WO2012017677A1 - リチウム二次電池用負極活物質 - Google Patents

リチウム二次電池用負極活物質 Download PDF

Info

Publication number
WO2012017677A1
WO2012017677A1 PCT/JP2011/004454 JP2011004454W WO2012017677A1 WO 2012017677 A1 WO2012017677 A1 WO 2012017677A1 JP 2011004454 W JP2011004454 W JP 2011004454W WO 2012017677 A1 WO2012017677 A1 WO 2012017677A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium secondary
active material
graphite
secondary battery
Prior art date
Application number
PCT/JP2011/004454
Other languages
English (en)
French (fr)
Inventor
千明 外輪
健博 田村
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US13/814,097 priority Critical patent/US9196899B2/en
Priority to CN201180038625.1A priority patent/CN103081191B/zh
Priority to KR1020137004158A priority patent/KR101504619B1/ko
Priority to JP2012527609A priority patent/JP5960053B2/ja
Priority to EP11814312.2A priority patent/EP2602851B1/en
Publication of WO2012017677A1 publication Critical patent/WO2012017677A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a negative electrode active material for a lithium secondary battery, a negative electrode for a lithium secondary battery, and a lithium secondary battery. More specifically, the present invention contains a negative electrode active material for a lithium secondary battery that has good charge / discharge cycle characteristics even when packed at a high density to obtain a high battery capacity, and contains the negative electrode active material for this lithium secondary battery.
  • the present invention relates to a negative electrode for a lithium secondary battery and a lithium secondary battery including the negative electrode for a lithium secondary battery.
  • the lithium secondary battery according to the present invention implies a lithium ion capacitor.
  • Lithium secondary batteries are mainly used as power sources for portable devices. Mobile devices and the like have diversified functions and have increased power consumption. Therefore, the lithium secondary battery is required to increase its battery capacity and simultaneously improve the charge / discharge cycle characteristics.
  • a lithium salt such as lithium cobaltate is generally used for the positive electrode active material, and graphite or the like is used for the negative electrode active material.
  • a method of increasing the electrode packing density of the carbonaceous material used for the negative electrode can be considered.
  • the electrode packing density is increased using a conventional carbonaceous material, the carbonaceous material may be deformed and the cycle characteristics may be significantly deteriorated.
  • Patent Literature 1 and Patent Literature 2 describe composite graphite having a specific crystal structure.
  • Patent Document 3 describes that graphite having a specific crystal structure and vapor grown carbon fiber having a specific crystal structure are used in combination.
  • Patent Document 4 describes a composite carbon material obtained by attaching an organic compound as a polymer raw material to carbonaceous particles such as graphite, polymerizing the organic compound, and then heat-treating at 1800 to 3300 ° C. ing.
  • an object of the present invention is to provide a negative electrode active material for a lithium secondary battery having a high capacity and good charge / discharge cycle characteristics even when filled at a high density, a negative electrode for a lithium secondary battery containing the negative electrode active material, And it is providing the lithium secondary battery provided with this negative electrode.
  • the present inventors diligently studied to achieve the above object.
  • a novel lithium secondary formed by mixing and preparing two or more types of graphite so that the interplanar spacing, crystallite size, and half-width of diffraction peak measured by X-ray diffraction method are in a specific numerical range.
  • the negative electrode active material for batteries was found. And when this negative electrode active material was contained in the negative electrode of a lithium secondary battery, it discovered that a lithium secondary battery with a high capacity
  • the present invention has been further studied and completed based on these findings.
  • the present invention includes the following.
  • d 002 In powder X-ray diffraction, d 002 is 0.3354 nm or more and 0.337 nm or less, Lc (004) is 80 nm or more, La (110) is 100 nm or more, and diffraction angle (2 ⁇ ): the half width of the peak derived from the (101) plane appearing at 44 ° to 45 ° is 0.5 ° or more.
  • a negative electrode active material for lithium secondary batteries which is a mixture of two or more types of graphite.
  • a mixture comprising the negative electrode active material and a binder is applied onto a copper foil, dried, and then pressed to form a density of 1.5 g / cm 3 or more and 1.6 g / cm 3 or less.
  • a mixture layer is formed, and a peak intensity ratio I (110) / I (004) when the mixture layer is measured by an X-ray diffraction method is 0.1 or more
  • the negative electrode active material for lithium secondary batteries as described.
  • d 002 is 0.3354 nm or more and 0.337 nm or less
  • Lc (004) is less than 100 nm
  • the negative electrode active material for a lithium secondary battery according to any one of [4] to [4].
  • the negative electrode active material for a lithium secondary battery according to any one of the above [5] to [8], containing Graphite I in an amount of 40% by mass to 90% by mass.
  • d 002 is 0.3354 nm or more and 0.337 nm or less
  • Lc (004) is 100 nm or more
  • d 002 is 0.3354 nm or more and 0.337 nm or less
  • Lc (004) is 100 nm or more
  • the negative electrode active material for lithium secondary batteries as described in [9].
  • a negative electrode for a lithium secondary battery comprising the negative electrode active material for a lithium secondary battery according to any one of [1] to [16].
  • the negative electrode for a lithium secondary battery according to [17] further including vapor grown carbon fiber having a fiber diameter of 5 nm to 0.2 ⁇ m.
  • a lithium secondary battery comprising the lithium secondary battery negative electrode according to [17] or [18].
  • a power generation system including the lithium secondary battery according to [19].
  • An electric / electronic device comprising the lithium secondary battery according to [19].
  • the negative electrode active material for a lithium secondary battery of the present invention is contained in the negative electrode of a lithium secondary battery, a lithium secondary battery having a high capacity and good charge / discharge cycle characteristics even when filled at a high density can be obtained. .
  • FIG. 1 It is a figure which shows the powder X-ray diffraction of the carbon type negative electrode active material for lithium batteries which concerns on this invention obtained in manufacture example 1.
  • FIG. 1 shows the powder X-ray diffraction of the carbon type negative electrode active material for lithium batteries which concerns on this invention obtained in manufacture example 1.
  • Negative electrode active material for lithium secondary battery In the negative electrode active material for lithium secondary battery of the present invention, d 002 is 0.3354 nm or more and 0.337 nm or less, preferably 0.3359 nm or more and 0.000 or less in powder X-ray diffraction. It is 3368 nm or less. d002 indicates the high crystallinity of graphite.
  • the negative electrode active material according to the present invention has an Lc (004) of 80 nm or more, preferably 90 nm or more, in powder X-ray diffraction.
  • the negative electrode active material according to the present invention has La (110) of 100 nm or more in powder X-ray diffraction.
  • Lc (004) is the thickness of the crystallite calculated in the c-axis direction based on the 004 diffraction line of the graphite powder.
  • La (110) is the width of the crystallites calculated in the a-axis direction based on the 110 diffraction lines of the graphite powder.
  • the half width B 101 of the peak derived from the (101) plane appearing at a diffraction angle (2 ⁇ ): 44 ° to 45 ° is preferably 0.5 ° or more. Is from 0.5 ° to 2 °, more preferably from 0.5 ° to 1.5 °. That the half width B 101 of the peak derived from the (101) plane is 0.5 ° or more indicates that the peak is relatively broad. The fact that this peak is broad is considered to indicate disorder of the ABA stacking structure of the graphite crystal. It is known that when lithium ions are inserted between graphite layers, the structure changes from an ABA stacking structure to an AAA stacking structure. When the ABA stacking structure is disturbed, it is assumed that the change of the graphite stacking structure upon insertion of lithium ions may be performed with lower energy.
  • the peak intensity ratio I (100) / I (101) in powder X-ray diffraction is preferably 1 or less, more preferably 0.3 or more and 1 or less, and still more preferably 0.00. It is 6 or more and 1 or less, and particularly preferably 0.6 or more and 0.9 or less.
  • the negative electrode active material according to the present invention has a density of 1.5 g / cm 3 or more by applying a mixture containing the negative electrode active material and a binder onto a copper foil, drying, and then press molding.
  • a mixture layer of 1.6 g / cm 3 or less is formed, and the peak intensity ratio I (110) / I (004) when the mixture layer is measured by an X-ray diffraction method is preferably 0.1 or more, More preferably, it is 0.1 or more and 0.9 or less.
