WO2012008480A1 - スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料 - Google Patents

スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料 Download PDF

Info

Publication number
WO2012008480A1
WO2012008480A1 PCT/JP2011/065945 JP2011065945W WO2012008480A1 WO 2012008480 A1 WO2012008480 A1 WO 2012008480A1 JP 2011065945 W JP2011065945 W JP 2011065945W WO 2012008480 A1 WO2012008480 A1 WO 2012008480A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
metal oxide
lithium transition
temperature
spinel
Prior art date
Application number
PCT/JP2011/065945
Other languages
English (en)
French (fr)
Inventor
蔭井 慎也
啓祐 宮之原
祥巳 畑
越智 康弘
徹也 光本
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to EP11806810.5A priority Critical patent/EP2594529B1/en
Priority to US13/810,344 priority patent/US8734998B2/en
Priority to JP2011551366A priority patent/JP4939670B2/ja
Publication of WO2012008480A1 publication Critical patent/WO2012008480A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/54Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [Mn2O4]-, e.g. Li(CoxMn2-x)04, Li(MyCoxMn2-x-y)O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a spinel-type lithium transition metal oxide that can be used as a positive electrode active material for a lithium battery.
  • the present invention relates to a spinel type lithium transition metal oxide that can be suitably used as a material for a battery mounted on an automobile.
  • Lithium batteries especially lithium secondary batteries, have features such as high energy density and long life, and power supplies for home appliances such as video cameras and portable electronic devices such as notebook computers and mobile phones. Is widely used. Recently, application to large batteries mounted on electric vehicles (EV), hybrid electric vehicles (HEV), and the like is expected.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • a lithium secondary battery is a secondary battery with a structure in which lithium is extracted as ions from the positive electrode during charging, moves to the negative electrode and is stored, and reversely, lithium ions return from the negative electrode to the positive electrode during discharging. It is known to be due to the potential of the material.
  • lithium transition metal oxides such as LiCoO 2 , LiNiO 2 , and LiMnO 2 having a layer structure, LiMn 2 O 4 , and LiNi 0.5 Mn.
  • a lithium transition metal oxide having a manganese-based spinel structure (Fd-3m) such as 1.5 O 4 (also referred to as “spinel-type lithium transition metal oxide” or “LMO” in the present invention) is known.
  • LMO manganese-based spinel-type lithium transition metal oxides
  • LMO manganese-based spinel-type lithium transition metal oxides
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • LiCoO 2 lithium transition metal oxide
  • LMO spinel type lithium transition metal oxide
  • Patent Document 1 discloses a method of suppressing oxygen deficiency by adding lithium hydroxide after high-temperature baking and re-baking at a lower temperature.
  • the starting material is baked in an oxidizing atmosphere at a temperature in the range of 900 to 1000 ° C. for 5 to 50 hours, and then in an oxidizing atmosphere in the range of 600 to 900 ° C.
  • Patent Document 3 proposes a method for producing a lithium composite oxide in which a mixture of raw materials is fired at a high temperature to produce a fired product, and the fired product is refired while flowing.
  • Patent Document 4 discloses a general formula (I) LiaMn 2-x M x O 4- ⁇ (in formula (I) , M is a substitution element group (Li, Mg, Ca and Ti, or Li and Al) that substitutes a part of Mn, and X is a substitution element group (M) in the range of 0 ⁇ X ⁇ 0.5 , A means the amount of Li in the range of 0.1 ⁇ a ⁇ 1.3, and ⁇ means the amount of oxygen deficiency in the range of 0 ⁇ ⁇ ⁇ 0.05, respectively.
  • a lithium secondary battery including lithium and a manganese manganate having a specific surface area of 1 m 2 / g or less as a positive electrode active material is disclosed.
  • batteries mounted on automobiles such as batteries mounted on electric vehicles (EV) and hybrid electric vehicles (HEV)
  • the power density is high (acceleration performance unlike batteries for consumer products).
  • quick charging influencing convenience and regenerative performance
  • electricity is generated by the rotation of the engine due to the rotation of the tire, and regeneration is often performed to charge this electricity to the battery.
  • Fast chargeability that can be charged is required.
  • the present invention is intended to provide a new spinel type lithium transition metal oxide capable of satisfying all of output characteristics (rate characteristics), high-temperature cycle life characteristics, and quick charge characteristics.
  • the present invention is a spinel type lithium transition metal oxide containing, in addition to Li and Mn, one or more elements selected from the group consisting of Mg, Ti, Ni, Co and Fe.
  • a spinel-type lithium transition metal oxide (also referred to as “LMO”) having a crystallite size of 200 nm to 1000 nm and a strain of 0.0900 or less is proposed.
  • the LMO of the present invention has a crystallite size of 200 nm to 1000 nm and a strain of 0.0900 or less, the crystallite size is significantly larger than that of the conventional LMO, and the distortion of the crystal structure is remarkable. It is a small and strong LMO LMO.
  • spinel-type lithium transition metal oxides containing Li and Mn by containing one or more elements selected from the group consisting of Mg, Ti, Ni, Co and Fe It was found that the distortion can be significantly reduced.
  • the spinel type lithium transition metal oxide of the present invention having such characteristics is used as a positive electrode active material of a battery, all of output characteristics (rate characteristics), high temperature cycle life characteristics, and quick charge characteristics can be achieved. .
  • the TG curve of the spinel type lithium transition metal oxide of Example 1 FIG. It is the figure which showed the structure of the cell for electrochemical produced in order to evaluate the battery characteristic of the sample obtained by the Example and the comparative example.
  • the spinel (Fd-3m) lithium transition metal oxide (hereinafter also referred to as “the present LMO”) according to an embodiment of the present invention has a crystallite size of 200 nm to 1000 nm and a strain of 0.0900 or less. It has the characteristics.
  • the present LMO is characterized by a crystallite size of 200 nm to 1000 nm, preferably 250 nm to 900 nm, and more preferably 250 nm to 600 nm. If the crystallite size of the present LMO is 200 nm to 1000 nm, the input characteristics and output characteristics can be improved, and at the same time, the high temperature cycle life characteristics can be improved. Therefore, the output characteristics (rate characteristics), high temperature cycle life characteristics, and Rapid charging characteristics can be enhanced.
  • crystallite means the largest group that can be regarded as a single crystal, and can be obtained by XRD measurement and Rietveld analysis.
  • the present LMO is characterized in that the strain is 0.0900 or less, preferably 0.0800 or less, preferably 0.0600 or less, and more preferably 0.0400 or less. If the strain is not so small, the skeleton of the spinel type lithium transition metal oxide is sufficiently strong. When used as a positive electrode active material of a lithium secondary battery, output characteristics (rate characteristics), high temperature cycle life characteristics, and Rapid charging characteristics can be enhanced.
  • the present LMO is a spinel (Fd-3m) lithium transition metal oxide containing one or more elements selected from the group consisting of Mg, Ti, Ni, Co and Fe in addition to Li and Mn.
  • spinel type (Fd-3m) lithium transition metal oxide containing one or more elements selected from the group consisting of Mg and Ti in addition to Li and Mn it is preferable that it is a thing.
  • the total amount is more than 0 wt% (however, at least 1000 ppm or more), and It is preferably 1.8 wt% or less, more preferably 0.2 to 1.0 wt%, and particularly preferably 0.4 to 0.6 wt%.
  • impurities for example, Ca, Cr, Cu and the like are assumed.
  • the BMO specific surface area (SSA) of the present LMO is preferably from 0.1 to 0.4 m 2 / g, more preferably from about 0.1 to 0.3 m 2 / g.
  • the rate characteristics increase when the specific surface area is large, and the rate characteristics decrease when the specific surface area is small.
  • the present LMO is characterized by excellent rate characteristics even though the specific surface area is small. have. It can be considered that this is because the crystallite size is large and the distortion is extremely small.
  • the ratio of the crystallite size to the BET specific surface area (SSA), that is, the value of the crystallite size / BET specific surface area is 1500 nm / (m 2 / g) to 3000 nm / (m 2 / g), particularly 1700 nm / (m 2 / g) to 3000 nm / (m 2 / g), especially 2400 nm / (m 2 / g) to 3000 nm / (m 2 / g) were found to be particularly excellent in terms of the high temperature cycle life characteristic value (1C).
  • the present LMO can be obtained by mixing raw materials, firing at 850 ° C. or higher under normal pressure and atmospheric atmosphere, and then heat-treating in an atmosphere having a higher oxygen partial pressure than normal pressure. This will be described in detail below.
  • At least a lithium material, a manganese material, a magnesium material, a titanium material, a nickel material, a cobalt material, and an iron material may be appropriately selected.
  • the lithium raw material is not particularly limited.
  • lithium hydroxide LiOH
  • lithium carbonate Li 2 CO 3
  • lithium nitrate LiNO 3
  • LiOH ⁇ H 2 O LiOH ⁇ H 2 O
  • lithium oxide Li 2 O
  • lithium hydroxide salts carbonates and nitrates are preferred.
  • manganese raw material any of manganese dioxide, trimanganese tetroxide, dimanganese trioxide, manganese carbonate, or a mixture of two or more selected from these can be used.
  • manganese dioxide chemically synthesized manganese dioxide (CMD), electrolytic manganese dioxide (EMD) obtained by electrolysis, manganese carbonate, or natural manganese dioxide can be used.
  • the raw materials for magnesium, titanium, nickel, cobalt, and iron are not particularly limited, and for example, respective oxides, hydroxides, fluorides, and glass oxides can be used. Of these, oxides are preferable.
