WO2012023177A1 - Organic light emitting element - Google Patents

Organic light emitting element Download PDF

Info

Publication number
WO2012023177A1
WO2012023177A1 PCT/JP2010/063875 JP2010063875W WO2012023177A1 WO 2012023177 A1 WO2012023177 A1 WO 2012023177A1 JP 2010063875 W JP2010063875 W JP 2010063875W WO 2012023177 A1 WO2012023177 A1 WO 2012023177A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
organic light
layer
emitting device
electron
Prior art date
Application number
PCT/JP2010/063875
Other languages
French (fr)
Japanese (ja)
Inventor
崇人 小山田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2012529426A priority Critical patent/JPWO2012023177A1/en
Priority to PCT/JP2010/063875 priority patent/WO2012023177A1/en
Publication of WO2012023177A1 publication Critical patent/WO2012023177A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants

Definitions

  • film sealing which is a sealing technique for forming a moisture-proof and gas barrier sealing layer
  • the sealing principle of film sealing is to obtain sealing capability by covering the organic EL element substrate with a moisture-proof and gas barrier sealing layer, and by using a multilayer structure, further sealing performance is obtained. Can be increased.
  • moisture permeation occurs from point defects, and the non-light-emitting region of the element is expanded. Whether or not the circular non-luminous defect is enlarged by subsequent moisture permeability is determined by the presence or absence of a defect in the sealing layer and the size of the defective portion.
  • the organic light-emitting device of the present invention is an organic light-emitting device comprising a plurality of organic semiconductor layers including an organic light-emitting layer, which is disposed between an opposing anode and cathode, and the organic semiconductor layer has an electron transport property.
  • An n-type dopant-containing electron transport layer in which an electron-donating substance that is in contact with the cathode and can be alloyed with the cathode is mixed in a stoichiometric form, and the cathode and An electron injection assist layer is disposed between and in contact with the n-type dopant-containing electron transport layer.
  • an n-type dopant-containing electron transport layer in which an n-type dopant that is an electron donating substance is mixed in the electron transport layer is used to increase the electron transport efficiency and the electron injection efficiency, and the n-type dopant is hygroscopic. It absorbs moisture and oxygen that have entered from the outside. Furthermore, a metal (silver, gold, platinum, or an alloy thereof) that is not easily oxidized is used for the cathode. In general, when a metal species that is difficult to oxidize, that is, a metal species having a high work function (Au, Ag, Pt, etc.) is used, an increase in driving voltage is accompanied by a decrease in electron injection efficiency. It can be avoided by using it.
  • the main component of the n-type dopant-containing electron transport layer containing the electron donating substance may contain a substance having a work function or a HOMO level of 3.0 eV or less.
  • the organic EL device has an anode 2 / hole injection layer 3 / light emitting layer 5 / n-type dopant-containing electron transport layer 7 / electron injection assist layer 8 / cathode 9.
  • anode 2 / hole transport layer 4 / light emitting layer 5 / n-type dopant-containing electron transport layer 7 / electron injection assist layer 8 / cathode 9 / cathode As shown in FIG. 3, anode 2 / hole transport layer 4 / light emitting layer 5 / n-type dopant-containing electron transport layer 7 / electron injection assist layer 8 / cathode 9 / cathode As shown in FIG.
  • Organic semiconductor layer-- The organic semiconductor layer (the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the hole block layer 6 and the n-type dopant-containing electron transport layer 7) has a charge transport property (holes) constituting their main components. And / or an organic compound having electron mobility).
  • Examples of the organic compound having an electron transport property as a main component of the light emitting layer and the electron transport layer include polycyclic compounds such as p-terphenyl and quaterphenyl and derivatives thereof, naphthalene, tetracene, pyrene, coronene, chrysene, anthracene, Condensed polycyclic hydrocarbon compounds such as diphenylanthracene, naphthacene, phenanthrene and derivatives thereof, condensed heterocyclic compounds such as phenanthroline, bathophenanthroline, phenanthridine, acridine, quinoline, quinoxaline, phenazine and derivatives thereof, fluorescein, Perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, oxadiazole, al
  • Liq, Csq, Naq, Kq Metal acetylacetonato (e.g. Li (acac), K (acac)), Metal dipivaloylmethanato (e.g. Lidpm, Kdpm, Nadpm) Mentioned as a dopant.
  • Metal acetylacetonato e.g. Li (acac), K (acac)
  • Metal dipivaloylmethanato e.g. Lidpm, Kdpm, Nadpm Mentioned as a dopant.
  • Example 3-1 On a transparent glass substrate on an anode made of 110 nm thick ITO, by vacuum deposition, 25 nm thick CuPc as a hole injection layer, 45 nm thick NPB as a hole transport layer, and 30 nm thick Alq3 as a light emitting layer. was deposited. Next, as an n-type dopant-containing electron transport layer, Cs 2 MoO 4 : NBphen with a thickness of 30 nm is co-deposited with 0.066 A / sec of Cs 2 MoO 4 and the co-deposition rate is 2 A / sec in total. A thin film having a Cs 2 MoO 4 concentration of 3.3% by volume was formed.

Abstract

An organic light emitting element is formed from a plurality of organic semiconductor layers, which include an organic light emitting layer, laminated and placed between an anode and cathode, which are on opposite sides from each other. The organic semiconductor layers are primarily formed of an organic compound having electron transporting properties. The organic semiconductor layers further include an electron transport layer containing an n type dopant in which an electron donor material that is in contact with the cathode and may be alloyed with the cathode is mixed in a stoichiometric form. An electron implantation assisting layer that is positioned between the cathode and the electron transport layer containing the n type dopant and in contact with both is present.

