WO2012020999A2 - 2단 연료 분사 밸브 - Google Patents

2단 연료 분사 밸브 Download PDF

Info

Publication number
WO2012020999A2
WO2012020999A2 PCT/KR2011/005879 KR2011005879W WO2012020999A2 WO 2012020999 A2 WO2012020999 A2 WO 2012020999A2 KR 2011005879 W KR2011005879 W KR 2011005879W WO 2012020999 A2 WO2012020999 A2 WO 2012020999A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
auxiliary fuel
auxiliary
chamber
plunger
Prior art date
Application number
PCT/KR2011/005879
Other languages
English (en)
French (fr)
Other versions
WO2012020999A3 (ko
Inventor
전병현
김주태
안광헌
김승진
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to CN201180049053.7A priority Critical patent/CN103168163B/zh
Priority to JP2013524043A priority patent/JP5646754B2/ja
Priority to EP11816615.6A priority patent/EP2604847B1/en
Priority to US13/816,179 priority patent/US9188093B2/en
Publication of WO2012020999A2 publication Critical patent/WO2012020999A2/ko
Publication of WO2012020999A3 publication Critical patent/WO2012020999A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/10Other injectors with multiple-part delivery, e.g. with vibrating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • F02M43/04Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/086Having more than one injection-valve controlling discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/46Valves, e.g. injectors, with concentric valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift

Definitions

  • the present invention relates to a two-stage fuel injection valve, and more particularly, a mechanical fuel injection valve can perform a sliding switch valve function and a secondary fuel compression function at the same time, according to the first and second stage fuel
  • the present invention relates to a two-stage fuel injection valve which enables injection or two-stage fuel injection, and allows two fuels to be radially injected on the coaxial of the combustion chamber center.
  • a fuel injection device of a diesel engine there are a conventional mechanical fuel injection device and an electronically controlled fuel injection device.
  • the mechanical fuel injection device injects the high pressure fuel compressed by the injection pump into the combustion chamber through the mechanical injector.
  • the plunger is driven by a fuel cam that interlocks with the crankshaft to compress the fuel, and in the mechanical injector, the nozzle hole is opened or closed by sliding the needle (or push rod). Spray or shut off.
  • Such a mechanical fuel injection value is dependent on the engine speed by the injection conditions (injection timing, injection pressure, injection amount). This means that the pressure increases in proportion to the engine speed, so that the pump is heavily loaded at every revolution. In addition, since the pressure cannot be increased beyond the engine speed, high pressure injection at low speed is impossible.
  • an electronically controlled fuel injection device using a common rail is known.
  • Electronically controlled fuel injection device is equipped with low pressure pump, high pressure pump, common rail and solenoid injector.
  • the fuel is pressurized to ultra high pressure while passing through the low pressure pump and the high pressure pump, and accumulates at a constant pressure in the common rail by the pressure control of the engine control unit (ECU).
  • the solenoid injector is controlled by the engine control unit to adjust the injection timing and injection amount.
  • the electronically controlled fuel injection device is capable of high pressure injection at low speed by controlling the generation of pressure and injection separately, and can freely control the injection conditions according to the operating conditions to improve engine performance (eg output) and fuel economy. You can.
  • multi-stage injection such as pilot injection, main injection, and post injection can be performed, thereby improving fuel economy and reducing exhaust gas.
  • an electronic fuel injection device does not inject two fuels, so it is difficult to utilize them in a dual fuel engine.
  • Two or two fuel engines have two combustion modes.
  • auxiliary fuels e.g. Marine Diesel Oil, Marine Gas Oil
  • main fuel e.g. Heavy Fuel Oil, Marine Diesel Oil
  • NOx improvement and combustion performance can be improved.
  • the auxiliary fuel can be injected by adjusting the fuel injection amount adjuster to achieve stable ignition of the gas fuel introduced through the gas admission valve and the engine intake port.
  • a parallel twin injector is used to inject two fuels.
  • the twin injector is a combination of a general mechanical injector and a solenoid injector to inject a different kind of fuel.
  • the size becomes larger and takes up a lot of space.
  • two nozzle orifices and shafts corresponding to the two kinds of fuels are provided side by side at a point spaced from each other. For this reason, one of the two fuels is inevitably injected at a position outside the center of the combustion chamber, so it is difficult to optimize combustion performance.
  • the secondary fuel nozzle orifice may be clogged when the main fuel (Heavy Fuel Oil) injection containing a large amount of particulate matter.
  • the common rail, a high pressure pump, a solenoid injector further needs to be installed for the auxiliary injection, which is expensive and has the disadvantage of complicated system.
  • an additionally manufactured electronic auxiliary injector is additionally installed in an inclined state around the main injector.
  • the auxiliary injection is not made in the center of the cylinder head, but is made from the side, and the injection direction (angle) is also biased to one side, which results in a poor combustion performance.
  • the present invention provides a two-stage fuel injection valve capable of not only two-stage fuel injection but also two kinds of fuel injection with one mechanical injector, thereby improving combustion performance and reducing exhaust gas at a minimum cost. It is an object of the present invention to provide a fuel injection valve.
  • Another object of the present invention is to simplify the structure and to separate the auxiliary fuel by making it possible to simultaneously perform the compression function of the auxiliary fuel as well as the selective opening and closing of the main nozzle hole and the auxiliary nozzle hole with one mechanical fuel injection valve. This eliminates the need for a compression pump.
  • Still another object of the present invention is to improve combustion performance by allowing two fuels to be injected on the coaxial of the combustion chamber center.
  • a two-stage fuel injection valve for injecting fuel into the combustion chamber of the cylinder head, comprising: a plurality of main fuel nozzle holes and a plurality of auxiliary fuel nozzle holes formed radially with respect to the same central axis at points axially spaced apart from the tip;
  • a main fuel inlet passage formed from a main fuel inlet to a point adjacent to the main fuel nozzle hole, a first main fuel chamber formed in an axial direction in communication with the main fuel inlet passage, and an auxiliary fuel inlet from the auxiliary fuel inlet
  • a valve body having an auxiliary fuel inlet passage formed to a point adjacent to the nozzle hole and an auxiliary fuel discharge passage formed from another point adjacent to the auxiliary fuel nozzle hole;
  • a main fuel that is slidably inserted into the first main fuel chamber of the valve body to form an auxiliary fuel pressurizing chamber in communication with the auxiliary fuel nozzle hole between the tip and the valve body, and acts on the first main fuel chamber.
  • a plunger configured to pressurize the auxiliary fuel in the auxiliary fuel pressurizing chamber while advancing under the pressure of and to communicate the main fuel inlet passage with the main fuel nozzle hole after the completion of the auxiliary fuel injection;
  • a plunger spring elastically pressurizing the plunger in a retracting direction;
  • a needle end is inserted into the center of the plunger so as to be slidable, and a needle end is formed at the front end to block the auxiliary fuel nozzle hole. Needles to communicate with;
  • a needle spring interposed between the rear end of the needle and the plunger to elastically press the needle in the forward direction.
  • a second main fuel chamber communicating with the end of the main fuel inlet passage is formed in a groove shape around the periphery of the distal end of the plunger, and the main fuel nozzle hole is blocked when the plunger is retracted, and the main fuel when the plunger is advanced.
  • the fuel inlet passage and the main fuel nozzle hole communicate.
  • the outer periphery of the plunger, the auxiliary fuel inlet chamber communicating with the end of the auxiliary fuel inlet passage, and the auxiliary fuel discharge chamber in communication with the end of the auxiliary fuel discharge passage is formed;
  • a first longitudinal groove connecting the auxiliary fuel inlet chamber and the auxiliary fuel pressurizing chamber and a second longitudinal groove connecting the auxiliary fuel pressurizing chamber and the auxiliary fuel discharge chamber are formed.
  • the first longitudinal groove and the second longitudinal groove are in communication with or blocked by the auxiliary fuel pressurization chamber by the retraction or advancement of the plunger.
  • the auxiliary fuel inlet chamber may include a groove formed along the outer circumference of the plunger and a communication hole connecting the groove and the first longitudinal groove of the needle, and the auxiliary fuel discharge chamber may be The groove may be formed in a groove shape along an outer circumference of the plunger, and a communication hole connecting the groove and the second longitudinal groove of the needle.
  • the valve body may consist of an assembly of a plurality of split bodies divided into several segments in the axial direction.
  • the valve body includes: a base body in which the main fuel inlet and the first main fuel inlet passage, the auxiliary fuel inlet and the first auxiliary fuel inlet passage are formed;
  • the first main fuel chamber, the main fuel nozzle hole and the auxiliary fuel nozzle hole is formed in the base body in the axial direction, the second main fuel inflow passage connected to the first main fuel inflow passage, the first auxiliary It may be configured as a nozzle body is formed a second auxiliary fuel inlet passage connecting the fuel inlet passage and the auxiliary fuel pressurization chamber.
  • valve body is composed of an assembly in which the first body, the second body and the third body in the axial direction from the rear end to the front end, the first body of the first body and the second body and the third body You can combine the holder to wrap around.
  • the two-stage fuel injection valve of the present invention delivers the pressure of the main fuel pumped from the injection pump to the auxiliary fuel pressurizing chamber through the plunger to pressurize the auxiliary fuel.
  • the needle is operated by the slide valve method to inject the auxiliary fuel.
  • the main fuel nozzle hole is opened to inject the main fuel to enable two-stage fuel injection.
  • the main fuel, the auxiliary fuel passage and the nozzle hole are arranged in a single body so that two types of fuel can be injected.
  • one mechanical fuel injection valve can selectively open and close the main nozzle hole and the auxiliary nozzle hole, and can compress the auxiliary fuel under the pressure of the main fuel, it is possible to compress the auxiliary fuel by a simple structure, There is no need for a separate injection pump to compress the auxiliary fuel.
  • two fuels in one body are radially injected on the coaxial center of the combustion chamber, thereby improving combustion performance.
  • FIG. 1 is a cross-sectional view showing the structure of a two-stage fuel injection valve according to the present invention.
  • FIG. 2 is a bottom view of FIG. 1 and illustrates a layout state of a main nozzle hole and an auxiliary nozzle hole.
  • FIG. 2 is a bottom view of FIG. 1 and illustrates a layout state of a main nozzle hole and an auxiliary nozzle hole.
  • FIG. 3 is an enlarged view illustrating a head portion of the two-stage fuel injection valve of FIG. 1.
  • FIG. 4 is a cross-sectional view taken along line II of FIG. 3.
  • FIG. 5 is a cross-sectional view taken along line II-II of FIG. 3.
  • FIG. 6 is a cross-sectional view taken along line III-III of FIG. 3.
  • FIG. 7 is a cross-sectional view taken along the line IV-IV of FIG. 4, showing an opening state of the auxiliary fuel circulation line before the fuel injection operation is started in the fuel injection valve.
  • FIG 8 is a view showing a state before the start of the fuel injection operation of the two-stage fuel injection valve according to the present invention.
  • FIG. 9 is a view showing an initial state where the auxiliary fuel begins to be compressed by the pressure of the main fuel after the state of FIG. 8.
  • FIG. 10 is a view illustrating a state in which auxiliary fuel is injected after the state of FIG. 9.
  • FIG. 11 is a view illustrating a state in which auxiliary fuel is cut off and main fuel is injected after the state of FIG. 10.
  • FIG. 13 is a view showing the structure of a two-stage fuel injection valve according to another embodiment of the present invention.
  • FIG. 14 is an enlarged view of the head of FIG. 13.
  • 15 is a cross-sectional view taken along a secondary fuel circulation line.
  • FIG. 16 is an enlarged view of the head of FIG. 15.
  • 17 is a view showing a conventional parallel twin injector.
  • FIG. 1 and 2 show a two-stage fuel injection valve according to the invention, in which a cross-sectional view is shown in FIG. 1 and a bottom view of FIG.
  • the two-stage fuel injection valve of the present invention having a main fuel nozzle hole 202 and a sub-fuel nozzle hole 204 formed at the front end (lower end in Figure 1) ( 100a).
  • the main fuel nozzle hole 202 and the auxiliary fuel nozzle hole 204 are formed radially with respect to the same central axis X at the points axially spaced apart. Therefore, two fuels are radially injected on the coaxial part of a combustion chamber center, and combustion performance can be improved.
  • the main fuel inlet 112 and the auxiliary fuel inlet 122 are formed in the injector body 100a.
  • the main fuel inflow passages 110 and 210 are formed from the main fuel inlet 112 to a point adjacent to the main fuel nozzle hole 202.
  • a first main fuel chamber 206 in communication with the main fuel inflow passage (110, 210) in the axial direction.
  • auxiliary fuel inflow passages 120 and 220 are formed from the auxiliary fuel inlet 122 to a point adjacent to the auxiliary fuel nozzle hole 204.
  • a secondary fuel discharge passage 230 is formed at another point adjacent to the auxiliary fuel nozzle hole 204.
  • the plunger 300 is slidably inserted in the axial direction in the first main fuel chamber 206 of the valve body 100a.
  • the first main fuel chamber 206 at the rear end of the plunger 300 serves as a so-called 'pressure cylinder' to which the pressure of the main fuel acts.
  • An auxiliary fuel pressurizing chamber 302 is formed at the tip of the plunger 300 to communicate with the auxiliary fuel nozzle hole 204. Therefore, when the pressure of the main fuel (pressure from the injection pump) acting on the first main fuel chamber 206 acts on the rear end of the plunger 300, the plunger 300 advances to the auxiliary fuel pressurization chamber 302. Pressurize the auxiliary fuel inside. That is, the plunger 300 serves as an injection pump or fuel pump for pressurizing the auxiliary fuel.
  • the plunger 300 communicates with the main fuel inflow passages 110 and 210 and the main fuel nozzle hole 202 after the pressurized auxiliary fuel has been injected through the auxiliary fuel nozzle hole 204 to inject the main fuel.