  • the method of mixing raw materials is not particularly limited as long as it can be uniformly mixed.
  • the respective raw materials may be added simultaneously or in an appropriate order using a known mixer such as a mixer, and mixed by stirring in a wet or dry manner.
  • a known mixer such as a mixer
  • wet mixing When adding an element that is difficult to replace, it is preferable to employ wet mixing.
  • Examples of the dry mixing include a mixing method using a precision mixer that rotates mixed powder at a high speed.
  • examples of the wet mixing include a mixing method in which a liquid medium such as water or a dispersant is added and wet mixed to form a slurry, and the resulting slurry is pulverized with a wet pulverizer. It is particularly preferable to grind to submicron order. After pulverizing to the submicron order, granulation and baking can increase the uniformity of each particle before the baking reaction, and the reactivity can be increased.
  • the raw materials mixed as described above may be granulated to a predetermined size, if necessary, and then fired. However, granulation is not necessarily performed.
  • the granulation method may be either wet or dry as long as the various raw materials pulverized in the previous step are dispersed in the granulated particles without being separated, extrusion granulation method, rolling granulation method, fluidized granulation method, A mixed granulation method, a spray drying granulation method, a pressure molding granulation method, or a flake granulation method using a roll or the like may be used. However, when wet granulation is performed, it is necessary to sufficiently dry before firing.
  • a drying method it may be dried by a known drying method such as a spray heat drying method, a hot air drying method, a vacuum drying method, a freeze drying method, etc.
  • the spray heat drying method is preferable.
  • the spray heat drying method is preferably performed using a heat spray dryer (spray dryer).
  • a thermal spray dryer spray dryer
  • the particle size distribution can be made sharper, and the secondary particles can be formed so as to include agglomerated particles (secondary particles) formed by agglomeration. Forms can be prepared.
  • Firing may be performed in an air atmosphere.
  • the firing temperature can be increased at 850 ° C. or more, particularly 910 to 1,050 ° C., particularly 910 to 980 ° C., because high temperature firing can promote crystal growth and increase the crystallite size. preferable.
  • the firing temperature means the product temperature of the fired product measured by bringing a thermocouple into contact with the fired product in the firing furnace.
  • the firing time that is, the time for maintaining the firing temperature may be 0.5 to 30 hours, although it depends on the firing temperature.
  • the type of firing furnace is not particularly limited. For example, it can be fired using a rotary kiln, a stationary furnace, or other firing furnace.
  • Heat treatment it is important to perform heat treatment in a temperature range of primary oxygen release temperature to primary oxygen release temperature + 50 ° C. in an atmosphere having an oxygen partial pressure higher than that of air. By performing the heat treatment in this manner, crystal distortion can be reduced.
  • the atmosphere for the heat treatment is preferably such that the oxygen partial pressure is 0.03 MPa or higher and the oxygen partial pressure is higher than that during firing, particularly 0.05 MPa or higher, particularly 0.08 MPa or higher.
  • the pressure of the atmosphere during the heat treatment is preferably controlled to a pressure larger than atmospheric pressure, for example, 0.102 MPa to 1.5 MPa.
  • the pressure of the atmosphere during the heat treatment is preferably controlled to 0.102 MPa to 1.5 MPa, particularly 0.11 MPa to 1.3 MPa, and particularly preferably 0.11 MPa to 1.0 MPa.
  • the heat treatment is performed in a temperature range of primary oxygen release temperature to primary oxygen release temperature + 50 ° C., particularly primary oxygen release temperature to primary oxygen release temperature + 30 ° C., and in particular, primary oxygen release. It is preferable to maintain a temperature range from temperature to primary oxygen release temperature + 20 ° C.
  • the temperature of this heat treatment means the product temperature of the processed material measured by bringing a thermocouple into contact with the processed material in the furnace.
  • the rate of temperature rise is preferably 0.5 ° C./min to 4 ° C./min, particularly 0.5 ° C./min to 3 ° C./min, and particularly 0.5 ° C./min to 2 ° C./min. More preferably, it is set to min.
  • the primary oxygen release temperature can be obtained as the starting temperature at which the spinel-type lithium transition metal oxide after heating is heated and the weight is reduced in the range of 600 ° C. to 900 ° C. (see FIG. 1).
  • the time for maintaining the above temperature range in the heat treatment needs to be at least 1 minute. In order to fully incorporate oxygen into the crystal structure, at least one minute is considered necessary. From this viewpoint, the holding time is preferably 5 minutes or more, particularly preferably 10 minutes or more.
  • the temperature lowering rate after the heat treatment is preferably slow cooling at a cooling rate of 10 ° C./min or less to at least 500 ° C., particularly 0.1 ° C./min to 8 ° C./min, especially 0.5 ° C./min to More preferably, it is controlled to 5 ° C./min. Since the oxygen taken in near the primary oxygen release temperature is considered to be stabilized, the oxygen is slowly cooled at a temperature lowering rate of 10 ° C./min or less until the temperature close to the primary oxygen release temperature, that is, at least 500 ° C. Can be considered preferable.
  • the present LMO can be effectively used as a positive electrode active material of a lithium battery after being crushed and classified as necessary.
  • the positive electrode mixture can be manufactured by mixing the present LMO, a conductive material made of carbon black or the like, and a binder made of Teflon (registered trademark) binder or the like.
  • a positive electrode mixture is used for the positive electrode, for example, a material that can occlude / desorb lithium such as lithium or carbon is used for the negative electrode, and lithium hexafluorophosphate (LiPF6) is used for the non-aqueous electrolyte.
  • a lithium secondary battery can be formed using a lithium salt dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate.
  • the present invention is not limited to the battery having such a configuration.
  • a lithium battery equipped with this LMO as a positive electrode active material has both excellent life characteristics (cycle life characteristics) and output characteristics when it is repeatedly charged and discharged in the central region of the charge / discharge depth (for example, SOC 50-80%). Since it exhibits, it is particularly excellent in the use of a positive electrode active material of a large-sized lithium battery used as a power source for driving a motor mounted on an electric vehicle (EV) or a hybrid electric vehicle (HEV).
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • HEV means an automobile using two power sources, that is, an electric motor and an internal combustion engine.
  • lithium battery is intended to encompass all batteries containing lithium or lithium ions in the battery, such as lithium primary batteries, lithium secondary batteries, lithium ion secondary batteries, and lithium polymer batteries.
  • main material includes the intention to allow other components to be contained within a range that does not interfere with the function of the main material, and particularly specifies the content ratio of the main material.
  • a main material occupies at least 50 mass% or more in the whole quantity, Preferably it is 70 mass% or more, Most preferably, it is 90 mass% or more (100% is included).
  • X is preferably greater than X” or “preferably Y”, with the meaning of “X to Y” unless otherwise specified. It also includes the meaning of “smaller”.
  • X or more is an arbitrary number
  • Y or less is an arbitrary number
  • TG-DTA2000S TG-DTA2000S
  • the Rietveld method using the fundamental method is a method for refining the crystal structure parameters from the diffraction intensity obtained by powder X-ray diffraction or the like. This method assumes a crystal structure model, and refines various parameters of the crystal structure so that the X-ray diffraction pattern derived from the structure and the measured X-ray diffraction pattern match as much as possible.
  • X-ray diffraction apparatus D8 ADVANCE manufactured by Bruker AXS Co., Ltd.
  • Cu-K ⁇ rays Cu-K ⁇ rays
  • the peak of the X-ray diffraction pattern obtained from the diffraction angle 2 ⁇ 10 to 120 ° was analyzed using analysis software (product name “Topas Version 3”) to obtain the crystallite size and strain.
  • the crystal structure is attributed to cubic crystals of the space group Fd-3m (Origin Choice 2), Li is present at the 8a site, and Mn and Mn substitution elements (eg, Mg, Ti, Ni, Co) are present at the 16d site.
  • Detector PSD Detector Type: VANTEC-1 High Voltage: 5585V Discr. Lower Level: 0.35V Discr. Window Width: 0.15V Grid Lower Level: 0.075V Grid Window Width: 0.524V Flood Field Correction: Disabled Primary radius: 250mm Secondary radius: 250mm Receiving slit width: 0.1436626mm Divergence angle: 0.3 ° Filament Length: 12mm Sample Length: 25mm Receiving Slit Length: 12mm Primary Sollers: 2.623 ° Secondary Sollers: 2.623 ° Lorentzian, 1 / Cos: 0.004933548Th
  • SSA BET specific surface area
  • monosorb trade name
  • 6.2 Flow Method (3.5) of JIS R1626-1996 (Method for Measuring Specific Surface Area of Fine Ceramics Powder by Gas Adsorption BET Method)
  • the BET specific surface area (SSA) was measured according to “one-point method”. At that time, a mixed gas of helium as a carrier gas and nitrogen as an adsorbate gas was used.
  • Li battery evaluation was performed by the following method.
  • PVDF Korean Chemical Co., Ltd.
  • positive electrode active material spinel-type lithium transition metal oxide obtained in Examples and Comparative Examples
  • 0.60 g of acetylene black manufactured by Denki Kagaku Kogyo
  • NMP N-methylpyrrolidone
  • 5.0 g of 12 wt% dissolved solution was accurately weighed and 5 ml of NMP was added and mixed well to prepare a paste.
  • This paste is placed on an aluminum foil as a current collector, coated with an applicator adjusted to a gap of 250 ⁇ m, vacuum dried at 120 ° C. overnight, punched out at ⁇ 16 mm, pressed thick at 4 t / cm 2 , did.