  • the peak intensity ratio I (110) / I (004) obtained by the measurement method indicates the orientation of the graphite powder. It shows that the larger the value, the lower the orientation.
  • the negative electrode active material according to the present invention has a BET specific surface area of preferably 5 m 2 / g or less, more preferably 1 to 4.5 m 2 / g.
  • the BET specific surface area is 5 m 2 / g or less, an undesirable side reaction with the electrolytic solution hardly proceeds, and deterioration of charge / discharge cycle characteristics hardly proceeds.
  • the negative electrode active material according to the present invention has a volume average particle diameter D 50 of preferably 3 ⁇ m or more and 30 ⁇ m or less, more preferably 4 ⁇ m or more and 25 ⁇ m or less, and further preferably 4 ⁇ m or more and 20 ⁇ m or less. When the volume average particle diameter D 50 is in this range, the smoothness of the electrode surface becomes good and an undesirable side reaction with the electrolytic solution is difficult to proceed.
  • the negative electrode active material according to the present invention is a mixture of two or more types of graphite.
  • the graphite used for mixing may be any combination of graphite as long as it has the above characteristic values upon mixing.
  • One of the two or more types of graphite used for mixing is preferably graphite I.
  • the graphite I has d 002 of 0.3354 nm or more and 0.337 nm or less, preferably 0.3359 nm or more and 0.3368 nm or less, and Lc (004) is less than 100 nm, preferably 40 nm or more and 85 nm or less.
  • La (110) is 100 nm or more, and the half-value width B 101 of the peak derived from the (101) plane appearing at diffraction angle (2 ⁇ ): 44 ° to 45 ° is 0.65 ° or more, preferably 0 65 ° or more and 2 ° or less, more preferably 0.7 ° or more and 1.5 ° or less.
  • Graphite I has a peak intensity ratio I (100) / I (101) in powder X-ray diffraction of preferably 1 or less, more preferably 0.7 or more and 1 or less, and further preferably 0.75 or more and 0.95. It is as follows.
  • graphite I is coated with a mixture comprising the graphite I and a binder on a copper foil, dried, and then density of 1.5 g / cm 3 or more by pressure molding 1.6 g / cm 3
  • the following mixture layer is formed, and the peak intensity ratio I (110) / I (004) when the mixture layer is measured by an X-ray diffraction method is preferably 0.2 or more, more preferably 0.35. It will be super 0.9 or less.
  • Graphite I has a BET specific surface area of preferably 5 m 2 / g or less, more preferably 1 to 4.5 m 2 / g, and a volume average particle diameter D 50 of preferably 3 ⁇ m or more and 30 ⁇ m or less, more preferably 4 ⁇ m. It is 25 ⁇ m or less, more preferably 4 ⁇ m or more and 20 ⁇ m or less.
  • the graphite I can be obtained, for example, by the following method.
  • the residue preferably has an API specific gravity of 1 to 5 degrees, an asphaltene content of preferably 10 to 50%, a resin content of preferably 5 to 30%, and a sulfur content of preferably 1 to 12%.
  • the residue is coked to obtain coke.
  • the coking method may be a delayed coking method or a fluid coking method.
  • the obtained coke is cut out with water, heated, and dried until the water content is preferably 1.0% or less.
  • the dried coke mass is pulverized and classified to obtain carbon powder.
  • the pulverization method is not particularly limited, and examples thereof include a method using an apparatus such as a hammer mill, a pin mill, a jet mill, a rod mill, or an ACM pulverizer.
  • the volume average particle diameter D 50 of the carbon powder after classification is preferably 3 ⁇ m or more and 30 ⁇ m or less, more preferably 4 ⁇ m or more and 25 ⁇ m or less, and further preferably 4 ⁇ m or more and 20 ⁇ m or less.
  • the carbon powder is preferably heat-treated at 1000 to 3500 ° C., more preferably 2000 to 3400 ° C., and still more preferably 2500 to 3300 ° C. to graphitize. In this way, graphite I can be obtained.
  • the graphite I according to the present invention may have a surface treated.
  • the surface treatment include surface fusion by a mechanofusion method and the like, and surface coating by a wet method and the like.
  • a wet method for example, there is a method as described in JP-A-2005-158718. Specifically, a method comprising adhering and / or impregnating an organic compound as a polymer raw material on the surface of graphite I, then polymerizing the organic compound, and then heat-treating at 1800 to 3300 ° C., or This is a method including attaching and / or impregnating a solution of a resin material to the surface of graphite I, drying, and then heat-treating at 1800 to 3300 ° C.
  • graphite I and a different carbon material or resin material are placed in an apparatus capable of high-speed rotation mixing, and mechanical energy is added to the graphite I and the different carbon material or resin material to obtain a mechanochemical method. And a heat treatment at 900 ° C. to 2000 ° C. as necessary.
  • surface treatment by mechanofusion method is preferred.
  • carbon materials such as petroleum pitch, coal pitch and coal tar, and resin materials such as phenol resin and furan resin are used. Petroleum pitches or coal pitches are optically isotropic and optically anisotropic. In the production examples of the present specification, an optically isotropic material is used.
  • the pitch used in the surface treatment has a softening point of preferably 200 to 350 ° C., fixed carbon of preferably 50 to 80% by mass, and a volume average particle diameter D 50 of preferably 1 ⁇ m to 10 ⁇ m.
  • the amount of pitch used for the surface treatment is preferably 0.1 to 50 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of graphite I.
  • the amount of graphite I in the negative electrode active material is preferably 40% by mass to 90% by mass, more preferably 50% by mass to 80% by mass, and still more preferably 50% by mass to 70% by mass.
  • One of the two or more types of graphite used for mixing may be conventionally known graphite.
  • graphite II is preferable.
  • Graphite II in a powder X-ray diffraction, d 002 is 0.3354nm than 0.337nm or less, preferably not more than 0.3368nm than 0.3359nm, Lc (004) is 100nm or more, and La (110 ) Is 100 nm or more.
  • Graphite II has a half width B 101 of a peak derived from the (101) plane appearing at a diffraction angle (2 ⁇ ): 44 ° to 45 ° in powder X-ray diffraction of 0.65 ° or less.
  • Graphite II has a high completeness of the ABA stacking structure of graphite crystals.
  • graphite II is coated with a mixture comprising the graphite II and a binder on a copper foil, dried, and then density of 1.5 g / cm 3 or more by pressure molding 1.6 g / cm 3
  • the following mixture layer is formed, and the peak intensity ratio I (110) / I (004) when the mixture layer is measured by an X-ray diffraction method is preferably 0.4 or less, more preferably 0.35. It is as follows.
  • Graphite II is preferably higher in orientation than graphite I.
  • Graphite II has a BET specific surface area of preferably 5 m 2 / g or less, more preferably 1 to 4.5 m 2 / g, and a volume average particle diameter D 50 of preferably 3 ⁇ m or more and 30 ⁇ m or less, more preferably 4 ⁇ m. It is 25 ⁇ m or less, more preferably 4 ⁇ m or more and 20 ⁇ m or less.
  • Graphite II is preferably natural graphite or artificial graphite.
  • natural graphite natural graphite processed into a spherical shape is preferable.
  • artificial graphite it is preferable to use artificial graphite made from mesophase pitch.
  • Graphite II may have a surface treated.
  • Examples of the surface treatment method include the same methods as those described in Graphite I.
  • surface treatment by mechanofusion method is preferred.
  • carbon materials such as petroleum pitch, coal pitch and coal tar, and resin materials such as phenol resin and furan resin are used.
  • Petroleum pitches or coal pitches are optically isotropic and optically anisotropic.
  • an optically isotropic material is used.
  • the pitch used in the surface treatment has a softening point of preferably 200 to 350 ° C., fixed carbon of preferably 50 to 80% by mass, and a volume average particle diameter D 50 of preferably 1 ⁇ m to 10 ⁇ m.
  • the amount of pitch used for the surface treatment is preferably 0.1 to 50 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of Graphite II.
  • the amount of graphite II in the negative electrode active material is preferably 10% by mass to 60% by mass, more preferably 20% by mass to 50% by mass, and still more preferably 30% by mass to 50% by mass.
  • Negative electrode for lithium secondary battery contains the negative electrode active material of this invention.
  • the negative electrode active material is usually contained in a negative electrode active material layer.
  • the negative electrode active material layer is formed by molding a mixture containing the negative electrode active material, a binder, and an additive blended as necessary, by various molding methods.
  • the negative electrode active material layer is usually laminated with a current collector for facilitating energization with terminals and conductive wires.
  • Binders include polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, polytetrafluoroethylene, poly (meth) acrylate, polyvinylidene fluoride, polyethylene oxide, polypropylene oxide, polyepichlorohydrin, polyphasphazene. , Polyacrylonitrile, and the like.
  • Examples of the additive added to the negative electrode active material layer as necessary include a conductivity imparting material, an ion-permeable compound, a thickener, a dispersant, a lubricant, activated carbon, and the like.
