WO2012017982A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2012017982A1
WO2012017982A1 PCT/JP2011/067588 JP2011067588W WO2012017982A1 WO 2012017982 A1 WO2012017982 A1 WO 2012017982A1 JP 2011067588 W JP2011067588 W JP 2011067588W WO 2012017982 A1 WO2012017982 A1 WO 2012017982A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
disturbance
lateral acceleration
control
vehicle
Prior art date
Application number
PCT/JP2011/067588
Other languages
French (fr)
Japanese (ja)
Inventor
林 弘毅
裕司 高倉
山本 伸司
Original Assignee
株式会社エクォス・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクォス・リサーチ filed Critical 株式会社エクォス・リサーチ
Priority to CN201180036943.4A priority Critical patent/CN103038126B/en
Publication of WO2012017982A1 publication Critical patent/WO2012017982A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/02Attaching arms to sprung part of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/45Rolling frame vehicles

Definitions

  • the present invention relates to a vehicle having at least a pair of left and right wheels.
  • Patent Document 1 a technique for improving the stability of the vehicle during turning by tilting the vehicle body in the lateral direction has been proposed (for example, see Patent Document 1).
  • the vehicle body in order to improve the turning performance, the vehicle body can be tilted inward in the turning direction.
  • a large lateral disturbance is caused by a road step, a cross wind, etc.
  • the vehicle body tilt control cannot be performed properly, the vehicle becomes unstable, and the occupant may feel uncomfortable or uneasy.
  • the present invention solves the above-mentioned problems of conventional vehicles and, when subjected to a disturbance in the tilt direction, extracts a change due to the disturbance out of a change in the tilt angle of the vehicle body, and responds to the change due to the disturbance.
  • By controlling the tilt angle of the vehicle body by adding a control value it is possible to improve the turning performance and to realize a stable driving state even when subjected to disturbance in the tilt direction.
  • the purpose is to provide a high vehicle.
  • a vehicle body including a steering unit and a drive unit coupled to each other, and a wheel rotatably attached to the steering unit, the steering wheel steering the vehicle body, A wheel rotatably attached to the driving unit, the driving wheel driving the vehicle body, a tilting actuator device for tilting the steering unit or the driving unit in a turning direction, and a lateral acceleration acting on the vehicle body
  • a control device for controlling the tilt of the vehicle body by controlling the tilt actuator device, and the control device receives a disturbance in the tilt direction of the vehicle body.
  • a change due to disturbance is extracted, and a control value corresponding to the extracted change due to disturbance is added to control the inclination of the vehicle body.
  • the tilt angle of the vehicle body can be appropriately controlled even when subjected to a disturbance in the tilt direction, and the rider does not feel uneasy, and the ride is comfortable and stable.
  • a running state can be realized.
  • the tilt angle of the vehicle body can be appropriately controlled while suppressing the influence of disturbance.
  • the inclination angle of the vehicle body can be controlled so that the centrifugal force and the gravity are balanced, and even when the change in the lateral acceleration is large, the control can be performed. There is no delay.
  • the influence on the inclination control due to the elastic deformation of the member can be removed, and even when subjected to a large disturbance in the inclination direction, resonance does not occur.
  • the inclination angle of the vehicle body can be appropriately controlled, and the stability of the vehicle body can be maintained.
  • FIG. 1 is a right side view showing the configuration of the vehicle in the first embodiment of the present invention
  • FIG. 2 is a diagram showing the configuration of the link mechanism of the vehicle in the first embodiment of the present invention
  • FIG. It is a rear view which shows the structure of the vehicle in the 1st Embodiment.
  • 3A is a diagram showing a state where the vehicle body is standing upright
  • FIG. 3B is a diagram showing a state where the vehicle body is inclined.
  • reference numeral 10 denotes a vehicle according to the present embodiment, which includes a main body 20 as a vehicle body drive unit, a riding unit 11 as a steering unit on which an occupant gets on and steer, and a center in the width direction in front of the vehicle body.
  • the wheel 12F is a front wheel disposed as a steering wheel
  • the left wheel 12L and the right wheel 12R are drive wheels disposed rearward as rear wheels.
  • the vehicle 10 operates as a lean mechanism for leaning the vehicle body from side to side, that is, as a lean mechanism, that is, a vehicle body tilt mechanism, supporting the left and right wheels 12L and 12R, and the link mechanism 30.
  • a link motor 25 as a tilt actuator device.
  • the vehicle 10 may be a three-wheeled vehicle with two front wheels on the left and right and one wheel on the rear, or may be a four-wheeled vehicle with two wheels on the left and right. As shown in the figure, a case will be described in which the front wheel is a single wheel and the rear wheel is a left and right tricycle.
  • the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction).
  • the left and right wheels 12L and 12R are upright with respect to the road surface 18, that is, the camber angle is 0 degree.
  • the left and right wheels 12L and 12R are inclined in the right direction with respect to the road surface 18, that is, a camber angle is given.
  • the link mechanism 30 includes a left vertical link unit 33L that supports a left wheel 12L and a left rotation driving device 51L including an electric motor that applies driving force to the wheel 12L, a right wheel 12R, and the wheel 12R.
  • a right vertical link unit 33R that supports a right rotation drive device 51R composed of an electric motor or the like that applies a driving force to an upper side, and an upper horizontal link unit 31U that connects the upper ends of the left and right vertical link units 33L and 33R;
  • the lower horizontal link unit 31D that connects the lower ends of the left and right vertical link units 33L and 33R, and the central vertical member 21 that has an upper end fixed to the main body 20 and extends vertically.
  • the left and right vertical link units 33L and 33R and the upper and lower horizontal link units 31U and 31D are rotatably connected. Further, the upper and lower horizontal link units 31U and 31D are rotatably connected to the central vertical member 21 at the center thereof.
  • the left and right wheels 12L and 12R, the left and right rotational drive devices 51L and 51R, the left and right vertical link units 33L and 33R, and the upper and lower horizontal link units 31U and 31D are described in an integrated manner, The rotation drive device 51, the vertical link unit 33, and the horizontal link unit 31 will be described.
  • the rotary drive device 51 as a drive actuator device is a so-called in-wheel motor, and a body as a stator is fixed to the vertical link unit 33 and is a rotor attached to the body so as to be rotatable.
  • a rotating shaft is connected to the shaft of the wheel 12, and the wheel 12 is rotated by the rotation of the rotating shaft.
  • the rotational drive device 51 may be a motor other than an in-wheel motor.
  • the link motor 25 is a rotary electric actuator including an electric motor or the like, and includes a cylindrical body as a stator and a rotating shaft as a rotor rotatably attached to the body.
  • the body is fixed to the main body portion 20 via the mounting flange 22, and the rotating shaft is fixed to the lateral link unit 31 ⁇ / b> U on the upper side of the link mechanism 30.
  • the rotation axis of the link motor 25 functions as an inclination axis for inclining the main body 20 and is coaxial with the rotation axis of the connecting portion between the central vertical member 21 and the upper horizontal link unit 31U.
  • the link motor 25 When the link motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20, The link mechanism 30 operates, that is, bends and stretches. Thereby, the main-body part 20 can be inclined. Note that the rotation axis of the link motor 25 may be fixed to the main body 20 and the central vertical member 21, and the body may be fixed to the upper horizontal link unit 31U.
  • the link motor 25 includes a link angle sensor 25a that detects a change in the link angle of the link mechanism 30.
  • the link angle sensor 25a is a rotation angle sensor that detects the rotation angle of the rotation shaft with respect to the body in the link motor 25, and includes, for example, a resolver, an encoder, and the like.
  • the link motor 25 when the link motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20. Therefore, a change in the angle of the upper horizontal link unit 31U relative to the central vertical member 21, that is, a change in the link angle can be detected by detecting the rotation angle of the rotation shaft with respect to the body.
  • the link motor 25 includes a lock mechanism (not shown) that fixes the rotation shaft to the body so as not to rotate.
  • the lock mechanism is a mechanical mechanism, and preferably does not consume electric power while the rotation shaft is fixed to the body so as not to rotate.
  • the lock mechanism can fix the rotation shaft so as not to rotate at a predetermined angle with respect to the body.
  • the boarding part 11 is connected to the front end of the main body part 20 via a connecting part (not shown).
  • the connecting part may have a function of connecting the riding part 11 and the main body part 20 so as to be relatively displaceable in a predetermined direction.
  • the boarding unit 11 includes a seat 11a, a footrest 11b, and a windbreak unit 11c.
  • the seat 11 a is a part for a passenger to sit while the vehicle 10 is traveling.
  • the footrest 11b is a part for supporting the occupant's foot, and is disposed on the front side (right side in FIG. 1) and below the seat 11a.
  • a battery device (not shown) is arranged behind or below the boarding unit 11 or in the main body unit 20.
  • the battery device is an energy supply source for the rotation drive device 51 and the link motor 25.
  • a control device, an inverter device, various sensors, and the like (not shown) are accommodated in the rear portion or the lower portion of the riding portion 11 or the main body portion 20.
  • a steering device 41 is disposed in front of the seat 11a.
  • the steering device 41 is provided with members necessary for steering such as a handle bar 41a as a steering device, a meter such as a speed meter, an indicator, and a switch.
  • the occupant operates the handle bar 41a and other members to instruct the traveling state of the vehicle 10 (for example, traveling direction, traveling speed, turning direction, turning radius, etc.).
  • a steering device that is a means for outputting the required turning amount of the vehicle body requested by the occupant
  • other devices such as a steering wheel, a jog dial, a touch panel, and a push button are used instead of the handle bar 41a as the steering device. It can also be used as
  • the steering device 41 includes a steering angle sensor 53 as a required turning amount detection means for detecting the required turning amount.
  • the steering angle sensor 53 is a sensor that detects a rotation angle of a steering shaft member (not shown) that connects the handle bar 41a and the upper end of the front wheel fork 17 with respect to a frame member included in the riding section 11, that is, a change in the steering angle.
  • an encoder For example, an encoder.
  • the steering angle sensor 53 can detect the steering amount of the handle bar 41a, that is, the steering amount of the steering device as the required turning amount.
  • the wheel 12F is connected to the riding section 11 via a front wheel fork 17 which is a part of a suspension device (suspension device).
  • the suspension device is a device similar to a suspension device for front wheels used in, for example, general motorcycles, bicycles, and the like, and the front wheel fork 17 is, for example, a telescopic type fork with a built-in spring.
  • the wheel 12F as the steered wheel changes the steering angle in accordance with the operation of the handlebar 41a by the occupant, thereby changing the traveling direction of the vehicle 10.
  • the handle bar 41a is connected to the upper end of a steering shaft member (not shown), and the upper end of the front wheel fork 17 is connected to the lower end of the steering shaft member.
  • the steering shaft member is rotatably attached to a frame member (not shown) included in the riding section 11 in a state where the steering shaft member is inclined obliquely so that the upper end is located behind the lower end.
  • the distance between the left and right wheels 12L and 12R axle is the axle and the rear wheel of the wheel 12F is a front wheel, i.e., the wheel base is L H.
  • a vehicle speed sensor 54 as a vehicle speed detecting means for detecting the vehicle speed that is the traveling speed of the vehicle 10 is disposed at the lower end of the front wheel fork 17 that supports the axle of the wheel 12F.
  • the vehicle speed sensor 54 is a sensor that detects the vehicle speed based on the rotational speed of the wheel 12F, and includes, for example, an encoder.
  • the vehicle 10 has a lateral acceleration sensor 44.
  • the lateral acceleration sensor 44 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like, and detects the lateral acceleration of the vehicle 10, that is, the acceleration in the lateral direction (horizontal direction in FIG. 3) as the width direction of the vehicle body. To do.
  • the vehicle 10 Since the vehicle 10 is stabilized by tilting the vehicle body toward the inside of the turn when turning, the vehicle 10 is controlled so that the centrifugal force to the outside of the turn and the gravity are balanced with each other by tilting the vehicle body.
  • the vehicle body By performing such control, for example, even if the road surface 18 is inclined in a direction perpendicular to the traveling direction (left and right direction with respect to the traveling direction), the vehicle body can always be kept horizontal. As a result, the vehicle body and the occupant are apparently always subjected to gravity downward in the vertical direction, the sense of incongruity is reduced, and the stability of the vehicle 10 is improved.
  • the lateral acceleration sensor 44 in order to detect the lateral acceleration of the leaning vehicle body, the lateral acceleration sensor 44 is attached to the vehicle body, and feedback control is performed so that the output of the lateral acceleration sensor 44 becomes zero.
  • the vehicle body can be tilted to an inclination angle at which the centrifugal force acting during turning and gravity are balanced. Further, even when the road surface 18 is inclined in a direction perpendicular to the traveling direction, the vehicle body can be controlled to have an inclination angle that makes the vehicle body vertical.
  • the lateral acceleration sensor 44 is disposed so as to be positioned at the center in the width direction of the vehicle body, that is, on the longitudinal axis of the vehicle body.
  • an unnecessary acceleration component may be detected.
  • the lateral acceleration sensor 44 is displaced in the circumferential direction and detects the acceleration in the circumferential direction. That is, an acceleration component that is not directly derived from centrifugal force or gravity, that is, an unnecessary acceleration component is detected.
  • the vehicle 10 includes a portion that functions as a spring with elasticity such as the tire portions of the wheels 12L and 12R, and includes inevitable backlash at the connection portions of each member.
  • the lateral acceleration sensor 44 is considered to be attached to the vehicle body through inevitable play and springs, and therefore acceleration generated by the displacement of the play and springs is also detected as an unnecessary acceleration component.
  • Such an unnecessary acceleration component may deteriorate the controllability of the vehicle body tilt control system. For example, if the control gain of the vehicle body tilt control system is increased, control system vibration, divergence, and the like due to unnecessary acceleration components occur, so that it is not possible to increase the control gain even if responsiveness is to be improved. .
  • lateral acceleration sensors 44 there are a plurality of lateral acceleration sensors 44, which are arranged at different heights.
  • a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b are arranged at different height positions.
  • the first lateral acceleration sensor 44a is in the back of the riding section 11, the distance from the road surface 18, i.e., is disposed at the position of L 1 Height ing.
  • the second lateral acceleration sensor 44b is the upper surface of the rear or body portion 20 of the riding portion 11, the distance from the road surface 18, i.e., is disposed at a position of L 2 height. Note that L 1 > L 2 .
  • the detection value a 1 is output, and the second lateral acceleration sensor 44b detects the lateral acceleration and outputs the detection value a 2 .
  • the center of the tilting motion when the vehicle body tilts that is, the roll center, is strictly located slightly below the road surface 18, it is considered that the center is substantially equal to the road surface 18 in practice.
  • both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are attached to a sufficiently rigid member. Further, if the difference between L 1 and L 2 is small, the difference between the detection values a 1 and a 2 is small. Therefore, it is desirable that the difference be sufficiently large, for example, 0.3 [m] or more. Furthermore, it is desirable that both the first lateral acceleration sensor 44 a and the second lateral acceleration sensor 44 b are disposed above the link mechanism 30. Further, when the vehicle body is supported by a spring such as a suspension, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are arranged on a so-called “spring top”.
  • first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are both disposed between the axle of the front wheel 12F and the axle of the rear wheels 12L and 12R. Furthermore, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are disposed as close to the occupant as possible. Furthermore, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are located on the vehicle center axis extending in the traveling direction when viewed from above, that is, not offset with respect to the traveling direction.
  • the vehicle 10 in the present embodiment has a vehicle body tilt control system as a part of the control device.
  • the vehicle body tilt control system is a kind of computer system, and includes a tilt control device including an ECU (Electronic Control Unit).
  • the tilt control device includes arithmetic means such as a processor, storage means such as a magnetic disk and semiconductor memory, an input / output interface, and the like, and includes a link angle sensor 25a, a lateral acceleration sensor 44, a steering angle sensor 53, a vehicle speed sensor 54, and a link motor. 25. Then, the tilt control device outputs a torque command value for operating the link motor 25.
  • the tilt control device performs feedback control and feedforward control during turning, so that the tilt angle of the vehicle body is such that the value of the lateral acceleration detected by the lateral acceleration sensor 44 becomes zero. Then, the link motor 25 is operated. That is, the tilt angle of the vehicle body is controlled so that the centrifugal force to the outside of the turn and gravity are balanced and the lateral acceleration component becomes zero. As a result, a force in a direction parallel to the longitudinal axis of the vehicle body acts on the vehicle body and the occupant on the riding section 11. Therefore, the stability of the vehicle body can be maintained and the turning performance can be improved.
  • the tilt angle of the vehicle body is controlled in the normal mode, and the extracted part. Therefore, the stability of the vehicle body can be maintained even when subjected to disturbance. In addition, the rider does not feel discomfort and the ride comfort is improved.
  • FIG. 4 is a block diagram showing the configuration of the vehicle body tilt control system according to the first embodiment of the present invention.
  • 46 is an inclination control ECU as an inclination control device, and is connected to a link angle sensor 25a, a first lateral acceleration sensor 44a, a second lateral acceleration sensor 44b, a steering angle sensor 53, a vehicle speed sensor 54, and a link motor 25.
  • the tilt control ECU 46 includes a lateral acceleration calculation unit 48, a lateral acceleration estimation unit 49, a disturbance calculation unit 43, a tilt control unit 47, and a link motor control unit 42.
  • the lateral acceleration calculation unit 48 calculates a combined lateral acceleration based on the lateral acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
  • the lateral acceleration estimation unit 49 calculates a predicted lateral acceleration value acting on the vehicle body based on the steering angle detected by the steering angle sensor 53 and the vehicle speed detected by the vehicle speed sensor 54.
  • the disturbance calculation unit 43 calculates a roll rate for the disturbance based on the lateral acceleration detected by the first lateral acceleration sensor 44a and the link angle detected by the link angle sensor 25a.
  • the tilt controller 47 is based on the combined lateral acceleration calculated by the lateral acceleration calculator 48, the predicted lateral acceleration calculated by the lateral acceleration estimator 49, and the roll rate of disturbance calculated by the disturbance calculator 43.
  • the speed command value as the control value is calculated and output.
  • the link motor control unit 42 outputs a torque command value as a control value for operating the link motor 25 based on the speed command value output from the inclination control unit 47.
  • FIG. 5 is a diagram showing a dynamic model for explaining the tilting operation of the vehicle body when turning in the first embodiment of the present invention
  • FIG. 6 shows the operation of the lateral acceleration calculation processing in the first embodiment of the present invention. It is a flowchart to show.
  • the vehicle body tilt control system starts the vehicle body tilt control process.
  • the vehicle 10 turns with the link mechanism 30 in a state where the vehicle body is tilted inward (right side in the drawing) as shown in FIG. Further, during turning, a centrifugal force to the outside of the turning acts on the vehicle body, and a lateral component of gravity is generated by tilting the vehicle body to the inside of the turn.
  • the lateral acceleration calculation unit 48 executes a lateral acceleration calculation process, calculates a combined lateral acceleration a, and outputs it to the tilt control unit 47.
  • the inclination control unit 47 performs feedback control, and outputs a speed command value as a control value such that the value of the combined lateral acceleration a becomes zero. Then, the link motor control unit 42 outputs a torque command value to the link motor 25 based on the speed command value output from the inclination control unit 47.
  • the vehicle body tilt control process is a process that is repeatedly executed by the vehicle body tilt control system at a predetermined control cycle T S (for example, 5 [ms]) while the vehicle 10 is turned on. This is a process for improving turning performance and ensuring passenger comfort.
  • 44A is a first sensor position indicating the position where the first lateral acceleration sensor 44a is disposed on the vehicle body
  • 44B is a first position indicating the position where the second lateral acceleration sensor 44b is disposed on the vehicle body. Two sensor positions.
  • the acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b and outputting the detected value is ⁇ 1> centrifugal force acting on the vehicle body when turning, and ⁇ 2> tilting the vehicle body toward the inside of the turn.
  • the acceleration generated by the displacement of the second lateral acceleration sensor 44b in the circumferential direction, and the ⁇ 4> operation of the link motor 25 or the reaction thereof causes the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b to be displaced in the circumferential direction.
  • the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44a and the second lateral acceleration sensor 44b detect and output the detected value.
  • the acceleration ⁇ 3> is defined as a X1 and a X2, and the first lateral acceleration sensor 44a and the second lateral acceleration.
  • the acceleration of ⁇ 4> which is detected by the sensor 44b and outputs the detected value, is a M1 and a M2 .
  • the acceleration of ⁇ 1> to the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b outputs the detected value detected by the a T, a first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b is detected
  • the acceleration of ⁇ 2> that outputs the detected value is defined as a G. Since ⁇ 1> and ⁇ 2> are irrelevant to the heights of the first and second lateral acceleration sensors 44a and 44b, the detection values of the first and second lateral acceleration sensors 44a and 44b are equal. .
  • the angular velocity omega R the circumferential direction of displacement by the displacement or the like of Gataya spring
  • the angular acceleration omega Let R '.
  • the angular velocity of the circumferential displacement due to the operation of the link motor 25 or its reaction is ⁇ M
  • the angular acceleration is ⁇ M ′.
  • the angular velocity ⁇ M or the angular acceleration ⁇ M ′ can be obtained from the detection value of the link angle sensor 25a.
  • a X1 L 1 ⁇ R ′
  • a X2 L 2 ⁇ R ′
  • a M1 L 1 ⁇ M ′
  • a M2 L 2 ⁇ M ′.
  • a 1 and a 2 are four accelerations ⁇ 1> to ⁇ 4. It is represented by the following formulas (1) and (2).
  • a 1 a T + a G + L 1 ⁇ R '+ L 1 ⁇ M' ⁇ formula (1)
  • a 2 a T + a G + L 2 ⁇ R '+ L 2 ⁇ M' ⁇ (2) Then, by subtracting equation (2) from equation (1), the following equation (3) can be obtained.
  • a 1 ⁇ a 2 (L 1 ⁇ L 2 ) ⁇ R ′ + (L 1 ⁇ L 2 ) ⁇ M ′ Equation (3)
  • the values of L 1 and L 2 are known because they are the heights of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
  • the value of ⁇ M ′ is known because it is a differential value of the angular velocity ⁇ M of the link motor 25.
  • the value of ⁇ R ′ of the first term is unknown, and all other values are known. Therefore, the value of ⁇ R ′ can be obtained from the detection values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. That is, unnecessary acceleration components can be removed based on the detection values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
  • the lateral acceleration calculation unit 48 starts the lateral acceleration calculation process, and first acquires the first lateral acceleration sensor value a 1 (step S1) and the second lateral acceleration calculation process. An acceleration sensor value a 2 is acquired (step S2). Then, the lateral acceleration calculation unit 48 calculates the acceleration difference ⁇ a (step S3).
  • the ⁇ a is expressed by the following equation (4).
  • ⁇ a a 1 ⁇ a 2 Formula (4)
  • the lateral acceleration calculation unit 48 performs ⁇ L call (step S4), and performs the L 2 call (step S5).
  • the ⁇ L is expressed by the following equation (5).
  • the lateral acceleration calculation unit 48 calculates a combined lateral acceleration a (step S6).
  • the synthetic lateral acceleration a lateral acceleration sensor 44 is a value corresponding to the lateral acceleration sensor value a when the one, first lateral acceleration sensor value a 1 and the second lateral acceleration sensor value a 2 Is obtained by the following equations (6) and (7).
  • the lateral acceleration calculation unit 48 sends the combined lateral acceleration a to the tilt control unit 47 (step S7), and ends the lateral acceleration calculation process.
  • a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b is placed in different height positions, a first lateral acceleration sensor value a 1 and the second lateral acceleration sensor A combined lateral acceleration a obtained by combining the value a 2 is calculated, and feedback control is performed so that the value of the combined lateral acceleration a becomes zero to control the tilt angle of the vehicle body.
  • the case where there are two lateral acceleration sensors 44 has been described. However, if there are a plurality of lateral acceleration sensors 44 arranged at different heights, the number of lateral acceleration sensors 44 is three or more. There may be any number.
  • FIG. 7 is a flowchart showing the operation of lateral acceleration estimation processing in the first embodiment of the present invention
  • FIG. 8 is a flowchart showing a subroutine of filter processing in the first embodiment of the present invention.
  • the lateral acceleration estimation unit 49 starts the lateral acceleration estimation process.
  • the lateral acceleration estimation unit 49 first acquires the steering angle sensor value ⁇ that is the value of the steering angle detected by the steering angle sensor 53 (step S11), and the vehicle speed sensor value that is the value of the vehicle speed detected by the vehicle speed sensor 54. ⁇ is acquired (step S12).
  • the lateral acceleration estimation unit 49 performs a filtering process on ⁇ (step S13) and calculates ⁇ (t).
  • ⁇ (t) is the steering angle filtered by the cut-off frequency variable low-pass filter according to speed.
  • the lateral acceleration estimation unit 49 first acquires a control cycle T S (step S13-1).
  • the lateral acceleration estimation unit 49 calculates a cutoff frequency w ( ⁇ ) (step S13-2).
  • the w ( ⁇ ) is a cutoff frequency for each speed, and is a function in which the input is the vehicle speed ⁇ and the output is the cutoff frequency.
  • the function is inversely proportional to the vehicle speed, but any function may be used. It should be noted that a table showing the relationship between the input vehicle speed ⁇ and the output cutoff frequency is created in advance, and the cutoff frequency w ( ⁇ ) is obtained without performing calculations by referring to the table. You can also.
  • the lateral acceleration estimation unit 49 calculates the filtered steering angle ⁇ (t) (step S13-4).
  • the ⁇ (t) is calculated by the following equation (8).
  • ⁇ (t) ⁇ old / (1 + T S w ( ⁇ )) + T S w ( ⁇ ) ⁇ / (1 + T S w ( ⁇ )) ⁇ formula (8)
  • the equation (8) is an equation of an IIR (Infinite Impulse Response) filter that is generally used as a bandpass filter, and represents a cutoff frequency variable low-pass filter that is a first-order lag low-pass filter.
  • Equation (9) represents the lateral acceleration generated by steering the handlebar 41a, that is, the centrifugal force generated by turning.
  • the lateral acceleration estimation unit 49 sends the predicted lateral acceleration value a f to the tilt control unit 47 (step S16), and ends the lateral acceleration estimation process.
  • feedback control is performed so that the value of the combined lateral acceleration a becomes zero, the predicted lateral acceleration value a f is calculated from the required turning amount and the vehicle speed, and the calculated lateral acceleration prediction is calculated. Feed-forward control using the value a f is performed.
  • FIG. 9 is a flowchart showing the operation of disturbance calculation processing in the first embodiment of the present invention
  • FIG. 10 is a flowchart showing a subroutine of link angular velocity calculation processing in the first embodiment of the present invention.
  • the ring buffer is a data holding buffer secured in the memory area of the inclination control ECU 46. Then, the inclination acceleration a S from the present to t seconds before is stored in the ring buffer for t seconds prepared in advance.
  • means the sum of the values of the inclination acceleration a S stored in the ring buffer.
  • ⁇ t is a sampling period.
  • the ring buffer has t / ⁇ t storage areas.
  • the equation (11) is for alleviating an error due to integration, and the integration region t, that is, the integration time t seconds changes depending on the performance of the lateral acceleration sensor 44 and the like. And determined experimentally.
  • is an angular velocity of the link angle of the link mechanism 30 and is calculated by differentiating the link angle sensor value ⁇ detected by the link angle sensor 25a.
  • the disturbance calculation unit 43 first acquires the link angle sensor value ⁇ detected by the link angle sensor 25a (step S26-1).
  • the disturbance calculation unit 43 calculates a roll rate for the disturbance (step S27).
  • ⁇ N ⁇ S ⁇ (13) That is, the roll rate ⁇ N for the disturbance can be obtained by subtracting the angular velocity ⁇ of the link angle of the link mechanism 30 from the actual roll rate ⁇ S of the vehicle body.
  • the disturbance calculation unit 43 sends the roll rate ⁇ N for the disturbance to the tilt control unit 47 (step S28), and ends the disturbance calculation process.
  • the composite lateral acceleration a is subtracted from the detection value a 1 of one of the lateral acceleration sensors 44 (specifically, the first lateral acceleration sensor 44a), so that The vibration component, that is, the inclination acceleration a S can be obtained. Further, by deriving the value obtained by differentiating the link angle sensor value ⁇ detected by the link angle sensor 25a from the value obtained by integrating the inclination acceleration a S , that is, the angular velocity ⁇ of the link angle, the vehicle body becomes unstable. The roll rate ⁇ N for the disturbance in the tilt direction is calculated.
  • FIG. 11 is a diagram showing an example of the gain in the first embodiment of the present invention
  • FIG. 12 is a flowchart showing the operation of the tilt control processing in the first embodiment of the present invention
  • FIG. 13 is the first diagram of the present invention. It is a flowchart which shows the operation
  • the tilt control unit 47 first receives the combined lateral acceleration a from the lateral acceleration calculation unit 48 (step S31).
  • the inclination control unit 47 acquires the control cycle T S (step S33), and calculates a differential value of a (step S34).
  • ⁇ a (a ⁇ a old ) / T S Formula (14)
  • the inclination control part 47 is preserve
  • saved as aold a (step S35). That is, the combined lateral acceleration a acquired at the time of execution of the current vehicle body tilt control process is stored as a old in the storage unit.
  • tilt control unit 47 calculates the first control value U P (step S36).
  • the first control value UP is calculated by the following equation (15).
  • U P G P a ⁇ formula (15)
  • tilt control unit 47 calculates the second control value U D (step S37).
  • the second control value U D is calculated by the following equation (16).
  • U D G D ⁇ a (16)
  • the inclination control unit 47 calculates a third control value U (step S38).
  • Third control value U is the sum of the first control value U P and the second control value U D, is calculated by the following equation (17).
  • U U P + U D ⁇ formula (17)
  • the operations in steps S31 to S38 represent feedback control for controlling the tilt angle of the vehicle body so that the value of the resultant lateral acceleration a becomes zero.
  • the tilt control unit 47 receives the lateral acceleration predicted value a f from the lateral acceleration estimation unit 49 (step S39).
  • the inclination control unit 47 calculates a differential value of a f (step S41).
  • the differential value of a f and .DELTA.a f the .DELTA.a f is calculated by the following equation (18).
  • ⁇ a f (a f ⁇ a fold ) / T S Expression (18)
  • the inclination control part 47 preserve
  • saves as afold af (step S42). That is, the lateral acceleration predicted value a f acquired at the time of executing the vehicle body tilt control process this time is stored in the storage unit as a fold .
  • the inclination control unit 47 calculates a fourth control value U fD (step S43).
  • the fourth control value U fD is calculated by the following equation (19).
  • U fD G yD ⁇ a f Equation (19)
  • the inclination control unit 47 calculates a fifth control value U (step S44).
  • the fifth control value U is the sum of the third control value U and the fourth control value U fD and is calculated by the following equation (20).
  • U U + U fD Expression (20)
  • the operation of the steps S39 ⁇ S44 represents feedforward control using lateral acceleration estimated value a f obtained based on the steering angle and the vehicle speed.
  • the inclination control unit 47 receives the roll rate ⁇ N for the disturbance from the disturbance calculation unit 43 (step S45).
  • the inclination control unit 47 calculates a disturbance control gain GwP (step S46) and calculates a sixth control value UwP (step S47).
  • the sixth control value U wP is calculated by the following equation (21).
  • U wP G wP ⁇ N Expression (21)
  • G wP G wP ⁇ N
  • there are delays in the link motor 25 that is a control target observation delays in sensors such as the lateral acceleration sensor 44 and the link angle sensor 25a, and the like. Therefore, it is necessary to adjust the value of the disturbance control gain GwP .
  • the sixth control value U wP can be expressed by the following equation (22).
  • U wP
  • ⁇ N sign ( ⁇ N ) ⁇ N 2 Formula (22)
  • sign (x) represents +1 when x is a positive value, and represents -1 when x is a negative value.
  • the value of the disturbance control gain G wP may be changed according to the value of the roll rate ⁇ N for the disturbance as shown in FIG. 11, for example. That is, the value of the disturbance control gain G wP can be determined using a function as shown in FIG. In FIG. 11, G1 is the value of the disturbance control gain G wP to be applied at a minimum, and ⁇ 1 is the value of the roll rate ⁇ N for the disturbance for which the value of the disturbance control gain G wP is to be increased. .
  • the inclination control unit 47 calculates a seventh control value U (step S48).
  • the seventh control value U is the sum of the fifth control value U and the sixth control value U wP and is calculated by the following equation (23).
  • U U + U wP Expression (23)
  • the inclination control unit 47 outputs the seventh control value U as a speed command value to the link motor control unit 42 (step S49), and ends the process.
  • the link motor control unit 42 first receives the seventh control value U from the inclination control unit 47 (step S51).
  • the link motor control unit 42 acquires the link angle sensor value ⁇ detected by the link angle sensor 25a (step S52), executes link angular velocity calculation processing (step S53), and sets the link angle of the link mechanism 30. Calculate the angular velocity ⁇ .
  • the operation of the link angular velocity calculation process is the same as the operation of the link angular velocity calculation process executed by the disturbance calculation unit 43, that is, the operation of steps S26-1 to S26-5 shown in FIG. To do.
  • the link motor control unit 42 can omit the operations of steps S52 and S53 by obtaining the value of the angular velocity ⁇ of the link angle from the disturbance calculation unit 43.
  • the link motor control unit 42 calculates a control error (step S54).
  • U ⁇ Formula (24)
  • U is the seventh control value U received from the inclination control unit 47.
  • the link motor control unit 42 obtains the motor control proportional gain G MP (step S55).
  • the value of the motor control proportional gain GMP is a value set based on experiments or the like, and is stored in advance in the storage means.
  • the link motor control unit 42 calculates a torque command value for operating the link motor 25 (step S56).
  • the torque command value is U T
  • the U T is calculated by the following equation (25).
  • U T G MP ⁇ (25)
  • the link motor control unit 42 outputs the torque command value UT to the link motor 25 (step S57) and ends the process.
  • a change due to the disturbance in the change in the vehicle body tilt angle is extracted, and control corresponding to the extracted change due to the disturbance is performed.
  • the disturbance is, for example, a lateral external force that is large enough to assume that one of the left and right wheels 12L and 12R is lifted from the road surface 18.
  • the value of the composite lateral acceleration a performs feedback control such that the zero, since the feedforward control using the lateral acceleration estimated value a f, the inclination angle of the vehicle body during a turn and the lateral acceleration and gravity It is possible to appropriately control the angle so as to be balanced. Even if the road surface 18 is inclined in the lateral direction, the vehicle body can be kept vertical. Further, there is no delay in control even when the lateral acceleration changes greatly, such as at the start and end of turning. For this reason, the stability of the vehicle 10 can be kept high, a passenger's discomfort can be reduced, and comfort can be improved.
  • the disturbance calculation unit 43 calculates the roll rate ⁇ S of the vehicle body based on one detected value of the lateral acceleration sensor 44 and the combined lateral acceleration a has been described.
  • the rate ⁇ S can also be detected directly by a sensor.
  • FIG. 14 is a block diagram showing a modified example of the configuration of the vehicle body tilt control system according to the first embodiment of the present invention.
  • a roll rate sensor 44c is connected to the tilt control ECU 46.
  • the roll rate sensor 44c is a general roll rate sensor that detects the angular velocity of the tilt motion of the vehicle body, that is, the roll rate ⁇ S of the vehicle body.
  • the roll rate sensor 44c is a gyro sensor that is perpendicular to the ground and is It is attached to the vehicle body so that it can detect the rotational angular velocity in the plane perpendicular to the straight direction.
  • the roll rate sensor 44c can be attached to any position of the vehicle body as long as it is perpendicular to the ground surface and in a plane perpendicular to the straight traveling direction of the vehicle 10.
  • the disturbance calculation unit 43 acquires the roll rate ⁇ S of the vehicle body detected by the roll rate sensor 44c. Therefore, the operations in steps S21 to S25 in the disturbance calculation process shown in FIG. 9 can be omitted.
  • FIG. 15 is a flowchart showing the operation of the tilt control process in the second embodiment of the present invention
  • FIG. 16 is a flowchart showing a subroutine of the wind down control process in the second embodiment of the present invention
  • FIG. It is a flowchart which shows the subroutine of the disturbance acceleration calculation process in 2nd Embodiment.
  • the elastic deformation of the tires provided on the left and right wheels 12L and 12R, the elastic deformation of each part of the vehicle body, and the elastic deformation of the springs of the suspension in the case of including the suspension may affect the tilt control of the vehicle body. It becomes relatively large.
  • a tire theoretically has a vibration characteristic similar to that of a combination of a spring and a damper, and therefore has a resonance point as with a suspension.
  • security will be impaired.
  • only one of the left and right wheels 12L and 12R passes through a step or when a large impulse or step input is applied to the vehicle 10, such as when the vehicle 10 receives a sudden crosswind,
  • the entire vehicle 10 may be greatly shaken at the resonance point, and the inclination of the vehicle body may become very large.
  • acceleration elements such as a lateral acceleration and a differential value of a roll rate.
  • the detected value of the acceleration element by the actual sensor is vibrational, if it is used as a feedback element, it becomes further vibrational, the feedback gain cannot be increased, and the control effect cannot be exhibited.
  • a filter is applied to the detected value of the acceleration element by the sensor in order to increase the feedback gain, the delay will increase, and the control effect cannot be exhibited.
  • rewinding control as control that takes into account elastic deformation of the tire and other parts, that is, winddown control is performed.
  • the lateral acceleration calculation unit 48 executes the lateral acceleration calculation process
  • the lateral acceleration estimation unit 49 executes the lateral acceleration estimation process
  • the disturbance calculation unit 43 performs the disturbance calculation process.
  • the link motor control unit 42 executes the link motor control process.
  • the operations of the lateral acceleration calculation process, the lateral acceleration estimation process, the disturbance calculation process, and the link motor control process in the present embodiment are the same as those in the first embodiment.
  • the operations of the lateral acceleration calculation process, the lateral acceleration estimation process, the disturbance calculation process, and the link motor control process in this embodiment are the same as the operations shown in the flowcharts of FIGS.
  • the tilt control unit 47 receives the combined lateral acceleration a from the lateral acceleration calculation unit 48 (step S61).
  • the operation from the reception of the combined lateral acceleration a to the calculation of the sixth control value U wP that is, the operation from step S61 to S77 shown in FIG. 15, will be described in the first embodiment. Since this is the same as steps S31 to S47, the description thereof is omitted.
  • the inclination control unit 47 executes a winddown control process (step S78).
  • the winddown control the start of elastic deformation of the tire and other parts is detected to invert the sign of the control value, and the end of elastic deformation is detected to return the sign of the control value to the original. ing.
  • the winddown is executed only during the period from when the elastic member receives an external disturbance to start elastic deformation until the elastic deformation ends, and the elastic member starts to recover due to its own elasticity. Winddown is stopped in the following period. When the winddown is stopped or not executed, the same control as that in the first embodiment is performed.
  • the left and right wheels 12L and 12R falls into the recess when passing through the recess.
  • the tire of one wheel falls from the state of floating in the air and contacts the bottom surface of the recess. To do.
  • the tire contracts after being grounded, and when the contraction is completed, the tire expands and returns to its original shape. Winddown is performed only during the period from when the tire contacts the ground until it finishes contracting, and is not performed during the period until the tire contacts the ground and after the tire has contracted.
  • the inclination control unit 47 first acquires the roll rate ⁇ N for the disturbance (step S78-1) and executes the disturbance acceleration calculation process (step S78-2).
  • the roll rate ⁇ N for the disturbance is that received from the disturbance calculation unit 43 in step S75.
  • the tilt control unit 47 first calls ⁇ N-1 (step S78-2-1) and obtains the control cycle T S (step S78-2-2).
  • the inclination control unit 47 calculates a differential value of the roll rate ⁇ N for the disturbance (step S78-2-3), and ends the disturbance acceleration calculation process.
  • ⁇ N ( ⁇ N ⁇ N-1 ) / T S Formula (26)
  • ⁇ N ⁇ N-1 ⁇ 0 the inclination control unit 47 determines whether or not ⁇ N ⁇ N-1 ⁇ 0 (step S78-4).
  • [Delta] [omega N is the rate of change of the disturbance component of the roll rate omega roll rate of a differential value disturbance component of N omega N, i.e., shows the slope of the curve showing the change of the disturbance component of the roll rate omega N. Therefore, ⁇ N ⁇ N ⁇ 1 ⁇ 0 indicates that the slope of the curve indicating the roll rate ⁇ N of the disturbance during the previous vehicle body tilt control process and the disturbance during the current vehicle body tilt control process are executed. This means that the slope of the curve indicating the roll rate ⁇ N is different, that is, passing through an inflection point on the curve indicating the roll rate ⁇ N of the disturbance.
  • the inclination control unit 47 determines whether or not the absolute value of the roll rate ⁇ N for the disturbance is greater than a predetermined threshold (threshold) value A 1 , that is,
  • a 1 is a threshold value set for determining whether or not the input to the vehicle body is equal to or greater than a certain value.
  • a 1 is a value of 0 or more. Further, A 1 is set so that the absolute value becomes smaller than the absolute value of the roll rate ⁇ N of the maximum disturbance that does not cause the vehicle 10 to fall when the winddown is not executed.
  • the inclination control unit 47 determines whether or not ⁇ N ⁇ N-1 ⁇ 0 (step S78-9). In step S78-6, whether or not
  • ⁇ N ⁇ N-1 ⁇ 0 indicates that the roll rate ⁇ N of the disturbance during the previous execution of the vehicle body tilt control process is positive and negative, and the roll rate of the disturbance during the execution of the current vehicle body tilt control process.
  • the sign of ⁇ N is different from the positive or negative, that is, the curve indicating the roll rate ⁇ N of the disturbance has passed through the axis (X axis) indicating zero (so-called zero crossing).
  • the inclination control unit 47 calculates a seventh control value U (step S78-14).
  • the seventh control value U is the sum of the fifth control value U and a value obtained by multiplying the sixth control value U wP by the wind-down control gain G wS , and is calculated by the following equation (27).
  • U U + U wP G wS Expression (27)
  • the inclination control unit 47 outputs the seventh control value U as a speed command value to the link motor control unit 42 (step S79), and ends the process.
  • step S78-6 in the winddown control process corresponds to determining whether or not the input is to execute the winddown.
  • > A 1 corresponds to an input to be subjected to winddown.
  • step S78-9 is equivalent to determining whether or not the grounded tire has been contracted, as will be described according to the example of the tire.
  • the seventh control value U is expressed by the following equation (28) by the above equation (27).
  • U U ⁇ U wP Expression (28)
  • the equation (28) is smaller than U wP by twice. As a result, it is understood that the control gain in the inclination control is rewound and reduced by executing the winddown until the tire finishes contracting after being grounded.
  • steps S78-3 and S78-4 will be described in accordance with the example of the tire.
  • the control value corresponding to the change due to the disturbance is changed according to the elastic deformation of the member due to the disturbance.
  • the control value corresponding to the change due to the disturbance is changed so that the control gain for controlling the inclination of the vehicle body is rewound during the period from the start to the end of the elastic deformation of the member due to the disturbance.
  • winddown control that takes into account elastic deformation of the tire and other parts is performed, and if there is an input exceeding a certain level, only the period from when the tire or other part starts elastic deformation until it ends Winding down is executed, and the control gain in the tilt control is rewound to decrease.
  • the elastic deformation is deformation in one direction by receiving the input of the tire and other parts, and deformation in the opposite direction (so-called bounce back) by the elasticity of the tire and other parts itself. Not included.
  • the winddown is executed only during a period from when the tire or other part receives the input and starts to be deformed to when bounceback is started.
  • the influence on the tilt control due to the elastic deformation of the tire and other parts can be eliminated, and even when subjected to a large disturbance in the tilt direction, the tilt angle of the vehicle body does not generate resonance. Can be appropriately controlled, and a stable running state can be obtained.
  • the present invention can be used for a vehicle having at least a pair of left and right wheels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Automatic Cycles, And Cycles In General (AREA)

Abstract

In order to achieve improved turning performance and stable traveling state even when disturbance in the direction of inclination is applied, a vehicle comprises a vehicle body provided with a steering part and a drive part which are coupled to each other, a steering wheel which is a wheel rotatably attached to the steering part and steers the vehicle body, a drive wheel which is a wheel rotatably attached to the drive part and drives the vehicle body, an inclination actuator device which inclines the steering part or the drive part in a turning direction, a lateral acceleration sensor which detects lateral acceleration that acts on the vehicle body, and a control device which controls the inclination actuator device to control the inclination of the vehicle body, wherein when disturbance in the inclination direction of the vehicle body is applied, the control device controls the inclination of the vehicle body by extracting the amount of change caused by the disturbance from the change of the inclination angle of the vehicle body and adding a control value corresponding to the extracted amount of change caused by the disturbance.