  • the negative electrode was made of metal Li having a diameter of 20 mm and a thickness of 1.0 mm, and an electrochemical evaluation cell TOMCEL (registered trademark) shown in FIG. 2 was produced using these materials.
  • the positive electrode 3 made of the positive electrode mixture was disposed at the inner center of the lower body 1 made of organic electrolyte-resistant stainless steel.
  • a separator 4 made of a microporous polypropylene resin impregnated with an electrolytic solution was disposed, and the separator was fixed with a Teflon (registered trademark) spacer 5.
  • a negative electrode 6 made of metal Li was disposed below, a spacer 7 also serving as a negative electrode terminal was disposed, and the upper body 2 was placed thereon and tightened with screws to seal the battery.
  • the electrolytic solution used was a mixture of EC and DMC in a volume of 3: 7, and a solvent in which LiPF 6 was dissolved in 1 mol / L as a solute.
  • the high temperature cycle life characteristic value (0.1 C) was obtained by dividing the percentage (%) of the numerical value obtained by dividing the discharge capacity at the 50th cycle by the discharge capacity at the second cycle.
  • the same cycle condition was changed from 0.1 C to 1.0 C, and a high temperature cycle life characteristic value (1.0 C) was obtained. All are shown in Table 2 as relative values when the value of Comparative Example 2 is taken as 100.
  • the current value was calculated from the content of the positive electrode active material in the positive electrode so that the charging rate was 0.1 C or 3.0 C. Based on the current value, the charge capacity (mAh / g) in the charge / discharge range of 3.0 V to 4.3 V when charged at a constant current at 20 ° C. was measured. And the percentage (%) of the numerical value calculated
  • Example 1-3 Lithium carbonate 1770.9 g, electrolytic manganese dioxide 7500 g, magnesium oxide 65.7 g were set at a high speed blade rotation speed 400 rpm cross screw with a precision mixer (vertical granulator (Fuji Sangyo Co., Ltd. (FM-VG-25)), Mix for 5 minutes.
  • the fired powder obtained by firing was crushed with a mortar, classified with a sieve having an opening of 53 ⁇ m, and the powder under the sieve was collected to obtain a crushed sample.
  • the obtained crushed sample was heat-treated using a tube furnace heating device (Koyo Thermo System Co., Ltd.). That is, 200 g of the crushed sample is filled in a magnetic boat, the fired board filled with this sample is placed near the center of the tube furnace, and then oxygen gas (oxygen concentration 100%) is flown into the tube furnace at a flow rate of 0.5 l / min. While flowing, the sample was heated to a set temperature shown in Table 1 at a temperature increase rate of 1.7 ° C./min, and held for a predetermined time after reaching. Then, while continuing oxygen inflow, it cooled to room temperature at the temperature-fall rate shown in Table 1, and obtained the spinel type lithium transition metal oxide (sample).
  • the oxygen concentration was measured using an oxygen concentration meter (XPO-318 (New Cosmos Electric Co., Ltd.)) (the same applies to comparative examples described later).
  • the temperature at the time of the firing and the heat treatment is the product temperature of the processed product measured by bringing a thermocouple into contact with the processed product in the furnace (the same applies to comparative examples described later).
  • Example 1 A spinel-type lithium transition metal oxide (sample) was obtained using the same raw materials as in Example 1 except that heat treatment was not performed, and mixing, firing, crushing, and classification were performed in the same manner as in Example 1.
  • Example 2 Using the same raw materials as in Example 1, mixing, firing, crushing and classification were performed in the same manner as in Example 1 to obtain a crushed sample. Next, the obtained crushed sample was heat-treated using a stationary electric furnace. That is, 200 g of the crushed sample was filled in a magnetic boat and shown in Table 1 at a temperature increase rate of 1.7 ° C./min in an air atmosphere (atmospheric pressure: 0.10 MPa, oxygen partial pressure: 0.021 MPa). Heated to the set temperature and held for a predetermined time after reaching. Then, while continuing oxygen inflow, it cooled to room temperature at the temperature-fall rate shown in Table 1, and obtained the spinel type lithium transition metal oxide (sample).
  • Example 4-6 Using the same raw materials as in Example 1, except changing the atmosphere and the heat treatment time to the conditions shown in Table 1 from the mixing of raw materials to the heat treatment as in Example 1, the spinel type lithium transition A metal oxide (sample) was obtained.
  • Example 7 The raw material composition was changed to 1770.9 g of lithium carbonate, 7500 g of electrolytic manganese dioxide, 32.87 g of magnesium oxide, and 64.48 g of titanium oxide, and the conditions during firing and heat treatment were changed to the conditions shown in Table 1. Except for the above, spinel type lithium transition metal oxide (sample) was obtained by carrying out from the mixing of raw materials to heat treatment in the same manner as in Example 1.
  • Example 8> The composition of the raw material was changed to lithium carbonate 1770.9 g, electrolytic manganese dioxide 7500 g, nickel hydroxide 146.68 g, and the conditions at the time of firing and heat treatment were changed to the conditions shown in Table 1, except that The spinel type lithium transition metal oxide (sample) was obtained by mixing from the mixing of raw materials to heat treatment in the same manner as in 1.
  • Example 9 The raw material composition was changed to lithium carbonate 1770.9 g, electrolytic manganese dioxide 7500 g, cobalt oxyhydroxide 145.48 g, and the conditions at the time of firing and heat treatment were changed to the conditions shown in Table 1
  • the spinel type lithium transition metal oxide (sample) was obtained in the same manner as in Example 1 from mixing of raw materials to heat treatment.
  • Example 10-28 and Comparative Example 5-6> Using the same raw materials as in Example 1, except that the temperature and time for the heat treatment were changed to the conditions shown in Table 3, the mixing of the raw materials to the heat treatment were performed in the same manner as in Example 1 to perform the spinel lithium transition. A metal oxide (sample) was obtained.
  • Example 29 Using the same raw materials as in Example 1, except that the conditions at the time of firing and heat treatment were changed to the conditions shown in Table 1, mixing from the raw materials to heat treatment was carried out in the same manner as in Example 1 to spinel lithium transition A metal oxide (sample) was obtained.
  • Example 30 The composition of the raw materials was changed to lithium carbonate 1745.2 g, electrolytic manganese dioxide neutralized with sodium (sodium amount 2800 ppm) 7500 g, magnesium oxide 65.7 g, and conditions during firing and heat treatment are shown in Table 1.
  • a spinel type lithium transition metal oxide (sample) was obtained by performing from raw material mixing to heat treatment in the same manner as in Example 1 except that the conditions were changed.
  • the mixture was mixed and stirred to prepare a slurry having a solid content concentration of 10 wt%.
  • a polycarboxylic acid ammonium salt (SN Dispersant 5468 manufactured by San Nopco Co., Ltd.) as a dispersant was added, and pulverized with a wet pulverizer at 3400 rpm for 40 minutes.
  • the average particle size (D50) was set to less than 1 ⁇ m, that is, submicron order.
  • the obtained pulverized slurry was granulated and dried using a thermal spray dryer (spray dryer, LBT-8i manufactured by Okawahara Chemical Co., Ltd.). At this time, a rotating disk was used for spraying, and granulation drying was performed while adjusting the temperature so that the rotation speed was 30000 rpm, the slurry supply amount was 3 kg / hr, and the outlet temperature of the drying tower was 120 ° C. Thereafter, a spinel-type lithium transition metal oxide (sample) was obtained by carrying out from the firing to the heat treatment in the same manner as in Example 1 except that the conditions during firing and heat treatment were changed to the conditions shown in Table 1.
  • a polycarboxylic acid ammonium salt SN Dispersant 5468 manufactured by San Nopco Co., Ltd.
  • the average particle size (D50) was set to less than 1 ⁇ m, that is, submicron order.
  • the obtained pulverized slurry was granulated and dried using a thermal spray dryer (spray dryer, LBT-8i manufactured by Okawahara Chemical Co., Ltd.). At this time, a rotating disk was used for spraying, and granulation drying was performed while adjusting the temperature so that the rotation speed was 30000 rpm, the slurry supply amount was 3 kg / hr, and the outlet temperature of the drying tower was 120 ° C. Thereafter, a spinel-type lithium transition metal oxide (sample) was obtained by carrying out from the firing to the heat treatment in the same manner as in Example 1 except that the conditions during firing and heat treatment were changed to the conditions shown in Table 1.
  • the reaction to be heated to around 900 ° C. is a reaction in which particles are grown while releasing oxygen at the primary oxygen release temperature, the secondary oxygen release temperature, and the like.
  • the secondary oxygen release temperature and the secondary oxygen release temperature shift to the high temperature side. As a result, it can be considered that the crystal growth reaction does not proceed and the crystallite size is reduced.
  • Japanese Patent Application Laid-Open No. 2006-252940 describes an LMO manufacturing method in which annealing is performed at 600 to 900 ° C. in an oxidizing atmosphere after firing at 900 to 1000 ° C. in an oxidizing atmosphere. When firing and annealing were performed in the same atmosphere, it was confirmed that excellent results as in Examples could not be obtained as in Comparative Examples 2 and 4.
  • the output characteristics (rate Characteristics) and high-temperature cycle life characteristics are also an index indicating the output characteristics. That is, by evaluating at 1C, which is 10 times the current compared to 0.1C, it becomes an index indicating whether the output characteristics of the material itself are excellent.
