • the converter 3 is connected to the auxiliary machine 8.
  • the converter 3 is operated as an inverter, AC power can be supplied to the auxiliary machine 8 using the DC power of the power storage device 6, and power supply to the auxiliary machine 8 can be performed.
  • converter 3 is disconnected from generator 2 and power storage device 6, inverter 4 is disconnected from motor 5 and power storage device 6, and auxiliary power supply device 7 is connected to converter 3, inverter 4, and power storage device. Separated from 6.
  • the motor 5 is connected to the generator 2.
  • the rotational speed of the diesel engine 1 is controlled to change the AC power from the generator 2 to the desired AC power.
  • the motor 5 can be driven, and the operation of the vehicle can be continued.
  • the power can be supplied to the auxiliary machine 8 by connecting them as shown in FIG.
  • the first switch 9 is connected between the connection ends a and c
  • the second and fourth switches 10 and 12 are connected between the connection ends b and c
  • the third switch 11 is connected. Is connected between the connection ends a and b, and the first to third contactors 13 to 15 are all controlled to be OFF (see No. 18 in FIG. 3). By this control, the auxiliary machine 8 is connected to the generator 2.
  • the diesel engine 1 cannot be restarted when all of the converter, inverter, and auxiliary power supply are broken. For this reason, for example, when any two parts of the converter 3, the inverter 4, and the auxiliary power supply device 7 fail, the connection as shown in FIGS. 12, 15, and 18 is temporarily performed according to the failed part. It is preferable to restart the diesel engine 1 by controlling to the state. If such control is performed, even if all of the converter 3, the inverter 4 and the auxiliary power supply device 7 subsequently fail, it becomes possible to supply power from the generator 2 to the motor 5 and the auxiliary machine 8, and the vehicle The operation can be continued and power can be supplied to the auxiliary machine 8.
  • the connection destination of the converter is switched to the motor when the inverter fails, even if the inverter becomes unusable, The operation of the vehicle can be continued, and the effect of improving the reliability of the diesel hybrid vehicle system can be obtained.
  • the connection destination of the converter is switched to the auxiliary device side. Even when it becomes unusable due to a failure or the like, the power supply to the auxiliary machine can be continued, and the effect of improving the reliability of the diesel hybrid vehicle system can be obtained.
  • Embodiment 1 although embodiment which includes the auxiliary power supply device which supplies electric power to an auxiliary machine in the control object for the reliability improvement of a diesel hybrid vehicle system was demonstrated, an auxiliary power supply device is not included,
  • the conversion device may include only a converter and an inverter. Even in such a control mode, it is possible to obtain the effect of the present embodiment that the operation of the vehicle can be continued when at least one of the converter and the inverter fails.
  • the diesel hybrid vehicle system mounted on the railway vehicle has been described as an example.
  • the system is not limited to the railway vehicle, and is a hybrid mobile body (automobile, motorcycle, etc.) equipped with a power storage device. It is also applicable to the field of hybrid construction machines (dump trucks, bulldozers, excavators, etc.) or ships.
  • FIG. FIG. 22 is a diagram illustrating a configuration example of a diesel engine system according to the second preferred embodiment that is used in the diesel hybrid vehicle system according to the first preferred embodiment.
  • the diesel engine system according to Embodiment 2 includes a diesel engine 60, a cooling device 61, a thermoelectric power generation element 62, a control power supply 63, a control power supply load 64, a diode 65, a cooling water supply pipe 67, and A cooling water reflux pipe 68 is provided.
  • a cooling water supply pipe 67 and a cooling water reflux pipe 68 are arranged between the diesel engine 60 and the cooling device 61.
  • the diesel engine 60 includes the cooling water supply pipe 67 and the cooling water reflux pipe.
  • the cooling is performed by the cooling water circulating through 68.
  • a thermoelectric generator 62 is disposed between the cooling water supply pipe 67 and the cooling water reflux pipe 68 so as to be in contact with the cooling water supply pipe 67 and the cooling water reflux pipe 68.
  • the thermoelectric power generation element 62 is a thermoelectric power generation element using the Seebeck effect that generates power using a temperature difference, and according to the temperature difference of the cooling water (the cooling water reflux pipe 68 is on the high temperature side and the cooling water supply pipe 67 is on the low temperature side).
  • the generated thermal energy is converted into electric energy and supplied to the control power supply load 64 through the diode 65 for preventing backflow, and surplus power is stored in the control power supply 63.
  • thermoelectric power generation element As a typical thermoelectric power generation element at the time of filing of the present invention, an element having a power generation output per element of about “8V-3A” has been announced.
  • the control power supply voltage used for the railway vehicle is about several V to 100 V, it can be applied to all control power supplies if this thermoelectric power generation element is connected in series in a maximum of 15 elements.
  • the capacity of the control power supply is large, a group of elements connected in series may be connected in parallel.
  • the volume of this type of power generation element is relatively small (in the case of the thermoelectric power generation element of this section, about 10 tens cm 3 per element), it is possible to arrange a large number of elements or element groups, and different controls. It is possible to deal with a plurality of types of control power supplies having power supply voltages and different capacities.
  • thermoelectric power generation using the heat (waste heat) of the diesel engine is performed, and the generated power is used as electric energy of a control power source that controls the diesel engine system. Therefore, the total energy consumed by the entire vehicle can be reduced.
  • thermoelectric power generation is performed using the temperature difference of the cooling water that cools the diesel engine, the waste heat capacity of the cooling water can be reduced, and the cooling device capacity can be reduced. Is possible.
  • FIG. 23 and FIG. 24 are diagrams showing a more specific application example of the diesel engine system according to the second embodiment, and FIG. 23 is a configuration example when applied to a water-cooled aftercooler type diesel engine system.
  • FIG. 24 shows an example of the configuration when applied to an air-cooled after-cooler type diesel engine system.
  • a water-cooled aftercooler type diesel engine system will be described.
  • a turbocharger 71 having a diesel engine 70, a compressor 71a and a turbine 71b, a radiator 74, an aftercooler 75, and the like.
  • the water pump 76 and the propeller fan 77 are arranged at important points.
  • a first compressed air supply pipe 78 is disposed between the compressor 71 a and the aftercooler 75, and the first compressed air supply pipe 78 is connected to the second compressed air supply pipe 83 on the outlet side of the aftercooler 75. It becomes.
  • the second compressed air supply pipe 83 is disposed between the aftercooler 75 and the diesel engine 70.
  • a first cooling water supply pipe 79a and a second cooling water supply pipe 79b which is a branch pipe on one side of the first cooling water supply pipe 79a.
  • a first cooling water supply pipe 79a and a third cooling water which is a branch pipe on the other side of the first cooling water supply pipe 79a.
  • a supply pipe 79c is provided.
  • the third cooling water supply pipe 79c becomes the first cooling water discharge pipe 80a on the output side of the diesel engine 70
  • the second cooling water supply pipe 79b is the second cooling water discharge pipe 80b on the output side of the after cooler 75. It becomes.
  • each of the first compressed air supply pipe 78 and the second cooling water supply pipe 79b is provided between the first compressed air supply pipe 78 and the second cooling water supply pipe 79b. If the thermoelectric power generation element 62a is disposed so as to be in contact with the power generation, power generation using a temperature difference of about 80 ° C. is possible.
  • a turbocharger 87 having a diesel engine 86, a compressor 87a and a turbine 87b, a radiator 88, an aftercooler 89, a water pump 90, and a propeller fan 91 are required. Is located.
  • a first compressed air supply pipe 92 is disposed between the compressor 87 a and the aftercooler 89, and the first compressed air supply pipe 92 is connected to the second compressed air supply pipe 93 on the output side of the aftercooler 89. It becomes.
  • the second compressed air supply pipe 93 is disposed between the aftercooler 89 and the diesel engine 86.
  • a first cooling water supply pipe 94 is disposed between the water pump 90 and the diesel engine 86.
  • the first cooling water supply pipe 94 serves as a first cooling water discharge pipe 95 on the outlet side of the diesel engine 86, and is disposed between the radiator 88.
  • the first cooling water discharge pipe 95 becomes a second cooling water discharge pipe 96 on the outlet side of the radiator 88 and returns to the water pump 90.
  • T4-T3 that is, the temperature difference between the first compressed air supply pipe 92 and the second cooling water discharge pipe 96 is about a hundred and several hundred degrees Celsius. The difference is obtained. Therefore, as shown in the drawing, each of the first compressed air supply pipe 92 and the second cooling water supply pipe 96 is provided between the first compressed air supply pipe 92 and the second cooling water supply pipe 96. If the thermoelectric power generation element 62b is disposed so as to be in contact with each other, it is possible to generate power using a temperature difference of about a hundred and several hundred degrees Celsius.
  • the diesel hybrid vehicle system according to the present invention is useful as an invention that enables vehicle operation to be continued even when the inverter becomes unusable due to a failure or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 ディーゼルエンジン1と、車両を駆動するモータ5と、ディーゼルエンジン1の出力により交流電力を発電する発電機2、直流電力を充放電する電力貯蔵装置6、発電機2が発電した交流電力を直流電力に変換して出力するコンバータ3および、電力貯蔵装置6が放電する直流電力またはコンバータ3が出力する直流電力を交流電力に変換してモータ5を駆動するインバータ4を備え、コンバータ3はインバータ4の故障時にインバータとして動作し、モータ5を駆動する。