Description

車両vehicle
 本発明は、少なくとも左右一対の車輪を有する車両に関するものである。 The present invention relates to a vehicle having at least a pair of left and right wheels.
 近年、エネルギ資源の枯渇問題に鑑み、車両の省燃費化が強く要求されている。その一方で、車両の低価格化等から、車両の保有者が増大し、1人が1台の車両を保有する傾向にある。そのため、例えば、4人乗りの車両を運転者1人のみが運転することで、エネルギが無駄に消費されるという問題点があった。車両の小型化による省燃費化としては、車両を1人乗りの三輪車又は四輪車として構成する形態が最も効率的であるといえる。 In recent years, in view of the problem of exhaustion of energy resources, there has been a strong demand for fuel saving of vehicles. On the other hand, the number of vehicle owners is increasing due to the low price of vehicles, and one person tends to own one vehicle. Therefore, for example, there is a problem that energy is wasted when only one driver drives a four-seater vehicle. The most efficient way to save fuel consumption by reducing the size of the vehicle is to configure the vehicle as a one-seater tricycle or four-wheel vehicle.
 しかし、走行状態によっては、車両の安定性が低下してしまうことがある。そこで、車体を横方向に傾斜させることによって、旋回時の車両の安定性を向上させる技術が提案されている(例えば、特許文献1参照。)。 However, depending on the driving condition, the stability of the vehicle may decrease. Therefore, a technique for improving the stability of the vehicle during turning by tilting the vehicle body in the lateral direction has been proposed (for example, see Patent Document 1).
特開2008-155671号公報JP 2008-155671 A
 しかしながら、前記従来の車両においては、旋回性能を向上させるために、車体を旋回方向内側に傾斜させることができるようになっているが、路面の段差、横風等によって横方向の大きな外乱を受けると、車体の傾斜制御を適切に行うことができず、車両が不安定となり、乗員が不快に感じたり、不安を抱いたりしてしまうことがある。 However, in the conventional vehicle, in order to improve the turning performance, the vehicle body can be tilted inward in the turning direction. However, when a large lateral disturbance is caused by a road step, a cross wind, etc. The vehicle body tilt control cannot be performed properly, the vehicle becomes unstable, and the occupant may feel uncomfortable or uneasy.
 本発明は、前記従来の車両の問題点を解決して、傾斜方向への外乱を受けたときには、車体の傾斜角度の変化のうちの外乱による変化分を抽出し、外乱による変化分に応じた制御値を加えて車体の傾斜角度を制御することによって、旋回性能を向上させることができるとともに、傾斜方向への外乱を受けたときにも、安定した走行状態を実現することができる安全性の高い車両を提供することを目的とする。 The present invention solves the above-mentioned problems of conventional vehicles and, when subjected to a disturbance in the tilt direction, extracts a change due to the disturbance out of a change in the tilt angle of the vehicle body, and responds to the change due to the disturbance. By controlling the tilt angle of the vehicle body by adding a control value, it is possible to improve the turning performance and to realize a stable driving state even when subjected to disturbance in the tilt direction. The purpose is to provide a high vehicle.
 そのために、本発明の車両においては、互いに連結された操舵(だ)部及び駆動部を備える車体と、前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵輪と、前記駆動部に回転可能に取り付けられた車輪であって、前記車体を駆動する駆動輪と、前記操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、前記車体に作用する横加速度を検出する横加速度センサと、前記傾斜用アクチュエータ装置を制御して前記車体の傾斜を制御する制御装置とを有し、該制御装置は、前記車体の傾斜方向への外乱を受けたとき、車体の傾斜角度の変化のうちの外乱による変化分を抽出し、抽出した外乱による変化分に対応する制御値を加えて、前記車体の傾斜を制御する。 Therefore, in the vehicle according to the present invention, a vehicle body including a steering unit and a drive unit coupled to each other, and a wheel rotatably attached to the steering unit, the steering wheel steering the vehicle body, A wheel rotatably attached to the driving unit, the driving wheel driving the vehicle body, a tilting actuator device for tilting the steering unit or the driving unit in a turning direction, and a lateral acceleration acting on the vehicle body And a control device for controlling the tilt of the vehicle body by controlling the tilt actuator device, and the control device receives a disturbance in the tilt direction of the vehicle body. Of the change in the inclination angle, a change due to disturbance is extracted, and a control value corresponding to the extracted change due to disturbance is added to control the inclination of the vehicle body.
 請求項1の構成によれば、傾斜方向への外乱を受けたときにも、車体の傾斜角度を適切に制御することができ、乗員が不安を感じることがなく、乗り心地がよく、安定した走行状態を実現することができる。 According to the configuration of claim 1, the tilt angle of the vehicle body can be appropriately controlled even when subjected to a disturbance in the tilt direction, and the rider does not feel uneasy, and the ride is comfortable and stable. A running state can be realized.
 請求項2の構成によれば、外乱が小さいときや外乱がないときには過大な制御ゲインに起因する制御の安定性の低下を適切に防止することができるとともに、大きな又は急激な外乱を受けたときには外乱の影響を抑制して車体の傾斜角度を適切に制御することができる。 According to the configuration of claim 2, when the disturbance is small or when there is no disturbance, it is possible to appropriately prevent a decrease in control stability due to an excessive control gain, and when a large or abrupt disturbance is received. The tilt angle of the vehicle body can be appropriately controlled while suppressing the influence of disturbance.
 請求項3の構成によれば、遠心力と重力とが釣り合うような角度となるように車体の傾斜角度を制御することができ、かつ、横加速度の変化が大きいときであっても、制御に遅れが生じることがない。 According to the configuration of the third aspect, the inclination angle of the vehicle body can be controlled so that the centrifugal force and the gravity are balanced, and even when the change in the lateral acceleration is large, the control can be performed. There is no delay.
 請求項4及び5の構成によれば、部材の弾性変形による傾斜制御への影響を除去することができ、傾斜方向への大きな外乱を受けたときであっても、共振が発生することなく、車体の傾斜角度を適切に制御することができ、車体の安定を維持することができる。 According to the configuration of claims 4 and 5, the influence on the inclination control due to the elastic deformation of the member can be removed, and even when subjected to a large disturbance in the inclination direction, resonance does not occur. The inclination angle of the vehicle body can be appropriately controlled, and the stability of the vehicle body can be maintained.
本発明の第1の実施の形態における車両の構成を示す右側面図である。It is a right view which shows the structure of the vehicle in the 1st Embodiment of this invention. 本発明の第1の実施の形態における車両のリンク機構の構成を示す図である。It is a figure which shows the structure of the link mechanism of the vehicle in the 1st Embodiment of this invention. 本発明の第1の実施の形態における車両の構成を示す背面図である。It is a rear view which shows the structure of the vehicle in the 1st Embodiment of this invention. 本発明の第1の実施の形態における車体傾斜制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle body tilt control system in the 1st Embodiment of this invention. 本発明の第1の実施の形態における旋回走行時の車体の傾斜動作を説明する力学モデルを示す図である。It is a figure which shows the dynamic model explaining the inclination operation | movement of the vehicle body at the time of turning driving | running | working in the 1st Embodiment of this invention. 本発明の第1の実施の形態における横加速度演算処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the lateral acceleration calculation process in the 1st Embodiment of this invention. 本発明の第1の実施の形態における横加速度推定処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the lateral acceleration estimation process in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるフィルタ処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the filter process in the 1st Embodiment of this invention. 本発明の第1の実施の形態における外乱演算処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the disturbance calculation process in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるリンク角速度算出処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the link angular velocity calculation process in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるゲインの例を示す図である。It is a figure which shows the example of the gain in the 1st Embodiment of this invention. 本発明の第1の実施の形態における傾斜制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the inclination control process in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるリンクモータ制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the link motor control process in the 1st Embodiment of this invention. 本発明の第1の実施の形態における車体傾斜制御システムの構成の変形例を示すブロック図である。It is a block diagram which shows the modification of a structure of the vehicle body tilt control system in the 1st Embodiment of this invention. 本発明の第2の実施の形態における傾斜制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the inclination control process in the 2nd Embodiment of this invention. 本発明の第2の実施の形態におけるワインドダウン制御処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the winddown control process in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における外乱加速度演算処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the disturbance acceleration calculation process in the 2nd Embodiment of this invention.
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の第1の実施の形態における車両の構成を示す右側面図、図2は本発明の第1の実施の形態における車両のリンク機構の構成を示す図、図3は本発明の第1の実施の形態における車両の構成を示す背面図である。なお、図3において、(a)は車体が直立している状態を示す図、(b)は車体が傾斜している状態を示す図である。 FIG. 1 is a right side view showing the configuration of the vehicle in the first embodiment of the present invention, FIG. 2 is a diagram showing the configuration of the link mechanism of the vehicle in the first embodiment of the present invention, and FIG. It is a rear view which shows the structure of the vehicle in the 1st Embodiment. 3A is a diagram showing a state where the vehicle body is standing upright, and FIG. 3B is a diagram showing a state where the vehicle body is inclined.
 図において、10は、本実施の形態における車両であり、車体の駆動部としての本体部20と、乗員が搭乗して操舵する操舵部としての搭乗部11と、車体の前方において幅方向の中心に配設された前輪である操舵輪としての車輪12Fと、後輪として後方に配設された駆動輪である左側の車輪12L及び右側の車輪12Rとを有する。さらに、前記車両10は、車体を左右に傾斜させる、すなわち、リーンさせるためのリーン機構、すなわち、車体傾斜機構として、左右の車輪12L及び12Rを支持するリンク機構30と、該リンク機構30を作動させるアクチュエータである傾斜用アクチュエータ装置としてのリンクモータ25とを有する。なお、前記車両10は、前輪が左右二輪であって後輪が一輪の三輪車であってもよいし、前輪及び後輪が左右二輪の四輪車であってもよいが、本実施の形態においては、図に示されるように、前輪が一輪であって後輪が左右二輪の三輪車である場合について説明する。 In the figure, reference numeral 10 denotes a vehicle according to the present embodiment, which includes a main body 20 as a vehicle body drive unit, a riding unit 11 as a steering unit on which an occupant gets on and steer, and a center in the width direction in front of the vehicle body. The wheel 12F is a front wheel disposed as a steering wheel, and the left wheel 12L and the right wheel 12R are drive wheels disposed rearward as rear wheels. Furthermore, the vehicle 10 operates as a lean mechanism for leaning the vehicle body from side to side, that is, as a lean mechanism, that is, a vehicle body tilt mechanism, supporting the left and right wheels 12L and 12R, and the link mechanism 30. And a link motor 25 as a tilt actuator device. The vehicle 10 may be a three-wheeled vehicle with two front wheels on the left and right and one wheel on the rear, or may be a four-wheeled vehicle with two wheels on the left and right. As shown in the figure, a case will be described in which the front wheel is a single wheel and the rear wheel is a left and right tricycle.
 旋回時には、左右の車輪12L及び12Rの路面18に対する角度、すなわち、キャンバ角を変化させるとともに、搭乗部11及び本体部20を含む車体を旋回内輪側へ傾斜させることによって、旋回性能の向上と乗員の快適性の確保とを図ることができるようになっている。すなわち、前記車両10は車体を横方向(左右方向)にも傾斜させることができる。なお、図2及び3(a)に示される例においては、左右の車輪12L及び12Rは路面18に対して直立している、すなわち、キャンバ角が0度になっている。また、図3(b)に示される例においては、左右の車輪12L及び12Rは路面18に対して右方向に傾斜している、すなわち、キャンバ角が付与されている。 When turning, the angle of the left and right wheels 12L and 12R with respect to the road surface 18, that is, the camber angle is changed, and the vehicle body including the riding portion 11 and the main body portion 20 is inclined toward the turning inner wheel, thereby improving turning performance and the occupant. It is possible to ensure the comfort of the car. That is, the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction). In the example shown in FIGS. 2 and 3 (a), the left and right wheels 12L and 12R are upright with respect to the road surface 18, that is, the camber angle is 0 degree. In the example shown in FIG. 3B, the left and right wheels 12L and 12R are inclined in the right direction with respect to the road surface 18, that is, a camber angle is given.
 前記リンク機構30は、左側の車輪12L及び該車輪12Lに駆動力を付与する電気モータ等から成る左側の回転駆動装置51Lを支持する左側の縦リンクユニット33Lと、右側の車輪12R及び該車輪12Rに駆動力を付与する電気モータ等から成る右側の回転駆動装置51Rを支持する右側の縦リンクユニット33Rと、左右の縦リンクユニット33L及び33Rの上端同士を連結する上側の横リンクユニット31Uと、左右の縦リンクユニット33L及び33Rの下端同士を連結する下側の横リンクユニット31Dと、本体部20に上端が固定され、上下に延在する中央縦部材21とを有する。また、左右の縦リンクユニット33L及び33Rと上下の横リンクユニット31U及び31Dとは回転可能に連結されている。さらに、上下の横リンクユニット31U及び31Dは、その中央部で中央縦部材21と回転可能に連結されている。なお、左右の車輪12L及び12R、左右の回転駆動装置51L及び51R、左右の縦リンクユニット33L及び33R、並びに、上下の横リンクユニット31U及び31Dを統合的に説明する場合には、車輪12、回転駆動装置51、縦リンクユニット33及び横リンクユニット31として説明する。 The link mechanism 30 includes a left vertical link unit 33L that supports a left wheel 12L and a left rotation driving device 51L including an electric motor that applies driving force to the wheel 12L, a right wheel 12R, and the wheel 12R. A right vertical link unit 33R that supports a right rotation drive device 51R composed of an electric motor or the like that applies a driving force to an upper side, and an upper horizontal link unit 31U that connects the upper ends of the left and right vertical link units 33L and 33R; The lower horizontal link unit 31D that connects the lower ends of the left and right vertical link units 33L and 33R, and the central vertical member 21 that has an upper end fixed to the main body 20 and extends vertically. The left and right vertical link units 33L and 33R and the upper and lower horizontal link units 31U and 31D are rotatably connected. Further, the upper and lower horizontal link units 31U and 31D are rotatably connected to the central vertical member 21 at the center thereof. When the left and right wheels 12L and 12R, the left and right rotational drive devices 51L and 51R, the left and right vertical link units 33L and 33R, and the upper and lower horizontal link units 31U and 31D are described in an integrated manner, The rotation drive device 51, the vertical link unit 33, and the horizontal link unit 31 will be described.
 そして、駆動用アクチュエータ装置としての前記回転駆動装置51は、いわゆるインホイールモータであって、固定子としてのボディが縦リンクユニット33に固定され、前記ボディに回転可能に取り付けられた回転子としての回転軸が車輪12の軸に接続され、前記回転軸の回転によって車輪12を回転させる。なお、前記回転駆動装置51は、インホイールモータ以外の種類のモータであってもよい。 The rotary drive device 51 as a drive actuator device is a so-called in-wheel motor, and a body as a stator is fixed to the vertical link unit 33 and is a rotor attached to the body so as to be rotatable. A rotating shaft is connected to the shaft of the wheel 12, and the wheel 12 is rotated by the rotation of the rotating shaft. The rotational drive device 51 may be a motor other than an in-wheel motor.
 また、前記リンクモータ25は、電気モータ等を含む回転式の電動アクチュエータであって、固定子としての円筒状のボディと、該ボディに回転可能に取り付けられた回転子としての回転軸とを備えるものであり、前記ボディが取付フランジ22を介して本体部20に固定され、前記回転軸がリンク機構30の上側の横リンクユニット31Uに固定されている。なお、リンクモータ25の回転軸は、本体部20を傾斜させる傾斜軸として機能し、中央縦部材21と上側の横リンクユニット31Uとの連結部分の回転軸と同軸になっている。そして、リンクモータ25を駆動して回転軸をボディに対して回転させると、本体部20及び該本体部20に固定された中央縦部材21に対して上側の横リンクユニット31Uが回動し、リンク機構30が作動する、すなわち、屈伸する。これにより、本体部20を傾斜させることができる。なお、リンクモータ25は、その回転軸が本体部20及び中央縦部材21に固定され、そのボディが上側の横リンクユニット31Uに固定されていてもよい。 The link motor 25 is a rotary electric actuator including an electric motor or the like, and includes a cylindrical body as a stator and a rotating shaft as a rotor rotatably attached to the body. The body is fixed to the main body portion 20 via the mounting flange 22, and the rotating shaft is fixed to the lateral link unit 31 </ b> U on the upper side of the link mechanism 30. The rotation axis of the link motor 25 functions as an inclination axis for inclining the main body 20 and is coaxial with the rotation axis of the connecting portion between the central vertical member 21 and the upper horizontal link unit 31U. When the link motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20, The link mechanism 30 operates, that is, bends and stretches. Thereby, the main-body part 20 can be inclined. Note that the rotation axis of the link motor 25 may be fixed to the main body 20 and the central vertical member 21, and the body may be fixed to the upper horizontal link unit 31U.
 また、リンクモータ25は、リンク機構30のリンク角の変化を検出するリンク角センサ25aを備える。該リンク角センサ25aは、リンクモータ25においてボディに対する回転軸の回転角を検出する回転角センサであって、例えば、レゾルバ、エンコーダ等から成る。前述のように、リンクモータ25を駆動して回転軸をボディに対して回転させると、本体部20及び該本体部20に固定された中央縦部材21に対して上側の横リンクユニット31Uが回動するのであるから、ボディに対する回転軸の回転角を検出することによって、中央縦部材21に対する上側の横リンクユニット31Uの角度の変化、すなわち、リンク角の変化を検出することができる。 The link motor 25 includes a link angle sensor 25a that detects a change in the link angle of the link mechanism 30. The link angle sensor 25a is a rotation angle sensor that detects the rotation angle of the rotation shaft with respect to the body in the link motor 25, and includes, for example, a resolver, an encoder, and the like. As described above, when the link motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20. Therefore, a change in the angle of the upper horizontal link unit 31U relative to the central vertical member 21, that is, a change in the link angle can be detected by detecting the rotation angle of the rotation shaft with respect to the body.
 なお、リンクモータ25は、回転軸をボディに対して回転不能に固定する図示されないロック機構を備える。該ロック機構は、メカニカルな機構であって、回転軸をボディに対して回転不能に固定している間には電力を消費しないものであることが望ましい。前記ロック機構によって、回転軸をボディに対して所定の角度で回転不能に固定することができる。 The link motor 25 includes a lock mechanism (not shown) that fixes the rotation shaft to the body so as not to rotate. The lock mechanism is a mechanical mechanism, and preferably does not consume electric power while the rotation shaft is fixed to the body so as not to rotate. The lock mechanism can fix the rotation shaft so as not to rotate at a predetermined angle with respect to the body.
 前記搭乗部11は、本体部20の前端に図示されない連結部を介して連結される。該連結部は、搭乗部11と本体部20とを所定の方向に相対的に変位可能に連結する機能を有していてもよい。 The boarding part 11 is connected to the front end of the main body part 20 via a connecting part (not shown). The connecting part may have a function of connecting the riding part 11 and the main body part 20 so as to be relatively displaceable in a predetermined direction.
 また、前記搭乗部11は、座席11a、フットレスト11b及び風よけ部11cを備える。前記座席11aは、車両10の走行中に乗員が着座するための部位である。また、前記フットレスト11bは、乗員の足部を支持するための部位であり、座席11aの前方側(図1における右側)下方に配設される。 The boarding unit 11 includes a seat 11a, a footrest 11b, and a windbreak unit 11c. The seat 11 a is a part for a passenger to sit while the vehicle 10 is traveling. The footrest 11b is a part for supporting the occupant's foot, and is disposed on the front side (right side in FIG. 1) and below the seat 11a.
 さらに、搭乗部11の後方若しくは下方又は本体部20には、図示されないバッテリ装置が配設されている。該バッテリ装置は、回転駆動装置51及びリンクモータ25のエネルギ供給源である。また、搭乗部11の後方若しくは下方又は本体部20には、図示されない制御装置、インバータ装置、各種センサ等が収納されている。 Furthermore, a battery device (not shown) is arranged behind or below the boarding unit 11 or in the main body unit 20. The battery device is an energy supply source for the rotation drive device 51 and the link motor 25. In addition, a control device, an inverter device, various sensors, and the like (not shown) are accommodated in the rear portion or the lower portion of the riding portion 11 or the main body portion 20.
 そして、座席11aの前方には、操縦装置41が配設されている。該操縦装置41には、操舵装置としてのハンドルバー41a、速度メータ等のメータ、インジケータ、スイッチ等の操縦に必要な部材が配設されている。乗員は、前記ハンドルバー41a及びその他の部材を操作して、車両10の走行状態(例えば、進行方向、走行速度、旋回方向、旋回半径等)を指示する。なお、乗員が要求する車体の要求旋回量を出力するための手段である操舵装置として、ハンドルバー41aに代えて他の装置、例えば、ステアリングホイール、ジョグダイヤル、タッチパネル、押しボタン等の装置を操舵装置として使用することもできる。 And, a steering device 41 is disposed in front of the seat 11a. The steering device 41 is provided with members necessary for steering such as a handle bar 41a as a steering device, a meter such as a speed meter, an indicator, and a switch. The occupant operates the handle bar 41a and other members to instruct the traveling state of the vehicle 10 (for example, traveling direction, traveling speed, turning direction, turning radius, etc.). As a steering device that is a means for outputting the required turning amount of the vehicle body requested by the occupant, other devices such as a steering wheel, a jog dial, a touch panel, and a push button are used instead of the handle bar 41a as the steering device. It can also be used as
 また、前記操縦装置41は、要求旋回量を検出する要求旋回量検出手段としての操舵角センサ53を備える。該操舵角センサ53は、ハンドルバー41aと前輪フォーク17の上端とを接続する図示されない操舵軸部材の、搭乗部11が備えるフレーム部材に対する回転角度、すなわち、操舵角の変化を検出するセンサであり、例えば、エンコーダ等から成る。そして、前記操舵角センサ53によって、ハンドルバー41aの操舵量、すなわち、要求旋回量としての操舵装置の操舵量を検出することができる。 Further, the steering device 41 includes a steering angle sensor 53 as a required turning amount detection means for detecting the required turning amount. The steering angle sensor 53 is a sensor that detects a rotation angle of a steering shaft member (not shown) that connects the handle bar 41a and the upper end of the front wheel fork 17 with respect to a frame member included in the riding section 11, that is, a change in the steering angle. For example, an encoder. The steering angle sensor 53 can detect the steering amount of the handle bar 41a, that is, the steering amount of the steering device as the required turning amount.