  • the crystallite size of the present LMO is preferably 200 nm to 1000 nm, particularly 250 nm or more and 900 nm or less, and particularly preferably 600 nm or less.
  • the distortion of the present LMO is preferably 0.0900 or less, particularly 0.0800 or less, particularly 0.0600 or less, and particularly preferably 0.0400 or less.
  • the spinel type lithium transition metal oxide containing an element selected from the group consisting of Mg, Ti, Ni, Co and Fe in addition to Li and Mn In addition to Li and Mn, the spinel lithium transition metal oxide containing Mg and Ti also has a confirmed effect as described above, and the group consisting of Mg, Ti, Ni, Co and Fe.
  • the spinel lithium transition metal oxide containing two or more elements selected from the above can also be considered to have the above effects.
  • a spinel type lithium transition metal oxide containing Mg, Ti and Ca in addition to Li and Mn has a crystallite size of 200 nm to 1000 nm and a strain of 0. It was found that a spinel-type lithium transition metal oxide of 0.0900 or less could not be obtained, and when Ca was included, the output characteristics (rate characteristics) and the high-temperature cycle life characteristics as in Examples were not obtained.
  • the crystallite size / BET specific surface area is in the range of 1500 nm / (m 2 / g) to 3000 nm / (m 2 / g), Among them, those in the range of 1700 nm / (m 2 / g) to 3000 nm / (m 2 / g), particularly in the range of 2400 nm / (m 2 / g) to 3000 nm / (m 2 / g).
  • the product was found to be particularly excellent in terms of the high temperature cycle life characteristic value (1C).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

 リチウム電池用正極活物質材料として用いるスピネル型リチウム遷移金属酸化物(LMO)に関し、出力特性(レート特性)、高温サイクル寿命特性および急速充電特性の全てを両立することができるLMOを提供せんとする。 Li及びMnのほかに、Mg、Ti、Ni、Co及びFeからなる群から選ばれる一種又は二種以上の元素を含むスピネル型リチウム遷移金属酸化物であって、結晶子サイズが200nm~1000nmであり、かつ、歪みが0.0900以下であるスピネル型リチウム遷移金属酸化物を提案する。かかるLMOは、結晶子サイズが顕著に大きく、且つ酸素欠損が顕著に少なくて骨格が強固であるから、リチウム二次電池の正極活物質として使用した場合に、出力特性(レート特性)、高温サイクル寿命特性および急速充電特性の全てを両立することができる。

Description

スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料
 本発明は、リチウム電池用正極活物質材料として用いることができるスピネル型リチウム遷移金属酸化物に関する。特に自動車に搭載される電池の材料として好適に用いることができるスピネル型リチウム遷移金属酸化物に関する。
 リチウム電池、特にリチウム二次電池は、エネルギー密度が大きく、寿命が長いなどの特徴を有しており、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器などの電源として広く用いられている。最近では、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池への応用が期待されている。
 リチウム二次電池は、充電時には正極からリチウムがイオンとして抜け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、その高いエネルギー密度は正極材料の電位に起因することが知られている。
 リチウム二次電池の正極活物質として使用し得るリチウム遷移金属酸化物としては、層構造をもつLiCoO2、LiNiO2、LiMnO2などのリチウム遷移金属酸化物のほか、LiMn24、LiNi0.5Mn1.54などのマンガン系のスピネル構造(Fd-3m)を有するリチウム遷移金属酸化物(本発明では「スピネル型リチウム遷移金属酸化物」或いは「LMO」とも称する)が知られている。
 中でも、マンガン系のスピネル型リチウム遷移金属酸化物(LMO)は、原料価格が安く、毒性がなく、また安全性が高いため、電気自動車(EV)やハイブリッド電気自動車(HEV)などの大型電池用の正極活物質として着目されている。また、EVやHEV用電池には優れた出力特性が特に求められるが、この点、層構造をもつLiCoO2などのリチウム遷移金属酸化物に比べ、3次元的にLiイオンの挿入・脱離が可能なスピネル型リチウム遷移金属酸化物(LMO)は出力特性に優れている。
 ところが、通常のスピネル型リチウム遷移金属酸化物(LMO)は、高温領域(例えば45~60℃)でサイクルを重ねると、Mn2+が溶出し易くなり、溶出したMn2+が負極に析出し、これが抵抗となって容量劣化を起こすようになるため、スピネル型リチウム遷移金属酸化物(LMO)を実用する際の課題は高温領域(例えば45~60℃)でのサイクル寿命特性にあると言われてきた。
 そこで従来、高温領域でのサイクル寿命特性を高めるため、酸素欠損を抑制するための方法が種々開示されている。
 例えば特許文献1には、高温焼成後に水酸化リチウムを添加して、さらに低い温度で再焼成することによって、酸素欠損を抑制する方法が開示されている。
 特許文献2には、出発原料を、酸化雰囲気中、900~1000℃の範囲の温度で、5~50時間の範囲の時間をかけて焼成し、次いで、酸化雰囲気中、600~900℃の範囲の温度で、1~50時間の範囲の時間をかけて再焼成することによって、酸素欠損を抑制する方法が開示されている。
 特許文献3には、原料の混合物を高温焼成して焼成物を作成し、前記焼成物を流動させながら再焼成するリチウム複合酸化物の製造方法が提案されている。
 また、高温特性、特に高温保存特性に優れるリチウム二次電池を提供することを目的として、特許文献4には、一般式(I)LiaMn2-xx4-σ(式(I)中、Mは、Mnの一部を置換する置換元素群(Li、Mg、Ca及びTi、又はLi及びAl)、Xは、0<X≦0.5の範囲の置換元素群(M)の置換量、aは、0.1≦a≦1.3の範囲のLi量、σは、0≦σ≦0.05の範囲の酸素欠損量をそれぞれ意味する)で示されるスピネル構造を有するマンガン酸リチウムであり、かつその比表面積が1m2/g以下であるマンガン酸リチウムを正極活物質として備えたリチウム二次電池が開示されている。
特開2001-335323号公報 特開2006-252940号公報 特開2007-149414号公報 特開2006-252940号公報
 自動車に搭載される電池、例えば電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される電池への利用を考えると、民生品用の電池とは異なり、出力密度が大きいこと(加速性能に影響)、サイクル寿命が長いこと(ランニングコストに影響)のほか、急速充電できること(利便性や回生性能に影響)などが求められる。中でも、自動車用途においては、減速時において、タイヤの回転によるエンジン回転によって発電させ、この電気をバッテリーに充電する回生が頻繁に行われるため、高いレート(少なくとも1Cを超えるレート)で電気を短時間に充電することができる急速充電性が求められる。
 そこで本発明は、出力特性(レート特性)、高温サイクル寿命特性および急速充電特性の全てを両立することができる新たなスピネル型リチウム遷移金属酸化物を提供せんとするものである。
 かかる課題を解決するため、本発明は、Li及びMnのほかに、Mg、Ti、Ni、Co及びFeからなる群から選ばれる一種又は二種以上の元素を含むスピネル型リチウム遷移金属酸化物であって、結晶子サイズが200nm~1000nmであり、かつ、歪みが0.0900以下であるスピネル型リチウム遷移金属酸化物(「LMO」とも称する)を提案する。
 本発明のLMOは、結晶子サイズが200nm~1000nmであり、且つ歪みが0.0900以下であるから、従来のLMOに比べ、結晶子サイズが顕著に大きくて、それでいて結晶構造の歪みが顕著に小さくて骨格が強固なLMOである。
 また、Li及びMnを含むスピネル型リチウム遷移金属酸化物について数多くの試験を行った結果、Mg、Ti、Ni、Co及びFeからなる群から選ばれる一種又は二種以上の元素を含有させることによって、歪みを顕著に小さくすることができることが判明した。
 このような特徴を有する本発明のスピネル型リチウム遷移金属酸化物は、電池の正極活物質として利用すると、出力特性(レート特性)、高温サイクル寿命特性および急速充電特性の全てを両立することができる。
本発明のスピネル型リチウム遷移金属酸化物の好ましい製造方法の一例における第1次酸素放出温度及び第2次酸素放出温度を説明するために、実施例1のスピネル型リチウム遷移金属酸化物のTG曲線を示した図である。 実施例及び比較例で得られたサンプルの電池特性を評価するために作製した電気化学用セルの構成を示した図である。
 以下、本発明の実施形態について説明する。但し、本発明の範囲が下記実施形態に限定されるものではない。
<本LMO>
 本発明の実施形態に係るスピネル型(Fd-3m)リチウム遷移金属酸化物(以下「本LMO」とも称する)は、結晶子サイズが200nm~1000nmであり、かつ、歪みが0.0900以下であるという特徴を有する。
(結晶子サイズ)