Description

車両用制御装置およびディーゼルハイブリッド車両システム
 本発明は、ディーゼルハイブリッド車両システムおよびディーゼルハイブリッド車両システムに適用される車両用制御装置に関する。
 従来のディーゼルハイブリッド車両システムは、ディーゼルエンジンで発電機を駆動し、発電機で発生した交流電力をコンバータで直流電力に変換すると共に、コンバータが変換した直流電力と電力貯蔵装置による直流電力とを併用し、これらの直流電力をインバータにて交流電力に変換し、変換した交流電力でモータを駆動することにより車両に対し推進力を与えている(例えば、特許文献1)。
特開2004-312863号公報
 しかしながら、従来のディーゼルハイブリッド車両システムでは、インバータが故障等によって使用不可となるとモータを駆動することができず、車両の運行が継続できないという問題点があった。また、補助電源装置(SIV)が故障等で使用不可となると補機の使用が不可能となって運行継続に支障が生ずるという問題点があった。
 本発明は、上記に鑑みてなされたものであって、インバータや補助電源装置の少なくとも一つが故障等で使用不可となった場合であっても、車両の運行継続を可能とする車両用制御装置およびディーゼルハイブリッド車両システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明に係る車両用制御装置は、ディーゼルエンジンと、車両を駆動するモータと、前記ディーゼルエンジンの出力により交流電力を発電する発電機と、直流電力を充放電する電力貯蔵装置と、前記発電機が発電した交流電力を直流電力に変換して出力するコンバータと、前記電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して前記モータを駆動するインバータと、を備え、前記コンバータは、前記インバータの使用不可時にインバータとして動作して、前記モータを駆動することを特徴とする。
 本発明に係る車両用制御装置によれば、インバータが故障等で使用不可となった場合であっても、車両の運行継続が可能になるという効果を奏する。
図1は、本発明の実施の形態1に係る車両用制御装置を含むディーゼルハイブリッド車両システムの一構成例を示す図である。 図2は、実施の形態1のディーゼルハイブリッド車両システムに用いられる第1~第4の切替器の構成例を示す図である。 図3は、ディーゼルハイブリッド車両システムの動作状態および当該動作状態に対応する第1~第4の切替器および第1~第3の接触器の状態を示す図表である。 図4は、コンバータ、インバータおよび補助電源装置の全てが正常なときのディーゼルハイブリッド車両システムの接続状態を示す図である。 図5は、インバータの故障時におけるディーゼルハイブリッド車両システムの接続状態を示す図である。 図6は、インバータの故障時におけるディーゼルハイブリッド車両システムの図5とは異なる接続状態を示す図である。 図7は、補助電源装置の故障時におけるディーゼルハイブリッド車両システムの接続状態を示す図である。 図8は、補助電源装置の故障時におけるディーゼルハイブリッド車両システムの図7は異なる接続状態を示す図である。 図9は、コンバータの故障時におけるディーゼルハイブリッド車両システムの接続状態を示す図である。 図10は、コンバータの故障時におけるディーゼルハイブリッド車両システムの図9とは異なる接続状態を示す図である。 図11は、コンバータおよびインバータの故障時におけるディーゼルハイブリッド車両システムの接続状態を示す図である。 図12は、コンバータおよびインバータの故障時におけるディーゼルハイブリッド車両システムの図11とは異なる接続状態を示す図である。 図13は、コンバータおよびインバータの故障時におけるディーゼルハイブリッド車両システムの図11および図12とは異なる接続状態を示す図である。 図14は、コンバータおよび補助電源装置の故障時におけるディーゼルハイブリッド車両システムの接続状態を示す図である。 図15は、コンバータおよび補助電源装置の故障時におけるディーゼルハイブリッド車両システムの図14とは異なる接続状態を示す図である。 図16は、コンバータおよび補助電源装置の故障時におけるディーゼルハイブリッド車両システムの図14および図15とは異なる接続状態を示す図である。 図17は、インバータおよび補助電源装置の故障時におけるディーゼルハイブリッド車両システムの接続状態を示す図である。 図18は、インバータおよび補助電源装置の故障時におけるディーゼルハイブリッド車両システムの図17とは異なる接続状態を示す図である。 図19は、インバータおよび補助電源装置の故障時におけるディーゼルハイブリッド車両システムの図17および図18とは異なる接続状態を示す図である。 図20は、コンバータ、インバータおよび補助電源装置の故障時におけるディーゼルハイブリッド車両システムの接続状態を示す図である。 図21は、コンバータ、インバータおよび補助電源装置の故障時におけるディーゼルハイブリッド車両システムの図20とは異なる接続状態を示す図である。 図22は、実施の形態1に係るディーゼルハイブリッド車両システムに用いられて好適な実施の形態2に係るディーゼルエンジンシステムの一構成例を示す図である。 図23は、実施の形態2に係るディーゼルエンジンシステムを水冷アフタークーラー方式に適用した場合の一構成例を示す図である。 図24は、実施の形態2に係るディーゼルエンジンシステムを空冷アフタークーラー方式に適用した場合の一構成例を示す図である。
 以下に添付図面を参照し、本発明の実施の形態にかかる車両用制御装置およびディーゼルハイブリッド車両システムについて説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
<装置およびシステムの構成>
 図1は、本発明の実施の形態1に係る車両用制御装置を含むディーゼルハイブリッド車両システムの一構成例を示す図である。実施の形態1に係るディーゼルハイブリッド車両システムは、図1に示すように、ディーゼルエンジン1、発電機2、コンバータ(CNV)3、第1のインバータとしてのインバータ(INV)4、モータ5、電力貯蔵装置6、第2のインバータとしての補助電源装置(SIV)7、補機8および、ディーゼルハイブリッド車両システム全体の動作を統括する制御部50を主要構成部として構成されると共に、各主要構成部間に介在し、それらの接続関係を自在に変更する第1~第4の切替器9~12、第1~第3の接触器13~15、電流を検出するセンサである電流検出器22~24、電圧を検出するセンサである電圧検出器25~27ならびに、発電機およびモータの回転数を検出する回転検出器28,29を備えている。これらの構成部のうち、実施の形態1に係る車両用制御装置は、コンバータ(CNV)3、インバータ(INV)4および補助電源装置(SIV)7を備えて構成される。なお、図1では、電圧検出器26,27の検出対象であるフィルタコンデンサ20,21を併せて示している。
 つぎに、ディーゼルハイブリッド車両システムを構成する各部の接続関係および、概略の機能について説明する。
 ディーゼルエンジン1は駆動力を発生する駆動源の一つであり、発電機2に接続される。発電機2は、ディーゼルエンジン1の出力により交流電力を発電する。電力貯蔵装置6は、リチウムイオン電池、ニッケル水素電池、電気二重層キャパシタ、リチウムイオンキャパシタ、フライホイール等を貯蔵手段とする電気エネルギーの貯蔵装置であると共に、駆動力を発生する他の駆動源であり、コンバータ3とインバータ4と接続部(直流電圧部)に接続され、直流電力を充放電する。コンバータ3は、発電機2が発電した交流電力を直流電力に変換する一方で、電力貯蔵装置6が放電する直流電力を交流電力に変換する。インバータ4は、コンバータ3または電力貯蔵装置6から供給される直流電力を交流電力に変換する。モータ5は、インバータ4からの交流電力の供給を受けて駆動力(推進力)を発生する。補助電源装置7は、直流電圧部に接続され、直流電力を一定電圧一定周波数の交流電力に変換して補機8に供給する。なお、補機8は、駆動装置以外の負荷機器の総称である。
 第1~第4の切替器9~12は、図2(a)に示すように3つの接続端a~cを有し、これら3つの接続端a~cのうちの任意2つの接続端間を接続する機能を有する。ここで、この切替器をON/OFFスイッチで構成した一例が同図(b)である。図示のように、接続端a,c間を接続する場合には、ca間のスイッチをON、ab間のスイッチをOFF、bc間のスイッチをOFFに制御すればよい。また、この切替器を切替スイッチで構成した一例が同図(c)である。(b)と同様に接続端a,c間を接続する場合、図示のように、aスイッチをc側に倒し、cスイッチをa側に倒せばよい(bスイッチの位置は任意)。