  • the plunger 200 is elastically pressurized in the retraction direction (rear) by the plunger spring 500.
  • the plunger spring 500 is opposed to the pressure acting on the first main fuel chamber 206. If the pressure acting on the first main fuel chamber 206 is greater than the restoring force of the plunger spring 500, the plunger 200 advances in the tip direction. Conversely, if the restoring force of the plunger spring 500 is greater than the pressure acting on the first main fuel chamber 206, the plunger 200 retreats in the rearward direction.
  • the needle 400 is inserted in the plunger 300 so as to be slidable in the axial direction.
  • the plunger 300 has a needle end 410 at the tip thereof that blocks the auxiliary fuel nozzle hole 204.
  • the auxiliary fuel nozzle hole 204 is opened to inject the auxiliary fuel in the auxiliary fuel pressurization chamber 302.
  • the needle 400 is elastically pressed in the forward direction by the needle spring 600. That is, the needle spring 600 elastically pressurizes the needle 400 in a direction of blocking the auxiliary fuel nozzle hole 204 against the pressure of the auxiliary fuel pressurization chamber 302.
  • the needle 400 is retracted.
  • the valve body 100a may be composed of an assembly of a plurality of divided bodies divided into several nodes in the axial direction. This is desirable to facilitate the machining of the valve body 100a and the assembly of the parts.
  • the valve body 100a is divided into two nodes, that is, the base body 100 and the nozzle body 200, and takes the form of being axially coupled.
  • the valve body 100a is not necessarily divided into two nodes (body) like the embodiment shown in FIG. 1, and may be divided into three or more bodies and manufactured and combined according to the conditions of machining, assembly, and the like.
  • the size, length, split ratio, etc. of the divided split bodies are not important. It can be designed freely within the range in which processing, assembly and mechanical operation are performed smoothly.
  • valve body 100a is divided into two bodies, that is, the base body 100 and the nozzle body 200, the main fuel inflow passage system and the auxiliary fuel inflow passage system are also divided and manufactured to communicate after assembly. That is, the main body inlet 112, the first main fuel inlet passage 110, the auxiliary fuel inlet 122, and the first auxiliary fuel inlet passage 120 are formed in the base body 100.
  • a first main fuel chamber 206, a main fuel nozzle hole 202, and a sub fuel nozzle hole 204 are formed, while a second main fuel inflow passage 210 and a second auxiliary fuel are formed.
  • Inflow passage 220 is formed.
  • FIG. 3 is an enlarged view illustrating a head portion of the two-stage fuel injection valve of FIG. 1
  • FIG. 4 is a cross-sectional view taken along line II of FIG. 3
  • FIG. 5 is a cross-sectional view taken along line II-II of FIG. 3.
  • 6 is a cross-sectional view taken along line III-III of FIG. 3
  • FIG. 7 is a cross-sectional view taken along line IV-IV of FIG. 4.
  • the main fuel nozzle hole 202 and the auxiliary fuel nozzle hole 204 are formed at the tip of the nozzle body 200.
  • the space between the tip of the plunger 300 and the nozzle body 200 forms the auxiliary fuel pressurizing chamber 302.
  • the needle 400 is inserted into the plunger 300, and the tip portion of the needle 400 enters the auxiliary fuel pressurizing chamber 302 to block the auxiliary fuel nozzle hole 204 through its needle end 410.
  • the needle 400 is divided into two bodies, namely, a first needle body 400a and a second needle body 400b, for the convenience of manufacture, and is coupled in an axial direction.
  • a second main fuel chamber 310 communicating with the ends of the main fuel inflow passages 110 and 210 is formed in a groove shape on the outer circumference of the front end of the plunger 300.
  • a first longitudinal groove 420 and a second longitudinal groove 430 are formed at the outer circumference of the needle 400.
  • the first longitudinal groove 420 serves to connect the auxiliary fuel inlet chamber 320 and the auxiliary fuel pressurization chamber 302.
  • the second longitudinal groove 430 serves to connect the auxiliary fuel pressurization chamber 302 and the auxiliary fuel discharge chamber 330.
  • the first longitudinal groove 420 and the second longitudinal groove 430 communicate with or block the auxiliary fuel pressurizing chamber 302 by retreating or advancing the plunger 300.
  • the auxiliary fuel inlet chamber 320 includes a groove 320a formed in a groove shape along the outer circumference of the plunger 300, and the groove 320a and the needle 400. It consists of a communication hole (320b) connecting the one longitudinal groove (420). Therefore, after the auxiliary fuel introduced through the auxiliary fuel inflow passages 120 and 220 is filled in the groove 320a formed on the outer circumference of the plunger 300, the auxiliary fuel enters the first longitudinal groove 420 through the communication hole 320b and the second longitudinal groove. At 420, the auxiliary fuel pressurization chamber 302 is entered.
  • the auxiliary fuel discharge chamber 330 includes grooves 330a and grooves 330a and needles 400 that are formed in a groove shape along the outer circumference of the plunger 300. It consists of a communication hole (330b) for connecting the second longitudinal groove 430 of the. Accordingly, the auxiliary fuel entering the auxiliary fuel pressurizing chamber 302 is discharged through the auxiliary fuel discharge passage 230 after passing through the second longitudinal groove 430 and then passing through the communication hole 330b and the groove 330a.
  • the second main fuel chamber 310 is formed in a groove shape along the periphery of the outer periphery of the tip of the plunger 300.
  • the main fuel introduced through the main fuel inflow passages 110 and 210 stays around the second main fuel chamber 310 and when the plunger 300 moves forward, meets the main fuel nozzle hole 202 to inject the main fuel. Done.
  • the two-stage fuel injection valve of the present invention thus formed transmits the pressure of the main fuel pumped from the injection pump to the auxiliary fuel pressurizing chamber 302 through the plunger 300 to pressurize the auxiliary fuel and to pressurize the auxiliary fuel.
  • the needle 400 By operating the needle 400 by the slide valve method to inject the auxiliary fuel, and after the auxiliary fuel injection to open the main fuel nozzle hole 202 to inject the main fuel to enable two-stage fuel injection.
  • the main fuel, the auxiliary fuel passage and the nozzle hole are arranged in a single body so that two types of fuel can be injected.
  • FIG. 7 is a cross-sectional view taken along the line IV-IV of FIG. 4, showing an opening state of the auxiliary fuel circulation line before the fuel injection operation is started in the fuel injection valve.
  • the auxiliary fuel system before the fuel injection starts is maintained in the circulation state by the plunger 300 and the needle 400 and the main fuel system is shut off. That is, the end 410 of the needle 400 closes the auxiliary fuel nozzle hole 204, and the front end surfaces of the plunger 300 are the first longitudinal groove 420 and the second longitudinal groove 430 of the needle 400. Is located outside.
  • the auxiliary fuel entering the auxiliary fuel pressurizing chamber 302 through the auxiliary fuel inflow passage 220, the auxiliary fuel inflow chamber 320, and the first longitudinal groove 420 is discharged to the secondary longitudinal groove 420 to discharge the auxiliary fuel. It is discharged through the chamber 330 and the auxiliary fuel discharge passage 230.
  • the circulation of the auxiliary fuel has a cooling effect on the nozzle, and improves the thermal load and carbon deposit of the nozzle.
  • FIG. 8 is a view showing a state before the fuel injection operation of the two-stage fuel injection valve of FIG.
  • the main fuel nozzle hole 202 is blocked by the plunger 300.
  • the main fuel introduced through the main fuel inflow passage 210 is to remain in the second main fuel chamber 310.
  • the main fuel when the main fuel is pumped from the main fuel injection pump in the state of FIGS. 7 and 8, the main fuel is the main fuel inlet 112 of the injector body 100a and the main fuel inflow passage 110. 210 and first primary fuel chamber 206.
  • the pressure of the main fuel pressurized by the injection pump acts on the rear end face (top end face in the drawing) of the plunger 300 in the first main fuel chamber 206. And when the pressure of the main fuel acting on the plunger 300 exceeds the elastic force of the plunger spring 500, the plunger 300 is advanced while compressing the plunger spring 500.
  • FIG. 9 shows a state in which the plunger 300 is slightly advanced in this way.
  • the plunger 300 is advanced by the pressure of the main fuel acting in the first main fuel chamber 206, and its front end surface passes the first and second longitudinal grooves 420 and 430 of the needle 400, the secondary fuel circulates.
  • the line is shut off and the auxiliary fuel in the auxiliary fuel pressurization chamber 302 is pressurized.
  • the pressing force of the auxiliary fuel acts on the needle 400.
  • the needle 400 is retracted.
  • FIG. 10 illustrates a state in which the needle 400 retreats.
  • the needle end 410 retreats to open the auxiliary fuel nozzle hole 204 to inject the auxiliary fuel.
  • the pressure of the auxiliary fuel pressurizing chamber 302 is lowered.
  • the needle 400 is advanced again to close the auxiliary fuel nozzle hole 204.
  • FIG. 12 shows the state after completion of the main fuel injection. Injection of the main fuel ends when the pressurization of the injection pump ends.
  • the plunger 300 returns (retracts).
  • the main fuel nozzle hole 202 is closed again and the auxiliary fuel pressurizing chamber 302 is opened again to return to the state before the start of injection.
  • FIG. 13 to 16 show a two-stage fuel injection valve according to another embodiment of the present invention.
  • FIG. 13 is an overall sectional view
  • FIG. 14 is an enlarged view of the head portion of FIG. 13
  • FIG. 15 is an auxiliary fuel. It is sectional drawing cut along the circulation line
  • FIG. 16 is the figure which expanded and showed the head part of FIG.
  • the two-stage fuel injection valve shown in FIGS. 13 to 16 has a divided number and shape of the injector body, the formation form of the main fuel line and the auxiliary fuel line, the plunger, and the injection valve described with reference to FIGS. 1 to 12.
  • the shape of the needle is slightly different.
  • the injection valve according to the present embodiment exemplifies the injection valve with a degree of deformation in the technical spirit of the injection valve according to the above-described embodiment.
  • valve body may be manufactured by dividing the divided body into a plurality of divided bodies in the axial direction, and then forming the assembled divided bodies in the axial direction.
  • This embodiment shows an example of such a technical idea.
  • the first body 3100, the second body 3200, and the third body 3300 in the front-end direction from the rear end as in the embodiment illustrated in FIGS. 13 and 14. ) May consist of an axially coupled assembly.
  • the holder 3700 is coupled to the distal end of the first body 3100 to surround and fix the second body 3200 and the third body 3300.
  • the main fuel inflow passages include a first main fuel inflow passage 3110 and a second main fuel inflow passage 3120, a second body 3200, and a third extending from the main fuel inlet formed in the first body 3100.
  • the third and fourth main fuel inflow passages 3210 and 3310 formed in the body 3300 are formed.
  • a first main fuel chamber 3206 connected to the first main fuel inflow passage 3110 is formed.
  • the auxiliary fuel inlet passage includes first and second auxiliary fuel inlet passages 3130 and 3220 formed in the first body 3100 and the second body 3200.
  • the main fuel nozzle hole 3302 and the auxiliary fuel nozzle hole 3304 are both formed in the third body 3300.
  • the plunger 3400 is installed in the first main fuel chamber 3206, extends through the second body 3200 to the third body 3300, and sets the auxiliary fuel pressurizing chamber 3306 by the tip portion.
  • the plunger 3400 is elastically pressurized in the rearward direction by the plunger spring 3600.
  • the needle 3500 is installed inside the plunger 3400.
  • the needle end 3510 which forms the tip end of the needle 3500, closes the auxiliary fuel nozzle hole 3304.
  • the needle 3500 is elastically pressed in the tip direction by the needle spring 3650.
  • the second main fuel chamber 3410 is also formed in the form of a groove along the outer circumference of the plunger 3400 as in the above-described embodiment.
  • auxiliary fuel inlet chamber 3420 and the auxiliary fuel discharge chamber 3430 are also formed in the form of grooves and communication holes on the outer circumference of the plunger 3400.
  • the needle 3500 is provided with a first longitudinal groove 3520 and a second longitudinal groove 3530.
  • the auxiliary fuel discharge passage has a shape in which first and second discharge passages 3140 and 3230 are formed in the first and second bodies 3100 and 3200, respectively.
  • the second discharge passage 3230 is in communication with the auxiliary fuel discharge chamber 3430.
  • the injection valve shown in Figs. 13 to 16 has a slight difference from the injection valve of the previous embodiment only in a detailed structure, but has a configuration based on the same technical idea as the injection valve according to the previous embodiment, Since the fuel injection action and the process are almost the same, detailed description is omitted.
  • one mechanical fuel injection valve can selectively open and close the main nozzle hole and the auxiliary nozzle hole, and can compress the auxiliary fuel under the pressure of the main fuel, it is possible to compress the auxiliary fuel by a simple structure, There is no need for a separate injection pump to compress the auxiliary fuel.
  • two fuels in one body are radially injected on the coaxial center of the combustion chamber, thereby improving combustion performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