 なお、車輪12Fは、サスペンション装置(懸架装置)の一部である前輪フォーク17を介して搭乗部11に接続されている。前記サスペンション装置は、例えば、一般的なオートバイ、自転車等において使用されている前輪用のサスペンション装置と同様の装置であり、前記前輪フォーク17は、例えば、スプリングを内蔵したテレスコピックタイプのフォークである。そして、一般的なオートバイ、自転車等の場合と同様に、乗員によるハンドルバー41aの操作に応じて操舵輪としての車輪12Fは舵角を変化させ、これにより、車両10の進行方向が変化する。 The wheel 12F is connected to the riding section 11 via a front wheel fork 17 which is a part of a suspension device (suspension device). The suspension device is a device similar to a suspension device for front wheels used in, for example, general motorcycles, bicycles, and the like, and the front wheel fork 17 is, for example, a telescopic type fork with a built-in spring. As in the case of a general motorcycle, bicycle, etc., the wheel 12F as the steered wheel changes the steering angle in accordance with the operation of the handlebar 41a by the occupant, thereby changing the traveling direction of the vehicle 10.
 具体的には、前記ハンドルバー41aは、図示されない操舵軸部材の上端に接続され、操舵軸部材の下端には前輪フォーク17の上端が接続されている。前記操舵軸部材は、上端が下端よりも後方に位置するように斜めに傾斜した状態で、搭乗部11が備える図示されないフレーム部材に、回転可能に取り付けられている。また、前輪である車輪12Fの車軸と後輪である左右の車輪12L及び12Rの車軸との距離、すなわち、ホイールベースはLである。 Specifically, the handle bar 41a is connected to the upper end of a steering shaft member (not shown), and the upper end of the front wheel fork 17 is connected to the lower end of the steering shaft member. The steering shaft member is rotatably attached to a frame member (not shown) included in the riding section 11 in a state where the steering shaft member is inclined obliquely so that the upper end is located behind the lower end. The distance between the left and right wheels 12L and 12R axle is the axle and the rear wheel of the wheel 12F is a front wheel, i.e., the wheel base is L H.
 さらに、車輪12Fの車軸を支持する前輪フォーク17の下端には、車両10の走行速度である車速を検出する車速検出手段としての車速センサ54が配設されている。該車速センサ54は、車輪12Fの回転速度に基づいて車速を検出するセンサであり、例えば、エンコーダ等から成る。 Furthermore, a vehicle speed sensor 54 as a vehicle speed detecting means for detecting the vehicle speed that is the traveling speed of the vehicle 10 is disposed at the lower end of the front wheel fork 17 that supports the axle of the wheel 12F. The vehicle speed sensor 54 is a sensor that detects the vehicle speed based on the rotational speed of the wheel 12F, and includes, for example, an encoder.
 本実施の形態において、車両10は横加速度センサ44を有する。該横加速度センサ44は、一般的な加速度センサ、ジャイロセンサ等から成るセンサであって、車両10の横加速度、すなわち、車体の幅方向としての横方向(図3における左右方向)の加速度を検出する。 In the present embodiment, the vehicle 10 has a lateral acceleration sensor 44. The lateral acceleration sensor 44 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like, and detects the lateral acceleration of the vehicle 10, that is, the acceleration in the lateral direction (horizontal direction in FIG. 3) as the width direction of the vehicle body. To do.
 車両10は、旋回時に車体を旋回内側に傾斜させて安定させるので、車体を傾斜させることによって、旋回時の旋回外側への遠心力と重力とが釣り合うような角度になるように制御される。このような制御を行うことによって、例えば、路面18が進行方向と垂直な方向(進行方向に対する左右方向)に傾斜していたとしても、常に車体を水平に保つことが可能になる。これにより、車体及び乗員には、見かけ上、常に重力が鉛直下向きにかかっていることになり、違和感が低減され、また、車両10の安定性が向上する。 Since the vehicle 10 is stabilized by tilting the vehicle body toward the inside of the turn when turning, the vehicle 10 is controlled so that the centrifugal force to the outside of the turn and the gravity are balanced with each other by tilting the vehicle body. By performing such control, for example, even if the road surface 18 is inclined in a direction perpendicular to the traveling direction (left and right direction with respect to the traveling direction), the vehicle body can always be kept horizontal. As a result, the vehicle body and the occupant are apparently always subjected to gravity downward in the vertical direction, the sense of incongruity is reduced, and the stability of the vehicle 10 is improved.
 そこで、本実施の形態においては、傾斜する車体の横方向の加速度を検出するために、横加速度センサ44を車体に取り付け、横加速度センサ44の出力がゼロとなるようにフィードバック制御を行う。これにより、旋回時に作用する遠心力と重力とが釣り合う傾斜角まで、車体を傾斜させることができる。また、進行方向と垂直な方向に路面18が傾斜している場合でも、車体が鉛直になる傾斜角となるように制御することができる。なお、前記横加速度センサ44は、車体の幅方向の中心、すなわち、車体の縦方向軸線上に位置するように配設されている。 Therefore, in the present embodiment, in order to detect the lateral acceleration of the leaning vehicle body, the lateral acceleration sensor 44 is attached to the vehicle body, and feedback control is performed so that the output of the lateral acceleration sensor 44 becomes zero. As a result, the vehicle body can be tilted to an inclination angle at which the centrifugal force acting during turning and gravity are balanced. Further, even when the road surface 18 is inclined in a direction perpendicular to the traveling direction, the vehicle body can be controlled to have an inclination angle that makes the vehicle body vertical. The lateral acceleration sensor 44 is disposed so as to be positioned at the center in the width direction of the vehicle body, that is, on the longitudinal axis of the vehicle body.
 しかし、横加速度センサ44が1つであると、不要加速度成分をも検出してしまうことがある。例えば、車両10の走行中、路面18の窪(くぼ)みに左右の車輪12L及び12Rのいずれか一方のみが落下する場合があり得る。この場合、車体が傾斜するので、横加速度センサ44は、周方向に変位し、周方向の加速度を検出することになる。つまり、遠心力や重力に直接由来しない加速度成分、すなわち、不要加速度成分が検出されてしまう。 However, if there is one lateral acceleration sensor 44, an unnecessary acceleration component may be detected. For example, while the vehicle 10 is traveling, only one of the left and right wheels 12L and 12R may fall into the depression on the road surface 18. In this case, since the vehicle body is tilted, the lateral acceleration sensor 44 is displaced in the circumferential direction and detects the acceleration in the circumferential direction. That is, an acceleration component that is not directly derived from centrifugal force or gravity, that is, an unnecessary acceleration component is detected.
 また、車両10は、例えば、車輪12L及び12Rのタイヤ部分のように弾性を備え、ばねとして機能する部分を含み、また、各部材の接続部等に不可避的なガタが含まれる。そのため、横加速度センサ44は、不可避的なガタやばねを介して車体に取り付けられていると考えられるので、ガタやばねの変位によって生じる加速度をも不要加速度成分として検出してしまう。 Further, for example, the vehicle 10 includes a portion that functions as a spring with elasticity such as the tire portions of the wheels 12L and 12R, and includes inevitable backlash at the connection portions of each member. For this reason, the lateral acceleration sensor 44 is considered to be attached to the vehicle body through inevitable play and springs, and therefore acceleration generated by the displacement of the play and springs is also detected as an unnecessary acceleration component.
 このような不要加速度成分は、車体傾斜制御システムの制御性を悪化させる可能性がある。例えば、車体傾斜制御システムの制御ゲインを大きくすると、不要加速度成分に起因する制御系の振動、発散等が発生するので、応答性を向上させようとしても制御ゲインを大きくすることができなくなってしまう。 Such an unnecessary acceleration component may deteriorate the controllability of the vehicle body tilt control system. For example, if the control gain of the vehicle body tilt control system is increased, control system vibration, divergence, and the like due to unnecessary acceleration components occur, so that it is not possible to increase the control gain even if responsiveness is to be improved. .
 そこで、本実施の形態においては、横加速度センサ44が複数であって、互いに異なる高さに配設されている。図1及び3に示される例において、横加速度センサ44は、第1横加速度センサ44a及び第2横加速度センサ44bの2つであって、第1横加速度センサ44aと第2横加速度センサ44bとは互いに異なる高さ位置に配設されている。第1横加速度センサ44a及び第2横加速度センサ44bの位置を適切に選択することで、効果的に不要加速度成分を取り除くことができる。 Therefore, in the present embodiment, there are a plurality of lateral acceleration sensors 44, which are arranged at different heights. In the example shown in FIGS. 1 and 3, there are two lateral acceleration sensors 44, a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b, which are a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b. Are arranged at different height positions. By appropriately selecting the positions of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, unnecessary acceleration components can be effectively removed.
 具体的には、図3(a)に示されるように、第1横加速度センサ44aは、搭乗部11の背面において、路面18からの距離、すなわち、高さがLの位置に配設されている。また、第2横加速度センサ44bは、搭乗部11の背面又は本体部20の上面において、路面18からの距離、すなわち、高さがLの位置に配設されている。なお、L>Lである。そして、旋回走行時に、図3(b)に示されるように、車体を旋回内側(図において右側)に傾けた状態で旋回すると、第1横加速度センサ44aは、横方向の加速度を検出して検出値aを出力し、第2横加速度センサ44bは、横方向の加速度を検出して検出値aを出力する。なお、車体が傾く際の傾斜運動の中心、すなわち、ロール中心は、厳密には路面18よりわずかに下方に位置するが、実際上は、概略路面18と等しい位置であると考えられる。 Specifically, as shown in FIG. 3 (a), the first lateral acceleration sensor 44a is in the back of the riding section 11, the distance from the road surface 18, i.e., is disposed at the position of L 1 Height ing. The second lateral acceleration sensor 44b is the upper surface of the rear or body portion 20 of the riding portion 11, the distance from the road surface 18, i.e., is disposed at a position of L 2 height. Note that L 1 > L 2 . When turning, when the vehicle is turned with the vehicle body tilted inward (right side in the drawing) as shown in FIG. 3B, the first lateral acceleration sensor 44a detects the lateral acceleration. The detection value a 1 is output, and the second lateral acceleration sensor 44b detects the lateral acceleration and outputs the detection value a 2 . Although the center of the tilting motion when the vehicle body tilts, that is, the roll center, is strictly located slightly below the road surface 18, it is considered that the center is substantially equal to the road surface 18 in practice.
 前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、十分に剛性の高い部材に取り付けられることが望ましい。また、LとLとの差は、小さいと検出値a及びaの差が小さくなるので、十分に大きいこと、例えば、0.3〔m〕以上、とすることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、リンク機構30よりも上方に配設されることが望ましい。さらに、車体がサスペンション等のばねで支持されている場合、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、いわゆる「ばね上」に配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、前輪である車輪12Fの車軸と後輪である車輪12L及び12Rの車軸との間に配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、可能な限り乗員の近くに配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、上側から観て進行方向に延在する車両中心軸上に位置すること、すなわち、進行方向に関してオフセットされないことが望ましい。 It is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are attached to a sufficiently rigid member. Further, if the difference between L 1 and L 2 is small, the difference between the detection values a 1 and a 2 is small. Therefore, it is desirable that the difference be sufficiently large, for example, 0.3 [m] or more. Furthermore, it is desirable that both the first lateral acceleration sensor 44 a and the second lateral acceleration sensor 44 b are disposed above the link mechanism 30. Further, when the vehicle body is supported by a spring such as a suspension, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are arranged on a so-called “spring top”. Further, it is desirable that the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are both disposed between the axle of the front wheel 12F and the axle of the rear wheels 12L and 12R. Furthermore, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are disposed as close to the occupant as possible. Furthermore, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are located on the vehicle center axis extending in the traveling direction when viewed from above, that is, not offset with respect to the traveling direction.
 また、本実施の形態における車両10は、制御装置の一部としての車体傾斜制御システムを有する。該車体傾斜制御システムは、一種のコンピュータシステムであり、ECU(Electronic Control Unit)等から成る傾斜制御装置を備える。該傾斜制御装置は、プロセッサ等の演算手段、磁気ディスク、半導体メモリ等の記憶手段、入出力インターフェイス等を備え、リンク角センサ25a、横加速度センサ44、操舵角センサ53、車速センサ54及びリンクモータ25に接続されている。そして、前記傾斜制御装置は、リンクモータ25を作動させるためのトルク指令値を出力する。 Also, the vehicle 10 in the present embodiment has a vehicle body tilt control system as a part of the control device. The vehicle body tilt control system is a kind of computer system, and includes a tilt control device including an ECU (Electronic Control Unit). The tilt control device includes arithmetic means such as a processor, storage means such as a magnetic disk and semiconductor memory, an input / output interface, and the like, and includes a link angle sensor 25a, a lateral acceleration sensor 44, a steering angle sensor 53, a vehicle speed sensor 54, and a link motor. 25. Then, the tilt control device outputs a torque command value for operating the link motor 25.
 前記傾斜制御装置は、旋回走行の際には、フィードバック制御及びフィードフォワード制御を行い、車体の傾斜角度が、横加速度センサ44が検出する横加速度の値がゼロとなるような角度になるように、リンクモータ25を作動させる。つまり、旋回外側への遠心力と重力とが釣り合って、横方向の加速度成分がゼロとなるような角度になるように、車体の傾斜角度を制御する。これにより、車体及び搭乗部11に搭乗している乗員には、車体の縦方向軸線と平行な方向の力が作用することとなる。したがって、車体の安定を維持することができ、また、旋回性能を向上させることができる。 The tilt control device performs feedback control and feedforward control during turning, so that the tilt angle of the vehicle body is such that the value of the lateral acceleration detected by the lateral acceleration sensor 44 becomes zero. Then, the link motor 25 is operated. That is, the tilt angle of the vehicle body is controlled so that the centrifugal force to the outside of the turn and gravity are balanced and the lateral acceleration component becomes zero. As a result, a force in a direction parallel to the longitudinal axis of the vehicle body acts on the vehicle body and the occupant on the riding section 11. Therefore, the stability of the vehicle body can be maintained and the turning performance can be improved.
 また、傾斜方向への外乱を受けたときには、車体の傾斜角度の変化のうちの外乱による部分を抽出し、残余の部分に対しては通常モードで車体の傾斜角度を制御するとともに、抽出した部分に対しては外乱対応モードで車体の傾斜角度を制御する。したがって、外乱を受けたときでも、車体の安定を維持することができる。また、乗員が違和感を感じることがなく、乗り心地が向上する。 Also, when a disturbance in the tilt direction is received, a part due to the disturbance in the change in the tilt angle of the vehicle body is extracted, and for the remaining part, the tilt angle of the vehicle body is controlled in the normal mode, and the extracted part In contrast, the vehicle body tilt angle is controlled in the disturbance response mode. Therefore, the stability of the vehicle body can be maintained even when subjected to disturbance. In addition, the rider does not feel discomfort and the ride comfort is improved.
 次に、前記車体傾斜制御システムの構成について説明する。 Next, the configuration of the vehicle body tilt control system will be described.
 図4は本発明の第1の実施の形態における車体傾斜制御システムの構成を示すブロック図である。 FIG. 4 is a block diagram showing the configuration of the vehicle body tilt control system according to the first embodiment of the present invention.
 図において、46は傾斜制御装置としての傾斜制御ECUであり、リンク角センサ25a、第1横加速度センサ44a、第2横加速度センサ44b、操舵角センサ53、車速センサ54及びリンクモータ25に接続されている。また、前記傾斜制御ECU46は、横加速度演算部48、横加速度推定部49、外乱演算部43、傾斜制御部47及びリンクモータ制御部42を備える。 In the figure, 46 is an inclination control ECU as an inclination control device, and is connected to a link angle sensor 25a, a first lateral acceleration sensor 44a, a second lateral acceleration sensor 44b, a steering angle sensor 53, a vehicle speed sensor 54, and a link motor 25. ing. The tilt control ECU 46 includes a lateral acceleration calculation unit 48, a lateral acceleration estimation unit 49, a disturbance calculation unit 43, a tilt control unit 47, and a link motor control unit 42.
 ここで、前記横加速度演算部48は、第1横加速度センサ44a及び第2横加速度センサ44bが検出した横加速度に基づいて合成横加速度を算出する。また、前記横加速度推定部49は、操舵角センサ53が検出した操舵角、及び、車速センサ54が検出した車速に基づいて車体に作用する横加速度予測値を算出する。さらに、前記外乱演算部43は、第1横加速度センサ44aが検出した横加速度、及び、リンク角センサ25aが検出したリンク角に基づいて外乱分のロールレートを算出する。 Here, the lateral acceleration calculation unit 48 calculates a combined lateral acceleration based on the lateral acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. The lateral acceleration estimation unit 49 calculates a predicted lateral acceleration value acting on the vehicle body based on the steering angle detected by the steering angle sensor 53 and the vehicle speed detected by the vehicle speed sensor 54. Further, the disturbance calculation unit 43 calculates a roll rate for the disturbance based on the lateral acceleration detected by the first lateral acceleration sensor 44a and the link angle detected by the link angle sensor 25a.
 そして、前記傾斜制御部47は、横加速度演算部48が算出した合成横加速度、横加速度推定部49が算出した横加速度予測値、及び、外乱演算部43が算出した外乱分のロールレートに基づいて制御値としての速度指令値を演算して出力する。また、前記リンクモータ制御部42は、傾斜制御部47が出力した速度指令値に基づいてリンクモータ25を作動させるための制御値としてのトルク指令値を出力する。 The tilt controller 47 is based on the combined lateral acceleration calculated by the lateral acceleration calculator 48, the predicted lateral acceleration calculated by the lateral acceleration estimator 49, and the roll rate of disturbance calculated by the disturbance calculator 43. The speed command value as the control value is calculated and output. Further, the link motor control unit 42 outputs a torque command value as a control value for operating the link motor 25 based on the speed command value output from the inclination control unit 47.
 次に、前記構成の車両10の動作について説明する。まず、旋回走行における車体傾斜制御処理の動作の一部である横加速度演算処理の動作について説明する。 Next, the operation of the vehicle 10 having the above configuration will be described. First, the operation of the lateral acceleration calculation process, which is a part of the operation of the vehicle body tilt control process in turning, will be described.
 図5は本発明の第1の実施の形態における旋回走行時の車体の傾斜動作を説明する力学モデルを示す図、図6は本発明の第1の実施の形態における横加速度演算処理の動作を示すフローチャートである。 FIG. 5 is a diagram showing a dynamic model for explaining the tilting operation of the vehicle body when turning in the first embodiment of the present invention, and FIG. 6 shows the operation of the lateral acceleration calculation processing in the first embodiment of the present invention. It is a flowchart to show.
 旋回走行が開始されると、車体傾斜制御システムは車体傾斜制御処理を開始する。姿勢制御が行われることで、車両10は、リンク機構30によって、旋回走行時には、図3(b)に示されるように、車体を旋回内側(図において右側)に傾けた状態で旋回する。また、旋回走行時には、旋回外側への遠心力が車体に作用するとともに、車体を旋回内側に傾けたことによって重力の横方向成分が発生する。そして、横加速度演算部48は、横加速度演算処理を実行し、合成横加速度aを算出して傾斜制御部47に出力する。すると、該傾斜制御部47は、フィードバック制御を行い、合成横加速度aの値がゼロとなるような制御値としての速度指令値を出力する。そして、リンクモータ制御部42は、傾斜制御部47が出力した速度指令値に基づいてトルク指令値をリンクモータ25に出力する。 When the turning traveling is started, the vehicle body tilt control system starts the vehicle body tilt control process. By performing posture control, the vehicle 10 turns with the link mechanism 30 in a state where the vehicle body is tilted inward (right side in the drawing) as shown in FIG. Further, during turning, a centrifugal force to the outside of the turning acts on the vehicle body, and a lateral component of gravity is generated by tilting the vehicle body to the inside of the turn. Then, the lateral acceleration calculation unit 48 executes a lateral acceleration calculation process, calculates a combined lateral acceleration a, and outputs it to the tilt control unit 47. Then, the inclination control unit 47 performs feedback control, and outputs a speed command value as a control value such that the value of the combined lateral acceleration a becomes zero. Then, the link motor control unit 42 outputs a torque command value to the link motor 25 based on the speed command value output from the inclination control unit 47.
 なお、車体傾斜制御処理は、車両10の電源が投入されている間、車体傾斜制御システムによって繰り返し所定の制御周期T(例えば、5〔ms〕)で実行される処理であり、旋回時において、旋回性能の向上と乗員の快適性の確保とを図る処理である。 The vehicle body tilt control process is a process that is repeatedly executed by the vehicle body tilt control system at a predetermined control cycle T S (for example, 5 [ms]) while the vehicle 10 is turned on. This is a process for improving turning performance and ensuring passenger comfort.
 なお、図5において、44Aは車体において第1横加速度センサ44aの配設された位置を示す第1センサ位置であり、44Bは車体において第2横加速度センサ44bの配設された位置を示す第2センサ位置である。 In FIG. 5, 44A is a first sensor position indicating the position where the first lateral acceleration sensor 44a is disposed on the vehicle body, and 44B is a first position indicating the position where the second lateral acceleration sensor 44b is disposed on the vehicle body. Two sensor positions.
 第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する加速度は、〈1〉旋回時に車体に作用する遠心力、〈2〉車体を旋回内側に傾けたことによって発生する重力の横方向成分、〈3〉左右の車輪12L及び12Rのいずれか一方のみが路面18の窪みに落下することによる車体の傾斜、ガタやばねの変位等により第1横加速度センサ44a及び第2横加速度センサ44bが周方向に変位することによって生じる加速度、並びに、〈4〉リンクモータ25の作動又はその反作用により第1横加速度センサ44a及び第2横加速度センサ44bが周方向に変位することによって生じる加速度、の4つであると考えられる。これら4つの加速度のうち、前記〈1〉及び〈2〉は、第1横加速度センサ44a及び第2横加速度センサ44bの高さ、すなわち、L及びLと無関係である。一方、前記〈3〉及び〈4〉は、周方向に変位することによって生じる加速度であるから、ロール中心からの距離に比例する、すなわち、概略L及びLに比例する。 The acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b and outputting the detected value is <1> centrifugal force acting on the vehicle body when turning, and <2> tilting the vehicle body toward the inside of the turn. The lateral component of the generated gravity, <3> the first lateral acceleration sensor 44a and the like due to the inclination of the vehicle body, the backlash or the displacement of the spring, etc., when only one of the left and right wheels 12L and 12R falls into the depression of the road surface 18; The acceleration generated by the displacement of the second lateral acceleration sensor 44b in the circumferential direction, and the <4> operation of the link motor 25 or the reaction thereof causes the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b to be displaced in the circumferential direction. It is considered that there are four accelerations caused by this. Of these four acceleration, the <1> and <2>, the height of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, that is, independent of L 1 and L 2. On the other hand, since <3> and <4> are accelerations generated by displacement in the circumferential direction, they are proportional to the distance from the roll center, that is, roughly proportional to L 1 and L 2 .
