WO2012017553A1 - Coating composition and laminate - Google Patents

Coating composition and laminate Download PDF

Info

Publication number
WO2012017553A1
WO2012017553A1 PCT/JP2010/063403 JP2010063403W WO2012017553A1 WO 2012017553 A1 WO2012017553 A1 WO 2012017553A1 JP 2010063403 W JP2010063403 W JP 2010063403W WO 2012017553 A1 WO2012017553 A1 WO 2012017553A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
mass
resin
parts
acrylate
Prior art date
Application number
PCT/JP2010/063403
Other languages
French (fr)
Japanese (ja)
Inventor
田坂 道久
弘康 管野
Original Assignee
リケンテクノス株式会社
ビーエーエスエフ ソシエタス・ヨーロピア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リケンテクノス株式会社, ビーエーエスエフ ソシエタス・ヨーロピア filed Critical リケンテクノス株式会社
Priority to PCT/JP2010/063403 priority Critical patent/WO2012017553A1/en
Publication of WO2012017553A1 publication Critical patent/WO2012017553A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2031/00Use of polyvinylesters or derivatives thereof as moulding material
    • B29K2031/04Polymers of vinyl acetate, e.g. PVAc, i.e. polyvinyl acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a coating composition and a laminate, and in particular, excellent adhesion to glass, polycarbonate resin, polyester resin, cellulosic resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, particularly heat resistant adhesiveness.
  • the present invention also relates to a coating composition and a laminate having excellent water resistance and weather resistance.
  • the coating composition of the present invention is particularly useful as a coating composition for glass and a coating composition for solar battery backsheet.
  • Patent Document 1 discloses a technique in which a pressure-sensitive adhesive layer is provided on one side of a plastic film such as polyethylene terephthalate, and this is adhered to glass. In such a technique, various characteristics required for the window glass are disclosed. Therefore, improvement was demanded.
  • the conventional pressure-sensitive adhesive layer is usually a two-component room-temperature-curing pressure-sensitive adhesive in which an epoxy resin is diluted with a solvent, and takes a long time (for example, 1 hour or more) until volatile organic compound (VOC) and odor are generated and dried. There were problems such as.
  • a single photovoltaic element is not used as it is, and generally several to several tens of photovoltaic elements are wired in series or in parallel, and the element is extended over a long period of time.
  • various packaging is performed, and a unit is formed as a solar cell module.
  • a solar cell module has an upper transparent material made of glass or transparent plastic on the surface that is exposed to sunlight, and a sealing material layer made of a thermoplastic resin such as an ethylene vinyl acetate copolymer (hereinafter referred to as EVA).
  • EVA ethylene vinyl acetate copolymer
  • the solar battery backsheet has excellent mechanical strength and excellent properties such as weather resistance, heat resistance, water resistance, light resistance, and chemical resistance to protect the contents of solar cells and leads.
  • a high gas barrier property that prevents intrusion of moisture, oxygen and the like is required.
  • the adhesion and adhesion stability with a sealing material layer such as EVA are important. This is because separation of the sealing material layer, discoloration, and corrosion of the wiring occur due to moisture permeation from the interface, which may affect the output of the module itself.
  • the inner surface is required to be white because of its contribution to improving power generation efficiency.
  • a fluororesin having good weather resistance, flame retardancy, and EVA which is often used as a sealing material, such as polyvinyl fluoride (PVF) and polyvinylidene fluoride (PVDF).
  • PVDF polyvinyl fluoride
  • the fluororesin simplex sheet has problems such as water vapor barrier properties, transparency, weather resistance, and flame retardancy.
  • Patent Document 2 discloses a film for sealing a back surface of a solar cell, which is a laminate of a polybutylene terephthalate (PBT) film containing a titanium oxide produced by a chlorine method.
  • PBT polybutylene terephthalate
  • adhesiveness with a sealing material layer such as EVA is inferior.
  • the present invention has been made in view of the above problems, and its purpose is to provide excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer,
  • an object of the present invention is to provide a coating composition and a laminate having heat-resistant adhesion and excellent water resistance and weather resistance.
  • the present invention is as follows. 1. (A) 45 to 95 parts by mass of a fluororesin, (B) 2 to 35 parts by mass of a block copolymer or polyvinyl acetal resin comprising a block (A) mainly composed of methacrylic acid ester and a block (B) mainly composed of acrylic acid ester, (C) vinyl ester resin or unsaturated polyester resin 2 to 50 parts by mass (provided that the total of the components (a) to (c) is 100 parts by mass), and (d) an initiator The component (a) to A coating composition comprising 0.1 to 15 parts by mass with respect to 100 parts by mass in total of (c). 2. 2.
  • the (b) block copolymer is a block copolymer having an ABA type triblock structure (provided that the A block component is a methacrylic ester and the B block component is an acrylate ester). 4.
  • the (b) block copolymer has the following general formula-(A1)-(B)-(A2)- (Wherein (A1) and (A2) each represent a block component composed of a methacrylic acid alkyl ester, and (B) represents a block component composed of an acrylic acid alkyl ester). 5.
  • the (b) polyvinyl acetal resin is a polyvinyl butyral resin.
  • a coating composition according to claim 1. 10.
  • a glass coating composition comprising the coating composition according to any one of 1 to 10 above.
  • a coating composition for a solar battery backsheet comprising the coating composition according to any one of 1 to 10 above. 13.
  • 14 A laminate obtained by coating the substrate with the coating composition according to any one of 1 to 10 above. 15.
  • 15. The laminate according to 14, wherein the substrate is at least one selected from glass, polycarbonate resin, polyester resin, cellulose resin, and liquid crystal polymer. 16. 10.
  • An extrusion composition comprising the coating composition according to any one of 1 to 9 above.
  • the coating composition of the present invention contains the components (a), (b), (c) and (d) in a specific quantitative relationship, glass, polycarbonate resin, polyester resin, cellulose It has excellent adhesiveness, especially heat-resistant adhesiveness, and water resistance and weather resistance to resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer. Since the coating composition of the present invention has the above properties, it is particularly useful as a glass coating composition and a solar battery backsheet coating composition.
  • a white light reflecting material a black material, an infrared absorbing material, an ultraviolet absorbing material, an antistatic material, and an electromagnetic shielding material, and / or (g) a book containing a flame retardant
  • the coating composition of the present invention of the invention can effectively impart desired functionality to a glass or solar cell backsheet.
  • the laminate of the present invention is coated with a coating composition (solvent coating or melting) containing the components (a), (b), (c) and (d) in a specific quantitative relationship. Extrusion coating), it has excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, ethylene-vinyl acetate copolymer, especially heat resistant adhesive, Excellent water resistance and weather resistance. Since the laminated body of this invention has said property, it is especially useful as a window glass and a solar cell backsheet.
  • Fluorine-based resin Component (a) of the composition of the present invention is a fluorine-based resin.
  • fluororesins examples include polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), polyethylene tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), and tetrafluoroethylene perfluoro.
  • PFA polyvinyl fluoride
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • EFE polyethylene tetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • tetrafluoroethylene perfluoro examples include polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), polyethylene tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), and tetrafluoroethylene perfluoro.
  • solvent-soluble fluororesins include copolymers of fluoroolefins and hydrocarbon monomers such as vinyl ethers and vinyl esters, such as hydroxyl groups, carboxylic acid groups, hydrolyzable silyl groups, and epoxy groups.
  • the fluorine-containing polymer having the reactive group is employed.
  • the fluoropolymer include chlorotrifluoroethylene, cyclohexyl vinyl ether, alkyl vinyl ether, hydroxyalkyl vinyl ether copolymer, chlorotrifluoroethylene, alkyl vinyl ether, allyl alcohol copolymer, chlorotrifluoroethylene, and aliphatic carboxylic acid.
  • Examples include vinyl esters and copolymers of hydroxyalkyl vinyl esters. These are marketed under names such as Lumiflon (Asahi Glass) and Cefal Coat (Central Glass). For example, Lumiflon LF-550, LF-552, LF-554, LF-600, LF-601, LF-602, LF-100, LF-200, LF-302, LF-400, LF-700, LF-916 LF-936 and the like.
  • solvent solubility, adhesiveness to various substrates such as glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as specific substrate)
  • substrates such as glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as specific substrate)
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • PVF polyvinyl fluoride
  • ECTFE chlorotrifluoroethylene / ethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • fluoroolefin / vinyl ether copolymer More preferred are polyvinylidene fluoride (PVDF) and fluoroolefin / vinyl ether copolymers.
  • Fluorine-based resin is a composition with properties such as heat resistance, cold resistance, chemical resistance, flame resistance, electrical properties, low friction, non-adhesiveness, weather resistance, UV-cutting properties, low refractive index properties, etc. Can be granted.
  • the (a) fluororesin having a melting point of 230 ° C. or lower is preferable in terms of solvent solubility, cold resistance, and flexibility.
  • a more preferable melting point is 100 to 200 ° C.
  • the component (b) used in the present invention is a block copolymer comprising a block (A) mainly composed of a methacrylic ester and a block (B) mainly composed of an acrylate ester, Either a linear structure or a radial structure may be used. Moreover, any of block structures, such as AB, ABA, and ABAB, may be sufficient.
  • the component (b) of the present invention has a function of imparting to the composition adhesiveness to a specific substrate, particularly glass, polycarbonate resin, polyester resin, and ethylene-vinyl acetate copolymer (EVA). From the viewpoint of adhesiveness, the block copolymer (b) preferably has a triblock structure (hereinafter, sometimes referred to as component (b-1)). Moreover, it is preferable that it is a linear structure.
  • the component (b-1) is an ABA type triblock copolymer in which the ABA type A block component is a methacrylic ester and the B block component is an acrylate ester, preferably the ABA type It is a block copolymer having a triblock structure.
  • methacrylic acid ester examples include methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl, isopropyl methacrylate, methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid-tert-butyl, methacrylic acid- n-pentyl, methacrylate-n-hexyl, cyclohexyl methacrylate, methacrylate-n-heptyl, methacrylate-n-octyl, methacrylate-2-ethylhexyl, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate, methacrylic acid Phenyl, toluyl methacrylate, benzyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, 3-methoxybutyl methacrylate, 2-
  • acrylic ester examples include methyl acrylate, ethyl acrylate, acrylic acid-n-propyl, isopropyl acrylate, acrylic acid-n-butyl, acrylic acid isobutyl, acrylic acid-tert-butyl, acrylic acid- n-pentyl, acrylate-n-hexyl, cyclohexyl acrylate, acrylate-n-heptyl, acrylate-n-octyl, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, dodecyl acrylate, acrylic acid Phenyl, toluyl acrylate, benzyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, 3-methoxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, stearyl acrylate, A Glycidyl silylate, 2-a
  • the component (b-1) is preferably represented by the following general formula-(A1)-(B)-(A2)- (Wherein (A1) and (A2) each represent a block component composed of an alkyl methacrylate, and (B) represents a block component composed mainly of an alkyl acrylate ester). It is what has.
  • methacrylic acid alkyl ester examples include methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl, isopropyl methacrylate, methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid-tert-butyl, methacrylic acid.
  • acrylic acid alkyl ester examples include methyl acrylate, ethyl acrylate, acrylic acid-n-propyl, isopropyl acrylate, acrylic acid-n-butyl, acrylic acid isobutyl, acrylic acid-tert-butyl, and acrylic acid.
  • an ABA type triblock copolymer comprising polymethyl methacrylate and polyacrylic acid-n-butyl is preferable in terms of heat-bonding with a polyester resin and flexibility.
  • An ABA type triblock copolymer in which the segment is polymethyl methacrylate and the soft segment is polyacrylic acid-n-butyl is preferable.
  • the weight average molecular weight (Mw) of the (b) block copolymer in the present invention is, for example, 10,000 to 1,000,000, preferably 30,000 to 500,000, and particularly 50,000 to 150. More preferably, it is 1,000.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the (b) block copolymer is preferably 1.0 to 1.8, particularly 1 It is preferably 1 to 1.5.
  • examples of the polymerization method of the block copolymer (b) in the present invention include living anion polymerization and living radical polymerization.
  • Examples of such an acrylic ABA triblock copolymer include LA polymers 2140E and 2250 manufactured by Kuraray, and NABSTAR manufactured by Kaneka. Among these, LA polymer manufactured by Kuraray Co., Ltd. synthesized by living anionic polymerization is preferable from the viewpoint of adhesion to the specific substrate.
  • Kuraray's LA polymers 2140E and 2250 have a triblock structure represented by the general formula-(A1)-(B)-(A2)-, and (A1) and (A2) are polymethyl methacrylates.
  • (B) is poly-n-butyl acrylate
  • the weight average molecular weight is 80,000
  • the JIS-A hardness is 32 and 65, respectively.
  • Polyvinyl acetal resin Component (b) used in the present invention that is, a polyvinyl acetal resin, is generally obtained by polymerizing a vinyl acetate monomer to produce a polyvinyl acetate resin, and then saponifying the polyvinyl alcohol obtained by saponification. Produced by reacting with an aldehyde. That is, the polyvinyl acetal resin is a resin having a vinyl acetal group, a vinyl alcohol group, and a vinyl acetate group, a reaction product with formaldehyde is a polyvinyl formal resin, and a reaction product with butyraldehyde is called a polyvinyl butyral resin.
  • polyvinyl acetal resin examples include polyvinyl acetoacetal, polyvinyl propyl acetal, and the like. Among them, a polyvinyl butyral resin is preferably used from the viewpoint of adhesion to the specific substrate. Furthermore, what made the polyvinyl acetal resin contain the carboxyl group is used suitably. The carboxyl group is desirably about 0.1 to 5 mol%, preferably about 0.2 to 3 mol% in the polyvinyl acetal resin.
  • a polyvinyl acetal resin containing a carboxyl group for example, a method of producing a polyvinyl acetal resin by a conventional method from copolymerization of vinyl acetate and an unsaturated carboxylic acid, or an aldehyde containing a carboxyl group when acetalizing polyvinyl alcohol It is obtained by reacting with.
  • the average degree of polymerization of the polyvinyl acetal resin used in the present invention is not particularly limited, but is preferably in the range of 300 to 5,000, particularly preferably 500 or more, from the viewpoint of adhesion to the specific substrate.
  • the hydroxyl group content is preferably 10 to 30% by mass.
  • the acetic acid group content is preferably 1 to 4% by mass.
  • Component (c) of the coating composition of the present invention is a vinyl ester resin or an unsaturated polyester resin.
  • the vinyl ester resin is specifically selected from a urethane (meth) acrylate resin, an epoxy (meth) acrylate resin, and a polyester (meth) acrylate resin, and more preferably has excellent flexibility and impact resistance.
  • urethane (meth) acrylate resins that are excellent in adhesion between different materials can be used.
  • the (meth) acrylate referred to in the present invention refers to acrylate or methacrylate.
  • Such urethane (meth) acrylate resin is preferably obtained by reaction of polyol, polyisocyanate and (meth) acrylate having one or more hydroxyl groups in one molecule, and two or more (meth) acrylates in one molecule. ) It has an acryloyl group.
  • the polyol used in the urethane (meth) acrylate resin preferably has a number average molecular weight of 200 to 3000, particularly preferably 400 to 2000.
  • Typical examples of the polyol include polyether polyols, polyester polyols, polycarbonate polyols, polybutadiene polyols, and the like. These polyols are used alone or in combination of two or more.
  • the polyether polyol may include a polyol obtained by adding the alkylene oxide to bisphenol A and bisphenol F, in addition to a polyalkylene oxide such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • the polyester polyol is a condensation polymer of dibasic acids and polyhydric alcohols or a ring-opening polymer of a cyclic ester compound such as polycaprolactone.
  • Dibasic acids used here are, for example, phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, Hexahydroterephthalic acid, hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2 , 3-naphthalenedicarboxylic acid, 2,3-naphthal
  • Polyhydric alcohols include, for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3 -Butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, 1,6-hexanediol, adducts of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, Glycerin, trimethylolpropane, 1,3-propanediol, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4-cyclohexane glycol, 1,4-cycl Hexane dimethanol, paraxylene glycol, bicyclohexyl-4,4'-diol, 2,6-decalin
  • Examples of the polyisocyanate used in the urethane (meth) acrylate resin include 2,4-TDI and its isomer or a mixture of isomers, MDI, HDI, IPDI, XDI, hydrogenated XDI, dicyclohexylmethane diisocyanate, tolidine diisocyanate, and naphthalene.
  • MDI, HDI, IPDI, XDI, hydrogenated XDI, dicyclohexylmethane diisocyanate, tolidine diisocyanate, and naphthalene examples of the polyisocyanate used in the urethane (meth) acrylate resin.
  • Examples of the (meth) acrylate (hydroxyl group-containing (meth) acrylate) having one or more hydroxyl groups per molecule used in the urethane (meth) acrylate resin include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl ( Mono (meth) acrylates such as (meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, tris (hydroxyethyl) isocyanuric acid di (meth) acrylate, And polyvalent (meth) acrylates such as pentaerythritol tri (meth) acrylate.
  • the epoxy (meth) acrylate resin used as the vinyl ester resin preferably has two or more (meth) acryloyl groups in one molecule, and is an esterification catalyst for epoxy resin and unsaturated monobasic acid. It is obtained by reacting in the presence of.
  • Examples of the epoxy resin mentioned here include a bisphenol type or novolac type epoxy resin alone, or a resin in which a bisphenol type and a novolac type epoxy resin are mixed, and the average epoxy equivalent is preferably 150 to It is in the range of 450.
  • the bisphenol type epoxy resin a glycidyl ether type epoxy resin substantially having two or more epoxy groups in one molecule obtained by the reaction of epichlorohydrin and bisphenol A or bisphenol F is used.
  • An epoxy resin a methyl glycidyl ether-type epoxy resin obtained by reaction of methyl epichlorohydrin and bisphenol A or bisphenol F, an epoxy resin obtained from an alkylene oxide adduct of bisphenol A and epichlorohydrin or methyl epichlorohydrin, or the like.
  • Typical examples of the novolak type epoxy resin include an epoxy resin obtained by a reaction of phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin.
  • Typical examples of unsaturated monobasic acids used for epoxy (meth) acrylate resins include acrylic acid, methacrylic acid, cinnamic acid, crotonic acid, monomethyl maleate, monopropyl maleate, and monoester maleate. (2-ethylhexyl) or sorbic acid. These unsaturated monobasic acids may be used alone or in combination of two or more.
  • the reaction between the epoxy resin and the unsaturated monobasic acid is preferably carried out using an esterification catalyst at a temperature of 60 to 140 ° C., particularly preferably 80 to 120 ° C.
  • esterification catalyst known catalysts such as tertiary amines such as triethylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline or diazabicyclooctane, triphenylphosphine or diethylamine hydrochloride Can be used as is.
  • the polyester (meth) acrylate resin used as the vinyl ester resin is a saturated or unsaturated polyester having two or more (meth) acryloyl groups in one molecule, and (meth) acrylic at the end of the saturated or unsaturated polyester. A compound is reacted.
  • the number average molecular weight of such a resin is preferably 500 to 5,000.
  • the saturated polyester used in the present invention is a condensation reaction between a saturated dibasic acid and a polyhydric alcohol
  • the unsaturated polyester is a dibasic acid containing an ⁇ , ⁇ -unsaturated dibasic acid and a polyhydric alcohol. It is obtained by the condensation reaction.
  • the resin which made the terminal of unsaturated polyester react with the (meth) acryl compound shall be contained in vinyl ester resin in this invention, and shall be distinguished from the unsaturated polyester resin demonstrated below.
  • saturated dibasic acid examples include the compounds shown in the above-mentioned polyester polyol, and examples of the ⁇ , ⁇ -unsaturated dibasic acid include maleic acid, maleic anhydride, fumaric acid, and itaconic acid. And itaconic anhydride.
  • the compound shown to the term of the said polyester polyol can be mentioned also about polyhydric alcohol.
  • the (meth) acrylic compound of the polyester (meth) acrylate resin used as the vinyl ester resin includes unsaturated glycidyl compounds, various unsaturated monobasic acids such as acrylic acid or methacrylic acid, and glycidyl esters thereof. is there.
  • glycidyl (meth) acrylate is used.
  • the unsaturated polyester resin is obtained by polycondensing an acid component and an alcohol component by a known method, and the kind thereof is not particularly limited as long as it is known as a thermosetting resin.
  • the acid component for example, unsaturated dibasic acids such as maleic anhydride, maleic acid, fumaric acid and itaconic acid are used. If necessary, use a saturated dibasic acid such as phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, and sebacic acid, and acids other than dibasic acids such as benzoic acid and trimellitic acid. be able to.
  • the alcohol component include polyhydric alcohols shown in the above-mentioned polyester polyol section.
  • the coating composition of the present invention comprises (d) an initiator as an essential component.
  • the oligomer component for example, vinyl ester resin or unsaturated polyester resin (c)
  • a thermal polymerization initiator for example, a photopolymerization initiator
  • it can be easily cured in a short time by ultraviolet irradiation or electron beam irradiation using an ultraviolet fluorescent lamp or a high-pressure mercury lamp.
  • ultraviolet irradiation is preferred.
  • the coating composition of the present invention When the coating composition of the present invention is cured by heating, it can be cured by heating at a room temperature to about 90 ° C.
  • the thermal polymerization initiator include benzoyl peroxide, lauroyl peroxide, succinic acid peroxide, methyl ethyl ketone peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, and cyclohexanone peroxide. Is mentioned. For example, when the (1 minute) half-life temperature of the peroxides is 100 ° C. to 180 ° C., sufficient curability can be obtained at 80 ° C. ⁇ 10 minutes to 160 ° C. ⁇ 5 minutes.
  • photopolymerization initiator examples include benzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, acetophenone, benzoin, benzoin ethyl ether, benzoin-n-propyl ether, benzoin isopropyl ether, benzoin-n- Butyl ether, benzoin isobutyl ether, benzyl-1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl 1-phenylpropan-1-one, benzyl sulfide, thioxanthone Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-chlorothixant and the like.
  • the coating composition of the present invention may further contain (e) at least one functional material selected from a white light reflecting material, a black material, an infrared absorbing material, an ultraviolet absorbing material, an antistatic material and an electromagnetic shielding material. it can. Thereby, a desired function can be effectively provided by coating the coating composition of the present invention on various substrates.
  • the white light reflecting material examples include inorganic pigment components.
  • inorganic pigment components For example, basic lead carbonate, basic lead sulfate, basic lead silicate, zinc white (specific gravity 5.47 to 5.61), zinc sulfide (specific gravity 4. 1), lithopone, antimony triacid antimony (specific gravity 5.5 to 5.6), diacid titanium (specific gravity 4.2), graphite (specific gravity 3.3). These components may be used alone or in combination of two or more.
  • the inorganic pigment component it is preferable to use titanium dioxide or zinc sulfide as a main component. Particularly preferred is titanium dioxide. Titanium dioxide is particularly preferable because it has a strong action of removing ultraviolet rays (light having a wavelength of 400 nm or less) and a function of removing visible light.
  • the shape of the inorganic pigment component may be a spherical structure, an elliptical structure, a needle-like structure, a polygonal structure, or an amorphous structure.
  • the particle diameter of the inorganic pigment component is not particularly limited as long as it is smaller than the coating thickness of the coating composition of the present invention.
  • the white light reflecting material which is an optional component, is contained, it is preferably blended in an amount of 5 to 40 parts by mass with respect to a total of 100 parts by mass of the components (a), (b) and (c).
  • the blending amount is preferably 5 to 40 parts by mass with respect to 100 parts by mass in total of the components (a), (b) and (c).
  • the compounding amount of the white light reflecting material exceeds 40 parts by mass, the film forming property and the adhesion to the specific substrate may be deteriorated. Moreover, there is a risk of deterioration of flexibility. If the blending amount of the white light reflecting material is less than 10 parts by mass, the addition amount is too small and the desired effect may not be exhibited.
  • a more preferable amount of the white light reflecting material is 10 to 20 parts by mass with respect to a total of 100 parts by mass of the components (a), (b) and (c).
  • the black material has a function of absorbing ultraviolet rays, and examples thereof include carbon black. Examples thereof include furnace black, channel black, acetylene black, and thermal black. These components may be used alone or in combination of two or more.
  • the blending amount is preferably 0.5 to 5 parts by mass with respect to a total of 100 parts by mass of the components (a), (b) and (c). If the blending amount of the black material exceeds 5 parts by mass, the film forming property and the adhesion to the specific substrate may be deteriorated. Moreover, there is a risk of deterioration of flexibility. If the amount of the black material is less than 0.5 parts by mass, the amount added is too small to achieve the desired effect.
  • infrared absorbing materials include carbon nanotubes, zinc oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, cesium-containing tungsten oxide, ATO (antimony-tin composite oxide or antimony-doped tin oxide), ITO (indium-tin composite oxide). Thing) etc. are mentioned.
  • the blending amount of the infrared absorbing material may be appropriately determined in consideration of the desired infrared absorptivity.
  • the blending amount of the infrared absorbing material is 0.1 with respect to a total of 100 parts by mass of the components (a), (b) and (c). A range of up to 30 parts by mass can be mentioned.
  • the ultraviolet absorbing material examples include salicylate-based, benzophenone-based, benzotriazole-based, substituted acrylonitrile-based, triazine-based organic compounds, the carbon nanotubes described above, zinc oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, and titanium dioxide.
  • Inorganic compounds such as hybrid inorganic powder obtained by complexing cerium oxide and titanium dioxide fine particles with iron oxide, and hybrid inorganic powder obtained by coating the surface of cerium oxide fine particles with amorphous silica.
  • the blending amount of the ultraviolet absorbing material may be appropriately determined in consideration of the desired infrared absorptivity.
  • the blending amount of the ultraviolet absorbing material is 0.1 with respect to a total of 100 parts by mass of the components (a), (b) and (c). A range of up to 30 parts by mass can be mentioned.
  • the antistatic material examples include metal oxides and metal salts.
  • the metal oxide include zinc oxide, aluminum doped zinc oxide, gallium doped zinc oxide, ATO, ITO, tin oxide, and antimony pentoxide described above. , Zirconium oxide, titanium oxide, aluminum oxide and the like.
  • the carbon nanotube mentioned above can also be utilized.
  • the blending amount of the antistatic material may be appropriately determined in consideration of a desired antistatic property, and examples thereof include a range of 0.1 to 30% by mass in the paint of the present invention.
  • the blending amount of the antistatic material may be appropriately determined in consideration of the desired infrared absorptivity.
  • the blending amount of the antistatic material is 0.1% with respect to a total of 100 parts by mass of the components (a), (b) and (c). A range of up to 30 parts by mass can be mentioned.
  • the electromagnetic wave shielding material examples include conductive particles such as (1) carbon particles or powder; (2) nickel, indium, chromium, gold, vanadium, tin, cadmium, silver, platinum, aluminum, copper, titanium, cobalt. , Particles or powders of lead or other metals or alloys or conductive oxides thereof; (3) a coating layer of the conductive material (1) or (2) above is formed on the surface of plastic particles such as polystyrene or polyethylene; And the like.
  • the blending amount of the electromagnetic shielding material may be appropriately determined in consideration of desired electromagnetic shielding properties. For example, 60 to 90 mass with respect to a total of 100 mass parts of the components (a), (b) and (c). A range of parts.
  • the coating composition of the present invention can further contain (f) an organic solvent.
  • an organic solvent include aromatic hydrocarbons such as toluene, xylene, or benzene; aliphatic hydrocarbons such as n-heptane, n-hexane, or n-octane; petroleum benzine, petroleum ether, ligroin Hydrocarbon mixtures with boiling points in the range of 30-300 ° C., such as mineral split, petroleum naphtha or kerosene; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane or ethylcyclohexane; methanol, ethanol, n- Propanol, isopropanol, n-butanol, isobutanol, tert-butan
  • preferred examples of the solvent (f-1) are those having poor volatility but easily dissolving the component (a), such as N-methylpyrrolidone (NMP), ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC). N-methylpyrrolidone (NMP) and propylene carbonate (PC) are more preferable.
  • solvents that are excellent in volatility but slightly dissolve component (a), such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK).
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • the coating composition of the present invention can further contain (g) a flame retardant.
  • a flame retardant include phosphorus flame retardant, bromine flame retardant, chlorine flame retardant, aluminum hydroxide, zinc borate and the like.
  • the coating composition of the present invention has a total of (a) fluorine-based resin, (b) block copolymer or polyvinyl acetal resin, (c) vinyl ester resin or unsaturated polyester resin, 100 parts by mass, From the viewpoint of adhesion to a specific substrate and heat-resistant adhesion, and further from the viewpoint of water resistance and weather resistance, component (a) 45 to 95 parts by mass, component (b) 2 to 35 parts by mass, (c) 2 to 50 A part by mass is blended.
  • the component (a) is preferably 60 to 90 parts by mass, the component (b) is 5 to 30 parts by mass, and the component (c) is 5 to 20 parts by mass.
  • the compounding amount of the component (a) exceeds 95 parts by mass, the adhesion to the specific substrate is deteriorated. Also, the flexibility deteriorates. When the amount of component (a) is less than 45 parts by mass, water resistance and weather resistance are deteriorated. When the compounding amount of component (b) exceeds 35 parts by mass, water resistance and weather resistance are deteriorated. When the compounding amount of the component (b) is less than 2 parts by mass, the adhesion to the specific substrate is deteriorated. Also, the flexibility deteriorates. When the compounding amount of component (c) exceeds 50 parts by mass, water resistance and weather resistance are deteriorated. When the amount of component (c) is less than 2 parts by mass, the adhesion and flexibility are deteriorated.
  • the component (d) is a total of 100 components (a) to (c) from the viewpoint of practical photocuring time (irradiation intensity of 500 mJ / cm 2 and irradiation for 10 seconds or less). 0.1 to 15 parts by mass based on the mass is blended.
  • the amount of the component (d) is more preferably 1 to 10 parts by mass, particularly preferably 2 to 5 parts by mass in terms of practical photocuring time (irradiation intensity of 500 mJ / cm 2 for 3 seconds or less). Part.
  • the compounding amount of the component (d) exceeds 15 parts by mass, flexibility, adhesiveness and impact resistance are lowered.
  • it is less than 0.1 mass part since photocuring is inadequate, it is inferior to adhesiveness.
  • the same compounding quantity as the above may be sufficient.
  • the blending amount thereof is preferably 400 to 900 parts by mass with respect to 100 parts by mass in total of the components (a), (b) and (c). If the blending amount of component (f) exceeds 900 parts by mass, it will be too thin, so that it will be necessary to apply several times and work efficiency will deteriorate. When the compounding amount of the component (f) is 400 parts by mass or more, the viscosity is further reduced and the film forming property is improved.
  • the blending amount is preferably 1 to 20 parts by mass with respect to 100 parts by mass in total of the components (a), (b) and (c). If the amount of component (g) exceeds 20 parts by mass, the leveling (smoothness) will deteriorate. If the amount of component (g) is less than 1 part by mass, the amount added is too small to obtain the desired flame retardancy. A more preferable amount of component (g) is 3 to 10 parts by mass with respect to a total of 100 parts by mass of components (a), (b) and (c).
  • the coating composition of the present invention may contain various known additives such as a refractive index adjuster, a light stabilizer, a leveling agent, a viscosity adjuster, etc., if necessary. Is possible.
  • the above components (a), (b), (c) and (d) or, if necessary, the above component (e) and other various additives are added to a container equipped with a stirrer. It can be prepared by mixing by a conventional method.
  • the coating composition of the present invention has excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, and is excellent in water resistance and weather resistance. Since the coating composition of the present invention has the above properties, it is particularly useful as a glass coating composition and a solar battery backsheet coating composition.
  • the back sheet base material include polyester resins (particularly polyethylene terephthalate (PET) or polycarbonate resins) from the viewpoint of obtaining strong adhesiveness.
  • PET polyethylene terephthalate
  • the glass is not particularly limited, and examples thereof include hard and light soda lime glass, quartz glass having a high refractive index and transparency, and borosilicate glass having a low transparency but being hard and light.
  • polycarbonate resin examples include polycarbonate (PC) and modified polycarbonate.
  • polyester resin examples include polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate (PBT), and polyethylene naphthalate film.
  • cellulose resin examples include diacetyl cellulose and triacetyl cellulose.
  • Liquid crystal polymers include polycondensates of ethylene terephthalate and parahydroxybenzoic acid (type I), polycondensates of phenol and phthalic acid with parahydroxybenzoic acid (type II), 2,6-hydroxynaphthoic acid and para And polycondensates with hydroxybenzoic acid (type III). The thickness of these base materials is, for example, 0.5 mm to 3 mm.
  • the laminated body of this invention can be obtained through the process formed by coating the coating composition of this invention on a base material.
  • the substrate include substrates made of glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer as described above.
  • a coating method it is preferable to employ one of two methods of solvent coating and coating using an extruder.
  • the solvent coating a predetermined amount of the organic solvent (f) is added to the coating composition of the present invention, and the obtained paint is applied to a substrate by spin coating, (doctor) knife coating, or micro gravure coating.
  • the coating using the extruder include a method in which the coating composition of the present invention is charged into a commercially available hot melt extruder and extruded onto a substrate using, for example, a T-type die. In this form, the coating composition of the present invention can be used as an extrusion composition. As another form, a method in which the coating composition of the present invention is formed into a sheet, and then adhered to the substrate and thermally laminated using a heating roll can be exemplified.
  • the thickness of the layer of the coating composition of the present invention is preferably 10 ⁇ m to 200 ⁇ m, more preferably 15 ⁇ m to 100 ⁇ m, from the viewpoint of the effect of the present invention.
  • the laminate of the present invention is useful as a window glass from the viewpoint of excellent adhesion to glass, water resistance, weather resistance, transparency, surface smoothness, and flexibility.
  • the window glass is not particularly limited, and examples thereof include window glass for buildings such as ordinary houses and buildings, vehicles such as automobiles and railways, window glass for vehicles such as airplanes and ships, and viewing windows in mechanical equipment.
  • the window glass for buildings is preferable from a viewpoint that said various characteristics are excellent.
  • the laminate of the present invention is a solar cell from the viewpoint that it has excellent adhesion to polycarbonate resins and polyester resins and is excellent in water resistance, weather resistance, transparency, surface smoothness, and flexibility.
  • Useful as a backsheet when utilizing the laminated body in this invention as a solar cell backsheet, it is preferable to add said (e) functional material, especially white light reflection material to the coating composition of this invention.
  • the manufacturing method of the solar cell backsheet may be a conventional manufacturing method, and is not particularly limited. For example, first, a layer of the coating composition is applied on the substrate.
  • spin coating method As coating methods, spin coating method, (doctor) knife coating method, micro gravure coating method, direct gravure coating method, offset gravure method, reverse gravure method, reverse roll coating method, (Meyer) bar coating method, die coating method, Methods such as spray coating and dip coating can be preferably applied.
  • a manual spinner ASS-301 type manufactured by Able Co., Ltd.
  • the thickness of the coating composition layer is not particularly limited, but is about 2 to 50 ⁇ m, preferably about 5 to 30 ⁇ m, and more preferably about 8 to 20 ⁇ m.
  • Solar cells are included in the encapsulant layer.
  • the method for forming the sealing material layer may be a conventionally known method, and is not particularly limited, but is laminated in the order of tempered glass / EVA sheet / solar battery cell / EVA sheet / the above solar battery back sheet, and vacuum lamination. Heat bonding using the method.
  • the above solar cell backsheet preparation method and solar cell module preparation method are merely examples, and those skilled in the art can make various modifications.
  • Raw materials used The raw materials used in Examples and Comparative Examples are as follows. (1) (a) Fluorine resin (a-1) SOLEF21216 / 1001 (Product of Solvay Solexis Co., Ltd., Polyvinylidene fluoride (PVDF), high purity PVDF, melting point 160 ° C.) (A-2) Lumiflon LF-200 (Asahi Glass Co., Ltd.
  • Halar 6014 product of Solvay Solexis Co., Ltd., chlorotrifluoroethylene / ethylene copolymer (ECTFE), melting point 225 ° C.
  • Algoflon 25 CAR B product of Solvay Solexis, polytetrafluoroethylene (PTFE), melting point 190 ° C.
  • Block copolymer or polyvinyl acetal resin (b-1) LA polymer 2140E (Kuraray product, compound name: acrylic block copolymer, polymerization method: living anion polymerization, JIS-A hardness 32 ) (B-2) LA polymer 2250 (Kuraray Co., Ltd., compound name: acrylic block copolymer, polymerization method: living anion polymerization, JIS-A hardness 65) (B-3) NABSTAR F700KS (Kaneka Corporation, compound name: acrylic block copolymer, polymerization method: living radical polymerization, JIS-A hardness 22) (B-4) Mowital SB 70 HH (Kuraray Co., Ltd., polyvinyl butyral, non-volatile content: 97.5% by mass or more, hydroxyl group content: 12-14% by mass, acetate group content: 1-4% by mass (B-5) Parapet GF (Kuraray Co., Ltd., polymethyl methacrylate (PMMA),
  • Component (d) Component Initiator (i) Photopolymerization initiator CIBA, IRGACURE TM 819, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (ii) Thermal polymerization initiator NOF Corporation Perhexa 25B (1 minute half-life: 179 ° C.), 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane
  • each component except the component (d) is put into a normal plastic kneader, kneaded at a kneading temperature of 180 ° C. to 220 ° C. and pelletized did.
  • the pellet was added to a container equipped with a stirrer together with the component (d) and mixed by a conventional method to obtain a coating composition.
  • the viscosity (mPa ⁇ s) at 25 ° C. of the obtained composition was measured.
  • the composition was applied by spin coating (application thickness 15 to 20 ⁇ m) and dried.
  • a layer (A) of the composition was formed on the substrate.
  • the layer (A) of the composition was cured by irradiating ultraviolet rays having an energy of 500 mJ / cm 2 under air to prepare a laminate.
  • a thermal polymerization initiator if necessary, 0 to 0.05 part by mass of 6% naphthenic cobalt is added to the composition and cured by heat treatment at 100 ° C. for 10 minutes to prepare a laminate. did.
  • Each base material used is as follows. ⁇ Glass (slide glass for microscope preparation) ⁇ Polyethylene terephthalate PET (Unitika Polyester MA-2103 made by Unitika) ⁇ Polybutylene terephthalate PBT (Mitsubishi Engineering Plastics, trade name Nova Duran 5010R5) ⁇ Polycarbonate PC (trade name Panlite L-1225L, manufactured by Teijin Chemicals Ltd.) ⁇ Liquid crystal polymer LCP (manufactured by Sumitomo Chemical Co., Ltd., trade name Sumika Super E5008L) ⁇ Triacetylcellulose TAC (Fuji Film Co., Ltd., trade name FUJITAC (with UV))
  • Adhesion test for different materials was performed by measuring the shear adhesive force as shown below.
  • layer (B1) of polyethylene terephthalate PET (trade name EMC307 manufactured by Toyobo Co., Ltd.) having dimensions of 150 mm ⁇ 1 mm thickness ⁇ 25 mm width
  • the above composition was applied by a spin coating method (application thickness: 15 to 20 ⁇ m).
  • a layer (A) is formed, and an ethylene-vinyl acetate copolymer EVA (trade name KA-30 manufactured by Sumitomo Chemical Co., Ltd., vinyl acetate content 28 having the same dimensions as (B1) shown in the table is formed thereon. %)
  • EVA ethylene-vinyl acetate copolymer
  • Layer (B2) was pressure-bonded to prepare a laminate. Thereafter, the layer (B2) was pulled in a direction parallel to the bonding surface of the layer (A), and the tensile strength at break was measured. The results are shown in the table as PET vs EVA (MPa).
  • the visible light transmittance was determined by the average transmittance for a D light source at a wavelength of 380 to 780 nm in a spectral transmittance curve by a U-4000 type self-recording spectrophotometer (manufactured by Hitachi, Ltd.) according to JIS R-3106.
  • the ultraviolet transmittance was obtained as an average transmittance at a wavelength of 300 to 380 nm by the same means as described above according to the ISO / DIS 13837 B method.
  • Infrared transmittance An average transmittance of 780 nm to 2000 nm was determined in the same manner as described above according to the ISO / DIS 13837 B method.
  • the coating compositions of the examples of the present invention contain the components (a), (b), (c) and (d) in a specific quantitative relationship, glass Excellent adhesion to polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, particularly heat-resistant adhesive, water resistance, and weather resistance. Moreover, it was confirmed that the desired functionality was imparted to the system to which the functional material was added. On the other hand, in Comparative Examples 1 to 4 and 7 to 15, the compounding amounts of the components (a) to (d) are outside the range defined by the present invention. , Water resistance and weather resistance could not be satisfied at all. In Comparative Examples 5 to 6, since the component (b) is a component outside the range of the present invention, the adhesion to the specific substrate, the heat-resistant adhesion, and the water resistance deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This coating composition is characterized by containing: (a) 45-95 parts by mass of a fluorine-containing resin; (b) 2-35 parts by mass of a polyvinyl acetal resin or a block copolymer which is composed of a block (A) that is mainly composed of a methacrylate ester and a block (B) that is mainly composed of an acrylate ester; (c) 2-50 parts by mass of a vinyl ester resin or an unsaturated polyester resin (with the total of the components (a)-(c) being 100 parts by mass); and (d) 0.1-15 parts by mass of an initiator per 100 parts by mass of the total of the components (a)-(c).