 本LMOは、結晶子サイズが200nm~1000nm、好ましくは250nm~900nm、その中でも好ましくは250nm~600nmである特徴を有する。
 本LMOの結晶子サイズが200nm~1000nmであれば、入力特性および出力特性を高めることができ、同時に高温サイクル寿命特性を改善することができるから、出力特性(レート特性)、高温サイクル寿命特性および急速充電特性を高めることができる。
 ここで、「結晶子」とは、単結晶とみなせる最大の集まりを意味し、XRD測定しリートベルト解析を行なうことにより求めることができる。
(歪み)
 本LMOは、歪みが0.0900以下、中でも好ましくは0.0800以下、その中でも好ましくは0.0600以下、その中でもさらに好ましくは0.0400以下である特徴を有する。この程度に歪みが少なければ、スピネル型リチウム遷移金属酸化物の骨格が充分に強固であり、リチウム二次電池の正極活物質として使用した場合に、出力特性(レート特性)、高温サイクル寿命特性および急速充電特性を高めることができる。
(組成)
 本LMOは、Li及びMnのほかに、Mg、Ti、Ni、Co及びFeからなる群から選ばれる一種又は二種以上の元素を含むスピネル型(Fd-3m)リチウム遷移金属酸化物である。中でも、歪みを0.0400以下にする観点からは、Li及びMnのほかに、Mg及びTiからなる群から選ばれる一種又は二種以上の元素を含むスピネル型(Fd-3m)リチウム遷移金属酸化物であるのが好ましい。
 Mg、Ti、Ni、Co及びFeからなる群から選ばれる一種又は二種以上の元素の含有量としては、歪み除去の観点から、合計量が0wt%より多く(但し、少なくとも1000ppm以上)、且つ1.8wt%以下であるが好ましく、特に0.2~1.0wt%、中でも特に0.4~0.6wt%であるのがより一層好ましい。
 なお、1000ppm未満の量であれば、本LMOを電池の正極活物質として用いた場合の性能にほとんど影響しないため、それぞれの含有量が1000ppm未満の不純物を含有することは許容される。不純物としては、例えばCa、Cr、Cuなどが想定される。
(比表面積)
 本LMOのBET比表面積(SSA)は0.1~0.4m2/gであるのが好ましく、特に0.1~0.3m2/g程度であるのがさらに好ましい。
 通常、比表面積が大きければレート特性は高まり、比表面積が小さければレート特性が低下するのが一般的であるが、本LMOは比表面積が小さいにもかかわらず、レート特性に優れているという特徴を有している。これは、結晶子サイズが大きくて、しかも歪みが極めて小さいからであろうと考えることができる。
(結晶子サイズ/BET比表面積)
 後述する実施例及びこれまでの各種試験の結果から、本LMOの中でも、特にBET比表面積(SSA)に対する結晶子サイズの割合、すなわち結晶子サイズ/BET比表面積の値が1500nm/(m2/g)~3000nm/(m2/g)の範囲内にあるもの、中でも1700nm/(m2/g)~3000nm/(m2/g)の範囲内にあるもの、その中でも特に2400nm/(m2/g)~3000nm/(m2/g)の範囲内にあるものが、特に高温サイクル寿命特性値(1C)の点で優れているという知見を得ることができた。
<製造方法>
 次に、本LMOの製造方法の一例について説明する。
 本LMOは、原料を混合した後、常圧、大気雰囲気下にて850℃以上で焼成した後、常圧よりも酸素分圧の高い雰囲気下にて熱処理することにより得ることができる。以下、詳細に説明する。
(原料)
 出発原料としては、少なくともリチウム原料、マンガン原料、マグネシウム原料、チタン原料、ニッケル原料、コバルト原料、鉄原料を適宜選択すればよい。
 リチウム原料は、特に限定するものではなく、例えば水酸化リチウム(LiOH)、炭酸リチウム(Li2CO3)、硝酸リチウム(LiNO3)、LiOH・H2O、酸化リチウム(Li2O)、その他脂肪酸リチウムやリチウムハロゲン化物等が挙げられる。中でもリチウムの水酸化物塩、炭酸塩、硝酸塩が好ましい。
 マンガン原料としては、二酸化マンガン、四酸化三マンガン、三酸化二マンガン、炭酸マンガン等のいずれか或いはこれらから選択される二種類以上の組合わせからなる混合物を用いることができる。
 二酸化マンガンとしては、化学合成二酸化マンガン(CMD)、電解によって得られる電解二酸化マンガン(EMD)、炭酸マンガン或いは天然二酸化マンガンを用いることができる。
 マグネシウム、チタン、ニッケル、コバルト、鉄の原料としては、特に限定するものではなく、例えばそれぞれの酸化物、水酸化物、フッ化物、硝酸化物などを用いることができ、中でも酸化物が好ましい。
(原料の混合)
 原料の混合は、均一に混合できれば、その方法を特に限定するものではない。例えばミキサー等の公知の混合機を用いて各原料を同時又は適当な順序で加えて湿式又は乾式で攪拌混合すればよい。置換しにくい元素を添加する場合には湿式混合を採用するのが好ましい。
 乾式混合としては、例えば高速で混合粉を回転させる精密混合機を使用した混合方法を例示することができる。
 他方、湿式混合としては、水や分散剤などの液媒体を加えて湿式混合してスラリー化させ、得られたスラリーを湿式粉砕機で粉砕する混合方法を例示することができる。特にサブミクロンオーダーまで粉砕するのが好ましい。サブミクロンオーダーまで粉砕した後、造粒及び焼成することにより、焼成反応前の各粒子の均一性を高めることができ、反応性を高めることができる。
(造粒)
 上記の如く混合した原料は、必要に応じて所定の大きさに造粒した後、焼成してもよい。但し、造粒は必ずしもしなくてもよい。
 造粒方法は、前工程で粉砕された各種原料が分離せずに造粒粒子内で分散していれば湿式でも乾式でもよく、押し出し造粒法、転動造粒法、流動造粒法、混合造粒法、噴霧乾燥造粒法、加圧成型造粒法、或いはロール等を用いたフレーク造粒法でもよい。但し、湿式造粒した場合には、焼成前に充分に乾燥させることが必要である。
 乾燥方法としては、噴霧熱乾燥法、熱風乾燥法、真空乾燥法、フリーズドライ法などの公知の乾燥方法によって乾燥させればよく、中でも噴霧熱乾燥法が好ましい。噴霧熱乾燥法は、熱噴霧乾燥機(スプレードライヤー)を用いて行なうのが好ましい。熱噴霧乾燥機(スプレードライヤー)を用いて造粒することにより、粒度分布をよりシャープにすることができるばかりか、丸く凝集してなる凝集粒子(2次粒子)を含むように2次粒子の形態を調製することができる。
(焼成)
 焼成は、大気雰囲気下で行えばよい。大気雰囲気下で焼成することにより、結晶成長を促進させることができ、結晶子サイズを大きくすることができる。
 焼成温度は、高温焼成することにより、結晶成長を促進して結晶子サイズを大きくすることができるため、850℃以上、特に910~1,050℃、中でも特に910~980℃で焼成するのが好ましい。
 なお、この焼成温度とは、焼成炉内の焼成物に熱電対を接触させて測定される焼成物の品温を意味する。
 焼成時間、すなわち上記焼成温度を保持する時間は、焼成温度にもよるが、0.5時間~30時間とすればよい。
 焼成炉の種類は特に限定するものではない。例えばロータリーキルン、静置炉、その他の焼成炉を用いて焼成することができる。
(熱処理)
 次に、少なくとも大気よりも酸素分圧の高い雰囲気下にて、第1次酸素放出温度~第1次酸素放出温度+50℃の温度範囲で熱処理することが重要である。このようにして熱処理することにより、結晶の歪みを低減することができる。
 熱処理の雰囲気は、酸素分圧を0.03MPa以上であって、焼成時より酸素分圧が高いことが好ましく、特に0.05MPa以上、中でも特に0.08MPa以上に制御して行うのが好ましい。酸素分圧の高い雰囲気で熱処理することで、平衡論的に酸素を取り込み易くなり、酸素欠損を抑えて歪みを低減することができる。
 また、大気よりも酸素分圧の高い雰囲気に調整する方法として、酸素濃度80%~100%の酸素ガスを流しながら熱処理するのが好ましい。新鮮な酸素を常に供給しながら熱処理することで、酸素を取り込み易くなり、酸素欠損をより一層抑えることができる。
 さらに、熱処理時の雰囲気の圧力は、大気圧よりも大きい圧力、例えば0.102MPa~1.5MPaに制御するのが好ましい。このように、酸素雰囲気を加圧することで、より一層酸素を取り込み易くなり、酸素欠損をより一層抑えることができる。
 かかる観点から、熱処理時の雰囲気の圧力は0.102MPa~1.5MPaに制御するのが好ましく、特に0.11MPa~1.3MPa、中でも特に0.11MPa~1.0MPaに制御するのが好ましい。
 熱処理は、第1次酸素放出温度~第1次酸素放出温度+50℃の温度範囲、特に第1次酸素放出温度~第1次酸素放出温度+30℃の温度範囲、その中でも特に第1次酸素放出温度~第1次酸素放出温度+20℃の温度範囲を保持することが好ましい。
 この熱処理の温度とは、炉内の処理物に熱電対を接触させて測定される処理物の品温を意味する。
 リチウム遷移金属酸化物は、第1次酸素放出温度あたりまで加熱すると、Mn-Oの熱振動が大きくなってMn-Oの結合力と拮抗して不安定になるため、第1次酸素放出温度~+50℃の温度範囲内で酸素を強制的に供給しながら熱処理することにより、結晶構造中に酸素を取り込んで歪みを効果的に低減することができる。
 この際、昇温速度は、0.5℃/min~4℃/minとするのが好ましく、特に0.5℃/min~3℃/min、中でも特に0.5℃/min~2℃/minとするのがさらに好ましい。
 なお、第1次酸素放出温度は、焼成後のスピネル型リチウム遷移金属酸化物を加熱し、600℃~900℃の範囲で重量減少する開始温度として求めることができる(図1参照)。
 熱処理において上記温度範囲を保持する時間は、少なくとも1分間以上である必要がある。結晶構造内に酸素を十分に取り込ませるためには、少なくとも1分間は必要であると考えられる。かかる観点から、保持時間は、好ましくは5分以上、特に好ましくは10分以上である。
 熱処理後の降温速度は、少なくとも500℃までは10℃/min以下の冷却速度でゆっくり冷却するのが好ましく、特に0.1℃/min~8℃/min、中でも特に0.5℃/min~5℃/minに制御するのがさらに好ましい。
 第1次酸素放出温度近辺で取り込んだ酸素が安定化すると考えられるため、第1次酸素放出温度近辺を過ぎるまで、すなわち、少なくとも500℃まではゆっくり10℃/min以下の降温速度で冷却するのが好ましいと考えることができる。
<特性・用途>
 本LMOは、必要に応じて解砕・分級した後、リチウム電池の正極活物質として有効に利用することができる。
 例えば、本LMOと、カーボンブラック等からなる導電材と、テフロン(登録商標)バインダー等からなる結着剤とを混合して正極合剤を製造することができる。そしてそのような正極合剤を正極に用い、例えば負極にはリチウムまたはカーボン等のリチウムを吸蔵・脱蔵できる材料を用い、非水系電2質には六フッ化リン酸リチウム(LiPF6)等のリチウム塩をエチレンカーボネート-ジメチルカーボネート等の混合溶媒に溶解したものを用いてリチウム2次電池を構成することができる。但し、このような構成の電池に限定する意味ではない。
 本LMOを正極活物質として備えたリチウム電池は、充放電深度の中心領域(例えばSOC50-80%)で充放電を繰り返して使用した場合に優れた寿命特性(サイクル寿命特性)及び出力特性をともに発揮するから、特に電気自動車(EV)やハイブリッド電気自動車(HEV)に搭載するモータ駆動用電源として用いる大型のリチウム電池の正極活物質の用途に特に優れている。
<語句の説明>
 本発明において、「HEV」とは、電気モータと内燃エンジンという2つの動力源を併用した自動車の意である。
