WO2012008556A1 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
WO2012008556A1
WO2012008556A1 PCT/JP2011/066168 JP2011066168W WO2012008556A1 WO 2012008556 A1 WO2012008556 A1 WO 2012008556A1 JP 2011066168 W JP2011066168 W JP 2011066168W WO 2012008556 A1 WO2012008556 A1 WO 2012008556A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
repeating unit
unit represented
compound
Prior art date
Application number
PCT/JP2011/066168
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 大家
吉村 研
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012008556A1 publication Critical patent/WO2012008556A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element.
  • a high molecular compound having a ⁇ -conjugated structure absorbs light in a visible light region and a peripheral region of visible light and has a conductive property
  • application to a photoelectric conversion element has been studied.
  • a photoelectric conversion element provided with an organic layer containing a polymer compound having a ⁇ -conjugated structure a polymer compound having a repeating unit represented by the formula (A) and a repeating unit represented by the formula (B)
  • a photoelectric conversion element including an organic layer is known (WO2007 / 011739).
  • the photoelectric conversion element does not necessarily have high photoelectric conversion efficiency.
  • the present invention provides a photoelectric conversion element having high photoelectric conversion efficiency. That is, the present invention provides a photoelectric conversion element having a pair of electrodes and an organic layer containing a polymer compound having a repeating unit represented by the formula (I) between the electrodes.
  • Ar represents an arylene group.
  • R represents a fluorine atom or a monovalent organic group having a fluorine atom. Two R may be the same or different.
  • this invention provides the said photoelectric conversion element which has an organic layer containing the repeating unit represented by Formula (II) and Formula (III) other than the repeating unit represented by Formula (I).
  • X represents a sulfur atom or an oxygen atom.
  • Z represents ⁇ CH—, ⁇ C (R) —, or a nitrogen atom.
  • Two Z may be the same or different.
  • R represents the same meaning as described above.
  • E represents a sulfur atom, an oxygen atom, a selenium atom, -NH- or -N (R 1 ) ⁇ .
  • R 1 Represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group. Multiple R 1 May be the same or different.
  • Y represents a divalent group.
  • R represents the same meaning as described above. Description of embodiment Hereinafter, the present invention will be described in detail.
  • the photoelectric conversion element of the present invention has a pair of electrodes and an organic layer containing a polymer compound having a repeating unit represented by the formula (I) between the electrodes.
  • Ar and R represent the same meaning as described above.
  • the arylene group represented by Ar is a group obtained by removing two hydrogen atoms on an aromatic ring from an aromatic hydrocarbon which may have a substituent. Examples of the substituent include a bromine atom, a chlorine atom, an iodine atom, and an alkoxy group having 1 to 20 carbon atoms.
  • the carbon number of the arylene group is usually 6 to 60, preferably 6 to 16, and more preferably 6 to 10.
  • arylene group examples include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a tetracenediyl group, a pentacenediyl group, and a pyrenediyl group.
  • R represents a fluorine atom or a monovalent organic group having a fluorine atom.
  • the monovalent organic group having a fluorine atom include an alkyl group substituted with a fluorine atom, an alkoxy group substituted with a fluorine atom, an aryl group substituted with a fluorine atom, and a heteroaryl group substituted with a fluorine atom. Is mentioned.
  • An alkyl group substituted with a fluorine atom, an alkoxy group substituted with a fluorine atom, an aryl group substituted with a fluorine atom, and a heteroaryl group substituted with a fluorine atom are further substituted with a substituent other than a fluorine atom.
  • substituents include a bromine atom, a chlorine atom, and an alkoxy group having 1 to 12 carbon atoms.
  • the alkyl group may be linear, branched, or cyclic.
  • the alkyl group usually has 1 to 30 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl.
  • hexyl group isohexyl group, 3-methylpentyl group, 21-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl And chain alkyl groups such as a group, tetradecyl group, hexadecyl tomb, octadecyl group and eicosyl group, and cyclic alkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group.
  • the alkyl part of the alkoxy group may be linear, branched or cyclic.
  • the carbon number of the alkoxy group is usually 1-20, and specific examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, Examples include hexyloxy, cyclohexyloxy, heptyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, decyloxy, 3,7-dimethyloctyloxy, and lauryloxy.
  • Examples of the alkoxy group substituted with a substituent other than a fluorine atom include a methoxymethyloxy group and a 2-methoxyethyloxy group.
  • An aryl group is a group obtained by removing one hydrogen on an aromatic ring from an aromatic hydrocarbon compound.
  • the aryl group usually has 6 to 60 carbon atoms.
  • Specific examples of the aryl group include a phenyl group, a C1 to C12 alkylphenyl group (C1 to C12 represents 1 to 12 carbon atoms, and the same shall apply hereinafter), a 1-naphthyl group, and a 2-naphthyl group. Groups.
  • a heteroaryl group is a group obtained by removing one hydrogen on an aromatic ring from an aromatic heterocyclic compound.
  • the heteroaryl group usually has 2 to 60 carbon atoms.
  • Specific examples of the heteroaryl group include a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, and a triazinyl group.
  • R include a fluorine atom (formula (R-1)) and groups represented by formulas (R-2) to (R-11).
  • R is a fluorine atom, a group represented by formula (R-2), formula (R-5), formula (R-8), or formula (R-10).
  • R-2 is a fluorine atom, a group represented by formula (R-2), formula (R-5), formula (R-8), or formula (R-10).
  • a fluorine atom and a group represented by the formula (R-2) are more preferred, and a fluorine atom is particularly preferred.
  • the repeating unit represented by Formula (I) is preferably a repeating unit represented by Formula (A-1) to Formula (A-4).
  • R represents the same meaning as described above.
  • Examples of the repeating unit represented by formula (A-1) to formula (A-4) include the repeating units represented by formula (B-1) to formula (B-18).
  • R represents the same meaning as described above.
  • the formula (B-1), the formula (B-2), the formula ( B-3), Formula (B-4), Formula (B-5), Formula (B-8), Formula (B-10), Formula (B-11), Formula (B-12), Formula (B -13), the formula (B-15), the formula (B-16) and the repeating unit represented by the formula (B-18) are preferable, and the formula (B-1), the formula (B-4), the formula (B -5), the formula (B-11), the formula (B-12), and the repeating unit represented by the formula (B-15) are more preferable, the formula (B-1), the formula (B-5), the formula ( The repeating unit represented by B-12) and formula (B-15) is more preferred, and the repeating unit represented by formula (B-1) is particularly preferred.
  • the polymer compound used in the photoelectric conversion element of the present invention preferably has a repeating unit other than the repeating unit represented by the formula (I).
  • a repeating unit include an aromatic repeating unit different from the repeating unit represented by formula (I), and the repeating unit represented by formula (II) and the formula (III) described above. Are preferred.
  • the repeating unit represented by formula (II) include the repeating units represented by formula (C-1) to formula (C-12).
  • the alkyl group represented by may be linear, branched, or cyclic.
  • the alkyl group may have a substituent, and examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group usually has 1 to 30 carbon atoms. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl.
  • hexyl group isohexyl group, 3-methylpentyl group, 21-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl And chain alkyl groups such as a group, tetradecyl group, hexadecyl tomb, octadecyl group and eicosyl group, and cyclic alkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group.
  • the alkyl part of the alkoxy group represented by may be linear, branched or cyclic.
  • the carbon number of the alkoxy group is usually 1-20.
  • the alkoxy group may have a substituent, and examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and an alkoxy group having 1 to 20 carbon atoms.
  • alkoxy group examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group Group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group and lauryloxy group.
  • alkoxy group substituted with a substituent examples include a methoxymethyloxy group and a 2-methoxyethyloxy group.
  • R 1 Is a group obtained by removing one hydrogen on an aromatic ring from an aromatic hydrocarbon compound.
  • the aryl group usually has 6 to 60 carbon atoms.
  • the aryl group may have a substituent, and examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and an alkoxy group having 1 to 20 carbon atoms.
  • Specific examples of the aryl group include a phenyl group, a C1 to C12 alkylphenyl group (C1 to C12 represents 1 to 12 carbon atoms, and the same shall apply hereinafter), a 1-naphthyl group, and a 2-naphthyl group. Groups.
  • aryl group substituted with a substituent examples include a C1-C12 alkoxyphenyl group.
  • R 1 Is a group obtained by removing one hydrogen on an aromatic ring from an aromatic heterocyclic compound.
  • the heteroaryl group usually has 2 to 60 carbon atoms.
  • the heteroaryl group may have a substituent. Examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms. And aryl groups having 6 to 60 carbon atoms.
  • heteroaryl group examples include a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, and a triazinyl group.
  • the repeating unit represented by the formula (III) examples include repeating units represented by the formulas (E-1) to (E-16). Where R 1 Represents the same meaning as described above.
  • the repeating units represented by (E-5), formula (E-9), formula (E-12) and formula (E-13) are preferred, and formula (E-1), formula (E-5) and formula are preferred.
  • the repeating unit represented by (E-9) is more preferable, and the repeating unit represented by Formula (E-1) and Formula (E-9) is particularly preferable.
  • the polymer compound having a repeating unit represented by formula (I) used in the present invention is used as a photoelectric conversion element, the polymer compound is based on the entire polymer compound from the viewpoint of photoelectric conversion efficiency.
  • the weight fraction of the repeating unit represented by the formula (I) is preferably 0.01 to 0.80, more preferably 0.03 to 0.50, and 0.05 to 0.20. It is particularly preferred.
  • the repeating unit represented by formula (I), formula (II), and formula (III) It is preferable from the viewpoint of photoelectric conversion efficiency.
  • the fraction of the repeating unit represented by the formula (I) is preferably 0.02 to 0.80, more preferably 0.05 to 0.50 from the viewpoint of photoelectric conversion efficiency. 0.10 to 0.30 is particularly preferable.
  • the polymer compound having a repeating unit represented by the formula (I) is preferably a polymer compound having a number average molecular weight of 3,000 or more, and a polymer compound having a number average molecular weight of 3,000 to 10,000,000. More preferably, a polymer compound having a number average molecular weight of 8,000 to 5,000,000 is more preferable, and a polymer compound having a number average molecular weight of 10,000 to 1,000,000 is particularly preferable. If the number average molecular weight is lower than 3,000, defects may occur in film formation during device fabrication, and if it exceeds 10,000,000, solubility in a solvent and applicability during device fabrication may be degraded. .
  • the number average molecular weight refers to the number average molecular weight in terms of polystyrene calculated using a standard sample of polystyrene using gel permeation chromatography (GPC).
  • the polymer compound having a repeating unit represented by the formula (I) preferably has a high solubility in a solvent in order to facilitate the production of the device.
  • the polymer compound used in the photoelectric conversion element of the present invention preferably has a solubility capable of producing a solution containing 0.01 wt% or more of the polymer compound, and a solution containing 0.1 wt% or more is preferable.
  • the polymer compound of the present invention can exhibit high electron and / or hole transport properties, when a thin film containing the polymer compound is used for an element, electrons or holes injected from the electrode, or light absorption. The charge generated by can be transported. Taking advantage of these characteristics, it can be suitably used for various electronic devices such as a photoelectric conversion device, an organic thin film transistor, and an organic electroluminescence device. Hereinafter, these elements will be described individually.
  • the thickness of the thin film containing the polymer compound of the present invention is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
  • the photoelectric conversion element containing the polymer compound of the present invention has one or more active layers containing the polymer compound of the present invention between a pair of electrodes, at least one of which is transparent or translucent.
  • a preferable form of the photoelectric conversion element containing the polymer compound of the present invention is formed from a pair of electrodes, at least one of which is transparent or translucent, and an organic composition of a p-type organic semiconductor and an n-type organic semiconductor. Having an active layer.
  • the polymer compound of the present invention is preferably used as a p-type organic semiconductor.
  • the photoelectric conversion element manufactured using the polymer compound of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode far from the substrate is preferably transparent or translucent.
  • the first active layer containing the polymer compound of the present invention is interposed between a pair of electrodes, at least one of which is transparent or translucent, and the first A photoelectric conversion element including a second active layer containing an electron accepting compound such as a fullerene derivative adjacent to the active layer.
  • the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film.
  • indium oxide, zinc oxide, tin oxide, and their composite materials such as indium tin oxide (ITO), indium zinc oxide, etc., conductive materials, NESA, gold, platinum, silver, Copper is used, and ITO, indium / zinc / oxide, and tin oxide are preferable.
  • Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • As the electrode material an organic transparent conductive film such as polyaniline and derivatives thereof, polythiophene and derivatives thereof may be used.
  • One electrode may not be transparent, and a metal, a conductive polymer, etc. can be used as an electrode material of the electrode.
  • the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. And one or more alloys selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin. Examples include alloys with metals, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof.
  • the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • An additional intermediate layer other than the active layer may be used as a means for improving the photoelectric conversion efficiency.
  • the material used for the intermediate layer include alkali metals such as lithium fluoride, halides of alkaline earth metals, oxides such as titanium oxide, and PEDOT (poly-3,4-ethylenedioxythiophene).
  • the active layer may contain the polymer compound of the present invention alone or in combination of two or more.
  • compounds other than the polymer compound of the present invention can be mixed and used as the electron donating compound and / or the electron accepting compound in the active layer.
  • the electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
  • the electron-donating compound in addition to the polymer compound of the present invention, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, Examples thereof include polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof.
  • the electron-accepting compound in addition to the polymer compound of the present invention, for example, carbon materials, metal oxides such as titanium oxide, oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof Derivatives, anthraquinones and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof Derivatives, polyfluorenes and derivatives thereof, phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (basocproin), fullerenes and fullerene derivatives Details, titanium oxide, carbon nanotubes, fulleren
  • Fullerene and fullerene derivatives include C 60 , C 70 , C 76 , C 78 , C 84 And derivatives thereof.
  • the fullerene derivative represents a compound in which at least a part of fullerene is modified.
  • Examples of the fullerene derivative include a compound represented by the formula (15), a compound represented by the formula (16), a compound represented by the formula (17), and a compound represented by the formula (18).
  • R a Is a group having a substituted or unsubstituted alkyl group, aryl group, heteroaryl group or ester structure. Multiple R a May be the same or different.
  • R b Represents a substituted or unsubstituted alkyl group or aryl group.
  • R a and R b The definition and specific examples of the substituted or unsubstituted alkyl group and aryl group represented by are the same as the definition and specific examples of the substituted or unsubstituted alkyl group and aryl group represented by R.
  • R a Is a remaining atomic group obtained by removing two hydrogen atoms from an aromatic heterocyclic compound which may have a substituent. Examples of the heteroaryl group include thienyl group, pyrrolyl group, furyl group, pyridyl group, quinolyl group, isoquinolyl group and the like.
  • R a Examples of the group having an ester structure represented by the formula (19) include a group represented by the formula (19).
  • R c Represents a substituted or unsubstituted alkyl group, aryl group or heteroaryl group.
  • C 60 Specific examples of fullerene derivatives include the following.
  • C 70 Specific examples of fullerene derivatives include the following.
  • fullerene derivatives include [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -phenyl C61 butyric acid methyl ester), [6,6] phenyl-C71 butyric acid methyl ester (C70PCBM). , [6,6] -Phenyl C71 butyric acid methyl ester), [6,6] phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C85 butyric acid methyl ester), [6,6] thienyl- And C61 butyric acid methyl ester ([6,6] -Thienyl C61 butyric acid methyl ester).
  • the amount of the fullerene derivative is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention. More preferably, it is ⁇ 500 parts by weight.
  • the active layer is a thin film of a composition comprising the polymer compound of the present invention and an electron accepting compound, and the thickness is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm. More preferably, it is 20 nm to 200 nm.
  • the method for producing the active layer may be produced by any method, and examples thereof include film formation from a solution containing a polymer compound and film formation by a vacuum deposition method.
  • a preferred method for producing a photoelectric conversion element is a method for producing an element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode, Applying a solution (ink) containing the polymer compound of the present invention and a solvent on the first electrode by a coating method to form an active layer; and forming a second electrode on the active layer. It is a manufacturing method of the element which has.
  • the solvent used for film formation from a solution may be any one that dissolves the polymer compound of the present invention.
  • the solvent examples include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, Examples thereof include halogenated hydrocarbon solvents such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, and trichlorobenzene, and ether solvents such as tetrahydrofuran and tetrahydropyran.
  • hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicycl
  • the polymer compound of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
  • the surface tension of the solvent at 25 ° C. is preferably larger than 15 mN / m, more preferably larger than 15 mN / m and smaller than 100 mN / m, larger than 25 mN / m and larger than 60 mN / m. It is more preferable that the value is small.
  • the polymer compound of the present invention can also be used for organic thin film transistors.
  • the organic thin film transistor has a configuration including a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between these electrodes, and a gate electrode for controlling the amount of current passing through the current path.
  • the organic semiconductor layer is constituted by the organic thin film described above. Examples of such an organic thin film transistor include a field effect type and an electrostatic induction type.
  • a field effect organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, a gate electrode for controlling the amount of current passing through the current path, and an organic semiconductor layer and a gate electrode It is preferable to provide an insulating layer disposed between the two.
  • the source electrode and the drain electrode are preferably provided in contact with the organic semiconductor layer (active layer), and the gate electrode is preferably provided with an insulating layer in contact with the organic semiconductor layer interposed therebetween.
  • the organic semiconductor layer is constituted by an organic thin film containing the polymer compound of the present invention.
  • the static induction organic thin film transistor has a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, and a gate electrode that controls the amount of current passing through the current path. It is preferable to be provided in the organic semiconductor layer.
  • the source electrode, the drain electrode, and the gate electrode provided in the organic semiconductor layer are preferably provided in contact with the organic semiconductor layer.
  • the structure of the gate electrode may be a structure in which a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode.
  • An electrode is mentioned.
  • the organic semiconductor layer is constituted by an organic thin film containing the polymer compound of the present invention.
  • the polymer compound of the present invention can also be used for an organic electroluminescence device (organic EL device).
  • An organic EL element has a light emitting layer between a pair of electrodes, at least one of which is transparent or translucent.
  • the organic EL element may include a hole transport layer and an electron transport layer in addition to the light emitting layer.
  • the polymer compound of the present invention is contained in any one of the light emitting layer, the hole transport layer, and the electron transport layer.
  • the light emitting layer may contain a charge transport material (which means a generic term for an electron transport material and a hole transport material).
  • a charge transport material which means a generic term for an electron transport material and a hole transport material.
  • an organic EL element an element having an anode, a light emitting layer, and a cathode, and an anode, a light emitting layer, and an electron having an electron transport layer containing an electron transport material adjacent to the light emitting layer between the cathode and the light emitting layer.
  • the photoelectric conversion element using the polymer compound of the present invention is operated as an organic thin film solar cell by generating photovoltaic power between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. Can do. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • the organic thin film transistor can be used as a pixel driving element used for controlling the pixel of an electrophoretic display, a liquid crystal display, an organic electroluminescence display, etc., and controlling the uniformity of screen luminance and the screen rewriting speed.
  • the organic thin film solar cell can basically have the same module structure as a conventional solar cell module.
  • the solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side.
  • a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known.
  • the organic thin-film solar cell manufactured using the polymer compound of the present invention can also be appropriately selected from these module structures depending on the purpose of use, place of use and environment.
  • a typical super straight type or substrate type module cells are arranged at regular intervals between support substrates that are transparent on one or both sides and subjected to antireflection treatment, and adjacent cells are connected by metal leads or flexible wiring.
  • the current collector electrode is connected to the outer edge portion, and the generated power is taken out to the outside.
  • plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency.
  • EVA ethylene vinyl acetate
  • the surface protection layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side.
  • the periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material.
  • a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
  • a solar cell using a flexible support such as a polymer film
  • cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material.
  • the battery body can be produced.
  • a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 may be used.
  • a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
  • Synthesis Example 1 Synthesis of Compound 2 In a four-necked flask, 2.674 g (15.00 mmol) of Compound 1, 6.083 g (31.50 mmol) of bromooctane, 62.25 mg (2.5 mol%) of potassium iodide, and 50 mL of dimethyl sulfoxide were added. Argon bubbling was performed at room temperature (25 ° C.) for 30 minutes. After cooling to 0 ° C. with an ice bath, 2.525 g (45.00 mmol) of potassium hydroxide was added and reacted for 6 days.
  • NBS N-bromosuccinimide
  • the toluene solution was passed through an alumina / silica gel column, and the resulting solution was poured into methanol to precipitate a polymer.
  • the polymer was filtered and dried to obtain 150 mg of polymer compound A.
  • the weight average molecular weight (Mw) was 8,000
  • the number average molecular weight (Mn) was 6,000.
  • Synthesis Example 5 Synthesis of Compound 8 In a 1000 mL four-necked flask in which the air in the flask was replaced with argon, 13.0 g (80.0 mmol) of 3-bromothiophene and 80 mL of diethyl ether were added to obtain a uniform solution. While maintaining the solution at ⁇ 78 ° C., 31 mL of a 2.6M n-butyllithium (n-BuLi) hexane solution (n-BuLi was 80.6 mmol) was added dropwise. After reacting at ⁇ 78 ° C.
  • reaction solution was cooled to ⁇ 25 ° C., and a solution in which 60 g (236 mmol) of iodine was dissolved in 1000 mL of diethyl ether was added dropwise over 30 minutes. After dropping, the mixture was stirred at room temperature (25 ° C.) for 2 hours, and 50 mL of 1N aqueous sodium thiosulfate solution was added to stop the reaction. After extracting the reaction product with diethyl ether, the reaction product was dried with magnesium sulfate, filtered, and the filtrate was concentrated to obtain 35 g of a crude product. The crude product was purified by recrystallization using chloroform to obtain 28 g of Compound 8.
  • Synthesis Example 6 Synthesis of Compound 9 10.5 g (23.4 mmol) of bisiodothienylmethanol (Compound 8) and 150 mL of methylene chloride were added to a 300 mL four-necked flask to obtain a uniform solution. To the solution, 7.50 g (34.8 mmol) of pyridinium chlorochromate was added and stirred at room temperature (25 ° C.) for 10 hours. The reaction solution was filtered to remove insolubles, and then the filtrate was concentrated to obtain 10.0 g (22.4 mmol) of Compound 9.
  • Synthesis Example 7 Synthesis of Compound 10 In a 300 mL flask in which the air in the flask was replaced with argon, 10.0 g (22.4 mmol) of compound 9 and 6.0 g (94.5 mmol) of copper powder, dehydrated N, N-dimethylformamide (hereinafter referred to as DMF). 120 mL) was added and stirred at 120 ° C. for 4 hours. After the reaction, the flask was cooled to room temperature (25 ° C.), and the reaction solution was passed through a silica gel column to remove insoluble components. Thereafter, 500 mL of water was added, and the reaction product was extracted with chloroform.
  • DMF dehydrated N, N-dimethylformamide
  • the toluene solution was passed through an alumina / silica gel column, and the resulting solution was poured into methanol to precipitate a polymer.
  • the polymer was filtered and dried to obtain 291 mg of polymer compound B.
  • the weight average molecular weight (Mw) was 32,000, and the number average molecular weight (Mn) was 16,000.
  • Synthesis Example 14 Synthesis of Compound 18 In a 200 mL flask in which the air in the flask was replaced with argon, 1.78 g (10.0 mmol) of compound 17, 5.83 g (25.0 mmol) of 2-ethylhexyl bromide, and 41.5 mg (0.25 mmol) of potassium iodide. ), 1.68 g (30.0 mmol) of potassium hydroxide was dissolved in 35 mL of dimethyl sulfoxide and stirred at room temperature (25 ° C.) for 24 hours.
  • 2-yl) -2,1,3-benzothiadiazole (manufactured by Sigma-Aldrich) 388.1 mg (1.00 mmol), methyltrialkylammonium chloride (trade name Aliquat 336 (registered trademark), manufactured by Sigma-Aldrich) was dissolved in 20 ml of toluene, and the resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 2.25 mg of palladium acetate, 12.3 mg of tris (2-methoxyphenyl) phosphine (12.3 mg) and 6.5 mL of 16.7 wt% aqueous sodium carbonate solution were added, and the mixture was added at 100 ° C. for 5 hours. Stirring was performed.
  • polymer compound C As for the molecular weight (polystyrene conversion) of the high molecular compound C measured by GPC, Mw was 30,000 and Mn was 14,000.
  • Mw As for the molecular weight (polystyrene conversion) of the high molecular compound C measured by GPC, Mw was 30,000 and Mn was 14,000.
  • the polymer compound B and fullerene C60PCBM (phenyl C61-butyric acid methyl ester, manufactured by Frontier Carbon Co.) have a ratio of the weight of C60PCBM to the weight of the polymer compound B of 3.
  • Ink 1 was produced by dissolving in orthodichlorobenzene as described above.
  • the total weight of the polymer compound B and the C60PCBM was 2.0% by weight with respect to the weight of the ink 1.
  • the ink 1 was applied on a glass substrate by spin coating to prepare an organic film containing the polymer compound B.
  • the film thickness was about 100 nm.
  • the light absorption edge wavelength of the organic film thus produced was 750 nm.
  • lithium fluoride was vapor-deposited with a thickness of 2 nm on the organic film by a vacuum vapor deposition machine, and then Al was vapor-deposited with a thickness of 100 nm to produce an organic thin film solar cell.
  • the shape of the obtained organic thin film solar cell was a square of 2 mm ⁇ 2 mm.
  • a solar simulator (trade name OTENTO-SUNII: AM1.5G filter, irradiance 100 mW / cm, manufactured by Spectrometer Co., Ltd.) was applied to the obtained organic thin film solar cell. 2 ) was irradiated with constant light, and the generated current and voltage were measured to determine photoelectric conversion efficiency, short-circuit current density, open-circuit voltage, and fill factor.
  • Jsc (short circuit current density) is 9.63 mA / cm 2 Voc (open end voltage) was 0.67 V
  • ff (fill factor (curve factor)) was 0.62
  • photoelectric conversion efficiency ( ⁇ ) was 4.03%.
  • Table 1 An ink and an organic thin film solar cell were prepared and evaluated in the same manner as in Example 3 except that the polymer compound A was used instead of the polymer compound B.
  • Jsc (short circuit current density) is 9.90 mA / cm 2 Voc (open end voltage) was 0.61 V
  • ff (fill factor) was 0.44
  • the photoelectric conversion efficiency ( ⁇ ) was 2.62%.
  • Table 1 The results are shown in Table 1.
  • Comparative Example 1 An ink and an organic thin film solar cell were prepared and evaluated in the same manner as in Example 3 except that the polymer compound C was used instead of the polymer compound B. Jsc (short circuit current density) is 4.61 mA / cm. 2 Voc (open end voltage) was 0.60 V, ff (fill factor (curve factor)) was 0.33, and photoelectric conversion efficiency ( ⁇ ) was 0.91%. The results are shown in Table 1.
  • Synthesis Example 17 Synthesis of Compound 21
  • a 500 ml flask 10.2 g (70.8 mmol) of 4,5-difluoro-1,2-diaminobenzene (Compound 20) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 150 mL of pyridine were added to obtain a homogeneous solution.
  • 16.0 g (134 mmol) of thionyl chloride was dropped into the flask. After dropping, the flask was warmed to 25 ° C. and reacted for 6 hours. Thereafter, 250 ml of water was added to the reaction solution, and chloroform was further added to extract the reaction product.
  • the flask was cooled to room temperature (25 ° C.) and diluted with 100 mL of chloroform.
  • the obtained solution was poured into 300 mL of 5 wt% aqueous sodium sulfite solution and stirred for 1 hour.
  • the organic layer of the obtained mixture was separated with a separatory funnel, and the aqueous layer was extracted with chloroform three times.
  • the obtained extract was mixed with the organic layer, and the mixed solution was dried over sodium sulfate. After filtration, the filtrate was concentrated with an evaporator and the solvent was distilled off.
  • the obtained yellow solid was dissolved in 90 mL of methanol heated to 55 ° C., and then cooled to 25 ° C.
  • the solution was kept at ⁇ 78 ° C., and 4.37 mL (11.4 mmol) of 2.6M butyllithium (n-BuLi) in hexane was added dropwise to the solution over 10 minutes. After dropping, the mixture was stirred at ⁇ 78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 2 hours. Thereafter, the flask was cooled to ⁇ 78 ° C., and 4.07 g (12.5 mmol) of tributyltin chloride was added. After the addition, the mixture was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 3 hours.
  • Example 5 Synthesis of polymer compound D In a 100 mL flask in which the air in the flask was replaced with argon, 500 mg (0.475 mmol) of compound 23, 123 mg (0.373 mmol) of compound 22, 24 mg (0.088 mmol) of compound 24, and 32 ml of toluene were uniformly mixed. It was. The resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 6.33 mg (0.007 mmol) of tris (dibenzylideneacetone) dipalladium and 12.6 mg of tris (2-toluyl) phosphine were added to the toluene solution, and the mixture was stirred at 100 ° C. for 6 hours.
  • the organic layer is washed twice with 50 ml of water, then twice with 50 mL of 3 wt% aqueous acetic acid, then twice with 50 mL of water and then twice with 50 mL of water.
  • the resulting solution was poured into methanol to precipitate a polymer.
  • the polymer was filtered and dried, and the resulting polymer was dissolved again in 30 mL of o-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and then dried to obtain 40 mg of a purified polymer.
  • polymer compound D this polymer is referred to as polymer compound D.
  • Example 6 Preparation and evaluation of ink and organic thin-film solar cell An ink and an organic thin film solar cell were prepared and evaluated in the same manner as in Example 3 except that the polymer compound D was used instead of the polymer compound B. Jsc (short circuit current density) is 12.64 mA / cm 2 Voc (open end voltage) was 0.75 V, ff (fill factor (curve factor)) was 0.61, and photoelectric conversion efficiency ( ⁇ ) was 5.74%. The results are shown in Table 2.
  • Synthesis Example 20 Synthesis of Compound 25 To a four-necked flask, 10.00 g (48.02 mmol) of Compound 11 and 400 mL of tetrahydrofuran were added, and argon bubbling was performed at room temperature (25 ° C.) for 30 minutes. After cooling the reaction solution to ⁇ 40 ° C., 144 mL of diethyl ether solution containing 1.0 mol / L of dodecylmagnesium bromide was added and stirred while raising the temperature to 0 ° C. After 3 hours, disappearance of the raw material was confirmed by liquid chromatography.
  • Synthesis Example 21 Synthesis of Compound 26 To the four-necked flask, a total amount of the mixed oil containing Compound 25 and 200 mL of toluene were added, and argon bubbling was performed at room temperature (25 ° C.) for 30 minutes. Next, 1000 mg of para-toluenesulfonic acid monohydrate was added to the reaction solution, and then the mixture was heated to 120 ° C. and stirred. After 1 hour, disappearance of the raw materials was confirmed by liquid chromatography.
  • the solution was kept at ⁇ 78 ° C., and 9.04 mL (23.5 mmol) of 2.6M butyllithium (n-BuLi) in hexane was added dropwise to the solution over 10 minutes. After dropping, the mixture was stirred at ⁇ 78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 2 hours. Thereafter, the flask was cooled to ⁇ 78 ° C., and 8.43 g (25.9 mmol) of tributyltin chloride was added. After the addition, the mixture was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 3 hours.
  • Example 7 Synthesis of polymer compound E In a 100 mL flask in which the air in the flask was replaced with argon, 200 mg (0.190 mmol) of compound 23, 211 mg (0.190 mmol) of compound 27, 96 mg (0.291 mmol) of compound 22, and 20 mg (0. 074 mmol) and 32 ml of toluene to make a uniform solution. The resulting toluene solution was bubbled with argon for 30 minutes.
  • the precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours each using a Soxhlet extractor.
  • the polymer remaining in the cylindrical filter paper was dissolved in 100 mL of o-dichlorobenzene, 2 g of sodium diethyldithiocarbamate and 40 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer is washed twice with 50 ml of water, then twice with 50 mL of a 3 wt% aqueous acetic acid solution, then twice with 50 mL of water and then twice with 50 mL of water.
  • Example 8 Production and evaluation of ink and organic thin film solar cell An ink and an organic thin film solar cell were prepared and evaluated in the same manner as in Example 3 except that the polymer compound E was used instead of the polymer compound B.
  • the present invention is useful because it provides a photoelectric conversion element with high photoelectric conversion efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thin Film Transistor (AREA)

