WO2012025973A1 - 多層光ディスクに対するデータ記録方法および光ディスク装置 - Google Patents

多層光ディスクに対するデータ記録方法および光ディスク装置 Download PDF

Info

Publication number
WO2012025973A1
WO2012025973A1 PCT/JP2010/005607 JP2010005607W WO2012025973A1 WO 2012025973 A1 WO2012025973 A1 WO 2012025973A1 JP 2010005607 W JP2010005607 W JP 2010005607W WO 2012025973 A1 WO2012025973 A1 WO 2012025973A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
data
optical disc
information recording
light power
Prior art date
Application number
PCT/JP2010/005607
Other languages
English (en)
French (fr)
Inventor
宏亮 重松
晴旬 宮下
義康 中山
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/132,159 priority Critical patent/US8400894B2/en
Priority to JP2011514908A priority patent/JPWO2012025973A1/ja
Publication of WO2012025973A1 publication Critical patent/WO2012025973A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1267Power calibration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • the present invention relates to a data recording method performed on a multilayer optical disc having a plurality of information recording layers.
  • the present invention also relates to an optical disk apparatus that executes this data recording method.
  • the data recorded on the optical disc is reproduced by irradiating a relatively weak light beam of constant intensity onto the rotating optical disc and detecting the reflected light modulated by the optical disc.
  • Information in the form of pits is recorded in advance spirally on the reproduction-only optical disc at the manufacturing stage of the optical disc.
  • a recording material film capable of optically recording / reproducing data is deposited by a method such as vapor deposition on the surface of a base material on which a track having a spiral land or groove is formed. It is done.
  • the optical disk When recording data on a rewritable optical disk, the optical disk is irradiated with a light beam whose light intensity is modulated according to the data to be recorded, thereby locally changing the characteristics of the recording material film, thereby writing the data. Do.
  • the pit depth, track depth, and recording material film thickness are smaller than the thickness of the optical disk substrate. Therefore, the portion of the optical disc on which the data is recorded constitutes a two-dimensional surface, and may be referred to as a "recording surface” or an "information surface".
  • a recording surface or an “information surface”.
  • information recording layer in view of the fact that such a surface has a physical size in the depth direction, instead of using the term "recording surface (information surface)", "information recording layer”
  • the optical disc has at least one such information recording layer.
  • One information recording layer may actually include a plurality of layers such as a phase change material layer and a reflective layer.
  • the crystalline phase change material layer is formed by irradiating the information recording layer with a light beam whose light intensity is modulated as described above.
  • An amorphous recording mark is formed. This amorphous recording mark is formed by rapid cooling after a portion of the information recording layer irradiated with the recording light beam rises to a temperature above the melting point.
  • the temperature of the recording mark irradiated with the light beam does not exceed the melting point, and returns to the crystalline state after rapid cooling (erasing of the recording mark). In this way, it is possible to rewrite the recording mark many times. If the magnitude of the light intensity (recording light power) of the light beam when recording data is inadequate, the shape of the recording mark may be distorted, making it difficult to reproduce the data.
  • the intensity of the reflected light at the time of reproduction changes depending on the presence or absence of the recording mark.
  • the optical characteristics (light reflectance and transmittance) of the recorded area are different from the optical characteristics of the area (unrecorded area) in which the data is not recorded.
  • focus control refers to the position of the objective lens in the normal direction of the information surface (hereinafter referred to as “the substrate depth direction” so that the position of the focal point (focusing point) of the light beam is always located on the information recording layer.
  • tracking control is to control the position of the objective lens in the radial direction of the optical disc (hereinafter referred to as “disc radial direction”) so that the spot of the light beam is positioned on a predetermined track.
  • an optical disc in which two information recording layers are stacked is put on the market, and a multilayer optical disc in which three or more information recording layers are stacked is being developed.
  • an optical disc in which N layers (N is an integer of 2 or more) are stacked will be referred to as a "multilayer optical disc”.
  • the optical disc apparatus When reproducing data from the target information recording layer of a multilayer optical disc or writing data into the target information recording layer, the optical disc apparatus aligns the focus position of the light beam on the target information recording layer, It is necessary to form a small light spot on the information recording layer. Since a plurality of information recording layers exist in one multi-layered optical disc, for example, when the focus position of the light beam is aligned with the information recording layer located farthest, the light beam passes through the information recording layer located in front. It will be.
  • the shape of the recording mark becomes inappropriate, and the rate of the reproduction error becomes high.
  • it is performed to record a plurality of data with different recording light powers in the test recording area of the information recording layer of the optical disc and reproduce the data.
  • an index such as a reproduction error is measured in the test recording area, and the recording light power indicating the most preferable value of the index is determined. Strictly speaking, such optimization of the recording light power is optimization of the “initial recording light power”.
  • the recording light power is more appropriately determined from the initial recording light power, for example, based on the ⁇ value described later. Can be corrected.
  • the processing performed by the optical disk device to determine the initial recording light power in the test recording area is referred to as optimum power control (OPC).
  • FIG. 1A is a view showing a multilayer optical disc 10, and FIG. 1B is a schematic cross-sectional view thereof.
  • the multilayer optical disc 10 shown in FIG. 1 includes a first information recording layer L0 located farthest from the disc surface 10a on which the light beam is incident, and a second information recording layer L1 closest to the disc surface 10a. ing.
  • the multilayer optical disc 10 is provided with a user data area in which user data is recorded, and a test recording area (PCA: Power Calibration Area) located on the inner peripheral side of the user area.
  • PCA Power Calibration Area
  • the multilayer optical disc 10 is also provided with a management area other than PCA, but is not shown in FIG. 1 for the sake of simplicity.
  • FIG. 2 is a view showing a part of the cross section of the multilayer optical disc 10 shown in FIG. 1 (b) in more detail.
  • the area a is an area (unrecorded area) in which data is not recorded in any of the information recording layers L0 and L1 in the PCA.
  • the area b is an area (unrecorded area) in which data is not recorded in any of the information recording layers L0 and L1 in the user data area.
  • the area c is an area (recorded area) in which data is recorded in the information recording layer L1 in the user data area.
  • the light transmittance of the region where data is recorded in the information recording layer L1 is different from the light transmittance of the region where data is not recorded.
  • the light transmittance of the area where data is recorded is lower than the light transmittance of the area where data is not recorded. For this reason, the light beam focused on the information recording layer L0 in the region c is transmitted through the portion where the light transmittance is relatively lowered in the information recording layer L1. As a result, the intensity of the light beam on the information recording layer L0 is lower in the area c than in the area b.
  • the amount of light that the light beam focused on the information recording layer L0 can be given to the information recording layer L0 is on the information recording layer L1 located in front of the information recording layer L0 (closer to the disk surface). It will change depending on whether or not the data is recorded.
  • FIG. 3 is a graph showing the relationship between the error rate and the recording light power when the data recorded in the information recording layer L0 is reproduced.
  • the horizontal axis of the graph is the recording light power (power), and the vertical axis is the error rate during reproduction (error rate of L0).
  • curves showing the results in the regions a and b which are unrecorded regions shown in FIG. 2 and curves showing the results in the region c which is the recorded region shown in FIG. 2 are described.
  • the error rate is minimized. That is, it is understood that it is preferable to set the recording light power to PWb in the unrecorded area (areas a and b).
  • the error rate is minimized when the recording light power is PWc. That is, in the recorded area (area c), it is preferable to set the recording light power to PWc larger than PWb.
  • the area c which is a recorded area it is preferable to write data with a recording light power higher than the recording light power for the areas a and b which are unrecorded areas.
  • the initial recording light power at the time of starting to record data is set to the optimum value (PWb in the example of FIG. 3) in the unrecorded area.
  • PWb the optimum value
  • correction of recording light power is performed based on the index indicating the waveform of the reproduction signal.
  • FIG. 4A is a view showing a cross section of the multilayer optical disc 10, and corresponds to FIG.
  • FIG. 4B is a diagram showing temporal transition due to the correction of the recording light power when the initial recording light power PWb starts recording data in the area b which is an unrecorded area.
  • FIG. 4C is a diagram showing a temporal transition due to the correction of the recording light power when the data is started to be recorded in the area c which is the recorded area with the initial recording light power PWb.
  • the recording light power is held at PWb which is the optimum value in the region b.
  • the correction is performed so that the recording light power increases toward the optimum value PWc in the region c.
  • the number of information recording layers provided in the multilayer optical disc increases, for example, when the information recording layer L0 located at the far end is in focus, the number of information recording layers located in front of it increases to 2 or more. . For this reason, in the recorded areas where data is recorded in the plurality of information recording layers positioned in front of them, the decrease in light transmittance becomes remarkable.
  • FIG. 5A is a schematic cross-sectional view of a multilayer optical disc provided with three information recording layers L0, L1, and L2.
  • FIG. 5B is a diagram showing temporal transition due to the correction of the recording light power when the initial recording light power PWb starts recording data in the area b which is an unrecorded area.
  • FIG. 5C is a diagram showing a temporal transition due to the correction of the recording light power when the data is started to be recorded in the area e which is the recorded area with the initial recording light power PWb.
  • the recording light power is corrected to increase toward the optimum value PWe in the region e, but a longer time is required to reach the optimum value PWe. It is thought that there is. The reason is that, in the area e, since data are recorded in both of the two information recording layers L1 and L2, the degree of decrease in light transmittance due to them is large, and the optimum value PWe of the recording light power in the area e is This is because there is a possibility that they are significantly different from the optimum value PWb of the recording light power in the regions a and b.
  • Patent Document 1 discloses a technique of performing OPC using PCA for each of the possible combinations of the recorded area and the unrecorded area.
  • Patent Document 2 determines the recorded area or unrecorded area by managing the addresses of the recorded area and the unrecorded area in addition to the disclosed contents of Patent Document 1, and the initial recording is performed according to the judgment result. A technique for changing the optical power is disclosed.
  • Patent Document 1 According to the technique of Patent Document 1, many parts are consumed for test recording in PCA, and the time required for test recording also increases. These have the problem that they increase geometrically as the number of layers of the optical disk increases.
  • Patent Documents 1 and 2 both have problems and are not practical. Therefore, the inventor did not seek the best recording characteristics as a concept not disclosed in either of Patent Documents 1 and 2, but considered that it would be acceptable if the recording characteristics could be guaranteed within an acceptable range. That is, the first initial optimum recording light power for recording data under the condition where data is not written in all other information recording layers in the multilayer optical disk, and the data is written in all other information recording layers in the multilayer optical disk
  • the initial recording light power is determined so as to be located between the second initial optimum recording light power for recording data under the situation where the data is recorded, and after the initial recording using the initial recording light power,
  • the concept of dynamically changing the recording light power is adopted accordingly. According to this concept, PCA is not increased according to the number of layers of the optical disc, and the recording characteristics can be guaranteed within an allowable range regardless of whether the other layer is a recorded area or an unrecorded area.
  • the present invention has been made to solve the above-mentioned problems, and its main purpose is to correspond to the position where the data is recorded and the thickness direction when the data is recorded in the user data area, and to the data
  • the present invention provides a data recording method that can be promptly corrected to the optimum size regardless of whether the position in the other information recording layer located in front of the information recording layer on which the information is recorded is within the recorded area or the unrecorded area. It is.
  • Another object of the present invention is to provide an optical disc apparatus which executes the data recording method.
  • a data recording method is a data recording method for recording data on a multilayer optical disc provided with a plurality of information recording layers having N layers (N is an integer of 2 or more).
  • Step k for determining the number of information recording layers provided in the optical disc loaded in the optical disc device, where k is the kth information recording layer (k is an integer satisfying 1 ⁇ k ⁇ N);
  • X is an integer of 2 or more
  • data is stored in the test recording area in the m-th information recording layer (m is an integer satisfying 1 ⁇ m ⁇ X ⁇ 1) on which test recording is performed.