Description

コーティング組成物および積層体Coating composition and laminate
 本発明は、コーティング組成物および積層体に関し、詳しくは、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性、とくに耐熱接着性を有するとともに、耐水性、耐候性に優れるコーティング組成物および積層体に関する。
 本発明のコーティング組成物は、とくにガラス用のコーティング組成物および太陽電池バックシート用のコーティング組成物として有用である。
The present invention relates to a coating composition and a laminate, and in particular, excellent adhesion to glass, polycarbonate resin, polyester resin, cellulosic resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, particularly heat resistant adhesiveness. The present invention also relates to a coating composition and a laminate having excellent water resistance and weather resistance.
The coating composition of the present invention is particularly useful as a coating composition for glass and a coating composition for solar battery backsheet.
 建物用の窓ガラス、車両や船舶等の乗物用の窓ガラスには、一般的に優れた透明性、表面平滑性、柔軟性、耐衝撃性、耐水性、耐候性が求められる。下記特許文献1には、ポリエチレンテレフタレートのようなプラスチックフィルムの片面に粘着剤層を設け、これをガラスに貼着する技術が開示されているが、係る技術では、上記窓ガラスに求められる各種特性を満足することができず、改善が求められていた。
 また従来の粘着剤層は、通常、エポキシ樹脂を溶剤希釈した2液常温硬化型の粘着剤であり、揮発性有機化合物(VOC)および臭気の発生、乾燥まで長時間(例えば1時間以上)かかる、等の問題点があった。
Window glass for buildings and window glass for vehicles such as vehicles and ships are generally required to have excellent transparency, surface smoothness, flexibility, impact resistance, water resistance, and weather resistance. Patent Document 1 below discloses a technique in which a pressure-sensitive adhesive layer is provided on one side of a plastic film such as polyethylene terephthalate, and this is adhered to glass. In such a technique, various characteristics required for the window glass are disclosed. Therefore, improvement was demanded.
The conventional pressure-sensitive adhesive layer is usually a two-component room-temperature-curing pressure-sensitive adhesive in which an epoxy resin is diluted with a solvent, and takes a long time (for example, 1 hour or more) until volatile organic compound (VOC) and odor are generated and dried. There were problems such as.
 一方、近年、石油や石炭などの化石エネルギー源の枯渇が問題とされ、加えて、それらの燃焼時に発生するCO2の増加に起因する地球温暖化現象等の環境破壊が重要な問題となっている。そのような状況の下、太陽光発電は、無尽蔵の太陽輻射エネルギーを利用するクリーンな代替エネルギー源として実用化されている。太陽電池は、太陽光のエネルギーを直接電気に変える太陽光発電システムの心臓部を構成するものであり、結晶シリコン、多結晶シリコン、アモルファスシリコン、銅インジウムセレナイド、化合物半導体等の光起電力素子からできている。その構造としては、光起電力素子単体をそのままの状態で使用することはなく、一般的に、数枚~数十枚の光起電力素子を直列、並列に配線し、長期間に亘って素子を保護するために種々パッケージングが行われ、太陽電池モジュールとしてユニット化されている。 On the other hand, in recent years, depletion of fossil energy sources such as oil and coal has been a problem, and in addition, environmental destruction such as global warming due to an increase in CO 2 generated during combustion has become an important issue. Yes. Under such circumstances, photovoltaic power generation has been put into practical use as a clean alternative energy source that uses inexhaustible solar radiation energy. Solar cells constitute the heart of a photovoltaic power generation system that converts sunlight energy directly into electricity. Photovoltaic elements such as crystalline silicon, polycrystalline silicon, amorphous silicon, copper indium selenide, and compound semiconductors Made from. As a structure, a single photovoltaic element is not used as it is, and generally several to several tens of photovoltaic elements are wired in series or in parallel, and the element is extended over a long period of time. In order to protect the battery, various packaging is performed, and a unit is formed as a solar cell module.
 太陽電池モジュールの基本的な機能は、太陽の輻射エネルギーを効率よく光起電力素子へと導くと共に、光起電力素子および内部配線を長期に亘って過酷な自然環境に耐え得るように保護することにある。太陽電池モジュールは一般的に、太陽光が当たる面のガラスや透明なプラスチック等からなる上部透明材料と、エチレン酢酸ビニル共重合体(以下EVAと称する)等の熱可塑性樹脂からなる封止材層と、光起電力素子としての複数枚の太陽電池セルと、前記封止材層と同様の封止材層と、太陽電池バックシートとがこの順に積層され、真空加熱ラミネーション法等により一体成形されている。 The basic function of the solar cell module is to efficiently guide the solar radiation energy to the photovoltaic device and to protect the photovoltaic device and the internal wiring so that they can withstand harsh natural environments over a long period of time. It is in. Generally, a solar cell module has an upper transparent material made of glass or transparent plastic on the surface that is exposed to sunlight, and a sealing material layer made of a thermoplastic resin such as an ethylene vinyl acetate copolymer (hereinafter referred to as EVA). A plurality of solar cells as photovoltaic elements, a sealing material layer similar to the sealing material layer, and a solar battery back sheet are laminated in this order, and are integrally formed by a vacuum heating lamination method or the like. ing.
 太陽電池バックシートには、太陽電池セルとリード等の内容物を保護するために、機械的強度に優れ、耐候性、耐熱性、耐水性、耐光性、耐薬品性等の諸特性に優れ、特に水分や酸素等の侵入を防止する高いガスバリア性が求められている。バリア性の維持には材質そのもののバリア性能と共に、EVA等の封止材層との密着性・接着安定性が重要である。これは界面からの水分の透過により封止材層の剥離、変色や、配線の腐食が起き、モジュールの出力そのものに影響を与える恐れがあるためである。さらには、発電効率向上への寄与から、内面が白色であることが求められている。 The solar battery backsheet has excellent mechanical strength and excellent properties such as weather resistance, heat resistance, water resistance, light resistance, and chemical resistance to protect the contents of solar cells and leads. In particular, a high gas barrier property that prevents intrusion of moisture, oxygen and the like is required. In order to maintain the barrier property, not only the barrier performance of the material itself but also the adhesion and adhesion stability with a sealing material layer such as EVA are important. This is because separation of the sealing material layer, discoloration, and corrosion of the wiring occur due to moisture permeation from the interface, which may affect the output of the module itself. Furthermore, the inner surface is required to be white because of its contribution to improving power generation efficiency.
 従来、太陽電池バックシートとしては、ポリフッ化ビニル(PVF)やポリフッ化ビニリデン(PVDF)などの耐候性、難燃性、そして封止材として良く使用されるEVAと良好な接着性を有するフッ素樹脂が用いられてきた。しかしながら、フッ素樹脂単体シートでは水蒸気バリア性、透明性、耐候性、難燃性などの課題を有している。 Conventionally, as a solar battery back sheet, a fluororesin having good weather resistance, flame retardancy, and EVA which is often used as a sealing material, such as polyvinyl fluoride (PVF) and polyvinylidene fluoride (PVDF). Has been used. However, the fluororesin simplex sheet has problems such as water vapor barrier properties, transparency, weather resistance, and flame retardancy.
 そこで、これらの課題を解決するために、太陽電池バックシートとしてポリエステル系フィルムを用いる技術が多く提案されている。例えば、特許文献2には、塩素法で製造された酸化チタンを含有したポリブチレンテレフタレート(PBT)フィルムの積層体からなる太陽電池用裏面封止用フィルムが開示されている。しかしながら、PETに比較して加水分解性が改善されてバランスの取れた物性を示すものの、EVA等の封止材層との接着性が劣るという問題点があった。このように従来技術では、EVAからなる封止材層と良好な接着性を有し、かつ、水蒸気バリア性、透明性、耐候性、難燃性に優れる太陽電池バックシートを得ることはできなかった。 Therefore, in order to solve these problems, many techniques using a polyester film as a solar battery back sheet have been proposed. For example, Patent Document 2 discloses a film for sealing a back surface of a solar cell, which is a laminate of a polybutylene terephthalate (PBT) film containing a titanium oxide produced by a chlorine method. However, although hydrolyzability is improved and balanced physical properties are exhibited as compared with PET, there is a problem that adhesiveness with a sealing material layer such as EVA is inferior. Thus, in the prior art, it is not possible to obtain a solar battery back sheet having good sealing properties with an EVA sealing material layer and excellent in water vapor barrier properties, transparency, weather resistance, and flame retardancy. It was.
特開2000-96009号公報JP 2000-96009 A 特開2007-129204号公報JP 2007-129204 A
 本発明は上記した問題点に鑑みなされたものであり、その目的は、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性、とくに耐熱接着性を有するとともに、耐水性、耐候性に優れるコーティング組成物および積層体を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to provide excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, In particular, an object of the present invention is to provide a coating composition and a laminate having heat-resistant adhesion and excellent water resistance and weather resistance.
 本発明者は鋭意研究を行った結果、下記成分(a)および(b)を特定の量的関係でもって含有する組成物が、前記課題を解決し得ることを見出し、本発明を完成した。 As a result of intensive studies, the present inventor has found that a composition containing the following components (a) and (b) with a specific quantitative relationship can solve the above problems, and has completed the present invention.
 すなわち本発明は、以下の通りである。
 1.(a)フッ素系樹脂45~95質量部、
(b)メタクリル酸エステルを主体とするブロック(A)およびアクリル酸エステルを主体とするブロック(B)からなるブロック共重合体またはポリビニルアセタール樹脂2~35質量部、
(c)ビニルエステル樹脂または不飽和ポリエステル樹脂 2~50質量部(ただし、前記成分(a)~(c)の合計は100質量部である)、および
(d)開始剤 前記成分(a)~(c)の合計100質量部に対し0.1~15質量部
を含有することを特徴とするコーティング組成物。
 2.前記(a)フッ素系樹脂の融点が230℃以下であることを特徴とする前記1に記載のコーティング組成物。
 3.前記(b)ブロック共重合体が、トリブロック構造を有することを特徴とする前記1または2に記載のコーティング組成物。
 4.前記(b)ブロック共重合体が、ABA型トリブロック構造を有するブロック共重合体(ただし、前記Aブロック成分がメタクリル酸エステルであり、Bブロック成分がアクリル酸エステルである)であることを特徴とする前記1~3のいずれかに記載のコーティング組成物。
 5.前記(b)ブロック共重合体が、下記一般式
-(A1)-(B)-(A2)-
(式中、(A1)および(A2)は、それぞれ、メタクリル酸アルキルエステルからなるブロック成分を表し、(B)は、アクリル酸アルキルエステルからなるブロック成分を表す)で表されるトリブロック構造を有することを特徴とする前記4に記載のコーティング組成物。
 6.前記(c)がウレタン(メタ)アクリレートであることを特徴とする前記1~5いずれか1項に記載のコーティング組成物。
 7.前記(b)ブロック共重合体が、リビングアニオン重合法によって製造されたことを特徴とする前記5に記載のコーティング組成物。
 8.前記(b)ポリビニルアセタール樹脂がポリビニルブチラール樹脂であることを特徴とする前記1または2に記載のコーティング組成物。
 9.さらに(e)白色光反射材料、黒色材料、赤外線吸収材料、紫外線吸収材料、帯電防止材料および電磁波シールド材料から選ばれる少なくとも1種の機能性材料を含むことを特徴とする前記1~8のいずれかに記載のコーティング組成物。
 10.さらに(f)有機溶剤を、前記成分(a)~(c)の合計100質量部に対し、400~900質量部配合してなることを特徴とする前記1~9のいずれかに記載のコーティング組成物。
 11.前記1~10のいずれかに記載のコーティング組成物からなる、ガラス用コーティング組成物。
 12.前記1~10のいずれかに記載のコーティング組成物からなる、太陽電池バックシート用コーティング組成物。
 13.バックシート基材がポリエステル系樹脂またはポリカーボネートであることを特徴とする前記12に記載の太陽電池バックシート用コーティング組成物。
 14.前記1~10のいずれかに記載のコーティング組成物を、基材上にコーティングしてなる積層体。
 15.前記基材が、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂および液晶ポリマーから選ばれる少なくとも1種であることを特徴とする前記14に記載の積層体。
 16.前記1~9のいずれかに記載のコーティング組成物からなる、押出成形用組成物。
That is, the present invention is as follows.
1. (A) 45 to 95 parts by mass of a fluororesin,
(B) 2 to 35 parts by mass of a block copolymer or polyvinyl acetal resin comprising a block (A) mainly composed of methacrylic acid ester and a block (B) mainly composed of acrylic acid ester,
(C) vinyl ester resin or unsaturated polyester resin 2 to 50 parts by mass (provided that the total of the components (a) to (c) is 100 parts by mass), and (d) an initiator The component (a) to A coating composition comprising 0.1 to 15 parts by mass with respect to 100 parts by mass in total of (c).
2. 2. The coating composition as described in 1 above, wherein the melting point of the (a) fluororesin is 230 ° C. or less.
3. 3. The coating composition as described in 1 or 2 above, wherein the (b) block copolymer has a triblock structure.
4). The (b) block copolymer is a block copolymer having an ABA type triblock structure (provided that the A block component is a methacrylic ester and the B block component is an acrylate ester). 4. The coating composition as described in any one of 1 to 3 above.
5. The (b) block copolymer has the following general formula-(A1)-(B)-(A2)-
(Wherein (A1) and (A2) each represent a block component composed of a methacrylic acid alkyl ester, and (B) represents a block component composed of an acrylic acid alkyl ester). 5. The coating composition as described in 4 above, which has a coating composition.
6). 6. The coating composition as described in any one of 1 to 5 above, wherein (c) is urethane (meth) acrylate.
7. 6. The coating composition as described in 5 above, wherein the block copolymer (b) is produced by a living anion polymerization method.
8). 3. The coating composition as described in 1 or 2 above, wherein the (b) polyvinyl acetal resin is a polyvinyl butyral resin.
9. Any one of the above 1 to 8, further comprising (e) at least one functional material selected from a white light reflecting material, a black material, an infrared absorbing material, an ultraviolet absorbing material, an antistatic material and an electromagnetic shielding material A coating composition according to claim 1.
10. 10. The coating according to any one of 1 to 9, further comprising (f) 400 to 900 parts by mass of an organic solvent with respect to a total of 100 parts by mass of the components (a) to (c). Composition.
11. A glass coating composition comprising the coating composition according to any one of 1 to 10 above.
12 A coating composition for a solar battery backsheet, comprising the coating composition according to any one of 1 to 10 above.
13. 13. The solar cell backsheet coating composition as described in 12 above, wherein the backsheet substrate is a polyester resin or polycarbonate.
14 A laminate obtained by coating the substrate with the coating composition according to any one of 1 to 10 above.
15. 15. The laminate according to 14, wherein the substrate is at least one selected from glass, polycarbonate resin, polyester resin, cellulose resin, and liquid crystal polymer.
16. 10. An extrusion composition comprising the coating composition according to any one of 1 to 9 above.
 本発明のコーティング組成物は、前記成分(a)、(b)、(c)および(d)を特定の量的関係でもって配合しているので、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性、とくに耐熱接着性を有するとともに、耐水性、耐候性に優れる。
 本発明のコーティング組成物は、上記の性質を有することから、とくにガラス用コーティング組成物および太陽電池バックシート用コーティング組成物として有用である。
 とくに、(e)白色光反射材料、黒色材料、赤外線吸収材料、紫外線吸収材料、帯電防止材料および電磁波シールド材料から選ばれる少なくとも1種の機能性材料および/または(g)難燃剤を配合した本発明の本発明のコーティング組成物は、ガラスまたは太陽電池バックシートに所望の機能性を有効に付与することができる。
 本発明の積層体は、前記成分(a)、(b)、(c)および(d)を特定の量的関係でもって配合しているコーティング組成物を基材上にコーティング(溶剤コーティングまたは溶融押出コーティング)してなるものであるので、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性、とくに耐熱接着性を有するとともに、耐水性、耐候性に優れる。本発明の積層体は、上記の性質を有することから、とくに窓ガラス、太陽電池バックシートとして有用である。
Since the coating composition of the present invention contains the components (a), (b), (c) and (d) in a specific quantitative relationship, glass, polycarbonate resin, polyester resin, cellulose It has excellent adhesiveness, especially heat-resistant adhesiveness, and water resistance and weather resistance to resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer.
Since the coating composition of the present invention has the above properties, it is particularly useful as a glass coating composition and a solar battery backsheet coating composition.
In particular, (e) a white light reflecting material, a black material, an infrared absorbing material, an ultraviolet absorbing material, an antistatic material, and an electromagnetic shielding material, and / or (g) a book containing a flame retardant The coating composition of the present invention of the invention can effectively impart desired functionality to a glass or solar cell backsheet.
The laminate of the present invention is coated with a coating composition (solvent coating or melting) containing the components (a), (b), (c) and (d) in a specific quantitative relationship. Extrusion coating), it has excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, ethylene-vinyl acetate copolymer, especially heat resistant adhesive, Excellent water resistance and weather resistance. Since the laminated body of this invention has said property, it is especially useful as a window glass and a solar cell backsheet.
 以下、本発明をさらに詳細に説明する。
(a)フッ素系樹脂
 本発明の組成物の成分(a)は、フッ素系樹脂である。
Hereinafter, the present invention will be described in more detail.
(A) Fluorine-based resin Component (a) of the composition of the present invention is a fluorine-based resin.
 フッ素系樹脂としては、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、ポリエチレンテトラフルオロエチレン(ETFE)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレンーヘキサフルオロプロピレン共重合体(FEP)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)、フルオロオレフィン・ビニルエーテル共重合体あるいはこれらフッ素系樹脂のアクリル変性物から適宜選択できる。 Examples of fluororesins include polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), polyethylene tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), and tetrafluoroethylene perfluoro. Alkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), chlorotrifluoroethylene / ethylene copolymer (ECTFE), fluoroolefin / vinyl ether copolymer or acrylics of these fluororesins It can be suitably selected from modified products.
 また、特に溶剤可溶型フッ素樹脂の例としては、フルオロオレフィンとビニルエーテル、ビニルエステルなどの炭化水素系モノマーの共重合体であって、水酸基、カルボン酸基、加水分解性シリル基、エポキシ基などの反応性基を有する含フッ素ポリマーが採用される。上記含フッ素ポリマーとしては、クロロトリフルオロエチレン、シクロヘキシルビニルエーテル、アルキルビニルエーテル、ヒドロキシアルキルビニルエーテルの共重合体、クロロトリフルオロエチレン、アルキルビニルエーテル、アリルアルコールの共重合体、クロロトリフルオロエチレン、脂肪族カルボン酸ビニルエステル、ヒドロキシアルキルビニルエステルの共重合体などがある。これらは、ルミフロン(旭硝子)、セフラルコート(セントラル硝子)などの名前で市販されている。例えば、ルミフロンLF-550、LF-552、LF-554、LF-600、LF-601、LF-602、LF-100、LF-200、LF-302、LF-400、LF-700、LF-916、LF-936などが挙げられる。 Particularly, examples of solvent-soluble fluororesins include copolymers of fluoroolefins and hydrocarbon monomers such as vinyl ethers and vinyl esters, such as hydroxyl groups, carboxylic acid groups, hydrolyzable silyl groups, and epoxy groups. The fluorine-containing polymer having the reactive group is employed. Examples of the fluoropolymer include chlorotrifluoroethylene, cyclohexyl vinyl ether, alkyl vinyl ether, hydroxyalkyl vinyl ether copolymer, chlorotrifluoroethylene, alkyl vinyl ether, allyl alcohol copolymer, chlorotrifluoroethylene, and aliphatic carboxylic acid. Examples include vinyl esters and copolymers of hydroxyalkyl vinyl esters. These are marketed under names such as Lumiflon (Asahi Glass) and Cefal Coat (Central Glass). For example, Lumiflon LF-550, LF-552, LF-554, LF-600, LF-601, LF-602, LF-100, LF-200, LF-302, LF-400, LF-700, LF-916 LF-936 and the like.
 好ましくは、溶剤溶解性、各種基材、例えばガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体(以下、特定基材ということがある)に対する接着性、とくにEVA接着性の点からポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、フルオロオレフィン・ビニルエーテル共重合体であり、より好ましくはポリフッ化ビニリデン(PVDF)、フルオロオレフィン・ビニルエーテル共重合体である。 Preferably, solvent solubility, adhesiveness to various substrates such as glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as specific substrate) In particular, from the viewpoint of EVA adhesion, polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), chlorotrifluoroethylene / ethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), fluoroolefin / vinyl ether copolymer More preferred are polyvinylidene fluoride (PVDF) and fluoroolefin / vinyl ether copolymers.
 (a)フッ素系樹脂は、耐熱性、耐寒性、耐薬品性、難燃性、電気特性、低摩擦性、非粘着性、耐候性、UVカット性、低屈折率性等の性質を組成物に付与することができる。
 中でも、融点が230℃以下である(a)フッ素系樹脂は、溶剤溶解性、耐寒性、柔軟性の点で好ましい。さらに好ましい融点は、100~200℃である。
(A) Fluorine-based resin is a composition with properties such as heat resistance, cold resistance, chemical resistance, flame resistance, electrical properties, low friction, non-adhesiveness, weather resistance, UV-cutting properties, low refractive index properties, etc. Can be granted.