Abstract

Disclosed is a photoelectric conversion element which comprises a pair of electrodes and an organic layer that is arranged between the electrodes and contains a polymer compound having a repeating unit represented by formula (I). The photoelectric conversion element has high photoelectric conversion efficiency. In the formula, Ar represents an arylene group; R represents a fluorine atom or a monovalent organic group having a fluorine atom; and the two R moieties may be the same or different.

Description

光電変換素子Photoelectric conversion element
 本発明は、光電変換素子に関する。 The present invention relates to a photoelectric conversion element.
 π共役系構造を有する高分子化合物は、可視光領域及び可視光の周辺領域の光を吸収し、導電特性を有することから、光電変換素子への適用が検討されている。
 π共役系構造を有する高分子化合物を含む有機層を備えた光電変換素子としては、式(A)で表される繰り返し単位と式(B)で表される繰り返し単位とを有する高分子化合物を含む有機層を備えた光電変換素子が知られている(WO2007/011739)。
Figure JPOXMLDOC01-appb-I000016
 しかしながら、上記光電変換素子は、光電変換効率が必ずしも高くない。
Since a high molecular compound having a π-conjugated structure absorbs light in a visible light region and a peripheral region of visible light and has a conductive property, application to a photoelectric conversion element has been studied.
As a photoelectric conversion element provided with an organic layer containing a polymer compound having a π-conjugated structure, a polymer compound having a repeating unit represented by the formula (A) and a repeating unit represented by the formula (B) A photoelectric conversion element including an organic layer is known (WO2007 / 011739).
Figure JPOXMLDOC01-appb-I000016
However, the photoelectric conversion element does not necessarily have high photoelectric conversion efficiency.
 本発明は、光電変換効率が高い光電変換素子を提供する。
 即ち、本発明は、一対の電極と、該電極の間に式(I)で表される繰り返し単位を有する高分子化合物を含む有機層を有する光電変換素子を提供する。
Figure JPOXMLDOC01-appb-I000017
式中、Arは、アリーレン基を表す。Rはフッ素原子又はフッ素原子を有する1価の有機基を表す。2個あるRは同一でも相異なってもよい。
 また、本発明は、式(I)で表される繰り返し単位の他に、式(II)及び、式(III)で表される繰り返し単位を含む有機層を有する前記光電変換素子を提供する。
Figure JPOXMLDOC01-appb-I000018
式中、Xは、硫黄原子又は酸素原子を表す。Zは、=CH−、=C(R)−又は窒素原子を表す。2個あるZは、同一でも相異なってもよい。Rは、前述と同じ意味を表す。
Figure JPOXMLDOC01-appb-I000019
式中、Eは、硫黄原子、酸素原子、セレン原子、−NH−又は−N(R)−を表わす。2個あるEは同一でも相異なってもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基又はヘテロアリール基を表す。複数個あるRは、同一であっても相異なってもよい。Yは、2価の基を表す。Rは前述と同じ意味を表す。
実施態様の記述
 以下、本発明を詳細に説明する。
 本発明の光電変換素子は、一対の電極と、該電極の間に式(I)で表される繰り返し単位を有する高分子化合物を含む有機層を有する。
Figure JPOXMLDOC01-appb-I000020
式中、Ar及びRは前述と同じ意味を表す。
 式(I)において、Arで表されるアリーレン基とは、置換基を有していてもよい芳香族炭化水素から芳香環上の水素原子2個を除いた基である。置換基としては、例えば、臭素原子、塩素原子、ヨウ素原子及び炭素数1~20のアルコキシ基が挙げられる。アリーレン基の炭素数は、通常、6~60であり、6~16が好ましく、6~10がより好ましい。アリーレン基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、テトラセンジイル基、ペンタセンジイル基及びピレンジイル基が挙げられる。
 Rは、フッ素原子又はフッ素原子を有する1価の有機基を表す。フッ素原子を有する1価の有機基としては、例えば、フッ素原子で置換されたアルキル基、フッ素原子で置換されたアルコキシ基、フッ素原子で置換されたアリール基及びフッ素原子で置換されたヘテロアリール基が挙げられる。
 フッ素原子で置換されたアルキル基、フッ素原子で置換されたアルコキシ基、フッ素原子で置換されたアリール基、及びフッ素原子で置換されたヘテロアリール基は、さらにフッ素原子以外の置換基で置換されていてもよく、該置換基としては、例えば、臭素原子、塩素原子、及び炭素数1~12のアルコキシ基が挙げられる。
 ここで、アルキル基は、直鎖状でも分岐状でもよく、環状であってもよい。アルキル基の炭素数は、通常1~30である。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル墓、ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、ヘキシル基、イソヘキシル基、3−メチルペンチル基、2一メチルペンチル基、1−メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基及びエイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基及びアダマンチル基等の環状アルキル基が挙げられる。
 アルコキシ基のアルキル部分は、直鎖状でも分岐状でもよく、環状であってもよい。アルコキシ基の炭素数は、通常1~20であり、アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基及びラウリルオキシ基が挙げられる。フッ素原子以外の置換基で置換されたアルコキシ基としては、例えば、メトキシメチルオキシ基、2−メトキシエチルオキシ基が挙げられる。
 アリール基は、芳香族炭化水素化合物から芳香環上の水素1個を除いた基である。アリール基の炭素数は、通常6~60である。アリール基の具体例としては、フェニル基、C1~C12アルキルフェニル基(C1~C12は、炭素数1~12であることを示す。以下も同様である。)、1−ナフチル基及び2−ナフチル基が挙げられる。フッ素原子以外の置換基で置換されていてもよいアリール基の具体例としては、C1~C12アルコキシフェニル基が挙げられる。
 ヘテロアリール基は、芳香族複素環式化合物から芳香環上の水素1個を除いた基である。ヘテロアリール基の炭素数は、通常2~60である。ヘテロアリール基の具体例としては、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基及びトリアジニル基が挙げられる。
 Rの具体例としては、フッ素原子(式(R−1))及び式(R−2)~式(R−11)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000021
 光電変換素子の光電変換効率を高める観点から、Rは、フッ素原子、式(R−2)、式(R−5)、式(R−8)及び式(R−10)で表される基が好ましく、フッ素原子及び式(R−2)で表される基がより好ましく、フッ素原子が特に好ましい。
 光電変換素子の光電変換効率を高める観点から、式(I)で表される繰り返し単位は、式(A−1)~式(A−4)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-I000022
(式中、Rは前述と同じ意味を表す。)
 式(A−1)~式(A−4)で表される繰り返し単位としては、式(B−1)~式(B−18)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
式中、Rは前述と同じ意味を表す。
 光電変換素子の光電変換効率を高める観点から、式(B−1)~式(B−18)で表される繰り返し単位の中でも、式(B−1)、式(B−2)、式(B−3)、式(B−4)、式(B−5)、式(B−8)、式(B−10)、式(B−11)、式(B−12)、式(B−13)、式(B−15)、式(B−16)及び式(B−18)で表される繰り返し単位が好ましく、式(B−1)、式(B−4)、式(B−5)、式(B−11)、式(B−12)及び式(B−15)で表される繰り返し単位がより好ましく、式(B−1)、式(B−5)、式(B−12)及び式(B−15)で表される繰り返し単位がさらに好ましく、式(B−1)で表される繰り返し単位が特に好ましい。
 本発明の光電変換素子に用いられる高分子化合物は、式(I)で表される繰り返し単位以外の繰り返し単位を有していることが好ましい。そのような繰り返し単位としては、式(I)で表される繰り返し単位とは異なる芳香族の繰り返し単位が挙げられ、前述の式(II)で表される繰り返し単位及び式(III)で表される繰り返し単位が好ましい。
 式(II)で表される繰り返し単位としては、式(C−1)~式(C−12)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-I000025
 光電変換素子の光電変換効率を高める観点から、式(C−1)~式(C−12)で表される繰り返し単位の中でも、式(C−1)、式(C−2)、式(C−6)、式(C−7)、式(C−8)及び式(C−12)で表される繰り返し単位が好ましく、式(C−1)、式(C−6)、式(C−7)及び式(C−12)で表される繰り返し単位がより好ましく、式(C−1)及び式(C−6)で表される繰り返し単位が特に好ましい。
 式(III)中、Yで表される2価の基としては、例えば、式(Y−1)~式(Y−4)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000026
式中、Rは、前述と同じ意味を表す。
 Rで表されるアルキル基は、直鎖状でも分岐状でもよく、環状であってもよい。アルキル基は置換基を有していてもよく、該置換基としては、例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。アルキル基の炭素数は、通常1~30である。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル墓、ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、ヘキシル基、イソヘキシル基、3−メチルペンチル基、2一メチルペンチル基、1−メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基及びエイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基及びアダマンチル基等の環状アルキル基が挙げられる。
 Rで表されるアルコキシ基のアルキル部分は、直鎖状でも分岐状でもよく、環状であってもよい。アルコキシ基の炭素数は、通常1~20である。アルコキシ基は置換基を有していてもよく、該置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子及び炭素数1~20のアルコキシ基が挙げられる。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基及びラウリルオキシ基が挙げられる。置換基で置換されたアルコキシ基としては、例えば、メトキシメチルオキシ基、2−メトキシエチルオキシ基が挙げられる。
 Rで表されるアリール基は、芳香族炭化水素化合物から芳香環上の水素1個を除いた基である。アリール基の炭素数は、通常6~60である。アリール基は置換基を有していてもよく、該置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子及び炭素数1~20のアルコキシ基が挙げられる。アリール基の具体例としては、フェニル基、C1~C12アルキルフェニル基(C1~C12は、炭素数1~12であることを示す。以下も同様である。)、1−ナフチル基及び2−ナフチル基が挙げられる。置換基で置換されたアリール基の具体例としては、C1~C12アルコキシフェニル基が挙げられる。
 Rで表されるヘテロアリール基は、芳香族複素環式化合物から芳香環上の水素1個を除いた基である。ヘテロアリール基の炭素数は、通常2~60である。ヘテロアリール基は置換基を有していてもよく、該置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基及び炭素数6~60のアリール基が挙げられる。ヘテロアリール基の具体例としては、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基及びトリアジニル基が挙げられる。
 式(III)で表される繰り返し単位としては、例えば、式(E−1)~(E−16)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-I000027
式中、Rは前述と同じ意味を表す。
 光電変換素子の光電変換効率を高める観点からは、式(E−1)~式(E−16)で表される繰り返し単位の中でも、式(E−1)、式(E−4)、式(E−5)、式(E−9)、式(E−12)及び式(E−13)で表される繰り返し単位が好ましく、式(E−1)、式(E−5)及び式(E−9)で表される繰り返し単位がより好ましく、式(E−1)及び式(E−9)で表される繰り返し単位が特に好ましい。
 本発明に用いられる式(I)で表される繰り返し単位を有する高分子化合物を光電変換素子として用いる場合、該高分子化合物は、光電変換効率の観点から、該高分子化合物全体に対して、式(I)で表される繰り返し単位の重量分率を0.01~0.80とすることが好ましく、0.03~0.50とすることがより好ましく、0.05~0.20有することが特に好ましい。
 本発明に用いられる式(I)で表される繰り返し単位を有する高分子化合物を、光電変換素子として用いる場合、式(I)、式(II)及び、式(III)で表される繰り返し単位を有する事が、光電変換効率の観点から好ましい。この時、式(I)で表される繰り返し単位の分率は、光電変換効率の観点から0.02~0.80とすることが好ましく、0.05~0.50とすることがより好ましく、0.10~0.30とすることが特に好ましい。
 式(I)で表される繰り返し単位を有する高分子化合物は、数平均分子量が3,000以上の高分子化合物が好ましく、数平均分子量が3,000~10,000,000の高分子化合物がより好ましく、数平均分子量が8,000~5,000,000の高分子化合物がさらに好ましく、数平均分子量が10,000~1,000,000の高分子化合物が特に好ましい。数平均分子量が3,000より低いと素子作製時の膜形成に欠陥が生じることがあり、10,000,000より大きいと溶媒への溶解性や素子作製時の塗布性が低下することがある。
 ここで、数平均分子量とは、ゲルパーミエーションクロマトグラフィ(GPC)を用い、ポリスチレンの標準試料を用いて算出したポリスチレン換算の数平均分子量を指す。
 式(I)で表される繰り返し単位を有する高分子化合物は、素子の作製を容易にするため、溶媒への溶解度の高いことが望ましい。具体的には、本発明の光電変換素子に用いられる高分子化合物が、該高分子化合物を0.01wt%以上含む溶液を作製し得る溶解度を有することが好ましく、0.1wt%以上含む溶液を作製し得る溶解度を有することがより好ましく、0.4wt%以上含む溶液を作製し得る溶解度を有することがさらに好ましい。
 本発明の高分子化合物は、高い電子及び/又はホール輸送性を発揮し得ることから、該高分子化合物を含む薄膜を素子に用いた場合、電極から注入された電子やホール、或いは、光吸収によって発生した電荷を輸送することができる。 これらの特性を活かして光電変換素子、有機薄膜トランジスタ、有機エレクトロルミネッセンス素子等の種々の電子素子に好適に用いることができる。以下、これらの素子について個々に説明する。尚、本発明の高分子化合物を含む薄膜の厚さは、通常、1nm~100μm、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。
 本発明の高分子化合物を含有する光電変換素子は、少なくとも一方が透明又は半透明である一対の電極間に、本発明の高分子化合物を含む1層以上の活性層を有する。
 本発明の高分子化合物を含有する光電変換素子の好ましい形態としては、少なくとも一方が透明又は半透明である一対の電極と、p型の有機半導体とn型の有機半導体との有機組成物から形成される活性層を有する。本発明の高分子化合物は、p型の有機半導体として用いることが好ましい。
 本発明の高分子化合物を用いて製造される光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
 本発明の高分子化合物を有する光電変換素子の他の態様は、少なくとも一方が透明又は半透明である一対の電極間に、本発明の高分子化合物を含む第1の活性層と、該第1の活性層に隣接して、フラーレン誘導体等の電子受容性化合物を含む第2の活性層を含む光電変換素子である。
 透明又は半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料、NESA、金、白金、銀、銅が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。
 電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
 一方の電極は透明でなくてもよく、該電極の電極材料としては、金属、導電性高分子等を用いることができる。電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又は、1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。
 光電変換効率を向上させるための手段として活性層以外の付加的な中間層を使用してもよい。中間層として用いられる材料としては、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化チタン等の酸化物、PEDOT(ポリ−3,4−エチレンジオキシチオフェン)などが挙げられる。
 活性層は、本発明の高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。活性層のホール輸送性を高めるため、電子供与性化合物及び/又は電子受容性化合物として、本発明の高分子化合物以外の化合物を活性層中に混合して用いることもできる。なお、電子供与性化合物、電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。
 電子供与性化合物としては、本発明の高分子化合物のほか、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。
 電子受容性化合物としては、本発明の高分子化合物のほか、例えば、炭素材料、酸化チタン等の金属酸化物、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(バソクプロイン)等のフェナントロリン誘導体、フラーレン、フラーレン誘導体が挙げられ、好ましくは、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、特に好ましくはフラーレン、フラーレン誘導体である。
 フラーレン、フラーレン誘導体としてはC60、C70、C76、C78、C84及びその誘導体が挙げられる。フラーレン誘導体は、フラーレンの少なくとも一部が修飾された化合物を表す。
 フラーレン誘導体としては、例えば、式(15)で表される化合物、式(16)で表される化合物、式(17)で表される化合物、式(18)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000028
式中、Rは、置換若しくは非置換のアルキル基、アリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rは置換若しくは非置換のアルキル基又はアリール基を表す。複数個あるRは、同一であっても相異なってもよい。
 R及びRで表される置換若しくは非置換のアルキル基、アリール基の定義、具体例は、Rで表される置換若しくは非置換のアルキル基、アリール基の定義、具体例と同じである。
 Rで表されるヘテロアリール基は、置換基を有していてもよい芳香族性を有する複素環式化合物から水素原子2個を除いた残りの原子団をいう。ヘテロアリール基としては、チエニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基等が挙げられる。
 Rで表されるエステル構造を有する基は、例えば、式(19)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000029
(式中、u1は、1~6の整数を表す、u2は、0~6の整数を表す、Rは、置換若しくは非置換のアルキル基、アリール基又はヘテロアリール基を表す。)
 Rで表される置換若しくは非置換のアルキル基、アリール基、ヘテロアリール基の定義、具体例は、Rで表される置換若しくは非置換のアルキル基、アリール基、ヘテロアリール基の定義、具体例と同じである。
 C60フラーレンの誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000030
 C70フラーレンの誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000031
 また、フラーレン誘導体の例としては、[6,6]フェニル−C61酪酸メチルエステル(C60PCBM、[6,6]−Phenyl C61 butyric acid methyl ester)、[6,6]フェニル−C71酪酸メチルエステル(C70PCBM、[6,6]−Phenyl C71 butyric acid methyl ester)、[6,6]フェニル−C85酪酸メチルエステル(C84PCBM、[6,6]−Phenyl C85 butyric acid methyl ester)、[6,6]チエニル−C61酪酸メチルエステル([6,6]−Thienyl C61 butyric acid methyl ester)が挙げられる。
 活性層中に本発明の高分子化合物とフラーレン誘導体とが含まれる場合、フラーレン誘導体の量は、本発明の高分子化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。
 活性層は本発明の高分子化合物と電子受容性化合物とを含む組成物の薄膜であり、その厚さは、通常、1nm~100μm、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。
 前記活性層の製造方法は、如何なる方法で製造してもよく、例えば、高分子化合物を含む溶液からの成膜や、真空蒸着法による成膜方法が挙げられる。
 光電変換素子の好ましい製造方法は、第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有する素子の製造方法であって、該第1の電極上に本発明の高分子化合物と溶媒とを含む溶液(インク)を塗布法により塗布して活性層を形成する工程、該活性層上に第2の電極を形成する工程を有する素子の製造方法である。
 溶液からの成膜に用いる溶媒は、本発明の高分子化合物を溶解させるものであればよい。該溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル溶媒が挙げられる。本発明の高分子化合物は、通常、前記溶媒に0.1重量%以上溶解させることができる。
 溶液を用いて成膜する場合、スリットコート法、ナイフコート法、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェットコート法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スリットコート法、キャピラリーコート法、グラビアコート法、マイクログラビアコート法、バーコート法、ナイフコート法、ノズルコート法、インクジェットコート法、スピンコート法が好ましい。
 成膜性の観点からは、25℃における溶媒の表面張力が15mN/mより大きいことが好ましく、15mN/mより大きく100mN/mよりも小さいことがより好ましく、25mN/mより大きく60mN/mよりも小さいことがさらに好ましい。
 本発明の高分子化合物は、有機薄膜トランジスタにも用いることができる。有機薄膜トランジスタとしては、ソース電極及びドレイン電極と、これらの電極間の電流経路となる有機半導体層(活性層)と、この電流経路を通る電流量を制御するゲート電極とを備えた構成を有するものが挙げられ、有機半導体層が上述した有機薄膜によって構成されるものである。このような有機薄膜トランジスタとしては、電界効果型、静電誘導型等が挙げられる。
 電界効果型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層(活性層)、この電流経路を通る電流量を制御するゲート電極、並びに、有機半導体層とゲート電極との間に配置される絶縁層を備えることが好ましい。
 特に、ソース電極及びドレイン電極が、有機半導体層(活性層)に接して設けられており、さらに有機半導体層に接した絶縁層を挟んでゲート電極が設けられていることが好ましい。電界効果型有機薄膜トランジスタにおいては、有機半導体層が、本発明の高分子化合物を含む有機薄膜によって構成される。
 静電誘導型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層(活性層)、並びに電流経路を通る電流量を制御するゲート電極を有し、このゲート電極が有機半導体層中に設けられていることが好ましい。特に、ソース電極、ドレイン電極及び有機半導体層中に設けられたゲート電極が、有機半導体層に接して設けられていることが好ましい。ここで、ゲート電極の構造としては、ソース電極からドレイン電極へ流れる電流経路が形成され、且つゲート電極に印加した電圧で電流経路を流れる電流量が制御できる構造であればよく、例えば、くし形電極が挙げられる。静電誘導型有機薄膜トランジスタにおいても、有機半導体層が、本発明の高分子化合物を含む有機薄膜によって構成される。
 本発明の高分子化合物は、有機エレクトロルミネッセンス素子(有機EL素子)に用いることもできる。有機EL素子は、少なくとも一方が透明又は半透明である一対の電極間に発光層を有する。有機EL素子は、発光層の他にも、正孔輸送層、電子輸送層を含んでいてもよい。該発光層、正孔輸送層、電子輸送層のいずれかの層中に本発明の高分子化合物が含まれる。発光層中には、本発明の高分子化合物の他にも、電荷輸送材料(電子輸送材料と正孔輸送材料の総称を意味する)を含んでいてもよい。有機EL素子としては、陽極と発光層と陰極とを有する素子、さらに陰極と発光層の間に、該発光層に隣接して電子輸送材料を含有する電子輸送層を有する陽極と発光層と電子輸送層と陰極とを有する素子、さらに陽極と発光層の間に、該発光層に隣接して正孔輸送材料を含む正孔輸送層を有する陽極と正孔輸送層と発光層と陰極とを有する素子、陽極と正孔輸送層と発光層と電子輸送層と陰極とを有する素子等が挙げられる。
 本発明の高分子化合物を用いた光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 また、電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
 上述の有機薄膜トランジスタは、例えば電気泳動ディスプレイ、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ等の画素の制御や、画面輝度の均一性や画面書き換え速度を制御のために用いられる画素駆動素子等として用いることができる。
 有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の高分子化合物を用いて製造される有機薄膜太陽電池も使用目的や使用場所及び環境により、適宜これらのモジュール構造を選択できる。
 代表的なスーパーストレートタイプあるいはサブストレートタイプのモジュールは、片側又は両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リード又はフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出される構造となっている。基板とセルの間には、セルの保護や集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルム又は充填樹脂の形で用いてもよい。
 また、外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成し、又は上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板をなくすことが可能である。支持基板の周囲は、内部の密封及びモジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームの間は封止材料で密封シールする。また、セルそのものや支持基板、充填材料及び封止材料に可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。
 ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、Solar Energy Materials and Solar Cells,48,p383−391記載の「SCAF」とよばれるモジュール構造とすることもできる。更に、フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。
The present invention provides a photoelectric conversion element having high photoelectric conversion efficiency.
That is, the present invention provides a photoelectric conversion element having a pair of electrodes and an organic layer containing a polymer compound having a repeating unit represented by the formula (I) between the electrodes.
Figure JPOXMLDOC01-appb-I000017
In the formula, Ar represents an arylene group. R represents a fluorine atom or a monovalent organic group having a fluorine atom. Two R may be the same or different.
Moreover, this invention provides the said photoelectric conversion element which has an organic layer containing the repeating unit represented by Formula (II) and Formula (III) other than the repeating unit represented by Formula (I).
Figure JPOXMLDOC01-appb-I000018
In the formula, X represents a sulfur atom or an oxygen atom. Z represents ═CH—, ═C (R) —, or a nitrogen atom. Two Z may be the same or different. R represents the same meaning as described above.
Figure JPOXMLDOC01-appb-I000019
In the formula, E represents a sulfur atom, an oxygen atom, a selenium atom, -NH- or -N (R 1 ) −. Two E may be the same or different. R 1 Represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group. Multiple R 1 May be the same or different. Y represents a divalent group. R represents the same meaning as described above.
Description of embodiment
Hereinafter, the present invention will be described in detail.
The photoelectric conversion element of the present invention has a pair of electrodes and an organic layer containing a polymer compound having a repeating unit represented by the formula (I) between the electrodes.
Figure JPOXMLDOC01-appb-I000020
In the formula, Ar and R represent the same meaning as described above.
In the formula (I), the arylene group represented by Ar is a group obtained by removing two hydrogen atoms on an aromatic ring from an aromatic hydrocarbon which may have a substituent. Examples of the substituent include a bromine atom, a chlorine atom, an iodine atom, and an alkoxy group having 1 to 20 carbon atoms. The carbon number of the arylene group is usually 6 to 60, preferably 6 to 16, and more preferably 6 to 10. Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a tetracenediyl group, a pentacenediyl group, and a pyrenediyl group.
R represents a fluorine atom or a monovalent organic group having a fluorine atom. Examples of the monovalent organic group having a fluorine atom include an alkyl group substituted with a fluorine atom, an alkoxy group substituted with a fluorine atom, an aryl group substituted with a fluorine atom, and a heteroaryl group substituted with a fluorine atom. Is mentioned.
An alkyl group substituted with a fluorine atom, an alkoxy group substituted with a fluorine atom, an aryl group substituted with a fluorine atom, and a heteroaryl group substituted with a fluorine atom are further substituted with a substituent other than a fluorine atom. Examples of the substituent include a bromine atom, a chlorine atom, and an alkoxy group having 1 to 12 carbon atoms.
Here, the alkyl group may be linear, branched, or cyclic. The alkyl group usually has 1 to 30 carbon atoms. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl. Group, hexyl group, isohexyl group, 3-methylpentyl group, 21-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl And chain alkyl groups such as a group, tetradecyl group, hexadecyl tomb, octadecyl group and eicosyl group, and cyclic alkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group.
The alkyl part of the alkoxy group may be linear, branched or cyclic. The carbon number of the alkoxy group is usually 1-20, and specific examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, Examples include hexyloxy, cyclohexyloxy, heptyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, decyloxy, 3,7-dimethyloctyloxy, and lauryloxy. Examples of the alkoxy group substituted with a substituent other than a fluorine atom include a methoxymethyloxy group and a 2-methoxyethyloxy group.