  • the step B of determining the temporary initial recording light power, the target information recording layer for recording the data, the correction coefficient is selected according to the information recording layer, and the selected correction
  • the provisional first based on the factor Comprising a step C of determining the initial recording optical power of the recording light power is corrected, and a step D to start recording data on the target information recording layer in the initial recording light power.
  • the step B satisfies an m-th information recording layer (m satisfies 1 ⁇ m ⁇ X ⁇ 1) on which test recording is performed. Data is recorded in an unrecorded area in which data is not written in all the information recording layers from the (m + 1) th information recording layer to the Xth information recording layer among the test recording areas in the integer). A tentative initial recording light power is determined.
  • the step C selects the correction coefficient depending on the type of the optical disk loaded in addition to the information recording layer of the target information recording layer.
  • correction coefficient information in which the value of the correction coefficient is given for each type of multilayer optical disk is recorded in the memory of the optical disk device.
  • the initial recording light power determined in the step C is larger than the provisional initial recording light power in the case of a light transmittance reduced type multilayer optical disc.
  • the method further includes the step of changing the recording light power from the initial recording light power as needed based on the signal waveform obtained from the optical disc.
  • the recording light power is adjusted so that the ⁇ value indicating the symmetry of the signal amplitude related to the average value of the reproduction signal obtained from the optical disc approaches the target ⁇ value.
  • the method further includes the step of correcting.
  • m 1.
  • An optical disc apparatus is an optical disc apparatus for recording data on a multilayer optical disc comprising a plurality of information recording layers having N layers (N is an integer of 2 or more), and optically accesses the multilayer optical disc
  • An optical pickup a memory for storing correction coefficient information to which a correction coefficient value is given for each type of multilayer optical disc for each information recording layer included in each multilayer optical disc supported by the optical disk device, and loaded multilayer After performing test recording of data in a test recording area in a certain information recording layer included in an optical disc and determining a tentative initial recording light power, what number information recording layer is the target information recording layer for recording data? Select the correction coefficient from the memory according to the correction, and correct the provisional initial recording light power based on the selected correction coefficient. And a recording processing unit for determining the period recording optical power.
  • the present invention when data is recorded in the user data area, another information recording layer corresponding to the position where the data is recorded and the thickness direction and located in front of the information recording layer in which the data is recorded It is possible to provide a data recording method that can be corrected to the optimum size promptly regardless of whether the position in the recording area is within the recorded area or the unrecorded area.
  • FIG. 1 (A) is a figure which shows the multilayer optical disk 10
  • (b) is the cross-sectional schematic diagram. It is a figure which shows a part of cross section of the multilayer optical disk 10 shown in FIG.1 (b) in more detail. It is a graph which shows the relationship between the error rate at the time of reproducing
  • the horizontal axis of the graph is the recording light power (power), and the vertical axis is the error rate at the time of reproduction (error rate of the information recording layer L0).
  • FIG. 7 is a diagram showing a temporal transition due to the correction of the recording light power when the recording of data is started.
  • (A) is a schematic cross-sectional view of a multilayer optical disc provided with three information recording layers L0, L1, and L2,
  • (b) is an unrecorded area of the information recording layer L1 and the information recording layer L2 at an initial recording light power PWb
  • region b, (c) is the information recording layer L1 and the information recording layer L2 by initial recording light power PWb.
  • region e which is a recorded area, (d) is with information recording layer L1 by initial recording light power PWmid.
  • region, (e) is initial recording light power PWmid.
  • information recording layer L1 It is a timing chart showing a sequence by the correction of the recording light power when the broadcast recording layer L2 begins to record data on the information recording layer L0 of the region e is recorded area.
  • (A) is a schematic cross-sectional view of a multilayer optical disc provided with three information recording layers L0, L1, L2,
  • (b) is an error when data recorded in the information recording layer L0 is reproduced in the case of a three-layer optical disc It is a graph which shows the relationship between a rate and recording light power.
  • (A) is a schematic cross-sectional view of a multilayer optical disc provided with three information recording layers L0, L1 and L2 in which the light transmittance of the recorded area is higher than the light transmittance of the unrecorded area; (b) is this three-layer It is a graph which shows the relationship between the error rate at the time of reproducing
  • (A) is a schematic cross-sectional view of a multilayer optical disc provided with four information recording layers L0, L1, L2, and L3, and (b) is a case where data recorded in the information recording layer L0 in the case of a four-layer optical disc is reproduced.
  • FIG. 7 is a diagram showing an example of changes in the ⁇ value, recording light power, and error rate when data is recorded in the regions e, b, c, d, e, b in the embodiment of the present invention.
  • the ⁇ value, recording light power, and error rate in the case of recording data in the regions e ′, b ′, c ′, d ′, e ′, b ′ relatively lower in sensitivity than PCA It is a figure which shows an example of a change of.
  • the data recording method of the present invention is a method of recording data on a multilayer optical disc provided with a plurality of information recording layers in which the number of layers is N (N is an integer of 2 or more).
  • N is an integer of 2 or more.
  • the k-th (k is an integer satisfying 1 ⁇ k ⁇ N) information recording layer from the information recording layer on the innermost side (position far from the light incident surface) of the multilayer optical disc is used as the k-th information recording layer.
  • the information recording layer L0 is the "first information recording layer”
  • the information recording layer L1 is the "second information recording layer”.
  • test recording area in the m-th information recording layer (m is an integer satisfying 1 ⁇ m ⁇ X ⁇ 1) on which test recording is performed
  • an area in which data is not written in all the information recording layers from the (m + 1) th information recording layer to the X-th information recording layer is referred to as “unrecorded area”.
  • the information recording layer on which test recording for OPC is performed is the “first information recording layer” located at the far end, but the present invention is not limited to this example.
  • test recording for OPC may be performed in the second information recording layer, or test recording for OPC may be performed in each information recording layer.
  • an intermediate value (PWmid) of the recording light power in the area b and the area e is used as the initial recording light power. Therefore, in any of the area b and the area e, after the start of data recording, correction to the optimum power is required based on, for example, the ⁇ value. However, it becomes possible to reduce the time required to complete such correction.
  • the correction based on the ⁇ value is sometimes referred to as running optimum power control (ROPC) to distinguish it from the OPC performed in PCA.
  • the initial recording light power at the start of the above data recording can be obtained by multiplying the “provisional initial recording light power” by a correction coefficient to be described later.
  • the light intensity of the light beam is not constant but changes like a pulse.
  • the type of pulse waveform used to form the recording mark is determined by the write strategy.
  • the “recording light power” in the present specification means the peak value of each pulse constituting the recording light beam. The peak value of each pulse is common to one recording mark.
  • FIG. 6 relates to an optical transmission reduced type optical disc in which the light transmission of the recorded area is lower than the light transmission of the unrecorded area.
  • FIG. 6 (a) is a diagram corresponding to FIG. 5 (a)
  • FIG. 6 (b) is an error rate when data recorded in the non-information recording layer L0 is reproduced in the case of a three-layer optical disc. It is a graph which shows a relation with recording light power.
  • the error rate becomes the minimum value when the recording light power is PWb.
  • the error rate becomes the minimum value when the recording light power is PWe.
  • the minimum value of the error rate is the level R1.
  • the error rate at the time of reproduction reaches the level R2.
  • the error rate at the time of reproduction reaches the level R2. If the level R2 exceeds the reproduction limit, the data recording is performed in a state where the reproduction can not be normally performed when the data recording is started.
  • the curves showing the results in the regions a and b have the same shape as the curves showing the results in the region e for the sake of simplicity, but the actual curves are different. Also good. In that case, the local minimum of the curve showing the result in the regions a, b is not equal to the local minimum of the curve showing the result in the region e.
  • the correction coefficient is a numerical value larger than one.
  • the difference between the initial value and the optimum value of the recording light power that is, the value of “PWe-PWmid” or “PWmid-PWb” is “PWe-PWb”. It is smaller than enough. Therefore, it also becomes possible to shorten the time required for the subsequent correction based on the ⁇ value.
  • FIG. 5 (c) is compared with FIGS. 5 (d) and 5 (e).
  • FIGS. 5D and 5E even when data is recorded in any of the areas b and e, correction based on the ⁇ value is necessary, but the time required for the correction is shown in FIG. 5C. It won't be too long like the example.
  • FIG. 7 relates to a light transmittance increasing type optical disc in which the light transmittance of the recorded area is higher than the light transmittance of the unrecorded area.
  • FIG. 8A schematically shows a cross section of a four-layer disc, and relates to an optical transmission reduced type optical disc.
  • data is recorded in three information recording layers L1, L2, and L3.
  • FIG. 8 (b) is a graph showing the relationship between the error rate and the recording light power when data recorded in the information recording layer L0 is reproduced in the case of a four-layer optical disc, which is an area a which is an unrecorded area, A curve showing the result in b and a curve showing the result in the area f which is a recorded area are described.
  • FIG. 9 is a table showing an example of the correction coefficient.
  • the correction coefficients are set to different values.
  • the value of the correction coefficient also changes depending on how many information recording layers are present before the information recording layer for which data is to be recorded. For example, in the case of a BD-R triple-layer disc manufactured by company A, when recording data in the information recording layer L0, the correction coefficient is 1.30, but data is recorded in the information recording layer L1 of the same optical disc The correction factor is 1.15. The reason is as follows.
  • the correction coefficient when recording data in the X-th information recording layer may be 1.
  • the correction factor depends on the type of multilayer optical disc including the above-described disc type, it is necessary to determine the correction factor for each different type of optical disc in advance. For this purpose, test recording is performed on a plurality of optical disks of different types, and the relationship between the index (for example, error rate or jitter) of the reproduced signal and the recording light power is measured. It is necessary to determine PWb. Furthermore, the correction coefficient (PWmid / PWb) is calculated by determining PWmid for each information recording layer of the optical disc. Thus, for example, data of the correction coefficient shown in FIG. 9 can be obtained. The magnitude of PWmid may be determined by, for example, two curves as shown in FIG.
  • PWmid does not necessarily have to be equal to (PWb + PWe) / 2, and may be between minimum values PWb and PWe.
  • the data of the correction coefficient is preferably stored in a memory included in the optical disk device.
  • the correction coefficient stored in the memory of the optical disc drive can be updated, for example, via communication and broadcasting, for an optical disc that is to be newly manufactured after the optical disc drive is purchased by the user.
  • the correction coefficient for each optical disc may be recorded on the optical disc itself. In that case, the optical disk apparatus may read out the data of the correction coefficient from the loaded optical disk and calculate the initial recording light power using the correction coefficient.
  • the optical disk apparatus in the preferred embodiment of the present invention determines the type of the optical disk loaded in the optical disk apparatus in order to appropriately select the “correction coefficient” used when calculating PWmid from PWb. Then, the correction coefficient most suitable for the optical disc is read out from a memory in which data as shown in FIG. 9 is recorded, for example. If there is no corresponding disk in the memory, the disk is updated at that time, or the correction coefficient of the disk having the same number of recording layers is substituted.
  • the type of the optical disc may be determined by any known method, but the type of the optical disc may be determined by reading disc information from the management area of the reference layer (for example, the information recording layer L0).
  • FIG. 10 is a graph schematically showing the waveform of a reproduction signal (RF signal) obtained from the area where data is recorded.
  • the ⁇ value is represented by (P ⁇ B) / (P + B).
  • P> B the upper and lower symmetries with respect to the average value A, the closer to zero the ⁇ value.
  • P> B the ⁇ value is positive. If P ⁇ B, the ⁇ value is negative.
  • the recording light power is corrected from the initial setting value (PWmid) to another value using the ⁇ value as an index.
  • This correction changes the recording light power so as to reduce the ⁇ value when the ⁇ value is larger than ⁇ _best.
  • the recording light power is changed so as to increase the ⁇ value.
  • the correction of the recording light power is performed so that the ⁇ value becomes approximately equal to ⁇ _best.
  • Such correction of recording light power is performed in the process of recording user data in the user data area.