Among them, the (a) fluororesin having a melting point of 230 ° C. or lower is preferable in terms of solvent solubility, cold resistance, and flexibility. A more preferable melting point is 100 to 200 ° C.
(b)ブロック共重合体
 本発明で用いられる成分(b)は、メタクリル酸エステルを主体とするブロック(A)およびアクリル酸エステルを主体とするブロック(B)からなるブロック共重合体であり、リニア構造、ラジアル構造のいずれであってもよい。また、AB、ABA、ABAB、等のブロック構造のいずれであってもよい。
 本発明の成分(b)は、特定基材、とくにガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、エチレン-酢酸ビニル共重合体(EVA)に対する接着性を組成物に付与する機能を有する。
 上記接着性の観点から、好ましくは、(b)ブロック共重合体は、トリブロック構造であるのがよい(以下、(b-1)成分ということがある)。また、リニア構造であるのが好ましい。
(B) Block copolymer The component (b) used in the present invention is a block copolymer comprising a block (A) mainly composed of a methacrylic ester and a block (B) mainly composed of an acrylate ester, Either a linear structure or a radial structure may be used. Moreover, any of block structures, such as AB, ABA, and ABAB, may be sufficient.
The component (b) of the present invention has a function of imparting to the composition adhesiveness to a specific substrate, particularly glass, polycarbonate resin, polyester resin, and ethylene-vinyl acetate copolymer (EVA).
From the viewpoint of adhesiveness, the block copolymer (b) preferably has a triblock structure (hereinafter, sometimes referred to as component (b-1)). Moreover, it is preferable that it is a linear structure.
(b-1)成分
(b-1)成分は、ABA型のAブロック成分がメタクリル酸エステルであり、Bブロック成分がアクリル酸エステルであるABA型トリブロック共重合体であり、好ましくはABA型トリブロック構造を有するブロック共重合体である。
Component (b-1) The component (b-1) is an ABA type triblock copolymer in which the ABA type A block component is a methacrylic ester and the B block component is an acrylate ester, preferably the ABA type It is a block copolymer having a triblock structure.
 上記のメタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-tert-ブチル、メタクリル酸-n-ペンチル、メタクリル酸-n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸-n-ヘプチル、メタクリル酸-n-オクチル、メタクリル酸-2-エチルヘキシル、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ドデシル、メタクリル酸フェニル、メタクリル酸トルイル、メタクリル酸ベンジル、メタクリル酸イソボルニル、メタクリル酸-2-メトキシエチル、メタクリル酸-3-メトキシブチル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、メタクリル酸ステアリル、メタクリル酸グリシジル、メタクリル酸2-アミノエチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、γ-(メタクリロイルオキシプロピル)ジメトキシメチルシラン、メタクリル酸のエチレンオキサイド付加物、メタクリル酸トリフルオロメチルメチル、メタクリル酸2-トリフルオロメチルエチル、メタクリル酸2-パーフルオロエチルエチル、メタクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、メタクリル酸2-パーフルオロエチル、メタクリル酸パーフルオロメチル、メタクリル酸ジパーフルオロメチルメチル、メタクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、メタクリル酸2-パーフルオロヘキシルエチル、メタクリル酸2-パーフルオロデシルエチル、メタクリル酸2-パーフルオロヘキサデシルエチル等の1種または2種以上の組合せを挙げることができ、中でも、メタクリル酸メチルが上記特定基材に対する接着性の点で好ましい。 Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl, isopropyl methacrylate, methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid-tert-butyl, methacrylic acid- n-pentyl, methacrylate-n-hexyl, cyclohexyl methacrylate, methacrylate-n-heptyl, methacrylate-n-octyl, methacrylate-2-ethylhexyl, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate, methacrylic acid Phenyl, toluyl methacrylate, benzyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, 3-methoxybutyl methacrylate, 2-hydroxyethyl methacrylate, methacrylic acid 2-hydroxypropyl, stearyl methacrylate, glycidyl methacrylate, 2-aminoethyl methacrylate, γ- (methacryloyloxypropyl) trimethoxysilane, γ- (methacryloyloxypropyl) dimethoxymethylsilane, ethylene oxide adduct of methacrylic acid, Trifluoromethyl methyl methacrylate, 2-trifluoromethyl ethyl methacrylate, 2-perfluoroethyl ethyl methacrylate, 2-perfluoroethyl 2-perfluorobutyl ethyl methacrylate, 2-perfluoroethyl methacrylate, methacrylic acid Perfluoromethyl, diperfluoromethyl methyl methacrylate, 2-perfluoromethyl-2-perfluoroethyl methyl methacrylate, 2-perfluorohexyl ethyl methacrylate, One or a combination of two or more of 2-perfluorodecylethyl crylate, 2-perfluorohexadecyl ethyl methacrylate, etc. can be mentioned. Among them, methyl methacrylate is preferred in terms of adhesion to the specific substrate. preferable.
 上記のアクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸-n-プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸イソブチル、アクリル酸-tert-ブチル、アクリル酸-n-ペンチル、アクリル酸-n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸-n-ヘプチル、アクリル酸-n-オクチル、アクリル酸-2-エチルヘキシル、アクリル酸ノニル、アクリル酸デシル、アクリル酸ドデシル、アクリル酸フェニル、アクリル酸トルイル、アクリル酸ベンジル、アクリル酸イソボルニル、アクリル酸-2-メトキシエチル、アクリル酸-3-メトキシブチル、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸ステアリル、アクリル酸グリシジル、アクリル酸2-アミノエチル、γ-(アクリロイルオキシプロピル)トリメトキシシラン、γ-(アクリロイルオキシプロピル)ジメトキシメチルシラン、アクリル酸のエチレンオキサイド付加物、アクリル酸トリフルオロメチルメチル、アクリル酸2-トリフルオロメチルエチル、アクリル酸2-パーフルオロエチルエチル、アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、アクリル酸2-パーフルオロエチル、アクリル酸パーフルオロメチル、アクリル酸ジパーフルオロメチルメチル、アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、アクリル酸2-パーフルオロヘキシルエチル、アクリル酸2-パーフルオロデシルエチル、アクリル酸2-パーフルオロヘキサデシルエチル等の1種または2種以上の組合せを挙げることができ、中でも、アクリル酸メチルが上記特定基材に対する接着性の点で好ましい。 Examples of the acrylic ester include methyl acrylate, ethyl acrylate, acrylic acid-n-propyl, isopropyl acrylate, acrylic acid-n-butyl, acrylic acid isobutyl, acrylic acid-tert-butyl, acrylic acid- n-pentyl, acrylate-n-hexyl, cyclohexyl acrylate, acrylate-n-heptyl, acrylate-n-octyl, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, dodecyl acrylate, acrylic acid Phenyl, toluyl acrylate, benzyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, 3-methoxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, stearyl acrylate, A Glycidyl silylate, 2-aminoethyl acrylate, γ- (acryloyloxypropyl) trimethoxysilane, γ- (acryloyloxypropyl) dimethoxymethylsilane, ethylene oxide adduct of acrylic acid, trifluoromethylmethyl acrylate, acrylic acid 2-trifluoromethylethyl, 2-perfluoroethylethyl acrylate, 2-perfluoroethyl-2-perfluorobutylethyl acrylate, 2-perfluoroethyl acrylate, perfluoromethyl acrylate, diperfluoroacrylate Methylmethyl, 2-perfluoromethyl-2-perfluoroethylmethyl acrylate, 2-perfluorohexylethyl acrylate, 2-perfluorodecylethyl acrylate, 2-perfluorohexadecyl acrylate One or more combinations of equal. Of these, methyl acrylate is preferred in view of adhesion to the specific substrate.
 さらに、上記特定基材に対する接着性の点で好ましくは、(b-1)成分が
下記一般式
-(A1)-(B)-(A2)-
(式中、(A1)および(A2)は、それぞれ、メタクリル酸アルキルエステルからなるブロック成分を表し、(B)は、主としてアクリル酸アルキルエステルからなるブロック成分を表す)で表されるトリブロック構造を有するものである。
Further, from the viewpoint of adhesion to the specific substrate, the component (b-1) is preferably represented by the following general formula-(A1)-(B)-(A2)-
(Wherein (A1) and (A2) each represent a block component composed of an alkyl methacrylate, and (B) represents a block component composed mainly of an alkyl acrylate ester). It is what has.
 上記のメタクリル酸アルキルエステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-tert-ブチル、メタクリル酸-n-ペンチル、メタクリル酸-n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸-n-ヘプチル、メタクリル酸-n-オクチル、メタクリル酸-2-エチルヘキシル、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ドデシル、メタクリル酸フェニル、メタクリル酸トルイル、メタクリル酸ベンジル、メタクリル酸イソボルニル、メタクリル酸-2-メトキシエチル、メタクリル酸-3-メトキシブチル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、メタクリル酸ステアリル、メタクリル酸グリシジル、メタクリル酸2-アミノエチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、γ-(メタクリロイルオキシプロピル)ジメトキシメチルシラン、メタクリル酸のエチレンオキサイド付加物、メタクリル酸トリフルオロメチルメチル、メタクリル酸2-トリフルオロメチルエチル、メタクリル酸2-パーフルオロエチルエチル、メタクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、メタクリル酸2-パーフルオロエチル、メタクリル酸パーフルオロメチル、メタクリル酸ジパーフルオロメチルメチル、メタクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、メタクリル酸2-パーフルオロヘキシルエチル、メタクリル酸2-パーフルオロデシルエチル、メタクリル酸2-パーフルオロヘキサデシルエチル等の1種または2種以上の組合せを挙げることができ、中でも、メタクリル酸メチルが上記特定基材に対する接着性の点で好ましい。 Examples of the methacrylic acid alkyl ester include methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl, isopropyl methacrylate, methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid-tert-butyl, methacrylic acid. -N-pentyl, methacrylate-n-hexyl, cyclohexyl methacrylate, methacrylate-n-heptyl, methacrylate-n-octyl, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate, methacryl Acid phenyl, toluyl methacrylate, benzyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, 3-methoxybutyl methacrylate, 2-hydroxyethyl methacrylate, meta 2-hydroxypropyl silylate, stearyl methacrylate, glycidyl methacrylate, 2-aminoethyl methacrylate, γ- (methacryloyloxypropyl) trimethoxysilane, γ- (methacryloyloxypropyl) dimethoxymethylsilane, ethylene oxide of methacrylic acid Adducts, trifluoromethyl methyl methacrylate, 2-trifluoromethyl ethyl methacrylate, 2-perfluoroethyl ethyl methacrylate, 2-perfluoroethyl 2-perfluorobutyl ethyl methacrylate, 2-perfluoroethyl methacrylate Perfluoromethyl methacrylate, diperfluoromethyl methyl methacrylate, 2-perfluoromethyl 2-perfluoroethyl methyl methacrylate, 2-perfluorohexyl methacrylate , 2-perfluorodecylethyl methacrylate, 2-perfluorohexadecyl ethyl methacrylate, and the like. Among them, methyl methacrylate has an adhesive property to the specific substrate. This is preferable.
 上記のアクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸-n-プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸イソブチル、アクリル酸-tert-ブチル、アクリル酸-n-ペンチル、アクリル酸-n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸-n-ヘプチル、アクリル酸-n-オクチル、アクリル酸-2-エチルヘキシル、アクリル酸ノニル、アクリル酸デシル、アクリル酸ドデシル、アクリル酸フェニル、アクリル酸トルイル、アクリル酸ベンジル、アクリル酸イソボルニル、アクリル酸-2-メトキシエチル、アクリル酸-3-メトキシブチル、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸ステアリル、アクリル酸グリシジル、アクリル酸2-アミノエチル、γ-(アクリロイルオキシプロピル)トリメトキシシラン、γ-(アクリロイルオキシプロピル)ジメトキシメチルシラン、アクリル酸のエチレンオキサイド付加物、アクリル酸トリフルオロメチルメチル、アクリル酸2-トリフルオロメチルエチル、アクリル酸2-パーフルオロエチルエチル、アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、アクリル酸2-パーフルオロエチル、アクリル酸パーフルオロメチル、アクリル酸ジパーフルオロメチルメチル、アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、アクリル酸2-パーフルオロヘキシルエチル、アクリル酸2-パーフルオロデシルエチル、アクリル酸2-パーフルオロヘキサデシルエチル等の1種または2種以上の組合せを挙げることができ、中でも、アクリル酸-n-ブチルが上記特定基材に対する接着性の点で好ましい。 Examples of the acrylic acid alkyl ester include methyl acrylate, ethyl acrylate, acrylic acid-n-propyl, isopropyl acrylate, acrylic acid-n-butyl, acrylic acid isobutyl, acrylic acid-tert-butyl, and acrylic acid. -N-pentyl, acrylate-n-hexyl, cyclohexyl acrylate, acrylate-n-heptyl, acrylate-n-octyl, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, dodecyl acrylate, acrylic Phenyl acid, toluyl acrylate, benzyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, 3-methoxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, stear acrylate Glycidyl acrylate, 2-aminoethyl acrylate, γ- (acryloyloxypropyl) trimethoxysilane, γ- (acryloyloxypropyl) dimethoxymethylsilane, ethylene oxide adduct of acrylic acid, trifluoromethylmethyl acrylate, 2-trifluoromethylethyl acrylate, 2-perfluoroethylethyl acrylate, 2-perfluoroethyl-2-perfluorobutylethyl acrylate, 2-perfluoroethyl acrylate, perfluoromethyl acrylate, diacrylate Perfluoromethyl methyl, 2-perfluoromethyl-2-perfluoroethyl methyl acrylate, 2-perfluorohexyl ethyl acrylate, 2-perfluorodecylethyl acrylate, 2-perfluorohexade acrylate Mention may be made of one or more combinations of such Ruechiru, inter alia, butyl -n- acrylate is preferred in view of adhesion to the specific substrate.
 上記の中でも、ポリメタクリル酸メチルとポリアクリル酸-n-ブチルとからなる組合せのABA型トリブロック共重合体がポリエステル樹脂との熱融着性発現、柔軟性の点で好ましく、その中でも、ハードセグメントがポリメタクリル酸メチルと、ソフトセグメントがポリアクリル酸-n-ブチルとからなる組合せのABA型トリブロック共重合体が好ましい。 Among these, an ABA type triblock copolymer comprising polymethyl methacrylate and polyacrylic acid-n-butyl is preferable in terms of heat-bonding with a polyester resin and flexibility. An ABA type triblock copolymer in which the segment is polymethyl methacrylate and the soft segment is polyacrylic acid-n-butyl is preferable.
 本発明における(b)ブロック共重合体の重量平均分子量(Mw)は、例えば10,000~1,000,000であり、好ましくは30,000~500,000であり、特に50,000~150,000であるのがさらに好ましい。 The weight average molecular weight (Mw) of the (b) block copolymer in the present invention is, for example, 10,000 to 1,000,000, preferably 30,000 to 500,000, and particularly 50,000 to 150. More preferably, it is 1,000.
 また、本発明における(b)ブロック共重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、1.0~1.8であるのが好ましく、特に1.1~1.5であるのが好ましい。 In the present invention, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the (b) block copolymer is preferably 1.0 to 1.8, particularly 1 It is preferably 1 to 1.5.
 また、本発明における(b)ブロック共重合体の重合法としてはリビングアニオン重合やリビングラジカル重合法が挙げられる。 In addition, examples of the polymerization method of the block copolymer (b) in the present invention include living anion polymerization and living radical polymerization.
 このようなアクリル系ABA型トリブロック共重合体として、クラレ社製LAポリマー2140E、2250、カネカ社製NABSTARを挙げることができる。中でもリビングアニオン重合で合成されるクラレ社製LAポリマーが上記特定基材に対する接着性の観点から好ましい。
 クラレ社製LAポリマー2140Eおよび2250は、上記一般式-(A1)-(B)-(A2)-で表されるトリブロック構造を有し、(A1)および(A2)が、ポリメタクリル酸メチル、(B)がポリアクリル酸-n-ブチルであり、重量平均分子量はいずれも80,000、JIS-A硬度はそれぞれ32および65である。
Examples of such an acrylic ABA triblock copolymer include LA polymers 2140E and 2250 manufactured by Kuraray, and NABSTAR manufactured by Kaneka. Among these, LA polymer manufactured by Kuraray Co., Ltd. synthesized by living anionic polymerization is preferable from the viewpoint of adhesion to the specific substrate.
Kuraray's LA polymers 2140E and 2250 have a triblock structure represented by the general formula-(A1)-(B)-(A2)-, and (A1) and (A2) are polymethyl methacrylates. , (B) is poly-n-butyl acrylate, the weight average molecular weight is 80,000, and the JIS-A hardness is 32 and 65, respectively.
(b)ポリビニルアセタール樹脂
 本発明に使用される成分(b)、すなわちポリビニルアセタール樹脂は、一般的に酢酸ビニルモノマーを重合し、ポリ酢酸ビニル樹脂を製造し、次いで鹸化により得られたポリビニルアルコールをアルデヒドと反応させることにより製造される。即ちポリビニルアセタール樹脂はビニルアセタールグループ、ビニルアルコールグループ、酢酸ビニルグループを有する樹脂であってホルムアルデヒドによる反応物はポリビニルホルマール樹脂であり、ブチルアルデヒドとの反応物はポリビニルブチラール樹脂と称されている。ポリビニルアセタール樹脂としては、ポリビニルアセトアセタール、ポリビニルプロピルアセタール等が挙げられ、中でも上記特定基材に対する接着性の観点からポリビニルブチラール樹脂が好ましく使用される。
 さらにポリビニルアセタール樹脂にカルボキシル基を含有せしめたものも好適に使用される。
 カルボキシル基はポリビニルアセタール樹脂の中に0.1~5モル%、好ましくは0.2~3モル%程度のものが望ましい。カルボキシル基を含んだポリビニルアセタール樹脂としては例えば酢酸ビニルと不飽和カルボン酸との共重合より、常法によってポリビニルアセタール樹脂を製造する方法、もしくはポリビニルアルコールをアセタール化する際にカルボキシル基を含んだアルデヒドと反応させることによって得られる。
 本発明に用いられるポリビニルアセタール樹脂の平均重合度は特に限度はないが、上記特定基材に対する接着性の観点から、300~5,000の範囲が好ましく、特に500以上が好ましい。
 また、上記特定基材に対する接着性の観点から、水酸基含有量は、10~30質量%が好ましい。酢酸基含有量は、1~4質量%が好ましい。
(B) Polyvinyl acetal resin Component (b) used in the present invention, that is, a polyvinyl acetal resin, is generally obtained by polymerizing a vinyl acetate monomer to produce a polyvinyl acetate resin, and then saponifying the polyvinyl alcohol obtained by saponification. Produced by reacting with an aldehyde. That is, the polyvinyl acetal resin is a resin having a vinyl acetal group, a vinyl alcohol group, and a vinyl acetate group, a reaction product with formaldehyde is a polyvinyl formal resin, and a reaction product with butyraldehyde is called a polyvinyl butyral resin. Examples of the polyvinyl acetal resin include polyvinyl acetoacetal, polyvinyl propyl acetal, and the like. Among them, a polyvinyl butyral resin is preferably used from the viewpoint of adhesion to the specific substrate.
Furthermore, what made the polyvinyl acetal resin contain the carboxyl group is used suitably.
The carboxyl group is desirably about 0.1 to 5 mol%, preferably about 0.2 to 3 mol% in the polyvinyl acetal resin. As a polyvinyl acetal resin containing a carboxyl group, for example, a method of producing a polyvinyl acetal resin by a conventional method from copolymerization of vinyl acetate and an unsaturated carboxylic acid, or an aldehyde containing a carboxyl group when acetalizing polyvinyl alcohol It is obtained by reacting with.
The average degree of polymerization of the polyvinyl acetal resin used in the present invention is not particularly limited, but is preferably in the range of 300 to 5,000, particularly preferably 500 or more, from the viewpoint of adhesion to the specific substrate.
From the viewpoint of adhesion to the specific substrate, the hydroxyl group content is preferably 10 to 30% by mass. The acetic acid group content is preferably 1 to 4% by mass.
(c)ビニルエステル樹脂または不飽和ポリエステル樹脂
 本発明のコーティング組成物の成分(c)は、ビニルエステル樹脂または不飽和ポリエステル樹脂である。
 ビニルエステル樹脂として、具体的にはウレタン(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂から選択されるものであり、より好ましくは柔軟性、耐衝撃性が特に優れ、かつ異材質間での接着性にも優れるウレタン(メタ)アクリレート樹脂が挙げられる。なお本発明でいう(メタ)アクリレートとは、アクリレートまたはメタクリレートを指す。
(C) Vinyl ester resin or unsaturated polyester resin Component (c) of the coating composition of the present invention is a vinyl ester resin or an unsaturated polyester resin.
The vinyl ester resin is specifically selected from a urethane (meth) acrylate resin, an epoxy (meth) acrylate resin, and a polyester (meth) acrylate resin, and more preferably has excellent flexibility and impact resistance. In addition, urethane (meth) acrylate resins that are excellent in adhesion between different materials can be used. In addition, the (meth) acrylate referred to in the present invention refers to acrylate or methacrylate.
 かかるウレタン(メタ)アクリレート樹脂としては、好ましくはポリオール、ポリイソシアネートおよび1分子に1個以上の水酸基を有する(メタ)アクリレートの反応により得られるものであり、1分子中に2個以上の(メタ)アクリロイル基を有するものである。 Such urethane (meth) acrylate resin is preferably obtained by reaction of polyol, polyisocyanate and (meth) acrylate having one or more hydroxyl groups in one molecule, and two or more (meth) acrylates in one molecule. ) It has an acryloyl group.
 前記ウレタン(メタ)アクリレート樹脂に用いられるポリオールとしては、好ましくは数平均分子量が200~3000、特に好ましくは400~2000のものである。
 このポリオールは、代表的にはポリエーテルポリオール、ポリエステルポリオール、ポリカ-ボネ-トポリオール、ポリブタジエンポリオール等が挙げられ、単独または2種以上を併用して用いられる。
The polyol used in the urethane (meth) acrylate resin preferably has a number average molecular weight of 200 to 3000, particularly preferably 400 to 2000.
Typical examples of the polyol include polyether polyols, polyester polyols, polycarbonate polyols, polybutadiene polyols, and the like. These polyols are used alone or in combination of two or more.
 ここで言うポリエーテルポリオールとは、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレンオキサイドの他に、ビスフェノールAおよびビスフェノールFに前記アルキレンオキサイドを付加させたポリオールも含むことができる。 As used herein, the polyether polyol may include a polyol obtained by adding the alkylene oxide to bisphenol A and bisphenol F, in addition to a polyalkylene oxide such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
