WO2012025280A2 - Système de batterie à convertisseur cc/cc dans le réseau haute tension pour alimenter un microcontrôleur - Google Patents

Système de batterie à convertisseur cc/cc dans le réseau haute tension pour alimenter un microcontrôleur Download PDF

Info

Publication number
WO2012025280A2
WO2012025280A2 PCT/EP2011/060678 EP2011060678W WO2012025280A2 WO 2012025280 A2 WO2012025280 A2 WO 2012025280A2 EP 2011060678 W EP2011060678 W EP 2011060678W WO 2012025280 A2 WO2012025280 A2 WO 2012025280A2
Authority
WO
WIPO (PCT)
Prior art keywords
microcontroller
converter
voltage
battery
battery system
Prior art date
Application number
PCT/EP2011/060678
Other languages
German (de)
English (en)
Other versions
WO2012025280A3 (fr
Inventor
Stefan Butzmann
Original Assignee
Sb Limotive Company Ltd.
Sb Limotive Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sb Limotive Company Ltd., Sb Limotive Germany Gmbh filed Critical Sb Limotive Company Ltd.
Publication of WO2012025280A2 publication Critical patent/WO2012025280A2/fr
Publication of WO2012025280A3 publication Critical patent/WO2012025280A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to a battery system with a DC / DC converter in a high-voltage network for supplying a microcontroller and a
  • Battery system can lead to failure of the entire system.
  • batteries are used to adjust the rotor blades in strong winds and thus to protect the system from excessive mechanical loads that can damage or even destroy the wind turbine. In the case of failure of the battery of an electric car, this would not drive.
  • An emergency power system in turn is just the uninterruptible operation z. B. a hospital and therefore even fail as possible.
  • Battery module in series and sometimes additionally connected in parallel, resulting in a high total voltage, which is a source of danger and must be secured. So usually two main shooter
  • the positive and the negative pole of the battery module disconnect a corresponding control signal and switch off the battery module to the outside in such a way.
  • BCU Battery Control Unit
  • the Microcontroller has.
  • the BCU is operated in a low-voltage network and must therefore be isolated from the high-voltage network with the battery module.
  • High-voltage network and low-voltage network must be possible despite the isolation requirement. Since the cell monitoring units are connected in terms of potential to the high-voltage network, but the microcontroller of the BCU to the low-voltage network, the cell monitoring units can be connected to the microcontroller via an isolation module or insulator.
  • Cell monitoring controls and communicates via the isolator with the microcontroller of the BCU. In this case, only a small data exchange is necessary, which is also not time-critical. To supply the additional microcontroller has been proposed, electric power from the low-voltage network for
  • the high-voltage network includes a high-voltage battery with a large number of series-connected battery cells and a first microcontroller, the low-voltage network a second microcontroller.
  • the first microcontroller and the second microcontroller are by a
  • Data bus connected, which is adapted to data via a first isolator arranged between the first and the second microcontroller transfer.
  • the high-voltage battery has at least one with the first
  • Microcontroller connected or connectable cell monitoring unit which is designed to measure cell voltages of the battery cells and to transmit the measured cell voltages to the first microcontroller.
  • DC / DC converter provided, which is designed to generate from an output voltage from the high-voltage battery, an operating voltage for the first microcontroller and output to the first microcontroller.
  • the invention has the advantage that the first microcontroller is not supplied from a low-voltage battery possibly provided in the low-voltage network, but from the high-voltage battery provided for the drive, which has a much higher capacity. This prevents a caster of the first microcontroller at standstill of the motor vehicle, for example in the context of a cell balancing of the battery cells of the high-voltage battery, which is to be performed without the burden of the high-voltage battery by a high load such as an electric drive motor, unload the low-voltage battery under unfavorable conditions can.
  • Cell balancing is understood to mean the matching of the charge states of the individual battery cells of a battery.
  • DC / DC converter is arranged together with the first microcontroller in the high-voltage network, so that no costly insulation to protect the
  • the DC / DC converter is a non-insulating
  • DC / DC converter for example, a step-down converter or contains a non-insulating DC / DC converter.
  • the DC / DC converter may also be a flyback converter, a half-bridge converter or a full-bridge converter or one
  • the DC / DC converter is preferably constructed in a cascaded manner and contains a first DC / DC converter module and a second DC / DC converter module.
  • the first DC / DC converter module is then configured to generate an intermediate voltage lower than the voltage output from the high-voltage battery and higher than the voltage output from the high-voltage battery
  • Operating voltage for the first microcontroller is to generate and output to the second DC / DC converter module.
  • the second DC / DC converter module is designed to generate from the intermediate voltage, the operating voltage for the first microcontroller and output to the first microcontroller.
  • Cascading two (or more) DC / DC converter modules or stages has the advantage that the usually very high voltage output by the high-voltage battery can be converted more easily and in particular with better efficiency into the much lower operating voltage of the first microcontroller.
  • the battery system may include a linear regulator connected between the DC / DC converter and the first microcontroller, which is designed to stabilize the operating voltage for the first microcontroller.
  • the first microcontroller can in this way a trouble-free as possible
  • Supply voltage can be provided, which may be particularly important in the greatly affected by electromagnetic interference caused by the operation of an inverter, impaired environment of such a battery system.
  • the high-voltage battery can contain n battery cells connected between a positive pole and a negative pole of the high-voltage battery.
  • n battery cells connected between a positive pole and a negative pole of the high-voltage battery.
  • the DC / DC converter m of the n series-connected battery cells, where m and n are positive integers and m is smaller than n.
  • Input voltage receives, as if the input side between the positive pole and the negative pole of the high-voltage battery would be switched. This allows the
  • DC / DC converter designed for lower voltage compatibility and the efficiency of the DC / DC conversion can be improved.
  • the battery system may include a second isolator disposed between the second microcontroller and the DC / DC converter.
  • the second microcontroller is designed to generate a control signal and output via the second isolator to the DC / DC converter.