 図1に戻り、第1の切替器9は、発電機2、コンバータ3および第4の切替器12の3者間に挿入され、これら3者間のうちの2者を選択して接続する。以下同様に、第2の切替器10は、インバータ4、モータ5および第4の切替器12の3者間に挿入され、第3の切替器11は、補助電源装置7、補機8および第4の切替器12の3者間に挿入され、第4の切替器12は、第1の切替器9、第2の切替器10および第3の切替器11の3者間に挿入され、それぞれが3者間のうちの2者を選択して接続する機能を有する。
 第1~第3の接触器13~15は、2つの接続端を有し、これら2つの接続端に接続される構成部間の接続をON/OFFする機能を有する。ここで、第1の接触器13は、直流電圧部における電力貯蔵装置6の接続部30とコンバータ3との間に接続され、第2の接触器14は、この接続部30とインバータ4との間に接続され、第3の接触器15は、この接続部30と補助電源装置7との間に接続される。
 つぎに、各センサについて説明する。電流検出器22は発電機2とコンバータ3の間に流れる電流を発電機電流IGとして検出し、電流検出器23はインバータ4とモータ5の間に流れる電流をモータ電流IMとして検出し、電流検出器24は電力貯蔵装置6に流出入する電流をバッテリ電流IBとして検出する。また、電圧検出器25はコンバータ3と発電機2の接続端の電圧を発電機電圧VGとして検出し、電圧検出器26はフィルタコンデンサ20の電圧を第1の直流電圧EFCDとして検出し、電圧検出器27はフィルタコンデンサ21の電圧を第2の直流電圧EFCとして検出する。さらに、回転検出器28は発電機2の回転数を発電機回転数FRGとして検出し、回転検出器29はモータ5の回転数をモータ回転数RNとして検出する。なお、これらの各センサが検出した検出値(センサ情報)は、制御部50に入力される。
 また、制御部50には、上記センサ情報に加え、電力貯蔵装置6の状態を表す状態情報STBが入力される。この状態情報には、電力貯蔵装置6の出力電圧(バッテリ電圧)、電力貯蔵装置6の充電(貯蔵)状態を表す情報(SOC:State Of Charge)、電力貯蔵装置6が充電状態であるか放電状態であるかの情報(動作情報)などが含まれる。
 さらに、制御部50には、操作内容を示す情報(操作情報)が入力される。この操作情報には、例えば、電気車の運行操作(力行、ブレーキ、惰行、停車)を示す情報や、車両システムの受電開始操作を示す情報などが含まれる。制御部50は、上記センサ情報(発電機電流IG、モータ電流IM、バッテリ電流IB、発電機電圧VG、第1の直流電圧EFCD、第2の直流電圧EFC、発電機回転数FRG、モータ回転数RN)、電力貯蔵装置6の状態情報STB、外部からの操作情報CMDに基づいて、コンバータ3に具備されるスイッチ素子を制御するためのゲート信号GSC、インバータ4に具備されるスイッチ素子を制御するためのゲート信号GSIおよび、補助電源装置7に具備されるスイッチ素子を制御するためのゲート信号GSSを生成し、それぞれコンバータ3、インバータ4および補助電源装置7に出力すると共に、ディーゼルエンジン1の回転数を制御するための回転数制御信号RDを生成してディーゼルエンジン1に出力する。また、制御部50は、後述する故障態様に応じた切替信号を生成して第1~第4の切替器9~12および第1~第3の接触器13~15に出力する。なお、図1では、煩雑さを避けるため、これら第1~第4の切替器9~12および第1~第3の接触器13~15に対する切替信号の図示を省略している。
 図3は、ディーゼルハイブリッド車両システムの動作状態および当該動作状態に対応する第1~第4の切替器および第1~第3の接触器の状態を示す図表である。図3において、第1~第4の切替器9~12の欄に示される小文字のアルファベットは、図2(a)に示した各端子の接続状態を表しており、例えば“a-b”の表記は、接続端a,b間が接続されることを意味している。第1~第3の接触器13~15の欄に示されている“ON”、“OFF”は、第1~第3の接触器の導通状態を表しており、“ON”は導通状態にあることを意味し、“OFF”は非導通状態にあることを意味している。また、“エンジンの起動”欄に“○”が付されているものは、ディーゼルエンジンを併用することを意味し、“発電機からの充電”欄に“○”が付されているものは、発電機2の発電電力を用いて電力貯蔵装置6を充電することを意味する。なお、太枠で囲った部分は、動作状態が同一のものを見やすくするために付したものである。図示のように、動作状態が同一の場合であっても、第1~第4の切替器のうちの少なくとも一つの接続状態は異なってくる(第1~第3の接触器の状態は同一である)。第1~第4の切替器の接続状態による動作の差異については、以後の実施の形態の動作説明において詳述する。
<基本動作>
 図4は、コンバータ(CNV)、インバータ(INV)および補助電源装置(SIV)の全てが正常なときのディーゼルハイブリッド車両システムの接続状態を示す図であり、第1~第4の切替器および第1~第3の接触器が通常状態(図3のNo.1参照)として制御される場合の接続状態を示している。ここではまず、図1および図4を参照し、ディーゼルハイブリッド車両システムの基本的な動作について説明する。なお、この基本動作説明では、鉄道車両に搭載されたディーゼルハイブリッド車両システムが駅間を走行する場合を一例として取り上げる。
 ディーゼルハイブリッド車両システムは、制御部50の制御により、図4に示すように、第1、第2の切替器9,10は接続端a,b間が接続され、第3の切替器11,12は接続端b,c間が接続され、第1~第3の接触器13~15はONに制御される。なお、図4では、第4の切替器12は接続端b,c間が接続されているが、この接続は任意である(図3のNo.1参照)。この制御により、発電機2とコンバータ3が接続され、コンバータ3とインバータ4が接続され、インバータ4とモータ5が接続され、補助電源装置7と補機8が接続される。また、電力貯蔵装置6は、コンバータ3、インバータ4および補助電源装置7のそれぞれに接続される。
 このような接続状態において、制御部50に対し、図示しない運転台から力行指令(操作情報CMDの一つ)が入力されると、制御部50は、インバータ4を動作させ、モータ5に供給される交流電力の電圧振幅および周波数を制御する。インバータ4は、電力貯蔵装置6から供給される直流電力を交流電力に変換してモータ5に供給する。モータ5が駆動されることにより、車両が起動して力行を開始する。なお、この起動時には、ディーゼルエンジン1の出力は停止している。
 車両の速度が一定速度(たとえば、時速20km)に達すると、制御部50は、コンバータ3をインバータとして動作させ、発電機2に供給する交流電力の電圧振幅および周波数を制御する。コンバータ3がインバータとして動作し、電力貯蔵装置6から供給される直流電力を交流電力に変換して発電機2に供給することにより、発電機2は、モータとして動作する。
 発電機2が駆動されると、ディーゼルエンジン1が始動する。ディーゼルエンジン1が始動すると、発電機2は、本来の発電機として動作する。ディーゼルエンジン1が始動し、車両の力行に必要な出力を発生するようになると、発電機2が発生する交流電力はコンバータ3にて直流電力に変換され、インバータ4に供給される。このとき、電力貯蔵装置6から放電されていた直流電力は減少して行き、電力貯蔵装置6からの電流(放電電流)は流れなくなる。
 車両の速度が所定の速度に到達すると、図示しない運転台から制御部50に出力されていた力行指令がOFFされる。制御部50は、インバータ4を停止させ、車両は惰行状態となる。
 補機8の消費電力は、補助電源装置7から供給される。なお、発電機2が交流電力を発生していない場合、補助電源装置7への電力は電力貯蔵装置6から供給される。一方、発電機2が交流電力を発生している場合、補助電源装置7には、発電機2が発電した交流電力がコンバータ3により直流電力に変換されて供給される。
 その後、図示しない運転台から制御部50にブレーキ指令が入力されると、制御部50は、コンバータ3を停止してディーゼルエンジン1および発電機2を停止する。また、制御部50は、インバータ4をコンバータとして動作させることにより、モータ5を発電機として動作させる。このとき、インバータ4は、モータ5から回生された交流電力を直流電力に変換し、補助電源装置7に必要な電力供給を行うと共に、余剰電力を利用して電力貯蔵装置6を充電する。
 なお、制御部50による上記の制御は、制御部50に入力されるセンサ情報(発電機電流IG、モータ電流IM、バッテリ電流IB、発電機電圧VG、第1の直流電圧EFCD、第2の直流電圧EFC、発電機回転数FRG、モータ回転数RN)および電力貯蔵装置6の状態情報STBに基づいて、好適に行われることは言うまでもない。
<インバータの故障時の動作>