 また、ポリエステルポリオールとは、二塩基酸類と多価アルコール類の縮合重合体またはポリカプロラクトンの様に環状エステル化合物の開環重合体である。ここで使用する二塩基酸類とは、例えば、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,12-ドデカンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、4,4'-ビフェニルジカルボン酸、またこれらのジアルキルエステル等を挙げることができる。また、多価アルコール類とは、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ネオペンチルグリコール、水素化ビスフェノールA、1,4-ブタンジオール、1,6-ヘキサンジオール、ビスフェノールAとプロピレンオキシドまたはエチレンオキシドの付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、1,3-プロパンジオール、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、1,4-シクロヘキサンジメタノール、パラキシレングリコール、ビシクロヘキシル-4,4'-ジオール、2,6-デカリングリコール、2,7-デカリングリコール等を挙げることができる。 The polyester polyol is a condensation polymer of dibasic acids and polyhydric alcohols or a ring-opening polymer of a cyclic ester compound such as polycaprolactone. Dibasic acids used here are, for example, phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, Hexahydroterephthalic acid, hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2 , 3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid anhydride, 4,4′-biphenyldicarboxylic acid, and dialkyl esters thereof. Polyhydric alcohols include, for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3 -Butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, 1,6-hexanediol, adducts of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, Glycerin, trimethylolpropane, 1,3-propanediol, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4-cyclohexane glycol, 1,4-cycl Hexane dimethanol, paraxylene glycol, bicyclohexyl-4,4'-diol, 2,6-decalin glycol, and 2,7-decalin glycol, and the like.
 前記ウレタン(メタ)アクリレート樹脂に用いられるポリイソシアネートとしては、2,4-TDIおよびその異性体または異性体の混合物、MDI、HDI、IPDI、XDI、水添XDI、ジシクロヘキシルメタンジイソシアネート、トリジンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート等を挙げることができ、それらの単独または2種以上で使用することができる。 Examples of the polyisocyanate used in the urethane (meth) acrylate resin include 2,4-TDI and its isomer or a mixture of isomers, MDI, HDI, IPDI, XDI, hydrogenated XDI, dicyclohexylmethane diisocyanate, tolidine diisocyanate, and naphthalene. A diisocyanate, a triphenylmethane triisocyanate, etc. can be mentioned, These can be used individually or in mixture of 2 or more types.
 前記ウレタン(メタ)アクリレート樹脂に用いられる1分子に1個以上の水酸基を有する(メタ)アクリレート(水酸基含有(メタ)アクリレート)としては、例えば2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のモノ(メタ)アクリレート類、トリス(ヒドロキシエチル)イソシアヌル酸ジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多価(メタ)アクリレート類等を挙げることができる。 Examples of the (meth) acrylate (hydroxyl group-containing (meth) acrylate) having one or more hydroxyl groups per molecule used in the urethane (meth) acrylate resin include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl ( Mono (meth) acrylates such as (meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, tris (hydroxyethyl) isocyanuric acid di (meth) acrylate, And polyvalent (meth) acrylates such as pentaerythritol tri (meth) acrylate.
 前記ウレタン(メタ)アクリレート樹脂の製造方法の例を挙げれば、(1)先ずポリイソシアネートとポリオールを好ましくはNCO/OH=1.3~2で反応させ、末端イソシアネート化合物を生成させ、次いでそれに水酸基含有(メタ)アクリレートをイソシアネート基に対して水酸基がほぼ等量になるように反応する方法と、(2)ポリイソシアネート化合物と水酸基含有(メタ)アクリレートをNCO/OH=2以上で反応させ、片末端イソシアネートの化合物を生成させ、次いでポリオールを加えて反応する方法等が挙げられる。 Examples of the method for producing the urethane (meth) acrylate resin include: (1) First, a polyisocyanate and a polyol are preferably reacted at NCO / OH = 1.3 to 2 to form a terminal isocyanate compound, and then a hydroxyl group is produced. A method of reacting the containing (meth) acrylate so that the hydroxyl groups are approximately equal to the isocyanate group, and (2) reacting the polyisocyanate compound and the hydroxyl-containing (meth) acrylate at NCO / OH = 2 or more, Examples include a method in which a compound of a terminal isocyanate is produced and then a polyol is added to react.
 また、ビニルエステル樹脂として用いられるエポキシ(メタ)アクリレート樹脂とは、好ましくは1分子中に2個以上の(メタ)アクリロイル基を有するもので、エポキシ樹脂と不飽和一塩基酸とをエステル化触媒の存在下で反応して得られるものである。 The epoxy (meth) acrylate resin used as the vinyl ester resin preferably has two or more (meth) acryloyl groups in one molecule, and is an esterification catalyst for epoxy resin and unsaturated monobasic acid. It is obtained by reacting in the presence of.
 ここでいうエポキシ樹脂の例を挙げれば、ビスフェノールタイプまたはノボラックタイプのエポキシ樹脂単独、または、ビスフェノールタイプとノボラックタイプのエポキシ樹脂とを混合した樹脂などであって、その平均エポキシ当量が好ましくは150~450の範囲のものである。 Examples of the epoxy resin mentioned here include a bisphenol type or novolac type epoxy resin alone, or a resin in which a bisphenol type and a novolac type epoxy resin are mixed, and the average epoxy equivalent is preferably 150 to It is in the range of 450.
 ここで、前記ビスフェノールタイプのエポキシ樹脂として代表的なものを挙げれば、エピクロルヒドリンとビスフェノールA若しくはビスフェノールFとの反応により得られる実質的に1分子中に2個以上のエポキシ基を有するグリシジルエーテル型のエポキシ樹脂、メチルエピクロルヒドリンとビスフェノールA若しくはビスフェノールFとの反応により得られるメチルグリシジルエーテル型のエポキシ樹脂、あるいはビスフェノールAのアルキレンオキサイド付加物とエピクロルヒドリン若しくはメチルエピクロルヒドリンとから得られるエポキシ樹脂などである。また、前記ノボラックタイプのエポキシ樹脂として代表的なものには、フェノールノボラックまたはクレゾールノボラックと、エピクロルヒドリンまたはメチルエピクロルヒドリンとの反応により得られるエポキシ樹脂などがある。 Here, as a typical example of the bisphenol type epoxy resin, a glycidyl ether type epoxy resin substantially having two or more epoxy groups in one molecule obtained by the reaction of epichlorohydrin and bisphenol A or bisphenol F is used. An epoxy resin, a methyl glycidyl ether-type epoxy resin obtained by reaction of methyl epichlorohydrin and bisphenol A or bisphenol F, an epoxy resin obtained from an alkylene oxide adduct of bisphenol A and epichlorohydrin or methyl epichlorohydrin, or the like. Typical examples of the novolak type epoxy resin include an epoxy resin obtained by a reaction of phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin.
 また、エポキシ(メタ)アクリレート樹脂に用いられる不飽和一塩基酸として代表的なものには、例えばアクリル酸、メタアクリル酸、桂皮酸、クロトン酸、マレイン酸モノメチル、マレイン酸モノプロピル、マレイン酸モノ(2-エチルヘキシル)あるいはソルビン酸などが挙げられる。なお、これらの不飽和一塩基酸は、単独でも、2種以上混合しても用いられる。前記エポキシ樹脂と不飽和一塩基酸との反応は、好ましくは60~140℃、特に好ましくは80~120℃の温度においてエステル化触媒を用いて行われる。 Typical examples of unsaturated monobasic acids used for epoxy (meth) acrylate resins include acrylic acid, methacrylic acid, cinnamic acid, crotonic acid, monomethyl maleate, monopropyl maleate, and monoester maleate. (2-ethylhexyl) or sorbic acid. These unsaturated monobasic acids may be used alone or in combination of two or more. The reaction between the epoxy resin and the unsaturated monobasic acid is preferably carried out using an esterification catalyst at a temperature of 60 to 140 ° C., particularly preferably 80 to 120 ° C.
 前記のエステル化触媒としては、たとえばトリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン若しくはジアザビシクロオクタンなどの如き三級アミン、トリフェニルホスフィンあるいはジエチルアミン塩酸塩などの如き公知の触媒がそのまま使用できる。 As the esterification catalyst, known catalysts such as tertiary amines such as triethylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline or diazabicyclooctane, triphenylphosphine or diethylamine hydrochloride Can be used as is.
 ビニルエステル樹脂として用いられるポリエステル(メタ)アクリレート樹脂とは、1分子中に2個以上の(メタ)アクリロイル基を有する飽和若しくは不飽和ポリエステルであり、飽和若しくは不飽和ポリエステルの末端に(メタ)アクリル化合物を反応させたものである。かかる樹脂の数平均分子量としては、好ましくは500~5000である。 The polyester (meth) acrylate resin used as the vinyl ester resin is a saturated or unsaturated polyester having two or more (meth) acryloyl groups in one molecule, and (meth) acrylic at the end of the saturated or unsaturated polyester. A compound is reacted. The number average molecular weight of such a resin is preferably 500 to 5,000.
 本発明で用いられる飽和ポリエステルとは、飽和二塩基酸類と多価アルコール類との縮合反応、また、不飽和ポリエステルとはα,β-不飽和二塩基酸を含む二塩基酸類と多価アルコール類との縮合反応で得られるものである。なお、不飽和ポリエステルの末端に(メタ)アクリル化合物を反応させた樹脂は、本発明においてはビニルエステル樹脂に含まれるものとし、下記で説明する不飽和ポリエステル樹脂とは区別されるものとする。 The saturated polyester used in the present invention is a condensation reaction between a saturated dibasic acid and a polyhydric alcohol, and the unsaturated polyester is a dibasic acid containing an α, β-unsaturated dibasic acid and a polyhydric alcohol. It is obtained by the condensation reaction. In addition, the resin which made the terminal of unsaturated polyester react with the (meth) acryl compound shall be contained in vinyl ester resin in this invention, and shall be distinguished from the unsaturated polyester resin demonstrated below.
 ここでいう飽和二塩基酸類とは、前記のポリエステルポリオールの項に示した化合物を挙げることができ、α,β-不飽和二塩基酸としては、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等を挙げることができる。また、多価アルコール類についても、前記のポリエステルポリオールの項に示した化合物を挙げることができる。 Examples of the saturated dibasic acid herein include the compounds shown in the above-mentioned polyester polyol, and examples of the α, β-unsaturated dibasic acid include maleic acid, maleic anhydride, fumaric acid, and itaconic acid. And itaconic anhydride. Moreover, the compound shown to the term of the said polyester polyol can be mentioned also about polyhydric alcohol.
 また、ビニルエステル樹脂として用いられるポリエステル(メタ)アクリレート樹脂の(メタ)アクリル化合物としては、不飽和グリシジル化合物、アクリル酸またはメタクリル酸の如き各種の不飽和一塩基酸、およびそのグリシジルエステル類等である。好ましくは、グリシジル(メタ)アクリレートの使用が望ましい。 The (meth) acrylic compound of the polyester (meth) acrylate resin used as the vinyl ester resin includes unsaturated glycidyl compounds, various unsaturated monobasic acids such as acrylic acid or methacrylic acid, and glycidyl esters thereof. is there. Preferably, glycidyl (meth) acrylate is used.
 不飽和ポリエステル樹脂とは、酸成分及びアルコール成分を公知の方法により重縮合させて得られるものであり、熱硬化性樹脂として知られているものであればその種類は特に限定されるものではない。酸成分としては、例えば無水マレイン酸、マレイン酸、フマル酸、イタコン酸等の不飽和二塩基酸が用いられる。また必要に応じてフタル酸、無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、アジピン酸、セバチン酸等の飽和二塩基酸、安息香酸、トリメリット酸等の二塩基酸以外の酸等を用いることができる。アルコール成分としては、前記のポリエステルポリオールの項に示した多価アルコール類を挙げることができる。 The unsaturated polyester resin is obtained by polycondensing an acid component and an alcohol component by a known method, and the kind thereof is not particularly limited as long as it is known as a thermosetting resin. . As the acid component, for example, unsaturated dibasic acids such as maleic anhydride, maleic acid, fumaric acid and itaconic acid are used. If necessary, use a saturated dibasic acid such as phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, adipic acid, and sebacic acid, and acids other than dibasic acids such as benzoic acid and trimellitic acid. be able to. Examples of the alcohol component include polyhydric alcohols shown in the above-mentioned polyester polyol section.
(d)開始剤
 本発明のコーティング組成物は、(d)開始剤を必須成分とする。
(D) Initiator The coating composition of the present invention comprises (d) an initiator as an essential component.
 本発明のコーティング組成物は、オリゴマー成分(例えばビニルエステル樹脂や不飽和ポリエステル樹脂(c))が、(メタ)アクリロイル基等の二重結合を有するため、熱重合開始剤を添加すれば加熱により、また、光重合開始剤を添加すれば紫外線蛍光ランプあるいは高圧水銀灯等を用いた紫外線照射または電子線照射により容易に短時間で硬化させることが可能である。被着体およびコーティング組成物の加熱を避けたい場合には紫外線照射が好ましい。 In the coating composition of the present invention, since the oligomer component (for example, vinyl ester resin or unsaturated polyester resin (c)) has a double bond such as a (meth) acryloyl group, it can be heated by adding a thermal polymerization initiator. Moreover, if a photopolymerization initiator is added, it can be easily cured in a short time by ultraviolet irradiation or electron beam irradiation using an ultraviolet fluorescent lamp or a high-pressure mercury lamp. When it is desired to avoid heating the adherend and the coating composition, ultraviolet irradiation is preferred.
 本発明のコーティング組成物を加熱によって硬化させる場合には、常温~90℃程度の加熱により硬化させることが可能である。
 熱重合開始剤としては、例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、コハク酸パーオキサイド、メチルエチルケトンパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサンおよびシクロヘキサノンパーオキサイド等が挙げられる。例えばパーオキサイド類の(1分)半減期温度が100℃~180℃である場合は、80℃×10分~160℃×5分で十分な硬化性が得られる。
When the coating composition of the present invention is cured by heating, it can be cured by heating at a room temperature to about 90 ° C.
Examples of the thermal polymerization initiator include benzoyl peroxide, lauroyl peroxide, succinic acid peroxide, methyl ethyl ketone peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, and cyclohexanone peroxide. Is mentioned. For example, when the (1 minute) half-life temperature of the peroxides is 100 ° C. to 180 ° C., sufficient curability can be obtained at 80 ° C. × 10 minutes to 160 ° C. × 5 minutes.
 光重合開始剤としては、例えば、ベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインエチルエーテル、ベンゾイン-n-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、ベンジル-1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル1-フェニルプロパン-1-オン、ベンジルサルファイド、チオキサントン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、および2-クロロチキサント等が挙げられる。 Examples of the photopolymerization initiator include benzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, acetophenone, benzoin, benzoin ethyl ether, benzoin-n-propyl ether, benzoin isopropyl ether, benzoin-n- Butyl ether, benzoin isobutyl ether, benzyl-1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl 1-phenylpropan-1-one, benzyl sulfide, thioxanthone Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-chlorothixant and the like.
 本発明のコーティング組成物は、さらに(e)白色光反射材料、黒色材料、赤外線吸収材料、紫外線吸収材料、帯電防止材料および電磁波シールド材料から選ばれる少なくとも1種の機能性材料を配合することができる。これにより、各種基材に本発明のコーティング組成物をコーティングすることにより、所望の機能を有効に付与することができる。 The coating composition of the present invention may further contain (e) at least one functional material selected from a white light reflecting material, a black material, an infrared absorbing material, an ultraviolet absorbing material, an antistatic material and an electromagnetic shielding material. it can. Thereby, a desired function can be effectively provided by coating the coating composition of the present invention on various substrates.
 白色光反射材料としては、無機顔料成分が挙げられ、例えば、塩基性炭酸鉛、塩基性硫酸鉛、塩基性珪酸鉛、亜鉛華(比重5.47~5.61)、硫化亜鉛(比重4.1)、リトポン、三酸価アンチモン(比重5.5~5.6)、二酸価チタン(比重4.2)、黒鉛(比重3.3)を挙げることができる。これらの成分は1種を使用してもよいし、2種以上を混合して使用してもよい。
 無機顔料成分としては、二酸化チタンまたは硫化亜鉛を主成分として使用することが好ましい。とくに好ましくは二酸化チタンである。二酸化チタンは、紫外線(400nm以下の波長光)を除去する作用が強く、可視光線を除去する作用も有しているため特に好ましい。
 無機顔料成分の形状は、球状構造であってもよいし、楕円状構造、針状構造、多角形体構造、不定形構造であってもよい。無機顔料成分の粒子径は本発明のコーティング組成物のコーティングの厚さよりも小さいものであればよいのであって、特に制限されない。
 任意成分である白色光反射材料を含有する場合には、前記成分(a)、(b)および(c)の合計100質量部に対し、5~40質量部配合することが好ましい。
Examples of the white light reflecting material include inorganic pigment components. For example, basic lead carbonate, basic lead sulfate, basic lead silicate, zinc white (specific gravity 5.47 to 5.61), zinc sulfide (specific gravity 4. 1), lithopone, antimony triacid antimony (specific gravity 5.5 to 5.6), diacid titanium (specific gravity 4.2), graphite (specific gravity 3.3). These components may be used alone or in combination of two or more.
As the inorganic pigment component, it is preferable to use titanium dioxide or zinc sulfide as a main component. Particularly preferred is titanium dioxide. Titanium dioxide is particularly preferable because it has a strong action of removing ultraviolet rays (light having a wavelength of 400 nm or less) and a function of removing visible light.
The shape of the inorganic pigment component may be a spherical structure, an elliptical structure, a needle-like structure, a polygonal structure, or an amorphous structure. The particle diameter of the inorganic pigment component is not particularly limited as long as it is smaller than the coating thickness of the coating composition of the present invention.
When the white light reflecting material, which is an optional component, is contained, it is preferably blended in an amount of 5 to 40 parts by mass with respect to a total of 100 parts by mass of the components (a), (b) and (c).
 また、白色光反射材料を使用する場合、その配合量は、前記成分(a)、(b)および(c)の合計100質量部に対し、5~40質量部が好ましい。
 白色光反射材料の配合量が40質量部を超えると、製膜性や、上記特定基材への接着性が悪化する場合がある。また、柔軟性の悪化の恐れがある。
 白色光反射材料の配合量が10質量部未満では、添加量が少な過ぎて、所望の効果を発揮できない恐れがある。
 さらに好ましい白色光反射材料の配合量は、前記成分(a)、(b)および(c)の合計100質量部に対し、10~20質量部である。
When a white light reflecting material is used, the blending amount is preferably 5 to 40 parts by mass with respect to 100 parts by mass in total of the components (a), (b) and (c).
When the compounding amount of the white light reflecting material exceeds 40 parts by mass, the film forming property and the adhesion to the specific substrate may be deteriorated. Moreover, there is a risk of deterioration of flexibility.
If the blending amount of the white light reflecting material is less than 10 parts by mass, the addition amount is too small and the desired effect may not be exhibited.
A more preferable amount of the white light reflecting material is 10 to 20 parts by mass with respect to a total of 100 parts by mass of the components (a), (b) and (c).
 黒色材料としては、紫外線吸収の機能を有し、例えばカーボンブラックが挙げられ、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラックを挙げることができる。これらの成分は1種を使用してもよいし、2種以上を混合して使用してもよい。
 また、黒色材料を使用する場合、その配合量は、前記成分(a)、(b)および(c)の合計100質量部に対し、0.5~5質量部が好ましい。
 黒色材料の配合量が5質量部を超えると、製膜性や、上記特定基材への接着性が悪化する場合がある。また、柔軟性の悪化の恐れがある。
 黒色材料の配合量が0.5質量部未満では、添加量が少な過ぎて、所望の効果を発揮できない。
The black material has a function of absorbing ultraviolet rays, and examples thereof include carbon black. Examples thereof include furnace black, channel black, acetylene black, and thermal black. These components may be used alone or in combination of two or more.
When a black material is used, the blending amount is preferably 0.5 to 5 parts by mass with respect to a total of 100 parts by mass of the components (a), (b) and (c).
If the blending amount of the black material exceeds 5 parts by mass, the film forming property and the adhesion to the specific substrate may be deteriorated. Moreover, there is a risk of deterioration of flexibility.
If the amount of the black material is less than 0.5 parts by mass, the amount added is too small to achieve the desired effect.
 赤外線吸収材料としては、例えばカーボンナノチューブ、酸化亜鉛、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、セシウム含有酸化タングステン、ATO(アンチモン-錫複合酸化物又はアンチモンドープ酸化錫)、ITO(インジウム-錫複合酸化物)等が挙げられる。
 赤外線吸収材料の配合量は、所望の赤外線吸収性を考慮して適宜決定すればよいが、例えば、前記成分(a)、(b)および(c)の合計100質量部に対し、0.1~30質量部の範囲が挙げられる。
Examples of infrared absorbing materials include carbon nanotubes, zinc oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, cesium-containing tungsten oxide, ATO (antimony-tin composite oxide or antimony-doped tin oxide), ITO (indium-tin composite oxide). Thing) etc. are mentioned.
The blending amount of the infrared absorbing material may be appropriately determined in consideration of the desired infrared absorptivity. For example, the blending amount of the infrared absorbing material is 0.1 with respect to a total of 100 parts by mass of the components (a), (b) and (c). A range of up to 30 parts by mass can be mentioned.
 紫外線吸収材料としては、例えば、サリシレート系、ベンゾフェノン系、ベンゾトリアゾール系、置換アクリロニトリル系、トリアジン系等の有機系化合物、前述したカーボンナノチューブ、酸化亜鉛、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、二酸化チタン、酸化セリウム、二酸化チタン微粒子を酸化鉄で複合化処理してなるハイブリッド無機粉体、酸化セリウム微粒子の表面を非結晶性シリカでコーティングしてなるハイブリッド無機粉体等の無機系化合物が挙げられる。
 紫外線吸収材料の配合量は、所望の赤外線吸収性を考慮して適宜決定すればよいが、例えば、前記成分(a)、(b)および(c)の合計100質量部に対し、0.1~30質量部の範囲が挙げられる。
Examples of the ultraviolet absorbing material include salicylate-based, benzophenone-based, benzotriazole-based, substituted acrylonitrile-based, triazine-based organic compounds, the carbon nanotubes described above, zinc oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, and titanium dioxide. Inorganic compounds such as hybrid inorganic powder obtained by complexing cerium oxide and titanium dioxide fine particles with iron oxide, and hybrid inorganic powder obtained by coating the surface of cerium oxide fine particles with amorphous silica.