An aryl group is a group obtained by removing one hydrogen on an aromatic ring from an aromatic hydrocarbon compound. The aryl group usually has 6 to 60 carbon atoms. Specific examples of the aryl group include a phenyl group, a C1 to C12 alkylphenyl group (C1 to C12 represents 1 to 12 carbon atoms, and the same shall apply hereinafter), a 1-naphthyl group, and a 2-naphthyl group. Groups. Specific examples of the aryl group which may be substituted with a substituent other than a fluorine atom include a C1-C12 alkoxyphenyl group.
A heteroaryl group is a group obtained by removing one hydrogen on an aromatic ring from an aromatic heterocyclic compound. The heteroaryl group usually has 2 to 60 carbon atoms. Specific examples of the heteroaryl group include a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, and a triazinyl group.
Specific examples of R include a fluorine atom (formula (R-1)) and groups represented by formulas (R-2) to (R-11).
Figure JPOXMLDOC01-appb-I000021
From the viewpoint of increasing the photoelectric conversion efficiency of the photoelectric conversion element, R is a fluorine atom, a group represented by formula (R-2), formula (R-5), formula (R-8), or formula (R-10). Are preferred, a fluorine atom and a group represented by the formula (R-2) are more preferred, and a fluorine atom is particularly preferred.
From the viewpoint of increasing the photoelectric conversion efficiency of the photoelectric conversion element, the repeating unit represented by Formula (I) is preferably a repeating unit represented by Formula (A-1) to Formula (A-4).
Figure JPOXMLDOC01-appb-I000022
(In the formula, R represents the same meaning as described above.)
Examples of the repeating unit represented by formula (A-1) to formula (A-4) include the repeating units represented by formula (B-1) to formula (B-18).
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
In the formula, R represents the same meaning as described above.
Among the repeating units represented by the formulas (B-1) to (B-18), from the viewpoint of increasing the photoelectric conversion efficiency of the photoelectric conversion element, the formula (B-1), the formula (B-2), the formula ( B-3), Formula (B-4), Formula (B-5), Formula (B-8), Formula (B-10), Formula (B-11), Formula (B-12), Formula (B -13), the formula (B-15), the formula (B-16) and the repeating unit represented by the formula (B-18) are preferable, and the formula (B-1), the formula (B-4), the formula (B -5), the formula (B-11), the formula (B-12), and the repeating unit represented by the formula (B-15) are more preferable, the formula (B-1), the formula (B-5), the formula ( The repeating unit represented by B-12) and formula (B-15) is more preferred, and the repeating unit represented by formula (B-1) is particularly preferred.
The polymer compound used in the photoelectric conversion element of the present invention preferably has a repeating unit other than the repeating unit represented by the formula (I). Examples of such a repeating unit include an aromatic repeating unit different from the repeating unit represented by formula (I), and the repeating unit represented by formula (II) and the formula (III) described above. Are preferred.
Examples of the repeating unit represented by formula (II) include the repeating units represented by formula (C-1) to formula (C-12).
Figure JPOXMLDOC01-appb-I000025
From the viewpoint of increasing the photoelectric conversion efficiency of the photoelectric conversion element, among the repeating units represented by the formulas (C-1) to (C-12), the formula (C-1), the formula (C-2), the formula ( The repeating units represented by C-6), Formula (C-7), Formula (C-8), and Formula (C-12) are preferred, and Formula (C-1), Formula (C-6), Formula (C-12) The repeating units represented by C-7) and formula (C-12) are more preferred, and the repeating units represented by formula (C-1) and formula (C-6) are particularly preferred.
In formula (III), examples of the divalent group represented by Y include groups represented by formula (Y-1) to formula (Y-4).
Figure JPOXMLDOC01-appb-I000026
Where R 1 Represents the same meaning as described above.
R 1 The alkyl group represented by may be linear, branched, or cyclic. The alkyl group may have a substituent, and examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The alkyl group usually has 1 to 30 carbon atoms. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl. Group, hexyl group, isohexyl group, 3-methylpentyl group, 21-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl And chain alkyl groups such as a group, tetradecyl group, hexadecyl tomb, octadecyl group and eicosyl group, and cyclic alkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group.
R 1 The alkyl part of the alkoxy group represented by may be linear, branched or cyclic. The carbon number of the alkoxy group is usually 1-20. The alkoxy group may have a substituent, and examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and an alkoxy group having 1 to 20 carbon atoms. Specific examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group Group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group and lauryloxy group. Examples of the alkoxy group substituted with a substituent include a methoxymethyloxy group and a 2-methoxyethyloxy group.
R 1 Is a group obtained by removing one hydrogen on an aromatic ring from an aromatic hydrocarbon compound. The aryl group usually has 6 to 60 carbon atoms. The aryl group may have a substituent, and examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and an alkoxy group having 1 to 20 carbon atoms. Specific examples of the aryl group include a phenyl group, a C1 to C12 alkylphenyl group (C1 to C12 represents 1 to 12 carbon atoms, and the same shall apply hereinafter), a 1-naphthyl group, and a 2-naphthyl group. Groups. Specific examples of the aryl group substituted with a substituent include a C1-C12 alkoxyphenyl group.
R 1 Is a group obtained by removing one hydrogen on an aromatic ring from an aromatic heterocyclic compound. The heteroaryl group usually has 2 to 60 carbon atoms. The heteroaryl group may have a substituent. Examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms. And aryl groups having 6 to 60 carbon atoms. Specific examples of the heteroaryl group include a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, and a triazinyl group.
Examples of the repeating unit represented by the formula (III) include repeating units represented by the formulas (E-1) to (E-16).
Figure JPOXMLDOC01-appb-I000027
Where R 1 Represents the same meaning as described above.
From the viewpoint of increasing the photoelectric conversion efficiency of the photoelectric conversion element, among the repeating units represented by formula (E-1) to formula (E-16), formula (E-1), formula (E-4), formula The repeating units represented by (E-5), formula (E-9), formula (E-12) and formula (E-13) are preferred, and formula (E-1), formula (E-5) and formula are preferred. The repeating unit represented by (E-9) is more preferable, and the repeating unit represented by Formula (E-1) and Formula (E-9) is particularly preferable.
When the polymer compound having a repeating unit represented by formula (I) used in the present invention is used as a photoelectric conversion element, the polymer compound is based on the entire polymer compound from the viewpoint of photoelectric conversion efficiency. The weight fraction of the repeating unit represented by the formula (I) is preferably 0.01 to 0.80, more preferably 0.03 to 0.50, and 0.05 to 0.20. It is particularly preferred.
When the polymer compound having a repeating unit represented by formula (I) used in the present invention is used as a photoelectric conversion element, the repeating unit represented by formula (I), formula (II), and formula (III) It is preferable from the viewpoint of photoelectric conversion efficiency. At this time, the fraction of the repeating unit represented by the formula (I) is preferably 0.02 to 0.80, more preferably 0.05 to 0.50 from the viewpoint of photoelectric conversion efficiency. 0.10 to 0.30 is particularly preferable.
The polymer compound having a repeating unit represented by the formula (I) is preferably a polymer compound having a number average molecular weight of 3,000 or more, and a polymer compound having a number average molecular weight of 3,000 to 10,000,000. More preferably, a polymer compound having a number average molecular weight of 8,000 to 5,000,000 is more preferable, and a polymer compound having a number average molecular weight of 10,000 to 1,000,000 is particularly preferable. If the number average molecular weight is lower than 3,000, defects may occur in film formation during device fabrication, and if it exceeds 10,000,000, solubility in a solvent and applicability during device fabrication may be degraded. .
Here, the number average molecular weight refers to the number average molecular weight in terms of polystyrene calculated using a standard sample of polystyrene using gel permeation chromatography (GPC).
The polymer compound having a repeating unit represented by the formula (I) preferably has a high solubility in a solvent in order to facilitate the production of the device. Specifically, the polymer compound used in the photoelectric conversion element of the present invention preferably has a solubility capable of producing a solution containing 0.01 wt% or more of the polymer compound, and a solution containing 0.1 wt% or more is preferable. It is more preferable to have a solubility that can be produced, and it is further preferred to have a solubility that can produce a solution containing 0.4 wt% or more.
Since the polymer compound of the present invention can exhibit high electron and / or hole transport properties, when a thin film containing the polymer compound is used for an element, electrons or holes injected from the electrode, or light absorption. The charge generated by can be transported. Taking advantage of these characteristics, it can be suitably used for various electronic devices such as a photoelectric conversion device, an organic thin film transistor, and an organic electroluminescence device. Hereinafter, these elements will be described individually. The thickness of the thin film containing the polymer compound of the present invention is usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
The photoelectric conversion element containing the polymer compound of the present invention has one or more active layers containing the polymer compound of the present invention between a pair of electrodes, at least one of which is transparent or translucent.
A preferable form of the photoelectric conversion element containing the polymer compound of the present invention is formed from a pair of electrodes, at least one of which is transparent or translucent, and an organic composition of a p-type organic semiconductor and an n-type organic semiconductor. Having an active layer. The polymer compound of the present invention is preferably used as a p-type organic semiconductor.
The photoelectric conversion element manufactured using the polymer compound of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.
In another aspect of the photoelectric conversion element having the polymer compound of the present invention, the first active layer containing the polymer compound of the present invention is interposed between a pair of electrodes, at least one of which is transparent or translucent, and the first A photoelectric conversion element including a second active layer containing an electron accepting compound such as a fullerene derivative adjacent to the active layer.
Examples of the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film. Specifically, indium oxide, zinc oxide, tin oxide, and their composite materials such as indium tin oxide (ITO), indium zinc oxide, etc., conductive materials, NESA, gold, platinum, silver, Copper is used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
As the electrode material, an organic transparent conductive film such as polyaniline and derivatives thereof, polythiophene and derivatives thereof may be used.
One electrode may not be transparent, and a metal, a conductive polymer, etc. can be used as an electrode material of the electrode. Specific examples of the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. And one or more alloys selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin. Examples include alloys with metals, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
An additional intermediate layer other than the active layer may be used as a means for improving the photoelectric conversion efficiency. Examples of the material used for the intermediate layer include alkali metals such as lithium fluoride, halides of alkaline earth metals, oxides such as titanium oxide, and PEDOT (poly-3,4-ethylenedioxythiophene).
The active layer may contain the polymer compound of the present invention alone or in combination of two or more. In order to enhance the hole transport property of the active layer, compounds other than the polymer compound of the present invention can be mixed and used as the electron donating compound and / or the electron accepting compound in the active layer. The electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
As the electron-donating compound, in addition to the polymer compound of the present invention, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, Examples thereof include polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof.
As the electron-accepting compound, in addition to the polymer compound of the present invention, for example, carbon materials, metal oxides such as titanium oxide, oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof Derivatives, anthraquinones and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof Derivatives, polyfluorenes and derivatives thereof, phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (basocproin), fullerenes and fullerene derivatives Details, titanium oxide, carbon nanotubes, fullerene, a fullerene derivative, particularly preferably a fullerene, a fullerene derivative.
Fullerene and fullerene derivatives include C 60 , C 70 , C 76 , C 78 , C 84 And derivatives thereof. The fullerene derivative represents a compound in which at least a part of fullerene is modified.
Examples of the fullerene derivative include a compound represented by the formula (15), a compound represented by the formula (16), a compound represented by the formula (17), and a compound represented by the formula (18).
Figure JPOXMLDOC01-appb-I000028
Where R a Is a group having a substituted or unsubstituted alkyl group, aryl group, heteroaryl group or ester structure. Multiple R a May be the same or different. R b Represents a substituted or unsubstituted alkyl group or aryl group. Multiple R b May be the same or different.
R a And R b The definition and specific examples of the substituted or unsubstituted alkyl group and aryl group represented by are the same as the definition and specific examples of the substituted or unsubstituted alkyl group and aryl group represented by R.
R a Is a remaining atomic group obtained by removing two hydrogen atoms from an aromatic heterocyclic compound which may have a substituent. Examples of the heteroaryl group include thienyl group, pyrrolyl group, furyl group, pyridyl group, quinolyl group, isoquinolyl group and the like.
R a Examples of the group having an ester structure represented by the formula (19) include a group represented by the formula (19).
Figure JPOXMLDOC01-appb-I000029
(Wherein u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, R c Represents a substituted or unsubstituted alkyl group, aryl group or heteroaryl group. )
R c Definitions and specific examples of substituted or unsubstituted alkyl, aryl, and heteroaryl groups represented by a The definition and specific examples of the substituted or unsubstituted alkyl group, aryl group, and heteroaryl group represented by the formula are the same.
C 60 Specific examples of fullerene derivatives include the following.
Figure JPOXMLDOC01-appb-I000030
C 70 Specific examples of fullerene derivatives include the following.
Figure JPOXMLDOC01-appb-I000031
Examples of fullerene derivatives include [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -phenyl C61 butyric acid methyl ester), [6,6] phenyl-C71 butyric acid methyl ester (C70PCBM). , [6,6] -Phenyl C71 butyric acid methyl ester), [6,6] phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C85 butyric acid methyl ester), [6,6] thienyl- And C61 butyric acid methyl ester ([6,6] -Thienyl C61 butyric acid methyl ester).
When the active layer contains the polymer compound of the present invention and the fullerene derivative, the amount of the fullerene derivative is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention. More preferably, it is ~ 500 parts by weight.
The active layer is a thin film of a composition comprising the polymer compound of the present invention and an electron accepting compound, and the thickness is usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm. More preferably, it is 20 nm to 200 nm.
The method for producing the active layer may be produced by any method, and examples thereof include film formation from a solution containing a polymer compound and film formation by a vacuum deposition method.
A preferred method for producing a photoelectric conversion element is a method for producing an element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode, Applying a solution (ink) containing the polymer compound of the present invention and a solvent on the first electrode by a coating method to form an active layer; and forming a second electrode on the active layer. It is a manufacturing method of the element which has.
The solvent used for film formation from a solution may be any one that dissolves the polymer compound of the present invention. Examples of the solvent include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, Examples thereof include halogenated hydrocarbon solvents such as bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, and trichlorobenzene, and ether solvents such as tetrahydrofuran and tetrahydropyran. The polymer compound of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