 つぎに、インバータの故障時の動作について、図5を参照して説明する。なお、図5において、コンバータ(CNV)3、インバータ(INV)4および補助電源装置(SIV)7の各構成部上に付した“○”印は当該構成部が正常であることを意味し、“×”印は当該構成部が異常であることを意味している(図6以下の各図面においても同様である)。
 まず、インバータの故障時には、制御部50の制御により、例えば図5に示すように、第1~第3の切替器9~11は接続端b,c間が接続され、第4の切替器12は接続端a,b間が接続され、第1,第3の接触器13,15はONに制御され、第2の接触器14はOFFに制御される(図3のNo.2参照)。この制御により、発電機2とコンバータ3は切り離されると共に、コンバータ3とインバータ4も切り離され、コンバータ3とモータ5が接続され、補助電源装置7と補機8が接続される。また、電力貯蔵装置6は、コンバータ3および補助電源装置7のそれぞれに接続される。
 ディーゼルハイブリッド車両システムが図5のように接続されるとき、制御部50は、コンバータ3をインバータとして動作させ、電力貯蔵装置6から供給される直流電力を交流電力に変換してモータ5を駆動する。モータ5が駆動されることにより、車両の運行は継続可能である。また、補機8は補助電源装置7を介して電力貯蔵装置6に接続されるため、補機8への電力供給も継続可能である。
 また、電力貯蔵装置6の放電能力が低下した場合、図6のように接続すればよい。図6の場合、第1、第4の切替器9,12は接続端a,b間が接続され、第2、第3の切替器10,11は接続端b,c間が接続され、第1,第3の接触器13,15はONに制御され、第2の接触器14はOFFに制御される(図3のNo.3参照)。この制御により、発電機2とコンバータ3は接続され、コンバータ3とインバータ4は切り離され、補助電源装置7と補機8が接続される。すなわち、モータ5は、電力供給源から切り離される。一方、電力貯蔵装置6は、コンバータ3を介して発電機2に接続され、補機8は、補助電源装置7を介して電力貯蔵装置6に接続される。
 したがって、電力貯蔵装置6の放電能力が低下した場合であっても、発電機2の発電電力を用いて電力貯蔵装置6に対する充電が可能となる。また、補機8は補助電源装置7を介して電力貯蔵装置6に接続されるため、補機8に対する電力供給の継続が可能となる。
<補助電源装置の故障時の動作>
 つぎに、補助電源装置の故障時の動作について説明する。まず、補助電源装置の故障時には、制御部50の制御により、例えば図7に示すように、第1、第4の切替器9,12は接続端b,c間が接続され、第2、第3の切替器10,11は接続端a,b間が接続され、第1,第2の接触器13,14はONに制御され、第3の接触器15はOFFに制御される(図3のNo.4参照)。この制御により、発電機2とコンバータ3は切り離され、インバータ4とモータ5が接続され、コンバータ3と補機8が接続される。また、電力貯蔵装置6は、コンバータ3およびインバータ4のそれぞれに接続される。
 ディーゼルハイブリッド車両システムが図7のように接続されるとき、制御部50は、インバータ4を動作させ、電力貯蔵装置6から供給される直流電力を交流電力に変換してモータ5を駆動する。モータ5が駆動されることにより、車両の運行は継続可能である。
 また、制御部50は、コンバータ3をインバータとして動作させ、電力貯蔵装置6から供給される直流電力を交流電力に変換して補機8に供給する。したがって、補機8への電力供給も継続可能である。
 なお、電力貯蔵装置6に対する充電は、モータ5の回生電力を利用して行うことが可能である。このとき、インバータ4はコンバータとして動作する。
 また、補助電源装置の故障時においては、図8に示すように、発電機2とコンバータ3を接続してもよい。図8の場合、第1~第3の切替器9~11は接続端a,b間が接続され、第4の切替器12は接続端b,c間が接続され、第1、第2の接触器13,14はONに制御され、第3の接触器15はOFFに制御される(図3のNo.5参照)。この制御により、発電機2とコンバータ3が接続され、コンバータ3とインバータ4が接続され、インバータ4とモータ5が接続される。また、電力貯蔵装置6は、コンバータ3を介して発電機2に接続される。
 したがって、コンバータ3およびインバータ4を動作させれば、発電機2の発電電力を用いてモータ5を駆動することができ、車両の運行継続が可能となる。
 また、電力貯蔵装置6の放電能力が低下した場合には、発電機2の発電電力を用いて電力貯蔵装置6に対する充電が可能となる。
 また、モータ5の回生電力が利用できる場合には、インバータ4をコンバータとして動作させることにより、電力貯蔵装置6に対する充電が可能となる。
<コンバータの故障時の動作>
 つぎに、コンバータの故障時の動作について説明する。まず、コンバータの故障時には、制御部50の制御により、例えば図9に示すように、第1、第2の切替器9,10は接続端a,c間が接続され、第3の切替器11は接続端b,c間が接続され、第4の切替器12は接続端a,b間が接続され、第1の接触器13はOFFに制御され、第2、第3の接触器14,15はONに制御される(図3のNo.6参照)。この制御により、発電機2とコンバータ3は切り離されると共に、インバータ4とモータ5も切り離される。一方、電力貯蔵装置6は、インバータ4を介して発電機2に接続され、補機8は、補助電源装置7を介して電力貯蔵装置6に接続される。
 ディーゼルハイブリッド車両システムが図9のように接続されるとき、制御部50は、インバータ4をコンバータとして動作させ、発電機2から供給される交流電力を直流電力に変換し、補助電源装置7に必要な電力供給を行うと共に、余剰電力を利用して電力貯蔵装置6を充電する。このため、補機8への電力供給が可能となる。
 また、コンバータの故障時において、図10に示すように接続すれば、モータ5および補機8への電力供給が可能となる。図10の場合、第1の切替器9は接続端a,c間が接続され、第2、第4の切替器10,12は接続端a,b間が接続され、第3の切替器11は接続端b,c間が接続され、第1の接触器13はOFFに制御され、第2、第3の接触器14,15はONに制御される(図3のNo.7参照)。この制御により、発電機2はモータ5から切り離されるが、インバータ4とモータ5が接続され、補機8は、補助電源装置7を介して電力貯蔵装置6に接続される。
 したがって、インバータ4を動作させれば、電力貯蔵装置6の直流電力を用いてモータ5を駆動することができ、車両の運行継続が可能となる。
 また、補機8も補助電源装置7を介して電力貯蔵装置6に接続されるため、補機8への電力供給も可能となる。
<コンバータおよびインバータの故障時の動作>
 つぎに、コンバータおよびインバータの故障時の動作について説明する。これらの故障時には、制御部50の制御により、例えば図11に示すように、第1の切替器9は接続端a,c間が接続され、第2、第3の切替器10,11は接続端b,c間が接続され、第4の切替器12は接続端a,b間が接続され、第1、第2の接触器13,14はOFFに制御され、第3の接触器15はONに制御される(図3のNo.8参照)。この制御により、発電機2とコンバータ3は切り離され、インバータ4とモータ5も切り離され、さらにコンバータ3およびインバータ4は電力貯蔵装置6とも切り離される。一方、モータ5は発電機2に接続され、補機8は、補助電源装置7を介して電力貯蔵装置6に接続される。
 ディーゼルハイブリッド車両システムが図11のように接続されるとき、モータ5の回生電力を発電機2に供給することで、ディーゼルエンジン1の始動が可能となる。ディーゼルエンジン1が始動し、車両の力行に必要な出力を発生するようになれば、ディーゼルエンジン1の回転数を制御して発電機2からの交流電力を所望の交流電力に制御し、この交流電力をモータ5に供給することでモータ5を駆動することができ、車両の運行継続が可能となる。
 また、コンバータおよびインバータの故障時において、図12に示すように接続すれば、電力貯蔵装置6への充電が可能となる。図12の場合、第1、第3の切替器9,11は接続端a,c間が接続され、第2、第4の切替器10,12は接続端b,c間が接続され、第1、第2の接触器13,14はOFFに制御され、第3の接触器15はONに制御される(図3のNo.9参照)。この制御により、発電機2はモータ5から切り離されるが、補助電源装置7を介して電力貯蔵装置6に接続される。
 したがって、補助電源装置7をコンバータとして動作させれば、発電機2の発電電力を用いて電力貯蔵装置6に対する充電が可能となる。また、この制御とは逆に、補助電源装置7を通常のインバータとして動作させ、電力貯蔵装置6から供給される直流電力を交流電力に変換して発電機2に供給することにより、発電機2をモータとして動作させれば、予めディーゼルエンジン1を始動しておくことが可能となる。