  • Examples of the conductivity imparting material include conductive metal powders such as silver powder; conductive carbon powders such as furnace black, ketjen black, and acetylene black; carbon nanotubes, carbon nanofibers, and vapor grown carbon fibers.
  • the vapor grown carbon fiber preferably has a fiber diameter of 5 nm to 0.2 ⁇ m.
  • the content of vapor grown carbon fiber is preferably 0.1 to 10% by mass relative to the mass of the negative electrode active material layer.
  • the ion-permeable compound include polysaccharides such as chitin and chitosan, or a cross-linked product of the polysaccharide.
  • the thickener include carboxymethyl cellulose and polyvinyl alcohol.
  • the negative electrode active material layer is obtained, for example, by applying a paste-like mixture to a current collector, drying, and pressure-molding, or by pressure-molding a powdery mixture on the current collector. It is done.
  • the thickness of the negative electrode active material layer is usually 0.04 mm or more and 0.15 mm or less.
  • a negative electrode active material layer having an arbitrary electrode density can be obtained by adjusting the pressure applied during molding. The pressure applied during the molding is 1t / cm 2 ⁇ 3t / cm 2 is preferably about.
  • the current collector examples include a conductive metal foil, a conductive metal net, and a conductive metal punching metal.
  • a conductive metal foil one containing copper, aluminum, nickel or the like is used.
  • the negative electrode current collector preferably contains copper.
  • the lithium secondary battery of the present invention comprises the negative electrode for a lithium secondary battery of the present invention.
  • the lithium secondary battery of the present invention implies a lithium ion capacitor.
  • the lithium secondary battery of the present invention further includes a positive electrode.
  • As the positive electrode those conventionally used in lithium secondary batteries can be used.
  • the positive electrode usually comprises a positive electrode active material layer containing a positive electrode active material and a current collector laminated on the positive electrode active material layer. Examples of the positive electrode active material include LiNiO 2 , LiCoO 2 , and LiMn 2 O 4 .
  • the positive electrode active material layer may further contain a conventionally known additive for a positive electrode active material.
  • the positive electrode current collector preferably contains aluminum.
  • a positive electrode and a negative electrode are usually immersed in an electrolyte.
  • the electrolyte may be liquid, gel or solid.
  • the liquid electrolyte include a non-aqueous solvent solution of a lithium salt.
  • the lithium salt include LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, and CF 3 SO 3 Li.
  • the non-aqueous solvent used for the liquid electrolyte is preferably at least one selected from the group consisting of ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, and vinylene carbonate.
  • the solid electrolyte or the gel electrolyte examples include a polymer electrolyte such as a sulfonated styrene-olefin copolymer, a polymer electrolyte using polyethylene oxide and MgClO 4 , and a polymer electrolyte having a trimethylene oxide structure.
  • the non-aqueous solvent used for the polymer electrolyte is preferably at least one selected from the group consisting of ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, and vinylene carbonate.
  • a separator is provided between the positive electrode and the negative electrode as necessary.
  • the separator include a nonwoven fabric, a woven fabric, a microporous film, and a combination thereof.
  • the lithium secondary battery according to the present invention can be used in various fields.
  • Examples include power generation systems, wind power generation systems, tidal power generation systems, and geothermal power generation systems.
  • the physical properties of the negative electrode active material for lithium secondary battery or graphite were measured by the following methods.
  • Lc (004) is the thickness of the crystallite calculated in the c-axis direction based on the 004 diffraction line.
  • La (110) is the width of the crystallite calculated in the a-axis direction based on 110 diffraction lines.
  • I (100) / I (101) is the ratio of the peak intensity of 100 diffraction lines to the peak intensity of 101 diffraction lines.
  • B 101 is the peak half-value width of the 101 diffraction line appearing at the diffraction angle (2 ⁇ ): 44 ° to 45 °.
  • Orientation I (110) / I (004) Kuriha's polyvinylidene fluoride (L # 9130; n-methyl-2-pyrrolidone solution) was kneaded while being added little by little to the negative electrode active material or graphite so as to have a solid content of 5% by mass. Next, n-methyl-2-pyrrolidone was added and kneaded, and adjusted to have sufficient fluidity. Using a defoaming kneader NBK-1 manufactured by Nippon Seiki Seisakusho, kneading was carried out at 500 rpm for 5 minutes to obtain a paste-like mixture.
  • the mixture was applied onto the copper foil using an automatic coating machine and a doctor blade having a clearance of 250 ⁇ m.
  • the copper foil coated with the mixture was placed on a hot plate at about 80 ° C. to remove moisture. Then, it was dried at 120 ° C. for 6 hours with a vacuum dryer. After drying, press molding with a press so that the electrode density calculated from the mass of solids in the mixture and the coating film dry volume is 1.5 g / cm 3 or more and 1.6 g / cm 3 or less.
  • An electrode sheet obtained by laminating a mixture layer and a copper foil was obtained. The electrode sheet was cut into an appropriate size, attached to a glass cell for X-ray diffraction measurement, and measured by the X-ray diffraction method. And peak intensity ratio I (110) / I (004) was computed.
  • the peak intensity ratio I (110) / I (004) indicates the orientation of graphite.
  • BET specific surface area S sa The specific surface area was calculated by the BET method using nitrogen adsorption.
  • the volume average particle diameter D 50 Two cups of ultra-small spatula and 2 drops of nonionic surfactant (Triton-X) were added to 50 ml of water and ultrasonically dispersed for 3 minutes. The dispersion was placed in a Malvern Co. laser diffraction particle size distribution measuring apparatus (Mastersizer), measuring the particle size distribution was determined volume average particle diameter D 50.
  • Production Example 1 Production of Graphite A1 Venezuelan crude oil was distilled under reduced pressure to obtain a residue.
  • the residue had an API specific gravity of 2.3 degrees, an asphaltene content of 25%, a resin content of 15%, and a sulfur content of 6.0%.
  • the residue was put into a delayed coker and coked to obtain coke.
  • the obtained coke was cut out with water, heated at 120 ° C., and dried until the water content became 1.0% or less.
  • the dried coke mass was pulverized with a hammer mill manufactured by Hosokawa Micron Corporation, and air-flow classified with a turbo classifier TC-15N manufactured by Nisshin Engineering Co., Ltd. to obtain a carbon powder having a volume average particle diameter D 50 of 17 ⁇ m.
  • FIG. 1 shows powder X-ray diffraction of graphite A1.
  • Production Example 5 Production of Graphite C2 5 parts by mass of a petroleum optical isotropic pitch having a softening point of about 275 ° C., 65% by mass of fixed carbon and a volume average particle diameter D 50 of 5 ⁇ m, and 95 parts by mass of graphite C1 were mixed. .
  • This mixture was put in a mechanofusion system manufactured by Hosokawa Micron and rotated at high speed. Next, this was heat-treated at 1200 ° C. for 1 hour in a nitrogen gas atmosphere. After cooling, graphite C2 was obtained through a sieve having an opening of 45 ⁇ m.
  • Mechanofusion is a technology that creates a new material by adding a certain kind of mechanical energy to a plurality of different material particles to cause a mechanochemical reaction. The physical properties are shown in Table 1.
  • Examples 1-4 and Comparative Examples 1-2 The graphite prepared in Production Examples 1 to 5 was mixed according to the formulation shown in Table 2 to obtain a negative electrode active material.
  • Table 2 shows the physical properties of the negative electrode active material.
  • lithium secondary batteries were produced by the following method, and the discharge capacity retention rate (%) after 200 charge / discharge cycles was measured. The results are shown in Table 3.
  • a spacer, a leaf spring, a negative electrode, a separator (polypropylene microporous film “Celguard 2400” manufactured by Celgard) and a positive electrode were stacked in this order in a cylindrical SUS304 receiving exterior material.
  • a cylindrical upper cover material made of SUS304 was placed.
  • the receiving exterior material and the upper lid exterior material were caulked to obtain a coin cell for evaluation.
  • Five coin cells were manufactured for one kind of negative electrode active material and subjected to an evaluation test.
  • the third and subsequent charge / discharge cycles were performed as follows. From the rest potential to 4.2V, constant current charge is performed at 0.34mA / cm 2 (equivalent to 0.2C), and when the voltage reaches 4.2V, constant voltage charge is performed at 4.2V, and the current value reaches 20 ⁇ A. Charging was stopped when the voltage dropped. Subsequently, constant current discharge was performed at 1.7 mA / cm 2 (corresponding to 1.0 C), and cut off at a voltage of 2.7 V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