When forming a film using a solution, slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, Spray coating method, screen printing method, gravure printing method, flexographic printing method, offset printing method, ink jet coating method, dispenser printing method, nozzle coating method, capillary coating method etc. can be used, slit coating method, capillary A coating method, a gravure coating method, a micro gravure coating method, a bar coating method, a knife coating method, a nozzle coating method, an ink jet coating method, and a spin coating method are preferable.
From the viewpoint of film formability, the surface tension of the solvent at 25 ° C. is preferably larger than 15 mN / m, more preferably larger than 15 mN / m and smaller than 100 mN / m, larger than 25 mN / m and larger than 60 mN / m. It is more preferable that the value is small.
The polymer compound of the present invention can also be used for organic thin film transistors. The organic thin film transistor has a configuration including a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between these electrodes, and a gate electrode for controlling the amount of current passing through the current path. The organic semiconductor layer is constituted by the organic thin film described above. Examples of such an organic thin film transistor include a field effect type and an electrostatic induction type.
A field effect organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, a gate electrode for controlling the amount of current passing through the current path, and an organic semiconductor layer and a gate electrode It is preferable to provide an insulating layer disposed between the two.
In particular, the source electrode and the drain electrode are preferably provided in contact with the organic semiconductor layer (active layer), and the gate electrode is preferably provided with an insulating layer in contact with the organic semiconductor layer interposed therebetween. In the field effect organic thin film transistor, the organic semiconductor layer is constituted by an organic thin film containing the polymer compound of the present invention.
The static induction organic thin film transistor has a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, and a gate electrode that controls the amount of current passing through the current path. It is preferable to be provided in the organic semiconductor layer. In particular, the source electrode, the drain electrode, and the gate electrode provided in the organic semiconductor layer are preferably provided in contact with the organic semiconductor layer. Here, the structure of the gate electrode may be a structure in which a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. An electrode is mentioned. Also in the static induction organic thin film transistor, the organic semiconductor layer is constituted by an organic thin film containing the polymer compound of the present invention.
The polymer compound of the present invention can also be used for an organic electroluminescence device (organic EL device). An organic EL element has a light emitting layer between a pair of electrodes, at least one of which is transparent or translucent. The organic EL element may include a hole transport layer and an electron transport layer in addition to the light emitting layer. The polymer compound of the present invention is contained in any one of the light emitting layer, the hole transport layer, and the electron transport layer. In addition to the polymer compound of the present invention, the light emitting layer may contain a charge transport material (which means a generic term for an electron transport material and a hole transport material). As an organic EL element, an element having an anode, a light emitting layer, and a cathode, and an anode, a light emitting layer, and an electron having an electron transport layer containing an electron transport material adjacent to the light emitting layer between the cathode and the light emitting layer. An element having a transport layer and a cathode, and an anode, a hole transport layer, a light emitting layer, and a cathode having a hole transport layer containing a hole transport material adjacent to the light emitting layer between the anode and the light emitting layer. And an element having an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.
The photoelectric conversion element using the polymer compound of the present invention is operated as an organic thin film solar cell by generating photovoltaic power between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. Can do. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
Further, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes or in a state where no voltage is applied, a photocurrent flows and the organic light sensor can be operated. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
The above-mentioned organic thin film transistor can be used as a pixel driving element used for controlling the pixel of an electrophoretic display, a liquid crystal display, an organic electroluminescence display, etc., and controlling the uniformity of screen luminance and the screen rewriting speed. .
The organic thin film solar cell can basically have the same module structure as a conventional solar cell module. The solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side. Specifically, a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known. The organic thin-film solar cell manufactured using the polymer compound of the present invention can also be appropriately selected from these module structures depending on the purpose of use, place of use and environment.
In a typical super straight type or substrate type module, cells are arranged at regular intervals between support substrates that are transparent on one or both sides and subjected to antireflection treatment, and adjacent cells are connected by metal leads or flexible wiring. The current collector electrode is connected to the outer edge portion, and the generated power is taken out to the outside. Various types of plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency.
In addition, when used in a place where it is not necessary to cover the surface with a hard material such as a place where there is little impact from the outside, the surface protection layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side. The periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material. In addition, if a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
In the case of a solar cell using a flexible support such as a polymer film, cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material. Thus, the battery body can be produced. Further, a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 may be used. Furthermore, a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
合成例1 化合物2の合成
Figure JPOXMLDOC01-appb-I000032
 四つ口フラスコに、化合物1を2.674g(15.00mmol)、ブロモオクタンを6.083g(31.50mmol)、ヨウ化カリウムを62.25mg(2.5mol%)、ジメチルスルホキシドを50mL加え、室温(25℃)で30分間アルゴンバブリングを行った。アイスバスで0℃まで冷却後、水酸化カリウムを2.525g(45.00mmol)加え、6日間反応させた。反応液を液体クロマトグラフィー(HPLC)で分析し、原料の消失を確認した。
 その後、反応液に純水を加え、ヘキサンで反応生成物の抽出を行った。次いで、展開溶媒にヘキサンを用いたカラムで単離、乾燥を行うことで、化合物2を4.11g得た。
合成例2 化合物3の合成
Figure JPOXMLDOC01-appb-I000033
 四つ口フラスコに、化合物2を4.11g(10.2mmol)、N、N−ジメチルホルムアミド(DMF)を200mL加え、室温(25℃)で30分間アルゴンバブリングを行った。−20℃まで冷却後、N−ブロモスクシンイミド(NBS)を1.91g(10.71mmol)加え、6時間かけて室温(25℃)まで昇温した。昇温中、さらに182mgのNBS(1.02mmol)を2回加えた。
 その後、反応液に純水を加え、ジエチルエーテルで反応生成物の抽出を行った。次いで、展開溶媒にヘキサンを用いたカラムで単離、乾燥を行うことで、化合物3を3.17g得た。
合成例3 化合物5の合成
Figure JPOXMLDOC01-appb-I000034
 四つ口フラスコに、化合物4(4,7−bis(4,4,5,5−tetramethyl−1,3,2−dioxaborolan−2−yl)−2,1,3−benzothiadiazole)(シグマ・アルドリッチ社製)を1.173g(3.021mmol)、化合物3を3.178g(6.042mmol)、トルエンを90mL、及び、メチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、シグマ・アルドリッチ社製)を606mg(1.50mmol)加え、室温(25℃)で30分間アルゴンバブリングを行った。90℃に昇温後、酢酸パラジウムを6.7mg(化合物4に対して1mol%)、トリス(2−メトキシフェニル)ホスフィンを37.0mg(化合物4に対して3.5mol%)加えた。その後、100℃で攪拌しながら、16.7wt%の炭酸ナトリウム水溶液を19.0g(30.0mmol)30分かけて反応液に滴下した。2時間後、反応液をHPLCで分析し、化合物3の消失を確認した。なお反応はアルゴン雰囲気下で行った。
 その後、反応液に純水を加え、トルエン層を分離、乾燥し、反応生成物を得た。次いで、ヘキサンを展開溶媒に用いたカラムで単離することで、化合物5を1.196g得た。
H−NMR(CDCl,δ(ppm)):0.822(t,12H),1.055(m,8H),1.167(m,40H),1.919(t,8H),6.981(d,2H),7.234(d,2H),7.852(s,2H),8.046(s,2H)
合成例4 化合物6の合成
Figure JPOXMLDOC01-appb-I000035
 四つ口フラスコに、化合物5を1.190g(1.269mmol)、DMFを15mL、及び、テトラヒドロフラン(THF)を15mL加え、室温(25℃)で30分間アルゴンバブリングを行った。−60℃まで冷却後、NBSを474.3mg(2.665mmol)加え、6時間かけて0℃まで昇温した。昇温中、さらに22.6mgのNBS(0.127mmol)を2回加えた。
 その後、反応液に純水を加え、ヘキサンで反応生成物の抽出を行った。次いで、展開溶媒にヘキサンを用いたカラムで単離、乾燥を行うことで、化合物6を1.612g得た。
H−NMR(CDCl,δ(ppm)):0.829(t,12H),1.026(m,8H),1.169(m,40H),1.876(t,8H),6.990(s,2H),7.837(s,2H),8.009(s,2H)
実施例1 高分子化合物Aの合成
Figure JPOXMLDOC01-appb-I000036
 四つ口フラスコ内に、化合物7を64.8mg(0.177mmol)、化合物6を203.9mg(0.186mmol)、テトラヒドロフランを10mL入れ、室温(25℃)で30分間アルゴンバブリングを行った。その後、フラスコ内に、トリス(ジベンジリデンアセトン)パラジウムを5.49mg(0.006mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを6.96mg(0.024mmol)加えた。反応液を80℃で攪拌しながら、27.6wt%の炭酸カリウム水溶液1.50g(3.00mmol)を30分かけて反応液に滴下した。15分後、フェニルホウ酸を3.66mg(0.03mmol)加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
 その後、ジエチルジチオカルバミン酸ナトリウムを1g及び純水を10mL加え、反応液を1時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水10mlで2回、3重量(wt)%の酢酸水溶液10mLで2回、さらに水10mLで2回洗浄し、その後、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、高分子化合物Aを150mg得た。
 GPCで測定した高分子化合物Aのポリスチレン換算の分子量は、重量平均分子量(Mw)が8,000であり、数平均分子量(Mn)が6,000であった。
合成例5 化合物8の合成
Figure JPOXMLDOC01-appb-I000037
 フラスコ内の空気をアルゴンで置換した1000mLの4つ口フラスコに、3−ブロモチオフェンを13.0g(80.0mmol)、ジエチルエーテルを80mL入れて均一な溶液とした。該溶液を−78℃に保ったまま、2.6Mのn−ブチルリチウム(n−BuLi)のヘキサン溶液を31mL(n−BuLiは80.6mmol)滴下した。−78℃で2時間反応させた後、3−チオフェンアルデヒド8.96g(80.0mmol)をジエチルエーテル20mLに溶解させた溶液を滴下した。滴下後、−78℃で30分攪拌し、さらに室温(25℃)で30分攪拌した。反応液を再度−78℃に冷却し、2.6Mのブチルリチウム(n−BuLi)のヘキサン溶液62mL(n−BuLiは161mmol)を15分かけて滴下した。滴下後、反応液を−25℃で2時間攪拌し、さらに室温(25℃)で1時間攪拌した。その後、反応液を−25℃に冷却し、ヨウ素60g(236mmol)をジエチルエーテル1000mLに溶解させた溶液を30分かけて滴下した。滴下後、室温(25℃)で2時間攪拌し、1規定のチオ硫酸ナトリウム水溶液50mLを加えて反応を停止させた。ジエチルエーテルで反応生成物を抽出した後、硫酸マグネシウムで反応生成物を乾燥し、ろ過後、ろ液を濃縮して35gの粗生成物を得た。クロロホルムを用いて粗生成物を再結晶することにより精製し、化合物8を28g得た。
合成例6 化合物9の合成
Figure JPOXMLDOC01-appb-I000038
 300mLの4つ口フラスコに、ビスヨードチエニルメタノール(化合物8)を10.5g(23.4mmol)、塩化メチレンを150mL加えて均一な溶液とした。該溶液にクロロクロム酸ピリジニウムを7.50g(34.8mmol)加え、室温(25℃)で10時間攪拌した。反応液をろ過して不溶物を除去後、ろ液を濃縮し、化合物9を10.0g(22.4mmol)得た。
合成例7 化合物10の合成
Figure JPOXMLDOC01-appb-I000039
 フラスコ内の空気をアルゴンで置換した300mLフラスコに、化合物9を10.0g(22.4mmol)、銅粉末を6.0g(94.5mmol)、脱水N,N−ジメチルホルムアミド(以下、DMFと呼称することもある)を120mL加えて、120℃で4時間攪拌した。反応後、フラスコを室温(25℃)まで冷却し、反応液をシリカゲルカラムに通して不溶成分を除去した。その後、水500mLを加え、クロロホルムで反応生成物を抽出した。クロロホルム溶液である油層を硫酸マグネシウムで乾燥し、油層をろ過し、ろ液を濃縮して粗製物を得た。組成物をシリカゲルカラム(展開液:クロロホルム)で精製し、化合物10を3.26g得た。ここまでの操作を複数回行った。
合成例8 化合物11の合成
Figure JPOXMLDOC01-appb-I000040
 メカニカルスターラーを備え、フラスコ内の空気をアルゴンで置換した300mL4つ口フラスコに、化合物10を3.85g(20.0mmol)、クロロホルムを50mL、トリフルオロ酢酸を50mL入れて均一な溶液とした。該溶液に過ホウ酸ナトリウム1水和物を5.99g(60mmol)加え、室温(25℃)で45分間攪拌した。その後、水200mLを加え、クロロホルムで反応生成物を抽出し、クロロホルム溶液である有機層をシリカゲルカラムに通し、エバポレーターでろ液の溶媒を留去した。メタノールを用いて残渣を再結晶し、化合物11を534mg得た。
H NMR(CDCl(ppm)):7.64(d、1H)、7.43(d、1H)、7.27(d、1H)、7.10(d、1H)
合成例9 化合物12の合成
Figure JPOXMLDOC01-appb-I000041
 フラスコ内の空気をアルゴンで置換した100mL四つ口フラスコに、化合物11を1.00g(4.80mmol)、脱水THFを30ml入れて均一な溶液とした。フラスコを−20℃に保ちながら、1Mの3,7−ジメチルオクチルマグネシウムブロミドのエーテル溶液を12.7mL加えた。その後、30分かけて温度を−5℃まで上げ、そのまま30分攪拌した。その後、10分かけて温度を0℃に上げ、そのまま1.5時間攪拌を行った。その後、水を加えて反応を停止し、酢酸エチルで反応生成物を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、ろ過後、酢酸エチル溶液をシリカゲルカラムに通し、ろ液の溶媒を留去し、化合物12を1.50g得た。
H NMR(CDCl(ppm)):8.42(b、1H)、7.25(d、1H)、7.20(d、1H)、6.99(d、1H)、6.76(d、1H)、2.73(b、1H)、1.90(m、4H)、1.58‐1.02(b、20H)、0.92(s、6H)、0.88(s、12H)
合成例10 化合物13の合成
Figure JPOXMLDOC01-appb-I000042
 フラスコ内の空気をアルゴンで置換した200mLフラスコに、化合物12を1.50g、トルエンを30mL入れて均一な溶液とした。該溶液にp−トルエンスルホン酸ナトリウム1水和物を100mg入れ、100℃で1.5時間攪拌を行った。反応液を室温(25℃)まで冷却後、水50mLを加え、トルエンで反応生成物を抽出した。トルエン溶液である有機層を硫酸ナトリウムで乾燥し、ろ過後、溶媒を留去した。得られた粗生成物を、ヘキサンを溶媒に用いたシリカゲルカラムで精製し、化合物13を1.33g得た。ここまでの操作を複数回行った。
H NMR(CDCl(ppm)):6.98(d、1H)、6.93(d、1H)、6.68(d、1H)、6.59(d、1H)、1.89(m、4H)、1.58‐1.00(b、20H)、0.87(s、6H)、0.86(s、12H)
合成例11 化合物14の合成
Figure JPOXMLDOC01-appb-I000043
 フラスコ内の空気をアルゴンで置換した300mLフラスコに、化合物13を3.52g(7.41mmol)、N、N−ジメチルホルムアミド(DMF)を100mL入れて均一な溶液とした。25℃で30分間アルゴンバブリングを行った後、−50℃まで冷却し、NBSを1.20g(6.74mmol)加え、5.5時間かけて25℃まで昇温した。反応液に水50mLを加え、ジエチルエーテルで反応生成物を抽出した。ジエチルエーテル溶液を硫酸ナトリウムで乾燥後、ろ過し、溶媒を留去した。得られた粗生成物を、ヘキサンを展開溶媒に用いたシリカゲルカラムで精製して、化合物14を3.30g得た。
H NMR(CDCl(ppm)):0.826(m,18H),1.08−1.47(m,20H),1.95(m,4H),6.65(d,1H),6.66(s,1H),6.98(s,1H)
合成例12 化合物15の合成
Figure JPOXMLDOC01-appb-I000044
 フラスコ内の空気をアルゴンで置換した300mLフラスコに、化合物4(4,7−bis(4,4,5,5−tetramethyl−1,3,2−dioxaborolan−2−yl)−2,1,3−benzothiadiazole)(アルドリッチ社製)を1.11g(2.85mmol)、化合物14を3.16g(5.70mmol)、トルエンを90mL、及び、メチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、シグマ・アルドリッチ社製)を606mg(1.50mmol)入れて均一溶液とし、25℃で30分間アルゴンバブリングを行った。90℃に昇温後、酢酸パラジウムを6.7mg(化合物4に対して1mol%)、トリス(2−メトキシフェニル)ホスフィンを37.0mg(化合物4に対して3.5mol%)加えた。
 その後、100℃で攪拌しながら、16.7wt%の炭酸ナトリウム水溶液19.0g(30.0mmol)を30分かけて滴下した。滴下後、100℃で2時間攪拌を行った。その後、反応液に純水を加え、トルエン層を分離後、トルエン層を硫酸ナトリウムで乾燥し、粗生成物を得た。ヘキサンを展開溶媒に用いたシリカゲルカラムで粗生成物の精製を行い、化合物15を2.25g得た。
H NMR(CDCl(ppm)):0.826(m,36H),1.08−1.47(m,40H),1.95(m,8H),6.71(d,2H),7.04(d,2H),7.77(s,2H),7.79(s,2H)
合成例13 化合物16の合成
Figure JPOXMLDOC01-appb-I000045
 フラスコ内の空気をアルゴンで置換した200mLフラスコに、化合物15を2.25g(2.08mmol)、DMFを40mL、及び、テトラヒドロフラン(THF)を40mL入れて均一溶液とした。−50℃まで冷却後、NBSを814mg(4.58mmol)加え、2.5時間かけて0℃まで昇温した。
 その後、反応液に純水を加え、ヘキサンで反応生成物の抽出を行った。ヘキサン溶液を乾燥後、ヘキサンを展開溶媒に用いたシリカゲルカラムで粗生成物の精製を行い、化合物16を2.11g得た。
H−NMR(CDCl(ppm)):0.826(m,36H),1.08−1.47(m,40H),1.95(m,8H),6.72(s,2H),7.75(s,2H),7.77(s,2H)
実施例2 高分子化合物Bの合成
Figure JPOXMLDOC01-appb-I000046
 四つ口フラスコ内に、化合物7を102.5mg(0.280mmol)、化合物16を365.9mg(0.295mmol)、及び、テトラヒドロフランを10mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、トリス(ジベンジリデンアセトン)パラジウムを5.49mg(0.006mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを6.96mg(0.024mmol)加えた。反応液を80℃で攪拌しながら、27.6wt%の炭酸カリウム水溶液1.50g(3.00mmol)を30分かけて反応液に滴下した。15分後、フェニルホウ酸を3.66mg(0.03mmol)加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
 その後、ジエチルジチオカルバミン酸ナトリウムを1g及び純水を10mL加え、反応液を1時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水10mlで2回、3重量(wt)%の酢酸水溶液10mLで2回、さらに水10mLで2回洗浄し、その後、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、高分子化合物Bを291mg得た。
 GPCで測定した高分子化合物Bの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が32,000、数平均分子量(Mn)が16,000であった。
合成例14 化合物18の合成
Figure JPOXMLDOC01-appb-I000047
 フラスコ内の空気をアルゴンで置換した200mLフラスコに、化合物17を1.78g(10.0mmol)、2−エチルヘキシルブロミドを5.83g(25.0mmol)、ヨウ化カリウムを41.5mg(0.25mmol)、水酸化カリウムを1.68g(30.0mmol)入れ、ジメチルスルホキシド35mLに溶解させて、室温(25℃)で24時間攪拌した。反応後、水100mLを加え、ヘキサンで反応生成物を抽出し、ヘキサンを展開溶媒に用いたシリカゲルカラムで精製を行い、化合物18を2.61g得た。
合成例15 化合物19の合成
Figure JPOXMLDOC01-appb-I000048
 フラスコ内の空気をアルゴンで置換した200mLフラスコに、化合物18を1.31g(3.25mmol)、及び、N,N−ジメチルホルムアミド(DMF)を25mL加えた。その後、フラスコを0℃に冷却して、N−ブロモスクシンイミド(NBS)(1.21g)を加え、12時間攪拌した。反応液中に水100mLを入れて反応を停止し、ジエチルエーテルで反応生成物を抽出した。シリカゲルカラム(展開溶媒はヘキサン)で精製を行い、化合物19を1.70g得た。
合成例16 高分子化合物Cの合成
Figure JPOXMLDOC01-appb-I000049
 フラスコ内の空気をアルゴンで置換した200mLフラスコに、化合物19を561mg(1.00mmol)、化合物4(4,7−bis(4,4,5,5−tetramethyl−1,3,2−dioxaborolan−2−yl)−2,1,3−benzothiadiazole)(シグマ・アルドリッチ社製)を388.1mg(1.00mmol)、メチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、シグマ・アルドリッチ社製)を202mg加え、トルエン20mlに溶解させ、得られたトルエン溶液をアルゴンで30分バブリングした。その後、酢酸パラジウムを2.25mg、トリス(2−メトキシフェニル)ホスフィン(Tris(2−methoxyphenyl)phosphine)を12.3mg、16.7wt%の炭酸ナトリウム水溶液を6.5mL加え、100℃で5時間攪拌を行った。その後、フェニルホウ酸を50mg加え、さらに70℃で2時間反応させた。その後、ジエチルジチオカルバミン酸ナトリウム2gと水20mLを加え、2時間還流下で攪拌を行った。反応液中の水層を除去後、有機層を水20mlで2回、3wt%の酢酸水溶液20mLで2回、さらに水20mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン30mLに再度溶解した。o−ジクロロベンゼン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、精製した高分子化合物280mgを得た。以下、この高分子化合物を高分子化合物Cと呼称する。GPCで測定した高分子化合物Cの分子量(ポリスチレン換算)はMwが30,000、Mnが14,000であった。
実施例3 インク及び有機薄膜太陽電池の作製、評価
 スパッタ法により150nmの厚みでITO膜を付けたガラス基板を、オゾンUV処理して表面処理を行った。次に、高分子化合物B及びフラーレンC60PCBM(フェニルC61−酪酸メチルエステル)(phenyl C61−butyric acid methyl ester、フロンティアカーボン社製)を、高分子化合物Bの重量に対するC60PCBMの重量の比が3となるようにオルトジクロロベンゼンに溶解し、インク1を製造した。インク1の重量に対して、高分子化合物Bの重量とC60PCBMの重量の合計は2.0重量%であった。該インク1をスピンコートによりガラス基板上に塗布し、高分子化合物Bを含む有機膜を作製した。膜厚は約100nmであった。このようにして作製した有機膜の光吸収端波長は750nmであった。その後、有機膜上に真空蒸着機によりフッ化リチウムを厚さ2nmで蒸着し、次いでAlを厚さ100nmで蒸着し、有機薄膜太陽電池を製造した。得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO−SUNII:AM1.5Gフィルター、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定して光電変換効率、短絡電流密度、開放電圧、フィルファクターを求めた。Jsc(短絡電流密度)は9.63mA/cmであり、Voc(開放端電圧)は0.67Vであり、ff(フィルファクター(曲線因子))は0.62であり、光電変換効率(η)は4.03%であった。結果を表1に表す。
実施例4
 高分子化合物Bにかえて高分子化合物Aを用いた以外は、実施例3と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は9.90mA/cmであり、Voc(開放端電圧)は0.61Vであり、ff(フィルファクター(曲線因子))は0.44であり、光電変換効率(η)は2.62%であった。結果を表1に表す。
比較例1
 高分子化合物Bにかえて高分子化合物Cを用いた以外は、実施例3と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は4.61mA/cmであり、Voc(開放端電圧)は0.60Vであり、ff(フィルファクター(曲線因子))は0.33であり、光電変換効率(η)は0.91%であった。結果を表1に表す。
Figure JPOXMLDOC01-appb-T000050
合成例17 化合物21の合成
Figure JPOXMLDOC01-appb-I000051
 500mlフラスコに、4,5−ジフルオロ−1,2−ジアミノベンゼン(化合物20)(東京化成工業製)を10.2g(70.8mmol)、ピリジンを150mL入れて均一溶液とした。フラスコを0℃に保ったまま、フラスコ内に塩化チオニルを16.0g(134mmol)滴下した。滴下後、フラスコを25℃に温めて、6時間反応を行った。その後、反応液に水250mlを加え、さらにクロロホルムを加えて反応生成物を抽出した。クロロホルム溶液である有機層を硫酸ナトリウムで乾燥し、ろ過した。ろ液をエバポレーターで濃縮し、析出した固体を再結晶で精製した。再結晶の溶媒には、メタノールを用いた。精製後、化合物21を10.5g(61.0mmol)得た。
H−NMR(CDCl,δ(ppm)):7.75(s,2H)
19F−NMR(CDCl,δ(ppm)):−128.3(s,2F)
合成例18 化合物22の合成
Figure JPOXMLDOC01-appb-I000052
 100mLフラスコに、化合物21を2.00g(11.6mmol)、鉄粉を0.20g(3.58mmol)入れ、フラスコを90℃に加熱した。このフラスコに、臭素31g(194mmol)を1時間かけて滴下した。滴下後、反応液を90℃で38時間攪拌した。その後、フラスコを室温(25℃)まで冷却し、クロロホルム100mLを入れて希釈した。得られた溶液を、5wt%の亜硫酸ナトリウム水溶液300mLに注ぎ込み、1時間攪拌した。得られた混合液の有機層を分液ロートで分離し、水層をクロロホルムで3回抽出した。得られた抽出液を有機層に混合し、混合した溶液を硫酸ナトリウムで乾燥させた。ろ過後、ろ液をエバポレーターで濃縮し、溶媒を留去した。得られた黄色の固体を、55℃に熱したメタノール90mLに溶解させ、その後、25℃まで冷却した。析出した結晶をろ過して回収し、その後、室温(25℃)で減圧乾燥して化合物22を1.50g得た。
19F−NMR(CDCl,δ(ppm)):−118.9(s,2F)
合成例19 化合物23の合成
Figure JPOXMLDOC01-appb-I000053
 フラスコ内の空気をアルゴンで置換した200mLフラスコに、化合物13を2.16g(4.55mmol)、脱水THFを100mL入れて均一な溶液とした。該溶液を−78℃に保ち、該溶液に2.6Mのブチルリチウム(n−BuLi)のヘキサン溶液4.37mL(11.4mmol)を10分かけて滴下した。滴下後、−78℃で30分攪拌し、次いで、室温(25℃)で2時間攪拌した。その後、フラスコを−78℃に冷却し、トリブチルスズクロリドを4.07g(12.5mmol)加えた。添加後、−78℃で30分攪拌し、次いで、室温(25℃)で3時間攪拌した。その後、水200mlを加えて反応を停止し、酢酸エチルで反応生成物を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥させ、ろ過後、ろ液をエバポレーターで濃縮し、溶媒を留去した。得られたオイル状の物質をシリカゲルカラムで精製した(展開溶媒:ヘキサン)。シリカゲルカラムのシリカゲルには、あらかじめ5wt%のトリエチルアミンを含むヘキサンに5分間浸し、その後、ヘキサンで濯いだシリカゲルを用いた。精製後、化合物23を3.52g(3.34mmol)得た。