 また、「リチウム電池」とは、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池など、電池内にリチウム又はリチウムイオンを含有する電池を全て包含する意である。
 本発明において「主材」と表現した場合、当該主材の機能を妨げない範囲で他の成分を含有することを許容する意を包含するものであり、特に当該主材の含有割合を特定するものではないが、主材は全量中の少なくとも50質量%以上、好ましくは70質量%以上、特に好ましくは90質量%以上(100%含む)を占めるものである。
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であるのが好ましい」旨の意図も包含する。
 次に、実施例及び比較例に基づいて、本発明について更に説明するが、本発明が以下に示す実施例に限定されるものではない。
<第1次酸素放出温度の測定>
 焼成後のスピネル型リチウム遷移金属酸化物を40mg秤量してAl深皿容器に入れ、空気を100ml/minの流量でフローさせた状態(酸素分圧0.021MPa、酸素濃度21%)で、昇温速度を5℃/minとして1100℃まで加熱測定し、得られたTG曲線(図1参照)から、600℃~900℃の範囲で重量減少した開始温度を「第一次酸素放出温度」として求めた。
 熱分析には、株式会社マック・サイエンス製TG-DTA装置(TG-DTA2000S)を用いた。
<XRDの測定>
 実施例及び比較例で得られたサンプル(粉体)について、結晶子サイズ及び歪みを、次に説明するファンダメンタル法を用いたリートベルト法により測定した。
 ファンダメンタル法を用いたリートベルト法は、粉末X線回折等により得られた回折強度から、結晶の構造パラメータを精密化する方法である。結晶構造モデルを仮定し、その構造から計算により導かれるX線回折パターンと、実測されたX線回折パターンとができるだけ一致するように、その結晶構造の各種パラメータを精密化する手法である。
 X線回折パターンの測定には、Cu‐Kα線を用いたX線回折装置(ブルカー・エイエックスエス株式会社製D8 ADVANCE)を使用した。回折角2θ=10~120°の範囲より得られたX線回折パターンのピークについて解析用ソフトウエア(製品名「Topas Version3」)を用いて解析することにより結晶子サイズ及び歪みを求めた。
 なお、結晶構造は、空間群Fd-3m(Origin Choice2)の立方晶に帰属され、その8aサイトにLiが存在し、16dサイトにMn、Mnの置換元素(例えば、Mg、Ti、Ni、Co及びFe)、さらには過剰なLi分xが存在し、32eサイトをOが占有していると仮定し、パラメータBeq.を1と固定し、酸素の分率座標を変数として、表に示す通り観測強度と計算強度の一致の程度を表す指標Rwp<10.0、GOF<2.0を目安に収束するまで繰り返し計算を行った。なお、結晶子サイズ及び歪みはガウス関数を用い、解析を行った。
 その他測定・リートベルト法解析に使用した機器仕様・条件等は以下の通りである。
 Detector:PSD
 Detector Type:VANTEC-1
 High Voltage:5585V
 Discr. Lower Level:0.35V
 Discr. Window Width:0.15V
 Grid Lower Level:0.075V
 Grid Window Width:0.524V
 Flood Field Correction:Disabled
 Primary radius:250mm
 Secondary radius:250mm
 Receiving slit width:0.1436626mm
 Divergence angle:0.3°
 Filament Length:12mm
 Sample Length:25mm
 Receiving Slit Length:12mm
 Primary Sollers:2.623°
 Secondary Sollers:2.623°
 Lorentzian,1/Cos:0.004933548Th
<BET比表面積(SSA)>
 ユアサアイオニクス(株)製のモノソーブ(商品名)を用いて、JISR1626-1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2流動法の(3.5)一点法」に準拠して、BET比表面積(SSA)の測定を行った。
 その際、キャリアガスであるヘリウムと、吸着質ガスである窒素の混合ガスを使用した。
<電池評価>
(電池の作製)
 Li電池評価は以下の方法で行った。
 正極活物質(実施例・比較例で得られたスピネル型リチウム遷移金属酸化物)8.80gとアセチレンブラック(電気化学工業製)0.60g及びNMP(N-メチルピロリドン)中にPVDF(キシダ化学製)12wt%溶解した液5.0gを正確に計り取り、そこにNMPを5ml加え十分に混合し、ペーストを作製した。このペーストを集電体であるアルミ箔上にのせ、250μmのギャップに調整したアプリケーターで塗膜化し、120℃一昼夜真空乾燥した後、φ16mmで打ち抜き、4t/cm2でプレス厚密し、正極とした。電池作製直前に120℃で120min以上真空乾燥し、付着水分を除去し電池に組み込んだ。また、予めφ16mmのアルミ箔の重さの平均値を求めておき、正極の重さからアルミ箔の重さを差し引き正極合材の重さを求め、また正極活物質とアセチレンブラック、PVDFの混合割合から正極活物質の含有量を求めた。
 負極はφ20mm×厚み1.0mmの金属Liとし、これらの材料を使用して図2に示す電気化学評価用セルTOMCEL(登録商標)を作製した。
 図2の電気化学用セルは、耐有機電解液性のステンレス鋼製の下ボディ1の内側中央に、前記正極合材からなる正極3を配置した。この正極3の上面には、電解液を含浸した微孔性のポリプロピレン樹脂製のセパレータ4を配置し、テフロン(登録商標)スペーサー5によりセパレータを固定した。更に、セパレータ上面には、下方に金属Liからなる負極6を配置し、負極端子を兼ねたスペーサー7を配置し、その上に上ボディ2を被せて螺子で締め付け、電池を密封した。
 電解液は、ECとDMCを3:7体積混合したものを溶媒とし、これに溶質としてLiPF6を1moL/L溶解させたものを用いた。
(高温サイクル寿命特性評価)
 上記のようにして準備した電気化学用セルを用いて下記に記述する方法で充放電試験し、高温サイクル寿命特性を求めた。
 電池充放電する環境温度を45℃となるようにセットした環境試験機内にセルを入れ、充放電できるように準備し、セル温度が環境温度になるように4時間静置後、充放電範囲を3.0V~4.3Vとし、0.1Cで2サイクル充放電行った後、SOC50-80%の充放電深度で、1Cにて充放電サイクルを47回行い、50サイクル目は容量確認の為、充放電範囲3.0V~4.3Vで0.1Cにて充放電を行った。
 50サイクル目の放電容量を2サイクル目の放電容量で割り算して求めた数値の百分率(%)を高温サイクル寿命特性値(0.1C)を求めた。また、0.1Cを1.0Cに変更して同様なサイクル条件を行い、高温サイクル寿命特性値(1.0C)を求めた。いずれも、比較例2の値を100とした時の相対値として表2に示した。
(急速充電特性)
 上記のようにして準備した電気化学用セルを用いて下記に記述する方法で充放電試験し、急速充電特性を求めた。
 先ず、正極中の正極活物質の含有量から、0.1C、3.0Cの充電レートになるように電流値を算出した。その電流値をもとにそれぞれのレートで20℃にて定電流充電した時の充放電範囲3.0V~4.3Vまでの充電容量(mAh/g)を測定した。そして、3.0Cでの充電容量を0.1Cでの充電容量で割り算して求めた数値の百分率(%)を急速充電特性値とした。いずれも、比較例4の値を100とした時の相対値として表2に示した。
<実施例1-3>
 炭酸リチウム1770.9g、電解二酸化マンガン7500g、酸化マグネシウム65.7gを精密混合機(バーチカルグラニュレータ(富士産業株式会社製(FM-VG-25))でブレード回転数400rpmクロススクリュー高速に設定し、5分間混合した。
 得られた混合粉を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm2/充填高さcm)が100となるように充填した。そして、静置式電気炉を用いて、表1に示す雰囲気において、常温から焼成設定温度まで昇温速度=150℃/hrで昇温し、表1に示す焼成温度(保持温度)を14時間保持し、その後、保持温度から600℃まで降温速度=20℃/hrで降温させ、その後は常温まで自然冷却させた。なお、保持時間内の温度ばらつきは±5℃の範囲内で制御した。
 焼成して得られた焼成粉を乳鉢で解砕し、目開き53μmの篩で分級し、篩下の粉体を回収して解砕サンプルを得た。
 次に、得られた解砕サンプルをチューブ炉加熱装置(光洋サーモシステム株式会社)を使用して熱処理した。すなわち、解砕サンプル200gを磁性ボートに充填し、このサンプル充填した焼成ボードをチューブ炉の中心付近に設置した後、酸素ガス(酸素濃度100%)を流量0.5l/minでチューブ炉内に流入させながら、1.7℃/minの昇温速度で、表1に示す設定温度まで加熱し、到達後所定時間保持した。その後、酸素流入を継続しながら、室温まで表1に示す降温速度で冷却してスピネル型リチウム遷移金属酸化物(サンプル)を得た。
 なお、酸素濃度は酸素濃度計(XPO-318(新コスモス電機株式会社))を用い測定した(後述する比較例でも同じ)。
 上記焼成時及び熱処理時の温度は、炉内の処理物に熱電対を接触させて測定した処理物の品温である(後述する比較例でも同じ)。
<比較例1>
 熱処理を行わなかった以外、実施例1と同様の原料を用いて、実施例1と同様に混合、焼成、解砕し及び分級を行い、スピネル型リチウム遷移金属酸化物(サンプル)を得た。
<比較例2>
 実施例1と同様の原料を用いて、実施例1と同様に混合、焼成、解砕し及び分級を行って解砕サンプルを得た。
 次に、得られた解砕サンプルを、静置式電気炉を用いて熱処理した。すなわち、解砕サンプル200gを磁性ボート内に充填し、大気雰囲気(雰囲気圧力:0.10MPa、酸素分圧:0.021MPa)において、1.7℃/minの昇温速度で、表1に示す設定温度まで加熱し、到達後所定の時間保持した。その後、酸素流入を継続しながら、室温まで表1に示す降温速度で冷却してスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<比較例3>
 焼成時の雰囲気を、表1に示すような酸素加圧雰囲気に変更した以外は、比較例1と同様にしてスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<比較例4>
 原料の配合組成を、炭酸リチウム1852.3g、電解二酸化マンガン7500g、酸化マグネシウム171.00g、酸化チタン186.36g、酸化カルシウム26.17gに変更すると共に、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例4-6>
 実施例1と同様の原料を用いて、熱処理時の雰囲気及び熱処理時間を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例7>
 原料の配合組成を、炭酸リチウム1770.9g、電解二酸化マンガン7500g、酸化マグネシウム32.87g、酸化チタン64.48gに変更すると共に、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例8>