粉末X線回折において、d002が0.3354nm以上0.337nm以下、Lc(004)が80nm以上、La(110)が100nm以上、且つ回折角(2θ):44°~45°に現れる(101)面に由来するピークの半値幅が0.5°以上となるように、例えば、粉末X線回折において、d002が0.3354nm以上0.337nm以下、Lc(004)が100nm未満、La(110)が100nm以上、且つ回折角(2θ):44°~45°に現れる(101)面に由来するピークの半値幅が0.65°以上である黒鉛Iとそれ以外の黒鉛とを混合してなる、リチウム二次電池用負極活物質。

Description

リチウム二次電池用負極活物質
 本発明は、リチウム二次電池用負極活物質、リチウム二次電池用負極、およびリチウム二次電池に関する。より詳細に、本発明は、高い電池容量を得るために高密度に充填しても、充放電サイクル特性が良好なリチウム二次電池用負極活物質、このリチウム二次電池用負極活物質を含有するリチウム二次電池負極、およびこのリチウム二次電池用負極を備えたリチウム二次電池に関する。なお、本発明に係るリチウム二次電池は、リチウムイオンキャパシタを含意する。
 携帯機器などの電源には、リチウム二次電池が主に用いられている。携帯機器などはその機能が多様化し消費電力が大きくなっている。そのため、リチウム二次電池には、その電池容量を増加させ、同時に充放電サイクル特性を向上させることが求められている。このリチウム二次電池には、一般に、正極活物質にコバルト酸リチウムなどのリチウム塩が使用され、負極活物質に黒鉛などが使用されている。
 電池容量を増加させるために、例えば、負極に用いられる炭素質材料の電極充填密度を上げる手法が考えられる。しかし、従来の炭素質材料を用いて電極充填密度を上げると、炭素質材料の変形などが起きて、サイクル特性が著しく低下してしまうことがある。
 こうしたことから、負極用の炭素質材料自身の改良によって、電池容量を高め且つサイクル特性を改善することが検討されている。例えば、特許文献1や特許文献2には、特定結晶構造の複合黒鉛が記載されている。特許文献3には、特定結晶構造の黒鉛と特定結晶構造の気相法炭素繊維とを併用することが記載されている。また特許文献4には、黒鉛などの炭素質粒子に重合体原料としての有機化合物を付着させ、該有機化合物を重合させ、その後、1800~3300℃で熱処理して得られる複合炭素材料が記載されている。
特開2007-141677号公報 WO2007/072858 特開2007-42620号公報 特開2005-158718号公報
 上記特許文献に開示されている炭素質材料によって、リチウム二次電池の容量および充放電サイクル特性は改善されてきている。しかしながら、リチウム二次電池に対する要求性能は年々高くなってきているので、リチウム二次電池負極用の炭素質材料の更なる改善が望まれている。
 そこで、本発明の目的は、容量が高く、且つ高密度に充填しても充放電サイクル特性が良好なリチウム二次電池用負極活物質、この負極活物質を含有するリチウム二次電池用負極、およびこの負極を備えたリチウム二次電池を提供することにある。
 本発明者らは、上記目的を達成すべく鋭意検討した。その結果、X線回折法によって測定した面間隔、結晶子の大きさ、および回折ピークの半値幅が特定の数値範囲となるように二種類以上の黒鉛を混合調製してなる新規なリチウム二次電池用負極活物質を見出した。そして、この負極活物質を、リチウム二次電池の負極に含有させると、容量が高く、且つ高密度に充填しても充放電サイクル特性が良好なリチウム二次電池が得られることを見出した。本発明は、これらの知見に基づきさらに検討し完成するに至ったものである。
 すなわち、本発明は以下のものを包含する。
[1] 粉末X線回折において、
  d002が0.3354nm以上0.337nm以下、
  Lc(004)が80nm以上、
  La(110)が100nm以上、且つ
  回折角(2θ):44°~45°に現れる(101)面に由来するピークの半値幅が0.5°以上となるように、
 二種類以上の黒鉛を混合してなる、リチウム二次電池用負極活物質。
[2] 粉末X線回折におけるピーク強度比I(100)/I(101)が0.6以上1以下である、前記[1]に記載のリチウム二次電池用負極活物質。
[3] 該負極活物質とバインダーとを含んでなる合剤を銅箔上に塗布し、乾燥させ、次いで加圧成形することによって密度1.5g/cm3以上1.6g/cm3以下の合剤層を形成し、該合剤層をX線回折法によって測定したときのピーク強度比I(110)/I(004)が0.1以上である、前記[1]または[2]に記載のリチウム二次電池用負極活物質。
[4] BET比表面積が5m2/g以下で且つ体積平均粒子径D50が3μm以上30μm以下である、前記[1]~[3]のいずれかひとつに記載のリチウム二次電池用負極活物質。
[5] 二種類以上の黒鉛のうちの一種が、
 粉末X線回折において、
  d002が0.3354nm以上0.337nm以下、
  Lc(004)が100nm未満、
  La(110)が100nm以上、且つ
  回折角(2θ):44°~45°に現れる(101)面に由来するピークの半値幅が0.65°以上の、黒鉛Iである、前記[1]~[4]のいずれかひとつに記載のリチウム二次電池用負極活物質。
[6] 黒鉛Iは、粉末X線回折におけるピーク強度比I(100)/I(101)が0.7以上1以下である、前記[5]に記載のリチウム二次電池用負極活物質。
[7] 黒鉛Iは、該負極活物質とバインダーとを含んでなる合剤を銅箔上に塗布し、乾燥させ、次いで加圧成形することによって密度1.5g/cm3以上1.6g/cm3以下の合剤層を形成し、該合剤層をX線回折法によって測定したときのピーク強度比I(110)/I(004)が0.2以上である、前記[5]または[6]に記載のリチウム二次電池用負極活物質。
[8] 黒鉛Iは、BET比表面積が5m2/g以下で且つ体積平均粒子径D50が3μm以上30μm以下である、前記[5]~[7]のいずれかひとつに記載のリチウム二次電池用負極活物質。
[9] 黒鉛Iを40質量%以上90質量%以下含有する、前記[5]~[8]のいずれかひとつに記載のリチウム二次電池用負極活物質。
[10] 二種類以上の黒鉛のうちの一種が、
 粉末X線回折において、
  d002が0.3354nm以上0.337nm以下、
  Lc(004)が100nm以上、
  La(110)が100nm以上、且つ
  回折角(2θ):44°~45°に現れる(101)面に由来するピークの半値幅が0.65°以下の、黒鉛IIである、前記[1]~[9]に記載のリチウム二次電池用負極活物質。
[11] 黒鉛IIは、軟化点200~350℃および固定炭素50~80質量%のピッチで表面処理されてなる、前記[10]に記載のリチウム二次電池用負極活物質。
[12] 前記ピッチの体積平均粒子径D50が1μm~10μmである、前記[11]に記載のリチウム二次電池用負極活物質。
[13] 前記ピッチは光学等方性のものである、前記[11]または[12]に記載のリチウム二次電池用負極活物質。
[14] 前記黒鉛IIが、球状に加工された天然黒鉛である、前記[10]~[13]のいずれかひとつに記載のリチウム二次電池用負極活物質。
[15] 前記黒鉛IIが、メソフェーズピッチを原料として得られる人造黒鉛である、前記[10]~[13]のいずれかひとつに記載のリチウム二次電池用負極活物質。
[16] 黒鉛IIを10質量%以上60質量%以下含有する、前記[10]~[15]のいずれかひとつに記載のリチウム二次電池用負極活物質。
[17] 前記[1]~[16]のいずれかひとつに記載のリチウム二次電池用負極活物質を含有してなるリチウム二次電池用負極。
[18] 繊維径5nm以上0.2μm以下の気相法炭素繊維をさらに含有してなる前記[17]に記載のリチウム二次電池用負極。
[19] 前記[17]または[18]に記載のリチウム二次電池用負極を備えたリチウム二次電池。
[20] 前記[19]に記載のリチウム二次電池を備えた交通機関。
[21] 前記[19]に記載のリチウム二次電池を備えた発電システム。
[22] 前記[19]に記載のリチウム二次電池を備えた電気・電子機器。
 本発明のリチウム二次電池用負極活物質を、リチウム二次電池の負極に含有させると、容量が高く、且つ高密度に充填しても充放電サイクル特性が良好なリチウム二次電池が得られる。
製造例1で得られた本発明に係るリチウム電池用炭素系負極活物質の粉体X線回折を示す図である。
1)リチウム二次電池用負極活物質
 本発明のリチウム二次電池用負極活物質は、粉末X線回折において、d002が、0.3354nm以上0.337nm以下、好ましくは0.3359nm以上0.3368nm以下である。d002は黒鉛の結晶性の高さを示している。
 なお、d002は、黒鉛粉末の002回折線に基づいて、Braggの式 d=λ/sinθcから算出される面間隔である。
 本発明に係る負極活物質は、粉末X線回折において、Lc(004)が、80nm以上、好ましくは90nm以上である。また、本発明に係る負極活物質は、粉末X線回折において、La(110)が、100nm以上である。
 なお、Lc(004)は、黒鉛粉末の004回折線に基づいて、算出される結晶子のc軸方向の厚みである。La(110)は、黒鉛粉末の110回折線に基づいて、算出される結晶子のa軸方向の幅である。
 本発明に係る負極活物質は、粉末X線回折において、回折角(2θ):44°~45°に現れる(101)面に由来するピークの半値幅B101が、0.5°以上、好ましくは0.5°以上2°以下、より好ましくは0.5°以上1.5°以下である。
 (101)面に由来するピークの半値幅B101が0.5°以上であるということは、ピークとしては比較的ブロードであることを示している。このピークがブロードであるということは、黒鉛結晶のABAスタッキング構造の乱れを示していると考えられる。リチウムイオンが黒鉛層間に挿入される際に、ABAスタッキング構造からAAAスタッキング構造に変化することが知られている。ABAスタッキング構造に乱れがある場合には、リチウムイオンの挿入時の黒鉛スタッキング構造の変化がより低エネルギーで行われるのではないかと推測している。
 また、本発明に係る負極活物質は、粉末X線回折におけるピーク強度比I(100)/I(101)が、好ましくは1以下、より好ましくは0.3以上1以下、さらに好ましくは0.6以上1以下、特に好ましくは0.6以上0.9以下である。