  • FIG. 11 is a graph corresponding to FIG. In FIG. 11, the lower limit PWlow and the upper limit PWhigh which define the range of the recording light power at which the error rate is equal to or less than the reproduction limit are described. Also, the error rates b_PWb and e_PWb at the optimum value PWb of the recording light power in the unrecorded area, the error rates e_PWe and b_PWe at the optimum value PWe of the recording light power in the recorded area, and the error rate e_PWmid at the intermediate value PWmid of both recording light powers , B_PWmid are also shown.
  • the PWmid may be set equal to the average value of the recording light powers PWlow and PWhigh which become the reproduction limit.
  • PWmid an average value of the recording light powers PWlow and PWhigh, which become the reproduction limit.
  • the intermediate value does not have to be an average value in a strict sense, and is preferably a value as far as possible from both the upper limit value and the lower limit value of the recording light power as the reproduction limit.
  • the left part of the curve in FIG. 11 is sharp and the right part has a gentle shape, recording data in area e with the recording light power of the average value of PWb and PWe may exceed the reproduction limit. Becomes higher.
  • the average value of PWlow and PWhigh is set to Pmid and data is recorded with the recording light power of that size, it becomes easy to realize reproducible recording in both the area b and the area e.
  • the setting of PWmid is performed in advance for each optical disc. That is, for various optical disks, the relationship between the recording light power and the error rate needs to be obtained by measurement in both the unrecorded area and the recorded area.
  • the test recording may be performed only in the unrecorded area in the PCA of the optical disc. That is, in the OPC, the PWmid can be obtained by multiplying the PWb obtained in the unrecorded area by the correction coefficient.
  • the method of obtaining PWmid is not limited to the case of multiplying PWb by the correction coefficient.
  • the PWe may be obtained in the recorded area of the PCA, and the PWmid may be calculated from the PWe. In that case, the value of PWmid / PWe is obtained in advance as a correction coefficient, and stored in the memory.
  • FIG. 12 is a graph schematically showing the relationship between the ⁇ value and the recording light power.
  • the straight line which shows the relation in field a and b and the straight line which shows the relation in field e are described.
  • the ⁇ value is equal to ⁇ _best when the recording light power is PWb
  • the ⁇ value is equal to ⁇ _best when the recording light power is PWe.
  • the ⁇ value increases as the recording light power increases. This is because B in FIG. 10 tends to decrease as the recording light power increases.
  • ⁇ _b_PWlow and ⁇ _e_PWhigh which are ⁇ values at the time of the regeneration limit, are also shown.
  • the optical disk apparatus of the present embodiment includes an optical head 11 for optically accessing the optical disk 10, a front end processor (FEP) 20 connected to the optical head, and a laser drive circuit 30.
  • FEP front end processor
  • the optical disc 10 is a recordable optical disc. Examples of such optical disks include BE-R and BD-RE.
  • the optical disc 10 is rotated by a motor (not shown), and then the optical head 11 emits a light beam to the optical disc 10.
  • the optical head 11 includes a laser light source (not shown) that emits a light beam and a light detector (not shown) that receives the reflected light from the optical disk 10.
  • the FEP 20 receives a signal output from the optical head 11 and performs amplification and waveform equalization on this signal.
  • the FEP 20 outputs the processed analog signal to the reproduction processing unit 21.
  • the reproduction processing unit 21 converts an analog signal received from the FEP 20 into a digital signal.
  • the decoder 22 reproduces and outputs user data (for example, video data) recorded on the optical disc 10 by demodulating the digital signal received from the reproduction processing unit 21.
  • the laser drive circuit 30 drives the laser light source in the optical head 11 according to the recording waveform received from the recording processing unit 31 and causes the optical head 11 to emit a light beam.
  • the recording processing unit 31 receives a recording signal from the encoder 32 and sets a recording waveform.
  • the encoder 32 receives data to be recorded (for example, video data), modulates the data to generate an encoded recording signal, and inputs the generated recording signal to the recording processing unit 31. Do.
  • the target ⁇ value storage memory 23 receives the target ⁇ value obtained by test recording after the OPC from the reproduction processing unit 21 and holds it.
  • the target ⁇ value is used for laser power correction during the recording operation.
  • the optical disk apparatus of the present embodiment includes a target ⁇ value storage memory 23 and a correction coefficient storage memory 33.
  • the target ⁇ value storage memory 23 receives the target ⁇ value obtained by test recording after OPC from the reproduction processing unit 21 and holds it. As described above, this target ⁇ value is used to correct the recording light power during recording of user data.
  • the correction coefficient storage memory 33 stores the correction coefficient of the initial recording light power. The correction coefficient may be stored in the correction coefficient storage memory 33 as data shown in the table of FIG. 9 described above.
  • the recording processing unit 31 receives the correction coefficient of the initial recording light power from the correction coefficient storage memory 33, and sets the initial recording light power.
  • the FEP 20 has means for detecting the average value A and the amplitudes B and P necessary for the ⁇ value calculation shown in FIG.
  • the reproduction processing unit 21 uses the average value A and the amplitudes B and P detected by the FEP 20 to calculate the ⁇ value as described above. Then, when recording user data, the recording processing unit 31 corrects the recording waveform based on the ⁇ value (ROPC).
  • the optical disk apparatus of the present embodiment is different from the conventional optical disk apparatus in that the correction coefficient necessary for determining the initial recording light power is stored in the memory, but the other components are It may be similar to the components of the conventional optical disc.
  • step ST1 when an optical disc is loaded into the optical disc device, disc discrimination is executed.
  • the optical disc having the three information recording layers as shown in FIG. 6 is loaded.
  • the disc information is read from the management area of the information recording layer L0 in a state where the information recording layer L0 is in focus, and the type of the loaded optical disc is grasped thereby.
  • the management area for example, the total number of layers of the manufacturer and the information recording layer is obtained.
  • step ST2 OPC is performed by PCA of the information recording layer L0.
  • test recording is performed in an area (unrecorded area) in which data is not recorded in all the information recording layers present before the information recording layer L0.
  • test recording of data is performed while changing the magnitude of the recording light power in multiple steps. As a result, the recording light power PWb with the smallest error rate can be obtained.
  • step ST3 the data recorded using the recording light power PWb is reproduced to obtain a target ⁇ value ( ⁇ _best).
  • the relationship between the ⁇ value and the recording light power using the beta value obtained by reproducing the data recorded using the recording light power other than the recording light power PWb and the target ⁇ value described above (for example, FIG. The straight line of the region a at 12 is also determined.
  • step ST4 the correction coefficient is read out from the correction coefficient storage memory 33 of FIG. 13 according to the type of disk obtained by disk discrimination and the information recording layer to be recorded. Then, in step ST5, a value (correction power) obtained by multiplying the optimum value PWb of the recording light power in the regions a and b by the correction coefficient is calculated. In step ST6, this correction power is set as the initial recording light power.
  • FIG. 14B is a flowchart showing an example of a conventional power setting method for reference.
  • steps ST20 to 22 are the same as steps ST1 to 3, and when the power setting is performed in step ST23 after obtaining the target ⁇ value, the optimum of the recording light power in the area a obtained by test recording The value PWb is set as the initial recording light power.
  • the measured ⁇ value is compared with the target ⁇ value. Then, if the measured ⁇ value is larger than the target ⁇ value, the recording light power is decreased, and conversely, if the measured ⁇ value is smaller than the target ⁇ value, the recording light power is increased.
  • the difference .DELTA..beta. Between the measured .beta. Value and the target .beta. Value is known from the slope of the straight line shown in FIG. 12 the change amount .DELTA.PW of the recording light power is calculated from the slope of the straight line shown in FIG. be able to. That is, if the slope of the straight line in FIG.
  • the recording light power may be increased or decreased by ⁇ / h.
  • the recording light power instead of changing the recording light power by ⁇ / h at one time, data is recorded with the recording light power changed by 0.8 ⁇ ⁇ / h (steps ST14 and ST15). Then, when reproducing the data recorded in that state, the ⁇ value is measured, and the recording light power is changed again by 0.8 ⁇ ⁇ / h.
  • the recording light power can be reliably optimized in the range not exceeding the reproduction limit.
  • step ST11 After recording data in this manner, the recording position is confirmed. Then, when the recording end position is reached in step ST11, the data recording is ended. If the recording end position has not been reached, the above operation is repeated.
  • the sensitivity to the recording light power of the information recording layer may differ depending on the location.
  • FIG. 16 schematically shows a cross section of an optical disk of reduced light transmittance type in which the sensitivity decreases from the inner peripheral side to the outer peripheral side of the disk.
  • Regions b ', c', d 'and e' correspond to the regions b, c, d and e, respectively, but their sensitivities are relatively lowered.
  • FIGS. 17 and 18 FIG. 17 is a graph showing the relationship between the error rate and the recording light power in the regions a, b, b ', e and e'.
  • FIG. 18 is a graph showing the relationship between the ⁇ value and the recording light power in the regions a, b, b ', e, e'.
  • the recording light power for achieving the same error rate or ⁇ value is relatively large compared to the regions b and e. This is because the sensitivity of the regions b 'and e' is relatively low, and a larger recording light power is required to realize the same state.
  • the initial recording light power is determined by test recording in the area a having the same sensitivity as the area b.
  • PWmid PWb ⁇ correction coefficient
  • the error rate in area e ′ is e′_PWmid, as can be seen from FIG. Become.
  • the initial recording light power is set to PWb and data recording is started in the area e 'as in the conventional case, in the example of FIG. 17, the error rate in the area e' exceeds the reproduction limit e ' It will reach _PWb.
  • the present embodiment even when the data recording is started in a region where the sensitivity is relatively low, the possibility that the error rate exceeds the reproduction limit can be reduced.
  • the areas for recording data are changed in the order of areas e, b, c, d, e, b.
  • the area for starting data recording is the area e
  • the initial recording light power is PWmid.
  • the ⁇ value in the region e is smaller than ⁇ _best, for example, as shown in FIG.
  • the ⁇ value is measured, and the correction ( ⁇ correction) of the recording light power is executed based on the difference between the measured ⁇ value and the target ⁇ value.
  • the recording light power rises from PWmid to a level close to PWe by the ⁇ correction performed first.
  • the error rate decreases and the ⁇ value can approach ⁇ _best.
  • the recording light power in the area e approaches the optimum value PWe in the area e.
  • the recording light power approaching the optimum value PWe in the area e has a value separated from the optimum value PWb in the area b. Therefore, in the region b, the ⁇ value of the data recorded with the recording light power of the PWe rises to ⁇ _b_PWe larger than the target ⁇ value ⁇ _best.
  • the error rate approaches the reproduction limit.
  • the recording light power can eventually approach PWb, which is the optimum value in the region b.
  • the recording light power is optimized even if the data recording area changes from area b ⁇ area c ⁇ area d ⁇ area e ⁇ area b. It runs quickly.
  • FIG. 20 corresponds to FIG. 19, but differs in that the area in which data is recorded changes in the order of areas e ', b', c ', d', e ', b'. .
  • FIG. 20 not only the optimum values PWb 'and PWe' of the recording light power in the regions b 'and e' but also the optimum values PWb and PWe of the recording light power in the regions b and e are shown for comparison. .
  • the error rate does not exceed the reproduction limit even when the data recording is started in the low sensitivity region e ′ first. It is possible to quickly approach the optimum value by ⁇ correction.
  • the operation after the region e is basically as described with reference to FIG. 19, but the recording light power determined by the ⁇ correction is adjusted to a level higher than the level shown in FIG. This is to compensate for the low sensitivity with a stronger recording light power.
  • the error rate may exceed the reproduction limit. According to this, it is possible to reduce the possibility sufficiently.
  • data is recorded in the information recording layer L0, but when data is recorded in the information recording layer L1, the correction coefficient that was in the information recording layer is read from the memory, and the provisional initial recording light
  • the initial recording light power can be calculated by multiplying the power.
  • the correction coefficient may be set to 1 when data is recorded on the information recording layer L2 in the information recording layer located at the foremost position and on the three-layer optical disc.
  • information is recorded in PCA when recording is performed, for example, on the information recording layer L0 of the light transmittance decreasing type or light transmittance increasing type multilayer optical disc having the number of layers N (N is an integer of 2 or more).
  • N is an integer of 2 or more.
  • the test recording of data was performed in the unrecorded area where data is not written in all the information recording layers from the recording layer L1 to the information recording layer L (N-1), and the provisional initial recording light power (PWb) was determined.
  • the initial recording light power (PWmid) can be calculated by multiplying the temporary recording light power (PWe) temporarily with the correction coefficient (PWmid / PWe). Also, instead of the intermediate value between PWb and PWe, a value between PWlow and PWhigh may be adopted as the correction coefficient.
  • the present invention can be widely applied to an optical disc apparatus which records computer data and / or video / sound data on a multilayer optical disc such as BD-R or BD-RE.
  • optical disc 11 optical head (optical pickup) 20 Front End Processor (FEP) 21 reproduction processing unit 22 decoder 30 laser drive circuit 31 recording processing unit 32 encoder