Description

有機発光素子Organic light emitting device
 本発明は、有機半導体素子に関し、特に正孔又は電子の移動性すなわち電荷輸送性を有する有機化合物を利用し、かかる化合物からなる有機半導体層を備えた有機半導体素子に関し、特に有機発光層を備えた有機発光素子に関する。 The present invention relates to an organic semiconductor element, and particularly relates to an organic semiconductor element having an organic semiconductor layer made of such a compound using an organic compound having a hole or electron mobility, that is, a charge transporting property, and more particularly, an organic light emitting layer. The present invention relates to an organic light emitting device.
 有機発光素子はすでに実用化され、例えば有機ELパネルが知られている。現在、大きな課題の一つは安定性の向上である。具体的には、素子の発光輝度が低下したり、ダークスポットと呼ばれる非発光領域が発生、拡大することである。素子には水分、酸素等で欠陥部から発生するダークスポットや陰極エッジから非発光部の進行があるからである。このため、素子を保護する封止技術の研究されている。封止技術の内の缶封止は、金属、ガラスなどの中空構造の缶が用いられ、その中に乾燥剤を投入している。近年、部品スペース確保、軽量化の観点から素子、パネルの薄膜化が進み、防湿性、ガスバリア性の封止層を成膜する封止技術である膜封止が用いられている。膜封止の封止原理は、防湿性、ガスバリア性の封止層で有機EL素子基板を覆うことにより、封止能力を得るというものであり、多層構造を用いることにより、さらに封止性能を増すことができる。しかしながら、成膜時におけるピンホールなどを主な原因として、点欠陥から透湿などが起こり、素子の非発光領域が拡大する。この円形の非発光欠陥が、その後の透湿により拡大するか否かは、封止層における欠陥の有無と、その欠陥部分の大きさにより決定される。このダークスポットを減らすための先行技術としては、特許文献1に記載されるように、封止層構成として、欠陥部を覆うようなバッファ層(平坦化層)を設けることなどが知られている。この技術によって、封止層欠陥数は減らし、非発光部の進行を遅延するものの、バッファ層によって覆いきれなかった点欠陥がなくなるわけではない。この他に、固体封止という技術があり、素子上に接着剤、更にガラス、金属製のもので覆う技術がある。しかしながら、乾燥剤を導入しないため、ガラス、金属製端部から接着層を通して浸透する水分、酸素等を遅延はできるのもの非発光部の進行を妨げることができない。膜封止と固体封止技術の併用が考えられるが、非発光進行遅延に留まる。 Organic light-emitting elements have already been put into practical use, for example, organic EL panels are known. Currently, one of the major challenges is improving stability. Specifically, the light emission luminance of the element is reduced, or a non-light emitting region called a dark spot is generated and enlarged. This is because the device has a dark spot generated from a defective portion due to moisture, oxygen, or the like, and a non-light emitting portion proceeds from the cathode edge. For this reason, research has been conducted on sealing technology for protecting the element. Of the sealing technologies, can sealing uses a hollow can made of metal, glass or the like, and a desiccant is put into the can. In recent years, thinning of elements and panels has progressed from the viewpoint of securing component space and reducing weight, and film sealing, which is a sealing technique for forming a moisture-proof and gas barrier sealing layer, has been used. The sealing principle of film sealing is to obtain sealing capability by covering the organic EL element substrate with a moisture-proof and gas barrier sealing layer, and by using a multilayer structure, further sealing performance is obtained. Can be increased. However, mainly due to pinholes at the time of film formation, moisture permeation occurs from point defects, and the non-light-emitting region of the element is expanded. Whether or not the circular non-luminous defect is enlarged by subsequent moisture permeability is determined by the presence or absence of a defect in the sealing layer and the size of the defective portion. As a prior art for reducing this dark spot, as described in Patent Document 1, it is known to provide a buffer layer (flattening layer) that covers a defective portion as a sealing layer configuration. . This technique reduces the number of defects in the sealing layer and delays the progress of the non-light-emitting portion, but does not eliminate the point defects that could not be covered by the buffer layer. In addition to this, there is a technique called solid sealing, and there is a technique for covering an element with an adhesive, further glass or metal. However, since no desiccant is introduced, it is possible to delay moisture, oxygen, and the like that permeate through the adhesive layer from the glass and metal ends, but the progress of the non-light emitting portion cannot be prevented. Although a combination of film sealing and solid sealing technology is conceivable, the non-emission progress delay is limited.
 これらの非発光進行遅延は酸化しにくい、金属例えば、金を用いることで進行を更に遅延させることが考えられるが、これらの金属は仕事関数が高いため、電子注入しにくく、更に、フッ化リチウムなどの電子注入層を用いても電子注入しにくく、駆動電圧が上昇する。合金を用いることで電子注入がし易くなると考えられるが、非発光部の遅延を考えると酸化されにくい金属はイオン化ポテンシャル及び仕事関数が高い傾向にあるため、酸化されにくい金属同士の合金での電子注入効率増大は見込めない。また、金は赤色波長以上であると吸収が存在するため、透明陽極付のガラス基板から光を放射するボトムエミッション構造の場合、反射効率が落ちるため発光効率も低下する。半透明電極から光を放射するトップエミッション構造の場合、赤色領域の透過率が低下し、発光効率が低下する。
特開平10-312883 特開2005-108720 特開平11-260546 特開2006-351314 特開2007-059243
These non-light-emitting progress delays are difficult to oxidize, and it is conceivable that the progress is further delayed by using a metal such as gold. However, these metals have a high work function, so that it is difficult to inject electrons. Even if an electron injection layer such as is used, it is difficult to inject electrons, and the drive voltage increases. It is thought that the use of an alloy makes it easier to inject electrons, but considering the delay of the non-light emitting part, metals that are difficult to oxidize tend to have a high ionization potential and work function. The injection efficiency cannot be increased. In addition, since gold has an absorption at a wavelength greater than or equal to the red wavelength, in the case of a bottom emission structure in which light is emitted from a glass substrate with a transparent anode, the reflection efficiency is lowered and the light emission efficiency is also lowered. In the case of a top emission structure that emits light from a semi-transparent electrode, the transmittance in the red region is lowered and the light emission efficiency is lowered.
JP 10-312883 A JP-A-2005-108720 JP-A-11-260546 JP 2006-351314 A JP2007-059243
 上記特許文献2~5の開示技術の中においても、非発光領域の減少を試みられているが、未だ十分ではない。そこで、本発明の課題しては、有機発光素子の薄膜化を目指した封止技術に対応し、非発光領域の拡大等といった表示品質の低下の少なく、消費電力が低く、経時変化で駆動電圧の上昇・輝度劣化が少ない有機EL素子の素子構造を提供することが、その一例としてあげられる。 Even among the disclosed techniques disclosed in Patent Documents 2 to 5, attempts have been made to reduce the non-light emitting region, but this is not sufficient. Therefore, the problem of the present invention is that it corresponds to the sealing technology aiming at thinning of the organic light emitting device, there is little deterioration in display quality such as enlargement of the non-light emitting region, etc., low power consumption, drive voltage with time change One example is to provide an element structure of an organic EL element with little increase in brightness and deterioration in luminance.
発明が解決しようとする手段Means to be Solved by the Invention
 本発明の有機発光素子は、対向する陽極及び陰極の間に積層配置された、有機発光層を含む複数の有機半導体層からなる有機発光素子であって、前記有機半導体層は、電子輸送性を有する有機化合物を主体として、前記陰極に接するとともに前記陰極とのアロイ化をなしうる電子供与性物質がストイキオメトリ形態で混合されたn型ドーパント含有電子輸送層を含むこと、並びに、前記陰極及び前記n型ドーパント含有電子輸送層の間に配置され且つそれぞれに接する電子注入アシスト層を有することを特徴とする。 The organic light-emitting device of the present invention is an organic light-emitting device comprising a plurality of organic semiconductor layers including an organic light-emitting layer, which is disposed between an opposing anode and cathode, and the organic semiconductor layer has an electron transport property. An n-type dopant-containing electron transport layer in which an electron-donating substance that is in contact with the cathode and can be alloyed with the cathode is mixed in a stoichiometric form, and the cathode and An electron injection assist layer is disposed between and in contact with the n-type dopant-containing electron transport layer.
 素子構造中に、電子輸送層に電子供与性物質であるn型ドーパントが混合されたn型ドーパント含有電子輸送層を用い、電子輸送効率及び電子注入効率を増大させ、かつn型ドーパントに吸湿性があるため、外部から浸入してきた水分、酸素を吸収する。更に、陰極に酸化されにくい金属(銀、金、白金またはその合金)を用いる。通常、酸化されにくい金属種、つまり仕事関数が高い金属種(Au、Ag、Ptなど)を用いた場合、電子注入効率低下に伴う駆動電圧上昇が発生するが、n型ドーパント含有電子輸送層を用いることで回避できる。ここで、n型ドーパント含有電子輸送層と陰極の間に、電子注入アシスト層を設けることにより、電子輸送層と陰極界面にて互いにアロイ化を促進し、密着力を向上させ、電子輸送層と陰極界面端部からの透湿を抑制させる。電子注入アシスト層の材料には、その仕事関数がn型ドーパントのものよりも高くかつ、酸化されにくい陰極のものより低い材料を選ぶ。このとき、電子注入アシスト層に用いた材質を陰極に混合することもでき、n型ドーパント含有電子輸送層への混合はn型ドーパント含有電子輸送層の透過率が80%以下に低下しなければ使用可能である。すなわち、電子注入アシスト層は陰極から電子輸送層へ電子の注入が促進され、かつ電子輸送層に含有されたストイキオメトリ形態の電子供与性物質と陰極をアロイ化させることで、密着力が向上し陰極端部からの透湿を抑制する。 In the device structure, an n-type dopant-containing electron transport layer in which an n-type dopant that is an electron donating substance is mixed in the electron transport layer is used to increase the electron transport efficiency and the electron injection efficiency, and the n-type dopant is hygroscopic. It absorbs moisture and oxygen that have entered from the outside. Furthermore, a metal (silver, gold, platinum, or an alloy thereof) that is not easily oxidized is used for the cathode. In general, when a metal species that is difficult to oxidize, that is, a metal species having a high work function (Au, Ag, Pt, etc.) is used, an increase in driving voltage is accompanied by a decrease in electron injection efficiency. It can be avoided by using it. Here, by providing an electron injection assist layer between the n-type dopant-containing electron transport layer and the cathode, alloying is promoted at the interface between the electron transport layer and the cathode, adhesion is improved, and the electron transport layer is Moisture permeation from the cathode interface edge is suppressed. As the material for the electron injection assist layer, a material whose work function is higher than that of the n-type dopant and lower than that of the cathode which is not easily oxidized is selected. At this time, the material used for the electron injection assist layer can also be mixed with the cathode, and mixing with the n-type dopant-containing electron transport layer should not lower the transmittance of the n-type dopant-containing electron transport layer to 80% or less. It can be used. In other words, the electron injection assist layer promotes the injection of electrons from the cathode to the electron transport layer, and improves the adhesion by alloying the stoichiometric electron donating substance and the cathode contained in the electron transport layer. This prevents moisture permeation from the cathode end.
 上記の有機発光素子において、前記陰極の前記電子注入アシスト層の反対側の前記陰極上に陰極耐湿強化膜を有することとすることができる。上記の有機発光素子において、前記陰極耐湿強化膜は前記n型ドーパント含有電子輸送層の端部と前記電子注入アシスト層の端部とそれらの界面の端部、及び前記陰極の端部も覆うように配置されることすることができる。陰極耐湿強化膜の材質としては膜封止に用いられるようなSiONx(xは原子比を示す)でも良いが、他に、LiO、LiF、YbF、MgFのような酸化物、フッ化物でも良く、特に吸湿性が無いYbF、MgFの材質が好ましい。この陰極耐湿強化膜は半透明電極として機能するため、陰極を透明又は半透明とするために局所的に膜厚が薄い箇所が存在する場合、陰極耐湿強化膜は陰極膜の局所的に膜厚が薄い箇所を補うように成膜され、かつ、局所的に薄い箇所は陰極耐湿強化膜と電子注入アシスト層、或いは電子輸送層とアロイ化し、密着力が向上し陰極端部からの透湿を抑制することができる。これらの構造により、有機発光素子に乾燥剤を含まない膜封止、乾燥剤を含まない固体封止の封止技術と組み合わせることができる。また、陰極耐湿強化膜は膜封止のように透湿遮断を目的としているわけではなく、陰極酸化の遅延を目的としているため、膜厚はμmオーダーではなくnmオーダーで構わなく、かつ陰極膜厚程度でもよい。更に、トップエミッション構造のように陰極が薄くても対応可能である。 In the above organic light-emitting device, a cathode moisture-resistant reinforcing film may be provided on the cathode on the opposite side of the cathode from the electron injection assist layer. In the above organic light emitting device, the cathode moisture resistance enhancement film covers an end portion of the n-type dopant-containing electron transport layer, an end portion of the electron injection assist layer, an end portion of the interface thereof, and an end portion of the cathode. Can be arranged. The material of the cathode moisture resistant enhancement film may be SiONx (x represents an atomic ratio) used for film sealing, but other oxides such as Li 2 O, LiF, YbF 3 , MgF 3 , fluorine A material of YbF 3 or MgF 3 having no hygroscopicity is particularly preferable. Since this cathode moisture-resistant enhancement film functions as a translucent electrode, the cathode moisture-resistant enhancement film has a local thickness of the cathode film when there is a locally thin part in order to make the cathode transparent or translucent. The film is formed so as to compensate for the thin part, and the locally thin part is alloyed with the cathode moisture-proof reinforcing film and the electron injection assist layer or the electron transport layer, improving adhesion and preventing moisture permeation from the cathode end. Can be suppressed. With these structures, the organic light-emitting device can be combined with a film sealing technique that does not include a desiccant and a solid sealing technique that does not include a desiccant. Further, the cathode moisture-resistant reinforcing film is not intended to block moisture permeation unlike the film sealing, but is intended to delay the cathode oxidation, so the film thickness may be in the order of nm instead of μm, and the cathode film It may be about thick. Furthermore, even if the cathode is thin like the top emission structure, it can be handled.
 上記の有機発光素子において、前記電子供与性物質を含む前記n型ドーパント含有電子輸送層の主成分は仕事関数やHOMOレベルが3.0eV以下である物質を含有することとすることができる。 In the above organic light-emitting device, the main component of the n-type dopant-containing electron transport layer containing the electron donating substance may contain a substance having a work function or a HOMO level of 3.0 eV or less.
 上記の有機発光素子において、前記n型ドーパント含有電子輸送層の前記電子供与性物質はCsMoO、CsMoO、CsVO、CsVO、LiMoOであることとすることができる。 In the above organic light emitting device, the electron donating substance of the n-type dopant-containing electron transport layer is Cs 2 MoO 4 , Cs 2 MoO 4 , CsVO 3 , Cs 3 VO 4 , Li 2 MoO 4. Can do.
 上記の有機発光素子において、前記n型ドーパント含有電子輸送層中に前記電子供与性物質は0.8体積%から60体積%で含有されていることとすることができる。 In the above organic light-emitting device, the electron donating substance may be contained in an amount of 0.8 to 60% by volume in the n-type dopant-containing electron transport layer.
 上記の有機発光素子において、前記電子注入アシスト層は仕事関数が3.0eV以下である物質を含有することとすることができる。 In the above organic light emitting device, the electron injection assist layer may contain a substance having a work function of 3.0 eV or less.
 上記の有機発光素子において、前記電子注入アシスト層はAlF、MgF、ZnFなどのフッ化物、AlMoO、MgMoO、ZnOなど(xは原子比を示す)の金属酸化物であることとすることができる。 In the above organic light emitting device, the electron injection assist layer is a metal oxide such as fluorides such as AlF 3 , MgF 2 , ZnF x , AlMoO x , MgMoO x , ZnO and the like (x indicates an atomic ratio). can do.
 上記の有機発光素子において、前記陰極は仕事関数が4.5eV以上の金属からなることとすることができる。 In the above organic light emitting device, the cathode may be made of a metal having a work function of 4.5 eV or more.
 上記の有機発光素子において、前記陰極はAg、Pt、Au単体の金属、これらの合金からなることとすることができる。 In the above organic light emitting device, the cathode may be made of Ag, Pt, Au simple metal, or an alloy thereof.
 上記の有機発光素子において、前記陰極耐湿強化膜はLiO、MoO、V、Wなど(x、yは原子比を示す)の酸化物、それらの金属化合物、YbF、MgF、LiFのフッ化物からなることとすることができる。 In the above organic light emitting device, the cathode moisture resistance enhancement film is an oxide of Li 2 O, MoO 3 , V x O y , W x O y or the like (where x and y indicate an atomic ratio), a metal compound thereof, YbF 3 , MgF 2 , LiF fluoride.