 ここで、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈3〉の加速度をaX1及びaX2とし、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈4〉の加速度をaM1及びaM2とする。また、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈1〉の加速度をaとし、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈2〉の加速度をaとする。なお、前記〈1〉及び〈2〉は、第1横加速度センサ44a及び第2横加速度センサ44bの高さに無関係なので、第1横加速度センサ44a及び第2横加速度センサ44bの検出値は等しい。 Here, the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44a and the second lateral acceleration sensor 44b detect and output the detected value. The acceleration <3> is defined as a X1 and a X2, and the first lateral acceleration sensor 44a and the second lateral acceleration. The acceleration of <4>, which is detected by the sensor 44b and outputs the detected value, is a M1 and a M2 . Further, the acceleration of <1> to the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b outputs the detected value detected by the a T, a first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b is detected Then, the acceleration of <2> that outputs the detected value is defined as a G. Since <1> and <2> are irrelevant to the heights of the first and second lateral acceleration sensors 44a and 44b, the detection values of the first and second lateral acceleration sensors 44a and 44b are equal. .
 そして、左右の車輪12L及び12Rのいずれか一方のみが路面18の窪みに落下することによる車体の傾斜、ガタやばねの変位等による周方向の変位の角速度をωとし、その角加速度をω’とする。また、リンクモータ25の作動又はその反作用による周方向の変位の角速度をωとし、その角加速度をω’とする。なお、角速度ω又は角加速度ω’は、リンク角センサ25aの検出値から取得することができる。 Then, only one of the left and right wheels 12L and 12R are inclined in the vehicle body due to the fall in a recess of a road surface 18, the angular velocity omega R the circumferential direction of displacement by the displacement or the like of Gataya spring, the angular acceleration omega Let R '. Further, the angular velocity of the circumferential displacement due to the operation of the link motor 25 or its reaction is ω M , and the angular acceleration is ω M ′. The angular velocity ω M or the angular acceleration ω M ′ can be obtained from the detection value of the link angle sensor 25a.
 すると、aX1=Lω’、aX2=Lω’、aM1=Lω’、aM2=Lω’となる。 Then, a X1 = L 1 ω R ′, a X2 = L 2 ω R ′, a M1 = L 1 ω M ′, a M2 = L 2 ω M ′.
 また、第1横加速度センサ44a及び第2横加速度センサ44bが検出して出力する加速度の検出値をa及びaとすると、a及びaは、4つの加速度〈1〉~〈4〉の合計であるから、次の式(1)及び(2)で表される。
=a+a+Lω’+Lω’ ・・・式(1)
=a+a+Lω’+Lω’ ・・・式(2)
 そして、式(1)から式(2)を減算すると、次の式(3)を得ることができる。
-a=(L-L)ω’+(L-L)ω’ ・・・式(3)
 ここで、L及びLの値は、第1横加速度センサ44a及び第2横加速度センサ44bの高さであるから既知である。また、ω’の値は、リンクモータ25の角速度ωの微分値であるから既知である。すると、前記式(3)の右辺においては、第1項のω’の値のみが未知であり、他の値はすべて既知である。したがって、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a及びaから、ω’の値を得ることが可能である。つまり、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a及びaに基づいて、不要加速度成分を取り除くことができる。
If the detected acceleration values detected and output by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are a 1 and a 2 , a 1 and a 2 are four accelerations <1> to <4. It is represented by the following formulas (1) and (2).
a 1 = a T + a G + L 1 ω R '+ L 1 ω M' ··· formula (1)
a 2 = a T + a G + L 2 ω R '+ L 2 ω M' ··· (2)
Then, by subtracting equation (2) from equation (1), the following equation (3) can be obtained.
a 1 −a 2 = (L 1 −L 2 ) ω R ′ + (L 1 −L 2 ) ω M ′ Equation (3)
Here, the values of L 1 and L 2 are known because they are the heights of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. The value of ω M ′ is known because it is a differential value of the angular velocity ω M of the link motor 25. Then, on the right side of the equation (3), only the value of ω R ′ of the first term is unknown, and all other values are known. Therefore, the value of ω R ′ can be obtained from the detection values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. That is, unnecessary acceleration components can be removed based on the detection values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
 車体傾斜制御システムが車体傾斜制御処理を開始すると、横加速度演算部48は、横加速度演算処理を開始し、まず、第1横加速度センサ値aを取得するとともに(ステップS1)、第2横加速度センサ値aを取得する(ステップS2)。そして、横加速度演算部48は、加速度差Δaを算出する(ステップS3)。該Δaは次の式(4)によって表される。
Δa=a-a ・・・式(4)
 続いて、横加速度演算部48は、ΔL呼出を行うとともに(ステップS4)、L呼出を行う(ステップS5)。前記ΔLは次の式(5)によって表される。
ΔL=L-L ・・・式(5)
 続いて、横加速度演算部48は、合成横加速度aを算出する(ステップS6)。なお、合成横加速度aは、横加速度センサ44が1つである場合における横加速度センサ値aに相当する値であって、第1横加速度センサ値aと第2横加速度センサ値aとを合成した値であり、次の式(6)及び(7)によって得られる。
a=a-(L/ΔL)Δa ・・・式(6)
a=a-(L/ΔL)Δa ・・・式(7)
 理論上は、式(6)によっても式(7)によっても、同じ値を得ることができるが、周方向の変位によって生じる加速度はロール中心からの距離に比例するので、実際上は、ロール中心により近い方の横加速度センサ44、すなわち、第2横加速度センサ44bの検出値であるaを基準にすることが望ましい。そこで、本実施の形態においては、式(6)によって合成横加速度aを算出することとする。
When the vehicle body tilt control system starts the vehicle body tilt control process, the lateral acceleration calculation unit 48 starts the lateral acceleration calculation process, and first acquires the first lateral acceleration sensor value a 1 (step S1) and the second lateral acceleration calculation process. An acceleration sensor value a 2 is acquired (step S2). Then, the lateral acceleration calculation unit 48 calculates the acceleration difference Δa (step S3). The Δa is expressed by the following equation (4).
Δa = a 1 −a 2 Formula (4)
Then, the lateral acceleration calculation unit 48 performs ΔL call (step S4), and performs the L 2 call (step S5). The ΔL is expressed by the following equation (5).
ΔL = L 1 −L 2 Formula (5)
Subsequently, the lateral acceleration calculation unit 48 calculates a combined lateral acceleration a (step S6). Incidentally, the synthetic lateral acceleration a lateral acceleration sensor 44 is a value corresponding to the lateral acceleration sensor value a when the one, first lateral acceleration sensor value a 1 and the second lateral acceleration sensor value a 2 Is obtained by the following equations (6) and (7).
a = a 2 − (L 2 / ΔL) Δa (6)
a = a 1 − (L 1 / ΔL) Δa (7)
Theoretically, the same value can be obtained by both equation (6) and equation (7), but since the acceleration caused by the circumferential displacement is proportional to the distance from the roll center, in practice, the roll center It is desirable to use a 2 which is a detection value of the lateral acceleration sensor 44 closer to the second lateral acceleration sensor 44b as a reference. Therefore, in the present embodiment, the combined lateral acceleration a is calculated by Expression (6).
 最後に、横加速度演算部48は、傾斜制御部47へ合成横加速度aを送出して(ステップS7)、横加速度演算処理を終了する。 Finally, the lateral acceleration calculation unit 48 sends the combined lateral acceleration a to the tilt control unit 47 (step S7), and ends the lateral acceleration calculation process.
 このように、本実施の形態においては、第1横加速度センサ44aと第2横加速度センサ44bとを互いに異なる高さ位置に配設し、第1横加速度センサ値aと第2横加速度センサ値aとを合成した合成横加速度aを算出し、該合成横加速度aの値がゼロとなるように、フィードバック制御を行って車体の傾斜角度を制御する。 Thus, in this embodiment, a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b is placed in different height positions, a first lateral acceleration sensor value a 1 and the second lateral acceleration sensor A combined lateral acceleration a obtained by combining the value a 2 is calculated, and feedback control is performed so that the value of the combined lateral acceleration a becomes zero to control the tilt angle of the vehicle body.
 これにより、不要加速度成分を取り除くことができるので、路面状況の影響を受けることがなく、制御系の振動、発散等の発生を防止することができ、車体傾斜制御システムの制御ゲインを大きくして制御の応答性を向上させることができる。 As a result, unnecessary acceleration components can be removed, so that it is not affected by road surface conditions, the occurrence of vibrations and divergence of the control system can be prevented, and the control gain of the vehicle body tilt control system is increased. Control responsiveness can be improved.
 なお、本実施の形態においては、横加速度センサ44が2つである場合について説明したが、横加速度センサ44は、複数であって互いに異なる高さに配設されていれば、3つ以上であってもよく、いくつであってもよい。 In the present embodiment, the case where there are two lateral acceleration sensors 44 has been described. However, if there are a plurality of lateral acceleration sensors 44 arranged at different heights, the number of lateral acceleration sensors 44 is three or more. There may be any number.
 次に、旋回走行における横加速度を推定する横加速度推定処理の動作について説明する。 Next, the operation of the lateral acceleration estimation process for estimating the lateral acceleration in cornering will be described.
 図7は本発明の第1の実施の形態における横加速度推定処理の動作を示すフローチャート、図8は本発明の第1の実施の形態におけるフィルタ処理のサブルーチンを示すフローチャートである。 FIG. 7 is a flowchart showing the operation of lateral acceleration estimation processing in the first embodiment of the present invention, and FIG. 8 is a flowchart showing a subroutine of filter processing in the first embodiment of the present invention.
 車体傾斜制御システムが車体傾斜制御処理を開始すると、横加速度推定部49は横加速度推定処理を開始する。横加速度推定部49は、まず、操舵角センサ53が検出した操舵角の値である操舵角センサ値θを取得するとともに(ステップS11)、車速センサ54が検出した車速の値である車速センサ値νを取得する(ステップS12)。 When the vehicle body tilt control system starts the vehicle body tilt control process, the lateral acceleration estimation unit 49 starts the lateral acceleration estimation process. The lateral acceleration estimation unit 49 first acquires the steering angle sensor value θ that is the value of the steering angle detected by the steering angle sensor 53 (step S11), and the vehicle speed sensor value that is the value of the vehicle speed detected by the vehicle speed sensor 54. ν is acquired (step S12).
 そして、横加速度推定部49は、θに対してフィルタ処理を実行し(ステップS13)、Ψ(t)を算出する。Ψ(t)は、速度によるカットオフ周波数可変ローパスフィルタによってフィルタ処理された操舵角である。 Then, the lateral acceleration estimation unit 49 performs a filtering process on θ (step S13) and calculates Ψ (t). Ψ (t) is the steering angle filtered by the cut-off frequency variable low-pass filter according to speed.
 フィルタ処理において、横加速度推定部49は、まず、制御周期Tを取得する(ステップS13-1)。 In the filter process, the lateral acceleration estimation unit 49 first acquires a control cycle T S (step S13-1).
 続いて、横加速度推定部49は、カットオフ周波数w(ν)を算出する(ステップS13-2)。該w(ν)は、速度別のカットオフ周波数であり、入力が車速νであって出力がカットオフ周波数となる関数である。例えば、車速に反比例する関数であるが、いかなる関数であってもよい。なお、入力である車速νと出力であるカットオフ周波数との関係を示すテーブルをあらかじめ作成し、該テーブルを参照することによって、演算を行うことなく、カットオフ周波数w(ν)を取得することもできる。 Subsequently, the lateral acceleration estimation unit 49 calculates a cutoff frequency w (ν) (step S13-2). The w (ν) is a cutoff frequency for each speed, and is a function in which the input is the vehicle speed ν and the output is the cutoff frequency. For example, the function is inversely proportional to the vehicle speed, but any function may be used. It should be noted that a table showing the relationship between the input vehicle speed ν and the output cutoff frequency is created in advance, and the cutoff frequency w (ν) is obtained without performing calculations by referring to the table. You can also.
 続いて、横加速度推定部49は、Ψold 呼出を行う(ステップS13-3)。Ψold は、前回の車体傾斜制御処理実行時に保存されたΨ(t)の値である。なお、初期設定においては、Ψold =0とされている。 Subsequently, the lateral acceleration estimation unit 49 makes a Ψ old call (step S13-3). Ψ old is the value of Ψ (t) stored when the previous vehicle body tilt control process is executed. In the initial setting, Ψ old = 0.
 続いて、横加速度推定部49は、フィルタ処理された操舵角Ψ(t)を算出する(ステップS13-4)。該Ψ(t)は、次の式(8)によって算出される。
Ψ(t)=Ψold /(1+Tw(ν))+Tw(ν)θ/(1+Tw(ν)) ・・・式(8)
 該式(8)は、バンドパスフィルタとして一般的に使用されるIIR(Infinite Impulse Response)フィルタの式であり、一次遅れ系のローパスフィルタであるカットオフ周波数可変ローパスフィルタを表している。
Subsequently, the lateral acceleration estimation unit 49 calculates the filtered steering angle Ψ (t) (step S13-4). The Ψ (t) is calculated by the following equation (8).
Ψ (t) = Ψ old / (1 + T S w (ν)) + T S w (ν) θ / (1 + T S w (ν)) ··· formula (8)
The equation (8) is an equation of an IIR (Infinite Impulse Response) filter that is generally used as a bandpass filter, and represents a cutoff frequency variable low-pass filter that is a first-order lag low-pass filter.
 そして、横加速度推定部49は、Ψold =Ψ(t)として保存し(ステップS13-5)、フィルタ処理を終了する。つまり、今回の車体傾斜制御処理実行時に算出したΨ(t)の値をΨold として、記憶手段に保存する。 Then, the lateral acceleration estimation unit 49 stores Ψ old = Ψ (t) (step S13-5) and ends the filter process. That is, the value of Ψ (t) calculated when the vehicle body tilt control process is executed is stored in the storage unit as Ψ old .
 続いて、横加速度推定部49は、L呼出を行い(ステップS14)、横加速度予測値aを算出する(ステップS15)。該横加速度予測値aは、次の式(9)によって算出される。
=νtan{Ψ(t)}/L ・・・式(9)
 該式(9)は、ハンドルバー41aの操舵によって生じる横加速度、すなわち、旋回走行によって生じる遠心力を表している。
Then, the lateral acceleration estimation unit 49, L H call was carried out (step S14), and calculates a lateral acceleration estimated value a f (step S15). The lateral acceleration predicted value a f is calculated by the following equation (9).
a f = ν 2 tan {Ψ (t)} / L H Formula (9)
Equation (9) represents the lateral acceleration generated by steering the handlebar 41a, that is, the centrifugal force generated by turning.
 最後に、横加速度推定部49は、傾斜制御部47へ横加速度予測値aを送出して(ステップS16)、横加速度推定処理を終了する。 Finally, the lateral acceleration estimation unit 49 sends the predicted lateral acceleration value a f to the tilt control unit 47 (step S16), and ends the lateral acceleration estimation process.
 このように、本実施の形態においては、合成横加速度aの値がゼロとなるようにフィードバック制御を行うとともに、要求旋回量及び車速から横加速度予測値aを算出し、算出した横加速度予測値aを使用したフィードフォワード制御を行う。 As described above, in the present embodiment, feedback control is performed so that the value of the combined lateral acceleration a becomes zero, the predicted lateral acceleration value a f is calculated from the required turning amount and the vehicle speed, and the calculated lateral acceleration prediction is calculated. Feed-forward control using the value a f is performed.
 これにより、旋回時における車体の傾斜角を横加速度と重力とが釣り合うような角度に適切に制御することができる。また、路面18が横方向に傾斜していても、車体を鉛直に保つことができる。さらに、旋回開始時及び終了時のように、横加速度の変化が大きいときであっても、制御に遅れが発生することがない。このため、車両10の安定性を高く保つことができ、乗員の違和感を低減し、快適性を向上させることができる。 This makes it possible to appropriately control the inclination angle of the vehicle body during turning to an angle that balances the lateral acceleration and gravity. Even if the road surface 18 is inclined in the lateral direction, the vehicle body can be kept vertical. Further, there is no delay in control even when the lateral acceleration changes greatly, such as at the start and end of turning. For this reason, the stability of the vehicle 10 can be kept high, a passenger's discomfort can be reduced, and comfort can be improved.
 また、取得した要求旋回量に、車速によってカットオフ周波数を変化させるローパスフィルタをかけることにより、高速走行時の安定性を確保することができる。 Also, by applying a low-pass filter that changes the cut-off frequency according to the vehicle speed to the acquired required turning amount, it is possible to ensure stability during high-speed driving.
 次に、車体のロールレートのうちの外乱分のロールレートを算出する外乱演算処理の動作について説明する。 Next, the operation of the disturbance calculation process for calculating the roll rate of the disturbance in the roll rate of the vehicle body will be described.
 図9は本発明の第1の実施の形態における外乱演算処理の動作を示すフローチャート、図10は本発明の第1の実施の形態におけるリンク角速度算出処理のサブルーチンを示すフローチャートである。 FIG. 9 is a flowchart showing the operation of disturbance calculation processing in the first embodiment of the present invention, and FIG. 10 is a flowchart showing a subroutine of link angular velocity calculation processing in the first embodiment of the present invention.
 外乱演算部43は、外乱演算処理を開始すると、まず、第1横加速度センサ44aから第1横加速度センサ値aを取得するとともに(ステップS21)、横加速度演算部48から合成横加速度aを取得する(ステップS22)。そして、外乱演算部43は、傾斜加速度aを算出する(ステップS23)。該aは次の式(10)によって表される。
=a-a ・・・式(10)
 そして、外乱演算部43は、算出した傾斜加速度aをリングバッファに保存する(ステップS24)。該リングバッファは、傾斜制御ECU46のメモリ領域に確保されたデータ保持用のバッファである。そして、あらかじめ用意したt秒分のリングバッファに、現在からt秒前までの傾斜加速度aを保存する。
When the disturbance calculation unit 43 starts the disturbance calculation process, the disturbance calculation unit 43 first obtains the first lateral acceleration sensor value a 1 from the first lateral acceleration sensor 44a (step S21), and obtains the combined lateral acceleration a from the lateral acceleration calculation unit 48. Obtain (step S22). The disturbance calculating unit 43 calculates the gradient acceleration a S (step S23). The a S is represented by the following formula (10).
a S = a 1 −a (10)
Then, the disturbance calculation unit 43 stores the calculated inclination acceleration a S in the ring buffer (step S24). The ring buffer is a data holding buffer secured in the memory area of the inclination control ECU 46. Then, the inclination acceleration a S from the present to t seconds before is stored in the ring buffer for t seconds prepared in advance.
 続いて、外乱演算部43は、ロールレートを算出する(ステップS25)。車体のロールレートをωとすると、該ωは、傾斜加速度aを過去t秒分だけ積分することによって算出される。具体的には、ロールレートωは次の式(11)によって算出される。
ω=(Σa)Δt/L ・・・式(11)
 ここで、Σの項は、リングバッファに保存されている傾斜加速度aの値の総和を意味する。また、Δtはサンプリング周期である。なお、リングバッファは、t/Δt個分の保存領域を備える。
Subsequently, the disturbance calculation unit 43 calculates a roll rate (step S25). Assuming that the roll rate of the vehicle body is ω S , the ω S is calculated by integrating the inclination acceleration a S for the past t seconds. Specifically, the roll rate ω S is calculated by the following equation (11).
ω S = (Σa S ) Δt / L 1 Formula (11)
Here, the term Σ means the sum of the values of the inclination acceleration a S stored in the ring buffer. Δt is a sampling period. The ring buffer has t / Δt storage areas.
 なお、前記式(11)は、積分による誤差を緩和するためのものであり、積分領域t、すなわち、積分する時間t秒は、横加速度センサ44の性能等によって変化するので、遅れ等を考慮して、実験的に決定される。 The equation (11) is for alleviating an error due to integration, and the integration region t, that is, the integration time t seconds changes depending on the performance of the lateral acceleration sensor 44 and the like. And determined experimentally.
 続いて、外乱演算部43は、リンク角速度算出処理を実行し(ステップS26)、Δηを算出する。Δηは、リンク機構30のリンク角の角速度であって、リンク角センサ25aが検出したリンク角センサ値ηを微分することによって算出される。 Subsequently, the disturbance calculation unit 43 executes a link angular velocity calculation process (step S26), and calculates Δη. Δη is an angular velocity of the link angle of the link mechanism 30 and is calculated by differentiating the link angle sensor value η detected by the link angle sensor 25a.
 リンク角速度算出処理において、外乱演算部43は、まず、リンク角センサ25aが検出したリンク角センサ値ηを取得する(ステップS26-1)。 In the link angular velocity calculation process, the disturbance calculation unit 43 first acquires the link angle sensor value η detected by the link angle sensor 25a (step S26-1).
 続いて、外乱演算部43は、ηold 呼出を行うとともに(ステップS26-2)、制御周期Tを取得する(ステップS26-3)。ηold は、前回の車体傾斜制御処理実行時に保存されたηの値である。なお、初期設定においては、ηold =0とされている。 Subsequently, the disturbance calculation unit 43 performs the η old call (step S26-2) and acquires the control cycle T S (step S26-3). η old is the value of η saved when the vehicle body tilt control process was executed last time. In the initial setting, η old = 0.
 続いて、外乱演算部43は、ηの微分値、すなわち、Δηを算出する(ステップS26-4)。Δηは、次の式(12)によって算出される。
Δη=(η-ηold )/T ・・・式(12)
 そして、外乱演算部43は、ηold =ηとして保存し(ステップS26-5)、リンク角速度算出処理を終了する。つまり、今回の車体傾斜制御処理実行時に算出したηの値をηold として、記憶手段に保存する。
Subsequently, the disturbance calculation unit 43 calculates a differential value of η, that is, Δη (step S26-4). Δη is calculated by the following equation (12).
Δη = (η−η old ) / T S Formula (12)
Then, the disturbance calculation unit 43 stores η old = η (step S26-5), and ends the link angular velocity calculation process. That is, the value of η calculated at the time of executing the vehicle body tilt control process is stored in the storage unit as η old .
 続いて、外乱演算部43は、外乱分のロールレートを算出する(ステップS27)。外乱分のロールレートをωとすると、該ωは、次の式(13)によって算出される。
ω=ω-Δη ・・・式(13)
 つまり、実際の車体のロールレートωから、リンク機構30のリンク角の角速度Δηを減じることによって外乱分のロールレートωを得ることができる。
Subsequently, the disturbance calculation unit 43 calculates a roll rate for the disturbance (step S27). When the roll rate of disturbance is ω N , ω N is calculated by the following equation (13).
ω N = ω S −Δη (13)
That is, the roll rate ω N for the disturbance can be obtained by subtracting the angular velocity Δη of the link angle of the link mechanism 30 from the actual roll rate ω S of the vehicle body.
 最後に、外乱演算部43は、傾斜制御部47へ外乱分のロールレートωを送出して(ステップS28)、外乱演算処理を終了する。 Finally, the disturbance calculation unit 43 sends the roll rate ω N for the disturbance to the tilt control unit 47 (step S28), and ends the disturbance calculation process.
 このように、本実施の形態においては、横加速度センサ44の一方(具体的には、第1横加速度センサ44a)の検出値aから合成横加速度aを減ずることで、車体の傾斜方向の振動成分、すなわち、傾斜加速度aを得ることができる。さらに、傾斜加速度aを積分した値から、リンク角センサ25aが検出したリンク角センサ値ηを微分した値、すなち、リンク角の角速度Δηを減ずることで、車体の不安定要因となる傾斜方向への外乱分のロールレートωを算出する。換言すると、横加速度から、旋回による遠心力の分力、傾斜による重力の分力、及び、リンクモータ25による傾斜動作で発生する横加速度の3つを減ずることによって、路面の段差、横風等の外乱により車体の傾斜角度の変化を選択的に抽出する。 As described above, in the present embodiment, the composite lateral acceleration a is subtracted from the detection value a 1 of one of the lateral acceleration sensors 44 (specifically, the first lateral acceleration sensor 44a), so that The vibration component, that is, the inclination acceleration a S can be obtained. Further, by deriving the value obtained by differentiating the link angle sensor value η detected by the link angle sensor 25a from the value obtained by integrating the inclination acceleration a S , that is, the angular velocity Δη of the link angle, the vehicle body becomes unstable. The roll rate ω N for the disturbance in the tilt direction is calculated. In other words, by reducing three of the lateral acceleration from the centrifugal force component due to turning, the gravitational component force due to tilt, and the lateral acceleration generated by the tilting operation by the link motor 25, road surface steps, crosswinds, etc. Changes in the tilt angle of the vehicle body are selectively extracted due to disturbance.