 さらに、本発明に係る負極活物質は、該負極活物質とバインダーとを含んでなる合剤を銅箔上に塗布し、乾燥させ、次いで加圧成形することによって密度1.5g/cm3以上1.6g/cm3以下の合剤層を形成し、該合剤層をX線回折法によって測定したときのピーク強度比I(110)/I(004)が、好ましくは0.1以上、より好ましくは0.1以上0.9以下である。該測定法で得られるピーク強度比I(110)/I(004)は、黒鉛粉末の配向性を示している。この値が大きくなるほど配向性が低くなることを示している。
 また、本発明に係る負極活物質は、BET比表面積が、好ましくは5m2/g以下、より好ましくは1~4.5m2/gである。BET比表面積が5m2/g以下であると、電解液との望ましくない副反応が進み難くなり、且つ充放電サイクル特性の劣化が進み難くなる。
 さらに、本発明に係る負極活物質は、体積平均粒子径D50が、好ましくは3μm以上30μm以下、より好ましくは4μm以上25μm以下、さらに好ましくは4μm以上20μm以下である。この範囲の体積平均粒子径D50を有すると電極表面の平滑性が良好となり且つ電解液との望ましくない副反応が進み難くなる。
 本発明に係る負極活物質は、二種類以上の黒鉛を混合してなるものである。混合に用いられる黒鉛は、混合によって上記のような特性値を有するようになるものであれば、どのような黒鉛の組み合わせであってもよい。
 混合に供される二種類以上の黒鉛のうちの一種は、黒鉛Iであることが好ましい。
 該黒鉛Iは、粉末X線回折において、d002が0.3354nm以上0.337nm以下、好ましくは0.3359nm以上0.3368nm以下であり、Lc(004)が100nm未満、好ましくは40nm以上85nm以下であり、La(110)が100nm以上であり、且つ回折角(2θ):44°~45°に現れる(101)面に由来するピークの半値幅B101が0.65°以上、好ましくは0.65°以上2°以下、より好ましくは0.7°以上1.5°以下のものである。
 また、黒鉛Iは、粉末X線回折におけるピーク強度比I(100)/I(101)が、好ましくは1以下、より好ましくは0.7以上1以下、さらに好ましくは0.75以上0.95以下である。
 さらに、黒鉛Iは、該黒鉛Iとバインダーとを含んでなる合剤を銅箔上に塗布し、乾燥させ、次いで加圧成形することによって密度1.5g/cm3以上1.6g/cm3以下の合剤層を形成し、該合剤層をX線回折法によって測定したときのピーク強度比I(110)/I(004)が、好ましくは0.2以上、より好ましくは0.35超0.9以下になるものである。黒鉛Iは、BET比表面積が、好ましくは5m2/g以下、より好ましくは1~4.5m2/gであり、体積平均粒径D50が、好ましくは3μm以上30μm以下、より好ましくは4μm以上25μm以下、さらに好ましくは4μm以上20μm以下である。
 該黒鉛Iは、例えば、以下のような方法にて得ることができる。
 先ず、ベネズエラ産原油を減圧蒸留して残渣を得る。該残渣は、API比重が好ましくは1~5度、アスファルテン分が好ましくは10~50%、樹脂分が好ましくは5~30%、および硫黄分が好ましくは1~12%である。
 該残渣をコーキングしてコークスを得る。コーキング方法は、ディレードコーキング法であってもよいし、フルードコーキング法であってもよい。得られたコークスを水によって切り出し、それを加熱し、水分含有率が好ましくは1.0%以下となるまで乾燥させる。
 乾燥させたコークス塊を粉砕し、分級して、炭素粉体を得る。粉砕方法は特に限定されず、例えば、ハンマーミル、ピンミル、ジェットミル、ロッドミル、ACMパルベライザーなどの装置を用いる方法が挙げられる。分級後の炭素粉体の体積平均粒子径D50は、好ましくは3μm以上30μm以下、より好ましくは4μm以上25μm以下、さらに好ましくは4μm以上20μm以下である。
 この炭素粉体を、好ましくは1000~3500℃、より好ましくは2000~3400℃、さらに好ましくは2500~3300℃で加熱処理して、黒鉛化する。このようにして黒鉛Iを得ることができる。
 本発明に係る黒鉛Iは、その表面に処理が施されたものであってもよい。該表面処理としては、メカノフュージョン法などによる表面融合、湿式法などによる表面被覆、などが挙げられる。
 湿式法としては、例えば、特開2005-158718号公報に記載されているような方法がある。具体的には、重合体原料としての有機化合物を、黒鉛Iの表面に付着および/または含侵させ、次いで有機化合物を重合させ、その後に1800~3300℃にて熱処理することを含む方法、もしくは樹脂材の溶液を黒鉛Iの表面に付着および/または含侵させ、乾燥させ、次いで1800~3300℃にて熱処理することを含む方法である。
 また、メカノフュージョン法の例としては、高速回転混合可能な装置に、黒鉛Iと異種炭素材または樹脂材とを入れ、黒鉛Iと異種炭素材または樹脂材に機械的エネルギーを加えて、メカノケミカル的な反応を起こさせ、次いで必要に応じて900℃~2000℃で熱処理することを含む方法である。本発明ではメカノフュージョン法による表面処理が好ましい。
 黒鉛Iの表面処理においては、石油系ピッチ、石炭系ピッチ、コールタールなどの炭素材や、フェノール樹脂、フラン樹脂などの樹脂材が用いられる。石油系ピッチまたは石炭系ピッチには、光学等方性のものと光学異方性のものとがある。本願明細書の製造例では光学等方性のものを用いている。表面処理において用いられるピッチは、軟化点が好ましくは200~350℃であり、固定炭素が好ましくは50~80質量%であり、体積平均粒子径D50が好ましくは1μm~10μmである。該表面処理に使用するピッチの量は、黒鉛I 100質量部に対して、好ましくは0.1~50質量部、より好ましくは0.1~10質量部である。
 負極活物質中における黒鉛Iの量は、好ましくは40質量%以上90質量%以下、より好ましくは50質量%以上80質量%以下、さらに好ましくは50質量%以上70質量%以下である。
 混合に供される二種類以上の黒鉛のうちの一種は、従来から知られている黒鉛であってもよい。該公知の黒鉛としては黒鉛IIが好ましい。
 該黒鉛IIは、粉末X線回折において、d002が0.3354nm以上0.337nm以下、好ましくは0.3359nm以上0.3368nm以下であり、Lc(004)が100nm以上であり、且つLa(110)が100nm以上である。
 また、黒鉛IIは、粉末X線回折において、回折角(2θ):44°~45°に現れる(101)面に由来するピークの半値幅B101が0.65°以下である。黒鉛IIは、黒鉛結晶のABAスタッキング構造の完全性が高いものである。
 さらに、黒鉛IIは、該黒鉛IIとバインダーとを含んでなる合剤を銅箔上に塗布し、乾燥させ、次いで加圧成形することによって密度1.5g/cm3以上1.6g/cm3以下の合剤層を形成し、該合剤層をX線回折法によって測定したときのピーク強度比I(110)/I(004)が、好ましくは0.4以下、より好ましくは0.35以下である。黒鉛IIは、黒鉛Iに比較して配向性が高いものであることが好ましい。黒鉛IIは、BET比表面積が、好ましくは5m2/g以下、より好ましくは1~4.5m2/gであり、体積平均粒径D50が、好ましくは3μm以上30μm以下、より好ましくは4μm以上25μm以下、さらに好ましくは4μm以上20μm以下である。
 黒鉛IIは、天然黒鉛または人造黒鉛であることが好ましい。天然黒鉛の場合は球状に加工された天然黒鉛であることが好ましい。人造黒鉛の場合はメソフェーズピッチを原料とした人造黒鉛であることが好ましい。
 黒鉛IIは、その表面に処理が施されたものであってもよい。該表面処理法としては、黒鉛Iにおいて挙げた方法と同様の方法が挙げられる。本発明ではメカノフュージョン法による表面処理が好ましい。黒鉛IIの表面処理においては、石油系ピッチ、石炭系ピッチ、コールタールなどの炭素材や、フェノール樹脂、フラン樹脂などの樹脂材が用いられる。石油系ピッチまたは石炭系ピッチには、光学等方性のものと光学異方性のものとがある。本願明細書の製造例では光学等方性のものを用いている。表面処理において用いられるピッチは、軟化点が好ましくは200~350℃であり、固定炭素が好ましくは50~80質量%であり、体積平均粒子径D50が好ましくは1μm~10μmである。該表面処理に使用するピッチの量は、黒鉛II 100質量部に対して、好ましくは0.1~50質量部、より好ましくは0.1~10質量部である。
 負極活物質中における黒鉛IIの量は、好ましくは10質量%以上60質量%以下、より好ましくは20質量%以上50質量%以下、さらに好ましくは30質量%以上50質量%以下である。
2)リチウム二次電池用負極
 本発明のリチウム二次電池用負極は、本発明の負極活物質を含有してなるものである。
 リチウム二次電池用負極において、該負極活物質は、通常、負極活物質層に含有されている。該負極活物質層は、前記負極活物質、バインダー、および必要に応じて配合される添加剤を含有する合剤を種々の成形法によって成形してなるものである。また、該負極活物質層には、通常、端子や導電線などとの通電を容易にするための集電体が積層されている。
 バインダーとしては、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、ポリテトラフルオロエチレン、ポリ(メタ)アクリレート、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエピクロルヒドリン、ポリファスファゼン、ポリアクリロニトリル、などが挙げられる。
 負極活物質層に必要に応じて配合される添加剤としては、導電性付与材、イオン透過性化合物、増粘剤、分散剤、滑材、活性炭などが挙げられる。
 導電性付与材としては、銀粉などの導電性金属粉;ファーネスブラック、ケッチェンブラック、アセチレンブラックなどの導電性カーボン粉;カーボンナノチューブ、カーボンナノファイバー、気相法炭素繊維などが挙げられる。本発明の負極においては、添加剤として気相法炭素繊維を含有させることが好ましい。気相法炭素繊維は、その繊維径が5nm以上0.2μm以下であることが好ましい。気相法炭素繊維の含有量は負極活物質層の質量に対して0.1~10質量%であることが好ましい。イオン透過性化合物としては、キチン、キトサンなどの多糖類、または該多糖類の架橋物などが挙げられる。増粘剤としては、カルボキシメチルセルロール、ポリビニルアルコールなどが挙げられる。