  • the DC / DC converter is designed to start the operation upon receipt of the control signal and to generate the operating voltage for the first microcontroller.
  • the first microcontroller is controlled by the second microcontroller in a master / slave ratio. This can be done within the scope of the invention by the control signal, for example an enable signal, by means of which the second microcontroller can wake up or put the first microcontroller into operation.
  • the first microcontroller may then be a predetermined or by the second microcontroller
  • the first microcontroller may be configured to execute a follow-up routine after switching off the second microcontroller.
  • Follow-up routine may be, for example, a cell balancing, which is to be carried out after stopping a motor vehicle equipped with the battery system.
  • the battery cells of the high-voltage battery are preferred.
  • Lithium-ion battery cells have the advantages of high cell voltage and high energy content within a given volume.
  • a second aspect of the invention relates to a motor vehicle having an electric drive motor for driving the motor vehicle and a battery system according to the first aspect of the invention.
  • Fig. 1 is a prior art battery system
  • Fig. 2 shows a battery system according to the prior art.
  • FIG. 1 shows a previously known battery system in which a high-voltage battery comprises a multiplicity of series-connected battery cells 10-1 to 10-n.
  • Battery cells 10-1 to 10-n can be connected in parallel.
  • the high-voltage network of the example of Figure 1 is also a plurality of
  • Cell monitoring units 1 1 -1 to 1 1 -n provided, which are connected to a respective associated battery cell 10-1 to 10-n. Alternatively, each one
  • Cell monitoring unit 1 1 -1 to 1 1 -n also be connected to a group of battery cells 10-1 to 10-n or provided only a single cell monitoring unit. In such embodiments, a switching unit is then provided, with which the cell monitoring unit can be connected to a selected battery cell of the battery cells or the group of battery cells.
  • the cell monitoring units 1 1 -1 to 1 1 -n are formed,
  • the cell monitoring units 1 1 -1 to 1 1 -n may be formed, more
  • Battery parameters such. B. to determine the cell temperature.
  • Cell monitoring units 1 1 1 -1 to 1 1 -n communicate via a bus with a first microcontroller 20 (also called “nanocontroller” because of its relatively simple and low-likelihood implementation), which is arranged in the low-voltage network of the battery system (a vertical dashed line)
  • a first microcontroller 20 also called “nanocontroller” because of its relatively simple and low-likelihood implementation
  • Dividing line in Figure 1 denotes the boundary between low-voltage and High-voltage network).
  • the first microcontroller 20 initiates and controls measurements by the cell monitoring units 1 1 -1 to 1 1 -n and receives from these the measurement results.
  • the first microcontroller 20 communicates with a second microcontroller 15 via an isolator 14.
  • the communication is handled via a CAN bus, which requires the use of a particularly inexpensive Isolator 14 allowed.
  • the first microcontroller 20 has a control output to one of two main contactors 16-1 and 16-2, which are provided to the high-voltage battery in case of damage or during
  • each of the two processing units 20, 15 is responsible for controlling one of the two
  • the first microcontroller 20 can be connected to a first current sensor 18, which is designed, for example, as a shunt resistor with downstream evaluation electronics, and thus uses the current sensor to connect the current through the first current sensor 18
  • High-voltage battery or the battery cells 10-1 to 10-n synchronously determine the battery voltages of the battery cells 10-1 to 10-n.
  • a second current sensor 19 designed as a Hall sensor can be provided, which is connected to and controlled by the second microcontroller 15, which permits the redundant determination of the battery current and, for example, offers a higher degree of safety for protection against short circuits of the battery module.
  • the second microcontroller 15 may be connected via a CAN bus 17 or a similar communication bus with other components.
  • the battery system can also have so-called watchdogs for the second microcontroller 15 and / or the first microcontroller 20, which ensure their correct functioning in a known manner.
  • An essential disadvantage of the battery system of FIG. 1 is that the first microcontroller 20 is supplied by the low-voltage network, which in the worst case may lead to a discharge of a low-voltage battery provided for this purpose during a run-in of the first microcontroller 20.
  • DC / DC converter implemented to act next to the insulator 14 as protection against the high voltages in the high-voltage network.
  • high demands are placed on the isolation of the DC / DC converter. If a flyback converter, which can fulfill these requirements in principle, is used as a DC / DC converter, it can affect other components in the low-voltage network due to electromagnetic radiation.
  • FIG. 2 shows a battery system according to the invention.
  • the same reference numerals as in Figure 1 denote the same elements, so that in the following only deviating components are described and otherwise what has been said for Figure 1 applies.
  • the invention provides a DC / DC converter 21, which with the
  • Battery cell 10-1 to 10-n comprehensive high-voltage battery is connected and generates the operating voltage for the first microcontroller 20 from a voltage generated by the high-voltage battery. Since DC / DC converter 21 and first microcontroller 20 are completely arranged in the high-voltage network, a complicated isolation of the DC / DC converter 21 can be omitted.
  • the DC / DC converter 21 is completely arranged in the high-voltage network, a complicated isolation of the DC / DC converter 21 can be omitted.
  • the input side is not the full voltage of the high-voltage battery, but a lower applied to the DC / DC converter 21.
  • the DC / DC converter 21 can be constructed in two or more stages, that is to say several DC / DC converter stages can be cascaded in order to simplify the conversion of the relatively high voltage generated by the high-voltage battery into the operating voltage of the first microcontroller 20 to be able to make better efficiency.
  • a linear regulator can additionally be connected between the DC / DC converter 21 and the first microcontroller 20 in order to stabilize the operating voltage for the first microcontroller 20.
  • the DC / DC converter 21 can have an enable input and the operating voltage for the first
  • a second isolator 22 may be provided to secure the signal line for the enable signal accordingly.
  • the enable signal is preferably generated by the second microcontroller 15, so that the second
  • Microcontroller 15 can take the first microcontroller 20 when needed by outputting the enable signal in operation.
  • the enable signal or a second enable signal can additionally be output directly to the first microcontroller 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