 上記の有機発光素子において、前記陰極耐湿強化膜は1nm~120nmであることとすることができる。 In the above organic light emitting device, the cathode moisture resistance enhancement film may be 1 nm to 120 nm.
 上記の有機発光素子において、前記陰極耐湿強化膜は陰極膜厚以上の膜厚を有することとすることができる。 In the above organic light-emitting device, the cathode moisture-resistant reinforcing film can have a film thickness equal to or greater than the cathode film thickness.
 上記の有機発光素子において、前記陽極が反射電極であり、前記陰極が半透明又は透明な電極であるトップエミッション型有機発光素子であることとすることができる。 In the above organic light emitting device, the anode may be a reflective electrode, and the cathode may be a top emission organic light emitting device which is a translucent or transparent electrode.
 上記の有機発光素子において、前記陽極が半透明又は透明な電極であり、前記陰極が半透明又は透明な電極である両面エミッション型有機発光素子であることとすることができる。 In the above organic light emitting device, the anode may be a translucent or transparent electrode, and the cathode may be a double-sided emission type organic light emitting device in which a translucent or transparent electrode is used.
 上記有機発光素子を発光体とする照明パネルも本願発明に含まれる。 An illumination panel using the organic light emitting element as a light emitter is also included in the present invention.
本発明による実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention. 本発明による他の実施形態の有機半導体素子の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of the organic-semiconductor element of other embodiment by this invention.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔ブロック層
 7 電子輸送層
 8 電子注入アシスト層
 9 陰極
 10 陰極耐湿強化膜
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole block layer 7 Electron transport layer 8 Electron injection assist layer 9 Cathode 10 Cathode moisture-proof reinforcement film
 以下に本発明の有機発光素子による有機EL素子の実施の形態を図面を参照しつつ説明する。 Embodiments of an organic EL element using the organic light-emitting element of the present invention will be described below with reference to the drawings.
 本実施形態の有機EL素子の一例は、図1に示すように、ガラス等の透明基板1上にて、順に、透明な陽極2、有機化合物からなる正孔輸送層4、有機化合物からなる有機発光層5、電子輸送性を有する有機化合物を主体とし陰極とのアロイ化をなしうる電子供与性物質がストイキオメトリ形態で混合されたn型ドーパント含有電子輸送層7、電子注入アシスト層8、及び陰極9が積層されて得られるものである。電子注入アシスト層8は陰極9及びn型ドーパント含有電子輸送層7の間に配置され且つそれぞれに接する。陰極9の電子注入アシスト層8の反対側の陰極9上に陰極耐湿強化膜10が配置されている。すなわち、有機EL素子において、対向する1対の陽極及び陰極の間に積層配置された複数の有機半導体層が正孔注入層、正孔輸送層、発光層を包含する。 As shown in FIG. 1, an example of the organic EL device of the present embodiment is a transparent anode 2, a hole transport layer 4 made of an organic compound, and an organic compound made of an organic compound in this order on a transparent substrate 1 such as glass. A light-emitting layer 5, an n-type dopant-containing electron transport layer 7 in which an electron-donating substance mainly composed of an organic compound having an electron transporting property and capable of forming an alloy with the cathode is mixed in a stoichiometric form, an electron injection assist layer 8, And the cathode 9 are laminated. The electron injection assist layer 8 is disposed between and in contact with the cathode 9 and the n-type dopant-containing electron transport layer 7. On the cathode 9 on the opposite side of the cathode 9 from the electron injection assist layer 8, a cathode moisture resistance enhancement film 10 is disposed. That is, in the organic EL element, a plurality of organic semiconductor layers stacked between a pair of opposed anodes and cathodes include a hole injection layer, a hole transport layer, and a light emitting layer.
 図1に示すように、有機EL素子は、陽極2/正孔注入層3/正孔輸送層4/発光層5/n型ドーパント含有電子輸送層7/電子注入アシスト層8/陰極9/陰極耐湿強化膜10/の構成を有する。図示するように、有機EL素子において、陰極耐湿強化膜10はn型ドーパント含有電子輸送層7の端部と電子注入アシスト層8の端部とそれらの界面の端部、並びに陰極9の端部及びそれらの界面の端部も覆うように配置される。この他の実施形態には、有機EL素子は、図2に示すように、陽極2/正孔注入層3/発光層5/n型ドーパント含有電子輸送層7/電子注入アシスト層8/陰極9/陰極耐湿強化膜10/の構成や、図3に示すように、陽極2/正孔輸送層4/発光層5/n型ドーパント含有電子輸送層7/電子注入アシスト層8/陰極9/陰極耐湿強化膜10/の構成や、図4に示すように、陽極2/発光層5/n型ドーパント含有電子輸送層7/電子注入アシスト層8/陰極9/陰極耐湿強化膜10/の構成が挙げられる。本発明による有機EL素子は、n型ドーパント含有電子輸送層7を陰極9との界面に有するものであればよい。よって、n型ドーパント含有電子輸送層7の隣接層は発光層に限定されることなく、発光層及び電子輸送層の間にブロック層及び/又はバファ層など、例えば、図5に示すように、陽極2/正孔注入層3/正孔輸送層4/発光層5/正孔ブロック層6/n型ドーパント含有電子輸送層7/電子注入アシスト層8/陰極9/陰極耐湿強化膜10/の構成の他に、図6に示すように、陽極2/正孔注入層3/発光層5/正孔ブロック層6/n型ドーパント含有電子輸送層7/電子注入アシスト層8/陰極9/陰極耐湿強化膜10/の構成や、図7に示すように、陽極2/正孔輸送層4/発光層5/正孔ブロック層6/n型ドーパント含有電子輸送層7/電子注入アシスト層8/陰極9/陰極耐湿強化膜10/の構成や、図8に示すように、陽極2/発光層5/正孔ブロック層6/n型ドーパント含有電子輸送層7/電子注入アシスト層8/陰極9/陰極耐湿強化膜10/の構成も本発明に含まれる。 As shown in FIG. 1, the organic EL device has an anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / n-type dopant-containing electron transport layer 7 / electron injection assist layer 8 / cathode 9 / cathode. It has the structure of the moisture-proof reinforcing film 10 /. As shown in the figure, in the organic EL device, the cathode moisture resistance enhancement film 10 includes an end portion of the n-type dopant-containing electron transport layer 7, an end portion of the electron injection assist layer 8, an end portion of those interfaces, and an end portion of the cathode 9. And it arrange | positions so that the edge part of those interfaces may also be covered. In this other embodiment, as shown in FIG. 2, the organic EL device has an anode 2 / hole injection layer 3 / light emitting layer 5 / n-type dopant-containing electron transport layer 7 / electron injection assist layer 8 / cathode 9. As shown in FIG. 3, anode 2 / hole transport layer 4 / light emitting layer 5 / n-type dopant-containing electron transport layer 7 / electron injection assist layer 8 / cathode 9 / cathode As shown in FIG. 4, the structure of the moisture-resistant strengthened film 10 / and the structure of the anode 2 / light emitting layer 5 / n-type dopant-containing electron transport layer 7 / electron injection assist layer 8 / cathode 9 / cathode moisture-resistant strengthened film 10 / Can be mentioned. The organic EL element by this invention should just have the n-type dopant containing electron carrying layer 7 in the interface with the cathode 9. FIG. Therefore, the adjacent layer of the n-type dopant-containing electron transport layer 7 is not limited to the light emitting layer, but a block layer and / or a buffer layer between the light emitting layer and the electron transport layer, for example, as shown in FIG. Anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / n-type dopant-containing electron transport layer 7 / electron injection assist layer 8 / cathode 9 / cathode moisture resistance enhancement film 10 / In addition to the configuration, as shown in FIG. 6, anode 2 / hole injection layer 3 / light emitting layer 5 / hole blocking layer 6 / n-type dopant-containing electron transport layer 7 / electron injection assist layer 8 / cathode 9 / cathode As shown in FIG. 7, the structure of the moisture-resistant reinforcing film 10 /, as shown in FIG. 7, anode 2 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / n-type dopant-containing electron transport layer 7 / electron injection assist layer 8 / The structure of the cathode 9 / cathode moisture resistant enhancement film 10 / and the anode 2 as shown in FIG. Emitting layer 5 / hole blocking layer 6 / n-type dopant-containing electron-transporting layer 7 / electron injection assist layer 8 / a cathode 9 / cathode moisture enhanced layer 10 / the structure is also included in the present invention.
 --基板並びに陽極及び陰極--
 基板1としては、ガラスの透明無機材料の他、ポリスチレンなどのプラスチック材料といった半透明材料の他に、シリコンやAlなどの不透明な材料、フェノール樹脂などの熱硬化性樹脂、ポリカーボネートなどの熱可塑性樹脂などを用いることができる。
--Substrate and anode and cathode--
As the substrate 1, in addition to a transparent inorganic material such as glass, a translucent material such as a plastic material such as polystyrene, an opaque material such as silicon or Al, a thermosetting resin such as a phenol resin, or a thermoplastic resin such as polycarbonate. Etc. can be used.
 陽極2及び陰極9の電極材料としては、Ti、Al、Al、Cu、Ni、Ag、Mg:Ag、Au、Pt、Pd、Ir、Cr、Mo、W、Taなどの金属あるいはこれらの合金が挙げられる。あるいは、ポリアニリンやPEDT:PSSなどの導電性高分子を用いることができる。あるいは、酸化物透明導電薄膜、例えばインジウムすず酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛、酸化錫などのいずれかを主組成としたものを用いることができる。また、各電極の厚さは10~500nm程度が好ましい。これらの電極材料は真空蒸着法、スパッタ法で作製されたものが好ましい。 As the electrode material of the anode 2 and the cathode 9, metals such as Ti, Al, Al, Cu, Ni, Ag, Mg: Ag, Au, Pt, Pd, Ir, Cr, Mo, W, Ta, or alloys thereof are used. Can be mentioned. Alternatively, a conductive polymer such as polyaniline or PEDT: PSS can be used. Alternatively, an oxide transparent conductive thin film, for example, one containing indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide, tin oxide or the like as a main composition can be used. The thickness of each electrode is preferably about 10 to 500 nm. These electrode materials are preferably produced by vacuum deposition or sputtering.
 陽極2には、一般的に、陰極9より仕事関数の大きな導電性材料が選択される。さらに、陽極及び陰極は、発光の取り出し側を透明又は半透明となるように材料、膜厚を選択する。特に陽極及び陰極のうちどちらか、もしくはその両方が、有機発光材料から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。 Generally, a conductive material having a work function larger than that of the cathode 9 is selected for the anode 2. Further, materials and film thicknesses of the anode and the cathode are selected so that the emission extraction side is transparent or translucent. In particular, it is preferable to select a material in which either one or both of the anode and the cathode has a transmittance of at least 10% at the emission wavelength obtained from the organic light emitting material.
 --有機半導体層--
 有機半導体層(正孔注入層3、正孔輸送層4、発光層5、正孔ブロック層6及びn型ドーパント含有電子輸送層7)は、それらの主成分を構成する電荷輸送性(正孔及び/又は電子の移動性)を有する有機化合物を利用する。
--- Organic semiconductor layer--
The organic semiconductor layer (the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the hole block layer 6 and the n-type dopant-containing electron transport layer 7) has a charge transport property (holes) constituting their main components. And / or an organic compound having electron mobility).
 発光層や電子輸送層の主成分の電子輸送性を有する有機化合物としては、p-テルフェニルやクアテルフェニル等の多環化合物及びそれらの誘導体、ナフタレン、テトラセン、ピレン、コロネン、クリセン、アントラセン、ジフェニルアントラセン、ナフタセン、フェナントレン等の縮合多環炭化水素化合物及びそれらの誘導体、フェナントロリン、バソフェナントロリン、フェナントリジン、アクリジン、キノリン、キノキサリン、フェナジン等の縮合複素環化合物及びそれらの誘導体や、フルオロセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、オキシン、アミノキノリン、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、キナクリドン、ルブレン等及びそれらの誘導体等を挙げることができる。 Examples of the organic compound having an electron transport property as a main component of the light emitting layer and the electron transport layer include polycyclic compounds such as p-terphenyl and quaterphenyl and derivatives thereof, naphthalene, tetracene, pyrene, coronene, chrysene, anthracene, Condensed polycyclic hydrocarbon compounds such as diphenylanthracene, naphthacene, phenanthrene and derivatives thereof, condensed heterocyclic compounds such as phenanthroline, bathophenanthroline, phenanthridine, acridine, quinoline, quinoxaline, phenazine and derivatives thereof, fluorescein, Perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyra Emissions, cyclopentadiene, oxine, aminoquinoline, imine, diphenylethylene, vinyl anthracene, diaminocarbazole, pyran, may be mentioned thiopyran, polymethine, merocyanine, quinacridone, rubrene and the like, and their derivatives etc..
 また、電子輸送性を有する有機化合物として、金属キレート錯体化合物、特に金属キレート化オキサノイド化合物では、トリス(8-キノリノラト)アルミニウム、ビス(8-キノリノラト)マグネシウム、ビス[ベンゾ(f)-8-キノリノラト]亜鉛、ビス(2-メチル-8-キノリノラト)(4-フェニル-フェノラト)アルミニウム、トリス(8-キノリノラト)インジウム、トリス(5-メチル-8-キノリノラト)アルミニウム、8-キノリノラトリチウム、トリス(5-クロロ-8-キノリノラト)ガリウム、ビス(5-クロロ-8-キノリノラト)カルシウム等の8-キノリノラト或いはその誘導体を配位子として少なくとも一つ有する金属錯体も挙げることができる。 Further, as an organic compound having an electron transporting property, a metal chelate complex compound, particularly a metal chelated oxanoid compound, tris (8-quinolinolato) aluminum, bis (8-quinolinolato) magnesium, bis [benzo (f) -8-quinolinolato ] Zinc, bis (2-methyl-8-quinolinolato) (4-phenyl-phenolato) aluminum, tris (8-quinolinolato) indium, tris (5-methyl-8-quinolinolato) aluminum, 8-quinolinolatolithium, tris Mention may also be made of metal complexes having at least one 8-quinolinolato such as (5-chloro-8-quinolinolato) gallium, bis (5-chloro-8-quinolinolato) calcium or a derivative thereof as a ligand.
 また、電子輸送性を有する有機化合物として、オキサジアゾール類、トリアジン類、スチルベン誘導体及びジスチリルアリーレン誘導体、スチリル誘導体、ジオレフィン誘導体も好適に使用され得る。 As organic compounds having electron transport properties, oxadiazoles, triazines, stilbene derivatives, distyrylarylene derivatives, styryl derivatives, and diolefin derivatives can also be suitably used.
 さらに、電子輸送性を有する有機化合物として使用できる有機化合物として、2,5-ビス(5,7-ジ-t-ベンチル-2-ベンゾオキサゾリル)-1,3,4-チアゾール、4,4’-ビス(5,7-t-ペンチル-2-ベンゾオキサゾリル)スチルベン、4,4’-ビス[5,7-ジ-(2-メチル-2-ブチル)-2-ベンゾオキサゾリル]スチルベン、2,5-ビス(5.7-ジ-t-ペンチル-2-ベンゾオキサゾリル)チオフェン、2,5-ビス[5-(α,α-ジメチルベンジル)-2-ベンゾオキサゾリル]チオフェン、2,5-ビス[5,7-ジ-(2-メチル-2-ブチル)-2-ベンゾオキサゾリル]-3,4-ジフェニルチオフェン、2,5-ビス(5-メチル-2-ベンゾオキサゾリル)チオフェン、4,4’-ビス(2-ベンゾオキサゾリル)ビフェニル、5-メチル-2-{2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル}ベンゾオキサゾール、2-[2-(4-クロロフェニル)ビニル]ナフト(1,2-d)オキサゾール等のベンゾオキサゾール系、2,2’-(p-フェニレンジピニレン)-ビスベンゾチアゾール等のベンゾチアゾール系、2-{2-[4-(2-ベンゾイミダゾリル)フェニル〕ビニル}ベンゾイミダゾール、2-[2-(4-カルボキシフェニル)ビニル]ベンゾイミダゾール等も挙げられる。 Further, as an organic compound that can be used as an organic compound having an electron transporting property, 2,5-bis (5,7-di-t-benzyl-2-benzoxazolyl) -1,3,4-thiazole, 4, 4'-bis (5,7-t-pentyl-2-benzoxazolyl) stilbene, 4,4'-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazoly Ru] stilbene, 2,5-bis (5.7-di-t-pentyl-2-benzoxazolyl) thiophene, 2,5-bis [5- (α, α-dimethylbenzyl) -2-benzoxa Zolyl] thiophene, 2,5-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazolyl] -3,4-diphenylthiophene, 2,5-bis (5- Methyl-2-benzoxazolyl) thiophene, 4,4 ′ -Bis (2-benzoxazolyl) biphenyl, 5-methyl-2- {2- [4- (5-methyl-2-benzoxazolyl) phenyl] vinyl} benzoxazole, 2- [2- (4 Benzoxazoles such as -chlorophenyl) vinyl] naphtho (1,2-d) oxazole, benzothiazoles such as 2,2 '-(p-phenylenedipinylene) -bisbenzothiazole, 2- {2- [4 -(2-Benzimidazolyl) phenyl] vinyl} benzimidazole, 2- [2- (4-carboxyphenyl) vinyl] benzimidazole and the like can also be mentioned.
 さらに、電子輸送性を有する有機化合物として、1,4-ビス(2-メチルスチリル)ベンゼン、1,4-ビス(3-メチルスチリル)ベンゼン、1,4-ビス(4-メチルスチリル)ベンゼン、ジスチリルベンゼン、1,4-ビス(2-エチルスチリル)ベンゼン、1,4-ビス(3-エチルスチリル)ベンゼン、1,4-ビス(2-メチルスチリル)-2-メチルベンゼン、1,4-ビス(2-メチルスチリル)-2-エチルベンゼン等も挙げられる。 Further, as an organic compound having an electron transporting property, 1,4-bis (2-methylstyryl) benzene, 1,4-bis (3-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, Distyrylbenzene, 1,4-bis (2-ethylstyryl) benzene, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2-methylstyryl) -2-methylbenzene, 1,4 Examples thereof include -bis (2-methylstyryl) -2-ethylbenzene.