実施例5 高分子化合物Dの合成
Figure JPOXMLDOC01-appb-I000054
 フラスコ内の空気をアルゴンで置換した100mLフラスコに、化合物23を500mg(0.475mmol)、化合物22を123mg(0.373mmol)、化合物24を24mg(0.088mmol)、トルエンを32ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを6.33mg(0.007mmol)、トリス(2−トルイル)ホスフィンを12.6mg加え、100℃で6時間攪拌した。その後、反応液にフェニルブロミドを500mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール300mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを、円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、o−ジクロロベンゼン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム2gと水40mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3wt%の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン30mLに再度溶解し、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体40mgを得た。以下、この重合体を高分子化合物Dと呼称する。
実施例6 インク及び有機薄膜太陽電池の作製、評価
 高分子化合物Bにかえて高分子化合物Dを用いた以外は、実施例3と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は12.64mA/cmであり、Voc(開放端電圧)は0.75Vであり、ff(フィルファクター(曲線因子))は0.61であり、光電変換効率(η)は5.74%であった。結果を表2に表す。
Figure JPOXMLDOC01-appb-T000055
合成例20 化合物25の合成
Figure JPOXMLDOC01-appb-I000056
 四つ口フラスコに、化合物11を10.00g(48.02mmol)、テトラヒドロフランを400mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を−40℃に冷却後、ドデシルマグネシウムブロミドを1.0mol/L含むジエチルエーテル溶液を144mL加え、0℃まで昇温しながら攪拌した。3時間後に、液体クロマトグラフィーにより原料の消失を確認した。
 反応液に水及びクロロホルムを加え、反応生成物の抽出を行い、展開溶媒にクロロホルムを用いたカラムで精製、乾燥を行うことで、化合物25を含む混合オイルを得た。
合成例21 化合物26の合成
Figure JPOXMLDOC01-appb-I000057
 四つ口フラスコに、化合物25を含む混合オイルを全量、トルエンを200mL加え、室温(25℃)で30分間アルゴンバブリングを行った。次に、反応溶液にパラ−トルエンスルホン酸1水和物を1000mg加えた後、120℃に昇温して攪拌を行い、1時間後に、液体クロマトグラフィーにより原料の消失を確認した。反応液に水及び酢酸エチルを加え、反応生成物の抽出を行った。展開溶媒にヘキサンを用いたカラムで有機層の精製、乾燥を行うことで、化合物26を21.1g得た。
H−NMR(CDCl,δ(ppm)):0.83(t,6H),1.21(m,36H),1.43(m,4H),1.96(t,4H),6.67(d,1H),6.69(d,1H),6.96(d,1H),7.03(d,1H)
合成例22 化合物27の合成
Figure JPOXMLDOC01-appb-I000058
 フラスコ内の空気をアルゴンで置換した300mLフラスコに、化合物26を5.00g(9.42mmol)、脱水THFを150mL入れて均一な溶液とした。該溶液を−78℃に保ち、該溶液に2.6Mのブチルリチウム(n−BuLi)のヘキサン溶液9.04mL(23.5mmol)を10分かけて滴下した。滴下後、−78℃で30分攪拌し、次いで、室温(25℃)で2時間攪拌した。その後、フラスコを−78℃に冷却し、トリブチルスズクロリドを8.43g(25.9mmol)加えた。添加後、−78℃で30分攪拌し、次いで、室温(25℃)で3時間攪拌した。その後、水200mlを加えて反応を停止し、酢酸エチルで反応生成物を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥させ、ろ過後、ろ液をエバポレーターで濃縮し、溶媒を留去した。得られたオイル状の物質をシリカゲルカラムで精製した(展開溶媒:ヘキサン)。シリカゲルカラムのシリカゲルには、あらかじめ5wt%のトリエチルアミンを含むヘキサンに5分間浸し、その後、ヘキサンで濯いだシリカゲルを用いた。精製後、化合物27を9.80g(8.84mmol)得た。
実施例7 高分子化合物Eの合成
Figure JPOXMLDOC01-appb-I000059
 フラスコ内の空気をアルゴンで置換した100mLフラスコに、化合物23を200mg(0.190mmol)、化合物27を211mg(0.190mmol)、化合物22を96mg(0.291mmol)、化合物24を20mg(0.074mmol)、トルエンを32ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを5.01mg(0.0055mmol)、トリス(2−トルイル)ホスフィンを10.0mg加え、100℃で6時間攪拌した。その後、反応液にフェニルブロミドを113mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール300mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを、円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、o−ジクロロベンゼン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム2gと水40mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3wt%の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン30mLに再度溶解し、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体118mgを得た。以下、この重合体を高分子化合物Eと呼称する。
実施例8 インク及び有機薄膜太陽電池の作製、評価
 高分子化合物Bにかえて高分子化合物Eを用いた以外は、実施例3と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は13.25mA/cmであり、Voc(開放端電圧)は0.73Vであり、ff(フィルファクター(曲線因子))は0.66であり、光電変換効率(η)は6.39%であった。結果を表3に表す。
Figure JPOXMLDOC01-appb-T000060
Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.
Synthesis Example 1 Synthesis of Compound 2
Figure JPOXMLDOC01-appb-I000032
In a four-necked flask, 2.674 g (15.00 mmol) of Compound 1, 6.083 g (31.50 mmol) of bromooctane, 62.25 mg (2.5 mol%) of potassium iodide, and 50 mL of dimethyl sulfoxide were added. Argon bubbling was performed at room temperature (25 ° C.) for 30 minutes. After cooling to 0 ° C. with an ice bath, 2.525 g (45.00 mmol) of potassium hydroxide was added and reacted for 6 days. The reaction solution was analyzed by liquid chromatography (HPLC) to confirm disappearance of the raw materials.
Thereafter, pure water was added to the reaction solution, and the reaction product was extracted with hexane. Subsequently, 4.11g of compound 2 was obtained by performing isolation and drying with the column which used hexane for the developing solvent.
Synthesis Example 2 Synthesis of Compound 3
Figure JPOXMLDOC01-appb-I000033
To a four-necked flask, 4.12 g (10.2 mmol) of Compound 2 and 200 mL of N, N-dimethylformamide (DMF) were added, and argon bubbling was performed at room temperature (25 ° C.) for 30 minutes. After cooling to −20 ° C., 1.91 g (10.71 mmol) of N-bromosuccinimide (NBS) was added, and the temperature was raised to room temperature (25 ° C.) over 6 hours. During the temperature increase, another 182 mg of NBS (1.02 mmol) was added twice.
Thereafter, pure water was added to the reaction solution, and the reaction product was extracted with diethyl ether. Subsequently, 3.17 g of compound 3 was obtained by performing isolation and drying with a column using hexane as a developing solvent.
Synthesis Example 3 Synthesis of Compound 5
Figure JPOXMLDOC01-appb-I000034
In a four-neck flask, compound 4 (4,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxabolan-2-yl) -2,1,3-benzothiadiazole) (Sigma-Aldrich) 1.173 g (3.021 mmol), 3.178 g (6.042 mmol) of compound 3, 90 mL of toluene, and methyltrialkylammonium chloride (trade name Aliquat 336 (registered trademark), manufactured by Sigma-Aldrich) ) 606 mg (1.50 mmol) was added, and argon bubbling was performed at room temperature (25 ° C.) for 30 minutes. After the temperature was raised to 90 ° C., 6.7 mg of palladium acetate (1 mol% with respect to compound 4) and 37.0 mg of tris (2-methoxyphenyl) phosphine (3.5 mol% with respect to compound 4) were added. Then, 16.7 wt% sodium carbonate aqueous solution was dripped at the reaction liquid over 19.0 g (30.0 mmol) over 30 minutes, stirring at 100 degreeC. After 2 hours, the reaction solution was analyzed by HPLC to confirm the disappearance of compound 3. The reaction was performed in an argon atmosphere.
Thereafter, pure water was added to the reaction solution, and the toluene layer was separated and dried to obtain a reaction product. Next, 1.196 g of Compound 5 was obtained by isolation with a column using hexane as a developing solvent.
1 H-NMR (CDCl 3 , Δ (ppm)): 0.822 (t, 12H), 1.055 (m, 8H), 1.167 (m, 40H), 1.919 (t, 8H), 6.981 (d, 2H) ), 7.234 (d, 2H), 7.852 (s, 2H), 8.046 (s, 2H)
Synthesis Example 4 Synthesis of Compound 6
Figure JPOXMLDOC01-appb-I000035
To a four-necked flask, 1.190 g (1.269 mmol) of Compound 5, 15 mL of DMF, and 15 mL of tetrahydrofuran (THF) were added, and argon bubbling was performed at room temperature (25 ° C.) for 30 minutes. After cooling to −60 ° C., 474.3 mg (2.665 mmol) of NBS was added, and the temperature was raised to 0 ° C. over 6 hours. During the temperature increase, another 22.6 mg of NBS (0.127 mmol) was added twice.
Thereafter, pure water was added to the reaction solution, and the reaction product was extracted with hexane. Subsequently, 1.612 g of compound 6 was obtained by performing isolation and drying with a column using hexane as a developing solvent.
1 H-NMR (CDCl 3 , Δ (ppm)): 0.829 (t, 12H), 1.026 (m, 8H), 1.169 (m, 40H), 1.876 (t, 8H), 6.990 (s, 2H) ), 7.837 (s, 2H), 8.009 (s, 2H)
Example 1 Synthesis of Polymer Compound A
Figure JPOXMLDOC01-appb-I000036
In a four-necked flask, 64.8 mg (0.177 mmol) of Compound 7, 203.9 mg (0.186 mmol) of Compound 6, and 10 mL of tetrahydrofuran were placed, and argon bubbling was performed at room temperature (25 ° C.) for 30 minutes. Thereafter, 5.49 mg (0.006 mmol) of tris (dibenzylideneacetone) palladium and 6.96 mg (0.024 mmol) of [tri (tertiarybutyl) phosphonium] tetrafluoroborate were added to the flask. While stirring the reaction solution at 80 ° C., 1.50 g (3.00 mmol) of a 27.6 wt% potassium carbonate aqueous solution was dropped into the reaction solution over 30 minutes. After 15 minutes, 3.66 mg (0.03 mmol) of phenylboric acid was added, and the mixture was further stirred for 1 hour, and then the reaction was stopped. The reaction was performed in an argon atmosphere.
Thereafter, 1 g of sodium diethyldithiocarbamate and 10 mL of pure water were added, and the reaction solution was stirred while refluxed for 1 hour. After removing the aqueous layer in the reaction solution, the organic layer was washed twice with 10 ml of water, twice with 10 mL of a 3 wt (wt) aqueous acetic acid solution and twice with 10 mL of water, and then poured into methanol to give the polymer. Precipitated. The polymer was filtered and dried, and the resulting polymer was dissolved in toluene. The toluene solution was passed through an alumina / silica gel column, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried to obtain 150 mg of polymer compound A.
Regarding the molecular weight in terms of polystyrene of the polymer compound A measured by GPC, the weight average molecular weight (Mw) was 8,000, and the number average molecular weight (Mn) was 6,000.
Synthesis Example 5 Synthesis of Compound 8
Figure JPOXMLDOC01-appb-I000037
In a 1000 mL four-necked flask in which the air in the flask was replaced with argon, 13.0 g (80.0 mmol) of 3-bromothiophene and 80 mL of diethyl ether were added to obtain a uniform solution. While maintaining the solution at −78 ° C., 31 mL of a 2.6M n-butyllithium (n-BuLi) hexane solution (n-BuLi was 80.6 mmol) was added dropwise. After reacting at −78 ° C. for 2 hours, a solution prepared by dissolving 8.96 g (80.0 mmol) of 3-thiophenaldehyde in 20 mL of diethyl ether was added dropwise. After dropping, the mixture was stirred at -78 ° C for 30 minutes, and further stirred at room temperature (25 ° C) for 30 minutes. The reaction solution was cooled again to −78 ° C., and 62 mL of a 2.6 M butyl lithium (n-BuLi) hexane solution (n-BuLi was 161 mmol) was added dropwise over 15 minutes. After dropping, the reaction solution was stirred at −25 ° C. for 2 hours, and further stirred at room temperature (25 ° C.) for 1 hour. Thereafter, the reaction solution was cooled to −25 ° C., and a solution in which 60 g (236 mmol) of iodine was dissolved in 1000 mL of diethyl ether was added dropwise over 30 minutes. After dropping, the mixture was stirred at room temperature (25 ° C.) for 2 hours, and 50 mL of 1N aqueous sodium thiosulfate solution was added to stop the reaction. After extracting the reaction product with diethyl ether, the reaction product was dried with magnesium sulfate, filtered, and the filtrate was concentrated to obtain 35 g of a crude product. The crude product was purified by recrystallization using chloroform to obtain 28 g of Compound 8.
Synthesis Example 6 Synthesis of Compound 9
Figure JPOXMLDOC01-appb-I000038
10.5 g (23.4 mmol) of bisiodothienylmethanol (Compound 8) and 150 mL of methylene chloride were added to a 300 mL four-necked flask to obtain a uniform solution. To the solution, 7.50 g (34.8 mmol) of pyridinium chlorochromate was added and stirred at room temperature (25 ° C.) for 10 hours. The reaction solution was filtered to remove insolubles, and then the filtrate was concentrated to obtain 10.0 g (22.4 mmol) of Compound 9.
Synthesis Example 7 Synthesis of Compound 10
Figure JPOXMLDOC01-appb-I000039
In a 300 mL flask in which the air in the flask was replaced with argon, 10.0 g (22.4 mmol) of compound 9 and 6.0 g (94.5 mmol) of copper powder, dehydrated N, N-dimethylformamide (hereinafter referred to as DMF). 120 mL) was added and stirred at 120 ° C. for 4 hours. After the reaction, the flask was cooled to room temperature (25 ° C.), and the reaction solution was passed through a silica gel column to remove insoluble components. Thereafter, 500 mL of water was added, and the reaction product was extracted with chloroform. The oil layer which is a chloroform solution was dried with magnesium sulfate, the oil layer was filtered, and the filtrate was concentrated to obtain a crude product. The composition was purified with a silica gel column (developing solution: chloroform) to obtain 3.26 g of compound 10. The operation so far was performed several times.
Synthesis Example 8 Synthesis of Compound 11
Figure JPOXMLDOC01-appb-I000040
A uniform solution was obtained by adding 3.85 g (20.0 mmol) of Compound 10, 50 mL of chloroform, and 50 mL of trifluoroacetic acid to a 300 mL four-necked flask equipped with a mechanical stirrer and replacing the air in the flask with argon. To the solution was added 5.99 g (60 mmol) of sodium perborate monohydrate, and the mixture was stirred at room temperature (25 ° C.) for 45 minutes. Thereafter, 200 mL of water was added, the reaction product was extracted with chloroform, the organic layer, which was a chloroform solution, was passed through a silica gel column, and the solvent of the filtrate was distilled off with an evaporator. The residue was recrystallized using methanol to obtain 534 mg of Compound 11.
1 1 H NMR (CDCl 3 (Ppm)): 7.64 (d, 1H), 7.43 (d, 1H), 7.27 (d, 1H), 7.10 (d, 1H)
Synthesis Example 9 Synthesis of Compound 12
Figure JPOXMLDOC01-appb-I000041
1.00 g (4.80 mmol) of compound 11 and 30 ml of dehydrated THF were placed in a 100 mL four-necked flask in which the air in the flask was replaced with argon to obtain a uniform solution. While maintaining the flask at −20 ° C., 12.7 mL of 1M 3,7-dimethyloctylmagnesium bromide ether solution was added. Thereafter, the temperature was raised to −5 ° C. over 30 minutes, and the mixture was stirred for 30 minutes. Thereafter, the temperature was raised to 0 ° C. over 10 minutes, and the mixture was stirred for 1.5 hours. Thereafter, water was added to stop the reaction, and the reaction product was extracted with ethyl acetate. The organic layer, which is an ethyl acetate solution, was dried over sodium sulfate, and after filtration, the ethyl acetate solution was passed through a silica gel column, and the solvent of the filtrate was distilled off to obtain 1.50 g of compound 12.
1 1 H NMR (CDCl 3 (Ppm): 8.42 (b, 1H), 7.25 (d, 1H), 7.20 (d, 1H), 6.99 (d, 1H), 6.76 (d, 1H), 2.73 (b, 1H), 1.90 (m, 4H), 1.58-1.02 (b, 20H), 0.92 (s, 6H), 0.88 (s, 12H)
Synthesis Example 10 Synthesis of Compound 13
Figure JPOXMLDOC01-appb-I000042
A 200 mL flask in which the air in the flask was replaced with argon was charged with 1.50 g of compound 12 and 30 mL of toluene to obtain a uniform solution. 100 mg of sodium p-toluenesulfonate monohydrate was added to the solution, and the mixture was stirred at 100 ° C. for 1.5 hours. After cooling the reaction solution to room temperature (25 ° C.), 50 mL of water was added, and the reaction product was extracted with toluene. The organic layer, which is a toluene solution, was dried over sodium sulfate and filtered, and then the solvent was distilled off. The resulting crude product was purified with a silica gel column using hexane as a solvent to obtain 1.33 g of Compound 13. The operation so far was performed several times.
1 1 H NMR (CDCl 3 (Ppm): 6.98 (d, 1H), 6.93 (d, 1H), 6.68 (d, 1H), 6.59 (d, 1H), 1.89 (m, 4H), 1.58-1.00 (b, 20H), 0.87 (s, 6H), 0.86 (s, 12H)
Synthesis Example 11 Synthesis of Compound 14
Figure JPOXMLDOC01-appb-I000043
A 300 mL flask in which the air in the flask was replaced with argon was charged with 3.52 g (7.41 mmol) of Compound 13 and 100 mL of N, N-dimethylformamide (DMF) to obtain a uniform solution. After argon bubbling at 25 ° C. for 30 minutes, the mixture was cooled to −50 ° C., 1.20 g (6.74 mmol) of NBS was added, and the temperature was raised to 25 ° C. over 5.5 hours. 50 mL of water was added to the reaction solution, and the reaction product was extracted with diethyl ether. The diethyl ether solution was dried over sodium sulfate and filtered, and the solvent was distilled off. The obtained crude product was purified with a silica gel column using hexane as a developing solvent to obtain 3.30 g of Compound 14.
1 1 H NMR (CDCl 3 (Ppm): 0.826 (m, 18H), 1.08-1.47 (m, 20H), 1.95 (m, 4H), 6.65 (d, 1H), 6.66 (s) , 1H), 6.98 (s, 1H)
Synthesis Example 12 Synthesis of Compound 15
Figure JPOXMLDOC01-appb-I000044
To a 300 mL flask in which the air in the flask was replaced with argon, compound 4 (4,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxabolan-2-yl) -2,1,3 -Benzothiazole) (Aldrich) 1.11 g (2.85 mmol), compound 14 3.16 g (5.70 mmol), toluene 90 mL, and methyltrialkylammonium chloride (trade name Aliquat 336 (registered trademark)) 606 mg (1.50 mmol) was added to make a uniform solution, and argon bubbling was performed at 25 ° C. for 30 minutes. After the temperature was raised to 90 ° C., 6.7 mg of palladium acetate (1 mol% with respect to compound 4) and 37.0 mg of tris (2-methoxyphenyl) phosphine (3.5 mol% with respect to compound 4) were added.
Thereafter, 19.0 g (30.0 mmol) of a 16.7 wt% aqueous sodium carbonate solution was added dropwise over 30 minutes while stirring at 100 ° C. After dropping, the mixture was stirred at 100 ° C. for 2 hours. Thereafter, pure water was added to the reaction solution, the toluene layer was separated, and the toluene layer was dried over sodium sulfate to obtain a crude product. The crude product was purified with a silica gel column using hexane as a developing solvent to obtain 2.25 g of Compound 15.
1 1 H NMR (CDCl 3 (Ppm): 0.826 (m, 36H), 1.08-1.47 (m, 40H), 1.95 (m, 8H), 6.71 (d, 2H), 7.04 (d , 2H), 7.77 (s, 2H), 7.79 (s, 2H)
Synthesis Example 13 Synthesis of Compound 16
Figure JPOXMLDOC01-appb-I000045
A uniform solution was obtained by adding 2.25 g (2.08 mmol) of Compound 15, 40 mL of DMF, and 40 mL of tetrahydrofuran (THF) to a 200 mL flask in which the air in the flask was replaced with argon. After cooling to −50 ° C., 814 mg (4.58 mmol) of NBS was added, and the temperature was raised to 0 ° C. over 2.5 hours.
Thereafter, pure water was added to the reaction solution, and the reaction product was extracted with hexane. After drying the hexane solution, the crude product was purified with a silica gel column using hexane as a developing solvent, and 2.11 g of Compound 16 was obtained.
1 H-NMR (CDCl 3 (Ppm): 0.826 (m, 36H), 1.08-1.47 (m, 40H), 1.95 (m, 8H), 6.72 (s, 2H), 7.75 (s) , 2H), 7.77 (s, 2H)
Example 2 Synthesis of polymer compound B
Figure JPOXMLDOC01-appb-I000046