 このようにして算出した外乱分のロールレートωを用いて、これに応じた値をリンクモータ25の目標速度に加えることによって、傾斜方向への外乱を受けたときにも、安定した走行状態を得ることができる制御を実現することができる。 By using the roll rate ω N of the disturbance calculated in this way and adding a value corresponding to the roll rate ω N to the target speed of the link motor 25, a stable traveling state even when subjected to disturbance in the tilt direction Can be achieved.
 次に、傾斜制御処理及びリンクモータ制御処理の動作について説明する。 Next, the operation of the tilt control process and the link motor control process will be described.
 図11は本発明の第1の実施の形態におけるゲインの例を示す図、図12は本発明の第1の実施の形態における傾斜制御処理の動作を示すフローチャート、図13は本発明の第1の実施の形態におけるリンクモータ制御処理の動作を示すフローチャートである。 FIG. 11 is a diagram showing an example of the gain in the first embodiment of the present invention, FIG. 12 is a flowchart showing the operation of the tilt control processing in the first embodiment of the present invention, and FIG. 13 is the first diagram of the present invention. It is a flowchart which shows the operation | movement of the link motor control process in the embodiment.
 傾斜制御部47は、傾斜制御処理を開始すると、まず、横加速度演算部48から合成横加速度aを受信する(ステップS31)。 When the tilt control process starts, the tilt control unit 47 first receives the combined lateral acceleration a from the lateral acceleration calculation unit 48 (step S31).
 続いて、傾斜制御部47は、aold 呼出を行う(ステップS32)。aold は、前回の車体傾斜制御処理実行時に保存された合成横加速度aである。なお、初期設定においては、aold =0とされている。 Subsequently, the inclination control unit 47 makes an old call (step S32). a old is the combined lateral acceleration a stored when the vehicle body tilt control process is executed last time. In the initial setting, a old = 0.
 続いて、傾斜制御部47は、制御周期Tを取得し(ステップS33)、aの微分値を算出する(ステップS34)。ここで、aの微分値をΔaとすると、該Δaは次の式(14)によって算出される。
Δa=(a-aold )/T ・・・式(14)
 そして、傾斜制御部47は、aold =aとして保存する(ステップS35)。つまり、今回の車体傾斜制御処理実行時に取得した合成横加速度aをaold として、記憶手段に保存する。
Subsequently, the inclination control unit 47 acquires the control cycle T S (step S33), and calculates a differential value of a (step S34). Here, if the differential value of a is Δa, Δa is calculated by the following equation (14).
Δa = (a−a old ) / T S Formula (14)
And the inclination control part 47 is preserve | saved as aold = a (step S35). That is, the combined lateral acceleration a acquired at the time of execution of the current vehicle body tilt control process is stored as a old in the storage unit.
 続いて、傾斜制御部47は、第1制御値Uを算出する(ステップS36)。ここで、比例制御動作の制御ゲイン、すなわち、比例ゲインをGとすると、第1制御値Uは次の式(15)によって算出される。
=Ga ・・・式(15)
 続いて、傾斜制御部47は、第2制御値Uを算出する(ステップS37)。ここで、微分制御動作の制御ゲイン、すなわち、微分時間をGとすると、第2制御値Uは次の式(16)によって算出される。
=GΔa ・・・式(16)
 続いて、傾斜制御部47は、第3制御値Uを算出する(ステップS38)。該第3制御値Uは、第1制御値Uと第2制御値Uとの合計であり、次の式(17)によって算出される。
U=U+U ・・・式(17)
 なお、前記ステップS31~S38の動作は、合成横加速度aの値がゼロとなるように車体の傾斜角度を制御するフィードバック制御を表している。
Then, tilt control unit 47 calculates the first control value U P (step S36). Here, when the control gain of the proportional control operation, that is, the proportional gain is GP , the first control value UP is calculated by the following equation (15).
U P = G P a ··· formula (15)
Then, tilt control unit 47 calculates the second control value U D (step S37). Here, if the control gain of the differential control operation, that is, the differential time is G D , the second control value U D is calculated by the following equation (16).
U D = G D Δa (16)
Subsequently, the inclination control unit 47 calculates a third control value U (step S38). Third control value U is the sum of the first control value U P and the second control value U D, is calculated by the following equation (17).
U = U P + U D ··· formula (17)
The operations in steps S31 to S38 represent feedback control for controlling the tilt angle of the vehicle body so that the value of the resultant lateral acceleration a becomes zero.
 続いて、傾斜制御部47は、横加速度推定部49から横加速度予測値aを受信する(ステップS39)。 Subsequently, the tilt control unit 47 receives the lateral acceleration predicted value a f from the lateral acceleration estimation unit 49 (step S39).
 続いて、傾斜制御部47は、afold呼出を行う(ステップS40)。afoldは、前回の車体傾斜制御処理実行時に保存された横加速度予測値aである。なお、初期設定においては、afold=0とされている。 Subsequently, the inclination control unit 47 performs a fold call (step S40). a fold is a predicted lateral acceleration value a f stored when the vehicle body tilt control process is executed last time. In the initial setting, a fold = 0.
 続いて、傾斜制御部47は、aの微分値を算出する(ステップS41)。ここで、aの微分値をΔaとすると、該Δaは次の式(18)によって算出される。
Δa=(a-afold)/T ・・・式(18)
 そして、傾斜制御部47は、afold=aとして保存する(ステップS42)。つまり、今回の車体傾斜制御処理実行時に取得した横加速度予測値aをafoldとして、記憶手段に保存する。
Subsequently, the inclination control unit 47 calculates a differential value of a f (step S41). Here, when the differential value of a f and .DELTA.a f, the .DELTA.a f is calculated by the following equation (18).
Δa f = (a f −a fold ) / T S Expression (18)
And the inclination control part 47 preserve | saves as afold = af (step S42). That is, the lateral acceleration predicted value a f acquired at the time of executing the vehicle body tilt control process this time is stored in the storage unit as a fold .
 続いて、傾斜制御部47は、第4制御値UfDを算出する(ステップS43)。ここで、微分制御動作の制御ゲインをGyDとすると、第4制御値UfDは次の式(19)によって算出される。
fD=GyDΔa ・・・式(19)
 続いて、傾斜制御部47は、第5制御値Uを算出する(ステップS44)。該第5制御値Uは、第3制御値Uと第4制御値UfDとの合計であり、次の式(20)によって算出される。
U=U+UfD ・・・式(20)
 なお、前記ステップS39~S44の動作は、操舵角及び車速に基づいて得られた横加速度予測値aを使用したフィードフォワード制御を表している。
Subsequently, the inclination control unit 47 calculates a fourth control value U fD (step S43). Here, if the control gain of the differential control operation is G yD , the fourth control value U fD is calculated by the following equation (19).
U fD = G yD Δa f Equation (19)
Subsequently, the inclination control unit 47 calculates a fifth control value U (step S44). The fifth control value U is the sum of the third control value U and the fourth control value U fD and is calculated by the following equation (20).
U = U + U fD Expression (20)
The operation of the steps S39 ~ S44 represents feedforward control using lateral acceleration estimated value a f obtained based on the steering angle and the vehicle speed.
 続いて、傾斜制御部47は、外乱演算部43から外乱分のロールレートωを受信する(ステップS45)。 Subsequently, the inclination control unit 47 receives the roll rate ω N for the disturbance from the disturbance calculation unit 43 (step S45).
 続いて、傾斜制御部47は、外乱制御用ゲインGwPを算出するとともに(ステップS46)、第6制御値UwPを算出する(ステップS47)。ここで、第6制御値UwPは次の式(21)によって算出される。
wP=GwPω ・・・式(21)
 なお、外乱制御用ゲインGwPは、簡単化する場合には定数であってよく、さらに、制御系が理想の系である場合には、GwP=1とすることができる。しかし、本実施の形態における車体傾斜制御システムのような実際の制御系においては、制御対象であるリンクモータ25の遅れや、横加速度センサ44、リンク角センサ25a等のセンサの観測遅れ等があるため、外乱制御用ゲインGwPの値を調整する必要がある。
Subsequently, the inclination control unit 47 calculates a disturbance control gain GwP (step S46) and calculates a sixth control value UwP (step S47). Here, the sixth control value U wP is calculated by the following equation (21).
U wP = G wP ω N Expression (21)
The disturbance control gain G wP may be a constant in the case of simplification, and G wP = 1 when the control system is an ideal system. However, in an actual control system such as the vehicle body tilt control system in the present embodiment, there are delays in the link motor 25 that is a control target, observation delays in sensors such as the lateral acceleration sensor 44 and the link angle sensor 25a, and the like. Therefore, it is necessary to adjust the value of the disturbance control gain GwP .
 また、振動等に過敏に応答してしまうことを避けるため、外乱分のロールレートωの値が大きい場合には、外乱制御用ゲインGwPの値も大きくなるように調整することが望ましい。 Further, in order to avoid a sensitive response to vibration or the like, when the value of the roll rate ω N for the disturbance is large, it is desirable to adjust so that the value of the disturbance control gain G wP also becomes large.
 例えば、GwP=|ω|とすると、第6制御値UwPを次の式(22)で表すことができる。
wP=|ω|ω=sign(ω)ω  ・・・式(22)
 ここで、sign(x)は、xが正の値であるときは+1、負の値であるときは-1を表す。
For example, if G wP = | ω N |, the sixth control value U wP can be expressed by the following equation (22).
U wP = | ω N | ω N = sign (ω N ) ω N 2 Formula (22)
Here, sign (x) represents +1 when x is a positive value, and represents -1 when x is a negative value.
 もっとも、前記式(22)では、外乱分のロールレートωの値が小さいと第6制御値UwPの値が小さくなり過ぎる場合がある。このような場合には、外乱制御用ゲインGwPの値を、例えば、図11に示されるように、外乱分のロールレートωの値に応じて変化させるようにしてもよい。つまり、図11に示されるような関数を用いて、外乱制御用ゲインGwPの値を決定することができる。なお、図11において、G1は、最低限作用させたい外乱制御用ゲインGwPの値であり、ω1は外乱制御用ゲインGwPの値を増加させたい外乱分のロールレートωの値である。 However, in the equation (22), if the value of the roll rate ω N for the disturbance is small, the value of the sixth control value U wP may be too small. In such a case, the value of the disturbance control gain G wP may be changed according to the value of the roll rate ω N for the disturbance as shown in FIG. 11, for example. That is, the value of the disturbance control gain G wP can be determined using a function as shown in FIG. In FIG. 11, G1 is the value of the disturbance control gain G wP to be applied at a minimum, and ω1 is the value of the roll rate ω N for the disturbance for which the value of the disturbance control gain G wP is to be increased. .
 続いて、傾斜制御部47は、第7制御値Uを算出する(ステップS48)。該第7制御値Uは、第5制御値Uと第6制御値UwPとの合計であり、次の式(23)によって算出される。
U=U+UwP ・・・式(23)
 最後に、傾斜制御部47は、第7制御値Uを速度指令値としてリンクモータ制御部42へ出力して(ステップS49)、処理を終了する。
Subsequently, the inclination control unit 47 calculates a seventh control value U (step S48). The seventh control value U is the sum of the fifth control value U and the sixth control value U wP and is calculated by the following equation (23).
U = U + U wP Expression (23)
Finally, the inclination control unit 47 outputs the seventh control value U as a speed command value to the link motor control unit 42 (step S49), and ends the process.
 また、リンクモータ制御部42は、リンクモータ制御処理を開始すると、まず、傾斜制御部47から第7制御値Uを受信する(ステップS51)。 Further, when the link motor control unit 42 starts the link motor control process, the link motor control unit 42 first receives the seventh control value U from the inclination control unit 47 (step S51).
 続いて、リンクモータ制御部42は、リンク角センサ25aが検出したリンク角センサ値ηを取得し(ステップS52)、リンク角速度算出処理を実行して(ステップS53)、リンク機構30のリンク角の角速度Δηを算出する。なお、リンク角速度算出処理の動作は、外乱演算部43が実行するリンク角速度算出処理の動作、すなわち、図10に示されるステップS26-1~S26-5の動作と同様であるので、説明を省略する。 Subsequently, the link motor control unit 42 acquires the link angle sensor value η detected by the link angle sensor 25a (step S52), executes link angular velocity calculation processing (step S53), and sets the link angle of the link mechanism 30. Calculate the angular velocity Δη. The operation of the link angular velocity calculation process is the same as the operation of the link angular velocity calculation process executed by the disturbance calculation unit 43, that is, the operation of steps S26-1 to S26-5 shown in FIG. To do.
 また、リンクモータ制御部42は、リンク角の角速度Δηの値を外乱演算部43から取得することによって、前記ステップS52及びS53の動作を省略することもできる。 Further, the link motor control unit 42 can omit the operations of steps S52 and S53 by obtaining the value of the angular velocity Δη of the link angle from the disturbance calculation unit 43.
 続いて、リンクモータ制御部42は、制御誤差を算出する(ステップS54)。ここで、制御誤差をεとすると、該εは、次の式(24)によって算出される。
ε=U-Δη ・・・式(24)
 なお、Uは傾斜制御部47から受信した第7制御値Uである。
Subsequently, the link motor control unit 42 calculates a control error (step S54). Here, when the control error is ε, ε is calculated by the following equation (24).
ε = U−Δη Formula (24)
U is the seventh control value U received from the inclination control unit 47.
 続いて、リンクモータ制御部42は、モータ制御比例ゲインGMPを取得する(ステップS55)。該モータ制御比例ゲインGMPの値は、実験等に基づいて設定された値であり、あらかじめ記憶手段に格納されている。 Subsequently, the link motor control unit 42 obtains the motor control proportional gain G MP (step S55). The value of the motor control proportional gain GMP is a value set based on experiments or the like, and is stored in advance in the storage means.
 続いて、リンクモータ制御部42は、リンクモータ25を作動させるためのトルク指令値を算出する(ステップS56)。ここで、トルク指令値をUとすると、該Uは次の式(25)によって算出される。
=GMPε ・・・式(25)
 最後に、リンクモータ制御部42は、トルク指令値をUをリンクモータ25へ出力して(ステップS57)、処理を終了する。
Subsequently, the link motor control unit 42 calculates a torque command value for operating the link motor 25 (step S56). Here, when the torque command value is U T , the U T is calculated by the following equation (25).
U T = G MP ε (25)
Finally, the link motor control unit 42 outputs the torque command value UT to the link motor 25 (step S57) and ends the process.
 このように、本実施の形態においては、車体の傾斜方向への外乱を受けたとき、車体の傾斜角度の変化のうちの外乱による変化分を抽出し、抽出した外乱による変化分に対応する制御値を加えて、車体の傾斜を制御する。具体的には、車体の不安定要因となる傾斜方向への外乱分のロールレートωを求め、外乱分のロールレートωに応じた制御値を加えて車体の傾斜角度を制御する。これにより、路面の段差、横風等によって車両10が傾斜方向への外乱を受けたときにも、安定した走行状態を得ることができる。なお、前記外乱は、例えば、左右の車輪12L及び12Rの一方が路面18から浮き上がることが想定される程度の大きさの横方向の外力である。 As described above, in the present embodiment, when a disturbance in the vehicle body tilt direction is received, a change due to the disturbance in the change in the vehicle body tilt angle is extracted, and control corresponding to the extracted change due to the disturbance is performed. Add a value to control the body tilt. Specifically, the roll rate ω N of the disturbance in the tilt direction, which becomes an unstable factor of the vehicle body, is obtained, and the control value corresponding to the roll rate ω N of the disturbance is added to control the tilt angle of the vehicle body. Thus, a stable traveling state can be obtained even when the vehicle 10 is subjected to a disturbance in the inclination direction due to a road step, a crosswind, or the like. The disturbance is, for example, a lateral external force that is large enough to assume that one of the left and right wheels 12L and 12R is lifted from the road surface 18.
 また、外乱分のロールレートωが大きくなるほど外乱制御用ゲインGwPの値を大きくすることによって、外乱が小さいときや外乱がないときには過大な制御ゲインに起因する制御の安定性の低下を適切に防止することができるとともに、大きな又は急激な外乱を受けたときには外乱の影響を抑制して車体の傾斜角度を適切に制御することができる。 Also, by increasing the value of the disturbance control gain G wP as the roll rate ω N for the disturbance increases, it is possible to appropriately reduce the stability of the control due to the excessive control gain when the disturbance is small or when there is no disturbance. In addition, it is possible to appropriately control the inclination angle of the vehicle body by suppressing the influence of the disturbance when receiving a large or abrupt disturbance.
 さらに、合成横加速度aの値がゼロとなるようにフィードバック制御を行うとともに、横加速度予測値aを使用したフィードフォワード制御を行うので、旋回時における車体の傾斜角を横加速度と重力とが釣り合うような角度に適切に制御することができる。また、路面18が横方向に傾斜していても、車体を鉛直に保つことができる。さらに、旋回開始時及び終了時のように、横加速度の変化が大きいときであっても、制御に遅れが発生することがない。このため、車両10の安定性を高く保つことができ、乗員の違和感を低減し、快適性を向上させることができる。 Furthermore, the value of the composite lateral acceleration a performs feedback control such that the zero, since the feedforward control using the lateral acceleration estimated value a f, the inclination angle of the vehicle body during a turn and the lateral acceleration and gravity It is possible to appropriately control the angle so as to be balanced. Even if the road surface 18 is inclined in the lateral direction, the vehicle body can be kept vertical. Further, there is no delay in control even when the lateral acceleration changes greatly, such as at the start and end of turning. For this reason, the stability of the vehicle 10 can be kept high, a passenger's discomfort can be reduced, and comfort can be improved.
 なお、本実施の形態においては、外乱演算部43が横加速度センサ44の一方の検出値及び合成横加速度aに基づいて、車体のロールレートωを算出する例について説明したが、車体のロールレートωはセンサによって直接検出することもできる。 In the present embodiment, an example in which the disturbance calculation unit 43 calculates the roll rate ω S of the vehicle body based on one detected value of the lateral acceleration sensor 44 and the combined lateral acceleration a has been described. The rate ω S can also be detected directly by a sensor.
 次に、車体のロールレートωを直接検出するようにした変形例について説明する。 Next, a modification in which the roll rate ω S of the vehicle body is directly detected will be described.
 図14は本発明の第1の実施の形態における車体傾斜制御システムの構成の変形例を示すブロック図である。 FIG. 14 is a block diagram showing a modified example of the configuration of the vehicle body tilt control system according to the first embodiment of the present invention.
 変形例における車体傾斜制御システムでは、図に示されるように、傾斜制御ECU46にロールレートセンサ44cが接続されている。該ロールレートセンサ44cは、車体の傾斜運動の角速度、すなわち、車体のロールレートωを検出する一般的なロールレートセンサであって、例えば、ジャイロセンサを、地面と垂直で、かつ、車両10の直進方向と垂直な面内での回転角速度を検出することができるように車体に取り付けたものである。前記ロールレートセンサ44cは、地面と垂直で、かつ、車両10の直進方向と垂直な面内であれば、車体の任意の位置に取り付けることができる。 In the vehicle body tilt control system in the modified example, as shown in the figure, a roll rate sensor 44c is connected to the tilt control ECU 46. The roll rate sensor 44c is a general roll rate sensor that detects the angular velocity of the tilt motion of the vehicle body, that is, the roll rate ω S of the vehicle body. For example, the roll rate sensor 44c is a gyro sensor that is perpendicular to the ground and is It is attached to the vehicle body so that it can detect the rotational angular velocity in the plane perpendicular to the straight direction. The roll rate sensor 44c can be attached to any position of the vehicle body as long as it is perpendicular to the ground surface and in a plane perpendicular to the straight traveling direction of the vehicle 10.
 そして、外乱演算部43は、ロールレートセンサ44cが検出した車体のロールレートωを取得する。したがって、図9に示される外乱演算処理におけるステップS21~S25の動作を省略することができる。 Then, the disturbance calculation unit 43 acquires the roll rate ω S of the vehicle body detected by the roll rate sensor 44c. Therefore, the operations in steps S21 to S25 in the disturbance calculation process shown in FIG. 9 can be omitted.
 なお、その他の点の構成及び動作については、同様であるので、説明を省略する。 In addition, about the structure and operation | movement of another point, since it is the same, description is abbreviate | omitted.
 次に、本発明の第2の実施の形態について説明する。なお、第1の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。 Next, a second embodiment of the present invention will be described. In addition, about the thing which has the same structure as 1st Embodiment, the description is abbreviate | omitted by providing the same code | symbol. The description of the same operation and the same effect as those of the first embodiment is also omitted.
 図15は本発明の第2の実施の形態における傾斜制御処理の動作を示すフローチャート、図16は本発明の第2の実施の形態におけるワインドダウン制御処理のサブルーチンを示すフローチャート、図17は本発明の第2の実施の形態における外乱加速度演算処理のサブルーチンを示すフローチャートである。 FIG. 15 is a flowchart showing the operation of the tilt control process in the second embodiment of the present invention, FIG. 16 is a flowchart showing a subroutine of the wind down control process in the second embodiment of the present invention, and FIG. It is a flowchart which shows the subroutine of the disturbance acceleration calculation process in 2nd Embodiment.
 車両10が小型であると、左右の車輪12L及び12Rが備えるタイヤの弾性変形、車体の各部の弾性変形、サスペンションを備える場合にはサスペンションのスプリングの弾性変形等が車体の傾斜制御に及ぼす影響が相対的に大きくなる。 If the vehicle 10 is small, the elastic deformation of the tires provided on the left and right wheels 12L and 12R, the elastic deformation of each part of the vehicle body, and the elastic deformation of the springs of the suspension in the case of including the suspension may affect the tilt control of the vehicle body. It becomes relatively large.
 例えば、タイヤは、理論上、スプリングとダンパとを組み合わせたものと同じような振動特性を備えるので、サスペンションと同様に、共振点を有する。そして、車両10が小型である場合、前記共振点で車両10全体が揺すられると、振幅が大きくなるので、傾斜が大きくなって、安全性が損なわれる。特に、左右の車輪12L及び12Rの一方のみが段差を通過した場合や、車両10が突然の横風を受けた場合のように、インパルス状又はステップ状の大入力が車両10に加えられると、前記共振点で車両10全体が大きく揺すられ、車体の傾斜が非常に大きくなってしまうことがあり得る。 For example, a tire theoretically has a vibration characteristic similar to that of a combination of a spring and a damper, and therefore has a resonance point as with a suspension. And when the vehicle 10 is small, if the vehicle 10 whole is shaken at the said resonance point, since an amplitude will become large, an inclination will become large and safety | security will be impaired. In particular, when only one of the left and right wheels 12L and 12R passes through a step or when a large impulse or step input is applied to the vehicle 10, such as when the vehicle 10 receives a sudden crosswind, The entire vehicle 10 may be greatly shaken at the resonance point, and the inclination of the vehicle body may become very large.
 このような弾性変形による傾斜制御への影響を除去するためには、例えば、横加速度、ロールレートの微分値等の加速度要素を利用することが考えられる。しかし、実際のセンサによる加速度要素の検出値は、振動的なので、フィードバック要素として利用すると、更に振動的となって、フィードバックゲインを大きくすることができず、制御の効果を発揮させることができない。また、フィードバックゲインを大きくするために、センサによる加速度要素の検出値にフィルタをかけると、遅れが大きくなるので、制御の効果を発揮させることができない。 In order to remove the influence on the inclination control due to such elastic deformation, for example, it is conceivable to use acceleration elements such as a lateral acceleration and a differential value of a roll rate. However, since the detected value of the acceleration element by the actual sensor is vibrational, if it is used as a feedback element, it becomes further vibrational, the feedback gain cannot be increased, and the control effect cannot be exhibited. Further, if a filter is applied to the detected value of the acceleration element by the sensor in order to increase the feedback gain, the delay will increase, and the control effect cannot be exhibited.