 また、さらに、電子輸送性を有する有機化合物として、2,5-ビス(4-メチルスチリル)ピラジン、2,5-ビス(4-エチルスチリル)ピラジン、2,5-ビス[2-(1-ナフチル)ビニル]ピラジン、2,5-ビス(4-メトキシスチリル)ピラジン、2,5-ビス[2-(4-ビフェニル)ビニル]ピラジン、2,5-ビス[2-(1-ピレニル)ビニル]ピラジン等が挙げられる。 Further, as an organic compound having an electron transporting property, 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4-ethylstyryl) pyrazine, 2,5-bis [2- (1- Naphthyl) vinyl] pyrazine, 2,5-bis (4-methoxystyryl) pyrazine, 2,5-bis [2- (4-biphenyl) vinyl] pyrazine, 2,5-bis [2- (1-pyrenyl) vinyl ] Pyrazine etc. are mentioned.
 その他、さらに、電子輸送性を有する有機化合物として、1,4-フェニレンジメチリディン、4,4’-フェニレンジメチリディン、2,5-キシリレンジメチリディン、2,6-ナフチレンジメチリディン、1,4-ビフェニレンジメチリディン、1,4-p-テレフェニレンジメチリディン、9,10-アントラセンジイルジメチリディン、4,4’-(2,2-ジ-t-ブチルフェニルビニル)ビフェニル、4,4’-(2,2-ジフェニルビニル)ビフェニル等、従来有機EL素子の作製に使用されている公知のものを適宜用いることができる。 Other organic compounds having electron transport properties include 1,4-phenylene dimethylidin, 4,4'-phenylene dimethylidin, 2,5-xylylene dimethylidin, and 2,6-naphthylene dimethylidene. Din, 1,4-biphenylenedimethylidin, 1,4-p-terephenylenedimethylidin, 9,10-anthracenediyldimethylidin, 4,4 '-(2,2-di-t-butylphenylvinyl Known materials conventionally used for the production of organic EL devices such as biphenyl and 4,4 ′-(2,2-diphenylvinyl) biphenyl can be appropriately used.
 一方、正孔輸送性を有する有機化合物として、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、1,1-ビス(4-ジ-p-トリアミノフェニル)-シクロヘキサン、1,1-ビス(4-ジ-p-トリアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)-フェニルメタン、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-[4(ジ-p-トリルアミノ)スチリル]スチルベン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノ-ビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノ-ビフェニルN-フェニルカルバゾール、4,4’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(3-アセナフテニル)-N-フェニル-アミノ]ビフェニル、1,5-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ナフタレン、4,4’-ビス[N-(9-アントリル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N-(1-アントリル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(2-フェナントリル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(8-フルオランテニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ピレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ペリレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(1-コロネニル)-N-フェニル-アミノ]ビフェニル、2,6-ビス(ジ-p-トリルアミノ)ナフタレン、2,6-ビス[ジ-(1-ナフチル)アミノ]ナフタレン、2,6-ビス[N-(1-ナフチル)-N-(2-ナフチル)アミノ]ナフタレン、4.4’’-ビス[N,N-ジ(2-ナフチル)アミノ]ターフェニル、4.4’-ビス{N-フェニル-N-[4-(1-ナフチル)フェニル]アミノ}ビフェニル、4,4’-ビス[N-フェニル-N-(2-ピレニル)-アミノ]ビフェニル、2,6-ビス[N,N-ジ(2-ナフチル)アミノ]フルオレン、4,4’’-ビス(N,N-ジ-p-トリルアミノ)ターフェニル、ビス(N-1-ナフチル)(N-2-ナフチル)アミン等が挙げられる。 On the other hand, organic compounds having hole transporting properties include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-di (3-methyl Phenyl) -4,4′-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane, N, N, N ′, N′-tetra-p-tolyl-4,4′- Diaminobiphenyl, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N′-diphenyl-N, N′-di (4-methoxyphenyl) -4,4′-diaminobiphenyl, N, N, N ′, N′-tetraphenyl-4,4′-diaminodiphenyl ether, 4,4′-bis (diphenylamino) quadriphenyl, 4-N, N-diphenylamino- (2-diphenylvinyl) benzene, 3- Toxi-4′-N, N-diphenylaminostilbenzene, N-phenylcarbazole, 1,1-bis (4-di-p-triaminophenyl) -cyclohexane, 1,1-bis (4-di-p- Triaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) -phenylmethane, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino)- 4 ′-[4 (di-p-tolylamino) styryl] stilbene, N, N, N ′, N′-tetra-p-tolyl-4,4′-diamino-biphenyl, N, N, N ′, N ′ -Tetraphenyl-4,4'-diamino-biphenyl N-phenylcarbazole, 4,4'-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl, 4,4 ''-bis [N (1-naphthyl) -N-phenyl-amino] p-terphenyl, 4,4'-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl, 4,4'-bis [N- ( 3-Acenaphthenyl) -N-phenyl-amino] biphenyl, 1,5-bis [N- (1-naphthyl) -N-phenyl-amino] naphthalene, 4,4′-bis [N- (9-anthryl)- N-phenyl-amino] biphenyl, 4,4 ″ -bis [N- (1-anthryl) -N-phenyl-amino] p-terphenyl, 4,4′-bis [N- (2-phenanthryl)- N-phenyl-amino] biphenyl, 4,4′-bis [N- (8-fluoranthenyl) -N-phenyl-amino] biphenyl, 4,4′-bis [N- (2-pyrenyl) -N— Phenyl-amino] biphenyl, 4 , 4′-bis [N- (2-perylenyl) -N-phenyl-amino] biphenyl, 4,4′-bis [N- (1-coronenyl) -N-phenyl-amino] biphenyl, 2,6-bis (Di-p-tolylamino) naphthalene, 2,6-bis [di- (1-naphthyl) amino] naphthalene, 2,6-bis [N- (1-naphthyl) -N- (2-naphthyl) amino] naphthalene 4.4 ″ -bis [N, N-di (2-naphthyl) amino] terphenyl, 4.4′-bis {N-phenyl-N- [4- (1-naphthyl) phenyl] amino} biphenyl 4,4′-bis [N-phenyl-N- (2-pyrenyl) -amino] biphenyl, 2,6-bis [N, N-di (2-naphthyl) amino] fluorene, 4,4 ″- Bis (N, N-di-p-tolylamino) terfeny , Bis (N-1-naphthyl) (N-2-naphthyl) amine.
 さらに、正孔注入層、正孔輸送層、正孔輸送性発光層として、上述の有機化合物をポリマー中に分散したものや、ポリマー化したものも使用できる。ポリパラフェニレンビニレンやその誘導体等のいわゆるπ共役ポリマー、ポリ(N-ビニルカルバゾール)に代表される正孔輸送性非共役ポリマー、ポリシラン類のシグマ共役ポリマーも用いることができる。 Further, as the hole injection layer, the hole transport layer, and the hole transporting light emitting layer, those obtained by dispersing the above organic compound in a polymer or those polymerized can be used. So-called π-conjugated polymers such as polyparaphenylene vinylene and derivatives thereof, hole-transporting non-conjugated polymers typified by poly (N-vinylcarbazole), and sigma-conjugated polymers of polysilanes can also be used.
 正孔注入層としては、特に限定はないが、銅フタロシアニン(CuPc:cupper phthalocyanine)等の金属フタロシアニン類及び無金属フタロシアニン類、カーボン膜、ポリアニリン等の導電性ポリマーが好適に使用できる。 The hole injection layer is not particularly limited, and metal phthalocyanines such as copper phthalocyanine (CuPc) and metal-free phthalocyanines, carbon films, and polyaniline conductive polymers can be preferably used.
 --n型ドーパント含有電子輸送層中に混合された電子供与性物質--
 有機EL素子の陰極と陽極からの電子と正孔の注入が有機有機半導体層との界面で起こる酸化還元反応であることに着目し、特に、陰極側の電子輸送層中に還元作用を持つ電子供与性金属を含む電子供与性物質をドーピングして、ドーピング形態を、電子供与性物質のストイキオメトリ形態で固定することにより、高温保存下における電子供与性金属の有機化合物層への拡散を抑制することができる。
--Electron donating material mixed in n-type dopant-containing electron transport layer--
Paying attention to the fact that the injection of electrons and holes from the cathode and anode of the organic EL element is an oxidation-reduction reaction that occurs at the interface with the organic organic semiconductor layer, in particular, electrons having a reducing action in the electron transport layer on the cathode side Suppresses diffusion of electron-donating metal into organic compound layer under high temperature storage by doping electron-donating substance containing donating metal and fixing doping form as stoichiometric form of electron-donating substance can do.
 また、固定された電子供与性物質により、n型ドーパント含有電子輸送層は、すでに電子供与性金属により還元された状態であり、電子注入エネルギー障壁が小さく、従来の有機EL素子と比べて駆動電圧を低下できる。この場合、電子供与性金属(対カチオン)は、Li等のアルカリ金属、Mg等のアルカリ土類金属、希土類金属を含む遷移金属であれば特に限定はない。 In addition, the n-type dopant-containing electron transport layer is already reduced by the electron-donating metal by the fixed electron-donating substance, the electron injection energy barrier is small, and the driving voltage is higher than that of the conventional organic EL device. Can be reduced. In this case, the electron donating metal (counter cation) is not particularly limited as long as it is a transition metal containing an alkali metal such as Li, an alkaline earth metal such as Mg, or a rare earth metal.
 本発明におけるn型ドーパント含有電子輸送層中の電子供与性物質(CsMoO等)は、第1成分(対カチオン)に仕事関数4.0eV以下(特に3.5eV以下が好ましい)のアルカリ金属、アルカリ土類金属及び希土類金属を含む遷移金属等の金属と、第2成分(対アニオン)に導電性金属酸化物(MoOx、WOx、TiOx、SnOx、VxOy、ZnOx、ZrOx(x、yは原子比を示す)等)とからなり、これらを用いることにより熱安定性が増し、かつ酸化物であるので陰極(たとえば、Al等)との密着性が上がり剥離しにくくなる。 The electron donating substance (such as Cs 2 MoO 4 ) in the n-type dopant-containing electron transport layer in the present invention is an alkali having a work function of 4.0 eV or less (particularly 3.5 eV or less) as the first component (counter cation). Metals, such as transition metals including alkaline earth metals and rare earth metals, and conductive metal oxides (MoOx, WOx, TiOx, SnOx, VxOy, ZnOx, ZrOx (x, y are Etc.), and the use of these increases the thermal stability, and since it is an oxide, its adhesion to the cathode (for example, Al, etc.) is increased, making it difficult to peel off.
 n型ドーパント含有電子輸送層中の電子供与性物質の濃度は、0.8体積%~60体積%であることが好ましい。0.8体積%未満では、電子供与性物質の電子供与性金属により還元された分子の濃度が低すぎドーピングの効果が小さく、60体積%を超えると、膜中の電子供与性物質濃度が有機半導体分子濃度を超え、ドーピングの効果も下がる。また、このn型ドーパント含有電子輸送層の厚みは、1nm~300nmが好ましい。1nm未満では、電極界面近傍に存在する還元分子の量が少ないのでドーピングの効果が小さく、300nmを超えると有機層全体の膜厚が厚すぎ、駆動電圧の上昇を招くので好ましくない。 The concentration of the electron donating substance in the n-type dopant-containing electron transport layer is preferably 0.8% by volume to 60% by volume. If it is less than 0.8% by volume, the concentration of the molecule reduced by the electron donating metal of the electron donating substance is too low, and the effect of doping is small. If it exceeds 60% by volume, the electron donating substance concentration in the film is organic. The concentration of semiconductor molecules is exceeded and the effect of doping is also reduced. The thickness of the n-type dopant-containing electron transport layer is preferably 1 nm to 300 nm. If the thickness is less than 1 nm, the amount of reducing molecules present in the vicinity of the electrode interface is small, so that the effect of doping is small. If the thickness exceeds 300 nm, the entire organic layer is too thick, leading to an increase in driving voltage.
 上記n型ドーパント含有電子輸送層7の成膜法は、いかなる薄膜形成法であってもよく、たとえば蒸着法やスパッタ法が使用できる。n型ドーパント含有電子輸送層は、1元蒸着、又は多元蒸着により成膜することが好ましい。また、溶液からの塗布で薄膜形成が可能な場合には、スピンコーティング法やディップコーティング法等の溶液からの塗布法が使用できる。この場合、ドーピングされる有機化合物とドーパントを不活性なポリマー中に分散して用いてもよい。 The film forming method of the n-type dopant-containing electron transport layer 7 may be any thin film forming method, for example, vapor deposition or sputtering. The n-type dopant-containing electron transport layer is preferably formed by single vapor deposition or multiple vapor deposition. When a thin film can be formed by coating from a solution, a coating method from a solution such as a spin coating method or a dip coating method can be used. In this case, the organic compound to be doped and the dopant may be dispersed in an inert polymer.
 この電子供与性物質を電子輸送層にドーピングした際の効果は、電子輸送層のHOMOレベル(最高被占分子軌:Highest Occupied Molecular Orbital)が深い場合やHOMOレベルが深い結合部位(カルボニル(C=O)、ホウ素等)、特に結合部位の電気陰性度が高い元素が組み込まれている場合、電子供与性物質と有機半導体材料に電荷の偏り(電荷移動錯体)により新たな不純物準位を薄膜内部で局所的、或いは大部分で形成し、その準位が金属酸塩の電荷(キャリア)で埋められるため、電子輸送特性が向上することである。よって、電子供与性物質を含む電子輸送層の主成分は仕事関数やHOMOレベルが3.0eV以下である物質を含有することが好ましい。この他に、NBphen(2,9-Bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline)などのバソフェナントロリン誘導体のように不対電子を有する材料によって真空中の共蒸着にて錯化し新たな化合物を形成・合成し導電性を向上させることも期待できる。 When the electron transport layer is doped with this electron-donating substance, the effect of HOMO level (highest Occupied Molecular Orbital) of the electron transport layer is deep, or the bonding site (carbonyl (C = C = O), boron, etc.), especially when an element with a high electronegativity at the binding site is incorporated, a new impurity level is introduced into the thin film due to the charge bias (charge transfer complex) in the electron donating substance and the organic semiconductor material. In this case, it is formed locally or mostly, and the level is filled with the charge (carrier) of the metal salt, so that the electron transport property is improved. Therefore, the main component of the electron transport layer including the electron donating substance preferably contains a substance having a work function or a HOMO level of 3.0 eV or less. In addition, a material having an unpaired electron, such as a bathophenanthroline derivative such as NBphen (2,9-Bis (naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline), can be used in a vacuum. It can also be expected to improve conductivity by forming and synthesizing new compounds by vapor deposition.
 電子供与性物質を電子輸送層にドーピングすることで、上記課題を解決しかつ素子寿命を改善できる。更に、かかるn型ドーパント含有電子輸送層7の有機化合物の主成分は移動度(10-8~10cm/Vs)或いは導電性(10~10-1Ω・cm)が無機化合物に比べて低いので、第2成分(対アニオン)にあたる導電性金属酸化物の導電性が有機半導体層の導電性を補うことで電子注入特性と電子輸送性の両方を改善できる。 By doping the electron donating substance into the electron transport layer, the above problems can be solved and the device lifetime can be improved. Further, the main component of the organic compound of the n-type dopant-containing electron transport layer 7 is that the mobility (10 −8 to 10 1 cm 2 / Vs) or the conductivity (10 8 to 10 −1 Ω · cm) is an inorganic compound. Compared to the conductivity of the organic semiconductor layer, the conductivity of the conductive metal oxide corresponding to the second component (counter anion) supplements the conductivity of the organic semiconductor layer, so that both the electron injection property and the electron transport property can be improved.
 第2成分(対アニオン)である導電性金属酸化物は比抵抗が10Ω・cm以下(MoO:2.5Ω・cm)であることが望ましい。また、導電性は電荷、キャリア濃度及び移動度で表すことができるため((σ=neμ)導電率はσ、eは電気素量、nはキャリア濃度、μはキャリア移動度)、第2成分である導電性金属酸化物はキャリア濃度或いは移動度で補う。特に、有機半導体材料はキャリア濃度(10~1010cm-3)が非常に低い或いは無いに等しいので薄膜内部にキャリア濃度が存在することは電子輸送特性を向上させることに非常に効果的である。 The conductive metal oxide as the second component (counter anion) preferably has a specific resistance of 10 8 Ω · cm or less (MoO 3 : 2.5 Ω · cm). In addition, since conductivity can be expressed by charge, carrier concentration, and mobility ((σ = neμ) conductivity is σ, e is an elementary charge, n is carrier concentration, μ is carrier mobility), the second component The conductive metal oxide is supplemented by carrier concentration or mobility. In particular, since the organic semiconductor material has a very low or no carrier concentration (10 5 to 10 10 cm −3 ), the presence of the carrier concentration inside the thin film is very effective for improving electron transport properties. is there.
 なお、上記実施形態に加えて、実施形態のn型ドーパント含有電子輸送層に用いた電子供与性物質CsMoO及びCsWOの他に、モリブデン酸カリウムKMoO、モリブデン酸カルシウムCaMoO、モリブデン酸ストロンチウムSrMoO、モリブデン酸ナトリウム(無水)NaMoO、モリブデン酸バリウムBaMoO、モリブデン酸リチウムLiMoO、モリブデン酸ルビジウムRbMoO、メタすず酸カルシウムCaSnO、メタすず酸ストロンチウムSrO・SnO、メタすず酸バリウムBaSnO、メタチタン酸マグネシウムMgTiO、メタチタン酸リチウムLiTiO、ニクロム酸カリウムKCr、クロム酸カルシウム(n水和物)CaCrO・nHO、クロム酸ストロンチウムSrCrO、二クロム酸セシウムCsCr、クロム酸セシウムCsCrO、タングステン酸カリウムKWO、タングステン酸カルシウムCaWO、タングステン酸ストロンチウムSrWO、タングステン酸バリウムBaWO、タングステン酸リチウムLiWO、タングステン酸ルビジウムRbWO、タングステン酸ナトリウムNaWO、二バナジン酸カリウムK、二バナジン酸ナトリウムNa、メタバナジン酸カリウムKVO、バナジン酸カリウムKVO、メタバナジン酸ナトリウムNaVO、メタバナジン酸ナトリウムNaVO、バナジン酸ナトリウムNaVO、メタバナジン酸リチウムLi、メタバナジン酸ルビジウムRbVO、メタバナジウム酸セシウムCsVO、メタチタン酸カリウムKTiO、メタチタン酸カルシウムCaTiO、メタチタン酸カルシウムCaTiO、メタチタン酸ストロンチウムSrTiO、チタン酸ナトリウムNaTi、メタチタン酸バリウムBaTiO、及びメタチタン酸バリウムBaTiOを有機半導体層への混合に用いることができ、上記実施の形態同様の効果を奏する。 In addition to the above embodiment, potassium molybdate K 2 MoO 4 and calcium molybdate in addition to the electron donating substances Cs 2 MoO 4 and Cs 2 WO 4 used in the n-type dopant-containing electron transport layer of the embodiment. CaMoO 4 , strontium molybdate SrMoO 4 , sodium molybdate (anhydrous) Na 2 MoO 4 , barium molybdate BaMoO 4 , lithium molybdate Li 2 MoO 4 , rubidium molybdate Rb 2 MoO 4 , calcium metastannate CaSnO 3 , meta stannate strontium SrO · SnO 2, meta tin barium BaSnO 3, metatitanic acid magnesium MgTiO 3, metatitanic acid lithium Li 2 TiO 3, potassium dichromate K 2 Cr 2 O 7, calcium chromate (n hydrate) CaCrO 4 · nH 2 O, strontium chromate SrCrO 4 , cesium dichromate Cs 2 Cr 2 O 7 , cesium chromate Cs 2 CrO 4 , potassium tungstate K 2 WO 4 , calcium tungstate CaWO 4 , strontium tungstate SrWO 4 , barium tungstate BaWO 4 , lithium tungstate Li 2 WO 4 , rubidium tungstate Rb 2 WO 4 , sodium tungstate Na 2 WO 4 , potassium divanadate K 4 V 2 O 7 , sodium divanadate Na 4 V 2 O 7, potassium metavanadate KVO 3, potassium vanadate K 3 VO 4, sodium metavanadate NaVO 3, sodium metavanadate NaVO 3, sodium vanadate Na 3 VO 4, Tabanajin lithium Li 2 V 2 O 6, metavanadate rubidium RbVO 3, metavanadate, cesium Cs 2 VO 3, metatitanic acid potassium K 2 TiO 3, metatitanic acid calcium CaTiO 3, metatitanic acid calcium CaTiO 3, metatitanic strontium SrTiO 3 , Sodium titanate Na 2 Ti 3 O 7 , barium metatitanate BaTiO 3 , and barium metatitanate BaTiO 3 can be used for mixing into the organic semiconductor layer, and the same effects as in the above embodiment can be obtained.