In a four-necked flask, 102.5 mg (0.280 mmol) of compound 7, 365.9 mg (0.295 mmol) of compound 16, and 10 mL of tetrahydrofuran were added, and argon bubbling was performed at room temperature (25 ° C.) for 30 minutes. It was. Thereafter, 5.49 mg (0.006 mmol) of tris (dibenzylideneacetone) palladium and 6.96 mg (0.024 mmol) of [tri (tertiarybutyl) phosphonium] tetrafluoroborate were added. While stirring the reaction solution at 80 ° C., 1.50 g (3.00 mmol) of a 27.6 wt% potassium carbonate aqueous solution was dropped into the reaction solution over 30 minutes. After 15 minutes, 3.66 mg (0.03 mmol) of phenylboric acid was added, and the mixture was further stirred for 1 hour, and then the reaction was stopped. The reaction was performed in an argon atmosphere.
Thereafter, 1 g of sodium diethyldithiocarbamate and 10 mL of pure water were added, and the reaction solution was stirred while refluxed for 1 hour. After removing the aqueous layer in the reaction solution, the organic layer was washed twice with 10 ml of water, twice with 10 mL of a 3 wt (wt) aqueous acetic acid solution and twice with 10 mL of water, and then poured into methanol to give the polymer. Precipitated. The polymer was filtered and dried, and the resulting polymer was dissolved in toluene. The toluene solution was passed through an alumina / silica gel column, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried to obtain 291 mg of polymer compound B.
Regarding the molecular weight (polystyrene conversion) of the polymer compound B measured by GPC, the weight average molecular weight (Mw) was 32,000, and the number average molecular weight (Mn) was 16,000.
Synthesis Example 14 Synthesis of Compound 18
Figure JPOXMLDOC01-appb-I000047
In a 200 mL flask in which the air in the flask was replaced with argon, 1.78 g (10.0 mmol) of compound 17, 5.83 g (25.0 mmol) of 2-ethylhexyl bromide, and 41.5 mg (0.25 mmol) of potassium iodide. ), 1.68 g (30.0 mmol) of potassium hydroxide was dissolved in 35 mL of dimethyl sulfoxide and stirred at room temperature (25 ° C.) for 24 hours. After the reaction, 100 mL of water was added, the reaction product was extracted with hexane, and purified with a silica gel column using hexane as a developing solvent, to obtain 2.61 g of Compound 18.
Synthesis Example 15 Synthesis of Compound 19
Figure JPOXMLDOC01-appb-I000048
1.31 g (3.25 mmol) of compound 18 and 25 mL of N, N-dimethylformamide (DMF) were added to a 200 mL flask in which the air in the flask was replaced with argon. Thereafter, the flask was cooled to 0 ° C., N-bromosuccinimide (NBS) (1.21 g) was added, and the mixture was stirred for 12 hours. The reaction was stopped by adding 100 mL of water to the reaction solution, and the reaction product was extracted with diethyl ether. Purification was performed with a silica gel column (developing solvent was hexane) to obtain 1.70 g of Compound 19.
Synthesis Example 16 Synthesis of polymer compound C
Figure JPOXMLDOC01-appb-I000049
Compound 200 (561 mg, 1.00 mmol), Compound 4 (4,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxabolanan-) was added to a 200 mL flask in which the air in the flask was replaced with argon. 2-yl) -2,1,3-benzothiadiazole) (manufactured by Sigma-Aldrich) 388.1 mg (1.00 mmol), methyltrialkylammonium chloride (trade name Aliquat 336 (registered trademark), manufactured by Sigma-Aldrich) Was dissolved in 20 ml of toluene, and the resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 2.25 mg of palladium acetate, 12.3 mg of tris (2-methoxyphenyl) phosphine (12.3 mg) and 6.5 mL of 16.7 wt% aqueous sodium carbonate solution were added, and the mixture was added at 100 ° C. for 5 hours. Stirring was performed. Thereafter, 50 mg of phenylboric acid was added, and the mixture was further reacted at 70 ° C. for 2 hours. Thereafter, 2 g of sodium diethyldithiocarbamate and 20 mL of water were added, and the mixture was stirred under reflux for 2 hours. After removing the aqueous layer in the reaction solution, the organic layer was washed twice with 20 ml of water, twice with 20 mL of a 3 wt% acetic acid aqueous solution and further twice with 20 mL of water, and poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the obtained polymer was dissolved again in 30 mL of o-dichlorobenzene. The o-dichlorobenzene solution was passed through an alumina / silica gel column, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and then dried to obtain 280 mg of a purified polymer compound. Hereinafter, this polymer compound is referred to as polymer compound C. As for the molecular weight (polystyrene conversion) of the high molecular compound C measured by GPC, Mw was 30,000 and Mn was 14,000.
Example 3 Production and evaluation of ink and organic thin-film solar cell
A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, the polymer compound B and fullerene C60PCBM (phenyl C61-butyric acid methyl ester, manufactured by Frontier Carbon Co.) have a ratio of the weight of C60PCBM to the weight of the polymer compound B of 3. Ink 1 was produced by dissolving in orthodichlorobenzene as described above. The total weight of the polymer compound B and the C60PCBM was 2.0% by weight with respect to the weight of the ink 1. The ink 1 was applied on a glass substrate by spin coating to prepare an organic film containing the polymer compound B. The film thickness was about 100 nm. The light absorption edge wavelength of the organic film thus produced was 750 nm. Then, lithium fluoride was vapor-deposited with a thickness of 2 nm on the organic film by a vacuum vapor deposition machine, and then Al was vapor-deposited with a thickness of 100 nm to produce an organic thin film solar cell. The shape of the obtained organic thin film solar cell was a square of 2 mm × 2 mm. A solar simulator (trade name OTENTO-SUNII: AM1.5G filter, irradiance 100 mW / cm, manufactured by Spectrometer Co., Ltd.) was applied to the obtained organic thin film solar cell. 2 ) Was irradiated with constant light, and the generated current and voltage were measured to determine photoelectric conversion efficiency, short-circuit current density, open-circuit voltage, and fill factor. Jsc (short circuit current density) is 9.63 mA / cm 2 Voc (open end voltage) was 0.67 V, ff (fill factor (curve factor)) was 0.62, and photoelectric conversion efficiency (η) was 4.03%. The results are shown in Table 1.
Example 4
An ink and an organic thin film solar cell were prepared and evaluated in the same manner as in Example 3 except that the polymer compound A was used instead of the polymer compound B. Jsc (short circuit current density) is 9.90 mA / cm 2 Voc (open end voltage) was 0.61 V, ff (fill factor) was 0.44, and the photoelectric conversion efficiency (η) was 2.62%. The results are shown in Table 1.
Comparative Example 1
An ink and an organic thin film solar cell were prepared and evaluated in the same manner as in Example 3 except that the polymer compound C was used instead of the polymer compound B. Jsc (short circuit current density) is 4.61 mA / cm. 2 Voc (open end voltage) was 0.60 V, ff (fill factor (curve factor)) was 0.33, and photoelectric conversion efficiency (η) was 0.91%. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000050
Synthesis Example 17 Synthesis of Compound 21
Figure JPOXMLDOC01-appb-I000051
In a 500 ml flask, 10.2 g (70.8 mmol) of 4,5-difluoro-1,2-diaminobenzene (Compound 20) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 150 mL of pyridine were added to obtain a homogeneous solution. While maintaining the flask at 0 ° C., 16.0 g (134 mmol) of thionyl chloride was dropped into the flask. After dropping, the flask was warmed to 25 ° C. and reacted for 6 hours. Thereafter, 250 ml of water was added to the reaction solution, and chloroform was further added to extract the reaction product. The organic layer, which is a chloroform solution, was dried over sodium sulfate and filtered. The filtrate was concentrated with an evaporator, and the precipitated solid was purified by recrystallization. Methanol was used as the solvent for recrystallization. After purification, 10.5 g (61.0 mmol) of compound 21 was obtained.
1 H-NMR (CDCl 3 , Δ (ppm)): 7.75 (s, 2H)
19 F-NMR (CDCl 3 , Δ (ppm)): -128.3 (s, 2F)
Synthesis Example 18 Synthesis of Compound 22
Figure JPOXMLDOC01-appb-I000052
In a 100 mL flask, 2.00 g (11.6 mmol) of compound 21 and 0.20 g (3.58 mmol) of iron powder were placed, and the flask was heated to 90 ° C. To this flask, 31 g (194 mmol) of bromine was added dropwise over 1 hour. After the dropping, the reaction solution was stirred at 90 ° C. for 38 hours. Thereafter, the flask was cooled to room temperature (25 ° C.) and diluted with 100 mL of chloroform. The obtained solution was poured into 300 mL of 5 wt% aqueous sodium sulfite solution and stirred for 1 hour. The organic layer of the obtained mixture was separated with a separatory funnel, and the aqueous layer was extracted with chloroform three times. The obtained extract was mixed with the organic layer, and the mixed solution was dried over sodium sulfate. After filtration, the filtrate was concentrated with an evaporator and the solvent was distilled off. The obtained yellow solid was dissolved in 90 mL of methanol heated to 55 ° C., and then cooled to 25 ° C. The precipitated crystals were collected by filtration and then dried under reduced pressure at room temperature (25 ° C.) to obtain 1.50 g of compound 22.
19 F-NMR (CDCl 3 , Δ (ppm)): -118.9 (s, 2F)
Synthesis Example 19 Synthesis of Compound 23
Figure JPOXMLDOC01-appb-I000053
Into a 200 mL flask in which the air in the flask was replaced with argon, 2.16 g (4.55 mmol) of Compound 13 and 100 mL of dehydrated THF were added to obtain a uniform solution. The solution was kept at −78 ° C., and 4.37 mL (11.4 mmol) of 2.6M butyllithium (n-BuLi) in hexane was added dropwise to the solution over 10 minutes. After dropping, the mixture was stirred at −78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 2 hours. Thereafter, the flask was cooled to −78 ° C., and 4.07 g (12.5 mmol) of tributyltin chloride was added. After the addition, the mixture was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 3 hours. Thereafter, 200 ml of water was added to stop the reaction, and the reaction product was extracted with ethyl acetate. The organic layer, which is an ethyl acetate solution, was dried over sodium sulfate and filtered, and then the filtrate was concentrated with an evaporator and the solvent was distilled off. The oily substance obtained was purified with a silica gel column (developing solvent: hexane). As the silica gel of the silica gel column, silica gel previously immersed in hexane containing 5 wt% triethylamine for 5 minutes and then rinsed with hexane was used. After purification, 3.52 g (3.34 mmol) of compound 23 was obtained.
Example 5 Synthesis of polymer compound D
Figure JPOXMLDOC01-appb-I000054
In a 100 mL flask in which the air in the flask was replaced with argon, 500 mg (0.475 mmol) of compound 23, 123 mg (0.373 mmol) of compound 22, 24 mg (0.088 mmol) of compound 24, and 32 ml of toluene were uniformly mixed. It was. The resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 6.33 mg (0.007 mmol) of tris (dibenzylideneacetone) dipalladium and 12.6 mg of tris (2-toluyl) phosphine were added to the toluene solution, and the mixture was stirred at 100 ° C. for 6 hours. Thereafter, 500 mg of phenyl bromide was added to the reaction solution, and the mixture was further stirred for 5 hours. Thereafter, the flask was cooled to 25 ° C., and the reaction solution was poured into 300 mL of methanol. The precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours each using a Soxhlet extractor. The polymer remaining in the cylindrical filter paper was dissolved in 100 mL of o-dichlorobenzene, 2 g of sodium diethyldithiocarbamate and 40 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer is washed twice with 50 ml of water, then twice with 50 mL of 3 wt% aqueous acetic acid, then twice with 50 mL of water and then twice with 50 mL of water. The resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the resulting polymer was dissolved again in 30 mL of o-dichlorobenzene and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and then dried to obtain 40 mg of a purified polymer. Hereinafter, this polymer is referred to as polymer compound D.
Example 6 Preparation and evaluation of ink and organic thin-film solar cell
An ink and an organic thin film solar cell were prepared and evaluated in the same manner as in Example 3 except that the polymer compound D was used instead of the polymer compound B. Jsc (short circuit current density) is 12.64 mA / cm 2 Voc (open end voltage) was 0.75 V, ff (fill factor (curve factor)) was 0.61, and photoelectric conversion efficiency (η) was 5.74%. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000055
Synthesis Example 20 Synthesis of Compound 25
Figure JPOXMLDOC01-appb-I000056
To a four-necked flask, 10.00 g (48.02 mmol) of Compound 11 and 400 mL of tetrahydrofuran were added, and argon bubbling was performed at room temperature (25 ° C.) for 30 minutes. After cooling the reaction solution to −40 ° C., 144 mL of diethyl ether solution containing 1.0 mol / L of dodecylmagnesium bromide was added and stirred while raising the temperature to 0 ° C. After 3 hours, disappearance of the raw material was confirmed by liquid chromatography.
Water and chloroform were added to the reaction solution, the reaction product was extracted, and purified and dried with a column using chloroform as a developing solvent, whereby a mixed oil containing Compound 25 was obtained.
Synthesis Example 21 Synthesis of Compound 26
Figure JPOXMLDOC01-appb-I000057
To the four-necked flask, a total amount of the mixed oil containing Compound 25 and 200 mL of toluene were added, and argon bubbling was performed at room temperature (25 ° C.) for 30 minutes. Next, 1000 mg of para-toluenesulfonic acid monohydrate was added to the reaction solution, and then the mixture was heated to 120 ° C. and stirred. After 1 hour, disappearance of the raw materials was confirmed by liquid chromatography. Water and ethyl acetate were added to the reaction solution, and the reaction product was extracted. By purifying and drying the organic layer with a column using hexane as a developing solvent, 21.1 g of Compound 26 was obtained.
1 H-NMR (CDCl 3 , Δ (ppm)): 0.83 (t, 6H), 1.21 (m, 36H), 1.43 (m, 4H), 1.96 (t, 4H), 6.67 (d, 1H) ), 6.69 (d, 1H), 6.96 (d, 1H), 7.03 (d, 1H)
Synthesis Example 22 Synthesis of Compound 27
Figure JPOXMLDOC01-appb-I000058
A 300 mL flask in which the air in the flask was replaced with argon was charged with 5.00 g (9.42 mmol) of Compound 26 and 150 mL of dehydrated THF to obtain a uniform solution. The solution was kept at −78 ° C., and 9.04 mL (23.5 mmol) of 2.6M butyllithium (n-BuLi) in hexane was added dropwise to the solution over 10 minutes. After dropping, the mixture was stirred at −78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 2 hours. Thereafter, the flask was cooled to −78 ° C., and 8.43 g (25.9 mmol) of tributyltin chloride was added. After the addition, the mixture was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 3 hours. Thereafter, 200 ml of water was added to stop the reaction, and the reaction product was extracted with ethyl acetate. The organic layer, which is an ethyl acetate solution, was dried over sodium sulfate and filtered, and then the filtrate was concentrated with an evaporator and the solvent was distilled off. The oily substance obtained was purified with a silica gel column (developing solvent: hexane). As the silica gel of the silica gel column, silica gel previously immersed in hexane containing 5 wt% triethylamine for 5 minutes and then rinsed with hexane was used. After purification, 9.80 g (8.84 mmol) of Compound 27 was obtained.
Example 7 Synthesis of polymer compound E
Figure JPOXMLDOC01-appb-I000059
In a 100 mL flask in which the air in the flask was replaced with argon, 200 mg (0.190 mmol) of compound 23, 211 mg (0.190 mmol) of compound 27, 96 mg (0.291 mmol) of compound 22, and 20 mg (0. 074 mmol) and 32 ml of toluene to make a uniform solution. The resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 5.01 mg (0.0055 mmol) of tris (dibenzylideneacetone) dipalladium and 10.0 mg of tris (2-toluyl) phosphine were added to the toluene solution, and the mixture was stirred at 100 ° C. for 6 hours. Thereafter, 113 mg of phenyl bromide was added to the reaction solution, and the mixture was further stirred for 5 hours. Thereafter, the flask was cooled to 25 ° C., and the reaction solution was poured into 300 mL of methanol. The precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours each using a Soxhlet extractor. The polymer remaining in the cylindrical filter paper was dissolved in 100 mL of o-dichlorobenzene, 2 g of sodium diethyldithiocarbamate and 40 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer is washed twice with 50 ml of water, then twice with 50 mL of a 3 wt% aqueous acetic acid solution, then twice with 50 mL of water and then twice with 50 mL of water. The resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the resulting polymer was dissolved again in 30 mL of o-dichlorobenzene and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer. The polymer was filtered and then dried to obtain 118 mg of a purified polymer. Hereinafter, this polymer is referred to as polymer compound E.
Example 8 Production and evaluation of ink and organic thin film solar cell
An ink and an organic thin film solar cell were prepared and evaluated in the same manner as in Example 3 except that the polymer compound E was used instead of the polymer compound B. Jsc (short circuit current density) is 13.25 mA / cm 2 Voc (open end voltage) was 0.73 V, ff (fill factor (curve factor)) was 0.66, and photoelectric conversion efficiency (η) was 6.39%. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000060
 本発明は、光電変換効率の高い光電変換素子を提供することから、有用である。 The present invention is useful because it provides a photoelectric conversion element with high photoelectric conversion efficiency.