The blending amount of the ultraviolet absorbing material may be appropriately determined in consideration of the desired infrared absorptivity. For example, the blending amount of the ultraviolet absorbing material is 0.1 with respect to a total of 100 parts by mass of the components (a), (b) and (c). A range of up to 30 parts by mass can be mentioned.
 帯電防止材料としては、例えば金属酸化物及び金属塩が挙げられ、該金属酸化物としては、例えば前述した酸化亜鉛、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、ATO、ITO、酸化錫、五酸化アンチモン、酸化ジルコニウム、酸化チタン、酸化アルミニウム等が挙げられる。また、前述したカーボンナノチューブも利用できる。
帯電防止材料の配合量は、所望の帯電防止性を考慮して適宜決定すればよいが、例えば本発明の塗料中、0.1~30質量%の範囲が挙げられる。
 帯電防止材料の配合量は、所望の赤外線吸収性を考慮して適宜決定すればよいが、例えば、前記成分(a)、(b)および(c)の合計100質量部に対し、0.1~30質量部の範囲が挙げられる。
Examples of the antistatic material include metal oxides and metal salts. Examples of the metal oxide include zinc oxide, aluminum doped zinc oxide, gallium doped zinc oxide, ATO, ITO, tin oxide, and antimony pentoxide described above. , Zirconium oxide, titanium oxide, aluminum oxide and the like. Moreover, the carbon nanotube mentioned above can also be utilized.
The blending amount of the antistatic material may be appropriately determined in consideration of a desired antistatic property, and examples thereof include a range of 0.1 to 30% by mass in the paint of the present invention.
The blending amount of the antistatic material may be appropriately determined in consideration of the desired infrared absorptivity. For example, the blending amount of the antistatic material is 0.1% with respect to a total of 100 parts by mass of the components (a), (b) and (c). A range of up to 30 parts by mass can be mentioned.
 電磁波シールド材料としては、導電性粒子が挙げられ、例えば(1)カーボン粒子ないし粉末;(2)ニッケル、インジウム、クロム、金、バナジウム、すず、カドミウム、銀、プラチナ、アルミ、銅、チタン、コバルト、鉛等の金属又は合金或いはこれらの導電性酸化物の粒子ないし粉末;(3)ポリスチレン、ポリエチレン等のプラスチック粒子の表面に上記(1)、(2)の導電性材料のコーティング層を形成したもの等が挙げられる。
 電磁波シールド材料の配合量は、所望の電磁波シールド性を考慮して適宜決定すればよいが、例えば前記成分(a)、(b)および(c)の合計100質量部に対し、60~90質量部の範囲が挙げられる。
Examples of the electromagnetic wave shielding material include conductive particles such as (1) carbon particles or powder; (2) nickel, indium, chromium, gold, vanadium, tin, cadmium, silver, platinum, aluminum, copper, titanium, cobalt. , Particles or powders of lead or other metals or alloys or conductive oxides thereof; (3) a coating layer of the conductive material (1) or (2) above is formed on the surface of plastic particles such as polystyrene or polyethylene; And the like.
The blending amount of the electromagnetic shielding material may be appropriately determined in consideration of desired electromagnetic shielding properties. For example, 60 to 90 mass with respect to a total of 100 mass parts of the components (a), (b) and (c). A range of parts.
 本発明のコーティング組成物は、さらに(f)有機溶剤を配合することができる。(f)有機溶剤を配合することにより、組成物が低粘度化するとともに、塗布型のコーティング組成物が得られる。(f)有機溶剤としては、例えば、トルエン、キシレン、もしくはベンゼンの如き芳香族炭化水素類;n-ヘプタン、n-ヘキサンもしくはn-オクタンの如き脂肪族炭化水素類;石油ベンジン、石油エーテル、リグロイン、ミネラルスプリット、石油ナフサもしくはケロシンの如き、沸点が30~300℃なる範囲の炭化水素混合物類;シクロペンタン、シクロヘキサン、メチルシクロヘキサンもしくはエチルシクロヘキサンの如き脂環式炭化水素類;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール、n-ペンタノール、イソペンタノール、n-ヘキサノール、n-オクタノール、2-エチルヘキサノール、シクロヘキサノール、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルもしくはプロピレングリコールモノエチルエーテルの如きアルコール類;ジメトキシエタン、テトラヒドロフラン、ジオキサン、ジイソプロピルエーテルもしくはジ-n-ブチルエーテルの如きエーテル類;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、イソブチルケトンもしくはイソホロンの如きケトン類;酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、エチレングリコールモノメチルエーテルアセテートもしくはエチレングリコールモノブチルエーテルアセテートの如きエステル類;またはクロロホルム、メチレンクロライド、四塩化炭素、トリクロルエタンもしくはテトラクロロエタンの如き塩素化炭化水素類などをはじめ、さらには、N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジエチルアセトアミドまたはエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)などがある。 The coating composition of the present invention can further contain (f) an organic solvent. (F) By mix | blending an organic solvent, while a composition becomes low viscosity, a coating type coating composition is obtained. (F) Examples of organic solvents include aromatic hydrocarbons such as toluene, xylene, or benzene; aliphatic hydrocarbons such as n-heptane, n-hexane, or n-octane; petroleum benzine, petroleum ether, ligroin Hydrocarbon mixtures with boiling points in the range of 30-300 ° C., such as mineral split, petroleum naphtha or kerosene; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane or ethylcyclohexane; methanol, ethanol, n- Propanol, isopropanol, n-butanol, isobutanol, tert-butanol, n-pentanol, isopentanol, n-hexanol, n-octanol, 2-ethylhexanol, cyclohexanol, ethylene glycol monoethyl Alcohols such as ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether or propylene glycol monoethyl ether; ethers such as dimethoxyethane, tetrahydrofuran, dioxane, diisopropyl ether or di-n-butyl ether; acetone, Ketones such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), isobutyl ketone or isophorone; methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, ethylene glycol monomethyl ether acetate Or esters such as ethylene glycol monobutyl ether acetate; or chloroform , Chlorinated hydrocarbons such as methylene chloride, carbon tetrachloride, trichloroethane or tetrachloroethane, N-methylpyrrolidone (NMP), dimethylformamide, diethylacetamide or ethylene carbonate (EC), propylene carbonate ( PC) and dimethyl carbonate (DMC).
 中でも、好ましい例として(f-1)揮発性に劣るが成分(a)を溶解しやすい溶剤として、N-メチルピロリドン(NMP)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)が好ましく、さらに好ましくは、N-メチルピロリドン(NMP)、プロピレンカーボネート(PC)である。 Among them, preferred examples of the solvent (f-1) are those having poor volatility but easily dissolving the component (a), such as N-methylpyrrolidone (NMP), ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC). N-methylpyrrolidone (NMP) and propylene carbonate (PC) are more preferable.
 また、その他に好ましい例として(f-2)揮発性に優れるが成分(a)をやや溶解しにくい溶剤として、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)が挙げられる。 In addition, other preferable examples include (f-2) solvents that are excellent in volatility but slightly dissolve component (a), such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK).
 上記(f-1)揮発性に劣るが成分(a)を溶解しやすい溶剤と(f-2)揮発性に優れるが成分(a)をやや溶解しにくい溶剤を常温揮発性とレベリング(平滑)性の点で併用してもよい。 The above (f-1) solvent having poor volatility but easily dissolving the component (a) and (f-2) solvent having excellent volatility but slightly difficult to dissolve the component (a) are room temperature volatile and leveling (smooth) You may use together in terms of sex.
 本発明のコーティング組成物は、さらに(g)難燃剤を配合することができる。難燃剤としては、例えば、リン系難燃剤、臭素系難燃剤、塩素系難燃剤、その他水酸化アルミニウム、ホウ酸亜鉛等が挙げられる。 The coating composition of the present invention can further contain (g) a flame retardant. Examples of the flame retardant include phosphorus flame retardant, bromine flame retardant, chlorine flame retardant, aluminum hydroxide, zinc borate and the like.
 本発明のコーティング組成物は、(a)フッ素系樹脂、(b)ブロック共重合体またはポリビニルアセタール樹脂、(c)ビニルエステル樹脂または不飽和ポリエステル樹脂の合計を100質量部としたときに、上記特定基材に対する接着性、耐熱接着性の観点から、さらに耐水性、耐候性の観点から、成分(a)45~95質量部、成分(b)2~35質量部、(c)2~50質量部配合される。
 好ましくは、成分(a)60~90質量部、成分(b)5~30質量部、成分(c)5~20質量部である。
 成分(a)の配合量が95質量部を超えると、上記特定基材に対する接着性が悪化する。また柔軟性も悪化する。
 成分(a)の配合量が45質量部未満では、耐水性、耐候性が悪化する。
 成分(b)の配合量が35質量部を超えると、耐水性、耐候性が悪化する。
 成分(b)の配合量が2質量部未満では、上記特定基材に対する接着性が悪化する。また柔軟性も悪化する。
 成分(c)の配合量が50質量部を超えると、耐水性、耐候性が悪化する。
 成分(c)の配合量が2質量部未満では、接着性、柔軟性が悪化する。
When the coating composition of the present invention has a total of (a) fluorine-based resin, (b) block copolymer or polyvinyl acetal resin, (c) vinyl ester resin or unsaturated polyester resin, 100 parts by mass, From the viewpoint of adhesion to a specific substrate and heat-resistant adhesion, and further from the viewpoint of water resistance and weather resistance, component (a) 45 to 95 parts by mass, component (b) 2 to 35 parts by mass, (c) 2 to 50 A part by mass is blended.
The component (a) is preferably 60 to 90 parts by mass, the component (b) is 5 to 30 parts by mass, and the component (c) is 5 to 20 parts by mass.
When the compounding amount of the component (a) exceeds 95 parts by mass, the adhesion to the specific substrate is deteriorated. Also, the flexibility deteriorates.
When the amount of component (a) is less than 45 parts by mass, water resistance and weather resistance are deteriorated.
When the compounding amount of component (b) exceeds 35 parts by mass, water resistance and weather resistance are deteriorated.
When the compounding amount of the component (b) is less than 2 parts by mass, the adhesion to the specific substrate is deteriorated. Also, the flexibility deteriorates.
When the compounding amount of component (c) exceeds 50 parts by mass, water resistance and weather resistance are deteriorated.
When the amount of component (c) is less than 2 parts by mass, the adhesion and flexibility are deteriorated.
 本発明のコーティング組成物において、成分(d)は、実用的な光硬化時間(照射強さ500mJ/cm2で10秒以下照射)の観点から、前記成分(a)~(c)の合計100質量に対し0.1~15質量部配合される。さらに好ましい成分(d)の配合量は、さらに実用的な光硬化時間(照射強さ500mJ/cm2で3秒以下照射)の点で1~10質量部であり、とくに好ましくは2~5質量部である。
 成分(d)の配合量が15質量部を超えると柔軟性、接着性、耐衝撃性が低下する。また、0.1質量部未満では光硬化が不十分であることから接着性に劣る。なお、熱重合開始剤を使用する場合も、上記と同じ配合量でよい。
In the coating composition of the present invention, the component (d) is a total of 100 components (a) to (c) from the viewpoint of practical photocuring time (irradiation intensity of 500 mJ / cm 2 and irradiation for 10 seconds or less). 0.1 to 15 parts by mass based on the mass is blended. The amount of the component (d) is more preferably 1 to 10 parts by mass, particularly preferably 2 to 5 parts by mass in terms of practical photocuring time (irradiation intensity of 500 mJ / cm 2 for 3 seconds or less). Part.
When the compounding amount of the component (d) exceeds 15 parts by mass, flexibility, adhesiveness and impact resistance are lowered. Moreover, if it is less than 0.1 mass part, since photocuring is inadequate, it is inferior to adhesiveness. In addition, also when using a thermal-polymerization initiator, the same compounding quantity as the above may be sufficient.
 また、(f)有機溶剤を使用する場合、その配合量は、前記成分(a)、(b)および(c)の合計100質量部に対し、400~900質量部が好ましい。
 成分(f)の配合量が900質量部を超えると、薄肉になりすぎるため数回塗布が必要となり作業効率が悪化する。
 成分(f)の配合量が400質量部以上であることにより、粘度がより低減し、製膜性が向上する。
When (f) an organic solvent is used, the blending amount thereof is preferably 400 to 900 parts by mass with respect to 100 parts by mass in total of the components (a), (b) and (c).
If the blending amount of component (f) exceeds 900 parts by mass, it will be too thin, so that it will be necessary to apply several times and work efficiency will deteriorate.
When the compounding amount of the component (f) is 400 parts by mass or more, the viscosity is further reduced and the film forming property is improved.
 また、(g)難燃剤を使用する場合、その配合量は、前記成分(a)、(b)および(c)の合計100質量部に対し、1~20質量部が好ましい。
 成分(g)の配合量が20質量部を超えると、レベリング(平滑)性が悪化する。
 成分(g)の配合量が1質量部未満では、添加量が少な過ぎて所望の難燃性を得ることができない。
 さらに好ましい成分(g)の配合量は、前記成分(a)、(b)および(c)の合計100質量部に対し、3~10質量部である。
Further, when (g) a flame retardant is used, the blending amount is preferably 1 to 20 parts by mass with respect to 100 parts by mass in total of the components (a), (b) and (c).
If the amount of component (g) exceeds 20 parts by mass, the leveling (smoothness) will deteriorate.
If the amount of component (g) is less than 1 part by mass, the amount added is too small to obtain the desired flame retardancy.
A more preferable amount of component (g) is 3 to 10 parts by mass with respect to a total of 100 parts by mass of components (a), (b) and (c).
 なお、本発明のコーティング組成物は、上記の成分の他に、さらに必要に応じて、公知の各種添加剤、例えば屈折率調整剤、耐光安定剤、レベリング剤、粘度調整剤等を添加することが可能である。 In addition to the above-mentioned components, the coating composition of the present invention may contain various known additives such as a refractive index adjuster, a light stabilizer, a leveling agent, a viscosity adjuster, etc., if necessary. Is possible.
 本発明のコーティング組成物は、上記成分(a)、(b)、(c)および(d)、または必要に応じて上記成分(e)、その他の各種添加剤を攪拌機を備えた容器に加え、常法により混合することにより調製することができる。 In the coating composition of the present invention, the above components (a), (b), (c) and (d) or, if necessary, the above component (e) and other various additives are added to a container equipped with a stirrer. It can be prepared by mixing by a conventional method.
 本発明のコーティング組成物は、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性を有するとともに、耐水性、耐候性に優れる。本発明のコーティング組成物は、上記の性質を有することから、とくにガラス用コーティング組成物および太陽電池バックシート用コーティング組成物として有用である。バックシート基材としては、強固な接着性が得られる点から、ポリエステル系樹脂(とくにポリエチレンテレフタレート(PET)またはポリカーボネート系樹脂が挙げられる。
 なお、ガラスとしては、とくに制限されないが、例えば、硬く、軽いソーダライムガラス、屈折率・透明度が高い石英ガラス、透明度は低いが硬くて軽いホウ珪酸ガラス等が挙げられる。ポリカーボネート系樹脂としては、ポリカーボネート(PC)、変性ポリカーボネート等が挙げられる。ポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレートフィルム等が挙げられる。セルロース系樹脂としては、ジアセチルセルロース、トリアセチルセルロース等が挙げられる。液晶ポリマーとしては、エチレンテレフタレートとパラヒドロキシ安息香酸との重縮合体(タイプI)、フェノールおよびフタル酸とパラヒドロキシ安息香酸との重縮合体(タイプII)、2,6-ヒドロキシナフトエ酸とパラヒドロキシ安息香酸との重縮合体(タイプIII)等が挙げられる。
 これらの基材の厚さは、例えば0.5mm~3mmである。
The coating composition of the present invention has excellent adhesion to glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, and is excellent in water resistance and weather resistance. Since the coating composition of the present invention has the above properties, it is particularly useful as a glass coating composition and a solar battery backsheet coating composition. Examples of the back sheet base material include polyester resins (particularly polyethylene terephthalate (PET) or polycarbonate resins) from the viewpoint of obtaining strong adhesiveness.
The glass is not particularly limited, and examples thereof include hard and light soda lime glass, quartz glass having a high refractive index and transparency, and borosilicate glass having a low transparency but being hard and light. Examples of the polycarbonate resin include polycarbonate (PC) and modified polycarbonate. Examples of the polyester resin include polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate (PBT), and polyethylene naphthalate film. Examples of the cellulose resin include diacetyl cellulose and triacetyl cellulose. Liquid crystal polymers include polycondensates of ethylene terephthalate and parahydroxybenzoic acid (type I), polycondensates of phenol and phthalic acid with parahydroxybenzoic acid (type II), 2,6-hydroxynaphthoic acid and para And polycondensates with hydroxybenzoic acid (type III).
The thickness of these base materials is, for example, 0.5 mm to 3 mm.
 また本発明の積層体は、本発明のコーティング組成物を、基材上にコーティングしてなる工程を経て得ることができる。基材としては、上述のように、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体からなる基材が挙げられる。
 コーティング方法としては、溶剤コーティングと押出機を用いたコーティングの2つの方法のいずれかを採用するのが好ましい。
 溶剤コーティングとしては、本発明のコーティング組成物に、前記(f)有機溶剤を所定量添加し、得られた塗料を基材上に、スピンコート法、(ドクター)ナイフコート法、マイクログラビヤコート法、ダイレクトグラビヤコート法、オフセットグラビヤ法、リバースグラビヤ法、リバースロールコート法、(マイヤー) バーコート法、ダイコート法、スプレーコート法、ディップコート法等(例えばスピンコート法の装置としてマニュアルスピナー(株)エイブル製ASS-301型))が挙げられる。)により塗布する方法が挙げられる。
 押出機を用いたコーティングとしては、商業的に入手可能な加熱溶融押出機に、本発明のコーティング組成物を投入し、例えばT型ダイスを用いて基材上に押し出す方法が挙げられる。この形態において、本発明のコーティング組成物は、押出成形用組成物として用いることができる。
 その他の形態として、本発明のコーティング組成物をシート化し、その後基材と密着して加熱ロールを用いて熱ラミネートする方法も例示することが出来る。
Moreover, the laminated body of this invention can be obtained through the process formed by coating the coating composition of this invention on a base material. Examples of the substrate include substrates made of glass, polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer as described above.
As a coating method, it is preferable to employ one of two methods of solvent coating and coating using an extruder.
As the solvent coating, a predetermined amount of the organic solvent (f) is added to the coating composition of the present invention, and the obtained paint is applied to a substrate by spin coating, (doctor) knife coating, or micro gravure coating. , Direct gravure coat method, offset gravure method, reverse gravure method, reverse roll coat method, (Meyer) bar coat method, die coat method, spray coat method, dip coat method, etc. Able ASS-301 type)). ) To apply.
Examples of the coating using the extruder include a method in which the coating composition of the present invention is charged into a commercially available hot melt extruder and extruded onto a substrate using, for example, a T-type die. In this form, the coating composition of the present invention can be used as an extrusion composition.
As another form, a method in which the coating composition of the present invention is formed into a sheet, and then adhered to the substrate and thermally laminated using a heating roll can be exemplified.
 本発明の積層体において、本発明のコーティング組成物の層の厚さは、本発明の効果の点から、好ましくは10μm~200μmであり、さらに好ましくは15μm~100μmである。 In the laminate of the present invention, the thickness of the layer of the coating composition of the present invention is preferably 10 μm to 200 μm, more preferably 15 μm to 100 μm, from the viewpoint of the effect of the present invention.
 本発明の積層体は、ガラスに対する接着性、耐水性、耐候性、透明性、表面平滑性、柔軟性に優れるという観点から、窓ガラスとして有用である。窓ガラスとしては、とくに制限されず、一般住宅、ビルディング等の建物用窓ガラス、自動車、鉄道等の車両、飛行機や船舶等の乗物用窓ガラス、機械設備における覗き窓等が挙げられる。とくに本発明では、上記の各種特性が優れるという観点から、建物用窓ガラスが好ましい。
 なお、本発明における積層体を窓ガラスとして利用する際には、本発明のコーティング組成物に、上記の(e)機能性材料を添加するのが好ましい。
The laminate of the present invention is useful as a window glass from the viewpoint of excellent adhesion to glass, water resistance, weather resistance, transparency, surface smoothness, and flexibility. The window glass is not particularly limited, and examples thereof include window glass for buildings such as ordinary houses and buildings, vehicles such as automobiles and railways, window glass for vehicles such as airplanes and ships, and viewing windows in mechanical equipment. Especially in this invention, the window glass for buildings is preferable from a viewpoint that said various characteristics are excellent.
In addition, when utilizing the laminated body in this invention as a window glass, it is preferable to add said (e) functional material to the coating composition of this invention.
 一方、本発明の積層体は、ポリカーボネート系樹脂およびポリエステル系樹脂に対し優れた接着性を有し、かつ耐水性、耐候性、透明性、表面平滑性、柔軟性に優れるという観点から、太陽電池バックシートとして有用である。
 なお、本発明における積層体を太陽電池バックシートとして利用する際には、本発明のコーティング組成物に、上記の(e)機能性材料、とくに白色光反射材料を添加するのが好ましい。
 太陽電池バックシートの製造方法は、従来から公知の製造方法に従えばよく、とくに制限されないが、例えば、まず基材上に、コーティング組成物の層を塗工する。塗工方法としては、スピンコート法、(ドクター)ナイフコート法、マイクログラビヤコート法、ダイレクトグラビヤコート法、オフセットグラビヤ法、リバースグラビヤ法、リバースロールコート法、(マイヤー)バーコート法、ダイコート法、スプレーコート法、ディップコート法等の方法が好ましく適用できる。例えばスピンコート法の装置としてマニュアルスピナー((株)エイブル製ASS-301型))が挙げられる。
 コーティング組成物の層の厚みは、特に限定されないが2μm~50μm、好ましくは5μm~30μm、更に好ましくは8μm~20μm程度である。
 続いて、太陽電池モジュールを作成する場合は、上記の太陽電池バックシート上に、EVAからなる封止材層を形成する。封止材層中には太陽電池セルが含まれる。封止材層の形成方法としては、従来から公知の方法に従えばよく、とくに制限されないが、強化ガラス/EVAシート/太陽電池セル/EVAシート/上記太陽電池バックシートの順に積層し、真空ラミネート法を用いて加熱接着させる。