 なお、上記の素子構成では陽極から発光層までは、一般的な構成であり、蒸着型・塗布型の成膜方法、燐光・蛍光材料等の材料種を変更したとしても、その有機EL素子は陽極と陰極にそれぞれ通電により電荷を注入することで、駆動し発光、本発明の課題を満たすことができる。 In the above element structure, the anode to the light emitting layer are general structures. Even if the material type such as vapor deposition type / coating type film forming method, phosphorescence / fluorescent material is changed, the organic EL element is By injecting electric charges into the anode and the cathode respectively by energization, driving and light emission can satisfy the problems of the present invention.
 n型ドーパント含有電子輸送層を使用しているため、仕事関数が高い例えばAgを陰極本体に用いても高い電子注入効率を維持し、低駆動電圧化が可能である。一般的な構成でLiO/Agの電子注入層/陰極構成では駆動電圧が高く、10V位差がある。また、電子注入アシスト層を設けることで更に駆動寿命の長寿駆動命化、高温環境における電圧寿命抑制に繋がる。ここでは、n型ドーパントに電子供与性物質の金属酸化物塩化合物CsMoOを用いているが、この材料に限定されず、仕事関数が低いCs、Li、Na、K、Rb、Ca、Srなどの金属、CsF、LiF、NaF、KF、RbF、SrF、CaFなどのフッ化物、LiO、CsO、CsCOなどの酸化物、炭酸化物、CsAlSiO、CsAl(SiO、CsCrO、CsCr、CsCr、CsVO、CsVO、CsMnO、CsWO、RbCrO、CsTi13などの金属酸化物塩、Metal 8-quinolinolato (例えば、Liq、Csq、Naq、Kq) 、Metal acetylacetonato (例えば、Li(acac) 、K(acac))、Metal dipivaloylmethanato (例えば、Lidpm、Kdpm、Nadpm)などの有機金属錯体もn型ドーパントに挙げられる。 Since the n-type dopant-containing electron transport layer is used, high electron injection efficiency is maintained even when Ag having a high work function, for example, Ag is used for the cathode body, and a low driving voltage can be achieved. In a general configuration, the Li 2 O / Ag electron injection layer / cathode configuration has a high driving voltage and a difference of 10V. In addition, providing an electron injection assist layer leads to a longer driving life and a reduced voltage life in a high temperature environment. Here, the metal oxide salt compound Cs 2 MoO 4 of an electron donating substance is used as an n-type dopant, but the material is not limited to this material, and Cs, Li, Na, K, Rb, Ca, low work function are not limited to this material. Metals such as Sr, fluorides such as CsF, LiF, NaF, KF, RbF, SrF, and CaF, oxides such as Li 2 O, CsO, and Cs 2 CO 3 , carbonates, CsAlSiO 4 , CsAl (SiO 3 ) 2 , CsCrO 4 , CsCr 2 O 4 , Cs 2 Cr 2 O 7 , CsVO 3 , Cs 3 VO 4 , CsMnO 4 , Cs 2 WO 4 , RbCrO 4 , Cs 2 Ti 6 O 13 and other metal oxide salts, Metal 8 Organometallic complexes such as -quinolinolato (e.g. Liq, Csq, Naq, Kq), Metal acetylacetonato (e.g. Li (acac), K (acac)), Metal dipivaloylmethanato (e.g. Lidpm, Kdpm, Nadpm) Mentioned as a dopant.
 n型ドーパント含有電子輸送層へ外部から水分、酸素が透湿するため、乾燥剤がない場合非発光部が進行するが、n型ドーパントによる吸湿のため非発光の進行が遅延する。これは、表示パネルにても同様に電子輸送層として機能していない箇所、例えば画素外に成膜された膜が乾燥剤の能力があることを意味している。 Since moisture and oxygen are permeable to the n-type dopant-containing electron transport layer from the outside, the non-light-emitting portion proceeds when there is no desiccant, but the non-light-emitting progress is delayed due to moisture absorption by the n-type dopant. This means that a portion that does not function as an electron transport layer in the display panel, for example, a film formed outside the pixel also has a desiccant ability.
 n型ドーパント含有電子輸送層へ外部から透湿した水分や酸素によって、n型ドーパント含有電子輸送層と陰極界面に剥離による非発光の進行をもたらす可能性がある。n型ドーパントと陰極の結合により界面剥離を発生しにくくなる。例えば、CsMoO:NBphen/Agの場合、CsMoOのn型ドーパントMoOx(xは原子比を示す)とAgが結合、いわゆるアロイ化し、AgxMoOy(金属間化合物の酸化物)(x、yは原子比を示す)となり界面剥離を抑制する。更に、Ag陰極は酸化しにくい金属であるが、酸化しないことはないので、CsMoO:NBphen/Ag界面から非発光部の進行が確認されているため、Ag陰極の酸化を更に遅延させるため、電子注入アシスト層によりn型ドーパント含有電子輸送層と陰極のアロイ化を可能とし、密着力を向上させ、更に陰極耐湿強化膜で覆い、陰極の局所的薄い箇所を補いアロイ化する。これにより、陰極端部からの透湿を抑制し、結果的に非発光部は拡大せず、その進行は抑制される。よって、陰極耐湿強化膜は陰極エッジないし、その端部、界面端部も覆うように配置することが好適である。陰極耐湿強化膜の厚みは、1nm~120nmが好ましい。1nm未満では、電極界面近傍の耐湿効果が小さく、120nmを超えると耐湿強化膜の膜質が変化し、膜に凝集からなる応力発生しクラック発生に伴い透湿又は吸湿があるので好ましくない。 There is a possibility that non-light-emission progresses due to delamination at the interface between the n-type dopant-containing electron transport layer and the cathode due to moisture or oxygen that has permeated the n-type dopant-containing electron transport layer from the outside. Interfacial peeling is less likely to occur due to the combination of the n-type dopant and the cathode. For example, in the case of Cs 2 MoO 4 : NBphen / Ag, the n-type dopant MoOx of Cs 2 MoO 4 (x indicates an atomic ratio) and Ag are combined, so-called alloyed, and AgxMoOy (oxide of intermetallic compound) (x , Y represents an atomic ratio) and suppresses interface peeling. Furthermore, although the Ag cathode is a metal that is difficult to oxidize, it does not oxidize. Therefore, the progress of the non-light emitting part is confirmed from the Cs 2 MoO 4 : NBphen / Ag interface, so that the oxidation of the Ag cathode is further delayed. Therefore, the electron injection assist layer allows the n-type dopant-containing electron transport layer and the cathode to be alloyed, improves the adhesion, and further covers the cathode with a moisture-resistant reinforcing film to compensate for the locally thin portion of the cathode. Thereby, moisture permeation from the cathode end portion is suppressed, and as a result, the non-light emitting portion does not expand, and its progress is suppressed. Therefore, it is preferable to dispose the cathode moisture-resistant reinforcing film so as to cover the cathode edge or its end and interface end. The thickness of the cathode moisture resistant enhancement film is preferably 1 nm to 120 nm. If it is less than 1 nm, the moisture resistance effect in the vicinity of the electrode interface is small, and if it exceeds 120 nm, the film quality of the moisture-resistant reinforcing film changes, stress is generated due to agglomeration in the film, and moisture permeability or moisture absorption occurs with the occurrence of cracks.
 仕事関数が高い例えばAgを陰極本体に用いた場合、Agは酸化しにくい金属であるが、トップエミッション素子のように半透明陰極を用いた際、陰極薄膜は不連続、或いは緻密ではない膜であることが想定され、陰極膜厚が60nm以上の厚い膜厚のボトムエミッション構造とは違い、陰極エッジに留まらず、面間からの外部から透湿した水分や酸素によって非発光部の進行を促進する恐れがある。本発明の陰極耐湿強化膜を用いることで、トップエミッション素子で使用されるような半透明陰極を覆い、かつ半透明陰極膜の密度の粗である部分を埋めてくれるため、非発光部(ダークスポット)の進行を遅延できる。このとき、トップエミッション型、ボトムエミッション型素子に限らず、陰極耐湿強化膜は電極間のショートが懸念されるような導電性の高い物質の使用はできない。更に、陰極耐湿強化膜は主にフッ化物で良好な特性が得られるため、膜封止で用いられるようなSiONx(xは原子比を示す)より屈折率が低く、トップエミッション素子に透明陰極、或いは半透明金属から光を取り出す際には効率的に光を放射できる。 For example, when Ag is used for the cathode body with a high work function, Ag is a metal that is difficult to oxidize. However, when a semitransparent cathode is used like a top emission element, the cathode thin film is a film that is not discontinuous or dense. Unlike the bottom emission structure with a thickness of 60nm or more, the cathode is not limited to the edge of the cathode, but promotes the progress of the non-light emitting part by moisture or oxygen that has permeated from the outside between the surfaces. There is a fear. By using the cathode moisture-resistant reinforcing film of the present invention, the semi-transparent cathode used in the top emission element is covered, and the semi-transparent cathode film having a rough density is filled. (Spot) can be delayed. At this time, not only the top emission type and the bottom emission type elements but also the cathode moisture resistance enhancement film cannot use a material having high conductivity that may cause a short circuit between the electrodes. Furthermore, since the cathode moisture-resistant reinforcing film is mainly made of fluoride and has good characteristics, the refractive index is lower than that of SiONx (x indicates an atomic ratio) used for film sealing, and the top emission element has a transparent cathode, Alternatively, light can be emitted efficiently when light is extracted from the translucent metal.
 有機半導体層の成分が結晶化すると分子同士が凝集するため、薄膜が不均一になり、膜内の一部の密度が低下する。これにより、外部からの水分、酸素の透湿経路を増加することになる。しかしながら、陰極耐湿強化膜を、陰極エッジないし、端部も覆うように配置し、更に有機半導体層上にも覆うように成膜しているので、有機半導体層の結晶化が抑えられ、これにより透湿経路を遮断して、陰極酸化を防止することができる。 When the components of the organic semiconductor layer are crystallized, the molecules aggregate together, so that the thin film becomes non-uniform and the density of a part of the film decreases. This increases the moisture and oxygen transmission paths from the outside. However, since the cathode moisture resistance enhancement film is disposed so as to cover the cathode edge or end portion and further to cover the organic semiconductor layer, the crystallization of the organic semiconductor layer is suppressed. The moisture permeable path can be blocked to prevent cathodic oxidation.
 <実験評価>
 n型ドーパント含有電子輸送層を備えた複数の有機EL素子を作製し、n型ドーパント含有電子輸送層の電子供与性物質濃度に対する駆動電圧及び輝度、寿命特性並びに電子輸送層の膜厚依存特性を測定し、素子を評価した。
耐湿強化膜を用いる前に濃度最適化を検証した。
<Experimental evaluation>
A plurality of organic EL devices having an n-type dopant-containing electron transport layer are prepared, and the driving voltage, luminance, life characteristics, and film thickness dependence characteristics of the electron-transport layer with respect to the electron-donating substance concentration of the n-type dopant-containing electron transport layer The device was measured and evaluated.
The concentration optimization was verified before using the moisture-resistant reinforced membrane.
 <実験例1-1>
 透明なガラス基板上に厚さ110nmのITOからなる陽極上に、真空蒸着法にてホール注入層として厚さ25nmのCuPc、ホール輸送層として厚さ45nmのNPB(N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニルベンジジン(α-NPD))、発光層として厚さ30nmのAlq3(トリス(8-キノリノラト)アルミニウム)を成膜した。次に、n型ドーパント含有電子輸送層として共蒸着にて厚さ30nmのCsMoO:Alq3をCsMoOの蒸着速度を制御し、Cs2MoO4濃度が0.85体積%、1.7体積%、3.3体積%、5体積%、10体積%、20体積%、30体積%、及び40体積%の薄膜を成膜し、陰極として20nmのAlを成膜し、各々素子を作製した。素子作製後、真空蒸着機から不活性ガス雰囲気のグローブボックス中で乾燥剤を投入せず、金属製の封止缶で封止した。
<Experimental Example 1-1>
On an anode made of ITO having a thickness of 110 nm on a transparent glass substrate, NPB (N, N′-di (naphthalene) having a thickness of 25 nm as a hole injection layer and 45 nm as a hole transport layer by a vacuum deposition method. -1-yl) -N, N′-diphenylbenzidine (α-NPD)) and a 30 nm thick Alq3 (tris (8-quinolinolato) aluminum) film as a light emitting layer. Next, Cs 2 MoO 4 : Alq3 having a thickness of 30 nm is co-deposited as an n-type dopant-containing electron transport layer, the deposition rate of Cs 2 MoO 4 is controlled, and the Cs 2 MoO 4 concentration is 0.85 vol%, 1.7 vol. %, 3.3% by volume, 5% by volume, 10% by volume, 20% by volume, 30% by volume, and 40% by volume of a thin film were formed, and 20 nm of Al was formed as a cathode. . After the device was fabricated, the desiccant was not charged from a vacuum vapor deposition machine in an inert gas atmosphere glove box, and the device was sealed with a metal sealing can.
 <実験例1-2>
 透明なガラス基板上に厚さ110nmのITOからなる陽極上に、真空蒸着法にてホール注入層として厚さ25nmのCuPc、ホール輸送層として厚さ45nmのNPB、発光層として厚さ30nmのAlq3を成膜した。次に、n型ドーパント含有電子輸送層として共蒸着にて厚さ30nmのCsMoO:NBphenをCsMoOの蒸着速度を制御し、Cs2MoO4濃度が1.7体積%、3.3体積%、5体積%の薄膜を成膜し、陰極として20nmのAlを成膜し、各々素子を作製した。素子作製後、真空蒸着機から不活性ガス雰囲気のグローブボックス中で乾燥剤を投入せず、金属製の封止缶で封止した。
<Experimental example 1-2>
On an anode made of ITO having a thickness of 110 nm on a transparent glass substrate, CuPc having a thickness of 25 nm as a hole injection layer, NPB having a thickness of 45 nm as a hole transporting layer, and Alq3 having a thickness of 30 nm as a light emitting layer by vacuum deposition. Was deposited. Next, the deposition rate of Cs 2 MoO 4 is controlled by co-evaporation of Cs 2 MoO 4 : NBphen having a thickness of 30 nm as an n-type dopant-containing electron transport layer, and the Cs 2 MoO 4 concentration is 1.7 vol%, 3.3 vol. % And 5% by volume of a thin film were formed, and 20 nm of Al was formed as a cathode, thereby producing devices. After the device was fabricated, the desiccant was not charged from a vacuum vapor deposition machine in an inert gas atmosphere glove box, and the device was sealed with a metal sealing can.
 <実験例1-3>
 透明なガラス基板上に厚さ110nmのITOからなる陽極上に、真空蒸着法にてホール注入層として厚さ25nmのCuPc、ホール輸送層として厚さ45nmのNPB、発光層として厚さ30nmのAlq3を成膜した。次に、n型ドーパント含有電子輸送層として共蒸着にて厚さ30nmのLidpm:NBphenをLidpm(Liジピバロイルメタナート)(リチウム(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート))で0.6A/sec、共蒸着速度がトータルで2A/secで蒸着速度を制御し、Lidpm濃度が40体積%の薄膜を成膜した。次に、電子注入アシスト層として1nmのAlを成膜し、陰極として20nmのAgを成膜し、最後に陰極耐湿強化膜として厚さ40nmのMgFを成膜した。素子作製後、真空蒸着機から不活性ガス雰囲気のグローブボックス中で乾燥剤を投入せず、金属製の封止缶で封止した。
<Experimental Example 1-3>
On an anode made of ITO having a thickness of 110 nm on a transparent glass substrate, CuPc having a thickness of 25 nm as a hole injection layer, NPB having a thickness of 45 nm as a hole transporting layer, and Alq3 having a thickness of 30 nm as a light emitting layer by vacuum deposition. Was deposited. Next, as an n-type dopant-containing electron transport layer, Lidpm: NBphen having a thickness of 30 nm was co-deposited with Lidpm (Li dipivaloylmethanate) (lithium (2,2,6,6-tetramethyl-3,5 A thin film having a Lidpm concentration of 40% by volume was formed by controlling the deposition rate at 0.6 A / sec with a heptane dionate)) and a co-deposition rate of 2 A / sec in total. Next, 1 nm of Al was formed as an electron injection assist layer, 20 nm of Ag was formed as a cathode, and finally, 40 nm of MgF 2 was formed as a cathode moisture resistance enhancement film. After the device was fabricated, the desiccant was not charged from a vacuum vapor deposition machine in an inert gas atmosphere glove box, and the device was sealed with a metal sealing can.
 <実験例1-4>
 透明なガラス基板上に厚さ110nmのITOからなる陽極上に、真空蒸着法にてホール注入層として厚さ25nmのCuPc、ホール輸送層として厚さ45nmのNPB、発光層として厚さ30nmのAlq3を成膜した。次に、n型ドーパント含有電子輸送層として共蒸着にて厚さ30nmのCa:NBphenをCaで0.2A/sec、共蒸着速度がトータルで2A/secで蒸着速度を制御し、Ca濃度が10体積%の薄膜を成膜した。次に、電子注入アシスト層として1nmのAlを成膜し、陰極として20nmのAgを成膜し、最後に陰極耐湿強化膜として厚さ40nmのMgFを成膜した。素子作製後、真空蒸着機から不活性ガス雰囲気のグローブボックス中で乾燥剤を投入せず、金属製の封止缶で封止した。
<比較1>