 原料の配合組成を、炭酸リチウム1770.9g、電解二酸化マンガン7500g、水酸化ニッケル146.68gに変更すると共に、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例9>
 原料の配合組成を、炭酸リチウム1770.9g、電解二酸化マンガン7500g、オキシ水酸化コバルト145.48gに変更すると共に、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例10-28・比較例5-6>
 実施例1と同様の原料を用いて、熱処理時の温度及び熱処理時間を表3に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例29>
 実施例1と同様の原料を用いて、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例30>
 原料の配合組成を、炭酸リチウム1745.2g、ナトリウムで中和してなる電解二酸化マンガン(ナトリウム量2800ppm)7500g、酸化マグネシウム65.7gに変更すると共に、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例31>
 炭酸リチウムと電解二酸化マンガンと酸化チタンを、モル比でLi:Mn:Ti=1.06:1.903:0.037となるように秤量し、水を上記固形分に対する重量比で9倍量加えて混合攪拌して固形分濃度10wt%のスラリーを調製した。
 得られたスラリー(原料粉500g)に、分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製 SNディスパーサント5468)を前記スラリー固形分の5wt%添加し、湿式粉砕機で3400rpm、40分間粉砕して平均粒径(D50)を1μm未満、すなわちサブミクロンオーダーとした。
 得られた粉砕スラリーを熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製LBT-8i)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数30000rpm、スラリー供給量3kg/hr、乾燥塔の出口温度120℃となるように温度を調節して造粒乾燥を行なった。
 その後、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に焼成から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例32>
 炭酸リチウムと電解二酸化マンガンと水酸化鉄(III)を、モル比でLi:Mn:Fe=1.06:1.903:0.037となるように秤量し、水を上記固形分に対する重量比で9倍量加えて混合攪拌して固形分濃度10wt%のスラリーを調製した。
 得られたスラリー(原料粉500g)に、分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製 SNディスパーサント5468)を前記スラリー固形分の5wt%添加し、湿式粉砕機で3400rpm、40分間粉砕して平均粒径(D50)を1μm未満、すなわちサブミクロンオーダーとした。
 得られた粉砕スラリーを熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製LBT-8i)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数30000rpm、スラリー供給量3kg/hr、乾燥塔の出口温度120℃となるように温度を調節して造粒乾燥を行なった。
 その後、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に焼成から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(考察)
 比較例1の場合、熱処理しなかったため、焼成によって酸素が欠損したままであり、そのため、結晶構造の歪みが大きくなり、また、実施例1-3に比べると結晶子サイズも小さくなり、レート特性及び高温サイクル寿命特性のいずれも劣ることになった。
 比較例2の場合、常圧・大気雰囲気で熱処理を行っているため、酸素分圧が足りず、酸素の取り込みが不足したため、結晶構造の歪みが大きく、特にレート特性が劣る結果となった。ちなみに、Mn酸化物(例えばMnO2は約560℃でMn23に還元する。)は加熱されると酸素を放出する熱還元特性をもっているため、平衡論的に見て、結晶構造中に十分に酸素を取り込み得る酸素分圧に達していなかったものと推察される。
 比較例3のように酸素加圧しながら焼成すると、結晶子サイズが小さくなり、レート特性及び高温サイクル寿命特性のいずれも劣ることになることが分かった。900℃近辺まで加熱する反応は、第1次酸素放出温度及び第2次酸素放出温度等で酸素を放出しながら粒子成長する反応であるため、酸素の分圧が高い状態で焼成すると、第1次酸素放出温度及び第2次酸素放出温度が高温側にシフトすることになる。その結果、結晶成長反応が進まなくなり、結晶子サイズが小さくなるものと考えることができる。
 なお、特開2006-252940号には、酸化雰囲気中で900~1000℃の焼成をした後、酸化雰囲気中で600~900℃のアニールを行うLMOの製法が記載されているが、このように焼成とアニールを同一雰囲気で行うと比較例2や4のように、実施例のような優れた結果を得ることはできないことが確認された。
 このような比較例1~3に対し、実施例1~9及び実施例29~32のように、大気雰囲気下にて850℃以上で焼成した後、大気よりも酸素分圧の高い雰囲気下にて、1次酸素放出温度~第1次酸素放出温度+50℃の温度範囲で熱処理することにより、結晶子サイズを大きくしつつ、かつ結晶構造の歪みを抑制することができるため、歪が減少して骨格が強固となり、出力特性(レート特性)と高温サイクル寿命特性とを両立できることが分かった。同様の結果が、実施例10-28でも得られることが確認されている。
 実施例1~32で得られたLMOのBET比表面積(SSA)は0.1~0.4m2/gであった。
 より具体的に言えば、実施例1-32で得られたLMOのように、結晶子サイズが200nm~1000nmであり、かつ、歪みが0.0900以下であるLMOであれば、出力特性(レート特性)と高温サイクル寿命特性とを両立できることができ、さらには急速充電特性にも優れることが分かった。
 なお、1Cレートでの高温サイクル寿命特性の結果は出力特性を示す指標でもある。すなわち、0.1Cに比べて10倍の電流である1Cにて評価することで、材料自体の出力特性が優れているかどうかを示す指標ともなるからである。
 かかる観点から、本LMOの結晶子サイズは、200nm~1000nmであるのが好ましく、特に250nm以上或いは900nm以下、その中でも特に600nm以下であるのが好ましいと考えることができる。
 本LMOの歪みは、0.0900以下であるのが好ましく、特に0.0800以下、中でも特に0.0600以下、その中でも特に0.0400以下であるのが好ましいと考えることができる。
 このような効果は、本実施例において、Li及びMnのほかに、Mg、Ti、Ni、Co及びFeからなる群から選ばれる元素を含むスピネル型リチウム遷移金属酸化物において確かめられている。そして、Li及びMnのほかに、MgとTiを含むスピネル型リチウム遷移金属酸化物においても、上記のような効果が確認されている点からすると、Mg、Ti、Ni、Co及びFeからなる群から選ばれる元素を二種類以上含有するスピネル型リチウム遷移金属酸化物についても、上記のような効果が得られるものと考えることができる。
 これに対し、例えば比較例4のように、Li及びMnのほかに、Mg、Ti及びCaを含むスピネル型リチウム遷移金属酸化物では、結晶子サイズが200nm~1000nmであり、かつ、歪みが0.0900以下であるスピネル型リチウム遷移金属酸化物が得られず、Caを含む場合には、実施利例ほどの出力特性(レート特性)と高温サイクル寿命特性は得られないことが分かった。
 また、表2の結果とこれまでの各種試験の結果から、結晶子サイズ/BET比表面積の値が1500nm/(m2/g)~3000nm/(m2/g)の範囲内にあるもの、中でも1700nm/(m2/g)~3000nm/(m2/g)の範囲内にあるもの、その中でも特に2400nm/(m2/g)~3000nm/(m2/g)の範囲内にあるものは、本LMOの中でも特に高温サイクル寿命特性値(1C)の点で優れていることが分かった。

Claims (8)

  1.  Li及びMnのほかに、Mg、Ti、Ni、Co及びFeからなる群から選ばれる一種又は二種以上の元素を含むスピネル型リチウム遷移金属酸化物であって、結晶子サイズが200nm~1000nmであり、かつ、歪みが0.0900以下であるスピネル型リチウム遷移金属酸化物。
  2.  歪みが0.0800以下であることを特徴とする請求項1記載のスピネル型リチウム遷移金属酸化物。
  3.  歪みが0.0600以下であることを特徴とする請求項1又は2記載のスピネル型リチウム遷移金属酸化物。
  4.  歪みが0.0400以下であることを特徴とする請求項1~3の何れかに記載のスピネル型リチウム遷移金属酸化物。
  5.  BET比表面積(SSA)が0.1~0.4m2/gであることを特徴とする請求項1~4の何れかに記載のスピネル型リチウム遷移金属酸化物。
  6.  結晶子サイズ/BET比表面積の値が1500nm/(m2/g)~3000nm/(m/g)であることを特徴とする請求項1~5の何れかに記載のスピネル型リチウム遷移金属酸化物。
  7.  請求項1~6の何れかに記載のスピネル型リチウム遷移金属酸化物を含有するリチウム電池用正極活物質。
  8.  請求項7に記載のリチウム電池用正極活物質を備えた電気自動車用又はハイブリッド電気自動車用のリチウム電池。
     
PCT/JP2011/065945 2010-07-16 2011-07-13 スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料 WO2012008480A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11806810.5A EP2594529B1 (en) 2010-07-16 2011-07-13 Spinel-type lithium transition metal oxide and positive electrode active material substance for lithium batteries
US13/810,344 US8734998B2 (en) 2010-07-16 2011-07-13 Spinel-type lithium transition metal oxide and positive electrode active material for lithium battery
JP2011551366A JP4939670B2 (ja) 2010-07-16 2011-07-13 スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010162273 2010-07-16
JP2010-162273 2010-07-16
JP2010-292552 2010-12-28