본 발명은 2단 연료 분사 밸브에 관한 것이다. 본 발명의 2단 연료 분사 밸브는, 인젝션 펌프에서 압송되는 주연료의 압력을 제1 주연료 챔버(206)에서 플런저(400)에 작용하도록 하고, 이어서 플런저(400)를 통해 보조연료 가압챔버(302)에 전달하여 보조연료를 가압하며, 보조연료의 가압에 의해 니들(400)을 슬라이드 밸브 방식으로 후퇴시켜 보조연료 노즐홀(204)을 개방하여 보조연료를 분사하며, 보조연료 분사 후 주연료 노즐홀(202)을 개방하여 주연료를 분사함으로써 2단의 연료분사를 할 수 있도록 한 것이다. 또한, 주연료와 보조연료 통로(110, 210)(120, 220, 230) 및 노즐홀(202, 204)을 하나의 바디(100a)에 2원화하여 배치함으로써 2종 연료를 분사할 수 있도록 한 것이다.

Description

2단 연료 분사 밸브
본 발명은 2단 연료 분사 밸브에 관한 것으로서, 더 상세하게는 하나의 기계식 연료 분사 밸브가 미끄럼 방식의 개폐 밸브 기능과 보조연료 압축 기능을 동시에 수행할 수 있도록 하며, 그에 맞추어 1종 2단의 연료분사 또는 2종 2단의 연료 분사가 가능하도록 하며, 2가지의 연료가 연소실 중심부의 동축 상에서 방사상으로 분사되도록 한 2단 연료 분사 밸브에 관한 것이다.
디젤 엔진의 연료분사장치로서는 전통적인 기계식 연료분사장치와 전자제어식 연료분사장치가 있다.
기계식 연료분사장치는 인젝션 펌프에서 압축된 고압의 연료를 기계식 인젝터를 통해 연소실 내에 분사한다. 즉, 인젝션 펌프에서는 크랭크 축에 연동하는 연료 캠에 의해 플런저를 구동하여 연료를 압축하고, 기계식 인젝터에서는 니들(또는 푸시로드)의 미끄럼 이동에 의해 노즐홀(nozzle hole)을 개방 또는 폐쇄하여 연료를 분사 또는 차단한다. 이러한 기계식 연료분사장치는, 분사조건(분사시기, 분사압력, 분사량)이 엔진 회전수에 종속된다. 이는 엔진 회전수에 비례하여 압력이 상승하는 것을 의미하기 때문에 매 회전수마다 펌프에 큰 부하가 걸린다. 또한, 엔진 회전수 이상으로 압력을 상승시킬 수가 없어 저속에서 고압의 분사가 불가능하다. 또한, 엔진의 운전상태 또는 그 엔진이 장착된 선박, 차량 또는 발전소의 운행 상황에 따라 분사조건을 최적으로 제어하기가 어렵다. 또한, 연료를 다단계로 분사할 수 없을 뿐만 아니라 2종의 연료를 분사하지 못한다.
전통적인 기계식 연료분사장치의 단점을 개선한 것으로서, 커먼 레일(common rail)을 이용한 전자제어식 연료분사장치가 알려져 있다. 전자제어식 연료분사장치는, 저압펌프, 고압펌프, 커먼 레일 및 솔레노이드 인젝터를 갖추고 있다. 연료는 저압펌프와 고압펌프를 차례로 거치면서 초고압으로 가압 되고, 엔진제어유닛(ECU)의 압력 제어에 의해 커먼 레일에서 일정 압력으로 축압 된다. 그리고 엔진제어유닛에 의해 솔레노이드 인젝터를 통제하여 분사시기와 분사량을 조절한다. 이러한 전자제어식 연료분사장치는, 압력의 발생과 분사가 분리되어 제어됨으로써, 저속에서 고압분사가 가능하고, 운전조건에 따라 분사조건을 자유롭게 제어할 수 있어 엔진성능(예; 출력)과 연비를 향상시킬 수 있다. 또한, 솔레노이드 인젝터의 제어를 통해, 예를 들어 점화분사(pilot injection), 주분사(main injection) 및 사후분사(post injection) 등과 같은 다단계의 분사가 가능해져 연비향상은 물론 배기가스 저감을 실현할 수 있다. 그렇지만, 이러한 전자식 연료분사장치도 2종의 연료를 분사하지는 못함으로써 2종 연료 엔진(Dual Fuel Engine)에 활용하기 어렵다.
2종 또는 2중 연료 엔진은, 두 개의 연소 모드를 가지는 것이다. 예를 들어, 디젤 연료 모드에서 주연료(예; Heavy Fuel Oil, Marine Diesel Oil)를 분사하기 전에 보조연료(예; Marine Diesel Oil, Marine Gas Oil)를 분사하여 연소실의 연소환경을 개선하여 매연, NOx 개선 및 연소 성능을 향상시킬 수 있다. 또한, 가스 연료 모드에서는 연료 분사량 조절 장치(governor)의 조정으로 보조연료만을 분사하여 가스 유입 밸브(gas admission valve)와 엔진 흡기 포트를 통해 유입된 가스 연료의 안정적인 점화를 도모할 수 있다.
상술한 기계식 연료분사장치나 전자제어식 연료분사장치로 2종의 연료를 분사하기 위해서는 또 다른 하나의 인젝터를 추가하여야 하기 때문에 장치가 복잡해지고 원가를 크게 상승시키게 된다.
예를 들어, 도 17에 도시된 종래의 연료분사장치에서는, 2종의 연료를 분사하기 위해 병렬식 트윈 인젝터(twin injector)를 사용하고 있다. 트윈 인젝터는, 일반적인 기계식 인젝터 하나와 솔레노이드 인젝터 하나를 조합하여 각각 다른 종류의 연료를 분사하도록 한 것이다. 그러나 하나의 인젝터 바디에 2개의 연료 분사라인이 배열되는 만큼 크기가 더 커져서 공간을 많이 차지하게 된다. 또한, 2종의 연료에 대응한 2개의 노즐 오리피스 및 축이 서로 이격된 지점에 나란히 설치된다. 이 때문에, 두 가지의 연료 중 하나는 연소실의 중심을 벗어난 위치에서 분사될 수밖에 없어 연소성능을 최적화하기 어렵다. 또한, 입자 물질을 다량으로 포함하고 있는 주연료(Heavy Fuel Oil) 분사 시 보조연료 노즐 오리피스가 막힐 염려가 있다. 또한, 보조 분사를 위해 커먼 레일, 고압 펌프, 솔레노이드 인젝터를 추가로 더 설치하여야 함으로써 가격이 비싸지며 시스템이 복잡해지는 단점이 있다.
또한, 다른 예로서, 2종 2단 분사를 위해, 연소실 중앙에 배치된 기존의 기계식 메인 인젝터 이외에, 별도로 제조된 전자식 보조 인젝터를 메인 인젝터 주변에 기울어진 상태로 추가로 설치한 예도 있다. 그런데 이는 보조 분사가 실린더 헤드의 중심에서 이루어지지 못하고 옆쪽에서 이루어지고, 분사 방향(각도)도 한쪽으로 치우치기 때문에 연소 성능이 좋지 못하다는 단점이 있다.
본 발명은, 하나의 기계식 인젝터로 2단계의 연료 분사뿐만 아니라 2종의 연료 분사까지 할 수 있는 2단 연료 분사 밸브를 제공함으로써, 최소의 비용으로 연소 성능 향상과 함께 배기가스 저감을 도모하는 2단 연료 분사 밸브를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은, 하나의 기계식 연료 분사 밸브로 주 노즐홀과 보조 노즐 홀의 선택적인 개폐뿐만 아니라 보조연료의 압축 기능을 동시에 수행할 수 있도록 함으로써, 구조가 간단하고 보조연료를 압축하기 위한 별도의 압축펌프가 필요 없도록 하는 것에 있다.
본 발명의 또 다른 목적은, 2가지의 연료가 연소실 중심부의 동축 상에서 분사되도록 함으로써 연소 성능을 개선할 수 있도록 하는 것에 있다.
실린더 헤드의 연소실 내부로 연료를 분사하는 2단 연료 분사 밸브로서, 선단부의 축방향으로 이격된 지점에 동일한 중심축을 기준으로 방사상으로 형성되는 복수의 주연료 노즐홀 및 복수의 보조연료 노즐홀과, 주연료 입구에서부터 상기 주연료 노즐홀에 인접한 지점까지 형성되는 주연료 유입통로와, 상기 주연료 유입통로와 연통된 상태로 축방향으로 형성되는 제1 주연료 챔버와, 보조연료 입구에서부터 상기 보조연료 노즐홀에 인접한 지점까지 형성되는 보조연료 유입통로와, 보조연료 노즐홀에 인접한 또 다른 지점으로부터 형성되는 보조연료 배출통로를 구비하는 밸브 바디; 상기 밸브 바디의 제1 주연료 챔버 내에 축방향으로 미끄럼 이동가능하게 삽입되어 선단부와 밸브 바디 사이에 보조연료 노즐홀과 연통하는 보조연료 가압 챔버를 형성하고, 제1 주연료 챔버에 작용하는 주연료의 압력을 받아 전진하면서 보조연료 가압 챔버 안에 있는 보조연료를 가압하고 보조연료 분사 완료 시점 이후에는 상기 주연료 유입통로와 주연료 노즐홀을 연통시키는 플런저; 상기 플런저를 후퇴 방향으로 탄성가압하는 플런저 스프링; 상기 플런저의 중앙에 축방향으로 미끄럼 이동가능하게 삽입되고, 선단에는 상기 보조연료 노즐홀을 막는 니들 엔드가 형성되며, 보조연료 가압 챔버의 압력 상승에 의해 후퇴하여 보조연료 가압 챔버와 보조연료 노즐홀을 연통시키는 니들; 및 상기 니들을 전진 방향으로 탄성 가압하도록 상기 니들의 후단과 플런저 사이에 개재되는 니들 스프링을 포함한다.
상기 플런저의 선단부 외주에는 상기 주연료 유입통로의 말단과 연통하는 제2 주연료 챔버가 둘레를 따라 홈 모양으로 형성되며, 플런저가 후퇴되어 있을 때에는 상기 주연료 노즐홀을 막고 플런저가 전진한 때에는 주연료 유입통로와 주연료 노즐홀이 연통한다.
또한, 플런저의 외주에는, 상기 보조연료 유입통로의 말단과 연통되는 보조연료 유입 챔버와, 상기 보조연료 배출통로의 말단과 연통 되는 보조연료 배출 챔버가 형성되고; 상기 니들의 외주에는, 상기 보조연료 유입 챔버와 보조연료 가압 챔버를 연결하는 제1 종홈과, 상기 보조연료 가압 챔버와 보조연료 배출 챔버를 연결하는 제2 종홈이 형성된다. 상기 제1 종홈과 제2 종홈은 상기 플런저의 후퇴 또는 전진에 의해 상기 보조연료 가압 챔버와 연통 되거나 또는 막히게 된다.
이 경우, 상기 보조연료 유입 챔버는, 상기 플런저의 외주 둘레를 따라 홈 모양으로 형성되는 그루브와, 상기 그루브와 상기 니들의 제1 종홈을 연결하는 연통공으로 구성할 수 있고, 상기 보조연료 배출 챔버는, 상기 플런저의 외주 둘레를 따라 홈 모양으로 형성되는 그루브와, 상기 그루브와 상기 니들의 제2 종홈을 연결하는 연통공으로 구성할 수 있다.
밸브 바디는, 축방향으로 여러 마디로 나누어진 복수의 분할 바디의 조립체로 이루어질 수 있다.
이 경우, 밸브 바디는, 주연료 입구 및 제1 주연료 유입통로, 보조연료 입구 및 제1 보조연료유입통로가 형성되는 베이스 바디와; 상기 제1 주연료 챔버, 주연료 노즐홀 및 보조연료 노즐홀이 형성되어 상기 베이스 바디에 축방향으로 조립되고, 상기 제1 주연료 유입통로와 연결되는 제2 주연료 유입통로, 상기 제1 보조연료 유입통로와 상기 보조연료 가압 챔버를 연결하는 제2 보조연료 유입통로가 형성되는 노즐 바디로 구성할 수 있다.
다른 한편, 상기 밸브 바디는 후단으로부터 선단 방향으로 제1 바디, 제2 바디 및 제3 바디가 축방향으로 결합된 조립체로 구성하고, 상기 제1 바디의 선단부에는 상기 제2 바디 및 제3 바디를 감싸 고정하는 홀더를 결합할 수 있다.