 これは、電子輸送層としてn型ドーパントを混合しない厚さ30nmのAlq3を成膜し、電子注入層として厚さ1nmのLiOを成膜し、陰極として厚さ80nmのAlを成膜し、陰極耐湿強化膜を用いない以外、実験例1-1と同様の構成であった。
<比較2>
 これは、電子輸送層としてn型ドーパントを混合しない厚さ30nmのAlq3を成膜し、電子注入層として厚さ1nmのCsMoOを成膜し、陰極として厚さ80nmのAlを成膜し、陰極耐湿強化膜を用いない以外、実験例1-1と同様の構成であった。
<実験例2-1>
 透明なガラス基板上に厚さ110nmのITOからなる陽極上に、真空蒸着法にてホール注入層として厚さ25nmのCuPc、ホール輸送層として厚さ45nmのNPB、発光層として厚さ30nmのAlq3を成膜した。次に、n型ドーパント含有電子輸送層として共蒸着にて厚さ30nmのCsMoO:NBphenをCsMoOで0.066A/sec、共蒸着速度がトータルで2A/secで蒸着速度を制御し、CsMoO濃度が3.3体積%の薄膜を成膜した。次に、陰極として20nmのAgを成膜し、最後に陰極耐湿強化膜として厚さ1nmのMgFを成膜した。素子作製後、真空蒸着機から不活性ガス雰囲気のグローブボックス中で乾燥剤を投入せず、金属製の封止缶で封止した。
<実験例2-2>
 これは、陰極耐湿強化膜として厚さ1nmのLiOを用いた以外、実験例2-1と同様の構成であった。
<実験例2-3>
 これは、陰極耐湿強化膜として厚さ1nmのLiFを用いた以外、実験例2-1と同様の構成であった。
<実験例2-4>
 これは、陰極耐湿強化膜として厚さ1nmのYbFを用いた以外、実験例2-1と同様の構成であった。
<実験例2-5>
 これは、陰極耐湿強化膜として厚さ1nmのAl(Al)を用いた以外、実験例2-1と同様の構成であった。
<実験例2-6>
 これは、陰極耐湿強化膜として厚さ1nmのAg(AgxOy)(x、yは原子比を示す)を用いた以外、実験例2-1と同様の構成であった。
<実験例2-7>
 これは、以外、あった実験例2-1と同様の構成で陰極耐湿強化膜として厚さ10nmのMgFを用いた。
<実験例2-8>
 これは、陰極耐湿強化膜として厚さ20nmのMgFを用いた以外、実験例2-1と同様の構成であった。
<実験例2-9>
 これは、陰極耐湿強化膜として厚さ40nmのMgFを用いた以外、実験例2-1と同様の構成であった。
<実験例2-10>
 これは、陰極耐湿強化膜として厚さ80nmのMgFを用いた以外、実験例2-1と同様の構成であった。
<実験例2-11>
 これは、陰極として60nmのAgを成膜し、陰極耐湿強化膜として厚さ120nmのMgFを用いた以外、実験例2-1と同様の構成であった。
<実験例2-12>
 これは、陰極として20nmのAuを成膜し、陰極耐湿強化膜として厚さ40nmのMgFを用いた以外、実験例2-1と同様の構成であった。
<実験例2-13>
 これは、n型ドーパント含有電子輸送層として共蒸着にて厚さ20nmのCsMoO:NBphenを用いた以外、実験例2-1と同様の構成であった。
<実験例2-14>
 これは、n型ドーパント含有電子輸送層として共蒸着にて厚さ30nmのCsMoO:NBphenを0.033A/sec、2A/secで蒸着速度を制御し、CsMoO濃度が1.7体積%の薄膜を成膜した以外、実験例2-1と同様の構成であった。
<実験例2-15>
 これは、n型ドーパント含有電子輸送層として共蒸着にて厚さ30nmのCsWO:NBphenを0.033A/sec、2A/secで蒸着速度を制御し、CsWO濃度が3.3体積%の薄膜を成膜し、陰極耐湿強化膜として厚さ40nmのMgFを成膜した以外、実験例2-1と同様の構成であった。
<実験例2-16>
 これは、陰極耐湿強化膜として厚さ40nmのMgFを成膜した。素子作製後、真空蒸着機から不活性ガス雰囲気のグローブボックス中で一般的な接着剤を素子に塗り、ガラス基板で封止した以外、実験例2-1と同様の構成であった。
<比較3>
 これは、電子輸送層としてn型ドーパントを混合しない厚さ30nmのAlq3を成膜し、電子注入層として厚さ1nmのLiOを成膜し、陰極として厚さ80nmのAgを成膜し、陰極耐湿強化膜を用いない以外、実験例2-1と同様の構成であった。
<比較4>
 これは、陰極として厚さ80nmのAlを用い、陰極耐湿強化膜を用いない以外、実験例2-1と同様の構成であった。これは、実験例1-2の3.3% CsMoO濃度に相当する素子である。
<比較5>
 これは、電子輸送層としてn型ドーパントを混合しない厚さ30nmのAlq3を用い、陰極として厚さ60nmのAlを用い、陰極耐湿強化膜として厚さ120nmのMgFを用いた以外、実験例2-1と同様の構成であった。
<実施例3-1>
 透明なガラス基板上に厚さ110nmのITOからなる陽極上に、真空蒸着法にてホール注入層として厚さ25nmのCuPc、ホール輸送層として厚さ45nmのNPB、発光層として厚さ30nmのAlq3を成膜した。次に、n型ドーパント含有電子輸送層として共蒸着にて厚さ30nmのCsMoO:NBphenをCsMoOで0.066A/sec、共蒸着速度がトータルで2A/secで蒸着速度を制御し、CsMoO濃度が3.3体積%の薄膜を成膜した。次に、電子注入アシスト層として1nmのAlを成膜し、陰極として20nmのAgを成膜し、最後に陰極耐湿強化膜として厚さ40nmのMgFを成膜した。素子作製後、真空蒸着機から不活性ガス雰囲気のグローブボックス中で乾燥剤を投入せず、金属製の封止缶で封止した。
<実施例3-2>
 これは、電子注入アシスト層として1nmのMgを成膜した以外、実施例3-1と同様の構成であった。
<実施例3-3>
 これは、電子注入アシスト層として1nmのMgFを成膜した以外、実施例3-1と同様の構成であった。
<実施例3-4>
 これは、電子注入アシスト層として1nmのLiOを成膜した以外、実施例3-1と同様の構成であった。
<実施例3-5>
 これは、電子注入アシスト層として1nmのLiFを成膜した以外、実施例3-1と同様の構成であった。
<実施例3-6>
 これは、電子注入アシスト層として1nmのCaを成膜した以外、実施例3-1と同様の構成であった。
<Experimental Example 1-4>
On an anode made of ITO having a thickness of 110 nm on a transparent glass substrate, CuPc having a thickness of 25 nm as a hole injection layer, NPB having a thickness of 45 nm as a hole transporting layer, and Alq3 having a thickness of 30 nm as a light emitting layer by vacuum deposition. Was deposited. Next, as the n-type dopant-containing electron transport layer, the 30 nm-thick Ca: NBphen is controlled by 0.2 A / sec of Ca: NBphen and the total deposition rate is 2 A / sec. A 10% by volume thin film was formed. Next, 1 nm of Al was formed as an electron injection assist layer, 20 nm of Ag was formed as a cathode, and finally, 40 nm of MgF 2 was formed as a cathode moisture resistance enhancement film. After the device was fabricated, the desiccant was not charged from a vacuum vapor deposition machine in an inert gas atmosphere glove box, and the device was sealed with a metal sealing can.
<Comparison 1>
This is because a 30 nm thick Alq3 film with no n-type dopant mixed is formed as an electron transport layer, a 1 nm thick Li 2 O film is formed as an electron injection layer, and an 80 nm thick Al film is formed as a cathode. The configuration was the same as that of Experimental Example 1-1 except that the cathode moisture-resistant reinforcing film was not used.
<Comparison 2>
In this method, Alq3 having a thickness of 30 nm not mixed with an n-type dopant is formed as an electron transport layer, Cs 2 MoO 4 having a thickness of 1 nm is formed as an electron injection layer, and Al having a thickness of 80 nm is formed as a cathode. The structure was the same as that of Experimental Example 1-1 except that the cathode moisture-resistant reinforcing film was not used.
<Experimental example 2-1>
On an anode made of ITO having a thickness of 110 nm on a transparent glass substrate, CuPc having a thickness of 25 nm as a hole injection layer, NPB having a thickness of 45 nm as a hole transporting layer, and Alq3 having a thickness of 30 nm as a light emitting layer by vacuum deposition. Was deposited. Next, Cs 2 MoO 4 : NBphen having a thickness of 30 nm is co-deposited as an n-type dopant-containing electron transport layer, Cs 2 MoO 4 is 0.066 A / sec, and the total co-deposition rate is 2 A / sec. A thin film having a Cs 2 MoO 4 concentration of 3.3% by volume was formed. Next, 20 nm of Ag was formed as a cathode, and finally, MgF 2 having a thickness of 1 nm was formed as a cathode moisture resistance enhancement film. After the device was fabricated, the desiccant was not charged from a vacuum vapor deposition machine in an inert gas atmosphere glove box, and the device was sealed with a metal sealing can.
<Experimental example 2-2>
This was the same configuration as in Experimental Example 2-1, except that 1 nm thick Li 2 O was used as the cathode moisture resistance enhancement film.
<Experimental Example 2-3>
This was the same configuration as in Experimental Example 2-1, except that 1 nm thick LiF was used as the cathode moisture resistance enhancement film.
<Experimental Example 2-4>
This was the same configuration as in Experimental Example 2-1, except that YbF 3 having a thickness of 1 nm was used as the cathode moisture resistance enhancement film.
<Experimental Example 2-5>
This was the same configuration as in Experimental Example 2-1, except that Al (Al 2 O 3 ) having a thickness of 1 nm was used as the cathode moisture resistance enhancement film.
<Experimental Example 2-6>
This was the same configuration as in Experimental Example 2-1, except that 1 nm thick Ag (AgxOy) (x and y indicate atomic ratios) was used as the cathode moisture resistance enhancement film.
<Experimental Example 2-7>
Other than this, MgF 2 having a thickness of 10 nm was used as the cathode moisture resistance enhancement film in the same configuration as in Experimental Example 2-1.
<Experimental Example 2-8>
This was the same configuration as in Experimental Example 2-1, except that MgF 2 having a thickness of 20 nm was used as the cathode moisture resistance enhancement film.
<Experimental Example 2-9>
This was the same configuration as in Experimental Example 2-1, except that MgF 2 having a thickness of 40 nm was used as the cathode moisture resistance enhancement film.
<Experimental Example 2-10>
This was the same configuration as in Experimental Example 2-1, except that MgF 2 having a thickness of 80 nm was used as the cathode moisture resistance enhancement film.
<Experimental Example 2-11>
This was the same configuration as in Experimental Example 2-1, except that 60 nm of Ag was formed as the cathode and MgF 2 having a thickness of 120 nm was used as the cathode moisture resistance enhancement film.
<Experimental Example 2-12>
This was the same configuration as in Experimental Example 2-1, except that 20 nm of Au was formed as the cathode and MgF 2 with a thickness of 40 nm was used as the cathode moisture resistance enhancement film.
<Experimental Example 2-13>
This was the same configuration as in Experimental Example 2-1, except that Cs 2 MoO 4 : NBphen having a thickness of 20 nm was used as the n-type dopant-containing electron transport layer by co-evaporation.
<Experimental Example 2-14>
This is because, as an n-type dopant-containing electron transport layer, Cs 2 MoO 4 : NBphen with a thickness of 30 nm is co-evaporated to control the deposition rate at 0.033 A / sec and 2 A / sec, and the Cs 2 MoO 4 concentration is 1. The configuration was the same as in Experimental Example 2-1, except that a 7% by volume thin film was formed.
<Experimental Example 2-15>
This is because the deposition rate is controlled at 0.033 A / sec and 2 A / sec for Cs 2 WO 4 : NBphen having a thickness of 30 nm by co-deposition as an n-type dopant-containing electron transport layer, and the Cs 2 WO 4 concentration is 3. The configuration was the same as that of Experimental Example 2-1, except that a 3% by volume thin film was formed, and MgF 2 having a thickness of 40 nm was formed as a cathode moisture-resistant reinforcing film.
<Experimental Example 2-16>
This was formed by depositing MgF 2 having a thickness of 40 nm as a cathode moisture resistance enhancement film. After the device was fabricated, the configuration was the same as that of Experimental Example 2-1, except that a general adhesive was applied to the device in a glove box in an inert gas atmosphere from a vacuum vapor deposition machine and sealed with a glass substrate.
<Comparison 3>
This is because a 30 nm thick Alq3 film not mixed with n-type dopant is formed as an electron transport layer, a 1 nm thick Li 2 O film is formed as an electron injection layer, and an 80 nm thick Ag film is formed as a cathode. The configuration was the same as that of Experimental Example 2-1, except that the cathode moisture-resistant reinforcing film was not used.
<Comparison 4>
This was the same configuration as in Experimental Example 2-1, except that Al having a thickness of 80 nm was used as the cathode and no cathode moisture-resistant reinforcing film was used. This is an element corresponding to the 3.3% Cs 2 MoO 4 concentration in Experimental Example 1-2.
<Comparison 5>
Experimental Example 2 except that Alq3 with a thickness of 30 nm not mixed with an n-type dopant was used as the electron transport layer, Al with a thickness of 60 nm was used as the cathode, and MgF 2 with a thickness of 120 nm was used as the cathode moisture resistance enhancement film. The configuration was the same as that of -1.
<Example 3-1>
On a transparent glass substrate on an anode made of 110 nm thick ITO, by vacuum deposition, 25 nm thick CuPc as a hole injection layer, 45 nm thick NPB as a hole transport layer, and 30 nm thick Alq3 as a light emitting layer. Was deposited. Next, as an n-type dopant-containing electron transport layer, Cs 2 MoO 4 : NBphen with a thickness of 30 nm is co-deposited with 0.066 A / sec of Cs 2 MoO 4 and the co-deposition rate is 2 A / sec in total. A thin film having a Cs 2 MoO 4 concentration of 3.3% by volume was formed. Next, 1 nm of Al was formed as an electron injection assist layer, 20 nm of Ag was formed as a cathode, and finally, 40 nm of MgF 2 was formed as a cathode moisture resistance enhancement film. After the device was fabricated, the desiccant was not put into the glove box in an inert gas atmosphere from a vacuum vapor deposition machine, and sealed with a metal sealing can.
<Example 3-2>
This was the same configuration as in Example 3-1, except that 1 nm of Mg was deposited as the electron injection assist layer.
<Example 3-3>
This was the same configuration as in Example 3-1, except that 1 nm of MgF 2 was deposited as the electron injection assist layer.
<Example 3-4>
This was the same configuration as in Example 3-1, except that 1 nm of Li 2 O was deposited as the electron injection assist layer.
<Example 3-5>
This was the same configuration as in Example 3-1, except that 1 nm of LiF was deposited as the electron injection assist layer.
<Example 3-6>
This was the same configuration as in Example 3-1, except that 1 nm of Ca was deposited as the electron injection assist layer.
 (測定、評価)
 電流-電圧-輝度測定は輝度計(BM8)と電流電源(ケースレイ:236型ソース-メジャーユニット)を用い、駆動電圧を測定した。
(Measurement, evaluation)
For current-voltage-luminance measurement, a luminance meter (BM8) and a current power source (Caselay: type 236 source-measure unit) were used to measure drive voltage.
 実験例及び比較例について、電流密度7.5mA/cmの条件でそれぞれ駆動し、初期の駆動電圧V及び輝度cd/mを測定した。 The experimental example and the comparative example were driven under the condition of a current density of 7.5 mA / cm 2 , and the initial driving voltage V and the luminance cd / m 2 were measured.
 高温・加湿度試験は保存庫を温度:60℃、湿度:95%に設定し、試験を行い、200時間経過後の陰極エッジからの非発光部進行度(陽極と交差する陰極のエッジ(端部)からの非発光部の拡がる距離μm)を確認した。非発光部進行度において、非発光部が全く光らない場合、黒とし、非発光部はうっすらと光る場合は灰とした。全灰は画素全域でうっすらと光ることを示す。 In the high temperature / humidification test, the storage is set at a temperature of 60 ° C. and a humidity of 95%, and the test is performed. The degree of progress of the non-light emitting portion from the cathode edge after 200 hours (the edge of the cathode crossing the anode (edge) The distance (μm) at which the non-light emitting part spreads from the part) was confirmed. In the non-light emitting portion progression, when the non-light emitting portion does not shine at all, it is black, and when the non-light emitting portion shines lightly, it is ash. The whole ash shows a slight glow throughout the pixel.
 駆動寿命は約21mA/cmの一定電流密度下における輝度1割減までの時間を確認した。実験結果を下記表1~表3に示す。 The driving life was confirmed as the time to decrease the luminance by 10% under a constant current density of about 21 mA / cm 2 . The experimental results are shown in Tables 1 to 3 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 結果から明らかなように、n型ドーパント含有電子輸送層は1.7から40%濃度で比較例素子程度以下の低い駆動電圧が得られることが分かる。駆動電圧が低減できることにより、素子の延命化が期待できると理解できる。
Figure JPOXMLDOC01-appb-T000003
As is apparent from the results, the n-type dopant-containing electron transport layer has a concentration of 1.7 to 40%, and a driving voltage as low as that of the comparative device or less can be obtained. It can be understood that the life of the device can be expected to be reduced by reducing the driving voltage.
 有機EL素子に電子注入アシスト層を設けたことにより、素子の耐湿性向上のみならず、長寿命化を図る事ができたと理解できる。n型ドーパント含有電子輸送層で非発光部拡大を抑制するとともに、本発明は、上記の電子注入アシスト層に加え耐湿強化膜を配置することで素子の延命化が期待できると理解できる。 It can be understood that the provision of the electron injection assist layer in the organic EL element not only improved the moisture resistance of the element but also extended its life. It can be understood that the n-type dopant-containing electron transport layer suppresses expansion of the non-light-emitting portion and that the present invention can be expected to extend the life of the device by disposing a moisture-resistant reinforcing film in addition to the electron injection assist layer.