 なお、上記の太陽電池バックシートの調製方法および太陽電池モジュールの調製方法は、単に一例を示すものであり、当業者であれば種々の変更が可能である。
On the other hand, the laminate of the present invention is a solar cell from the viewpoint that it has excellent adhesion to polycarbonate resins and polyester resins and is excellent in water resistance, weather resistance, transparency, surface smoothness, and flexibility. Useful as a backsheet.
In addition, when utilizing the laminated body in this invention as a solar cell backsheet, it is preferable to add said (e) functional material, especially white light reflection material to the coating composition of this invention.
The manufacturing method of the solar cell backsheet may be a conventional manufacturing method, and is not particularly limited. For example, first, a layer of the coating composition is applied on the substrate. As coating methods, spin coating method, (doctor) knife coating method, micro gravure coating method, direct gravure coating method, offset gravure method, reverse gravure method, reverse roll coating method, (Meyer) bar coating method, die coating method, Methods such as spray coating and dip coating can be preferably applied. For example, a manual spinner (ASS-301 type manufactured by Able Co., Ltd.) can be cited as an apparatus for spin coating.
The thickness of the coating composition layer is not particularly limited, but is about 2 to 50 μm, preferably about 5 to 30 μm, and more preferably about 8 to 20 μm.
Then, when producing a solar cell module, the sealing material layer which consists of EVA is formed on said solar cell backsheet. Solar cells are included in the encapsulant layer. The method for forming the sealing material layer may be a conventionally known method, and is not particularly limited, but is laminated in the order of tempered glass / EVA sheet / solar battery cell / EVA sheet / the above solar battery back sheet, and vacuum lamination. Heat bonding using the method.
The above solar cell backsheet preparation method and solar cell module preparation method are merely examples, and those skilled in the art can make various modifications.
 次に本発明を実施例および比較例によりさらに説明するが、本発明は、その要旨を逸脱しない限り、以下の例に限定されるものではない。 Next, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited to the following examples without departing from the gist thereof.
1.使用原材料
 実施例および比較例で使用した原料は以下の通りである。
 (1)(a)フッ素系樹脂
 (a-1)SOLEF21216/1001(ソルベイソレクシス株式会社製品、ポリフッ化ビニリデン(PVDF)、高純度PVDF、融点160℃)
 (a-2)Lumiflon LF-200(旭硝子株式会社製品、フルオロオレフィン・ビニルエーテル共重合体、ガラス転移点35℃、融点148℃)
 (a-3)ヘイラー6014(ソルベイソレクシス株式会社製品、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)、融点225℃)
 (a-4)アルゴフロン25CAR B(ソルベイソレクシス株式会社製品、ポリテトラフルオロエチレン(PTFE)、融点190℃)
1. Raw materials used The raw materials used in Examples and Comparative Examples are as follows.
(1) (a) Fluorine resin (a-1) SOLEF21216 / 1001 (Product of Solvay Solexis Co., Ltd., Polyvinylidene fluoride (PVDF), high purity PVDF, melting point 160 ° C.)
(A-2) Lumiflon LF-200 (Asahi Glass Co., Ltd. product, fluoroolefin / vinyl ether copolymer, glass transition point 35 ° C., melting point 148 ° C.)
(A-3) Halar 6014 (product of Solvay Solexis Co., Ltd., chlorotrifluoroethylene / ethylene copolymer (ECTFE), melting point 225 ° C.)
(A-4) Algoflon 25 CAR B (product of Solvay Solexis, polytetrafluoroethylene (PTFE), melting point 190 ° C.)
 (2)(b)ブロック共重合体またはポリビニルアセタール樹脂
 (b-1)LAポリマー2140E(株式会社クラレ製品、化合物名:アクリル系ブロック共重合体、重合法:リビングアニオン重合、JIS-A硬度32)
 (b-2)LAポリマー2250(株式会社クラレ製品、化合物名:アクリル系ブロック共重合体、重合法:リビングアニオン重合、JIS-A硬度65)
 (b-3)NABSTAR F700KS(株式会社カネカ製品、化合物名:アクリル系ブロック共重合体、重合法:リビングラジカル重合、JIS-A硬度22)
 (b-4)Mowital SB 70 HH(株式会社クラレ製品、ポリビニルブチラール、不揮発分97.5質量%以上、水酸基含量12-14質量%、酢酸基含量1-4質量%
 (b-5)パラペットGF(株式会社クラレ製品、ポリメチルメタクリレート(PMMA)、ビカット軟化点92℃、硬さ87D、比較成分)
 (b-6)VANAC G(デュポン株式会社製品、カルボキシル基を有するエチレン・アクリル三元系ランダム共重合体ゴム、JIS A硬度=15、比較成分)
(2) (b) Block copolymer or polyvinyl acetal resin (b-1) LA polymer 2140E (Kuraray product, compound name: acrylic block copolymer, polymerization method: living anion polymerization, JIS-A hardness 32 )
(B-2) LA polymer 2250 (Kuraray Co., Ltd., compound name: acrylic block copolymer, polymerization method: living anion polymerization, JIS-A hardness 65)
(B-3) NABSTAR F700KS (Kaneka Corporation, compound name: acrylic block copolymer, polymerization method: living radical polymerization, JIS-A hardness 22)
(B-4) Mowital SB 70 HH (Kuraray Co., Ltd., polyvinyl butyral, non-volatile content: 97.5% by mass or more, hydroxyl group content: 12-14% by mass, acetate group content: 1-4% by mass
(B-5) Parapet GF (Kuraray Co., Ltd., polymethyl methacrylate (PMMA), Vicat softening point 92 ° C., hardness 87D, comparative component)
(B-6) VANAC G (DuPont product, ethylene / acrylic terpolymer random copolymer rubber having carboxyl group, JIS A hardness = 15, comparative component)
成分(c-1)ビニルエステル樹脂
(i)ウレタンアクリレート
 サートマー社製 CN963B80 ウレタンアクリレート(HDDAブレンド)、タイプ=ポリエステル、60℃粘度=1,100、官能基数=2
(ii)ポリエステルアクリレート
 サートマー社製 CN292 ポリエステルアクリレート、タイプ=脂肪族ポリエステル、25℃粘度=630、官能基数=4
(iii)エポキシアクリレート
 サートマー社製 CNUVE151 エポキシアクリレート、タイプ=ポリエステル、25℃粘度=150,000、官能基数=2
(iv)脂肪族ウレタンアクリレート
 サートマー社製 CN966J75 脂肪族ウレタンアクリレート(IBOAブレンド)、タイプ=ポリエステル、60℃粘度=4,240、25℃粘度=105,000、官能基数=2
成分(c-2)不飽和ポリエステル樹脂
 昭和高分子社製、RIGOLAC 21E-A-2(商標)
成分(c-3)ビニルエステル樹脂
 昭和高分子社製、RIPOXY VR-77(商標)
 粘度:1,000(dPa・s/25℃)
 分子量:510
Component (c-1) Vinyl ester resin (i) Urethane acrylate CN963B80 Urethane acrylate (HDDA blend) manufactured by Sartomer, type = polyester, viscosity at 60 ° C. = 1,100, number of functional groups = 2
(Ii) Polyester acrylate CN292 polyester acrylate manufactured by Sartomer, type = aliphatic polyester, viscosity at 25 ° C. = 630, number of functional groups = 4
(Iii) Epoxy acrylate Sartomer CNUVE151 epoxy acrylate, type = polyester, viscosity at 25 ° C. = 150,000, number of functional groups = 2
(Iv) Aliphatic urethane acrylate manufactured by Sartomer CN966J75 Aliphatic urethane acrylate (IBOA blend), type = polyester, 60 ° C. viscosity = 4,240, 25 ° C. viscosity = 105,000, number of functional groups = 2
Component (c-2) Unsaturated polyester resin RIGOLAC 21E-A-2 (trademark) manufactured by Showa Polymer Co., Ltd.
Ingredient (c-3) vinyl ester resin, manufactured by Showa Polymer Co., Ltd., RIPOXY VR-77 (trademark)
Viscosity: 1,000 (dPa · s / 25 ° C)
Molecular weight: 510
成分(d)成分 開始剤
(i)光重合開始剤
CIBA社製、IRGACURE(商標)819、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド
(ii)熱重合開始剤
日油社製、パーヘキサ25B(1分半減期:179℃)、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン
Component (d) Component Initiator (i) Photopolymerization initiator CIBA, IRGACURE ™ 819, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (ii) Thermal polymerization initiator NOF Corporation Perhexa 25B (1 minute half-life: 179 ° C.), 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane
(3)(e)機能性材料
 (e-1)白色光反射材料(酸化チタン 石原産業社製 CR-90(製品名))
 (e-2)カーボンナノチューブCNT:VGCF-S、昭和電工製、繊維径80nm、繊維長10μm
 (e-3)酸化亜鉛:23-K、ハクスイテック社製導電性酸化亜鉛、一次粒子径120~150μm、電磁波シールド剤)
 (e-4)三酸化アンチモン:PATOX-U、日本精鉱株式会社製、平均粒径0.02μmの超微粒子品、UV・IR吸収剤)
 (e-5)カーボンブラック:三菱カーボンブラック社製(RCF#45L)、粒子径:24nm
(3) (e) Functional material (e-1) White light reflecting material (titanium oxide CR-90 (product name) manufactured by Ishihara Sangyo Co., Ltd.)
(E-2) Carbon nanotube CNT: VGCF-S, Showa Denko, fiber diameter 80 nm, fiber length 10 μm
(E-3) Zinc oxide: 23-K, conductive zinc oxide manufactured by Hakusuitec, primary particle size 120 to 150 μm, electromagnetic wave shielding agent)
(E-4) Antimony trioxide: PATOX-U, manufactured by Nippon Seiko Co., Ltd., ultrafine particles with an average particle size of 0.02 μm, UV / IR absorber)
(E-5) Carbon black: Mitsubishi Carbon Black (RCF # 45L), particle size: 24 nm
(4)(f)有機溶剤
 (f-1)N-メチルピロリドン(NMP)
 (f-2)エチレンカーボネート(EC)
 (f-3)プロピレンカーボネート(PC)
 (f-4)ジメチルカーボネート(DMC)
 (f-5)メチルエチルケトン(MEK)
 (f-6)メチルイソブチルケトン(MIBK)
(4) (f) Organic solvent (f-1) N-methylpyrrolidone (NMP)
(F-2) Ethylene carbonate (EC)
(F-3) Propylene carbonate (PC)
(F-4) Dimethyl carbonate (DMC)
(F-5) Methyl ethyl ketone (MEK)
(F-6) Methyl isobutyl ketone (MIBK)
(5)(g)難燃剤
 リン系難燃剤 大八化学社製 PX-200(製品名)、縮合型リン酸エステル、リン酸エステルダイマー
(5) (g) Flame Retardant Phosphorus Flame Retardant PX-200 (product name), condensed phosphate ester, phosphate ester dimer manufactured by Daihachi Chemical Co., Ltd.
実施例1~31、41~54、比較例1~8
 下記表1~7、9~13に示す配合割合(質量部)において、通常のプラスチック混練機中に(d)成分を除く各成分を入れ、混練温度180℃~220℃で混練し、ペレット化した。次に、ペレットを、(d)成分と共に攪拌機を備えた容器に加え、常法により混合し、コーティング組成物を得た。得られた組成物の25℃における粘度(mPa・s)を測定した。 すなわち、ハンディタイプのデジタル粘度計TVC-7形粘度計(東機産業社)を用いて、粘度に合わせた適当なロータ(0号~5号)を用いて、25℃粘度を測定した。結果を上記表に併せて示す。
Examples 1-31, 41-54, Comparative Examples 1-8
In the mixing ratios (parts by mass) shown in Tables 1 to 7 and 9 to 13 below, each component except the component (d) is put into a normal plastic kneader, kneaded at a kneading temperature of 180 ° C. to 220 ° C. and pelletized did. Next, the pellet was added to a container equipped with a stirrer together with the component (d) and mixed by a conventional method to obtain a coating composition. The viscosity (mPa · s) at 25 ° C. of the obtained composition was measured. That is, using a handy type digital viscometer TVC-7 type viscometer (Toki Sangyo Co., Ltd.), the viscosity at 25 ° C. was measured using an appropriate rotor (No. 0 to No. 5) according to the viscosity. The results are also shown in the above table.
 次に、表1~7、9~13に示す各基材(寸法:150mm×25mm×厚さ1mm)上に、スピンコート法により組成物を塗布し(塗布厚15~20μm)、乾燥させ、基材上に組成物の層(A)を形成させた。その後、空気下で500mJ/cm2のエネルギーの紫外線を照射して組成物の層(A)を硬化させ、積層体を調製した。また、熱重合開始剤を使用した場合は、必要に応じて組成物に6%ナフテンコバルトを0~0.05質量部添加して、100℃で10分熱処理して硬化させ、積層体を調製した。 Next, on each substrate (dimensions: 150 mm × 25 mm × thickness 1 mm) shown in Tables 1 to 7 and 9 to 13, the composition was applied by spin coating (application thickness 15 to 20 μm) and dried. A layer (A) of the composition was formed on the substrate. Then, the layer (A) of the composition was cured by irradiating ultraviolet rays having an energy of 500 mJ / cm 2 under air to prepare a laminate. When a thermal polymerization initiator is used, if necessary, 0 to 0.05 part by mass of 6% naphthenic cobalt is added to the composition and cured by heat treatment at 100 ° C. for 10 minutes to prepare a laminate. did.
 使用した各基材は、次の通りである。
・ガラス(顕微鏡プレパラート用スライドグラス)
・ポリエチレンテレフタレートPET(ユニチカ製 ユニチカポリエステル樹脂MA-2103)
・ポリブチレンテレフタレートPBT(三菱エンジニアリングプラスチックス社製、商品名ノバデュラン5010R5)
・ポリカーボネートPC(帝人化成社製、商品名パンライトL-1225L)
・液晶ポリマーLCP(住友化学社製、商品名スミカスーパーE5008L)
・トリアセチルセルロースTAC(富士フイルム社製、商品名フジタック(UV有り))
Each base material used is as follows.
・ Glass (slide glass for microscope preparation)
・ Polyethylene terephthalate PET (Unitika Polyester MA-2103 made by Unitika)
・ Polybutylene terephthalate PBT (Mitsubishi Engineering Plastics, trade name Nova Duran 5010R5)
・ Polycarbonate PC (trade name Panlite L-1225L, manufactured by Teijin Chemicals Ltd.)
・ Liquid crystal polymer LCP (manufactured by Sumitomo Chemical Co., Ltd., trade name Sumika Super E5008L)
・ Triacetylcellulose TAC (Fuji Film Co., Ltd., trade name FUJITAC (with UV))
実施例32~40、比較例9~15
 下記表7~8、13~15に示す配合割合(質量部)に従い、各成分を、T型ダイスを備えた加熱溶融押出機(株式会社東洋精機製作所社製商品名ラボプラストミルNo.655Mモデル)に投入し、200℃で加熱溶融混練し、基材(寸法:150mm×25mm×厚さ1mm)上に厚さ50μmとして押し出し、本発明の積層体を調製した。
 得られた積層体について、上記各種試験を行なった。
Examples 32 to 40, Comparative Examples 9 to 15
According to the blending ratios (parts by mass) shown in Tables 7 to 8 and 13 to 15 below, each component was heated and melt-extruded with a T-shaped die (trade name: Labo plast mill No. 655M model, manufactured by Toyo Seiki Seisakusho Co., Ltd.) ), Heated and melt-kneaded at 200 ° C., and extruded onto a substrate (dimensions: 150 mm × 25 mm × thickness 1 mm) as a thickness of 50 μm to prepare a laminate of the present invention.
The above various tests were performed on the obtained laminate.
(接着性試験:碁盤目テープ試験)
 日本工業規格K5400に記載されている碁盤目テープ試験法に準拠して以下のように測定を行った。
 碁盤目テープ試験(Cross-cut  Test、塗布厚15~20μm(スピンコート法)):試験面(組成物の層(A)側)にカッターナイフを用いて、1×1mm四方の碁盤目の切り傷を入れる。カッターガイドを使用する。碁盤目の数は、縦10個×横10個=100個入れる。碁盤目を入れた所にセロハンテープを強く圧着させ、テープの端を45°の角度で急速に引き剥がし、碁盤目の状態(剥離しないで残った碁盤目の個数)を見る。
(Adhesion test: cross-cut tape test)
The measurement was performed as follows in accordance with the cross cut tape test method described in Japanese Industrial Standard K5400.
Cross-cut test (Cross-cut Test, coating thickness 15-20μm (spin coating method)): Using a cutter knife on the test surface (composition layer (A) side), a 1 x 1mm square cut Insert. Use the cutter guide. The number of grids is 10 vertical x 10 horizontal = 100. Strongly press the cellophane tape into the grid, and peel off the end of the tape rapidly at an angle of 45 ° to see the grid pattern (number of grids remaining without peeling).
(耐熱接着性試験)
 上記で調製した各積層体に対して、150℃のオーブン中で1時間放置した後、室温に1時間放置し、日本工業規格K5400に記載されている碁盤目テープ試験法に準拠して測定を行った。
(Heat resistant adhesion test)
Each laminate prepared above was left in an oven at 150 ° C. for 1 hour, then left at room temperature for 1 hour, and measured according to the cross-cut tape test method described in Japanese Industrial Standard K5400. went.
(耐水性試験)
 上記で調製した積層体に対して、サンプルを沸騰水中(純水) に1時間浸せきした後に室内で自然乾燥させ、組成物の層(A)の外観の悪化の有無について目視観察した。
○:剥離やクラックの発生なし(1時間浸せき)
×:剥離やクラックの発生あり(1時間浸せき)
(Water resistance test)
The laminate prepared above was immersed in boiling water (pure water) for 1 hour and then naturally dried indoors, and visually observed for the appearance of the composition layer (A).
○: No peeling or cracking (immersion for 1 hour)
×: Peeling or cracking occurred (immersion for 1 hour)
・異材質接着試験(ポリエステル系樹脂vsエチレン-酢酸ビニル共重合体)
 異材質間の接着試験を次に示すようなせん断接着力測定により行った。
 寸法150mm×1mm厚×25mm巾のポリエチレンテレフタレートPET(東洋紡績社製商品名EMC307)の層(B1)上に、スピンコート法で上記組成物を塗布し(塗布厚15~20μm)、組成物の層(A)を形成し、さらにその上に、表に示す、上記(B1)と同じ寸法の、エチレン-酢酸ビニル共重合体EVA(住友化学社製商品名KA-30、酢酸ビニル含有量28%)の層(B2)を圧着させ、積層体を調製した。その後、層(B2)を、層(A)の接合面と平行な方向に引張り、破断時の引張強さを測定した。その結果を、PET vs EVAとして、表に示す(MPa)。
・ Adhesion test for different materials (polyester resin vs ethylene-vinyl acetate copolymer)
The adhesion test between different materials was performed by measuring the shear adhesive force as shown below.
On the layer (B1) of polyethylene terephthalate PET (trade name EMC307 manufactured by Toyobo Co., Ltd.) having dimensions of 150 mm × 1 mm thickness × 25 mm width, the above composition was applied by a spin coating method (application thickness: 15 to 20 μm). A layer (A) is formed, and an ethylene-vinyl acetate copolymer EVA (trade name KA-30 manufactured by Sumitomo Chemical Co., Ltd., vinyl acetate content 28 having the same dimensions as (B1) shown in the table is formed thereon. %) Layer (B2) was pressure-bonded to prepare a laminate. Thereafter, the layer (B2) was pulled in a direction parallel to the bonding surface of the layer (A), and the tensile strength at break was measured. The results are shown in the table as PET vs EVA (MPa).
耐候性試験
 上記で調製した各積層体に対して、サンシャインウエザーメータを用いてブラックパネル温度63℃で、降雨12分、乾燥48分のサイクルで1000時間暴露後、外観の評価を行った。
○:外観変化なし
×:白化、黄変、剥離あり
Weather resistance test Each laminate prepared above was exposed for 1000 hours at a black panel temperature of 63 ° C. with a 12-minute rain and a 48-minute dry cycle using a sunshine weather meter, and then the appearance was evaluated.
○: No change in appearance ×: Whitening, yellowing, peeling
(難燃性試験)
 燃焼試験はUNDERWRITERS LABORATORIES社の安全標準UL94(○:燃焼侍間10秒以内、Δ:10秒以上燃焼、×:全焼)によって測定した。
(Flame retardancy test)
The combustion test was measured according to UNTERWRITERS LABORATORIES safety standard UL94 (O: burning within 10 seconds, Δ: burning for 10 seconds or more, x: burning).
(表面抵抗試験)
 表面抵抗は、サンプルとしてガラス基材(寸法:150mm×25mm×厚さ1mm)上に、スピンコート法により組成物を塗布し(塗布厚10μm)三菱化学(株)製 高抵抗率計ハイレスターUP(MCP―HT450型)にて、ASTM D257に準じて印加電圧500Vにて表面抵抗率(Ω/sq.)を測定した。各サンプルの抵抗率は5枚の測定値の平均値(n=5)とした。
(Surface resistance test)
The surface resistance is applied to a glass substrate (dimensions: 150 mm x 25 mm x thickness 1 mm) as a sample by applying the composition by spin coating (coating thickness 10 μm). (MCP-HT450 type), the surface resistivity (Ω / sq.) Was measured at an applied voltage of 500 V in accordance with ASTM D257. The resistivity of each sample was an average value (n = 5) of five measured values.
(各種透過率試験)
 可視光透過率は、JIS R-3106に則り、U-4000型自記分光光度計(日立製作所社製)による分光透過率曲線における波長 380~780nmにおけるD光源に対する平均透過率で求めた。
 紫外線透過率は、ISO/DIS 13837 B法に則り上記同様の手段で、波長 300~380nmにおける平均透過率を求めた。
 赤外線透過率:ISO/DIS 13837 B法に則り上記同様の手段で、780nm~2000nmの平均透過率を求めた。
(Various transmittance tests)
The visible light transmittance was determined by the average transmittance for a D light source at a wavelength of 380 to 780 nm in a spectral transmittance curve by a U-4000 type self-recording spectrophotometer (manufactured by Hitachi, Ltd.) according to JIS R-3106.
The ultraviolet transmittance was obtained as an average transmittance at a wavelength of 300 to 380 nm by the same means as described above according to the ISO / DIS 13837 B method.
Infrared transmittance: An average transmittance of 780 nm to 2000 nm was determined in the same manner as described above according to the ISO / DIS 13837 B method.
 結果を下記表1~15に示す。 The results are shown in Tables 1 to 15 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表に示す結果から、本発明の実施例のコーティング組成物は、前記成分(a)、(b)、(c)および(d)成分を特定の量的関係でもって配合しているので、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂、液晶ポリマー、エチレン-酢酸ビニル共重合体に対し優れた接着性、とくに耐熱接着性を有するとともに、耐水性、耐候性に優れる。また、機能性材料を添加した系では、所望の機能性が付与されていることが確認された。
 これに対し、比較例1~4、7~15は、前記成分(a)~(d)の配合量が、本発明の規定する範囲外であるので、上記特定基材に対する接着性、耐熱接着性、耐水性、耐候性をすべて満足することはできなかった。
 比較例5~6は、成分(b)が本発明の範囲外の成分であるので、上記特定基材に対する接着性、耐熱接着性、耐水性が悪化した。
From the results shown in the table, since the coating compositions of the examples of the present invention contain the components (a), (b), (c) and (d) in a specific quantitative relationship, glass Excellent adhesion to polycarbonate resin, polyester resin, cellulose resin, liquid crystal polymer, and ethylene-vinyl acetate copolymer, particularly heat-resistant adhesive, water resistance, and weather resistance. Moreover, it was confirmed that the desired functionality was imparted to the system to which the functional material was added.
On the other hand, in Comparative Examples 1 to 4 and 7 to 15, the compounding amounts of the components (a) to (d) are outside the range defined by the present invention. , Water resistance and weather resistance could not be satisfied at all.
In Comparative Examples 5 to 6, since the component (b) is a component outside the range of the present invention, the adhesion to the specific substrate, the heat-resistant adhesion, and the water resistance deteriorated.