 負極活物質層は、例えば、ペースト状の合剤を集電体に塗布し、乾燥させ、加圧成形することによって、または粉粒状の合剤を集電体上で加圧成形することによって得られる。負極活物質層の厚さは、通常、0.04mm以上0.15mm以下である。成形時に加える圧力を調整することによって任意の電極密度の負極活物質層を得ることができる。成形時に加える圧力は1t/cm2~3t/cm2程度が好ましい。
 集電体としては、導電性金属の箔、導電性金属の網、導電性金属のパンチングメタルなどが挙げられる。導電性金属としては、銅、アルミニウム、ニッケルなどを含むものが用いられる。負極用の集電体としては銅を含むものが好ましい。
3)リチウム二次電池
 本発明のリチウム二次電池は、本発明のリチウム二次電池用負極を備えたものである。なお、本発明のリチウム二次電池はリチウムイオンキャパシタを含意する。
 本発明のリチウム二次電池は、さらに、正極を備えている。正極は、リチウム二次電池に従来から使われてきたものを用いることができる。正極は、通常、正極活物質を含有する正極活物質層と、正極活物質層に積層された集電体とからなる。正極活物質としては、LiNiO2、LiCoO2、LiMn24などが挙げられる。該正極活物質層は、従来公知の正極活物質用の添加剤をさらに含有していてもよい。正極用の集電体としてはアルミニウムを含むものが好ましい。
 リチウム二次電池では、通常、正極と負極とが電解質に浸されている。電解質は液体、ゲルまたは固体のいずれでもよい。
 液体電解質としては、リチウム塩の非水系溶媒溶液が挙げられる。リチウム塩としては、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Li、CF3SO3Liなどが挙げられる。液体電解質に用いられる非水系溶媒としては、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ―ブチロラクトン、およびビニレンカーボネートからなる群から選ばれる少なくとも1種が好ましい。
 固体電解質またはゲル電解質としては、スルホン化スチレン-オレフィン共重合体などの高分子電解質、ポリエチレンオキシドとMgClO4を用いた高分子電解質、トリメチレンオキシド構造を有する高分子電解質などが挙げられる。高分子電解質に用いられる非水系溶媒としては、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ―ブチロラクトン、およびビニレンカーボネートからなる群から選ばれる少なくとも1種が好ましい。
 正極と負極との間には必要に応じてセパレータが設けられる。セパレータとしては、例えば、不織布、織布、微細孔質フィルムなどや、それらを組み合わせたものなどが挙げられる。
 本発明に係るリチウム二次電池は、種々な分野において用いることができる。例えば、パーソナルコンピュータ、タブレット型コンピュータ、ノート型コンピュータ、携帯電話、無線機、電子手帳、電子辞書、PDA(Personal Digital Assistant)、電子メーター、電子キー、電子タグ、電力貯蔵装置、電動工具、玩具、デジタルカメラ、デジタルビデオ、AV機器、掃除機などの電気・電子機器;電気自動車、ハイブリッド自動車、電動バイク、ハイブリッドバイク、電動自転車、電動アシスト自転車、鉄道機関、航空機、船舶などの交通機関;太陽光発電システム、風力発電システム、潮力発電システム、地熱発電システムなどの発電システムなどが挙げられる。
 以下に実施例を挙げて、本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 リチウム二次電池用負極活物質または黒鉛の物性は以下の方法で測定した。
「d002、Lc(004)、La(110)、I(100)/I(101)、およびB101
 粉末X線回折法により求めた。d002は、002回折線に基づいて、Braggの式 d=λ/sinθcから算出される面間隔である。Lc(004)は、004回折線に基づいて、算出される結晶子のc軸方向の厚みである。La(110)は、110回折線に基づいて、算出される結晶子のa軸方向の幅である。I(100)/I(101)は、101回折線のピーク強度に対する100回折線のピーク強度の比である。B101は、回折角(2θ):44°~45°に現れる101回折線のピーク半値幅である。
「配向性 I(110)/I(004)」
 クレハ社製ポリフッ化ビニリデン(L#9130;n-メチル-2-ピロリドン溶液)を、固形分5質量%となるように、負極活物質または黒鉛に少量ずつ加えながら混練した。次いで、n-メチル-2-ピロリドンを加えて混練し、十分な流動性を持つように調整した。日本精機製作所社製脱泡ニーダーNBK-1を用いて500rpmで5分間混練を行い、ペースト状の合剤を得た。自動塗工機とクリアランス250μmのドクターブレードを用いて、前記合剤を銅箔上に塗布した。
 合剤が塗布された銅箔を約80℃のホットプレート上に置いて水分を除去した。その後、真空乾燥機にて120℃で6時間乾燥させた。乾燥後、合剤中の固形分の質量と塗膜乾燥体積とから算出される電極密度が1.5g/cm3以上1.6g/cm3以下になるようにプレス機により加圧成形して、合剤層と銅箔とが積層されてなる電極シートを得た。電極シートを適当な大きさに切り取り、X線回折測定用のガラスセルに貼り付け、X線回折法で測定した。そして、ピーク強度比I(110)/I(004)を算出した。ピーク強度比I(110)/I(004)は、黒鉛の配向性を示している。
「BET比表面積 Ssa
 窒素吸着を利用したBET法により解析して比表面積を算出した。
「体積平均粒子径 D50
 黒鉛を極小型スパーテル2杯分、および非イオン性界面活性剤(トリトン-X)2滴を水50mlに添加し、3分間超音波分散させた。この分散液をMalvern社製レーザー回折式粒度分布測定器(Mastersizer)に投入し、粒度分布を測定し、体積平均粒子径 D50を求めた。
製造例1 黒鉛A1の製造
 ベネズエラ産原油を減圧蒸留して残渣を得た。該残渣は、API比重が2.3度、アスファルテン分が25%、樹脂分が15%、および硫黄分が6.0%であった。該残渣をディレードコーカーに投入し、コーキングして、コークスを得た。得られたコークスを水によって切り出し、それを120℃で加熱し、水分含有率1.0%以下となるまで乾燥させた。
 乾燥させたコークス塊をホソカワミクロン社製のハンマーミルで粉砕し、日清エンジニアリング社製ターボクラシファイアーTC-15Nにて気流分級して、体積平均粒子径D50が17μmの炭素粉体を得た。
 この炭素粉体を黒鉛製ルツボに充てんして、アチソン炉にて3200℃で加熱処理して、黒鉛A1を得た。物性を表1に示す。図1に黒鉛A1の粉末X線回折を示す。
製造例2~製造例4
 球状天然黒鉛(以下、黒鉛C1と表記する。)、メソフェーズカーボン(以下、黒鉛Dと表記する。)および鱗片状人造黒鉛(以下、黒鉛Eと表記する。)を用意した。これらは市販品である。
製造例5 黒鉛C2の製造
 軟化点約275℃、固定炭素65質量%および体積平均粒子径D50が5μmの石油系光学等方性ピッチ 5質量部と、黒鉛C1 95質量部とを混ぜ合わせた。この混合物をホソカワミクロン社製メカノフュージョンシステムに入れて、高速回転させた。次いで、これを窒素ガス雰囲気下において1200℃で1時間熱処理した。冷却後、目開き45μmの篩を通して黒鉛C2を得た。なお、メカノフュージョンとは、複数の異なる素材粒子にある種の機械的エネルギーを加えて、メカノケミカル的な反応を起こさせ、新しい素材を創造する技術である。物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
実施例1~4および比較例1~2
 製造例1~5で用意した黒鉛を用いて、表2に示す処方にて混ぜ合わせ、負極活物質を得た。該負極活物質の物性を表2に示す。
 これらの負極活物質を用いて下記の手法でリチウム二次電池を製造し、200回充放電サイクル後の放電容量保持率(%)を測定した。結果を表3に示す。
「リチウム二次電池の製造」
 露点-80℃以下の乾燥アルゴンガス雰囲気下に保ったグローブボックス内で下記の操作を実施した。
 コバルト酸リチウム(日本化学工業製正極材C-10)95質量部、バインダー(ポリフッ化ビニリデン:PVDF)3質量部、および導電材(アセチレンブラック)5質量部、にN-メチル-2-ピロリドンを加えてスラリー状合剤を得た。この合剤を厚さ25μmのアルミ箔上に塗布した。合剤が塗布されたアルミ箔を真空乾燥機にて120℃で6時間乾燥させた。乾燥後、合剤中の固形分の質量と塗膜乾燥体積とから算出される電極密度が約3.5g/cm3になるようにプレス機により加圧成形して、正極を得た。負極として、配向性の評価において作製した電極シートを用いた。
 円筒形をしたSUS304製の受け外装材の中に、スペーサー、板バネ、負極、セパレーター(ポリプロピレン製マイクロポーラスフィルム「セルガード2400」セルガード社製)および正極をこの順で積み重ねた。その上に円筒形をしたSUS304製の上蓋外装材を載せた。次いで、コインかしめ機を用いて、受け外装材と上蓋外装材とをかしめ止めて、評価用のコインセルを得た。1種の負極活物質に対して5個のコインセルを製造し、評価試験に供した。
「200回充放電サイクル後の放電容量保持率(%)」
 上記のコインセルを用いて以下のような定電流定電圧充放電試験を行った。
 初回と2回目の充放電サイクルは、次のようにして行った。
 レストポテンシャルから4.2Vまでを0.17mA/cm2で定電流充電し、4.2Vに達した時点から4.2Vによる定電圧充電を行い、電流値が25.4μAに低下した時点で充電を停止させた。次いで、0.17mA/cm2で定電流放電を行い、電圧2.7Vでカットオフした。
 3回目以降の充放電サイクルは、次のようにして行った。
 レストポテンシャルから4.2Vまでを0.34mA/cm2(0.2Cに相当)で定電流充電し、4.2Vに達した時点から4.2Vによる定電圧充電を行い、電流値が20μAに低下した時点で充電を停止させた。次いで、1.7mA/cm2(1.0Cに相当)で定電流放電を行い、電圧2.7Vでカットオフした。
 そして、3回目の放電容量に対する200回目の放電容量の割合を、測定した。この測定を、5個のコインセルについて行い、その平均値を求め、「200回充放電サイクル後の放電容量保持率(%)」とした。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明のリチウム二次電池用負極活物質によって、良好な充放電サイクル特性を有するリチウム二次電池が得られることがわかる。