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 本発明は、層数がN(Nは2以上の整数)である複数の情報記録層を備える多層光ディスクにデータを記録するデータ記録方法である。多層光ディスクの最も奥側からk番目(kは、1≦k≦Nを満たす整数)の情報記録層を第kの情報記録層とする。この方法は、光ディスク装置に装填された光ディスクが備える情報記録層の層数を求めるステップA(ディスク判別)と、層数がXであるとき(Xは2以上の整数)、第mの情報記録層(mは、1≦m≦X-1を満たす整数)におけるテスト記録領域にデータのテスト記録を行い、仮の初期記録光パワーを決定するステップB(OPC実行)と、データを記録する目的情報記録層が何番目の情報記録層であるかに応じて補正係数を選択し、選択した補正係数に基づいて前記仮の初期記録光パワーを補正して初期記録光パワーを決定するステップCと、初期記録光パワーで前記目的情報記録層にデータを記録し始めるステップDとを含む。

Description

多層光ディスクに対するデータ記録方法および光ディスク装置
 本発明は、複数の情報記録層を備える多層光ディスクに対して行うデータ記録方法に関している。また、本発明は、このデータ記録方法を実行する光ディスク装置に関している。
 光ディスクに記録されているデータは、比較的弱い一定強度の光ビームを回転する光ディスクに照射し、光ディスクによって変調された反射光を検出することによって再生される。再生専用の光ディスクには、光ディスクの製造段階でピットによる情報が予めスパイラル状に記録されている。これに対して、書き換え可能な光ディスクでは、スパイラル状のランドまたはグルーブを有するトラックが形成された基材表面に、光学的にデータの記録/再生が可能な記録材料膜が蒸着等の方法によって堆積されている。書き換え可能な光ディスクにデータを記録する場合は、記録すべきデータに応じて光強度変調した光ビームを光ディスクに照射し、それによって記録材料膜の特性を局所的に変化させることによってデータの書き込みを行う。
 ピットの深さ、トラックの深さ、および記録材料膜の厚さは、光ディスク基材の厚さに比べて小さい。このため、光ディスクにおいてデータが記録されている部分は、2次元的な面を構成しており、「記録面」または「情報面」と称される場合がある。本明細書では、このような面が深さ方向にも物理的な大きさを有していることを考慮し、「記録面(情報面)」の語句を用いる代わりに、「情報記録層」の語句を用いることとする。光ディスクは、このような情報記録層を少なくとも1つ有している。なお、1つの情報記録層が、現実には、相変化材料層や反射層などの複数の層を含んでいてもよい。
 記録可能な光ディスク又は書き換え可能な光ディスクでは、情報記録層にデータを記録するとき、上述のように光強度を変調した光ビームを情報記録層に照射することより、結晶質の相変化材料層に非晶質の記録マークを形成する。この非晶質の記録マークは、記録用光ビームの照射を受けた情報記録層の一部が融点以上の温度に上昇した後、急速に冷却されることによって形成される。光ビームを記録マークに照射するときの光強度を低めに設定すると、光ビームが照射された記録マークの温度は融点を超えず、急冷後に結晶質に戻る(記録マークの消去)。こうして、記録マークの書き換えを何度も行うことが可能になる。データを記録するときの光ビームの光強度(記録光パワー)の大きさが不適切であると、記録マークの形状が歪み、データを再生することが難しくなることがある。
 非晶質の記録マークにおける反射率は、周りの結晶質部分の反射率と異なるため、再生時の反射光の強度が記録マークの有無に応じて変化する。データが記録されている領域(記録済み領域)には、記録すべきデータの内容に応じて異なる長さを有する記録マークおよびスペースの列が存在している。このため、記録済み領域の光学特性(光の反射率および透過率)は、データが記録されていない領域(未記録領域)の光学特性とは異なるものとなる。
 光ディスクに記録されているデータを再生するとき、または、記録可能な光ディスクにデータを記録するとき、光ビームが情報記録層における目標トラック上で常に所定の集束状態となる必要がある。このためには、「フォーカス制御」および「トラッキング制御」が必要となる。「フォーカス制御」は、光ビームの焦点(集束点)の位置が常に情報記録層上に位置するように対物レンズの位置を情報面の法線方向(以下、「基板の深さ方向」と称する場合がある。)に制御することである。一方、トラッキング制御とは、光ビームのスポットが所定のトラック上に位置するように対物レンズの位置を光ディスクの半径方向(以下、「ディスク径方向」と称する。)に制御することである。
 上述したフォーカス制御およびトラッキング制御を行うためには、光ディスクから反射される光に基づいて、フォーカスずれやトラックずれを検知し、そのずれを縮小するように光ビームスポットの位置を調整することが必要である。フォーカスずれおよびトラックずれの大きさは、それぞれ、光ディスクからの反射光に基づいて生成される「フォーカス誤差(FE)信号」および「トラッキング誤差(TE)信号」によって示される。
 近年、2層の情報記録層が積層された光ディスクが市場に投入され、3層以上の情報記録層が積層された多層光ディスクが開発されつつある。本明細書では、N層(Nは2以上の整数)が積層された光ディスクを「多層光ディスク」と称することとする。
 多層光ディスクの目的とする情報記録層からデータを再生するとき、あるいは、目的とする情報記録層にデータを書き込むとき、光ディスク装置は、目的とする情報記録層上に光ビームのフォーカス位置を合わせ、その情報記録層上に小さな光スポットを形成する必要がある。1つの多層光ディスクには複数の情報記録層が存在するので、光ビームのフォーカス位置を例えば最も奥に位置する情報記録層に合わせると、その光ビームは、手前に位置する情報記録層を透過することになる。
 データを書き込むときの光ビームの強度(記録光パワー)を最適化しないと、前述したように、記録マークの形状が不適当なものとなるため、再生エラーのレートが高くなる。記録光パワーの最適化を行うためには、光ディスクが備える情報記録層のテスト記録領域に異なる記録光パワーで複数のデータを記録し、これらのデータを再生してみることが行われる。こうして、テスト記録領域で再生エラーなどの指標が測定され、指標が最も好ましい値を示す記録光パワーを決定することが行われる。このような記録光パワーの最適化は、厳密には、「初期記録光パワー」の最適化である。上記の方法で決定された初期記録光パワーでユーザ領域におけるデータの記録が開始された後、記録光パワーは、例えば後述するβ値に基づいて、初期記録光パワーから、随時、より適正なレベルに補正され得る。本明細書では、テスト記録領域で初期記録光パワーを決定するために光ディスク装置が行う処理を、オプティマム・パワー・コントロール(Optimum Power Control:OPC)と称する。
 図1(a)は、多層光ディスク10を示す図であり、図1(b)は、その断面模式図である。図1に示される多層光ディスク10は、光ビームが入射するディスク表面10aから最も奥側に位置する第1の情報記録層L0と、ディスク表面10aに最も近い第2の情報記録層L1とを備えている。多層光ディスク10には、ユーザデータが記録されるユーザデータ領域と、ユーザ領域よりもディスク内周側に位置するテスト記録領域(PCA:Power Calibration Area)とが設けられている。多層光ディスク10には、PCA以外の管理領域も設けられていているが、簡単のため、図1には示していない。
 図2は、図1(b)に示す多層光ディスク10の断面の一部をより詳細に示す図である。図2では、情報記録層L0における3つの異なる領域a、b、cに焦点があった光ビームが模式的に示されている。領域aは、PCAのうち、情報記録層L0、L1のいずれにもデータが記録されていない領域(未記録領域)である。同様に、領域bは、ユーザデータ領域のうち、情報記録層L0、L1のいずれにもデータが記録されていない領域(未記録領域)である。一方、領域cは、ユーザデータ領域のうち、情報記録層L1にデータが記録されている領域(記録済み領域)である。
 情報記録層L1のうち、データが記録された領域の光透過率は、データ記録されていない領域の光透過率とは異なっている。多くの光ディスクでは、データが記録された領域の光透過率は、データ記録されていない領域の光透過率よりも低くなる。このため、領域cの情報記録層L0に焦点があった光ビームは、情報記録層L1において相対的に光透過率が低くなった部分を透過している。その結果、情報記録層L0上における光ビームの強度は、領域bに比べて領域cでより低くなる。
 このように、情報記録層L0に焦点が合った光ビームが情報記録層L0に与えることができる光量は、情報記録層L0よりも手前(ディスク表面に近い側)に位置する情報記録層L1にデータが記録されているか否かで変化することになる。
 図3は、情報記録層L0に記録したデータを再生したときのエラーレートと記録光パワーとの関係を示すグラフである。グラフの横軸は記録光パワー(パワー)、縦軸は再生時のエラーレート(L0のエラーレート)である。図3には、図2に示す未記録領域である領域a、bにおける結果を示す曲線と、図2に示す記録済み領域である領域cにおける結果を示す曲線とが記載されている。
 図3からわかるように、領域a、bでは、記録光パワーがPWbのとき、エラーレートが最小になる。すなわち、未記録領域(領域a、b)では、記録光パワーをPWbに設定することが好ましいことがわかる。一方、領域cでは、記録光パワーがPWcのとき、エラーレートが最小になる。すなわち、記録済み領域(領域c)では、記録光パワーをPWbよりも大きなPWcに設定することが好ましいことがわかる。このように、記録済み領域である領域cでは、未記録領域である領域a、bに対する記録光パワーよりも高い記録光パワーでデータを書き込むことが好ましい。
 従来、光ディスクのユーザデータ領域における特定アドレス位置にデータを記録するとき、その位置が記録済み領域内か未記録領域内かが不明である。このため、データを記録し始めるときの初期記録光パワーは、未記録領域における最適値(図3の例では、PWb)に設定されている。この場合、ユーザデータ領域でデータの記録を開始した後、短い時間間隔でデータの再生を行いながら、再生信号の波形を示す指標に基づいて記録光パワーの補正が行われる。
 図4(a)は、多層光ディスク10の断面を示す図であり、図2に相当する。図4(b)は、初期記録光パワーPWbで未記録領域である領域bにデータを記録し始めた場合の記録光パワーの補正による時間的推移を示す図である。一方、図4(c)は、初期記録光パワーPWbで記録済み領域である領域cにデータを記録し始めた場合の記録光パワーの補正による時間的推移を示す図である。
 図4(b)の例では、記録光パワーは領域bにおける最適値であるPWbに保持されている。これに対して、図4(c)の例では、記録光パワーは領域cにおける最適値であるPWcに向かって増加するように補正が行われている。
 多層光ディスクが備える情報記録層の数が増加してゆくと、例えば最も奥側に位置する情報記録層L0に焦点があっているとき、その手前に位置する情報記録層の数が2以上に増える。このため、それら手前に位置する複数の情報記録層にデータが記録されている記録済み領域では、光透過率の減少が顕著になる。
 図5(a)は、3つの情報記録層L0、L1、L2を備える多層光ディスクの模式断面図である。図5(b)は、初期記録光パワーPWbで未記録領域である領域bにデータを記録し始めた場合の記録光パワーの補正による時間的推移を示す図である。一方、図5(c)は、初期記録光パワーPWbで記録済み領域である領域eにデータを記録し始めた場合の記録光パワーの補正による時間的推移を示す図である。
 図5(c)の例では、記録光パワーは領域eにおける最適値であるPWeに向かって増加するように補正が行われているが、最適値PWeに達するまでにより長い時間が必要になる場合があると考えられる。その理由は、領域eでは、2つの情報記録層L1、L2の両方にデータが記録されているため、それらによる光透過率の減少程度が大きく、領域eにおける記録光パワーの最適値PWeは、領域a、bにおける記録光パワーの最適値PWbから大きく異なっている可能性があるからである。
 今後、多層光ディスクに含まれる情報記録層の数が更に増加してゆき、例えば、4層以上になることも予想される。このような多層光ディスクでも、未記録領域である領域aで最適化した記録光パワーPWbでデータの記録を開始すると、短時間で記録光パワーのより好ましい大きさに補正することができないという問題がある。そこで、特許文献1は、記録済み領域および未記録領域の可能な組み合わせの各々について、PCAでOPCを行う技術を開示している。