 そこで、本実施の形態においては、タイヤやその他の部分の弾性変形を考慮した制御としての巻き戻し制御、すなわち、ワインドダウン制御を行う。 Therefore, in the present embodiment, rewinding control as control that takes into account elastic deformation of the tire and other parts, that is, winddown control is performed.
 該ワインドダウン制御では、一定以上の入力があった場合、タイヤやその他の部分の弾性変形開始を検知して素早く制御値の符号を反転するとともに、弾性変形終了を検知して制御値の符号を元に戻すようになっている。これにより、衝撃を吸収して車両10の共振を減少させることができるので、インパルス状又はステップ状の大入力が車両10に加えられた場合であっても、車体の傾斜が大きくなることを防止することができる。 In the winddown control, when there is an input exceeding a certain level, the start of elastic deformation of the tire and other parts is detected and the sign of the control value is quickly reversed, and the end of elastic deformation is detected and the sign of the control value is changed. It is supposed to be restored. As a result, the shock can be absorbed and the resonance of the vehicle 10 can be reduced, so that even when a large impulse or step input is applied to the vehicle 10, the inclination of the vehicle body is prevented from increasing. can do.
 本実施の形態において、車両10の構成については、前記第1の実施の形態と同様であるので、その説明を省略し、旋回走行における車体傾斜制御処理の動作についてのみ説明する。 In the present embodiment, since the configuration of the vehicle 10 is the same as that of the first embodiment, the description thereof will be omitted, and only the operation of the vehicle body tilt control process in turning traveling will be described.
 車体傾斜制御システムが車体傾斜制御処理を開始すると、横加速度演算部48は横加速度演算処理を実行し、横加速度推定部49は横加速度推定処理を実行し、外乱演算部43は外乱演算処理を実行し、リンクモータ制御部42はリンクモータ制御処理を実行するが、本実施の形態における横加速度演算処理、横加速度推定処理、外乱演算処理及びリンクモータ制御処理の動作は、前記第1の実施の形態における横加速度演算処理、横加速度推定処理、外乱演算処理及びリンクモータ制御処理の動作、すなわち、図6~10及び13のフローチャートに示される動作と同様であるので、その説明を省略する。 When the vehicle body tilt control system starts the vehicle body tilt control process, the lateral acceleration calculation unit 48 executes the lateral acceleration calculation process, the lateral acceleration estimation unit 49 executes the lateral acceleration estimation process, and the disturbance calculation unit 43 performs the disturbance calculation process. The link motor control unit 42 executes the link motor control process. The operations of the lateral acceleration calculation process, the lateral acceleration estimation process, the disturbance calculation process, and the link motor control process in the present embodiment are the same as those in the first embodiment. The operations of the lateral acceleration calculation process, the lateral acceleration estimation process, the disturbance calculation process, and the link motor control process in this embodiment are the same as the operations shown in the flowcharts of FIGS.
 また、傾斜制御部47は、傾斜制御処理を開始すると、まず、横加速度演算部48から合成横加速度aを受信する(ステップS61)。なお、該合成横加速度aを受信してから第6制御値UwPを算出するまでの動作、すなわち、図15に示されるステップS61~S77までの動作は、前記第1の実施の形態において説明したステップS31~S47と同様であるので、その説明を省略する。 In addition, when the tilt control unit 47 starts the tilt control process, first, the tilt control unit 47 receives the combined lateral acceleration a from the lateral acceleration calculation unit 48 (step S61). The operation from the reception of the combined lateral acceleration a to the calculation of the sixth control value U wP , that is, the operation from step S61 to S77 shown in FIG. 15, will be described in the first embodiment. Since this is the same as steps S31 to S47, the description thereof is omitted.
 そして、第6制御値UwPを算出すると、傾斜制御部47は、ワインドダウン制御処理を実行する(ステップS78)。前述のように、ワインドダウン制御では、タイヤやその他の部分の弾性変形開始を検知して制御値の符号を反転するとともに、弾性変形終了を検知して制御値の符号を元に戻すようになっている。つまり、ワインドダウン制御では、弾性部材が外乱を受けて弾性変形を開始してからその弾性変形が終了するまでの期間だけワインドダウンを実行し、弾性部材がそれ自体の弾性によって復元を開始してから以降の期間ではワインドダウンを停止する。ワインドダウンを停止している、又は、実行しないときは、前記第1の実施の形態と同様の制御が行われる。 Then, after calculating the sixth control value U wP , the inclination control unit 47 executes a winddown control process (step S78). As described above, in the winddown control, the start of elastic deformation of the tire and other parts is detected to invert the sign of the control value, and the end of elastic deformation is detected to return the sign of the control value to the original. ing. In other words, in the winddown control, the winddown is executed only during the period from when the elastic member receives an external disturbance to start elastic deformation until the elastic deformation ends, and the elastic member starts to recover due to its own elasticity. Winddown is stopped in the following period. When the winddown is stopped or not executed, the same control as that in the first embodiment is performed.
 例えば、左右の車輪12L及び12Rの一方のみが凹部を通過した際に凹部に落下する場合を例にとって説明すると、一方の車輪のタイヤは、宙に浮いた状態から落下して凹部の底面に接地する。そして、前記タイヤは、接地してから縮み、縮み終わると、膨らんで元の形状に復帰する。ワインドダウンは、タイヤが接地してから縮み終わるまでの期間だけ実行され、タイヤが接地するまでの期間、及び、タイヤが縮み終わってから以降の期間には実行されない。 For example, a case where only one of the left and right wheels 12L and 12R falls into the recess when passing through the recess will be described as an example. The tire of one wheel falls from the state of floating in the air and contacts the bottom surface of the recess. To do. The tire contracts after being grounded, and when the contraction is completed, the tire expands and returns to its original shape. Winddown is performed only during the period from when the tire contacts the ground until it finishes contracting, and is not performed during the period until the tire contacts the ground and after the tire has contracted.
 ワインドダウン制御処理において、傾斜制御部47は、まず、外乱分のロールレートωを取得(ステップS78-1)し、外乱加速度演算処理を実行する(ステップS78-2)。なお、外乱分のロールレートωは、ステップS75において外乱演算部43から受信したものである。 In the winddown control process, the inclination control unit 47 first acquires the roll rate ω N for the disturbance (step S78-1) and executes the disturbance acceleration calculation process (step S78-2). The roll rate ω N for the disturbance is that received from the disturbance calculation unit 43 in step S75.
 そして、外乱加速度演算処理において、傾斜制御部47は、まず、ωN-1 呼出を行うとともに(ステップS78-2-1)、制御周期Tを取得する(ステップS78-2-2)。ωN-1 は、前回の車体傾斜制御処理実行時に保存された外乱分のロールレートωの値である。なお、初期設定においては、ωN-1 =0とされている。 In the disturbance acceleration calculation process, the tilt control unit 47 first calls ω N-1 (step S78-2-1) and obtains the control cycle T S (step S78-2-2). ω N-1 is the value of the roll rate ω N for the disturbance stored when the vehicle body tilt control process is executed last time. In the initial setting, ω N-1 = 0.
 続いて、傾斜制御部47は、外乱分のロールレートωの微分値を算出して(ステップS78-2-3)、外乱加速度演算処理を終了する。ここで、ωの微分値をΔωとすると、該Δωは次の式(26)によって算出される。
Δω=(ω-ωN-1 )/T ・・・式(26)
 続いて、傾斜制御部47は、フラグFに1がセットされているか否か、すなわち、F=1であるか否かを判断する(ステップS78-3)。なお、初期設定においては、フラグFにはゼロがセットされている、すなわち、F=0である。また、F=1は、前記例において、タイヤが接地してから縮み終わるまでの期間であることを示している。
Subsequently, the inclination control unit 47 calculates a differential value of the roll rate ω N for the disturbance (step S78-2-3), and ends the disturbance acceleration calculation process. Here, if the differential value of ω N is Δω N , Δω N is calculated by the following equation (26).
Δω N = (ω N −ω N-1 ) / T S Formula (26)
Subsequently, the inclination control unit 47 determines whether or not 1 is set in the flag F, that is, whether or not F = 1 (step S78-3). In the initial setting, zero is set in the flag F, that is, F = 0. In addition, F = 1 indicates a period from the time when the tire is grounded until the tire is completely contracted in the above example.
 そして、F=1である場合、傾斜制御部47は、ΔωΔωN-1 <0であるか否かを判断する(ステップS78-4)。Δωは、外乱分のロールレートωの微分値であって外乱分のロールレートωの変化率、すなわち、外乱分のロールレートωの変化を示す曲線の傾斜を示すものである。したがって、ΔωΔωN-1 <0であることは、前回の車体傾斜制御処理実行時における外乱分のロールレートωを示す曲線の傾斜と、今回の車体傾斜制御処理実行時における外乱分のロールレートωを示す曲線の傾斜とが異なること、すなわち、外乱分のロールレートωを示す曲線上の変曲点を通過したことを意味する。 If F = 1, the inclination control unit 47 determines whether or not Δω N Δω N-1 <0 (step S78-4). [Delta] [omega N is the rate of change of the disturbance component of the roll rate omega roll rate of a differential value disturbance component of N omega N, i.e., shows the slope of the curve showing the change of the disturbance component of the roll rate omega N. Therefore, Δω N Δω N−1 <0 indicates that the slope of the curve indicating the roll rate ω N of the disturbance during the previous vehicle body tilt control process and the disturbance during the current vehicle body tilt control process are executed. This means that the slope of the curve indicating the roll rate ω N is different, that is, passing through an inflection point on the curve indicating the roll rate ω N of the disturbance.
 そして、ΔωΔωN-1 <0である場合、傾斜制御部47は、フラグFにゼロをセットする、すなわち、F=0とする(ステップS78-5)。 If Δω N Δω N-1 <0, the inclination control unit 47 sets the flag F to zero, that is, sets F = 0 (step S78-5).
 続いて、傾斜制御部47は、外乱分のロールレートωの絶対値があらかじめ設定された所定の閾(しきい)値Aより大きいか否か、すなわち、|ω|>Aであるか否かを判断する(ステップS78-6)。なお、ステップS78-3でF=1であるか否かを判断してF=1でない場合、及び、ステップS78-4でΔωΔωN-1 <0であるか否かを判断してΔωΔωN-1 <0でない場合には、そのまま、|ω|>Aであるか否かを判断する。 Subsequently, the inclination control unit 47 determines whether or not the absolute value of the roll rate ω N for the disturbance is greater than a predetermined threshold (threshold) value A 1 , that is, | ω N |> A 1 . It is determined whether or not there is (step S78-6). In step S78-3, it is determined whether F = 1, and if F = 1, and in step S78-4, it is determined whether Δω N Δω N-1 <0. If N Δω N-1 <0, it is determined whether or not | ω N |> A 1 as it is.
 ここで、Aは、車体への入力が一定以上であるか否かを判断するために設定された閾値であり、外乱分のロールレートωの絶対値がAより大きい場合には、一定以上の入力があったものと判断され、タイヤやその他の部分の弾性変形開始が検知され、制御値の符号が反転される。なお、Aは0以上の値である。また、Aは、ワインドダウンを実行しない場合に車両10が転倒しない最大の外乱分のロールレートωの絶対値を基準とし、それよりも絶対値が小さくなるように設定される。 Here, A 1 is a threshold value set for determining whether or not the input to the vehicle body is equal to or greater than a certain value. When the absolute value of the roll rate ω N for the disturbance is greater than A 1 , It is determined that there is an input exceeding a certain level, the start of elastic deformation of the tire and other parts is detected, and the sign of the control value is reversed. A 1 is a value of 0 or more. Further, A 1 is set so that the absolute value becomes smaller than the absolute value of the roll rate ω N of the maximum disturbance that does not cause the vehicle 10 to fall when the winddown is not executed.
 したがって、|ω|>Aである場合、傾斜制御部47は、ΔωΔωN-1 <0であるか否かを判断する(ステップS78-7)。そして、ΔωΔωN-1 <0である場合、傾斜制御部47は、フラグFに1をセットする、すなわち、F=1とする(ステップS78-8)。 Therefore, when | ω N |> A 1 , the inclination control unit 47 determines whether or not Δω N Δω N-1 <0 (step S78-7). When Δω N Δω N-1 <0, the inclination control unit 47 sets 1 to the flag F, that is, sets F = 1 (step S78-8).
 続いて、傾斜制御部47は、ωωN-1 <0であるか否かを判断する(ステップS78-9)。なお、ステップS78-6で|ω|>Aであるか否かを判断して|ω|>Aでない場合、ステップS78-7でΔωΔωN-1 <0であるか否かを判断してΔωΔωN-1 <0でない場合、及び、ステップS78-4でΔωΔωN-1 <0であるか否かを判断してΔωΔωN-1 <0であった場合には、そのまま、ωωN-1 <0であるか否かを判断する。 Subsequently, the inclination control unit 47 determines whether or not ω N ω N-1 <0 (step S78-9). In step S78-6, whether or not | ω N |> A 1 is determined. If | ω N |> A 1 is not satisfied, whether Δω N Δω N-1 <0 is satisfied in step S78-7. If either the judges not Δω N Δω N-1 <0 , and, met Δω N Δω N-1 to determine whether <a 0 Δω N Δω N-1 < 0 at step S78-4 In this case, it is determined whether or not ω N ω N-1 <0.
 ここで、ωωN-1 <0であることは、前回の車体傾斜制御処理実行時における外乱分のロールレートωの正負と、今回の車体傾斜制御処理実行時における外乱分のロールレートωの正負とが異なること、すなわち、外乱分のロールレートωを示す曲線がゼロを示す軸(X軸)を通過したこと(いわゆるゼロクロスしたこと)を意味する。 Here, ω N ω N-1 <0 indicates that the roll rate ω N of the disturbance during the previous execution of the vehicle body tilt control process is positive and negative, and the roll rate of the disturbance during the execution of the current vehicle body tilt control process. This means that the sign of ω N is different from the positive or negative, that is, the curve indicating the roll rate ω N of the disturbance has passed through the axis (X axis) indicating zero (so-called zero crossing).
 そして、ωωN-1 <0である場合、傾斜制御部47は、フラグFにゼロをセットする、すなわち、F=0とする(ステップS78-10)。 If ω N ω N−1 <0, the inclination control unit 47 sets the flag F to zero, that is, sets F = 0 (step S78-10).
 続いて、傾斜制御部47は、フラグFに1がセットされているか否か、すなわち、F=1であるか否かを判断する(ステップS78-11)。なお、ステップS78-9でωωN-1 <0であるか否かを判断してωωN-1 <0でない場合には、そのまま、F=1であるか否かを判断する。 Subsequently, the inclination control unit 47 determines whether or not 1 is set in the flag F, that is, whether or not F = 1 (step S78-11). In the case ω N ω N-1 <not a ω N ω N-1 <0 and it is determined whether 0 is the step S78-9, it is determined whether or not F = 1 .
 そして、傾斜制御部47は、F=1でない場合にはワインドダウン制御用ゲインGwSを1とし(ステップS78-12)、F=1である場合にはワインドダウン制御用ゲインGwSを-1とする(ステップS78-13)。 The inclination control unit 47 sets the wind-down control gain G wS to 1 when F = 1 is not satisfied (step S78-12), and sets the wind-down control gain G wS to −1 when F = 1. (Step S78-13).
 続いて、傾斜制御部47は、第7制御値Uを算出する(ステップS78-14)。該第7制御値Uは、第5制御値Uと、第6制御値UwPにワインドダウン制御用ゲインGwSを乗じた値との合計であり、次の式(27)によって算出される。
U=U+UwPwS ・・・式(27)
 最後に、傾斜制御部47は、ωN-1 =ωとして保存し、かつ、ΔωN-1 =Δωとして保存し(ステップS78-15)、ワインドダウン制御処理を終了する。つまり、今回の車体傾斜制御処理実行時のω及びΔωの値をωN-1 及びΔωN-1 として、記憶手段に保存する。
Subsequently, the inclination control unit 47 calculates a seventh control value U (step S78-14). The seventh control value U is the sum of the fifth control value U and a value obtained by multiplying the sixth control value U wP by the wind-down control gain G wS , and is calculated by the following equation (27).
U = U + U wP G wS Expression (27)
Finally, the inclination control unit 47 stores ω N-1 = ω N and also stores Δω N-1 = Δω N (step S78-15), and ends the wind-down control process. That is, the values of ω N and Δω N at the time of executing the vehicle body tilt control process are stored in the storage unit as ω N-1 and Δω N-1 .
 すると、傾斜制御部47は、第7制御値Uを速度指令値としてリンクモータ制御部42へ出力して(ステップS79)、処理を終了する。 Then, the inclination control unit 47 outputs the seventh control value U as a speed command value to the link motor control unit 42 (step S79), and ends the process.
 なお、ワインドダウン制御処理におけるステップS78-6の動作は、ワインドダウンを実行すべき入力であるか否かを判断することに相当する。|ω|>Aであることは、ワインドダウンを実行すべき入力であることに相当する。 Note that the operation of step S78-6 in the winddown control process corresponds to determining whether or not the input is to execute the winddown. | Ω N |> A 1 corresponds to an input to be subjected to winddown.
 そして、ステップS78-7の動作は、前記タイヤの例に則して説明すると、宙に浮いているタイヤが接地したか否かを判断することに相当する。ΔωΔωN-1 <0であることは、タイヤが接地して外乱分のロールレートωを示す曲線の傾斜が変化したことに相当するので、ワインドダウンを実行するためにステップS78-8でF=1とする。 The operation of step S78-7 is equivalent to determining whether or not the tire floating in the air is in contact with the ground, which will be described according to the example of the tire. Since Δω N Δω N-1 <0 corresponds to a change in the slope of the curve indicating the roll rate ω N of the disturbance due to the grounding of the tire, step S78-8 is executed in order to execute winddown. And F = 1.
 また、ステップS78-9の動作は、前記タイヤの例に則して説明すると、接地しているタイヤが縮み終わったか否かを判断することに相当する。ωωN-1 <0であることは、タイヤが縮み終わって外乱分のロールレートωを示す曲線がゼロクロスしたことに相当するので、ワインドダウンを停止するためにステップS78-10でF=0とする。 Further, the operation in step S78-9 is equivalent to determining whether or not the grounded tire has been contracted, as will be described according to the example of the tire. The fact that ω N ω N-1 <0 corresponds to zero crossing of the curve indicating the roll rate ω N of the disturbance after the tire has been contracted. Therefore, in order to stop the winddown, F in step S78-10 = 0.
 タイヤが接地してから縮み終わるまでは、F=1なのでGwS=-1であるから、前記式(27)によって、第7制御値Uは次の式(28)で表される。
U=U-UwP ・・・式(28)
 該式(28)を前記式(23)で表される第1の実施の形態における第7制御値Uと比較すると、UwPの2倍だけ小さいことが分かる。これにより、タイヤが接地してから縮み終わるまでは、ワインドダウンを実行することによって、傾斜制御における制御ゲインを巻き戻して小さくしていることが分かる。
Since F = 1 and G wS = −1 from when the tire contacts the ground until it finishes shrinking, the seventh control value U is expressed by the following equation (28) by the above equation (27).
U = U−U wP Expression (28)
When the equation (28) is compared with the seventh control value U in the first embodiment represented by the equation (23), it can be seen that the equation (28) is smaller than U wP by twice. As a result, it is understood that the control gain in the inclination control is rewound and reduced by executing the winddown until the tire finishes contracting after being grounded.
 一方、タイヤが接地するまでの期間、及び、タイヤが縮み終わった後の期間では、F=0なのでGwS=1であるから、前記式(27)によって、第7制御値Uは次の式(29)で表される。
U=U+UwP ・・・式(29)
 該式(29)は前記式(23)と同一である。これにより、タイヤが接地するまでの期間、及び、タイヤが縮み終わった後の期間では、ワインドダウンを実行せず、前記第1の実施の形態と同様の制御を行うことが分かる。
On the other hand, since G wS = 1 since F = 0 in the period until the tire comes into contact with the ground and the period after the tire has been contracted, the seventh control value U is expressed by the following equation (27). (29)
U = U + U wP (29)
The formula (29) is the same as the formula (23). As a result, it is understood that the same control as in the first embodiment is performed without executing the winddown in the period until the tire comes into contact with the ground and the period after the tire has been contracted.
 また、ステップS78-3及びS78-4の動作は、前記タイヤの例に則して説明すると、タイヤが縮み終わらないうちに、車輪12が別の凹部に落下して、再びタイヤが宙に浮いた状態になったか否かを判断することに相当する。ΔωΔωN-1 <0であることは、タイヤが再び宙に浮いて外乱分のロールレートωを示す曲線の傾斜が変化したことに相当するので、ワインドダウンを停止するためにステップS78-5でF=0とする。 Further, the operations in steps S78-3 and S78-4 will be described in accordance with the example of the tire. Before the tire finishes shrinking, the wheel 12 falls into another recess and the tire floats again in the air. This corresponds to determining whether or not the state has been reached. Since Δω N Δω N-1 <0 corresponds to the fact that the tire floats again in the air and the slope of the curve indicating the roll rate ω N of the disturbance has changed, step S78 is performed to stop the winddown. -5 and F = 0.
 このように、本実施の形態においては、外乱による部材の弾性変形に応じて、外乱による変化分に対応する制御値を変化させる。好ましくは、外乱による部材の弾性変形が開始されてから終了するまでの期間、車体の傾斜を制御するための制御ゲインを巻き戻すように、外乱による変化分に対応する制御値を変化させる。 Thus, in the present embodiment, the control value corresponding to the change due to the disturbance is changed according to the elastic deformation of the member due to the disturbance. Preferably, the control value corresponding to the change due to the disturbance is changed so that the control gain for controlling the inclination of the vehicle body is rewound during the period from the start to the end of the elastic deformation of the member due to the disturbance.
 具体的には、タイヤやその他の部分の弾性変形を考慮したワインドダウン制御を行い、一定以上の入力があった場合、タイヤやその他の部分が弾性変形を開始してから終了するまでの期間だけワインドダウンを実行し、傾斜制御における制御ゲインを巻き戻して小さくするようになっている。なお、前記弾性変形は、タイヤやその他の部分の前記入力を受けることによる一方向への変形であって、タイヤやその他の部分のそれ自体の弾性による反対方向への変形(いわゆるバウンスバック)は含まない。つまり、ワインドダウンは、タイヤやその他の部分が前記入力を受けて変形を開始してからバウンスバックを開始するまでの期間だけ実行される。 Specifically, winddown control that takes into account elastic deformation of the tire and other parts is performed, and if there is an input exceeding a certain level, only the period from when the tire or other part starts elastic deformation until it ends Winding down is executed, and the control gain in the tilt control is rewound to decrease. The elastic deformation is deformation in one direction by receiving the input of the tire and other parts, and deformation in the opposite direction (so-called bounce back) by the elasticity of the tire and other parts itself. Not included. In other words, the winddown is executed only during a period from when the tire or other part receives the input and starts to be deformed to when bounceback is started.
 これにより、タイヤやその他の部分の弾性変形による傾斜制御への影響を除去することができ、傾斜方向への大きな外乱を受けたときであっても、共振が発生することなく、車体の傾斜角度を適切に制御することができ、安定した走行状態を得ることができる。 As a result, the influence on the tilt control due to the elastic deformation of the tire and other parts can be eliminated, and even when subjected to a large disturbance in the tilt direction, the tilt angle of the vehicle body does not generate resonance. Can be appropriately controlled, and a stable running state can be obtained.
 なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made based on the spirit of the present invention, and they are not excluded from the scope of the present invention.
 本発明は、少なくとも左右一対の車輪を有する車両に利用することができる。 The present invention can be used for a vehicle having at least a pair of left and right wheels.
10  車両
11  搭乗部
12F、12L、12R  車輪
20  本体部
25  リンクモータ
44  横加速度センサ
44a  第1横加速度センサ
44b  第2横加速度センサ
53  操舵角センサ
54  車速センサ
DESCRIPTION OF SYMBOLS 10 Vehicle 11 Boarding part 12F, 12L, 12R Wheel 20 Main-body part 25 Link motor 44 Lateral acceleration sensor 44a 1st lateral acceleration sensor 44b 2nd lateral acceleration sensor 53 Steering angle sensor 54 Vehicle speed sensor