본 발명의 2단 연료 분사 밸브는, 인젝션 펌프에서 압송되는 주연료의 압력을 플런저를 통해 보조연료 가압챔버에 전달하여 보조연료를 가압한다. 보조연료의 가압에 의해 니들을 슬라이드 밸브 방식으로 작동시켜 보조연료를 분사한다. 보조연료 분사 후 주연료 노즐홀을 개방하여 주연료를 분사함으로써 2단의 연료분사를 할 수 있도록 한 것이다. 또한, 주연료와 보조연료 통로 및 노즐홀을 하나의 바디에 2원화하여 배치함으로써 2종 연료를 분사할 수 있도록 한 것이다.
따라서, 본 발명에 의하면, 하나의 기계식 인젝터로 2단계의 연료 분사뿐만 아니라 2종의 연료 분사까지 할 수 있고 구조 또한 간단하다.
또한, 하나의 기계식 연료 분사 밸브로 주 노즐홀과 보조 노즐 홀을 선택적으로 개폐할 수 있고, 주연료의 압력을 받아 보조연료를 압축할 수 있으므로, 간단한 구조에 의해 보조연료를 압축할 수 있으며, 보조연료를 압축하기 위한 별도의 인젝션 펌프가 필요 없다.
또한, 하나의 바디에서 2가지의 연료가 연소실 중심부의 동축 상에서 방사상으로 분사됨으로써 연소 성능을 개선할 수 있다.
도 1은 본 발명에 따른 2단 연료 분사 밸브의 구조를 나타낸 단면도이다.
도 2는 도 1의 저면도로서, 주 노즐홀과 보조 노즐홀의 배치 상태를 나타내는 도면이다.
도 3은 도 1의 2단 연료 분사 밸브의 헤드 부분을 확대하여 나타낸 도면이다.
도 4는 도 3의 Ⅰ-Ⅰ선에 따른 단면도이다.
도 5는 도 3의 Ⅱ-Ⅱ 선에 따른 단면도이다.
도 6은 도 3의 Ⅲ-Ⅲ 선에 따른 단면도이다.
도 7은 도 4의 Ⅳ-Ⅳ 선에 따른 단면도로서, 연료 분사 밸브의 연료분사동작 개시 이전의 보조연료 순환 라인의 개통 상태를 나타낸 도면이다.
도 8은 본 발명에 따른 2단 연료 분사 밸브의 연료분사동작 개시 이전의 상태를 나타내는 도면이다.
도 9는 도 8의 상태 이후, 주연료의 압력에 의해 보조연료를 압축하기 시작한 초기의 상태를 나타내는 도면이다.
도 10은 도 9의 상태 이후, 보조연료가 분사되는 상태를 나타내는 도면이다.
도 11은 도 10의 상태 이후, 보조연료는 차단되고 주연료가 분사되는 상태를 나타내는 도면이다.
도 12는 주연료 분사 완료 후의 상태를 나타내는 도면이다.
도 13은 본 발명의 다른 실시예에 따른 2단 연료 분사 밸브의 구조를 나타내는 도면이다.
도 14는 도 13의 헤드 부분을 확대하여 나타낸 도면이다.
도 15는 보조연료 순환 라인을 따라 절단한 단면도이다.
도 16은 도 15의 헤드 부분을 확대하여 나타낸 도면이다.
도 17은 종래의 병렬식 트윈 인젝터를 나타낸 도면이다.
이하, 첨부 도면을 참조하면서 본 발명의 바람직한 실시예를 더욱 상세하게 설명한다.
도 1 및 도 2는 본 발명에 따른 2단 연료 분사 밸브를 나타내는 것으로서, 도 1에는 단면도가 도시되어 있고, 도 2에는 도 1의 저면도가 도시되어 있다.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 2단 연료 분사 밸브는, 선단부(도 1에서 아래쪽 단부)에 주연료 노즐홀(202)과 보조연료 노즐홀(204)이 형성된 인젝터 바디(100a)를 구비한다.
주연료 노즐홀(202)과 보조연료 노즐홀(204)은, 축방향으로 이격된 지점에서 동일한 중심축(X)을 기준으로 방사상으로 형성된다. 따라서, 2가지의 연료가 연소실 중심부의 동축 상에서 방사상으로 분사됨으로써 연소 성능을 높일 수 있다.
인젝터 바디(100a)에는, 주연료 입구(112)와 보조연료 입구(122)가 형성되어 있다. 주연료 입구(112)에서부터 주연료 노즐홀(202)에 인접한 지점까지는 주연료 유입통로(110, 210)가 형성된다. 주연료 유입통로(110, 210) 계통에는 주연료 유입통로(110, 210)와 연통하는 제1 주연료 챔버(206)가 축방향으로 형성된다. 또한, 보조연료 입구(122)에서부터 보조연료 노즐홀(204)에 인접한 지점까지는 보조연료 유입통로(120, 220)가 형성된다. 보조연료 노즐홀(204)에 인접한 또 다른 지점에는 보조연료 배출통로(230)(도 7 참조)가 형성된다.
이러한 밸브 바디(100a)의 제1 주연료 챔버(206) 내에는 플런저(300)가 축방향으로 미끄럼 이동가능하게 삽입되어 있다. 플런저(300)의 후단부의 제1 주연료 챔버(206)는 주연료의 압력이 작용하는 이른바 '압력 실린더'의 역할을 한다. 플런저(300)의 선단부에는 보조연료 노즐홀(204)과 연통하는 보조연료 가압 챔버(302)가 형성된다. 따라서, 제1 주연료 챔버(206)에 작용하는 주연료의 압력(인젝션 펌프로부터의 압력)이 플런저(300)의 후단부에 작용하면, 플런저(300)는 전진하여 보조연료 가압 챔버(302) 안에 있는 보조연료를 가압한다. 즉, 플런저(300)가 보조연료를 가압하는 인젝션 펌프 또는 연료펌프의 역할을 하게 된다. 따라서, 보조연료를 가압하는 별도의 장치가 필요없다. 이러한 플런저(300)는, 가압된 보조연료가 보조연료 노즐홀(204)을 통해 분사 완료된 시점 이후에 주연료 유입통로(110, 210)와 주연료 노즐홀(202)을 연통시켜 주연료가 분사되도록 한다.
플런저(200)는, 플런저 스프링(500)에 의해 후퇴 방향(후방)으로 탄성가압된다. 플런저 스프링(500)은 제1 주연료 챔버(206)에 작용하는 압력에 대항하게 된다. 제1 주연료 챔버(206)에 작용하는 압력이 플런저 스프링(500)의 복원력보다 크다면 플런저(200)는 선단 방향으로 전진한다. 반대로, 플런저 스프링(500)의 복원력이 제1 주연료 챔버(206)에 작용하는 압력보다 크다면 플런저(200)는 후단 방향으로 후퇴한다.
플런저(300)의 내부에는 니들(400)이 축방향으로 미끄럼 이동 가능하게 삽입되어 있다. 플런저(300)는 그의 선단에 보조연료 노즐홀(204)을 막는 니들 엔드(410)를 구비한다. 니들(400)이 보조연료 가압 챔버(302)의 압력을 받아 후퇴하면 보조연료 노즐홀(204)이 열려 보조연료 가압 챔버(302)에 있는 보조 연료가 분사된다.
상기 니들(400)은 니들 스프링(600)에 의해 전진 방향으로 탄성 가압된다. 즉, 니들 스프링(600)은 보조연료 가압 챔버(302)의 압력에 대항하여 보조연료 노즐홀(204)을 막는 방향으로 니들(400)을 탄성 가압한다. 플런저(300)에 의해 보조연료 가압챔버(302)의 내부에 있는 보조연료의 압력이 니들 스프링(600)이 지니는 탄성 가압력 이상으로 상승하면 니들(400)이 후퇴하게 되는 것이다.
밸브 바디(100a)는, 축방향으로 여러 마디로 나누어진 복수의 분할 바디의 조립체로 구성할 수 있다. 이는 밸브 바디(100a)의 기계가공과 부품들의 조립을 쉽게 하기 위해 바람직하다. 도 1에 도시된 실시예에서, 밸브 바디(100a)는 2개의 마디, 즉, 베이스 바디(100)와 노즐 바디(200)로 분할되어 축방향으로 결합된 형태를 취하고 있다. 밸브 바디(100a)가 도 1에 도시된 실시예처럼 반드시 2개의 마디(바디)로 나뉘어져야 하는 것은 아니며, 기계가공, 조립 등의 여건에 따라 3개 이상의 바디로 나누어 제작하고 결합하여도 좋다. 또한, 나누어진 분할 바디들(예; 베이스 바디(100)와 노즐 바디(200))의 크기, 길이, 분할 비율 등은 중요치 않다. 가공, 조립 및 기구적 동작이 원활히 이루어지는 범위 내에서 자유롭게 설계될 수 있다.
밸브 바디(100a)가 2개의 바디, 즉, 베이스 바디(100)와 노즐 바디(200)로 나누어짐에 따라 주연료 유입통로 계통 및 보조연료 유입통로 계통도 나누어져서 제작되어 조립 후에 연통 된다. 즉, 베이스 바디(100)에는 주연료 입구(112) 및 제1 주연료 유입통로(110), 보조연료 입구(122) 및 제1 보조연료 유입통로(120)가 형성된다. 노즐 바디(200)에는, 제1 주연료 챔버(206), 주연료 노즐홀(202) 및 보조연료 노즐홀(204)이 형성되는 한편, 제2 주연료 유입통로(210), 제2 보조연료 유입통로(220)가 형성된다.
도 3은 도 1의 2단 연료 분사 밸브의 헤드 부분을 확대하여 나타낸 도면이고, 도 4는 도 3의 Ⅰ-Ⅰ선에 따른 단면도이고, 도 5는 도 3의 Ⅱ-Ⅱ 선에 따른 단면도이고, 도 6은 도 3의 Ⅲ-Ⅲ 선에 따른 단면도이며, 도 7은 도 4의 Ⅳ-Ⅳ 선에 따른 단면도이다.
도 3에 확대하여 나타낸 바와 같이, 그리고 앞에서 이미 설명한 바와 같이, 노즐 바디(200)의 선단에는 주연료 노즐홀(202)과 보조연료 노즐홀(204)이 형성되어 있다. 또한, 플런저(300)의 선단과 노즐 바디(200) 사이의 공간이 보조연료 가압 챔버(302)를 이루고 있다. 플런저(300)에는 니들(400)이 삽입되어 있고, 니들(400)의 선단 부분은 보조연료 가압챔버(302) 내부에 들어가서 그의 니들 엔드(410)를 통해 보조연료 노즐홀(204)을 막고 있다. 니들(400)은 제작의 편의를 위해 2개의 바디, 즉 제1 니들 바디(400a)와 제2 니들 바디(400b)로 나뉘어져 축방향으로 결합되어 있다.
그리고 플런저(300)의 선단부 외주에는 상기 주연료 유입통로(110, 210)의 말단과 연통하는 제2 주연료 챔버(310)가 둘레를 따라 홈 모양으로 형성된다. 플런저(300)가 후퇴되어 있을 때에는 주연료 노즐홀(202)이 폐쇄되고, 플런저(300)가 전진한 때에는 주연료 유입통로(110, 210)와 주연료 노즐홀(202)이 제2 주연료 챔버(310) 내에 들어와 연결되기 때문에 주연료가 분사된다.
또한, 플런저(300)의 중간 부분의 외주에는, 보조연료 유입통로(120, 220)의 말단과 연통되는 보조연료 유입 챔버(320) 및 보조연료 배출통로(230)(도 7 참조)의 말단과 연통되는 보조연료 배출 챔버(330)가 형성된다.
그리고 니들(400)의 외주에는 제1 종홈(420)과 제2 종홈(430)이 형성된다. 제1 종홈(420)은 보조연료 유입 챔버(320)와 보조연료 가압 챔버(302)를 연결하는 역할을 한다. 제2 종홈(430)은 보조연료 가압 챔버(302)와 보조연료 배출 챔버(330)를 연결하는 역할을 한다. 제1 종홈(420)과 제2 종홈(430)은 플런저(300)의 후퇴 또는 전진에 의해 보조연료 가압 챔버(302)와 연통되거나 또는 막히게 된다.
도 3 및 도 4에 보인 바와 같이, 보조연료 유입 챔버(320)는, 플런저(300)의 외주 둘레를 따라 홈 모양으로 형성되는 그루브(320a)와, 그루브(320a)와 니들(400)의 제1 종홈(420)을 연결하는 연통공(320b)로 이루어진다. 따라서, 보조연료 유입통로(120, 220)를 통해 들어온 보조 연료는 플런저(300) 외주에 형성된 그루브(320a)에 채워진 후, 연통공(320b)을 통해 제1 종홈(420)으로 들어가고 제2 종홈(420)에서 보조연료 가압챔버(302)로 들어간다.