 特許文献2は、特許文献1の開示内容に加えて、記録済み領域および未記録領域のアドレスを管理することにより、記録済み領域か未記録領域かを判別し、その判別結果に応じて初期記録光パワーを変化させる技術を開示している。
特開2008-108388号公報 特開2008-192258号公報
 特許文献1の技術によれば、PCAでテスト記録に消費される部分が多く、また、テスト記録に要する時間も増大する。これらは、光ディスクの層数が増加すると、幾何級数的に増加するという問題がある。
 特許文献2の技術によれば、各情報記録層における記録済み領域/未記録領域の管理がアドレスに基づいて行われるため、積層される上下の情報記録層で位置ズレ(張り合わせ誤差)が生じると、記録済み領域および未記録領域の位置がアドレスに基づいて正確に判定することができなくなる。例えば情報記録層L0の特定されたアドレス位置にデータを記録するとき、情報記録層L1において前記アドレス位置の手前の領域を前記アドレスに基づいて決定し、その領域にデータが記録されているか否かを判断しても、情報記録層L0と情報記録層L1との間で物理的にズレが生じていれば、アドレスをベースにした対応関係が正しくない可能性がある。
 以上のように特許文献1、2はいずれも課題を抱えており、実用的でない。そこで、本発明者は、特許文献1、2のいずれにも開示されていない考え方としてベストな記録特性までは求めず、記録特性を許容できる範囲内に保証できればよいと考えた。つまり、多層光ディスクにおける他の全ての情報記録層にデータが書き込まれていない状況下でデータを記録する第1の初期最適記録光パワーと、多層光ディスクにおける他の全ての情報記録層にデータが書き込まれている状況下でデータを記録する第2の初期最適記録光パワーとの間に位置するように、初期記録光パワーを決定し、初期記録光パワーを用いた初期記録後は、再生特性に応じて動的に記録光パワーを変更する考え方を採用する。この考え方であれば、光ディスクの層数に応じてPCAは増加させることはなく、他層が記録済み領域か未記録領域かによらず記録特性を許容できる範囲内に保証できる。
 本発明は、上記課題を解決するためになされたものであり、その主な目的は、ユーザデータ領域にデータを記録するとき、そのデータが記録される位置と厚さ方向に対応し、かつデータが記録される情報記録層の手前に位置する他の情報記録層における位置が記録済み領域内か未記録領域内かによらず、速やかに最適な大きさに補正され得るデータ記録方法を提供することにある。また、本発明の他の目的は、そのデータ記録方法を実行する光ディスク装置を提供することにある。
 本発明のデータ記録方法は、層数がN(Nは2以上の整数)である複数の情報記録層を備える多層光ディスクにデータを記録するデータ記録方法であって、前記多層光ディスクの最も奥側からk番目(kは、1≦k≦Nを満たす整数)の情報記録層を第kの情報記録層とするとき、光ディスク装置に装填された光ディスクが備える情報記録層の層数を求めるステップAと、前記層数がXであるとき(Xは2以上の整数)、テスト記録を行う第mの情報記録層(mは、1≦m≦X-1を満たす整数)におけるテスト記録領域にデータのテスト記録を行い、仮の初期記録光パワーを決定するステップBと、データを記録する目的情報記録層が何番目の情報記録層であるかに応じて補正係数を選択し、選択した前記補正係数に基づいて前記仮の初期記録光パワーを補正して初期記録光パワーを決定するステップCと、前記初期記録光パワーで前記目的情報記録層にデータを記録し始めるステップDとを含む。
 ある実施形態において、前記ステップBは、前記層数がXであるとき(Xは2以上の整数)、テスト記録を行う第mの情報記録層(mは、1≦m≦X-1を満たす整数)におけるテスト記録領域のうち、前記第(m+1)の情報記録層から第Xの情報記録層までの全ての情報記録層にデータが書き込まれていない未記録領域にデータのテスト記録を行い、仮の初期記録光パワーを決定する。
 ある実施形態において、前記ステップCは、前記目的情報記録層が何番目の情報記録層であるかに加えて、前記装填された光ディスクの種類にも依存して前記補正係数を選択する。
 ある実施形態において、前記光ディスク装置がサポートする各多層光ディスクが備える情報記録層の各々について、前記多層光ディスクの種類ごとに前記補正係数の値が与えられた補正係数情報を前記光ディスク装置のメモリに記録するステップを含む。
 ある実施形態において、前記ステップCで決定される初期記録光パワーは光透過率減少タイプの多層光ディスクの場合、前記仮の初期記録光パワーよりも大きい。
 ある実施形態において、前記ステップDでデータを記録し始めた後、前記光ディスクから得られる信号波形に基づいて、記録光パワーを前記初期記録光パワーから随時変更するステップを更に含む。
 ある実施形態において、前記ステップDでデータを記録し始めた後、前記光ディスクから得られる再生信号の平均値に関する信号振幅の対称性を示すβ値が目標β値に近づくように、記録光パワーを補正するステップを更に含む。
 ある実施形態において、m=1である。
 本発明の光ディスク装置は、層数がN(Nは2以上の整数)である複数の情報記録層を備える多層光ディスクにデータを記録する光ディスク装置であって、前記多層光ディスクに光学的にアクセスする光ピックアップと、前記光ディスク装置がサポートする各多層光ディスクが備える情報記録層の各々について、前記多層光ディスクの種類ごとに補正係数の値が与えられた補正係数情報を格納するメモリと、装填された多層光ディスクに含まれる或る情報記録層におけるテスト記録領域にデータのテスト記録を行い、仮の初期記録光パワーを決定した後、データを記録する目的情報記録層が何番目の情報記録層であるかに応じて前記メモリから前記補正係数を選択し、選択した前記補正係数に基づいて前記仮の初期記録光パワーを補正して初期記録光パワーを決定する記録処理部とを備える。
 本発明によれば、ユーザデータ領域にデータを記録するとき、そのデータが記録される位置と厚さ方向に対応し、かつデータが記録される情報記録層の手前に位置する他の情報記録層における位置が記録済み領域内か未記録領域内かによらず、速やかに最適な大きさに補正され得るデータ記録方法を提供することができる。
(a)は、多層光ディスク10を示す図であり、(b)は、その断面模式図である。 図1(b)に示す多層光ディスク10の断面の一部をより詳細に示す図である。 情報記録層L0に記録したデータを再生したときのエラーレートと記録光パワーとの関係を示すグラフである。グラフの横軸は記録光パワー(パワー)、縦軸は再生時のエラーレート(情報記録層L0のエラーレート)である。 (a)は、2つの情報記録層L0、L1を備える多層光ディスクの模式断面図、(b)は、初期記録光パワーPWbで情報記録層L1が未記録領域である領域bの情報記録層L0にデータを記録し始めた場合の記録光パワーの補正による時間的推移を示す図、(c)は、初期記録光パワーPWbで情報記録層L1が記録済み領域である領域cの情報記録層L0にデータを記録し始めた場合の記録光パワーの補正による時間的推移を示す図である。 (a)は、3つの情報記録層L0、L1、L2を備える多層光ディスクの模式断面図、(b)は、初期記録光パワーPWbで情報記録層L1と情報記録層L2が未記録領域である領域bの情報記録層L0にデータを記録し始めた場合の記録光パワーの補正による時間的推移を示す図、(c)は、初期記録光パワーPWbで情報記録層L1と情報記録層L2が記録済み領域である領域eの情報記録層L0にデータを記録し始めた場合の記録光パワーの補正による時間的推移を示す図、(d)は、初期記録光パワーPWmidで情報記録層L1と情報記録層L2が未記録領域である領域bの情報記録層L0にデータを記録し始めた場合の記録光パワーの補正による時間的推移を示す図、(e)は、初期記録光パワーPWmidで情報記録層L1と情報記録層L2が記録済み領域である領域eの情報記録層L0にデータを記録し始めた場合の記録光パワーの補正による時間的推移を示す図である。 (a)は、3つの情報記録層L0、L1、L2を備える多層光ディスクの模式断面図、(b)は、3層光ディスクの場合における、情報記録層L0に記録したデータを再生したときのエラーレートと記録光パワーとの関係を示すグラフである。 (a)は、記録済み領域の光透過率が未記録領域の光透過率よりも高い3つの情報記録層L0、L1、L2を備える多層光ディスクの模式断面図、(b)は、この3層光ディスクにおける、未情報記録層L0に記録したデータを再生したときのエラーレートと記録光パワーとの関係を示すグラフである。 (a)は、4つの情報記録層L0、L1、L2、L3を備える多層光ディスクの模式断面図、(b)は、4層光ディスクの場合における、情報記録層L0に記録したデータを再生したときのエラーレートと記録光パワーとの関係を示すグラフである。 補正係数の一例を示すテーブルである。 データが記録された領域から得られる再生信号(RF信号)の波形を模式的に示すグラフである。 3層光ディスクの場合における、情報記録層L0に記録したデータを再生したときのエラーレートと記録光パワーとの関係を示すグラフである。 β値と記録光パワーとの関係を模式的に示すグラフである。 本発明による光ディスク装置の実施形態の構成例を示すブロック図である。 本実施形態におけるパワー設定方法の一例を示すフローチャートである。 パワー設定方法の従来例を示すフローチャートである。 本実施形態におけるデータ記録方法の一例を示すフローチャートである。 ディスク内周側から外周側に向かって感度が低下する光ディスクの断面を模式的に示す図である。 領域a、b、b’、e、e’におけるエラーレートと記録光パワーとの関係を示すグラフである。 領域a、b、b’、e、e’におけるβ値と記録光パワーとの関係を示すグラフである。 本発明の実施形態において、領域e、b、c、d、e、bにデータを記録する場合におけるβ値、記録光パワー、エラーレートの変化の一例を示す図である。 本発明の実施形態において、PCAよりも相対的に感度が低い領域e’、b’、c’、d’、e’、b’にデータを記録する場合におけるβ値、記録光パワー、エラーレートの変化の一例を示す図である。
 本発明のデータ記録方法は、層数がN(Nは2以上の整数)である複数の情報記録層を備える多層光ディスクにデータを記録する方法である。ここで、多層光ディスクの最も奥側(光入射面から遠い位置)の情報記録層からk番目(kは、1≦k≦Nを満たす整数)の情報記録層を第kの情報記録層とする。例えば図5(a)に示されている3層光ディスクの場合、情報記録層L0が「第1の情報記録層」であり、情報記録層L1は「第2の情報記録層」である。多層光ディスクの合計の層数がXであるとき(Xは2以上の整数)、テスト記録を行う第mの情報記録層(mは、1≦m≦X-1を満たす整数)におけるテスト記録領域のうち、第(m+1)の情報記録層から第Xの情報記録層までの全ての情報記録層にデータが書き込まれていない領域を「未記録領域」と称することにする。以下の説明において、OPCのためのテスト記録を行う情報記録層は、最も奥側に位置する「第1の情報記録層」であるが、本発明は、その例に限定されない。例えば、第2の情報記録層でOPCのためのテスト記録を行っても良いし、各情報記録層でOPCのためのテスト記録を行っても良い。
 まず、図5(d)および(e)を参照しながら、本発明の基本的な動作原理を説明する。本発明では、図5(d)および(e)に示すように、初期記録光パワーとして、領域bおよび領域eにおける記録光パワーの中間的な値(PWmid)を使用する。このため、領域bおよび領域eのいずれであっても、データ記録を開始した後、例えばβ値に基づいて最適パワーへの補正が必要になる。しかし、このような補正を完了するまでに必要な時間を短縮することが可能になる。β値に基づく補正は、PCAで行われるOPCと区別するため、ランニング・オプティマム・パワー・コントロール(Running Optimum Power Control:ROPC)と称される場合がある。
 上記のデータ記録を開始するときの初期記録光パワーは、「仮の初期記録光パワー」に対して、後述する補正係数を乗算することによって求められる。この「仮の初期記録光パワー」は、テスト記録領域内の未記録領域でOPCを行うことによって得られた記録光パワーの最適値(PWa=PWb)である。
 現在の光ディスク技術では、光ビームの照射によって1つの記録マークを形成している間、光ビームの光強度は一定ではなく、パルス状に変化する。どのようなパルス波形で記録マークを形成するかは、ライトストラテジによって決定される。本明細書における「記録光パワー」は、記録用光ビームを構成する各パルスのピーク値を意味するものとする。各パルスのピーク値は、1つの記録マーク内で共通である。