 また、コンバータおよびインバータの故障時において、図13に示すように接続してもよい。図13の場合、第1、第3、第4の切替器9,11,12は接続端a,c間が接続され、第2の切替器10は接続端b,c間が接続され、第1、第2の接触器13,14はOFFに制御され、第3の接触器15はONに制御される(図3のNo.10参照)。この制御により、発電機2はモータ5から切り離されるが、モータ5は補助電源装置7を介して電力貯蔵装置6に接続される。
 したがって、補助電源装置7を動作させれば、電力貯蔵装置6の直流電力を用いてモータ5を駆動することができ、車両の運行継続が可能となる。
<コンバータおよび補助電源装置の故障時の動作>
 つぎに、コンバータおよび補助電源装置の故障時の動作について説明する。これらの故障時には、制御部50の制御により、例えば図14に示すように、第1の切替器9は接続端a,c間が接続され、第2、第3の切替器10,11は接続端a,b間が接続され、第4の切替器12は接続端b,c間が接続され、第1、第3の接触器13,15はOFFに制御され、第2の接触器14はONに制御される(図3のNo.11参照)。この制御により、コンバータ3は、発電機2、インバータ4および電力貯蔵装置6から切り離され、補助電源装置7は、コンバータ3、インバータ4および電力貯蔵装置6から切り離される。一方、モータ5はインバータ4に接続され、補機8は、発電機2に接続される。
 ディーゼルハイブリッド車両システムが図14のように接続されるとき、インバータ4を動作させれば、電力貯蔵装置6の直流電力を用いてモータ5を駆動することができ、車両の運行継続が可能となる。
 また、ディーゼルエンジン1が起動されている場合には、発電機2からの交流電力を補機8に供給することができ、補機8への電力供給が可能となる。
 また、コンバータおよび補助電源装置の故障時において、図15に示すように接続すれば、電力貯蔵装置6への充電が可能となる。図15の場合、第1、第2の切替器9,10は接続端a,c間が接続され、第3、第4の切替器11,12は接続端a,b間が接続され、第1、第3の接触器13,15はOFFに制御され、第2の接触器14はONに制御される(図3のNo.12参照)。この制御により、発電機2はインバータ4を介して電力貯蔵装置6に接続される。
 したがって、インバータ4をコンバータとして動作させれば、発電機2の発電電力を用いて電力貯蔵装置6に対する充電が可能となる。
 また、コンバータおよび補助電源装置の故障時において、図16に示すように接続すれば、補機8への電力供給が可能となる。図16の場合、第1、第2、第4の切替器9,10,12は接続端a,c間が接続され、第3の切替器11は接続端a,b間が接続され、第1、第3の接触器13,15はOFFに制御され、第2の接触器14はONに制御される(図3のNo.13参照)。この制御により、インバータ4は補機8に接続される。
 したがって、インバータ4を動作させれば、電力貯蔵装置6の直流電力を用いて補機8に交流電力を供給することができ、補機8への電力供給が可能となる。
<インバータおよび補助電源装置の故障時の動作>
 つぎに、インバータおよび補助電源装置の故障時の動作について説明する。これらの故障時には、制御部50の制御により、例えば図17に示すように、第1、第2の切替器9,10は接続端b,c間が接続され、第3、第4の切替器11,12は接続端a,b間が接続され、第1の接触器13はONに制御され、第2、第3の接触器14,15はOFFに制御される(図3のNo.14参照)。この制御により、インバータ4は、コンバータ3および電力貯蔵装置6から切り離され、補助電源装置7は、コンバータ3および電力貯蔵装置6から切り離される。一方、モータ5はコンバータ3に接続される。
 ディーゼルハイブリッド車両システムが図17のように接続されるとき、コンバータ3をインバータとして動作させれば、電力貯蔵装置6の直流電力を用いてモータ5を駆動することができ、車両の運行継続が可能となる。
 また、インバータおよび補助電源装置の故障時において、図18に示すように接続すれば、電力貯蔵装置6への充電が可能となる。図18の場合、第1、第3、第4の切替器9,11,12は接続端a,b間が接続され、第2の切替器10は接続端b,c間が接続され、第1の接触器13はONに制御され、第2、第3の接触器14,15はOFFに制御される(図3のNo.15参照)。この制御により、発電機2はコンバータ3を介して電力貯蔵装置6に接続される。
 したがって、コンバータ3を動作させれば、発電機2の発電電力を用いて電力貯蔵装置6に対する充電が可能となる。
 また、コンバータおよび補助電源装置の故障時において、図19に示すように接続すれば、補機8への電力供給が可能となる。図19の場合、第1、第2、第4の切替器9,10,12は接続端b,c間が接続され、第3の切替器11は接続端a,b間が接続され、第1の接触器13はONに制御され、第2、第3の接触器14,15はOFFに制御される(図3のNo.16参照)。この制御により、コンバータ3は補機8に接続される。
 したがって、コンバータ3をインバータとして動作させれば、電力貯蔵装置6の直流電力を用いて補機8に交流電力を供給することでができ、補機8への電力供給が可能となる。
<コンバータ、インバータおよび補助電源装置の故障時の動作>
 つぎに、コンバータ、インバータおよび補助電源装置の故障時の動作について説明する。これらの故障時には、制御部50の制御により、例えば図20に示すように、第1の切替器9は接続端a,c間が接続され、第2の切替器10は接続端b,c間が接続され、第3、第4の切替器11,12は接続端a,b間が接続され、第1~第3の接触器13~15は全てOFFに制御される(図3のNo.17参照)。この制御により、コンバータ3は、発電機2および電力貯蔵装置6から切り離され、インバータ4は、モータ5および電力貯蔵装置6から切り離され、補助電源装置7は、コンバータ3、インバータ4および電力貯蔵装置6から切り離される。一方、モータ5は発電機2に接続される。
 ディーゼルハイブリッド車両システムが図20のように接続されるとき、ディーゼルエンジン1が起動されている場合には、ディーゼルエンジン1の回転数を制御して発電機2からの交流電力を所望の交流電力に制御し、この交流電力をモータ5に供給することでモータ5を駆動することができ、車両の運行継続が可能となる。
 また、コンバータ、インバータおよび補助電源装置の故障時において、図21に示すように接続すれば、補機8への電力供給が可能となる。図21の場合、第1の切替器9は接続端a,c間が接続され、第2、第4の切替器10,12は接続端b,c間が接続され、第3の切替器11は接続端a,b間が接続され、第1~第3の接触器13~15は全てOFFに制御される(図3のNo.18参照)。この制御により、補機8は発電機2に接続される。
 ディーゼルハイブリッド車両システムが図21のように接続されるとき、ディーゼルエンジン1が起動されている場合には、ディーゼルエンジン1の回転数を制御して発電機2からの交流電力を所望の交流電力に制御し、この交流電力を補機8に供給することができ、補機8への電力供給が可能となる。
 なお、コンバータ、インバータおよび補助電源装置の全てが故障している場合、ディーゼルエンジン1を再始動することができない。このため、例えば、コンバータ3、インバータ4および補助電源装置7のうちの何れか2つの部位が故障した場合、当該故障部位に応じて、一旦、図12、図15および図18に示すような接続状態に制御し、ディーゼルエンジン1を再始動しておくことが好ましい。このような制御を行えば、その後、コンバータ3、インバータ4および補助電源装置7の全てが故障してしまった場合でも、発電機2からモータ5および補機8に対する電力供給が可能となり、車両の運行継続と補機8への電力供給が可能となる。
 以上説明したように、実施の形態1に係るディーゼルハイブリッド車両システムによれば、インバータの故障時にコンバータの接続先をモータに切り替えることとしたので、インバータが使用不可となった場合であっても、車両の運行を継続することができ、ディーゼルハイブリッド車両システムの信頼性が向上するという効果が得られる。
 また、実施の形態1に係るディーゼルハイブリッド車両システムによれば、コンバータの故障時にインバータの接続先を発電機に切り替えることとしたので、コンバータが使用不可となった場合であっても、車両の運行を継続することができ、ディーゼルハイブリッド車両システムの信頼性が向上するという効果が得られる。
 また、実施の形態1に係るディーゼルハイブリッド車両システムによれば、補機への電力供給を行う補助電源装置の故障時に、コンバータの接続先を補機側に切り替えることとしたので、補助電源装置が故障等で使用不可となった場合であっても、補機への電力供給を継続することができ、ディーゼルハイブリッド車両システムの信頼性が向上するという効果が得られる。