L'invention concerne un système de batterie présentant un réseau haute tension et un réseau basse tension. Le réseau haute tension comprend une batterie haute tension comportant une pluralité d'éléments de batterie (10-1,..., 10-n) couplés en série et un premier microcontrôleur (20), le réseau basse tension comportant un second microcontrôleur (15). Ledit premier microcontrôleur (20) et le second microcontrôleur (15) sont reliés par un bus de données, conçu pour transmettre des données par l'intermédiaire d'un premier isolateur (14) disposé entre le premier et le second microcontrôleur (20, 15). La batterie haute tension comprend au moins une unité de surveillance d'éléments (11-11,..., 11-n) reliée ou pouvant être relié au premier microcontrôleur (20), ladite unité de surveillance d'éléments étant conçue pour mesurer les tensions des éléments de batterie (10-1,..., 10-n) et pour transmettre les tensions d'éléments mesurées au premier microcontrôleur (20). Selon l'invention, un convertisseur CC/CC (21) relié à la batterie haute tension est conçu de manière à produire à partir de la tension fournie par la batterie haute tension une tension de service pour le premier microcontrôleur (20) et à fournir ladite tension au premier microcontrôleur (20).
PCT/EP2011/060678 2010-08-27 2011-06-27 Système de batterie à convertisseur cc/cc dans le réseau haute tension pour alimenter un microcontrôleur WO2012025280A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010039891A DE102010039891A1 (de) 2010-08-27 2010-08-27 Batteriesystem mit DC/DC-Umsetzer im Hochvoltnetz zur Versorgung eines Mikrocontrollers
DE102010039891.8 2010-08-27

Publications (2)

Publication Number Publication Date
WO2012025280A2 true WO2012025280A2 (fr) 2012-03-01
WO2012025280A3 WO2012025280A3 (fr) 2012-07-05

Family

ID=44475166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/060678 WO2012025280A2 (fr) 2010-08-27 2011-06-27 Système de batterie à convertisseur cc/cc dans le réseau haute tension pour alimenter un microcontrôleur

Country Status (2)