 次に、図6(a)、(b)を参照しながら、初期記録光パワーと仮の初期記録光パワー(PWa=PWb)との関係を説明する。図6は、記録済み領域の光透過率が未記録領域の光透過率よりも低くなる光透過率減少タイプの光ディスクに関している。図6(a)は、図5(a)に相当する図であり、図6(b)は、3層光ディスクの場合における、未情報記録層L0に記録したデータを再生したときのエラーレートと記録光パワーとの関係を示すグラフである。図6(b)には、未記録領域である領域a、bにおける結果を示す曲線と、記録済み領域である領域eにおける結果を示す曲線とが記載されている。同様の曲線は、縦軸をエラーレートからジッタに変更しても得ることができる。
 図6(b)からわかるように、領域a、bでは、記録光パワーがPWbのときにエラーレートが最小値になる。一方、領域eでは、記録光パワーがPWeのときにエラーレートが最小値になる。図6(b)の例では、エラーレートの最小値はレベルR1である。記録光パワーをPWbに設定した状態で領域eにデータを記録すると、再生時のエラーレートはレベルR2に達する。同様に、記録光パワーをPWeに設定した状態で領域bにデータを記録すると、再生時のエラーレートはレベルR2に達する。もしも、レベルR2が再生限界を超える大きさであれば、データの記録を開始したとき、正常には再生できない状態でデータの記録が行われることになる。
 図6(b)のグラフでは、簡単のため、領域a、bにおける結果を示す曲線と、領域eにおける結果を示す曲線とが同一形状を有しているが、実際の曲線は、異なっていても良い。その場合、領域a、bにおける結果を示す曲線の極小値は、領域eにおける結果を示す曲線の極小値に等しくならない。
 本発明の実施形態では、データ記録開始時における記録光パワーを、PWbではなく、PWmid(=PWb×補正係数)に設定する。図6(b)の例では、補正係数が1よりも大きな数値になる。図6(b)からわかるように、記録光パワーをPWmidに設定した状態で領域bにデータを記録すると、再生時のエラーレートはレベルR3になる。同様に、記録光パワーをPWmidに設定した状態で領域eにデータを記録しても、再生時のエラーレートはレベルR3に抑えられる。このことにより、領域b、eのいずれにデータを記録する場合でも、再生限界を超えるように悪い状態でデータが記録されることを回避できる。
 更に、本実施形態によれば、データ記録を開始したとき、記録光パワーの初期値と最適値との差異、すなわち、「PWe-PWmid」または「PWmid-PWb」の値が「PWe-PWb」よりも十分に小さくなる。このため、その後のβ値に基づく補正に要する時間を短縮することも可能になる。このことは、図5(c)を図5(d)、(e)と比較すると明らかである。図5(d)、(e)の例では、領域b、eのいずれにデータを記録する場合でもβ値に基づく補正が必要になるが、補正に要する時間は、図5(c)に示す例のように長くなり過ぎることはない。
 次に、図7(a)、(b)を参照する。図7は、記録済み領域の光透過率が未記録領域の光透過率よりも高くなる光透過率増加タイプの光ディスクに関している。このような光ディスクでは、記録済み領域である領域eにおいて、未記録領域である領域a、bよりも低い記録光パワーで好ましい形状の記録マークを形成することが可能になる。この場合、記録済み領域での最適値PWeが未記録領域での最適値PWbよりも小さくなる。図7に示すような例でも、本実施形態では、記録光パワーをPWmid(=PWb×補正係数)に設定する。このときの補正係数は、1よりも小さくなる。
 次に、図8(a)、(b)を参照する。図8(a)は、4層ディスクの断面を模式的に示しており、光透過率減少タイプの光ディスクに関している。記録済み領域である領域fでは、3つの情報記録層L1、L2、L3にデータが記録されている。図8(b)は、4層光ディスクの場合における、情報記録層L0に記録したデータを再生したときのエラーレートと記録光パワーとの関係を示すグラフであり、未記録領域である領域a、bにおける結果を示す曲線と、記録済み領域である領域fにおける結果を示す曲線とが記載されている。
 図8(b)に示される例では、記録光パワーの最適値PWfとPWbとの差異が大きくなっている。このため、中間値PWmidを得るためにPWbに乗算する補正係数も相対的に大きくなる。
 図9は、補正係数の一例を示すテーブルである。図9に示す例では、ディスクメーカーによって、光ディスクの構造や材料に差異が存在するため、補正係数が異なる値に設定されている。また、データを記録する目的の情報記録層の手前に何層の情報記録層が存在するかによっても、補正係数の値が変化している。例えば、A社に製造されたBD-Rの3層ディスクの場合、情報記録層L0にデータを記録するとき、補正係数は1.30であるが、同じ光ディスクの情報記録層L1にデータを記録するとき、補正係数は1.15である。この理由は以下の通りである。
 情報記録層L0にデータを記録するとき、その情報記録層L0の手前には、2つの情報記録層L1、L2が存在する。このため、情報記録層L0に焦点が合った光ビームは、2つの情報記録層L1、L2を透過することになる。一方、情報記録層L1にデータを記録するとき、その情報記録層L1の手前には、1つの情報記録層L2しか存在しない。このため、情報記録層L0に焦点が合った光ビームは、1つの情報記録層L2のみを透過することになる。透過する情報記録層が少ないほど、記録済み領域における最適値PWeと記録済み領域における最適値PWbとの差異の絶対値は小さくなる。その結果、中間値であるPWmidの値は、PWbに近い値に設定され得ることになり、補正係数も1に近くづく。多層光ディスク装置の合計の層数がXである場合(Xは2以上の整数)、第Xの情報記録層にデータを記録するときの補正係数は1であってもよい。
 このように補正係数は上記したディスクタイプも含めて多層光ディスクの種類に依存するため、前もって種類の異なる光ディスクごとに補正係数を決定しておく必要がある。このためには、種類の異なる複数の光ディスクについて、テスト記録を行って、再生信号の指標(例えばエラーレートまたはジッタ)と記録光パワーとの関係を測定することにより、光ディスクの情報記録層ごとにPWbを決定する必要がある。更に光ディスクの情報記録層ごとにPWmidを決定することにより、補正係数(PWmid/PWb)を算出しておく。このようにして、例えば図9に示される補正係数のデータを取得することができる。PWmidの大きさは、例えば図6(b)に示されるような2つの曲線をテスト記録によって求め、それらの曲線の極小値PWb、PWeの中間値を計算によって求めればよい。しかしPWmidは、必ずしも(PWb+PWe)/2に等しい必要は無く、極小値PWbとPWeの間であればよい。
 補正係数のデータは、好適には、光ディスク装置が備えるメモリに格納される。光ディスク装置のメモリに格納された補正係数は、光ディスク装置がユーザによって購入された後、新たに製造されることになった光ディスクについて、例えば通信・放送を介してアップデートされ得る。また、各光ディスクに関する補正係数は、その光ディスク自体に記録されていても良い。その場合、光ディスク装置は、装填された光ディスクから補正係数のデータを読み出し、その補正係数を用いて初期記録光パワーを算出してもよい。
 本発明の好ましい実施形態における光ディスク装置は、PWbからPWmidを算出するときに用いる「補正係数」を適切に選択するため、光ディスク装置に装填された光ディスクの種類を判別する。そして、その光ディスクに最も適した補正係数を、例えば図9に示すようなデータが記録されたメモリから読み出す。上記メモリに該当するディスクがない場合は、そのときにアップデートするか又は、記録層数が同じディスクの補正係数を代用する。光ディスクの種類の判別は、公知のいずれの方法によって行われても良いが、基準層(例えば情報記録層L0)の管理領域からディスク情報を読み出すことによって光ディスクの種類を判別してもよい。
 次に、図10を参照しながら、β値を説明する。図10は、データが記録された領域から得られる再生信号(RF信号)の波形を模式的に示すグラフである。RF信号の平均値Aを基準として、上下の振幅をPおよびBとするとき、β値は、(P-B)/(P+B)で表される。平均値Aに対して上下の対称性が高いほど、β値はゼロに近づく。図10に示す例では、P>Bであるため、そのβ値は正である。P<Bの場合、そのβ値は負である。
 本明細書では、記録マークの形状または大きさが最適なときに得られるβ値を「β_best」と記載することにする。本発明の好ましい実施形態では、β値を指標として、記録光パワーを初期設定値(PWmid)から他の値に補正する。この補正は、β値がβ_bestよりも大きな値であるときは、β値を低下させるように記録光パワーを変化させる。β値がβ_bestよりも小さな値であるときは、β値を増加させるように記録光パワーを変化させる。こうして、β値がβ_bestにほぼ等しくなるように記録光パワーの補正が行われる。このような記録光パワーの補正は、ユーザデータをユーザデータ領域に記録する過程で実行される。
 次に、図11および図12を参照して、β値と記録光パワーとの関係を説明する。図11は、図6(b)に対応するグラフである。図11では、エラーレートが再生限界以下になる記録光パワーの範囲を規定する下限値PWlowと上限値PWhighとが記載されている。また、未記録領域の記録光パワーの最適値PWbにおけるエラーレートb_PWb、e_PWb、記録済み領域の記録光パワーの最適値PWeにおけるエラーレートe_PWe、b_PWe、両記録光パワーの中間値PWmidにおけるエラーレートe_PWmid、b_PWmidも示されている。
 PWmidは、再生限界となる記録光パワーPWlowとPWhighとの平均値に等しく設定しても良い。図11に示す曲線の形状が著しく非対称になる場合は、PWmidとして、再生限界となる記録光パワーPWlowとPWhighとの平均値を採用することが好ましい。なお、中間値は、厳密な意味での平均値である必要は無く、再生限界となる記録光パワーの上限値および下限値の両方からできるだけ離れた値であることが好ましい。例えば、図11の曲線の左側の部分が急峻で、右側の部分がなだらかな形状を有するとき、PWbとPWeの平均値の記録光パワーで領域eにデータを記録すると、再生限界を超える可能性が高くなる。しかし、PWlowとPWhighとの平均値をPmidに設定して、その大きさの記録光パワーでデータを記録すると、領域bでも領域eでも再生可能な記録を実現しやすくなる。
 PWmidの設定は、光ディスクごとに前もって行われる。すなわち、各種の光ディスクについて、未記録領域および記録済み領域の両方において、記録光パワーとエラーレートとの関係を実測によって得る必要がある。未記録領域で求められた極小値PWb(=PWa)を何倍すれば、上記の方法で設定されたPWmidになるかを算出し、補正係数(PWmid/PWb)が得られる。一方、光ディスク装置に光ディスクが装填されたときに行うOPCでは、光ディスクのPCAにおける未記録領域のみでテスト記録を行えばよい。すなわち、OPCでは、未記録領域で得たPWbに対して補正係数を乗算することにより、PWmidを得ることができる。
 なお、PWmidを得る方法は、PWbに補正係数を乗算する場合に限定されない。PCAの記録済み領域でPWeを求め、そのPWeからPWmidを算出できるようにしてもよい。その場合は、補正係数として、PWmid/PWeの値が事前に求められ、メモリに格納される。
 図12は、β値と記録光パワーとの関係を模式的に示すグラフである。領域a、bにおける関係を示す直線と、領域eにおける関係を示す直線が記載されている。領域a、bでは、記録光パワーがPWbのときにβ値がβ_bestに等しくなるのに対して、領域eでは、記録光パワーがPWeのときにβ値がβ_bestに等しくなる。いずれの領域でも、β値は記録光パワーが増加するにつれて大きくなっている。これは、記録光パワーが大きくなるほど、図10のBが小さくなる傾向があるからである。図12では、再生限界となるときのβ値であるβ_b_PWlowおよびβ_e_PWhighも示されている。
 次に、図13を参照しながら、本発明による光ディスク装置の実施形態における構成例を説明する。
 本実施形態の光ディスク装置は、光ディスク10に光学的にアクセスする光ヘッド11と、光ヘッドに接続されたフロント・エンド・プロセッサ(FEP)20およびレーザ駆動回路30を備えている。
 光ディスク10は、記録可能な光ディスクである。このような光ディスクの例は、BE-RおよびBD-REを含む。光ディスク10が光ディスク装置に挿入されると、光ディスク10は不図示のモータによって回転し、その後、光ヘッド11から光ディスク10に光ビームが照射される。