 なお、実施の形態1では、ディーゼルハイブリッド車両システムの信頼性向上のための制御対象に補機への電力供給を行う補助電源装置を含める実施形態について説明したが、補助電源装置を含めず、電力変換装置としては、コンバータおよびインバータのみを含めることでも構わない。このような制御形態であっても、コンバータおよびインバータのうちの少なくとも一つが故障したときに、車両の運行継続が可能となるという本実施の形態の効果を得ることができる。
 また、上記説明では、鉄道車両に搭載されるディーゼルハイブリッド車両システムを一例として説明したが、鉄道車両に限定されるものではなく、電力貯蔵装置を搭載したハイブリッド移動体(自動車、自動2輪等)、ハイブリッド建設機械(ダンプトラック、ブルドーザ、ショベルカー等)あるいは、船舶の分野にも適用可能である。
実施の形態2.
 図22は、実施の形態1に係るディーゼルハイブリッド車両システムに用いられて好適な実施の形態2に係るディーゼルエンジンシステムの一構成例を示す図である。実施の形態2に係るディーゼルエンジンシステムは、図22に示すように、ディーゼルエンジン60、冷却装置61、熱電発電素子62、制御電源63、制御電源負荷64、ダイオード65、冷却水供給管67および、冷却水還流管68を備えて構成されている。
 図22において、ディーゼルエンジン60と冷却装置61との間には、冷却水供給管67および冷却水還流管68が配されており、ディーゼルエンジン60は、これら冷却水供給管67および冷却水還流管68を循環する冷却水によって冷却される構成である。また、冷却水供給管67と冷却水還流管68との間には、これら冷却水供給管67および冷却水還流管68に接するように熱電発電素子62が配されている。熱電発電素子62は、温度差を利用して発電するゼーベック効果利用の熱電発電素子であり、冷却水の温度差(冷却水還流管68が高温側、冷却水供給管67が低温側)に応じた熱エネルギーを電気エネルギーに変換し、逆流防止用のダイオード65を通じて制御電源負荷64に供給すると共に、余剰電力は制御電源63に蓄積する。
 なお、本発明の出願時における典型的な熱電発電素子として、1素子あたりの発電出力が“8V-3A”程度のものがアナウンスされている。ここで、鉄道車両に用いられる制御電源電圧は、数V~100V程度であるため、この熱電発電素子を最大でも15素子直列に接続すれば、全ての制御電源に適用可能である。なお、制御電源の容量が大きい場合には、直列接続した素子群を並列接続して用いればよい。また、この種の発電素子の容積は比較的小さいため(本項の熱電発電素子では、1素子あたり10数cm3程度)、数多くの素子または素子群を配列することが可能であり、異なる制御電源電圧および異なる容量を有する複数種の制御電源への対応が可能である。
 実施の形態2に係るディーゼルエンジンシステムによれば、ディーゼルエンジンの発熱(廃熱)を利用した熱電発電を行い、発電した電力をディーゼルエンジンシステムを制御する制御電源の電気エネルギーとして利用することとしたので、車両全体で消費するトータルエネルギーの低減が可能となる。
 また、実施の形態2に係るディーゼルエンジンシステムでは、ディーゼルエンジンを冷却する冷却水の温度差を利用して熱電発電を行うので、冷却水の廃熱容量を低減することができ、冷却装置容量の低減が可能となる。
 図23および図24は、実施の形態2に係るディーゼルエンジンシステムのより具体的な適用例を示す図であり、図23は、水冷アフタークーラー方式のディーゼルエンジンシステムに適用した場合の一構成例であり、図24は、空冷アフタークーラー方式のディーゼルエンジンシステムに適用した場合の一構成例である。
 まず、水冷アフタークーラー方式のディーゼルエンジンシステムについて説明すると、このディーゼルエンジンシステムでは、図23に示すように、ディーゼルエンジン70、圧縮機71aおよびタービン71bを有する過給器71、ラジエータ74、アフタークーラー75、ウォータポンプ76、プロペラファン77が要所に配置されている。圧縮機71aとアフタークーラー75との間には第1の圧縮空気供給管78が配設され、この第1の圧縮空気供給管78はアフタークーラー75の出口側で第2の圧縮空気供給管83となる。この第2の圧縮空気供給管83は、アフタークーラー75とディーゼルエンジン70との間に配設される。
 また、ウォータポンプ76とアフタークーラー75との間には、第1の冷却水供給管79aと、この第1の冷却水供給管79aの一方側の分岐管である第2の冷却水供給管79bが配設され、ウォータポンプ76とディーゼルエンジン70との間には、第1の冷却水供給管79aと、この第1の冷却水供給管79aの他方側の分岐管である第3の冷却水供給管79cが配設されている。第3の冷却水供給管79cはディーゼルエンジン70の出力側で第1の冷却水排出管80aとなり、第2の冷却水供給管79bはアフタークーラー75の出力側で第2の冷却水排出管80bとなる。これら第1の冷却水排出管80aおよび第2の冷却水排出管80bは合流して第3の冷却水排出管81となり、ラジエータ74との間に配設される。この第3の冷却水排出管81はラジエータ74の出口側で第3の冷却水排出管81となりウォータポンプ76に戻る。
 ここで、第2の冷却水供給管79bの温度をT1とし、第1の圧縮空気供給管78の温度をT2とすると、T1<T2の関係がある。また、典型的な水冷アフタークーラー方式のディーゼルエンジンシステムでは、T2-T1、すなわち、第1の圧縮空気供給管78と第2の冷却水供給管79bの温度差として、80℃程度の温度差が得られる。そこで、図示のように、これら第1の圧縮空気供給管78と第2の冷却水供給管79bとの間に、これら第1の圧縮空気供給管78および第2の冷却水供給管79bのそれぞれに接するように熱電発電素子62aを配設すれば、80℃程度の温度差を利用した発電が可能となる。
 つぎに、空冷アフタークーラー方式のディーゼルエンジンシステムについて説明する。空冷アフタークーラー方式のディーゼルエンジンシステムでは、図24に示すように、ディーゼルエンジン86、圧縮機87aおよびタービン87bを有する過給器87、ラジエータ88、アフタークーラー89、ウォータポンプ90、プロペラファン91が要所に配置されている。圧縮機87aとアフタークーラー89との間には第1の圧縮空気供給管92が配設され、この第1の圧縮空気供給管92はアフタークーラー89の出力側で第2の圧縮空気供給管93となる。この第2の圧縮空気供給管93は、アフタークーラー89とディーゼルエンジン86との間に配設される。
 また、ウォータポンプ90とディーゼルエンジン86との間には、第1の冷却水供給管94が配設される。この第1の冷却水供給管94はディーゼルエンジン86の出口側で第1の冷却水排出管95となり、ラジエータ88との間に配設される。この第1の冷却水排出管95はラジエータ88の出口側で第2の冷却水排出管96となりウォータポンプ90に戻る。
 ここで、第2の冷却水排出管96の温度をT3とし、第1の圧縮空気供給管92の温度をT4とすると、T3<T4の関係がある。また、典型的な水冷アフタークーラー方式のディーゼルエンジンシステムでは、T4-T3、すなわち、第1の圧縮空気供給管92と第2の冷却水排出管96の温度差として、百十数℃程度の温度差が得られる。そこで、図示のように、これら第1の圧縮空気供給管92と第2の冷却水供給管96との間に、これら第1の圧縮空気供給管92および第2の冷却水供給管96のそれぞれが接するように熱電発電素子62bを配設すれば、百十数℃程度の温度差を利用した発電が可能となる。
 以上のように、本発明に係るディーゼルハイブリッド車両システムは、インバータが故障等で使用不可となった場合であっても車両の運行継続を可能とする発明として有用である。
1,60,70,86 ディーゼルエンジン
2 発電機
3 コンバータ
4 インバータ(第1のインバータ)
5 モータ
6 電力貯蔵装置
7 補助電源装置(第2のインバータ)
8 補機
9 第1の切替器
10 第2の切替器
11 第3の切替器
12 第4の切替器
13 第1の接触器
14 第2の接触器
15 第3の接触器
20,21 フィルタコンデンサ
22,23,24 電流検出器
25~27 電圧検出器
28,29 回転検出器
30 接続部
50 制御部
61 冷却装置
62,62a,62b 熱電発電素子
63 制御電源
64 制御電源負荷
65 ダイオード
67 冷却水供給管
68 冷却水還流管
71,87 過給器
71a,87a 圧縮機(C)
71b,87b タービン(T)
74,88 ラジエータ
75,89 アフタークーラー
76,90 ウォータポンプ(W/P)
77,91 プロペラファン
78,92 第1の圧縮空気供給管
79a,94 第1の冷却水供給管
79b 第2の冷却水供給管
79c 第3の冷却水供給管
80c 第4の冷却水供給管
80a,95 第1の冷却水排出管
80b,96 第2の冷却水排出管
81 第3の冷却水排出管
83,93 第2の圧縮空気供給管