Claims (5)

  1.  互いに連結された操舵部及び駆動部を備える車体と、
     前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵輪と、
     前記駆動部に回転可能に取り付けられた車輪であって、前記車体を駆動する駆動輪と、
     前記操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、
     前記車体に作用する横加速度を検出する横加速度センサと、
     前記傾斜用アクチュエータ装置を制御して前記車体の傾斜を制御する制御装置とを有し、
     該制御装置は、前記車体の傾斜方向への外乱を受けたとき、車体の傾斜角度の変化のうちの外乱による変化分を抽出し、抽出した外乱による変化分に対応する制御値を加えて、前記車体の傾斜を制御することを特徴とする車両。
    A vehicle body including a steering unit and a drive unit coupled to each other;
    A wheel rotatably attached to the steering unit, the steering wheel for steering the vehicle body;
    A wheel rotatably attached to the drive unit, the drive wheel driving the vehicle body;
    A tilting actuator device for tilting the steering unit or the driving unit in a turning direction;
    A lateral acceleration sensor for detecting lateral acceleration acting on the vehicle body;
    A control device for controlling the tilt of the vehicle body by controlling the tilt actuator device;
    When receiving a disturbance in the tilt direction of the vehicle body, the control device extracts a change due to the disturbance of the change in the tilt angle of the vehicle body, and adds a control value corresponding to the extracted change due to the disturbance, A vehicle that controls the inclination of the vehicle body.
  2.  前記制御装置は、前記車体のロールレートのうちの外乱分のロールレートを前記外乱による変化分として抽出し、前記外乱分のロールレートが大きくなるほど値が大きくなる外乱制御用ゲインを前記外乱分のロールレートに乗じた値を、前記外乱による変化分に対応する制御値とする請求項1に記載の車両。 The control device extracts a roll rate of disturbance from the roll rate of the vehicle body as a change due to the disturbance, and sets a disturbance control gain whose value increases as the roll rate of the disturbance increases. The vehicle according to claim 1, wherein a value obtained by multiplying the roll rate is a control value corresponding to a change due to the disturbance.
  3.  乗員が要求する前記車体の要求旋回量を検出する要求旋回量検出手段と、
     車速を検出する車速検出手段とを更に有し、
     前記制御装置は、前記横加速度センサが検出する横加速度に基づくフィードバック制御を行うとともに、前記要求旋回量検出手段が検出する要求旋回量及び前記車速検出手段が検出する車速に基づくフィードフォワード制御を行って前記車体の傾斜を制御する請求項1又は2に記載の車両。
    Requested turning amount detecting means for detecting a requested turning amount of the vehicle body requested by an occupant;
    Vehicle speed detecting means for detecting the vehicle speed,
    The control device performs feedback control based on the lateral acceleration detected by the lateral acceleration sensor, and performs feedforward control based on the requested turning amount detected by the requested turning amount detection means and the vehicle speed detected by the vehicle speed detection means. The vehicle according to claim 1, wherein the vehicle body tilt is controlled.
  4.  前記制御装置は、前記外乱による部材の弾性変形に応じて、前記外乱による変化分に対応する制御値を変化させる請求項1~3のいずれか1項に記載の車両。 The vehicle according to any one of claims 1 to 3, wherein the control device changes a control value corresponding to a change due to the disturbance according to elastic deformation of a member due to the disturbance.
  5.  前記制御装置は、前記外乱による部材の弾性変形が開始されてから終了するまでの期間、前記車体の傾斜を制御するための制御ゲインを巻き戻すように、前記外乱による変化分に対応する制御値を変化させる請求項4に記載の車両。 The control device controls the control value corresponding to the change caused by the disturbance so that the control gain for controlling the inclination of the vehicle body is rewound during a period from the start to the end of elastic deformation of the member due to the disturbance. The vehicle according to claim 4, wherein:
PCT/JP2011/067588 2010-08-02 2011-08-01 Vehicle WO2012017982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180036943.4A CN103038126B (en) 2010-08-02 2011-08-01 Vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-173669 2010-08-02
JP2010173669A JP5521865B2 (en) 2010-08-02 2010-08-02 vehicle