Claims (16)

  1.  対向する陽極及び陰極の間に積層配置された、有機発光層を含む複数の有機半導体層からなる有機発光素子であって、
     前記有機半導体層は、電子輸送性を有する有機化合物を主体として、前記陰極に接するとともに前記陰極とのアロイ化をなしうる電子供与性物質がストイキオメトリ形態で混合されたn型ドーパント含有電子輸送層を含むこと、並びに、
     前記陰極及び前記n型ドーパント含有電子輸送層の間に配置され且つそれぞれに接する電子注入アシスト層を有することを特徴とする有機発光素子。
    An organic light emitting device composed of a plurality of organic semiconductor layers including an organic light emitting layer, which is disposed between an anode and a cathode facing each other,
    The organic semiconductor layer is mainly composed of an organic compound having an electron transporting property, and includes an n-type dopant-containing electron transport in which an electron donating substance that is in contact with the cathode and can be alloyed with the cathode is mixed in a stoichiometric form. Including layers, and
    An organic light emitting device comprising an electron injection assist layer disposed between and in contact with the cathode and the n-type dopant-containing electron transport layer.
  2.  前記陰極の前記電子注入アシスト層の反対側の前記陰極上に陰極耐湿強化膜を有することを特徴とする請求項1に記載の有機発光素子。 The organic light-emitting device according to claim 1, further comprising a cathode moisture-resistant reinforcing film on the cathode opposite to the electron injection assist layer of the cathode.
  3.  前記陰極耐湿強化膜は前記n型ドーパント含有電子輸送層の端部と前記電子注入アシスト層の端部とそれらの界面の端部、及び前記陰極の端部も覆うように配置されることを特徴とする請求項2に記載の有機発光素子。 The cathode moisture resistance enhancement film is disposed so as to cover an end portion of the n-type dopant-containing electron transport layer, an end portion of the electron injection assist layer, an end portion of the interface thereof, and an end portion of the cathode. The organic light emitting device according to claim 2.
  4.  前記電子供与性物質を含む前記n型ドーパント含有電子輸送層の主成分は仕事関数やHOMOレベルが3.0eV以下である物質を含有することを特徴とする請求項1~3のいずれか1に記載の有機発光素子。 The main component of the n-type dopant-containing electron transport layer containing the electron donating substance contains a substance having a work function or a HOMO level of 3.0 eV or less. The organic light emitting element as described.
  5.  前記n型ドーパント含有電子輸送層の前記電子供与性物質はCsMoO、CsMoO、CsVO、CsVO、LiMoOであることを特徴とする請求項1~4のいずれか1に記載の有機発光素子。 The electron-donating material of the n-type dopant-containing electron-transporting layer of Cs 2 MoO 4, Cs 2 MoO 4, CsVO 3, Cs 3 VO 4, Li 2 claims 1 to 4, characterized in that the MoO 4 The organic light emitting element of any one.
  6.  前記n型ドーパント含有電子輸送層中に前記電子供与性物質は0.8体積%から60体積%で含有されていることを特徴とする請求項1~5のいずれか1に記載の有機発光素子。 6. The organic light-emitting device according to claim 1, wherein the electron-donating substance is contained in the n-type dopant-containing electron transport layer in an amount of 0.8 to 60% by volume. .
  7.  前記電子注入アシスト層は仕事関数が3.0eV以下である物質を含有することを特徴とする請求項1~6のいずれか1に記載の有機発光素子。 The organic light-emitting device according to any one of claims 1 to 6, wherein the electron injection assist layer contains a substance having a work function of 3.0 eV or less.
  8.  前記電子注入アシスト層はAlF、MgF、ZnF(xは原子比を示す)のフッ化物、AlMoO、MgMoO、ZnO(xは原子比を示す)の金属酸化物であることを特徴とする請求項1~7のいずれか1に記載の有機発光素子。 The electron injection assist layer is a fluoride of AlF 3 , MgF 2 , ZnF x (x indicates an atomic ratio), or a metal oxide of AlMoO x , MgMoO x , ZnO (x indicates an atomic ratio). The organic light-emitting device according to any one of claims 1 to 7.
  9.  前記陰極は仕事関数が4.5eV以上の金属からなることを特徴とする請求項1~8のいずれか1に記載の有機発光素子。 The organic light-emitting element according to any one of claims 1 to 8, wherein the cathode is made of a metal having a work function of 4.5 eV or more.
  10.  前記陰極はAg、Pt、Au単体の金属、これらの合金からなることを特徴とする請求項9に記載の有機発光素子。 10. The organic light emitting device according to claim 9, wherein the cathode is made of Ag, Pt, Au simple metal, or an alloy thereof.
  11.  前記陰極耐湿強化膜はLiO、MoO、V、W(x、yは原子比を示す)の酸化物、それらの金属化合物、YbF、MgF、LiFのフッ化物からなることを特徴とする請求項2~10のいずれか1に記載の有機発光素子。 The cathode moisture resistance enhancement film is made of oxides of Li 2 O, MoO 3 , V x O y , W x O y (x and y are atomic ratios), their metal compounds, YbF 3 , MgF 2 , and LiF. The organic light-emitting device according to any one of claims 2 to 10, wherein the organic light-emitting device is made of a compound.
  12.  前記陰極耐湿強化膜は1nm~120nmであることを特徴とする請求項2~11のいずれか1に記載の有機発光素子。 The organic light-emitting device according to any one of claims 2 to 11, wherein the cathode moisture-resistant reinforcing film has a thickness of 1 nm to 120 nm.
  13.  前記陰極耐湿強化膜は陰極膜厚以上の膜厚を有することを特徴とする請求項2~12のいずれか1に記載の有機発光素子。 The organic light-emitting device according to any one of claims 2 to 12, wherein the cathode moisture-resistant reinforcing film has a film thickness equal to or greater than a cathode film thickness.
  14.  前記陽極が反射電極であり、前記陰極が半透明又は透明な電極であるトップエミッション型有機発光素子であることを特徴とする請求項1~13のいずれか1に記載の有機発光素子。 The organic light-emitting device according to any one of claims 1 to 13, wherein the organic light-emitting device is a top emission organic light-emitting device in which the anode is a reflective electrode and the cathode is a translucent or transparent electrode.
  15.  前記陽極が半透明又は透明な電極であり、前記陰極が半透明又は透明な電極である両面エミッション型有機発光素子であることを特徴とする請求項1~13のいずれか1に記載の有機発光素子。 The organic light-emitting device according to any one of claims 1 to 13, wherein the anode is a translucent or transparent electrode, and the cathode is a double-sided emission type organic light-emitting device, which is a translucent or transparent electrode. element.
  16.  請求項1~15のいずれか1に記載の有機発光素子を発光体とすることを特徴とする照明パネル。
     