Claims (23)

  1.  ディーゼルエンジンの出力により交流電力を発電する発電機が発電した交流電力を直流電力に変換して出力するコンバータと、
     直流電力を充放電する電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して車両を駆動するモータに出力するインバータと、
     前記コンバータおよび前記インバータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記インバータの故障時に、前記コンバータの接続先を前記発電機から前記モータに切り替える制御を行うことを特徴とする車両用制御装置。
  2.  前記制御部は、前記ディーゼルエンジンが起動中である場合、前記コンバータの接続先を前記モータから前記発電機に切り替えると共に、前記コンバータを動作させ、前記発電機が発電した交流電力を直流電力に変換して前記電力貯蔵装置への充電を行うことを特徴とする請求項1に記載の車両用制御装置。
  3.  ディーゼルエンジンの出力により交流電力を発電する発電機が発電した交流電力を直流電力に変換して出力するコンバータと、
     直流電力を充放電する電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して車両を駆動するモータに出力する第1のインバータと、
     前記電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して補機に供給する第2のインバータを備え、
     前記コンバータ、前記第1のインバータおよび前記第2のインバータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記第2のインバータの故障時に、前記コンバータの接続先を前記発電機から前記補機に切り替えると共に、前記コンバータをインバータとして動作させ、前記電力貯蔵装置が放電する直流電力を交流電力に変換して前記補機に供給する制御を行うことを特徴とする車両用制御装置。
  4.  前記制御部は、前記ディーゼルエンジンが起動中である場合、前記コンバータの接続先を前記補機から前記発電機に切り替ると共に、前記コンバータを動作させ、前記発電機が発電した交流電力を直流電力に変換して前記電力貯蔵装置への充電を行うことを特徴とする請求項3に記載の車両用制御装置。
  5.  ディーゼルエンジンの出力により交流電力を発電する発電機が発電した交流電力を直流電力に変換して出力するコンバータと、
     直流電力を充放電する電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して車両を駆動するモータに出力するインバータと、
     前記コンバータおよび前記インバータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記コンバータの故障時に、当該故障したコンバータを前記インバータから切り離すと共に、前記インバータを動作させ、前記電力貯蔵装置が放電する直流電力を交流電力に変換して前記モータに供給する制御を行うことを特徴とする車両用制御装置。
  6.  前記制御部は、前記ディーゼルエンジンが起動中である場合、前記発電機の接続先を前記コンバータから前記インバータに切り替えると共に、前記インバータをコンバータとして動作させ、前記発電機が発電した交流電力を直流電力に変換して前記電力貯蔵装置への充電を行うことを特徴とする請求項5に記載の車両用制御装置。
  7.  ディーゼルエンジンの出力により交流電力を発電する発電機が発電した交流電力を直流電力に変換して出力するコンバータと、
     直流電力を充放電する電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して車両を駆動するモータに出力する第1のインバータと、
     前記電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して補機に供給する第2のインバータを備え、
     前記コンバータ、前記第1のインバータおよび前記第2のインバータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記ディーゼルエンジンが起動中である場合、前記コンバータおよび前記第1のインバータの故障時に、前記発電機の接続先を前記コンバータから前記モータに切り替え、前記ディーゼルエンジンの回転数を制御して前記発電機が発電した交流電力を所望の交流電力に制御して前記モータを駆動する制御を行うことを特徴とする車両用制御装置。
  8.  前記制御部は、前記発電機の接続先を前記モータから前記第2のインバータに切り替えると共に、前記第2のインバータをコンバータとして動作させ、前記発電機が発電した交流電力を直流電力に変換して前記電力貯蔵装置への充電を行うことを特徴とする請求項7に記載の車両用制御装置。
  9.  前記制御部は、前記第2のインバータの接続先を前記補機から前記モータに切り替えると共に、前記第2のインバータを動作させ、前記電力貯蔵装置が放電する直流電力を交流電力に変換して前記モータに供給する制御を行うことを特徴とする請求項7に記載の車両用制御装置。
  10.  ディーゼルエンジンの出力により交流電力を発電する発電機が発電した交流電力を直流電力に変換して出力するコンバータと、
     直流電力を充放電する電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して車両を駆動するモータに出力する第1のインバータと、
     前記電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して補機に供給する第2のインバータを備え、
     前記コンバータ、前記第1のインバータおよび前記第2のインバータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記ディーゼルエンジンが起動中である場合、前記コンバータおよび前記第2のインバータの故障時に、前記発電機の接続先を前記コンバータから前記補機に切り替え、前記ディーゼルエンジンの回転数を制御して前記発電機が発電した交流電力を所望の交流電力に制御して前記モータを駆動する制御を行うことを特徴とする車両用制御装置。
  11.  前記制御部は、前記発電機の接続先を前記モータから前記第1のインバータに切り替えると共に、前記第1のインバータをコンバータとして動作させ、前記発電機が発電した交流電力を直流電力に変換して前記電力貯蔵装置への充電を行うことを特徴とする請求項10に記載の車両用制御装置。
  12.  前記制御部は、前記第1のインバータの接続先を前記モータから前記補機に切り替えると共に、前記第1のインバータを動作させ、前記電力貯蔵装置が放電する直流電力を交流電力に変換して前記補機に供給する制御を行うことを特徴とする請求項10に記載の車両用制御装置。
  13.  ディーゼルエンジンの出力により交流電力を発電する発電機が発電した交流電力を直流電力に変換して出力するコンバータと、
     直流電力を充放電する電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して車両を駆動するモータに出力する第1のインバータと、
     前記電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して補機に供給する第2のインバータを備え、
     前記コンバータ、前記第1のインバータおよび前記第2のインバータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記ディーゼルエンジンが起動中である場合、前記第1のインバータおよび前記第2のインバータの故障時に、前記コンバータの接続先を前記発電機から前記モータに切り替えると共に、前記コンバータをインバータとして動作させ、前記電力貯蔵装置が放電する直流電力を交流電力に変換して前記補機に供給する制御を行うことを特徴とする車両用制御装置。
  14.  前記制御部は、前記発電機を前記コンバータに再接続すると共に、前記コンバータを動作させ、前記発電機が発電した交流電力を直流電力に変換して前記電力貯蔵装置への充電を行うことを特徴とする請求項13に記載の車両用制御装置。
  15.  前記制御部は、前記コンバータの接続先を前記モータから前記補機に切り替えると共に、前記コンバータをインバータとして動作させ、前記電力貯蔵装置が放電する直流電力を交流電力に変換して前記補機に供給する制御を行うことを特徴とする請求項13に記載の車両用制御装置。
  16.  前記制御部は、前記ディーゼルエンジンが起動されていない場合、前記コンバータ、前記インバータもしくは前記第1のインバータ、および前記第2のインバータのうちの何れか一つを前記電力貯蔵装置に接続させると共に、当該電力貯蔵装置に接続させた前記コンバータ、前記インバータもしくは前記第1のインバータ、および前記第2のインバータのうちの何れか一つをコンバータとして動作させ、前記発電機を駆動して前記ディーゼルエンジンを始動する制御を行うことを特徴とする請求項2、4、6、7、10または13に記載の車両用制御装置。
  17.  ディーゼルエンジンの出力により交流電力を発電する発電機が発電した交流電力を直流電力に変換して出力するコンバータと、
     直流電力を充放電する電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して車両を駆動するモータに出力する第1のインバータと、
     前記電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して補機に供給する第2のインバータを備え、
     前記コンバータ、前記第1のインバータおよび前記第2のインバータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記ディーゼルエンジンが起動中である場合、前記コンバータ、前記第1のインバータおよび前記第2のインバータの故障時に、前記発電機の接続先を前記コンバータから前記モータに切り替え、前記ディーゼルエンジンの回転数を制御して前記発電機が発電した交流電力を所望の交流電力に制御して前記モータを駆動する制御を行うことを特徴とする車両用制御装置。
  18.  前記制御部は、前記発電機の接続先を前記モータから前記補機に切り替え、前記ディーゼルエンジンの回転数を制御して前記発電機が発電した交流電力を所望の交流電力に制御して前記補機を駆動する制御を行うことを特徴とする請求項17に記載の車両用制御装置。
  19.  前記制御部は、前記コンバータ、前記インバータもしくは前記第1のインバータ、および前記第2のインバータの全てが故障状態に陥る前に、故障ではない前記コンバータ、前記インバータもしくは前記第1のインバータ、および前記第2のインバータのうちの何れか一つをコンバータとして動作させ、前記発電機を駆動して前記ディーゼルエンジンを始動しておく制御を行うことを特徴とする請求項17に記載の車両用制御装置。
  20.  ディーゼルエンジンと、
     車両を駆動するモータと、
     前記ディーゼルエンジンの出力により交流電力を発電する発電機と、
     直流電力を充放電する電力貯蔵装置と、
     前記発電機が発電した交流電力を直流電力に変換して出力するコンバータと、
     前記電力貯蔵装置が放電する直流電力または前記コンバータが出力する直流電力を交流電力に変換して前記モータを駆動するインバータと、
     前記コンバータおよび前記インバータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記インバータの故障時に、前記コンバータの接続先を前記発電機から前記モータに切り替える制御を行うことを特徴とするディーゼルハイブリッド車両システム。
  21.  前記ディーゼルエンジンと冷却装置との間に配設された高温側の冷却水管と低温側の冷却水管との間には、これら高温側および低温側の冷却水管のそれぞれに接して熱電発電素子が配設されていることを特徴とする請求項20に記載のディーゼルハイブリッド車両システム。
  22.  前記ディーゼルエンジンを含むディーゼルエンジンシステムは水冷アフタークーラー方式のエンジンシステムとして構成され、
     前記ディーゼルエンジンシステムの過給器とアフタークーラーとの間に配設された圧縮空気供給管と冷却水供給管との間には、これら圧縮空気供給管および冷却水供給管のそれぞれに接して熱電発電素子が配設されていることを特徴とする請求項20に記載のディーゼルハイブリッド車両システム。
  23.  前記ディーゼルエンジンを含むディーゼルエンジンシステムは空冷アフタークーラー方式のエンジンシステムとして構成され、
     前記ディーゼルエンジンシステムの過給器とアフタークーラーとの間に配設された圧縮空気供給管と、前記ディーゼルエンジンシステムのウォータポンプとラジエータとの間に配設された冷却水排出管との間には、これら圧縮空気供給管および冷却水排出管のそれぞれに接して熱電発電素子が配設されていることを特徴とする請求項20に記載のディーゼルハイブリッド車両システム。
PCT/JP2010/064508 2010-08-26 2010-08-26 車両用制御装置およびディーゼルハイブリッド車両システム WO2012026026A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080068761.0A CN103068654B (zh) 2010-08-26 2010-08-26 车辆用控制装置及柴油混合动力车辆***
KR1020137007509A KR101500886B1 (ko) 2010-08-26 2010-08-26 차량용 제어장치 및 디젤/하이브리드 차량 시스템
PCT/JP2010/064508 WO2012026026A1 (ja) 2010-08-26 2010-08-26 車両用制御装置およびディーゼルハイブリッド車両システム
EP10856430.3A EP2610125B1 (en) 2010-08-26 2010-08-26 Vehicle control device and diesel/hybrid vehicle system
US13/817,391 US8786116B2 (en) 2010-08-26 2010-08-26 Vehicle control device and diesel hybrid vehicle system
JP2011505271A JPWO2012026026A1 (ja) 2010-08-26 2010-08-26 車両用制御装置およびディーゼルハイブリッド車両システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064508 WO2012026026A1 (ja) 2010-08-26 2010-08-26 車両用制御装置およびディーゼルハイブリッド車両システム