Claims (20)

  1.  粉末X線回折において、
      d002が0.3354nm以上0.337nm以下、
      Lc(004)が80nm以上、
      La(110)が100nm以上、且つ
      回折角(2θ):44°~45°に現れる(101)面に由来するピークの半値幅が0.5°以上となるように、
     二種類以上の黒鉛を混合してなる、リチウム二次電池用負極活物質。
  2.  粉末X線回折におけるピーク強度比I(100)/I(101)が0.6以上1以下である、請求項1に記載のリチウム二次電池用負極活物質。
  3.  該負極活物質とバインダーとを含んでなる合剤を銅箔上に塗布し、乾燥させ、次いで加圧成形することによって密度1.5g/cm3以上1.6g/cm3以下の合剤層を形成し、該合剤層をX線回折法によって測定したときのピーク強度比I(110)/I(004)が0.1以上である、請求項1に記載のリチウム二次電池用負極活物質。
  4.  BET比表面積が5m2/g以下で且つ体積平均粒子径D50が3μm以上30μm以下である、請求項1に記載のリチウム二次電池用負極活物質。
  5.  二種類以上の黒鉛のうちの一種が、
     粉末X線回折において、
      d002が0.3354nm以上0.337nm以下、
      Lc(004)が100nm未満、
      La(110)が100nm以上、且つ
      回折角(2θ):44°~45°に現れる(101)面に由来するピークの半値幅が0.65°以上の、黒鉛Iである、請求項1に記載のリチウム二次電池用負極活物質。
  6.  黒鉛Iは、粉末X線回折におけるピーク強度比I(100)/I(101)が0.7以上1以下である、請求項5に記載のリチウム二次電池用負極活物質。
  7.  黒鉛Iは、該負極活物質とバインダーとを含んでなる合剤を銅箔上に塗布し、乾燥させ、次いで加圧成形することによって密度1.5g/cm3以上1.6g/cm3以下の合剤層を形成し、該合剤層をX線回折法によって測定したときのピーク強度比I(110)/I(004)が0.2以上である、請求項5に記載のリチウム二次電池用負極活物質。
  8.  黒鉛Iは、BET比表面積が5m2/g以下で且つ体積平均粒子径D50が3μm以上30μm以下である、請求項5に記載のリチウム二次電池用負極活物質。
  9.  黒鉛Iを40質量%以上90質量%以下含有する、請求項5に記載のリチウム二次電池用負極活物質。
  10.  二種類以上の黒鉛のうちの一種が、
     粉末X線回折において、
      d002が0.3354nm以上0.337nm以下、
      Lc(004)が100nm以上、
      La(110)が100nm以上、且つ
      回折角(2θ):44°~45°に現れる(101)面に由来するピークの半値幅が0.65°以下の、黒鉛IIである、請求項5に記載のリチウム二次電池用負極活物質
  11.  黒鉛IIは、軟化点200~350℃および固定炭素50~80質量%のピッチで表面処理されてなる、請求項10に記載のリチウム二次電池用負極活物質。
  12.  前記ピッチの体積平均粒子径D50が1μm~10μmである、請求項11に記載のリチウム二次電池用負極活物質。
  13.  前記ピッチは光学等方性のものである、請求項11に記載のリチウム二次電池用負極活物質。
  14.  前記黒鉛IIが、球状に加工された天然黒鉛である、請求項10に記載のリチウム二次電池用負極活物質。
  15.  前記黒鉛IIが、メソフェーズピッチを原料として得られる人造黒鉛である、請求項10に記載のリチウム二次電池用負極活物質。
  16.  黒鉛IIを10質量%以上60質量%以下含有する、請求項10に記載のリチウム二次電池用負極活物質。
  17.  請求項1に記載のリチウム二次電池用負極活物質を含有してなるリチウム二次電池用負極。
  18.  繊維径5nm以上0.2μm以下の気相法炭素繊維をさらに含有してなる請求項17に記載のリチウム二次電池用負極。
  19.  請求項17に記載のリチウム二次電池用負極を備えたリチウム二次電池。
  20.  請求項19に記載のリチウム二次電池を備えた交通機関、発電システムまたは電気・電子機器。
PCT/JP2011/004454 2010-08-05 2011-08-05 リチウム二次電池用負極活物質 WO2012017677A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/814,097 US9196899B2 (en) 2010-08-05 2011-08-05 Anode active material for use in lithium secondary battery
CN201180038625.1A CN103081191B (zh) 2010-08-05 2011-08-05 锂二次电池用负极活性物质
KR1020137004158A KR101504619B1 (ko) 2010-08-05 2011-08-05 리튬이차전지용 음극활물질
JP2012527609A JP5960053B2 (ja) 2010-08-05 2011-08-05 リチウム二次電池用負極活物質
EP11814312.2A EP2602851B1 (en) 2010-08-05 2011-08-05 Method for producing an anode active material for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010176784 2010-08-05
JP2010-176784 2010-08-05

Publications (1)

Publication Number Publication Date
WO2012017677A1 true WO2012017677A1 (ja) 2012-02-09