    An illumination panel comprising the organic light-emitting device according to any one of claims 1 to 15 as a light emitter.
PCT/JP2010/063875 2010-08-17 2010-08-17 Organic light emitting element WO2012023177A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012529426A JPWO2012023177A1 (en) 2010-08-17 2010-08-17 Organic light emitting device
PCT/JP2010/063875 WO2012023177A1 (en) 2010-08-17 2010-08-17 Organic light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/063875 WO2012023177A1 (en) 2010-08-17 2010-08-17 Organic light emitting element

Publications (1)

Publication Number Publication Date
WO2012023177A1 true WO2012023177A1 (en) 2012-02-23

Family

ID=45604851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063875 WO2012023177A1 (en) 2010-08-17 2010-08-17 Organic light emitting element

Country Status (2)

Country Link
JP (1) JPWO2012023177A1 (en)
WO (1) WO2012023177A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171872A1 (en) * 2012-05-17 2013-11-21 パイオニア株式会社 Organic el light-emitting panel and light-emitting device
WO2017033317A1 (en) * 2015-08-26 2017-03-02 パイオニア株式会社 Light emitting device
US9748509B2 (en) 2013-07-10 2017-08-29 Joled Inc. Organic EL element and organic EL display panel
US10734598B2 (en) 2017-11-30 2020-08-04 Lg Display Co., Ltd. Organic light-emitting element and organic light-emitting display device using the same
CN111969017A (en) * 2020-08-21 2020-11-20 合肥维信诺科技有限公司 Display panel and preparation method thereof
CN113725376A (en) * 2021-08-30 2021-11-30 合肥京东方卓印科技有限公司 Organic electroluminescent device, method for manufacturing same and display panel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696858A (en) * 1992-09-10 1994-04-08 Toppan Printing Co Ltd Organic thin film el element
JP2003092192A (en) * 2001-09-18 2003-03-28 Matsushita Electric Ind Co Ltd Organic electroluminescent display device and method for manufacturing the same
JP2006196271A (en) * 2005-01-12 2006-07-27 Fuji Electric Holdings Co Ltd Organic el element and its manufacturing method
JP2009016332A (en) * 2007-07-03 2009-01-22 Samsung Sdi Co Ltd Organic electroluminescent element
WO2009107541A1 (en) * 2008-02-25 2009-09-03 パイオニア株式会社 Organic electroluminescent element
WO2010016101A1 (en) * 2008-08-04 2010-02-11 パイオニア株式会社 Organic electroluminescent element
JP2010150518A (en) * 2008-11-20 2010-07-08 Sumitomo Chemical Co Ltd Amine-type polymeric compound, and light-emitting element comprising the same
JP2010174035A (en) * 2007-05-18 2010-08-12 Semiconductor Energy Lab Co Ltd Organometallic complex

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731970B2 (en) * 2004-04-07 2011-07-27 株式会社半導体エネルギー研究所 Light emitting device and manufacturing method thereof
US7795806B2 (en) * 2005-05-20 2010-09-14 Lg Display Co., Ltd. Reduced reflectance display devices containing a thin-layer metal-organic mixed layer (MOML)
JP5208591B2 (en) * 2007-06-28 2013-06-12 株式会社半導体エネルギー研究所 Light emitting device and lighting device
JP5267246B2 (en) * 2008-03-26 2013-08-21 凸版印刷株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, ITS MANUFACTURING METHOD, AND ORGANIC ELECTROLUMINESCENT DISPLAY
KR20090107882A (en) * 2008-04-10 2009-10-14 삼성전자주식회사 Graded composition encapsulation thin film comprising anchoring layer and method of fabricating the same
JP2010123439A (en) * 2008-11-20 2010-06-03 Fujifilm Corp Organic electroluminescent element
JP5156657B2 (en) * 2009-01-27 2013-03-06 パナソニック株式会社 Organic EL light emitting device
JP5120398B2 (en) * 2010-03-04 2013-01-16 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696858A (en) * 1992-09-10 1994-04-08 Toppan Printing Co Ltd Organic thin film el element
JP2003092192A (en) * 2001-09-18 2003-03-28 Matsushita Electric Ind Co Ltd Organic electroluminescent display device and method for manufacturing the same
JP2006196271A (en) * 2005-01-12 2006-07-27 Fuji Electric Holdings Co Ltd Organic el element and its manufacturing method
JP2010174035A (en) * 2007-05-18 2010-08-12 Semiconductor Energy Lab Co Ltd Organometallic complex
JP2009016332A (en) * 2007-07-03 2009-01-22 Samsung Sdi Co Ltd Organic electroluminescent element
WO2009107541A1 (en) * 2008-02-25 2009-09-03 パイオニア株式会社 Organic electroluminescent element
WO2010016101A1 (en) * 2008-08-04 2010-02-11 パイオニア株式会社 Organic electroluminescent element
JP2010150518A (en) * 2008-11-20 2010-07-08 Sumitomo Chemical Co Ltd Amine-type polymeric compound, and light-emitting element comprising the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171872A1 (en) * 2012-05-17 2013-11-21 パイオニア株式会社 Organic el light-emitting panel and light-emitting device
US9748509B2 (en) 2013-07-10 2017-08-29 Joled Inc. Organic EL element and organic EL display panel
WO2017033317A1 (en) * 2015-08-26 2017-03-02 パイオニア株式会社 Light emitting device
JPWO2017033317A1 (en) * 2015-08-26 2018-06-14 パイオニア株式会社 Light emitting device
US10734598B2 (en) 2017-11-30 2020-08-04 Lg Display Co., Ltd. Organic light-emitting element and organic light-emitting display device using the same
CN111969017A (en) * 2020-08-21 2020-11-20 合肥维信诺科技有限公司 Display panel and preparation method thereof
CN113725376A (en) * 2021-08-30 2021-11-30 合肥京东方卓印科技有限公司 Organic electroluminescent device, method for manufacturing same and display panel

Also Published As

Publication number Publication date
JPWO2012023177A1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP4486713B2 (en) Organic electroluminescent device
JP3933591B2 (en) Organic electroluminescent device
KR101254167B1 (en) Organic electroluminescent element
JP2014179344A (en) Stacked organic light emitting device having high efficiency and high brightness
JP2005123095A (en) Organic electroluminescent element
JPH10270171A (en) Organic electroluminescent element
WO2007052985A1 (en) Organic electroluminescent device and method for preparing the same
JP2007294261A (en) Organic electroluminescent element
US20120007071A1 (en) Organic light-emitting device, and method for manufacturing same
WO2012023177A1 (en) Organic light emitting element
JPH04212284A (en) Organic membranous electro-luminescence(el) element
JPH04212287A (en) Organic membranous electro-luminescence(el) element
US8586969B2 (en) Organic EL device
JP2007123865A (en) Organic electroluminescent element
WO2009110075A1 (en) Organic semiconductor element
JP4366686B2 (en) Manufacturing method of organic EL element
WO2009107541A1 (en) Organic electroluminescent element
JP5456120B2 (en) Organic electroluminescence device
JP2010033973A (en) Organic electroluminescent element
JP2010205427A (en) Organic electroluminescent element
JP2004207000A (en) Organic el device
JP4825296B2 (en) Organic electroluminescent device
JP2005129279A (en) Organic light emitting device
JP4926229B2 (en) Organic electroluminescent device
JP5319977B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856135

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012529426

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856135

Country of ref document: EP

Kind code of ref document: A1