Claims (16)

  1. (a)フッ素系樹脂45~95質量部、
    (b)メタクリル酸エステルを主体とするブロック(A)およびアクリル酸エステルを主体とするブロック(B)からなるブロック共重合体またはポリビニルアセタール樹脂2~35質量部、
    (c)ビニルエステル樹脂または不飽和ポリエステル樹脂 2~50質量部(ただし、前記成分(a)~(c)の合計は100質量部である)、および
    (d)開始剤 前記成分(a)~(c)の合計100質量部に対し0.1~15質量部
    を含有することを特徴とするコーティング組成物。
    (A) 45 to 95 parts by mass of a fluororesin,
    (B) 2 to 35 parts by mass of a block copolymer or polyvinyl acetal resin comprising a block (A) mainly composed of methacrylic acid ester and a block (B) mainly composed of acrylic acid ester,
    (C) vinyl ester resin or unsaturated polyester resin 2 to 50 parts by mass (provided that the total of the components (a) to (c) is 100 parts by mass), and (d) an initiator The component (a) to A coating composition comprising 0.1 to 15 parts by mass with respect to 100 parts by mass in total of (c).
  2.  前記(a)フッ素系樹脂の融点が230℃以下であることを特徴とする請求項1に記載のコーティング組成物。 The coating composition according to claim 1, wherein the melting point of the (a) fluororesin is 230 ° C or lower.
  3.  前記(b)ブロック共重合体が、トリブロック構造を有することを特徴とする請求項1または2に記載のコーティング組成物。 The coating composition according to claim 1 or 2, wherein the (b) block copolymer has a triblock structure.
  4.  前記(b)ブロック共重合体が、ABA型トリブロック構造を有するブロック共重合体(ただし、前記Aブロック成分がメタクリル酸エステルであり、Bブロック成分がアクリル酸エステルである)であることを特徴とする請求項1~3のいずれかに記載のコーティング組成物。 The (b) block copolymer is a block copolymer having an ABA type triblock structure (provided that the A block component is a methacrylic ester and the B block component is an acrylate ester). The coating composition according to any one of claims 1 to 3.
  5.  前記(b)ブロック共重合体が、下記一般式
    -(A1)-(B)-(A2)-
    (式中、(A1)および(A2)は、それぞれ、メタクリル酸アルキルエステルからなるブロック成分を表し、(B)は、アクリル酸アルキルエステルからなるブロック成分を表す)で表されるトリブロック構造を有することを特徴とする請求項4に記載のコーティング組成物。
    The (b) block copolymer has the following general formula-(A1)-(B)-(A2)-
    (Wherein (A1) and (A2) each represent a block component composed of a methacrylic acid alkyl ester, and (B) represents a block component composed of an acrylic acid alkyl ester). The coating composition according to claim 4, which has a coating composition.
  6.  前記(c)がウレタン(メタ)アクリレートであることを特徴とする請求項1~5いずれか1項に記載のコーティング組成物。 The coating composition according to any one of claims 1 to 5, wherein (c) is urethane (meth) acrylate.
  7.  前記(b)ブロック共重合体が、リビングアニオン重合法によって製造されたことを特徴とする請求項5に記載のコーティング組成物。 The coating composition according to claim 5, wherein the (b) block copolymer is produced by a living anion polymerization method.
  8.  前記(b)ポリビニルアセタール樹脂がポリビニルブチラール樹脂であることを特徴とする請求項1または2に記載のコーティング組成物。 The coating composition according to claim 1 or 2, wherein the (b) polyvinyl acetal resin is a polyvinyl butyral resin.
  9.  さらに(e)白色光反射材料、黒色材料、赤外線吸収材料、紫外線吸収材料、帯電防止材料および電磁波シールド材料から選ばれる少なくとも1種の機能性材料を含むことを特徴とする請求項1~8のいずれかに記載のコーティング組成物。 9. The method according to claim 1, further comprising (e) at least one functional material selected from a white light reflecting material, a black material, an infrared absorbing material, an ultraviolet absorbing material, an antistatic material, and an electromagnetic shielding material. The coating composition according to any one of the above.
  10.  さらに(f)有機溶剤を、前記成分(a)~(c)の合計100質量部に対し、400~900質量部配合してなることを特徴とする請求項1~9のいずれかに記載のコーティング組成物。 10. The organic solvent according to claim 1, further comprising (f) 400 to 900 parts by mass of the organic solvent with respect to 100 parts by mass in total of the components (a) to (c). Coating composition.
  11.  請求項1~10のいずれかに記載のコーティング組成物からなる、ガラス用コーティング組成物。 A glass coating composition comprising the coating composition according to any one of claims 1 to 10.
  12.  請求項1~10のいずれかに記載のコーティング組成物からなる、太陽電池バックシート用コーティング組成物。 A coating composition for a solar battery backsheet, comprising the coating composition according to any one of claims 1 to 10.
  13.  バックシート基材がポリエステル系樹脂またはポリカーボネートであることを特徴とする請求項12に記載の太陽電池バックシート用コーティング組成物。 The solar cell backsheet coating composition according to claim 12, wherein the backsheet substrate is a polyester resin or polycarbonate.
  14.  請求項1~10のいずれかに記載のコーティング組成物を、基材上にコーティングしてなる積層体。 A laminate obtained by coating the substrate with the coating composition according to any one of claims 1 to 10.
  15.  前記基材が、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、セルロース系樹脂および液晶ポリマーから選ばれる少なくとも1種であることを特徴とする請求項14に記載の積層体。 The laminate according to claim 14, wherein the substrate is at least one selected from glass, polycarbonate resin, polyester resin, cellulose resin, and liquid crystal polymer.
  16.  請求項1~9のいずれかに記載のコーティング組成物からなる、押出成形用組成物。 A composition for extrusion molding comprising the coating composition according to any one of claims 1 to 9.
PCT/JP2010/063403 2010-08-06 2010-08-06 Coating composition and laminate WO2012017553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/063403 WO2012017553A1 (en) 2010-08-06 2010-08-06 Coating composition and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/063403 WO2012017553A1 (en) 2010-08-06 2010-08-06 Coating composition and laminate