또한, 도 3 및 도 5에 보인 바와 같이, 보조연료 배출 챔버(330)는, 플런저(300)의 외주 둘레를 따라 홈 모양으로 형성되는 그루브(330a)와, 그루브(330a)와 니들(400)의 제2 종홈(430)을 연결하는 연통공(330b)으로 이루어진다. 따라서, 보조연료 가압챔버(302)로 들어온 보조연료는 제2 종홈(430)을 따라나온 다음 연통공(330b)과 그루브(330a)를 통과하여 보조연료 배출통로(230)를 통해 배출된다.
다음으로, 도 3 및 도 6에 보인 바와 같이, 그리고 전술한 바와 같이, 제2 주연료 챔버(310)는, 플런저(300)의 선단부 외주에 둘레를 따라 홈 모양으로 형성된다. 주연료 유입통로(110, 210)를 통해 유입된 주연료는 제2 주연료 챔버(310)의 둘레에 체류하다가 플런저(300)가 전진하면 주연료 노즐홀(202)과 만나게 되어 주연료를 분사하게 된다.
이와 같이 이루어진 본 발명의 2단 연료 분사 밸브는, 인젝션 펌프에서 압송되는 주연료의 압력을 플런저(300)를 통해 보조연료 가압챔버(302)에 전달하여 보조연료를 가압하고, 보조연료의 가압에 의해 니들(400)을 슬라이드 밸브 방식으로 작동시켜 보조연료를 분사하며, 보조연료 분사 후 주연료 노즐홀(202)을 개방하여 주연료를 분사함으로써 2단의 연료분사를 할 수 있도록 한 것이다. 또한, 주연료와 보조연료 통로 및 노즐홀을 하나의 바디에 2원화하여 배치함으로써 2종 연료를 분사할 수 있도록 한 것이다.
이하, 도 7 내지 도 12를 참조하면서 본 발명에 따른 연료 분사 밸브의 분사 과정을 자세하게 살펴본다.
도 7은 도 4의 Ⅳ-Ⅳ 선에 따른 단면도로서, 연료 분사 밸브의 연료분사동작 개시 이전의 보조연료 순환 라인의 개통 상태를 나타낸 도면이다. 연료분사 개시 전의 보조연료 계통은, 플런저(300) 및 니들(400)에 의해 순환 상태를 유지하고 주연료 계통은 차단된다. 즉, 니들(400)의 엔드(410)는 보조연료 노즐홀(204)을 폐쇄하고 있고, 플런저(300)의 선단면은 니들(400)의 제1 종홈(420) 및 제2 종홈(430)을 벗어나 위치하고 있다. 따라서, 보조연료 유입통로(220), 보조연료 유입챔버(320) 및 제1 종홈(420)을 통해 보조연료 가압챔버(302)에 들어온 보조연료는 제2 종홈(420)으로 빠져나가 보조연료 배출챔버(330)와 보조연료 배출통로(230)를 통해 배출된다. 보조연료의 순환으로 노즐은 냉각 효과를 가지며, 노즐의 열부하 및 탄소 침착(carbon deposit) 개선 효과가 있다.
도 8은 도 7의 2단 연료 분사 밸브의 연료분사동작 개시 이전의 상태를 나타내는 도면이다. 주연료 노즐홀(202)은 플런저(300)에 의해 막혀있다. 따라서, 주연료 유입통로(210)를 통해 들어온 주연료는 제2 주연료 챔버(310) 내에 체류하게 된다.
다시 도 1을 참조하면, 상기 도 7 및 도 8의 상태에서 주연료 인젝션 펌프에서 주연료가 압송되어 오면, 주연료는 인젝터 바디(100a)의 주연료 입구(112), 주연료 유입통로(110, 210) 및 제1 주연료 챔버(206)에 채워진다. 인젝션 펌프에 의해 가압된 주연료의 압력은 제1 주연료 챔버(206)에서 플런저(300)의 후단면(도면상 상단면)에 작용하게 된다. 그리고 플런저(300)에 작용하는 주연료의 압력이 플런저 스프링(500)의 탄성력을 넘어서면 플런저(300)는 플런저 스프링(500)을 압축시키면서 전진하게 된다.
도 9에는 이렇게 하여 플런저(300)가 약간 전진한 상태를 나타낸다. 제1 주연료 챔버(206)에서 작용하는 주연료의 압력에 의해 플런저(300)가 전진하여, 그의 선단면이 니들(400)의 제1, 2 종홈(420, 430)을 지나치면 보조연료 순환라인이 차단되고, 보조연료 가압챔버(302) 내에 있는 보조연료가 압력을 받게 된다. 보조연료의 가압력은 니들(400)에 작용한다. 플런저(300)가 전진하는 것에 의한 보조연료의 가압력이 니들 스프링(600)(도 1 참조)의 탄성력을 넘어서면, 니들(400)은 후퇴하게 된다.
도 10은 니들(400)이 후퇴한 상태를 나타낸다. 니들(400)이 후퇴하면 니들 엔드(410)가 물러나서 보조연료 노즐홀(204)을 개방시킴으로써 보조연료의 분사가 이루어진다. 보조연료의 분사가 진행되는 것에 비례하여 보조연료 가압챔버(302)의 압력은 낮아진다. 보조연료 가압챔버(302)의 압력이 니들 스프링(600)의 복귀력보다 낮아지면, 니들(400)이 다시 전진하여 보조연료 노즐홀(204)을 폐쇄하게 된다.
도 11은 이러한 상태를 나타낸다. 즉, 보조연료 가압챔버(302)의 압력이 낮아져서 니들(400)이 전진할 때에는, 플런저(300)도 계속하여 전진하게 된다. 니들(400)이 전진하여 보조연료 노즐홀(204)을 폐쇄하자마자, 플런저(300)의 전진에 의해 제2 주연료 챔버(310)와 주연료 노즐홀(202)이 서로 만나게 됨으로써 연소실에는 주연료가 분사된다.
도 12는 주연료 분사 완료 후의 상태를 나타낸다. 인젝션 펌프의 가압 작용이 끝나는 시점에서 주연료의 분사가 종료한다. 인젝션 펌프의 가압작용의 종료와 주연료의 분사종료에 의해 제1 주연료 챔버(206)의 압력이 낮아지면 플런저(300)가 복귀(후퇴)된다. 플런저(300)의 후퇴에 의해 주연료 노즐홀(202)은 다시 폐쇄되고 보조연료 가압챔버(302)는 다시 개방됨으로써 분사개시 이전의 상태로 복귀한다.
도 13 내지 도 16은 본 발명의 다른 실시예에 따른 2단 연료 분사 밸브를 나타내는 것으로서, 도 13은 전체 단면도이고, 도 14는 도 13의 헤드 부분을 확대하여 나타낸 도면이고, 도 15는 보조연료 순환 라인을 따라 절단한 단면도이며, 도 16은 도 15의 헤드 부분을 확대하여 나타낸 도면이다.
도 13 내지 도 16에 도시된 2단 연료 분사 밸브는, 앞의 도 1 내지 도 12에서 설명한 분사 밸브에 비해, 인젝터 바디의 분할 개수 및 모양, 주연료 라인 및 보조 연료 라인의 형성 형태, 플런저 및 니들의 모양 등이 약간 다르다. 그러나 본 실시예에 따른 분사 밸브는, 전술한 실시예에 따른 분사 밸브의 기술적 사상 안에서 다소 변형한 정도의 분사 밸브를 예시하고 있다.
앞에서 이미 설명한 바와 같이, 밸브 바디는 축방향으로 여러 개의 분할 바디로 나누어 제작한 다음, 제작된 분할 바디들을 축방향으로 조립한 형태로 구성할 수 있다. 본 실시예는 이러한 기술적 사상의 일례를 보여준다.
즉, 본 발명에 따른 밸브 바디(3000)는, 도 13 및 도 14에 예시한 실시예와 같이, 후단으로부터 선단 방향으로 제1 바디(3100), 제2 바디(3200) 및 제3 바디(3300)가 축방향으로 결합된 조립체로 이루어질 수 있다. 그리고 제1 바디(3100)의 선단부에는 홀더(3700)가 결합되어 제2 바디(3200) 및 제3 바디(3300)를 감싸 고정한다.
주연료 유입통로는, 제1 바디(3100)에 형성되는 주연료 입구로부터 연장되는 제1 주연료 유입통로(3110) 및 제2 주연료 유입통로(3120), 제2 바디(3200) 및 제3 바디(3300)에 형성되는 제3 및 제4 주연료 유입통로(3210, 3310)로 이루어져 있다. 또한, 제1 주연료 유입통로(3110)와 연결된 제1 주연료 챔버(3206)가 형성되어 있다.
보조연료 유입통로는, 제1 바디(3100) 및 제2 바디(3200)에 형성되는 제1 및 제2 보조연료 유입통로(3130, 3220)로 이루어져 있다.
주연료 노즐홀(3302) 및 보조연료 노즐홀(3304)은 모두 제3 바디(3300)에 형성되어 있다. 플런저(3400)는 제1 주연료 챔버(3206) 내에 설치되고, 제2 바디(3200)를 관통하여 제3 바디(3300)까지 연장되며, 선단부에 의해 보조연료 가압챔버(3306)를 설정한다. 플런저(3400)는 플런저 스프링(3600)에 의해 후단 방향으로 탄성가압된다.
플런저(3400)의 내부에는 니들(3500)이 설치된다. 니들(3500)의 선단부를 이루는 니들 엔드(3510)는 보조연료 노즐홀(3304)을 폐쇄하고 있다. 니들(3500)은 니들 스프링(3650)에 의해 선단 방향으로 탄성가압된다.
제2 주연료 챔버(3410)도, 전술한 실시예와 마찬가지로, 플런저(3400)의 외주 둘레를 따라 홈 형태로 형성되어 있다.
마찬가지로, 보조연료 유입챔버(3420) 및 보조연료 배출챔버(3430)도 플런저(3400)의 외주에 그루브 및 연통공의 형태로 형성되어 있다.
또한, 니들(3500)에는 제1 종홈(3520) 및 제2 종홈(3530)이 형성되어 있다.
도 15 및 도 16은 다른 방향에서 절단한 단면도로서, 보조 연료배출 통로 계통을 설명하기 위한 도면이다. 보조연료 배출 통로는, 제1, 2 바디(3100, 3200)에 각각 제1, 2 배출통로(3140, 3230)가 형성된 형태를 이루고 있다. 제2 배출통로(3230)는 보조연료 배출챔버(3430)에 연통된다.
이와 같이, 도 13 내지 도 16에 도시된 분사 밸브는, 세부적 구조에 있어서만 앞선 실시예의 분사밸브와 약간의 차이가 있지만, 앞선 실시예에 따른 분사밸브와 동일한 기술적 사상에 기초한 구성으로 이루어져 있고, 연료 분사 작용과 과정도 거의 동일하므로 상세한 설명은 생략한다.
이상에서는 첨부 도면에 도시된 본 발명의 구체적인 실시예들을 상세하게 설명하였으나, 이는 본 발명의 바람직한 형태에 대한 예시에 불과한 것이며, 본 발명의 보호 범위가 이들에 한정되는 것은 아니다. 또한, 이상과 같은 본 발명의 실시예는 본 발명의 기술적 사상 내에서 당해 분야에 통상의 지식을 가진 자에 의해 다양한 변형 및 균등한 다른 실시가 가능한 것이며, 이러한 변형 및 균등한 다른 실시예들은 당연히 본 발명의 첨부된 특허청구범위에 속한다.
본 발명에 의하면, 하나의 기계식 인젝터로 2단계의 연료 분사뿐만 아니라 2종의 연료 분사까지 할 수 있고 구조 또한 간단하다.
또한, 하나의 기계식 연료 분사 밸브로 주 노즐홀과 보조 노즐 홀을 선택적으로 개폐할 수 있고, 주연료의 압력을 받아 보조연료를 압축할 수 있으므로, 간단한 구조에 의해 보조연료를 압축할 수 있으며, 보조연료를 압축하기 위한 별도의 인젝션 펌프가 필요 없다.
또한, 하나의 바디에서 2가지의 연료가 연소실 중심부의 동축 상에서 방사상으로 분사됨으로써 연소 성능을 개선할 수 있다.