Family

ID=45559196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004454 WO2012017677A1 (ja) 2010-08-05 2011-08-05 リチウム二次電池用負極活物質

Country Status (7)

Country Link
US (1) US9196899B2 (ja)
EP (1) EP2602851B1 (ja)
JP (1) JP5960053B2 (ja)
KR (1) KR101504619B1 (ja)
CN (1) CN103081191B (ja)
TW (1) TWI533495B (ja)
WO (1) WO2012017677A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191382A (ja) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd 平板積層型電池
JP2013191381A (ja) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd 平板積層型電池およびその製造方法
WO2019124425A1 (ja) * 2017-12-22 2019-06-27 東海カーボン株式会社 リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法
JPWO2021059444A1 (ja) * 2019-09-26 2021-04-01

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144617A1 (ja) * 2011-04-21 2012-10-26 昭和電工株式会社 黒鉛材料、電池電極用炭素材料、及び電池
JP5140781B2 (ja) * 2011-04-21 2013-02-13 昭和電工株式会社 黒鉛・炭素混合材料、電池電極用炭素材料、及び電池
JP5269231B1 (ja) 2012-06-29 2013-08-21 エム・ティー・カーボン株式会社 リチウムイオン二次電池負極用の黒鉛材料、それを用いたリチウムイオン二次電池及びリチウムイオン二次電池用の黒鉛材料の製造方法
KR101790400B1 (ko) 2013-12-20 2017-10-25 주식회사 엘지화학 음극 활물질 및 이를 포함하는 리튬 이차전지
KR102439850B1 (ko) 2015-08-27 2022-09-01 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 리튬 이차 전지
KR102171094B1 (ko) * 2015-10-26 2020-10-28 주식회사 엘지화학 음극 활물질 및 이를 포함하는 리튬 이차전지
KR102657578B1 (ko) 2016-11-30 2024-04-15 삼성에스디아이 주식회사 이차 전지용 음극 및 이를 포함하는 이차 전지
CN110024184B (zh) * 2016-11-30 2022-05-13 三星Sdi株式会社 用于可再充电电池的负极和包括其的可再充电电池
CN110651386B (zh) 2017-10-30 2022-05-13 株式会社Lg新能源 电化学装置用负极活性材料、包含所述负极活性材料的负极和包含所述负极的电化学装置
US20190207219A1 (en) * 2017-12-28 2019-07-04 Samsung Sdi Co., Ltd. Negative electrode active mass for rechargeable battery, negative electrode for rechargeable battery, and rechargeable battery
CN110041104A (zh) * 2019-04-22 2019-07-23 贵州铝城铝业原材料研究发展有限公司 一种使连续预焙阳极炭块炭碗***漏铝水糊料及使用方法
CN114514197A (zh) 2019-10-07 2022-05-17 伊梅科技 石墨组合物和在电池技术中的用途
CN110690409B (zh) * 2019-10-17 2020-12-11 泰州纳新新能源科技有限公司 一种天然石墨基负极的制备方法
CN114245942A (zh) * 2019-12-03 2022-03-25 宁德时代新能源科技股份有限公司 复合石墨材料及其制备方法、二次电池和装置
JP7227894B2 (ja) * 2019-12-23 2023-02-22 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR102218329B1 (ko) * 2020-05-29 2021-02-22 주식회사 포스코 리튬 이차전지용 음극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311209A (ja) * 2007-05-17 2008-12-25 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009117257A (ja) * 2007-11-08 2009-05-28 Nippon Oil Corp リチウムイオン二次電池負極材料用原料油組成物及びこれを用いた原料炭組成物の製造方法
JP2010165580A (ja) * 2009-01-16 2010-07-29 Mitsubishi Chemicals Corp 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質及び負極並びに非水電解質二次電池
JP4738553B2 (ja) * 2009-10-22 2011-08-03 昭和電工株式会社 黒鉛材料、電池電極用炭素材料、及び電池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573266B1 (en) * 1992-06-01 1999-12-08 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
JP3556270B2 (ja) * 1994-06-15 2004-08-18 株式会社東芝 リチウム二次電池
JPH08298116A (ja) * 1995-04-26 1996-11-12 Kansai Coke & Chem Co Ltd 二次電池の電極材料
US7052803B2 (en) * 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
CN100338795C (zh) * 2003-01-22 2007-09-19 日立麦克赛尔株式会社 锂二次电池用负极及其制造方法以及使用其的锂二次电池
US8133612B2 (en) * 2003-05-16 2012-03-13 Byd Company Limited Negative electrodes for rechargeable batteries
JP4896381B2 (ja) * 2003-06-05 2012-03-14 昭和電工株式会社 電池電極用炭素材料、その製造方法及び用途
JP4877568B2 (ja) 2005-02-24 2012-02-15 日立化成工業株式会社 リチウム二次電池用負極材料の製造方法
EP1967493A4 (en) * 2005-12-21 2012-02-22 Showa Denko Kk COMPOSITE GRAPHITE PARTICLES AND RECHARGEABLE LITHIUM BATTERY THEREWITH
CN1909268B (zh) * 2006-07-10 2012-03-28 深圳市贝特瑞新能源材料股份有限公司 含pc溶剂电解液的锂离子电池负极材料及其制备方法
KR101365568B1 (ko) * 2006-07-19 2014-02-20 니폰 카본 컴퍼니 리미티드 리튬 이온 2차 전지용 음극 활물질 및 이를 포함한 음극
JP4974597B2 (ja) * 2006-07-19 2012-07-11 日本カーボン株式会社 リチウムイオン二次電池用負極及び負極活物質
US20080286654A1 (en) 2007-05-17 2008-11-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP5216285B2 (ja) * 2007-09-18 2013-06-19 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池負極用非晶質炭素材料及びその製造方法
JP2009245940A (ja) * 2008-03-13 2009-10-22 Sanyo Electric Co Ltd 非水電解質二次電池
US9437344B2 (en) * 2010-07-22 2016-09-06 Nanotek Instruments, Inc. Graphite or carbon particulates for the lithium ion battery anode
EP2602850B1 (en) * 2010-08-05 2019-03-06 Showa Denko K.K. Method of producing a graphite active anode material for a lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311209A (ja) * 2007-05-17 2008-12-25 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009117257A (ja) * 2007-11-08 2009-05-28 Nippon Oil Corp リチウムイオン二次電池負極材料用原料油組成物及びこれを用いた原料炭組成物の製造方法
JP2010165580A (ja) * 2009-01-16 2010-07-29 Mitsubishi Chemicals Corp 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質及び負極並びに非水電解質二次電池
JP4738553B2 (ja) * 2009-10-22 2011-08-03 昭和電工株式会社 黒鉛材料、電池電極用炭素材料、及び電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191382A (ja) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd 平板積層型電池
JP2013191381A (ja) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd 平板積層型電池およびその製造方法
WO2019124425A1 (ja) * 2017-12-22 2019-06-27 東海カーボン株式会社 リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法
US11646406B2 (en) 2017-12-22 2023-05-09 Tokai Carbon Co., Ltd. Negative electrode material for lithium-ion secondary battery and method for producing negative electrode material for lithium-ion secondary battery
JPWO2021059444A1 (ja) * 2019-09-26 2021-04-01
WO2021059444A1 (ja) * 2019-09-26 2021-04-01 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP7416077B2 (ja) 2019-09-26 2024-01-17 株式会社レゾナック リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池

Also Published As

Publication number Publication date
US9196899B2 (en) 2015-11-24
CN103081191B (zh) 2015-05-20
JPWO2012017677A1 (ja) 2013-10-03
EP2602851A4 (en) 2016-12-21
EP2602851A1 (en) 2013-06-12
EP2602851B1 (en) 2019-03-06
JP5960053B2 (ja) 2016-08-02
US20130140488A1 (en) 2013-06-06
TWI533495B (zh) 2016-05-11
KR101504619B1 (ko) 2015-03-20
TW201212362A (en) 2012-03-16
KR20130041227A (ko) 2013-04-24
CN103081191A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
JP5960053B2 (ja) リチウム二次電池用負極活物質
JP5960052B2 (ja) リチウム二次電池用黒鉛系負極活物質
JP5270050B1 (ja) 複合黒鉛粒子およびその用途
KR101461220B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
JP5563578B2 (ja) 複合黒鉛粒子及びそれを用いたリチウム二次電池
WO2012133788A1 (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
WO2015159935A1 (ja) リチウムイオン電池用負極材及びその用途
JP6279713B2 (ja) 電極用炭素質成形体、及びその製造方法
JP6297746B2 (ja) 電池電極用炭素質成形体、及びその製造方法
JP2012216520A (ja) 非水系二次電池用複合黒鉛粒子の製造方法及びその製造方法で得られた複合黒鉛粒子、負極並びに非水系二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038625.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814312

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527609

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13814097

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011814312

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137004158

Country of ref document: KR

Kind code of ref document: A