Publications (1)

Publication Number Publication Date
WO2012017553A1 true WO2012017553A1 (en) 2012-02-09

Family

ID=45559084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063403 WO2012017553A1 (en) 2010-08-06 2010-08-06 Coating composition and laminate

Country Status (1)

Country Link
WO (1) WO2012017553A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141626A (en) * 2012-12-28 2014-08-07 Konica Minolta Inc Application liquid, reflection coating, reflection sheet, solar cell module, led illumination device and packaging substrate
WO2018154630A1 (en) * 2017-02-21 2018-08-30 三菱電機株式会社 Coating composition, coating film and air conditioner including same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057404A (en) * 1973-09-19 1975-05-19
JPH04311732A (en) * 1991-04-10 1992-11-04 Mitsubishi Petrochem Co Ltd Protective sheet for solar cell module
JPH1012243A (en) * 1996-06-26 1998-01-16 Hitachi Maxell Ltd Lithium secondary battery
JP2000188412A (en) * 1998-10-13 2000-07-04 Dainippon Printing Co Ltd Protective sheet for solar cell module and solar cell module using it
JP2002338707A (en) * 2001-05-18 2002-11-27 Kanegafuchi Chem Ind Co Ltd Film for covering metal plate and covered metal plate using the film
JP2007231072A (en) * 2006-02-28 2007-09-13 Three M Innovative Properties Co Coating composition and article using the same
WO2009104423A1 (en) * 2008-02-22 2009-08-27 有限会社サンサーラコーポレーション Polymer composition and molded article produced from the composition
JP2010138310A (en) * 2008-12-12 2010-06-24 Dic Corp Two-liquid type uv-absorbing color coating composition
JP2010526886A (en) * 2007-04-23 2010-08-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluoropolymer-coated film, method of forming the same, and fluoropolymer liquid composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057404A (en) * 1973-09-19 1975-05-19
JPH04311732A (en) * 1991-04-10 1992-11-04 Mitsubishi Petrochem Co Ltd Protective sheet for solar cell module
JPH1012243A (en) * 1996-06-26 1998-01-16 Hitachi Maxell Ltd Lithium secondary battery
JP2000188412A (en) * 1998-10-13 2000-07-04 Dainippon Printing Co Ltd Protective sheet for solar cell module and solar cell module using it
JP2002338707A (en) * 2001-05-18 2002-11-27 Kanegafuchi Chem Ind Co Ltd Film for covering metal plate and covered metal plate using the film
JP2007231072A (en) * 2006-02-28 2007-09-13 Three M Innovative Properties Co Coating composition and article using the same
JP2010526886A (en) * 2007-04-23 2010-08-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluoropolymer-coated film, method of forming the same, and fluoropolymer liquid composition
WO2009104423A1 (en) * 2008-02-22 2009-08-27 有限会社サンサーラコーポレーション Polymer composition and molded article produced from the composition
JP2010138310A (en) * 2008-12-12 2010-06-24 Dic Corp Two-liquid type uv-absorbing color coating composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141626A (en) * 2012-12-28 2014-08-07 Konica Minolta Inc Application liquid, reflection coating, reflection sheet, solar cell module, led illumination device and packaging substrate
WO2018154630A1 (en) * 2017-02-21 2018-08-30 三菱電機株式会社 Coating composition, coating film and air conditioner including same
JPWO2018154630A1 (en) * 2017-02-21 2019-07-04 三菱電機株式会社 Coating composition, coating film and air conditioner having the same
CN110300781A (en) * 2017-02-21 2019-10-01 三菱电机株式会社 Coating composition, film and the air conditioner with it

Similar Documents

Publication Publication Date Title
JP5368635B2 (en) Coating composition for solar cell backsheet and solar cell backsheet
AU2008246758B2 (en) Hot radiation shielding polyester film, and hot radiation shielding polyester film laminate
WO2011152404A1 (en) Composition for use as coating material and adhesive, method for adhesive bonding, and laminated products
JP5576375B2 (en) Master Badge
WO2012004849A1 (en) Coating composition and laminate
JP6083250B2 (en) Easy-adhesive composition, laminated polyester resin film, and solar battery back sheet
JP6057041B1 (en) Polyol composition, adhesive coating agent, cured product thereof, adhesive sheet, and solar cell module
WO2011129412A1 (en) Back sheet for solar cell module, and solar cell module
WO2013008885A1 (en) Vinylidene fluoride resin composition, resin film, back sheet for solar cells, and solar cell module
US20120114951A1 (en) Solar cell back surface protection sheet and method of manufacturing the same
JP5348991B2 (en) Laminated body
WO2012036046A1 (en) Base material for solar cell module and method for producing same
JP6094865B2 (en) Easy-adhesive composition, laminated polyester resin film, and solar battery back sheet
WO2014057933A1 (en) Vinylidene fluoride resin composition, resin film, solar cell backsheet, and solar cell module
WO2016052133A1 (en) Layered product
WO2012017553A1 (en) Coating composition and laminate
JP2017114937A (en) Polyol composition for polyisocyanate-curable adhesive coating agent, adhesive coating agent, cured material thereof, adhesive sheet, and solar battery module
JP2014105268A (en) Easy adhesive composition, laminated polyester resin film, solar cell back sheet, and solar cell module
JP2017101201A (en) Adhesive composition, solar cell back sheet and solar cell
JP2017110126A (en) Polyol composition for polyisocyanate-curable adhesive coating agent, adhesive coating agent, cured material thereof, adhesive sheet, and solar battery module
WO2006051833A1 (en) Curable resin composition and cured film comprising the same and laminate
JP2014136730A (en) Easily-adhesive agent composition, multilayer polyester resin film, and solar cell back sheet
JP6115070B2 (en) Easy-adhesive composition, laminated polyester resin film, and solar battery back sheet
JP2012097179A (en) Weather-resistant film
JP7176340B2 (en) Back protection sheet for solar cell modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10855643

Country of ref document: EP

Kind code of ref document: A1