Country Link
DE (1) DE102010039891A1 (fr)
WO (1) WO2012025280A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472044A (zh) * 2021-07-06 2021-10-01 深圳市佰泽电子有限公司 锂电池保护***和锂电池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012209177B4 (de) * 2012-05-31 2023-12-14 Robert Bosch Gmbh Batteriesystem mit separat angeschlossener Bestimmungsschaltung sowie Batterie und Kraftfahrzeug mit Batteriesystem
DE102013225097B4 (de) 2013-12-06 2020-10-29 Volkswagen Aktiengesellschaft Energiemanagementverfahren zum Betreiben eines elektrischen Bordnetzes eines Kraftfahrzeuges und Kraftfahrzeug
DE102020100018B4 (de) 2019-04-02 2023-07-06 BE-Power GmbH Elektrisches Energiespeichersystem und Steuerungsverfahren für ein elektrisches Energiespeichersystem sowie elektromotorisch angetriebenes Fahrzeug mit einem elektrischen Energiespeichersystem
CN114347859B (zh) * 2022-01-06 2023-05-26 奇瑞商用车(安徽)有限公司 一种离线均衡方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4374351B2 (ja) * 2006-04-12 2009-12-02 矢崎総業株式会社 充電状態調整装置
DE102007029156A1 (de) * 2007-06-25 2009-01-08 Robert Bosch Gmbh Überwachungs- und Steuerungssystem für Hybridbatterien

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472044A (zh) * 2021-07-06 2021-10-01 深圳市佰泽电子有限公司 锂电池保护***和锂电池

Also Published As

Publication number Publication date
DE102010039891A1 (de) 2012-03-01
WO2012025280A3 (fr) 2012-07-05

Similar Documents

Publication Publication Date Title
EP2499506B1 (fr) Architecture d'appareil de commande de batterie
EP2497179B1 (fr) Système de batterie à convertisseurs continu-continu
DE102011079126B4 (de) Batteriemanagementsystem, Batterie, Kraftfahrzeug mit Batteriemanagementsystem sowie Verfahren zur Überwachung einer Batterie
EP2734852B1 (fr) Système de gestion de batterie et procédé de détermination des états de charge d'éléments de batterie, batterie et véhicule à moteur comportant un système de gestion de batterie
EP2578876B1 (fr) Système de pas pour une éolienne et procédé de fonctionnement d'un système de pas
WO2011082856A2 (fr) Système d'accumulation d'énergie et procédé pour le faire fonctionner
DE102013200763A1 (de) System und verfahren für das fahrzeugenergiemanagement
DE102006000796A1 (de) Integriertes Strommodul für Hybrid- und Brennstoffzellen-Fahrzeuge
DE102011079292A1 (de) Batteriemanagementsystem und dazugehöriges Verfahren zur Bestimmung eines Ladezustands einer Batterie, Batterie mit Batteriemanagementsystem und Kraftfahrzeug mit Batteriemanagementsystem
DE102012104560B4 (de) Erkennung der Stringkonfiguration für einen Multistring-Wechselrichter
WO2010088944A2 (fr) Dispositif de stockage d'énergie et procédé pour faire fonctionner un tel dispositif
DE102017210611B4 (de) Elektrische Energieliefervorrichtung mit einer Stromschienenmatrix sowie Verfahren zum Betreiben der Energieliefervorrichtung
WO2016001403A1 (fr) Dispositif transformateur de courant, système d'accumulateur d'énergie et procédé d'actionnement d'un dispositif transformateur de courant
WO2013092064A2 (fr) Système de batterie et procédé
WO2013159821A1 (fr) Chargeur
WO2012038152A1 (fr) Système de batterie et procédé de détermination des tensions de modules de batterie
WO2018233956A1 (fr) Dispositif de distribution d'énergie électrique comportant une pluralité d'unités d'utilisation câblées de manière à former des branches, et procédé de fonctionnement du dispositif de distribution en énergie
WO2012025280A2 (fr) Système de batterie à convertisseur cc/cc dans le réseau haute tension pour alimenter un microcontrôleur
DE102013201221A1 (de) Ansteuervorrichtung für ein elektrisches Energiespeichersystem
DE102011000394A1 (de) Lokale Energieversorgungsanlage
WO2018233954A1 (fr) Dispositif d'alimentation électrique avec matrice de barres conductrices et procédé de fonctionnement du dispositif d'alimentation en énergie
EP3711133B1 (fr) Procédé de démarrage autonome d'un dispositif d'alimentation en énergie, onduleur bidirectionnel et dispositif d'alimentation en énergie doté d'un onduleur bidirectionnel
DE102018105505A1 (de) Verfahren zur Erkennung einer Fehlfunktion, insbesondere eines Kurzschlussstroms, in einer Traktionsbatterieanordnung
DE102018213901A1 (de) Fehlertolerantes Bordnetzmodul mit zwei hintereinandergeschalteten DC/DC-Wandlern
DE102023205810A1 (de) Speicherbatterie-steuervorrichtung und speicherbatterieanschluss-steuervorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11729292

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 11729292

Country of ref document: EP

Kind code of ref document: A2