Publications (1)

Publication Number Publication Date
WO2012017982A1 true WO2012017982A1 (en) 2012-02-09

Family

ID=45559480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067588 WO2012017982A1 (en) 2010-08-02 2011-08-01 Vehicle

Country Status (3)

Country Link
JP (1) JP5521865B2 (en)
CN (1) CN103038126B (en)
WO (1) WO2012017982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461697A (en) * 2017-03-31 2019-11-15 株式会社爱考斯研究 Vehicle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928046B2 (en) * 2012-03-21 2016-06-01 株式会社豊田中央研究所 Wheel type moving body
US9061564B1 (en) 2013-12-18 2015-06-23 Automotive Research & Testing Center Active vehicle with a variable inclination apparatus and method of using the same
TWI566975B (en) * 2015-12-02 2017-01-21 湯生科技股份有限公司 Tilting vehicle system and the tricycle
JP6603953B2 (en) * 2016-03-29 2019-11-13 株式会社エクォス・リサーチ vehicle
IT201700024189A1 (en) * 2017-03-03 2018-09-03 Piaggio & C Spa LEAKAGE CONTRAST METHOD PROMOTED BY A RESONANCE SWING IN A THREE-WHEEL-ROLLING MOTOR WHEEL
JP2018172072A (en) * 2017-03-31 2018-11-08 株式会社エクォス・リサーチ vehicle
JP7056349B2 (en) * 2018-04-23 2022-04-19 トヨタ自動車株式会社 Automatic tilt vehicle
JP7415224B2 (en) * 2020-03-31 2024-01-17 株式会社アイシン mobile device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534553A (en) * 2002-07-31 2005-11-17 ブリンクス・ウェストマース・ビーブイ Tilting vehicle
JP2008545577A (en) * 2005-05-31 2008-12-18 ブリンクス・ウェストマース・ビーブイ Self-balancing vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583741B2 (en) * 2003-09-17 2010-11-17 本田技研工業株式会社 Swing control device for swing type vehicle
JP4986603B2 (en) * 2006-12-20 2012-07-25 ヤマハ発動機株式会社 Motorcycles and tricycles
DE102007051262A1 (en) * 2007-10-26 2009-07-16 Wabco Gmbh Device and method for automatic adjustment of the horizontal level of a commercial vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534553A (en) * 2002-07-31 2005-11-17 ブリンクス・ウェストマース・ビーブイ Tilting vehicle
JP2008545577A (en) * 2005-05-31 2008-12-18 ブリンクス・ウェストマース・ビーブイ Self-balancing vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461697A (en) * 2017-03-31 2019-11-15 株式会社爱考斯研究 Vehicle

Also Published As

Publication number Publication date
CN103038126A (en) 2013-04-10
JP5521865B2 (en) 2014-06-18
CN103038126B (en) 2016-01-20
JP2012030745A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5505319B2 (en) vehicle
JP5521865B2 (en) vehicle
JP5741278B2 (en) vehicle
WO2011102108A1 (en) Vehicle
JP5413377B2 (en) vehicle
JP2013144471A (en) Vehicle
JP2012011996A (en) Vehicle
JP2013112238A (en) Vehicle
JP2011230727A (en) Vehicle
JP2013071688A (en) Vehicle
JP2013199214A (en) Vehicle
JP5381857B2 (en) vehicle
JP5866927B2 (en) vehicle
WO2011102106A1 (en) Vehicle
JP2011194953A (en) Vehicle
JP5834835B2 (en) vehicle
JP5617650B2 (en) vehicle
JP2013112234A (en) Vehicle
JP2011168094A (en) Method for setting control value of vehicle
JP5440299B2 (en) vehicle
JP5598117B2 (en) vehicle
JP5617652B2 (en) vehicle
JP5304681B2 (en) vehicle
JP2013112236A (en) Vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036943.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814607

Country of ref document: EP

Kind code of ref document: A1