Claims (16)

  1.  一対の電極と、該電極の間に式(I)で表される繰り返し単位を有する高分子化合物を含む有機層を有する光電変換素子。
    Figure JPOXMLDOC01-appb-I000001
    式中、Arは、アリーレン基を表す。Rは、フッ素原子又はフッ素原子を有する1価の有機基を表す。2個あるRは、同一でも相異なってもよい。
    A photoelectric conversion element having a pair of electrodes and an organic layer containing a polymer compound having a repeating unit represented by formula (I) between the electrodes.
    Figure JPOXMLDOC01-appb-I000001
    In the formula, Ar represents an arylene group. R represents a fluorine atom or a monovalent organic group having a fluorine atom. Two R may be the same or different.
  2.  式(I)で表される繰り返し単位の他に、式(II)及び、式(III)で表される繰り返し単位を有する、請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-I000002
    式中、Xは、硫黄原子又は酸素原子を表す。Zは、=CH−、=C(R)−又は窒素原子を表す。2個あるZは、同一でも相異なってもよい。Rは、フッ素原子又はフッ素原子を有する1価の有機基を表す。
    Figure JPOXMLDOC01-appb-I000003
    式中、Eは、硫黄原子、酸素原子、セレン原子、−NH−又は−N(R)−を表わす。2個あるEは同一でも相異なってもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基又はヘテロアリール基を表す。複数個あるRは、同一であっても相異なってもよい。Yは、2価の基を表す。Rはフッ素原子又はフッ素原子を有する1価の有機基を表す。
    The photoelectric conversion element of Claim 1 which has a repeating unit represented by Formula (II) and Formula (III) other than the repeating unit represented by Formula (I).
    Figure JPOXMLDOC01-appb-I000002
    In the formula, X represents a sulfur atom or an oxygen atom. Z represents ═CH—, ═C (R) —, or a nitrogen atom. Two Z may be the same or different. R represents a fluorine atom or a monovalent organic group having a fluorine atom.
    Figure JPOXMLDOC01-appb-I000003
    In the formula, E represents a sulfur atom, an oxygen atom, a selenium atom, —NH— or —N (R 1 ) —. Two E may be the same or different. R 1 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group. A plurality of R 1 may be the same or different. Y represents a divalent group. R represents a fluorine atom or a monovalent organic group having a fluorine atom.
  3.  式(I)で表される繰り返し単位が、式(A−1)~式(A−4)で表される繰り返し単位である請求項1~2に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-I000004
    式中、Rは前述と同じ意味を表す。
    3. The photoelectric conversion element according to claim 1, wherein the repeating unit represented by formula (I) is a repeating unit represented by formula (A-1) to formula (A-4).
    Figure JPOXMLDOC01-appb-I000004
    In the formula, R represents the same meaning as described above.
  4.  Rが、フッ素原子又は式(R−2)~式(R−11)で表される基のいずれかである請求項1~3に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-I000005
    4. The photoelectric conversion device according to claim 1, wherein R is either a fluorine atom or a group represented by formula (R-2) to formula (R-11).
    Figure JPOXMLDOC01-appb-I000005
  5.  Rがフッ素原子である請求項1~3に記載の光電変換素子。 4. The photoelectric conversion device according to claim 1, wherein R is a fluorine atom.
  6.  式(I)で表される繰り返し単位が式(A−1)~式(A−4)で表される繰り返し単位であり、式(II)で表される繰り返し単位が式(C−1)~式(C−12)で表される繰り返し単位であり、式(III)で表される繰り返し単位が、式(E−1)~(E−16)で表される繰り返し単位である請求項2に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-I000006
    式中、Rはフッ素原子又はフッ素原子を有する1価の有機基を表す。2個あるRは、同一でも相異なってもよい。
    Figure JPOXMLDOC01-appb-I000007
    Figure JPOXMLDOC01-appb-I000008
    式中、Rは水素原子、アルキル基、アルコキシ基、アリール基又はヘテロアリール基を表す。複数個あるRは、同一であっても相異なってもよい。
    The repeating unit represented by formula (I) is a repeating unit represented by formula (A-1) to formula (A-4), and the repeating unit represented by formula (II) is represented by formula (C-1). A repeating unit represented by formula (C-12), wherein the repeating unit represented by formula (III) is a repeating unit represented by formulas (E-1) to (E-16): 2. The photoelectric conversion element according to 2.
    Figure JPOXMLDOC01-appb-I000006
    In the formula, R represents a fluorine atom or a monovalent organic group having a fluorine atom. Two R may be the same or different.
    Figure JPOXMLDOC01-appb-I000007
    Figure JPOXMLDOC01-appb-I000008
    In the formula, R 1 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group. A plurality of R 1 may be the same or different.
  7.  Rがフッ素原子であり、Rが炭素数1~30のアルキル基である請求項6に記載の光電変換素子。 7. The photoelectric conversion element according to claim 6, wherein R is a fluorine atom, and R 1 is an alkyl group having 1 to 30 carbon atoms.
  8.  式(I)、式(II)及び、式(III)で表される繰り返し単位を有する高分子化合物。
    Figure JPOXMLDOC01-appb-I000009
    式中、Arは、アリーレン基を表す。Rは、フッ素原子又はフッ素原子を有する1価の有機基を表す。2個あるRは、同一でも相異なってもよい。
    Figure JPOXMLDOC01-appb-I000010
    式中、Xは、硫黄原子又は酸素原子を表す。Zは、=CH−、=C(R)−又は窒素原子を表す。2個あるZは、同一でも相異なってもよい。Rは、前述と同じ意味を表す。
    Figure JPOXMLDOC01-appb-I000011
    式中、Eは、硫黄原子、酸素原子、セレン原子、−NH−又は−N(R)−を表わす。2個あるEは同一でも相異なってもよい。Rは、水素原子、アルキル基、アルコキシ基、アリール基又はヘテロアリール基を表す。複数個あるRは、同一であっても相異なってもよい。Yは、2価の基を表す。Rは前述と同じ意味を表す。
    The high molecular compound which has a repeating unit represented by Formula (I), Formula (II), and Formula (III).
    Figure JPOXMLDOC01-appb-I000009
    In the formula, Ar represents an arylene group. R represents a fluorine atom or a monovalent organic group having a fluorine atom. Two R may be the same or different.
    Figure JPOXMLDOC01-appb-I000010
    In the formula, X represents a sulfur atom or an oxygen atom. Z represents ═CH—, ═C (R) —, or a nitrogen atom. Two Z may be the same or different. R represents the same meaning as described above.
    Figure JPOXMLDOC01-appb-I000011
    In the formula, E represents a sulfur atom, an oxygen atom, a selenium atom, —NH— or —N (R 1 ) —. Two E may be the same or different. R 1 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group. A plurality of R 1 may be the same or different. Y represents a divalent group. R represents the same meaning as described above.
  9.  式(I)で表される繰り返し単位が式(A−1)~式(A−4)で表される繰り返し単位であり、式(II)で表される繰り返し単位が式(C−1)~式(C−12)で表される繰り返し単位であり、式(III)で表される繰り返し単位が、式(E−1)~(E−16)で表される繰り返し単位である請求項8に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-I000012
    式中、Rはフッ素原子又はフッ素原子を有する1価の有機基を表す。2個あるRは、同一でも相異なってもよい。
    Figure JPOXMLDOC01-appb-I000013
    Figure JPOXMLDOC01-appb-I000014
    式中、Rは水素原子、アルキル基、アルコキシ基、アリール基又はヘテロアリール基を表す。複数個あるRは、同一であっても相異なってもよい。。
    The repeating unit represented by formula (I) is a repeating unit represented by formula (A-1) to formula (A-4), and the repeating unit represented by formula (II) is represented by formula (C-1). A repeating unit represented by formula (C-12), wherein the repeating unit represented by formula (III) is a repeating unit represented by formulas (E-1) to (E-16): 9. The polymer compound according to 8.
    Figure JPOXMLDOC01-appb-I000012
    In the formula, R represents a fluorine atom or a monovalent organic group having a fluorine atom. Two R may be the same or different.
    Figure JPOXMLDOC01-appb-I000013
    Figure JPOXMLDOC01-appb-I000014
    In the formula, R 1 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group. A plurality of R 1 may be the same or different. .
  10.  Rがフッ素原子又は式(R−2)~式(R−11)で表される基のいずれかであり、Rが炭素数1~30のアルキル基である請求項9に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-I000015
    10. The polymer according to claim 9, wherein R is either a fluorine atom or a group represented by formula (R-2) to formula (R-11), and R 1 is an alkyl group having 1 to 30 carbon atoms. Compound.
    Figure JPOXMLDOC01-appb-I000015
  11.  高分子化合物のポリスチレン換算の数平均分子量が3,000以上である請求項8~10のいずれかに記載の高分子化合物。 The polymer compound according to any one of claims 8 to 10, wherein the polymer compound has a polystyrene-equivalent number average molecular weight of 3,000 or more.
  12.  請求項8~11のいずれかに記載の高分子化合物を含む薄膜。 A thin film comprising the polymer compound according to any one of claims 8 to 11.
  13.  請求項8~11のいずれかに記載の高分子化合物と電子受容性化合物とを含む組成物。 A composition comprising the polymer compound according to any one of claims 8 to 11 and an electron-accepting compound.
  14.  電子受容性化合物が、フラーレン誘導体である請求項12に記載の組成物。 The composition according to claim 12, wherein the electron-accepting compound is a fullerene derivative.
  15.  請求項13又は14に記載の組成物の薄膜。 A thin film of the composition according to claim 13 or 14.
  16.  請求項12又は15に記載の薄膜を用いた電子素子。 An electronic device using the thin film according to claim 12 or 15.
PCT/JP2011/066168 2010-07-14 2011-07-08 Photoelectric conversion element WO2012008556A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010159411 2010-07-14
JP2010-159411 2010-07-14
JP2011-094773 2011-04-21
JP2011094773 2011-04-21