 光ヘッド11は、光ビームを放射するレーザ光源(不図示)および光ディスク10からの反射光を受ける光検出器(不図示)を備えている。
 FEP20は、光ヘッド11が出力する信号を受け取り、この信号に対して増幅および波形等化を行う。FEP20は、処理後のアナログ信号を再生処理部21に出力する。再生処理部21は、FEP20から受け取ったアナログ信号をデジタル信号に変換する。デコーダ22は、再生処理部21から受け取ったデジタル信号を復調することにより、光ディスク10に記録されていたユーザデータ(例えば映像データ)を再生して出力する。
 レーザ駆動回路30は、記録処理部31から受け取った記録波形に応じて光ヘッド11内のレーザ光源を駆動し、光ヘッド11から光ビームを放射させる。記録処理部31は、エンコーダ32から記録信号を受け取り、記録波形を設定する。エンコーダ32は、ユーザデータを光ディスク10に記録するとき、記録すべきデータ(例えば映像データ)を受け取り、これを変調することにより、符号化された記録信号を生成して、記録処理部31に入力する。
 目標β値格納メモリ23は、OPC後のテスト記録によって求めた目標β値を再生処理部21から受け取り、保持する。目標β値は、記録動作中のレーザパワー補正に使用される。
 本実施形態の光ディスク装置は、目標β値格納メモリ23および補正係数格納メモリ33を備えている。目標β値格納メモリ23は、OPC後のテスト記録によって求めた目標β値を再生処理部21から受け取り、保持している。前述したように、この目標β値は、ユーザデータの記録中の記録光パワーの補正に使用される。一方、補正係数格納メモリ33は、初期記録光パワーの補正係数を格納している。補正係数は、前述の図9のテーブルに示されているデータとして補正係数格納メモリ33内に格納され得る。記録処理部31は、記録波形を設定するとき、補正係数格納メモリ33から初期記録光パワーの補正係数を受け取り、初期記録光パワーを設定する。
 FEP20は、図10に示されるβ値計算に必要な平均値Aと振幅B,Pを検出する手段を有する。
 再生処理部21は、FEP20で検出された平均値Aと振幅B,Pを用いて、前述のようにβ値を算出する。そして、記録処理部31は、ユーザデータを記録するとき、β値に基づき、記録波形を補正する(ROPC)。
 本実施形態の光ディスク装置は、初期記録光パワーを決定するために必要な補正係数をメモリ内に格納している点で従来の光ディスク装置とは構成が異なっているが、他の構成要素は、従来の光ディスクの構成要素と同様であっても良い。
 次に、図14Aを参照しながら、本実施形態におけるパワー設定方法の一例を説明する。
 まず、ステップST1では光ディスク装置に光ディスクが装填されると、ディスク判別が実行される。ここでは、図6に示すような3層の情報記録層を備える光ディスクが装填された場合を想定する。この場合、情報記録層L0に焦点があった状態で情報記録層L0の管理領域からディスク情報が読み出され、それによって装填された光ディスクの種類が把握される。具体的には、管理領域から読み出された情報に基づいて、例えば製造メーカおよび情報記録層の合計層数が求められる。
 次に、ステップST2では情報記録層L0のPCAでOPCが実行される。このとき、情報記録層L0よりも手前に存在するすべての情報記録層にデータが記録されていない領域(未記録領域)でテスト記録が実行される。OPCでは、記録光パワーの大きさを多段階に変化させつつ、データのテスト記録が行われる。その結果、エラーレートが一番小さい記録光パワーPWbが求められる。そして、テスト記録の後、ステップST3では記録光パワーPWbを用いて記録されたデータを再生することにより目標β値(β_best)を求める。加えて記録光パワーPWb以外の記録光パワーを用いて記録されたデータを再生することにより求められるベータ値と、さきの目標β値とを用いてβ値と記録光パワーとの関係(例えば図12における領域aの直線)も求められる。
 次に、ステップST4ではディスク判別によって得られたディスクの種類および記録対象とする情報記録層に応じて、図13の補正係数格納メモリ33から補正係数を読み出す。そして、ステップST5では領域a、bにおける記録光パワーの最適値PWbに補正係数を乗算して得られた値(補正パワー)を計算する。ステップST6ではこの補正パワーを初期記録光パワーとして設定する。
 図14Bは、参考のため、従来のパワー設定方法の一例を示すフローチャートである。図14Bの例では、ステップST20~22はステップST1~3と同じであり、目標β値を取得した後、ステップST23においてパワー設定を行うとき、テスト記録によって求めた領域aにおける記録光パワーの最適値PWbを初期記録光パワーとして設定する。
 次に、図15を参照しながら、本実施形態におけるデータ記録方法を説明する。
 まず、図14Aを参照して説明した方法で初期記録光パワーの設定が完了したものとする。本実施形態では、ステップST10においてPWmid(=PWb×補正係数)の記録光パワーでユーザデータの記録を開始する。記録終了位置に達していないとき、直前記録箇所のβ値を測定する(ステップST11,ステップST12)。
 ステップST13では測定されたβ値を目標β値と比較する。そして、測定されたβ値が目標β値よりも大きい場合、記録光パワーを低下させ、逆に、測定されたβ値が目標β値よりも小さい場合は、記録光パワーを上昇させる。このとき、図12に示される直線の勾配から、測定されたβ値と目標β値との差異Δβがわかると、図12に示される直線の勾配から、記録光パワーの変化量ΔPWを算出することができる。すなわち、図12の直線の勾配がhであれば、ΔPW×h=Δβの関係が成立するため、測定によってΔβがわかると、Δβ/hだけ、記録光パワーを増減させればよい。ただし、本実施形態では、一度に記録光パワーをΔβ/hだけ変化させる代わりに、0.8×Δβ/hだけ変化させた記録光パワーでデータを記録する(ステップST14、ST15)。そして、その状態で記録されたデータを再生するとき、β値を測定し、あらためて0.8×Δβ/hだけ記録光パワーを変化させる。このように、測定されたβ値を目標β値に段階的に接近させるように記録光パワーを調整することにより、再生限界を超えない範囲で確実に記録光パワーを最適化することができる。
 このようにしてデータの記録を行った後、記録位置の確認を行う。そして、ステップST11において記録終了位置に達した場合は、データ記録を終了する。記録終了位置に達していない場合は、上記の動作を繰り返すことになる。
 実際の光ディスクでは、場所によって情報記録層の記録光パワーに対する感度が異なる場合がある。図16に示す例では、光透過率減少タイプの光ディスクにおいてディスク内周側から外周側に向かって感度が低下する光ディスクの断面を模式的に示している。領域b’、c’、d’、e’は、領域b、c、d、eに対応しているが、それぞれ、相対的に感度が低下している。図17および図18を参照しながら、このことを更に説明する。図17は、領域a、b、b’、e、e’におけるエラーレートと記録光パワーとの関係を示すグラフである。同様に、図18は、領域a、b、b’、e、e’におけるβ値と記録光パワーとの関係を示すグラフである。
 領域b’、e’においては、領域b、eに比べ、同じエラーレートまたはβ値を達成する記録光パワーが相対的に大きい。これは、領域b’、e’の感度が相対的に低いため、同一の状態を実現するには、より大きな記録光パワーが必要になるからである。
 本発明の実施形態では、初期記録光パワーを領域bと同じ感度を有する領域aでのテスト記録によって決定する。初期記録光パワーをPWmid(=PWb×補正係数)に設定するため、領域e’でデータの記録を開始したとき、図17からわかるように、領域e’でのエラーレートは、e’_PWmidになる。もしも従来のように、初期記録光パワーをPWbに設定して、領域e’でデータの記録を開始したとすると、図17の例では、領域e’でのエラーレートが再生限界を超えるe’_PWbに達してしまう。このように、本実施形態によれば、データ記録を感度が相対的に低い領域で開始する場合でも、エラーレートが再生限界を超える可能性を低減できる。
 次に、図19を参照しながら、データ記録中におけるβ値、記録光パワー、エラーレートの変化の一例を説明する。
 図19に示す例では、光透過率減少タイプの光ディスクにおいて領域e、b、c、d、e、bの順序でデータを記録する領域が変化している。図の例では、データ記録を開始する領域は領域eであり、初期記録光パワーはPWmidである。記録光パワーがPWmidのとき、領域eにおけるβ値は、例えば図18に示すようにβ_bestよりも小さくなる。図19の最下部に示すタイミングでβ値を測定、測定されたβ値と目標β値との差異に基づいて記録光パワーの補正(β補正)を実行する。最初に行うβ補正により、記録光パワーはPWmidからPWeに近いレベルに上昇する。その結果、エラーレートは低下し、β値はβ_bestに近づくことができる。このようなβ補正が行われる結果、領域eにおける記録光パワーは、領域eにおける最適値PWeに接近する。データを記録する領域が領域eから領域bに遷移したとき、領域eにおける最適値PWeに近づいていた記録光パワーは、領域bにおける最適値PWbから離れた値を有していることになる。そのため、領域bにおいて、PWeの記録光パワーで記録されたデータのβ値は、目標β値であるβ_bestよりも大きなβ_b_PWeまで上昇してしまう。このとき、図19の例では、エラーレートは再生限界に接近する。しかし、β補正が速やかに行われるため、記録光パワーはやがて領域bにおける最適値であるPWbに接近することができる。
 このようにして記録光パワーにβ補正が行われる結果、データを記録する領域が領域b→領域c→領域d→領域e→領域bと変化していく場合でも、記録光パワーの最適化が迅速に実行される。
 次に、図20を参照して、感度の低い領域にデータを記録する場合におけるβ値、記録光パワー、エラーレートの変化の一例を説明する。図20は、図19に対応する図であるが、領域e’、b’、c’、d’、e’、b’の順序でデータを記録する領域が変化している点で異なっている。図20には、比較のため、領域b’、e’における記録光パワーの最適値PWb’、PWe’のみならず、領域b、eにおける記録光パワーの最適値PWb、PWeも示されている。
 本実施形態では、初期記録光パワーをPWmid(=PWb×補正係数)に設定するため、最初に感度の低い領域e’でデータ記録を開始する場合でも、エラーレートは再生限界を超えることが無く、β補正によって速やかに最適値に接近していくことが可能である。領域e以降の動作は、基本的には図19を参照して説明したとおりであるが、β補正により決定される記録光パワーは、図19に示すレベルよりも高いレベルに調整される。これは、感度が低いことを、より強い記録光パワーで補償するためである。
 従来のように、初期光ディスク装置をPWbに設定した状態で、感度の低い記録済み領域にデータを記録し始めると、エラーレートが再生限界を超える可能性があったが、本発明の実施形態によれば、その可能性を充分に小さくすることが可能になる。
 上記の実施形態では、情報記録層L0にデータを記録しているが、情報記録層L1にデータを記録するときは、その情報記録層にあった補正係数をメモリから読み出し、仮の初期記録光パワーに乗算すれば、初期記録光パワーを算出することができる。なお、最も手前に位置する情報記録層、3層光ディスクでは情報記録層L2にデータを記録するとき、補正係数は1に設定すればよい。
 なお、上記の実施形態では、層数がN(Nは2以上の整数)である光透過率減少タイプ又は光透過率増加タイプの多層光ディスクの例えば情報記録層L0に記録するとき、PCAにおいて情報記録層L1から情報記録層L(N-1)までの全ての情報記録層にデータが書き込まれていない未記録領域にデータのテスト記録を行い、仮の初期記録光パワー(PWb)を決定したが、PCAにおいて情報記録層L1から情報記録層L(N-1)までの全ての情報記録層にデータが書き込まれた記録領域にデータのテスト記録を行い、仮の初期記録光パワー(PWe)を決定し、その後、仮の初期記録光パワー(PWe)を補正係数(PWmid/PWe)と乗算させて初期記録光パワー(PWmid)を算出することもできる。また、補正係数としてPWbとPWeの中間値でなく、PWlowとPWhighの間の値を採用してもよい。
 本発明は、コンピュータのデータおよび/または映像/音響データをBD-RやBD-REなどの多層光ディスクに記録する光ディスク装置に広く適用され得る。
 10  光ディスク
 11  光ヘッド(光ピックアップ)
 20  フロント・エンド・プロセッサ(FEP)
 21  再生処理部
 22  デコーダ
 30  レーザ駆動回路
 31  記録処理部
 32  エンコーダ