Claims (7)

  1. 실린더 헤드의 연소실 내부로 연료를 분사하는 2단 연료 분사 밸브로서,
    선단부의 축방향으로 이격된 지점에 동일한 중심축을 기준으로 방사상으로 형성되는 복수의 주연료 노즐홀 및 복수의 보조연료 노즐홀과, 주연료 입구에서부터 상기 주연료 노즐홀에 인접한 지점까지 형성되는 주연료 유입통로와, 상기 주연료 유입통로와 연통된 상태로 축방향으로 형성되는 제1 주연료 챔버와, 보조연료 입구에서부터 상기 보조연료 노즐홀에 인접한 지점까지 형성되는 보조연료 유입통로와, 보조연료 노즐홀에 인접한 또 다른 지점으로부터 형성되는 보조연료 배출통로를 구비하는 밸브 바디;
    상기 밸브 바디의 제1 주연료 챔버 내에 축방향으로 미끄럼 이동가능하게 삽입되어 선단부와 밸브 바디 사이에 보조연료 노즐홀과 연통하는 보조연료 가압 챔버를 형성하고, 제1 주연료 챔버에 작용하는 주연료의 압력을 받아 전진하면서 보조연료 가압 챔버 안에 있는 보조연료를 가압하고 보조연료 분사 완료 시점 이후에는 상기 주연료 유입통로와 주연료 노즐홀을 연통시키는 플런저;
    상기 플런저를 후퇴 방향으로 탄성가압하는 플런저 스프링;
    상기 플런저의 중앙에 축방향으로 미끄럼 이동가능하게 삽입되고, 선단에는 상기 보조연료 노즐홀을 막는 니들 엔드가 형성되며, 보조연료 가압 챔버의 압력 상승에 의해 후퇴하여 보조연료 가압 챔버와 보조연료 노즐홀을 연통시키는 니들; 및
    상기 니들을 전진 방향으로 탄성가압하도록 상기 니들의 후단과 플런저 사이에 개재되는 니들 스프링을 포함하는 것을 특징으로 하는 2단 연료 분사 밸브.
  2. 제1항에 있어서,
    상기 플런저의 선단부 외주에는 상기 주연료 유입통로의 말단과 연통하는 제2 주연료 챔버가 둘레를 따라 홈 모양으로 형성되며, 플런저가 후퇴되어 있을 때에는 상기 주연료 노즐홀을 막고 플런저가 전진한 때에는 주연료 유입통로와 주연료 노즐홀이 연통하는 것을 특징으로 하는 2단 연료 분사 밸브.
  3. 제1항에 있어서,
    상기 플런저의 외주에는, 상기 보조연료 유입통로의 말단과 연통되는 보조연료 유입 챔버와, 상기 보조연료 배출통로의 말단과 연통되는 보조연료 배출 챔버가 형성되고,
    상기 니들의 외주에는, 상기 보조연료 유입 챔버와 보조연료 가압 챔버를 연결하는 제1 종홈과, 상기 보조연료 가압 챔버와 보조연료 배출 챔버를 연결하는 제2 종홈이 형성되며, 상기 제1 종홈과 제2 종홈은 상기 플런저의 후퇴 또는 전진에 의해 상기 보조연료 가압 챔버와 연통되거나 또는 막히는 것을 특징으로 하는 2단 연료 분사 밸브.
  4. 제3항에 있어서,
    상기 보조연료 유입 챔버는, 상기 플런저의 외주 둘레를 따라 홈 모양으로 형성되는 그루브와, 상기 그루브와 상기 니들의 제1 종홈을 연결하는 연통공으로 이루어지고,
    상기 보조연료 배출 챔버는, 상기 플런저의 외주 둘레를 따라 홈 모양으로 형성되는 그루브와, 상기 그루브와 상기 니들의 제2 종홈을 연결하는 연통공으로 이루어지는 것을 특징으로 하는 2단 연료 분사 밸브.
  5. 제1항에 있어서,
    상기 밸브 바디는,
    축방향으로 여러 마디로 나누어진 복수의 분할 바디의 조립체로 이루어지는 것을 특징으로 하는 2단 연료 분사 밸브.
  6. 제1항에 있어서,
    상기 밸브 바디는,
    주연료 입구 및 제1 주연료 유입통로, 보조연료 입구 및 제1 보조연료유입통로가 형성되는 베이스 바디와,
    상기 제1 주연료 챔버, 주연료 노즐홀 및 보조연료 노즐홀이 형성되어 상기 베이스 바디에 축방향으로 조립되고, 상기 제1 주연료 유입통로와 연결되는 제2 주연료 유입통로, 상기 제1 보조연료 유입통로와 상기 보조연료 가압 챔버를 연결하는 제2 보조연료 유입통로가 형성되는 노즐 바디로 이루어지는 것을 특징으로 하는 2단 연료 분사 밸브.
  7. 제1항에 있어서,
    상기 밸브 바디는, 후단으로부터 선단 방향으로 제1 바디, 제2 바디 및 제3 바디가 축방향으로 결합된 조립체로 이루어지고, 상기 제1 바디의 선단부에는 상기 제2 바디 및 제3 바디를 감싸 고정하는 홀더가 결합되는 것을 특징으로 하는 2단 연료 분사 밸브.
PCT/KR2011/005879 2010-08-11 2011-08-11 2단 연료 분사 밸브 WO2012020999A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180049053.7A CN103168163B (zh) 2010-08-11 2011-08-11 两阶段燃料喷射阀
JP2013524043A JP5646754B2 (ja) 2010-08-11 2011-08-11 2段式燃料噴射バルブ
EP11816615.6A EP2604847B1 (en) 2010-08-11 2011-08-11 Two-stage fuel injection valve
US13/816,179 US9188093B2 (en) 2010-08-11 2011-08-11 Two-stage fuel injection valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100077396A KR20120015132A (ko) 2010-08-11 2010-08-11 2단 연료 분사 밸브
KR10-2010-0077396 2010-08-11