Publications (1)

Publication Number Publication Date
WO2012008556A1 true WO2012008556A1 (en) 2012-01-19

Family

ID=45469551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066168 WO2012008556A1 (en) 2010-07-14 2011-07-08 Photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP5799626B2 (en)
WO (1) WO2012008556A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220994A (en) * 2012-04-13 2013-10-28 Sumitomo Chemical Co Ltd Compound and electronic element using the same
US20150034161A1 (en) * 2012-02-17 2015-02-05 Next Energy Technologies, Inc. Organic semiconducting compounds for use in organic electronic devices
US10770665B2 (en) 2015-03-26 2020-09-08 Next Energy Technology, Inc. Fluorinated dye compounds for organic solar cells
WO2021105706A1 (en) 2019-11-29 2021-06-03 Sumitomo Chemical Co., Ltd Photoactive composition
US11127907B2 (en) 2012-02-14 2021-09-21 Next Energy Technologies, Inc. Electronic devices using organic small molecule semiconducting compounds

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012030942A1 (en) * 2010-09-02 2012-03-08 Konarka Technologies, Inc. Photovoltaic cell containing novel photoactive polymer
JP2013095813A (en) * 2011-10-31 2013-05-20 Sumitomo Chemical Co Ltd Polymer compound and photoelectric conversion element using the same
JP6460553B2 (en) * 2014-12-19 2019-01-30 エルジー・ケム・リミテッド Polymer and organic solar cell including the same
KR102250385B1 (en) * 2017-10-18 2021-05-11 주식회사 엘지화학 Organic photodiode and organic image sensor comprising the same
KR102441144B1 (en) * 2018-05-17 2022-09-06 주식회사 엘지화학 Heterocyclic compound and organic electronic device comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138132A (en) * 2000-11-01 2002-05-14 Toppan Printing Co Ltd Conjugated polymer containing fluorine and electroluminescence element using the same
JP2002317033A (en) * 2001-04-19 2002-10-31 Fuji Photo Film Co Ltd New polymer, light-emitting element material, and light- emitting element utilizing the same
JP2006511659A (en) * 2002-12-19 2006-04-06 ダウ グローバル テクノロジーズ インコーポレイティド Tricyclic arylamine monomers and polymers and devices thereof
JP2007505958A (en) * 2003-09-20 2007-03-15 メルク パテント ゲーエムベーハー Conjugated polymers, their preparation and use
WO2010117449A2 (en) * 2009-04-06 2010-10-14 University Of Kentucky Research Foundation Semiconducting compounds and devices incorporating same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074886B2 (en) * 2001-05-07 2006-07-11 E. I. Du Pont De Memours And Company Electroactive fluorene polymers having perfluoroalkyl groups, process for preparing such polymers and devices made with such polymers
KR101314931B1 (en) * 2006-10-30 2013-10-04 삼성전자주식회사 Organic Polymeric Semiconductor, Method for preparing thereof and Ambipolar Organic Thin Film Transistor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138132A (en) * 2000-11-01 2002-05-14 Toppan Printing Co Ltd Conjugated polymer containing fluorine and electroluminescence element using the same
JP2002317033A (en) * 2001-04-19 2002-10-31 Fuji Photo Film Co Ltd New polymer, light-emitting element material, and light- emitting element utilizing the same
JP2006511659A (en) * 2002-12-19 2006-04-06 ダウ グローバル テクノロジーズ インコーポレイティド Tricyclic arylamine monomers and polymers and devices thereof
JP2007505958A (en) * 2003-09-20 2007-03-15 メルク パテント ゲーエムベーハー Conjugated polymers, their preparation and use
WO2010117449A2 (en) * 2009-04-06 2010-10-14 University Of Kentucky Research Foundation Semiconducting compounds and devices incorporating same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENGGUO ZHU ET AL.: "Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications", MACROMOLECULES, vol. 40, 17 February 2007 (2007-02-17), pages 1981 - 1986, XP008111329, DOI: doi:10.1021/ma062376o *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11127907B2 (en) 2012-02-14 2021-09-21 Next Energy Technologies, Inc. Electronic devices using organic small molecule semiconducting compounds
US11309499B2 (en) 2012-02-14 2022-04-19 Next Energy Technologies, Inc. Electronic devices using organic small molecule semiconducting compounds
US20150034161A1 (en) * 2012-02-17 2015-02-05 Next Energy Technologies, Inc. Organic semiconducting compounds for use in organic electronic devices
US9865821B2 (en) * 2012-02-17 2018-01-09 Next Energy Technologies, Inc. Organic semiconducting compounds for use in organic electronic devices
JP2013220994A (en) * 2012-04-13 2013-10-28 Sumitomo Chemical Co Ltd Compound and electronic element using the same
US10770665B2 (en) 2015-03-26 2020-09-08 Next Energy Technology, Inc. Fluorinated dye compounds for organic solar cells
WO2021105706A1 (en) 2019-11-29 2021-06-03 Sumitomo Chemical Co., Ltd Photoactive composition

Also Published As

Publication number Publication date
JP5799626B2 (en) 2015-10-28
JP2012235076A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5799626B2 (en) Photoelectric conversion element
JP5999095B2 (en) Polymer compound and electronic device
JP5742422B2 (en) Polymer compounds, compounds and uses thereof
JP5720179B2 (en) High molecular compound
US9290510B2 (en) Polymeric compound and electronic element
JP5720180B2 (en) Photoelectric conversion element
WO2011052709A1 (en) Polymeric compound
JP2014047192A (en) Compound, organic semiconductor material containing compound, and organic semiconductor element
JP5906803B2 (en) Organic photoelectric conversion element material and method for producing organic photoelectric conversion element
JP5742494B2 (en) Polymer compound and electronic device using the same
JP2013237828A (en) Method for producing nitrogen-containing compound
WO2012111784A1 (en) Manufacturing method for organic photoelectric conversion element
WO2013183549A1 (en) Composition and electronic element using same
JP2015180621A (en) compound
JP5740823B2 (en) Compound and device using the same
WO2012090971A1 (en) Photoelectric conversion element and composition used in same
JP2013095813A (en) Polymer compound and photoelectric conversion element using the same
JP5887814B2 (en) Polymer compound and electronic device using the same
WO2011148900A1 (en) Polymer compound and photoelectric conversion element using the same
JP5927965B2 (en) Manufacturing method of organic photoelectric conversion element
WO2013047293A1 (en) Photoelectric conversion element
JP2014047196A (en) Compound and polymer compound, organic semiconductor material containing compound or polymer compound and organic semiconductor element using organic semiconductor material
JP2015093944A (en) Polymer compound and organic semiconductor element prepared using the same
JP2014237733A (en) Polymer compound and organic semiconductor element prepared using the same
JP2013220994A (en) Compound and electronic element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806886

Country of ref document: EP

Kind code of ref document: A1