Claims (9)

  1.  層数がN(Nは2以上の整数)である複数の情報記録層を備える多層光ディスクにデータを記録するデータ記録方法であって、前記多層光ディスクの最も奥側からk番目(kは、1≦k≦Nを満たす整数)の情報記録層を第kの情報記録層とするとき、
     光ディスク装置に装填された光ディスクが備える情報記録層の層数を求めるステップAと、
     前記層数がXであるとき(Xは2以上の整数)、テスト記録を行う第mの情報記録層(mは、1≦m≦X-1を満たす整数)におけるテスト記録領域にデータのテスト記録を行い、仮の初期記録光パワーを決定するステップBと、
     データを記録する目的情報記録層が何番目の情報記録層であるかに応じて補正係数を選択し、選択した前記補正係数に基づいて前記仮の初期記録光パワーを補正して初期記録光パワーを決定するステップCと、
     前記初期記録光パワーで前記目的情報記録層にデータを記録し始めるステップDと
    を含むデータ記録方法。
  2.  前記ステップBは、
     前記層数がXであるとき(Xは2以上の整数)、テスト記録を行う第mの情報記録層(mは、1≦m≦X-1を満たす整数)におけるテスト記録領域のうち、前記第(m+1)の情報記録層から第Xの情報記録層までの全ての情報記録層にデータが書き込まれていない未記録領域にデータのテスト記録を行い、仮の初期記録光パワーを決定する請求項1に記載のデータ記録方法。
  3.  前記ステップCは、前記目的情報記録層が何番目の情報記録層であるかに加えて、前記装填された光ディスクの種類にも依存して前記補正係数を選択する請求項1に記載のデータ記録方法。
  4.  前記光ディスク装置がサポートする各多層光ディスクが備える情報記録層の各々について、前記多層光ディスクの種類ごとに前記補正係数の値が与えられた補正係数情報を前記光ディスク装置のメモリに記録するステップを含む請求項3に記載のデータ記録方法。
  5.  前記ステップCで決定される初期記録光パワーは光透過率減少タイプの多層光ディスクの場合、前記仮の初期記録光パワーよりも大きい請求項1に記載のデータ記録方法。
  6.  前記ステップDでデータを記録し始めた後、前記光ディスクから得られる信号波形に基づいて、記録光パワーを前記初期記録光パワーから随時変更するステップを更に含む請求項1に記載のデータ記録方法。
  7.  前記ステップDでデータを記録し始めた後、前記光ディスクから得られる再生信号の平均値に関する信号振幅の対称性を示すβ値が目標β値に近づくように、記録光パワーを補正するステップを更に含む請求項1に記載のデータ記録方法。
  8.  m=1である請求項1に記載のデータ記録方法。
  9.  層数がN(Nは2以上の整数)である複数の情報記録層を備える多層光ディスクにデータを記録する光ディスク装置であって、
     前記多層光ディスクに光学的にアクセスする光ピックアップと、
     前記光ディスク装置がサポートする各多層光ディスクが備える情報記録層の各々について、前記多層光ディスクの種類ごとに補正係数の値が与えられた補正係数情報を格納するメモリと、
     装填された多層光ディスクに含まれる或る情報記録層におけるテスト記録領域にデータのテスト記録を行い、仮の初期記録光パワーを決定した後、データを記録する目的情報記録層が何番目の情報記録層であるかに応じて前記メモリから前記補正係数を選択し、選択した前記補正係数に基づいて前記仮の初期記録光パワーを補正して初期記録光パワーを決定する記録処理部と、
    を備える光ディスク装置。
PCT/JP2010/005607 2010-08-25 2010-09-14 多層光ディスクに対するデータ記録方法および光ディスク装置 WO2012025973A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/132,159 US8400894B2 (en) 2010-08-25 2010-09-14 Method for writing data on multilayer optical disc and optical disc drive
JP2011514908A JPWO2012025973A1 (ja) 2010-08-25 2010-09-14 多層光ディスクに対するデータ記録方法および光ディスク装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010188309 2010-08-25
JP2010-188309 2010-08-25

Publications (1)

Publication Number Publication Date
WO2012025973A1 true WO2012025973A1 (ja) 2012-03-01

Family

ID=45723003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005607 WO2012025973A1 (ja) 2010-08-25 2010-09-14 多層光ディスクに対するデータ記録方法および光ディスク装置

Country Status (2)

Country Link
JP (1) JPWO2012025973A1 (ja)
WO (1) WO2012025973A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248929A (ja) * 2002-02-25 2003-09-05 Teac Corp 光ディスク装置
JP2004171740A (ja) * 2002-10-28 2004-06-17 Matsushita Electric Ind Co Ltd 光学式情報記録媒体、光学式記録再生方法及び光学式記録再生装置
JP2006164443A (ja) * 2004-12-09 2006-06-22 Sanyo Electric Co Ltd 光記録再生装置
JP2006179162A (ja) * 2003-12-26 2006-07-06 Pioneer Electronic Corp 情報記録装置及び方法、並びにコンピュータプログラム
WO2009011106A1 (ja) * 2007-07-13 2009-01-22 Tdk Corporation 記録パワー設定方法、多層光記録媒体、情報記録方法
JP2009104704A (ja) * 2007-10-23 2009-05-14 Hitachi Maxell Ltd 情報記録再生装置及び情報記録再生方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005031719A1 (ja) * 2003-09-30 2006-12-07 パイオニア株式会社 情報記録媒体、情報記録装置及び方法、情報記録再生装置及び方法、並びにコンピュータプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248929A (ja) * 2002-02-25 2003-09-05 Teac Corp 光ディスク装置
JP2004171740A (ja) * 2002-10-28 2004-06-17 Matsushita Electric Ind Co Ltd 光学式情報記録媒体、光学式記録再生方法及び光学式記録再生装置
JP2006179162A (ja) * 2003-12-26 2006-07-06 Pioneer Electronic Corp 情報記録装置及び方法、並びにコンピュータプログラム
JP2006164443A (ja) * 2004-12-09 2006-06-22 Sanyo Electric Co Ltd 光記録再生装置
WO2009011106A1 (ja) * 2007-07-13 2009-01-22 Tdk Corporation 記録パワー設定方法、多層光記録媒体、情報記録方法
JP2009104704A (ja) * 2007-10-23 2009-05-14 Hitachi Maxell Ltd 情報記録再生装置及び情報記録再生方法

Also Published As

Publication number Publication date
JPWO2012025973A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
US7436743B2 (en) Optical recording method and medium on which recording and/or reading are performed from one side
JP2003022532A (ja) 光情報記録媒体ならびにその記録方法および情報記録装置
US20110242948A1 (en) Optical disc device and optical disc
EP1733387A1 (en) Information storage medium and method and apparatus for recording/ reproducing data on/from the same
WO2010050143A1 (ja) 情報記録媒体、記録装置および再生装置
JP2008033985A (ja) 情報再生方法、情報再生装置及び光ディスク
US8218416B2 (en) Multi-layer optical disc, information recording method and information reproducing method
JP2010218608A (ja) 光情報記録再生方法及び装置及び媒体
TWI343050B (en) Method for determining optimum laser beam power and optical recording medium
JP2009076134A (ja) 光情報再生方法、光情報再生装置及び光情報記録媒体
JP2004171740A (ja) 光学式情報記録媒体、光学式記録再生方法及び光学式記録再生装置
WO2012025973A1 (ja) 多層光ディスクに対するデータ記録方法および光ディスク装置
US20100103793A1 (en) Multilayer optical information recording medium, method for recording information in the multilayer optical information recording medium, recording/reproducing apparatus
US20100172226A1 (en) Information recording medium, reproduction apparatus and recording apparatus
JP2005011404A (ja) 光記録媒体、記録装置及び記録方法
US8400894B2 (en) Method for writing data on multilayer optical disc and optical disc drive
JP2002279634A (ja) 情報記録方法および情報記録装置
JP3895354B2 (ja) 記録方法及び光ディスク装置
JP2008027501A (ja) 光ディスクおよび光ディスク装置
JP4040072B2 (ja) 記録方法及び光ディスク装置
JP2009140580A (ja) 光ディスク装置の再生パワー設定方法および光ディスク装置
JP2004030819A (ja) レーザビーム強度決定方法、これに用いる臨界値の生成方法、臨界値生成プログラム及び光記録媒体
JP5380331B2 (ja) 光ディスク、光ディスク装置および再生方法
JP4254704B2 (ja) 光ディスク装置
JP2009059425A (ja) 光ディスク装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011514908

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13132159

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856382

Country of ref document: EP

Kind code of ref document: A1