Publications (2)

Publication Number Publication Date
WO2012020999A2 true WO2012020999A2 (ko) 2012-02-16
WO2012020999A3 WO2012020999A3 (ko) 2012-05-03

Family

ID=45568055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005879 WO2012020999A2 (ko) 2010-08-11 2011-08-11 2단 연료 분사 밸브

Country Status (6)

Country Link
US (1) US9188093B2 (ko)
EP (1) EP2604847B1 (ko)
JP (1) JP5646754B2 (ko)
KR (1) KR20120015132A (ko)
CN (1) CN103168163B (ko)
WO (1) WO2012020999A2 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157384B2 (en) * 2013-01-15 2015-10-13 Caterpillar Inc. In-cylinder dynamic gas blending fuel injector and dual fuel engine
DK178149B1 (en) 2013-10-30 2015-06-29 Man Diesel & Turbo Deutschland A Fuel Valve for Pilot Oil Injection and for Injecting Gaseous Fuel into the Combustion Chamber of a Self-Igniting Internal Combustion Engine
WO2015149039A2 (en) * 2014-03-28 2015-10-01 Quantlogic Corporation A fuel injector flexible for single and dual fuel injection
DK178692B1 (en) * 2015-04-22 2016-11-21 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A fuel valve for a large two-stroke self-igniting internal combustion engine
GB2540532A (en) * 2015-06-05 2017-01-25 Delphi Int Operations Luxembourg Sarl Injector
DE102015218257A1 (de) * 2015-09-23 2017-03-23 Robert Bosch Gmbh Vorrichtung zum Dosieren von Kraftstoffen
CN105484916B (zh) * 2016-01-13 2018-05-08 吉林大学 一种柴油机双层喷孔喷油器
US11260407B2 (en) 2016-08-30 2022-03-01 Ford Global Technologies, Llc Methods and systems for a fuel injector assembly
US10927739B2 (en) * 2016-12-23 2021-02-23 Cummins Emission Solutions Inc. Injector including swirl device
CN108798914A (zh) * 2018-03-15 2018-11-13 江苏科技大学 一种双燃料发动机额定工况NOx排放及爆震燃烧控制策略
CN109826738B (zh) * 2019-02-26 2020-10-23 一汽解放汽车有限公司 一种双燃料喷射器
DK180390B1 (en) 2019-06-11 2021-03-05 Hans Jensen Lubricators As Injector for several oils, large engine with such an injector, method of lubrication and use thereof
CN114135429A (zh) * 2021-11-24 2022-03-04 中船动力研究院有限公司 一种双燃料喷射器及船舶

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE849325C (de) * 1940-09-19 1952-09-15 Bosch Gmbh Robert Einspritzventil fuer Brennkraftmaschinen
JPS6193265A (ja) * 1984-10-13 1986-05-12 Diesel Kiki Co Ltd 多段噴射ノズル
JPH0482362U (ko) * 1990-11-29 1992-07-17
DE59209671D1 (de) * 1991-12-10 1999-05-06 New Sulzer Diesel France Sa Brennstoffeinspritzventil für eine Hubkolbenbrennkraftmaschine für wahlweisen Betrieb mit Dieselöl oder mit einem gasförmigen Brennstoff
JPH0610787A (ja) * 1992-06-26 1994-01-18 Toyota Motor Corp 複燃料噴射弁
US5429309A (en) * 1994-05-06 1995-07-04 Caterpillar Inc. Fuel injector having trapped fluid volume means for assisting check valve closure
US5458292A (en) * 1994-05-16 1995-10-17 General Electric Company Two-stage fuel injection nozzle
US6761325B2 (en) * 1998-09-16 2004-07-13 Westport Research Inc. Dual fuel injection valve and method of operating a dual fuel injection valve
US6601566B2 (en) * 2001-07-11 2003-08-05 Caterpillar Inc Fuel injector with directly controlled dual concentric check and engine using same
US6769635B2 (en) * 2002-09-25 2004-08-03 Caterpillar Inc Mixed mode fuel injector with individually moveable needle valve members
JP2006183468A (ja) 2004-12-24 2006-07-13 Denso Corp 燃料噴射装置
DE102007028091A1 (de) * 2007-06-20 2008-12-24 Daimler Ag Kraftstoffversorgungssystem
JP2009121402A (ja) * 2007-11-16 2009-06-04 Toyota Motor Corp 可変噴孔ノズル式の燃料噴射弁
JP2009275646A (ja) * 2008-05-16 2009-11-26 Denso Corp 燃料噴射ノズル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2604847A4

Also Published As

Publication number Publication date
EP2604847A4 (en) 2016-01-27
US20130200174A1 (en) 2013-08-08
JP2013533433A (ja) 2013-08-22
EP2604847B1 (en) 2017-03-15
WO2012020999A3 (ko) 2012-05-03
JP5646754B2 (ja) 2014-12-24
US9188093B2 (en) 2015-11-17
CN103168163B (zh) 2015-06-03
EP2604847A2 (en) 2013-06-19
KR20120015132A (ko) 2012-02-21
CN103168163A (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2012020999A2 (ko) 2단 연료 분사 밸브
CA2339504C (en) Gaseous and liquid fuel injector
WO2012002620A1 (ko) 펌핑 기능 노즐을 가진 디젤엔진과 가스엔진용 이중 연료분사밸브
WO2011155670A1 (ko) 디젤엔진과 가스엔진용 하이브리드형 노즐을 구비한 이중 연료분사밸브장치
US7444980B2 (en) Fuel injector nozzle for an internal combustion engine
US7568633B2 (en) Digital fuel injector, injection and hydraulic valve actuation module and engine and high pressure pump methods and apparatus
JP4828385B2 (ja) 内燃機関におけるnox排出低減方法およびそれに適する内燃機関
EP0957245A2 (en) Engine using liquid and/or gaseous fuel and method of operating the same
US4401072A (en) Combustion chamber of a compression-ignition type internal combustion engine
US20180166862A1 (en) Bougie d'allumage a electrode-navette
EP2837802A1 (en) Dual-fuel diesel engine
DE102017222084A1 (de) Fremdgezündete Hubkolben-Brennkraftmaschine
EP0266610B1 (en) Fuel system for a two-cycle internal combustion engine
CN109826738B (zh) 一种双燃料喷射器
WO2011132832A1 (ko) 디젤엔진용 2 솔레노이드밸브 릴레이 2단 연료분사 밸브
WO2012057530A2 (ko) 내연기관용 연료분사밸브
WO2020018263A1 (en) Twin outlet check liquid fuel injector for dual fuel system
WO2005080781A8 (en) Recirculation system for motor
CN113153515A (zh) 一种改善燃烧和降低热负荷的预燃室装置及发动机
CN114962097B (zh) 一种发动机喷射***和发动机
CN214616786U (zh) 一种进气管气体降温的预燃室装置及发动机
KR102599343B1 (ko) 대형 터보차지식 2행정 유니플로 크로스헤드 이중 연료내연 엔진
CN214616747U (zh) 一种进气管气体扫气的预燃室装置及发动机
CA1054004A (en) Internal combustion engine
CN112112731A (zh) 一种双轴双活塞双工质二冲程内燃机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816615

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013524043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011816615

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011816615

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13816179

Country of ref document: US