Publications (1)

Publication Number Publication Date
WO2012026026A1 true WO2012026026A1 (ja) 2012-03-01

Family

ID=45723053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064508 WO2012026026A1 (ja) 2010-08-26 2010-08-26 車両用制御装置およびディーゼルハイブリッド車両システム

Country Status (6)

Country Link
US (1) US8786116B2 (ja)
EP (1) EP2610125B1 (ja)
JP (1) JPWO2012026026A1 (ja)
KR (1) KR101500886B1 (ja)
CN (1) CN103068654B (ja)
WO (1) WO2012026026A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2662978A1 (en) * 2012-05-09 2013-11-13 Hamilton Sundstrand Corporation Fault tolerant DC power systems
US8629644B2 (en) 2010-11-16 2014-01-14 Hamilton Sundstrand Corporation Fault tolerant DC power systems
JP2014011828A (ja) * 2012-06-28 2014-01-20 Hitachi Ltd 鉄道車両の駆動装置
WO2014027396A1 (ja) * 2012-08-13 2014-02-20 三菱電機株式会社 エンジンハイブリッド鉄道車両の推進制御装置
US20150108755A1 (en) * 2013-10-18 2015-04-23 Abb Technology Ag Auxiliary Power System for Turbine-Based Energy Generation System
JP2016526368A (ja) * 2013-05-17 2016-09-01 アーベーベー・テクノロジー・アーゲー 動力装置を駆動するための駆動ユニット
US9577557B2 (en) 2013-10-18 2017-02-21 Abb Schweiz Ag Turbine-generator system with DC output
US9614457B2 (en) 2013-10-18 2017-04-04 Abb Schweiz Ag Modular thyristor-based rectifier circuits
WO2018123917A1 (ja) * 2016-12-28 2018-07-05 株式会社東芝 鉄道車両用回路システム
WO2019104504A1 (zh) * 2017-11-29 2019-06-06 中车资阳机车有限公司 一种低排放高环保的双柴油发电机组调车机车动力源及其供电方法
WO2022201927A1 (ja) * 2021-03-26 2022-09-29 日立建機株式会社 ダンプトラックのドライブシステム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011104804T5 (de) * 2011-01-31 2013-10-31 Suzuki Motor Corporation Hybridfahrzeug
DE102011079566A1 (de) * 2011-07-21 2013-01-24 Robert Bosch Gmbh Verfahren zum Betreiben eines elektrischen Netzes und Vorrichtung zum Steuern eines elektrischen Netzes
US20140103724A1 (en) * 2012-10-15 2014-04-17 General Electric Company Bidirectional power system, operation method, and controller for operating
US9984094B2 (en) 2013-06-07 2018-05-29 Fision Holdings, Inc. Computerized sharing of digital asset localization between organizations
KR101484200B1 (ko) * 2013-06-12 2015-01-19 현대자동차 주식회사 하이브리드 자동차의 페일 세이프 제어장치 및 방법
US10020759B2 (en) * 2015-08-04 2018-07-10 The Boeing Company Parallel modular converter architecture for efficient ground electric vehicles
US10550816B2 (en) * 2016-02-17 2020-02-04 General Electric Company Start/stop system for vehicles and method of making same
US10005448B2 (en) 2016-03-22 2018-06-26 Ford Global Technologies, Llc Load based engine start-stop control
EP3696005A4 (en) * 2017-10-13 2021-07-14 Hitachi, Ltd. DRIVE CONTROL DEVICE AND ADJUSTMENT STRAND ASSEMBLED WITH THIS DRIVE CONTROL DEVICE
CN108081971A (zh) * 2018-01-31 2018-05-29 武汉征原电气有限公司 一种内燃机车列车供电***
KR102275137B1 (ko) * 2019-08-06 2021-07-08 현대오트론 주식회사 Obc를 이용하는 차량용 모터 제어 시스템 및 방법
JP2022156736A (ja) * 2021-03-31 2022-10-14 本田技研工業株式会社 車両、車両制御装置、車両制御プログラム及び車両制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341607A (ja) * 1998-05-22 1999-12-10 Fuji Electric Co Ltd 電気自動車の駆動システム
JP2004312863A (ja) 2003-04-07 2004-11-04 Hitachi Ltd 鉄道車両用電力変換器の制御装置
JP2005269705A (ja) * 2004-03-16 2005-09-29 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2009254013A (ja) * 2008-04-01 2009-10-29 Hitachi Ltd 鉄道車両の駆動装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309073A (en) * 1991-10-21 1994-05-03 Hitachi, Ltd. Electric vehicle control device
JP4063192B2 (ja) * 2003-10-23 2008-03-19 日産自動車株式会社 モータ駆動4wd車両の制御装置
JP4063199B2 (ja) * 2003-11-14 2008-03-19 日産自動車株式会社 モータ駆動4wd車両の制御装置
JP4647266B2 (ja) * 2004-09-08 2011-03-09 富士電機システムズ株式会社 インバータ装置、集積回路チップ及び車両駆動装置
JP4682740B2 (ja) * 2005-08-08 2011-05-11 トヨタ自動車株式会社 車両の電源装置
JP2008125258A (ja) * 2006-11-13 2008-05-29 Toyota Motor Corp 電力供給システム
US20080121136A1 (en) * 2006-11-28 2008-05-29 General Electric Company Hybrid locomotive and method of operating the same
WO2008136094A1 (ja) * 2007-04-24 2008-11-13 Mitsubishi Electric Corporation 電気駆動システムおよびハイブリット駆動システム
EP2008860B1 (en) * 2007-06-25 2015-06-17 Mazda Motor Corporation Control for hybrid electric vehicle
JP2009083583A (ja) * 2007-09-28 2009-04-23 Toyota Motor Corp 車両の制御装置
JP2011072117A (ja) * 2009-09-25 2011-04-07 Mitsubishi Heavy Ind Ltd 内燃機関システムおよび船舶

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341607A (ja) * 1998-05-22 1999-12-10 Fuji Electric Co Ltd 電気自動車の駆動システム
JP2004312863A (ja) 2003-04-07 2004-11-04 Hitachi Ltd 鉄道車両用電力変換器の制御装置
JP2005269705A (ja) * 2004-03-16 2005-09-29 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2009254013A (ja) * 2008-04-01 2009-10-29 Hitachi Ltd 鉄道車両の駆動装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8629644B2 (en) 2010-11-16 2014-01-14 Hamilton Sundstrand Corporation Fault tolerant DC power systems
EP2662978A1 (en) * 2012-05-09 2013-11-13 Hamilton Sundstrand Corporation Fault tolerant DC power systems
JP2014011828A (ja) * 2012-06-28 2014-01-20 Hitachi Ltd 鉄道車両の駆動装置
US9346363B2 (en) 2012-08-13 2016-05-24 Mitsubishi Electric Corporation Propulsion control apparatus of engine hybrid railroad vehicle
WO2014027396A1 (ja) * 2012-08-13 2014-02-20 三菱電機株式会社 エンジンハイブリッド鉄道車両の推進制御装置
JP2016526368A (ja) * 2013-05-17 2016-09-01 アーベーベー・テクノロジー・アーゲー 動力装置を駆動するための駆動ユニット
US20150108755A1 (en) * 2013-10-18 2015-04-23 Abb Technology Ag Auxiliary Power System for Turbine-Based Energy Generation System
US9334749B2 (en) * 2013-10-18 2016-05-10 Abb Technology Ag Auxiliary power system for turbine-based energy generation system
US9577557B2 (en) 2013-10-18 2017-02-21 Abb Schweiz Ag Turbine-generator system with DC output
US9614457B2 (en) 2013-10-18 2017-04-04 Abb Schweiz Ag Modular thyristor-based rectifier circuits
WO2018123917A1 (ja) * 2016-12-28 2018-07-05 株式会社東芝 鉄道車両用回路システム
WO2019104504A1 (zh) * 2017-11-29 2019-06-06 中车资阳机车有限公司 一种低排放高环保的双柴油发电机组调车机车动力源及其供电方法
WO2022201927A1 (ja) * 2021-03-26 2022-09-29 日立建機株式会社 ダンプトラックのドライブシステム
JP2022150448A (ja) * 2021-03-26 2022-10-07 日立建機株式会社 ダンプトラックのドライブシステム

Also Published As

Publication number Publication date
US8786116B2 (en) 2014-07-22
KR20130046442A (ko) 2013-05-07
JPWO2012026026A1 (ja) 2013-10-28
US20130154264A1 (en) 2013-06-20
CN103068654A (zh) 2013-04-24
EP2610125B1 (en) 2020-04-22
KR101500886B1 (ko) 2015-03-09
EP2610125A4 (en) 2017-01-18
CN103068654B (zh) 2015-10-07
EP2610125A1 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
WO2012026026A1 (ja) 車両用制御装置およびディーゼルハイブリッド車両システム
JP5253591B2 (ja) 車両用制御装置およびディーゼルハイブリッド車両システム
AU2008247961B2 (en) Propulsion system
JP5611345B2 (ja) 車載システム用の回路装置
US20160052383A1 (en) Hybrid electric vehicle
AU2008247963B2 (en) Electric drive vehicle retrofit system and associated method
US9073448B2 (en) Method of operating propulsion system
KR101144033B1 (ko) 하이브리드 차량의 모터 구동 시스템 제어 방법
JP5550788B2 (ja) ディーゼルハイブリッド車両システム
JP2006222087A (ja) ハイブリッド鉄道車両用二次電池装置
US9346363B2 (en) Propulsion control apparatus of engine hybrid railroad vehicle
JP2006340464A (ja) 電気車
JP2006014489A (ja) 電気車の電力変換装置
WO2014041695A1 (ja) ハイブリッド車両の推進制御装置
JP2004336833A (ja) 鉄道車両用電力変換器の制御装置
JP2007228777A (ja) 電源制御装置および車両
JP5656488B2 (ja) 車載電源装置
AU2014246607B2 (en) Method of operating propulsion system
JP4648431B2 (ja) 鉄道車両の駆動システム及び鉄道車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068761.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011505271

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13817391

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010856430

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137007509

Country of ref document: KR

Kind code of ref document: A