JP2010292552 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012008480A1 true WO2012008480A1 (ja) 2012-01-19

Family

ID=45469477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065945 WO2012008480A1 (ja) 2010-07-16 2011-07-13 スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料

Country Status (4)

Country Link
US (1) US8734998B2 (ja)
EP (1) EP2594529B1 (ja)
JP (1) JP4939670B2 (ja)
WO (1) WO2012008480A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132663A1 (ja) * 2012-03-09 2013-09-12 トヨタ自動車株式会社 非水電解液二次電池
US20150079473A1 (en) * 2012-07-09 2015-03-19 Lg Chem, Ltd. High voltage positive active material and lithium secondary battery comprising the same
WO2015083788A1 (ja) * 2013-12-04 2015-06-11 三井金属鉱業株式会社 スピネル型リチウムコバルトマンガン含有複合酸化物
US20150280211A1 (en) * 2012-10-17 2015-10-01 Toda Kogyo Corp. Li-Ni COMPOSITE OXIDE PARTICLES AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US9698420B2 (en) 2012-10-17 2017-07-04 Toda Kogyo Corp. Li-Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
CN112811537A (zh) * 2021-02-07 2021-05-18 河海大学 一种铁-氮掺杂碳纳米管电极的制备方法及应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728520B2 (ja) * 2013-04-12 2015-06-03 プライムアースEvエナジー株式会社 電池の容量回復方法、組電池の容量回復方法、電池の容量回復装置、及び、組電池の容量回復装置
CN104201375B (zh) * 2014-09-15 2017-01-18 无锡晶石新型能源有限公司 镍钴锰酸锂材料的生产方法
JP6999598B2 (ja) 2019-03-28 2022-01-18 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池
CN111477865B (zh) * 2020-04-02 2023-03-31 广西锰华新能源科技发展有限公司 一种内氧式生产锰酸锂的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167204A (ja) * 1997-08-08 1999-03-09 Fine Ceramics Gijutsu Kenkyu Kumiai 非水電解液二次電池の正極活物質の製造方法
JPH11214003A (ja) * 1998-01-29 1999-08-06 Mitsubishi Chemical Corp リチウム二次電池
JP2000500280A (ja) * 1997-02-28 2000-01-11 エフエムシー・コーポレイション リチウム二次電池及びリチウムイオン二次電池用の複数の金属イオンでドープされた酸化物のカソード材料
JP2000154021A (ja) * 1998-11-18 2000-06-06 Tosoh Corp 新規リチウムマンガン酸化物及びその製造方法並びにその用途
JP2000228195A (ja) * 1999-02-05 2000-08-15 Ngk Insulators Ltd リチウム二次電池
JP2000340231A (ja) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質、その製造方法、それを用いたリチウム二次電池およびその二次電池のエージング処理方法
JP2001335323A (ja) 2000-05-25 2001-12-04 Masayuki Yoshio リチウム二次電池用スピネル系マンガン酸化物
JP2005522001A (ja) * 2002-03-28 2005-07-21 コリア・マテリアル・カンパニー・リミテッド リチウムイオン二次電池用のカソード素材およびその製造方法
JP2006252940A (ja) 2005-03-10 2006-09-21 Ngk Insulators Ltd リチウム二次電池及びマンガン酸リチウムの製造方法
JP2007149414A (ja) 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd リチウムイオン二次電池およびそのリチウム複合酸化物の製造方法
JP4673451B2 (ja) * 2009-07-03 2011-04-20 三井金属鉱業株式会社 リチウム遷移金属酸化物の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040089A (en) 1997-02-28 2000-03-21 Fmc Corporation Multiple-doped oxide cathode material for secondary lithium and lithium-ion batteries
EP2442388B1 (en) * 2007-10-23 2013-07-10 Mitsui Mining & Smelting Co., Ltd Spinel type lithium-transition metal oxide

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000500280A (ja) * 1997-02-28 2000-01-11 エフエムシー・コーポレイション リチウム二次電池及びリチウムイオン二次電池用の複数の金属イオンでドープされた酸化物のカソード材料
JPH1167204A (ja) * 1997-08-08 1999-03-09 Fine Ceramics Gijutsu Kenkyu Kumiai 非水電解液二次電池の正極活物質の製造方法
JPH11214003A (ja) * 1998-01-29 1999-08-06 Mitsubishi Chemical Corp リチウム二次電池
JP2000340231A (ja) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質、その製造方法、それを用いたリチウム二次電池およびその二次電池のエージング処理方法
JP2000154021A (ja) * 1998-11-18 2000-06-06 Tosoh Corp 新規リチウムマンガン酸化物及びその製造方法並びにその用途
JP2000228195A (ja) * 1999-02-05 2000-08-15 Ngk Insulators Ltd リチウム二次電池
JP2001335323A (ja) 2000-05-25 2001-12-04 Masayuki Yoshio リチウム二次電池用スピネル系マンガン酸化物
JP2005522001A (ja) * 2002-03-28 2005-07-21 コリア・マテリアル・カンパニー・リミテッド リチウムイオン二次電池用のカソード素材およびその製造方法
JP2006252940A (ja) 2005-03-10 2006-09-21 Ngk Insulators Ltd リチウム二次電池及びマンガン酸リチウムの製造方法
JP2007149414A (ja) 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd リチウムイオン二次電池およびそのリチウム複合酸化物の製造方法
JP4673451B2 (ja) * 2009-07-03 2011-04-20 三井金属鉱業株式会社 リチウム遷移金属酸化物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BASU R. ET AL.: "Suppressing the charge- ordering transition in LiMn204 through substitution of Li by Mg", JOURNAL OF MATERIALS CHEMISTRY, vol. 10, no. 2, February 2000 (2000-02-01), pages 507 - 510, XP055069335 *
See also references of EP2594529A4
YAMADA A. ET AL.: "Jahn-Teller instability in spinel Li-Mn-0", JOURNAL OF POWER SOURCES, vol. 81-82, 1999, pages 73 - 78, XP004363127 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132663A1 (ja) * 2012-03-09 2013-09-12 トヨタ自動車株式会社 非水電解液二次電池
JPWO2013132663A1 (ja) * 2012-03-09 2015-07-30 トヨタ自動車株式会社 非水電解液二次電池
US20150079473A1 (en) * 2012-07-09 2015-03-19 Lg Chem, Ltd. High voltage positive active material and lithium secondary battery comprising the same
US9799878B2 (en) * 2012-07-09 2017-10-24 Lg Chem, Ltd. High voltage positive active material and lithium secondary battery comprising the same
US20150280211A1 (en) * 2012-10-17 2015-10-01 Toda Kogyo Corp. Li-Ni COMPOSITE OXIDE PARTICLES AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US9698420B2 (en) 2012-10-17 2017-07-04 Toda Kogyo Corp. Li-Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
KR101613861B1 (ko) 2013-12-04 2016-04-20 미쓰이금속광업주식회사 스피넬형 리튬코발트망간 함유 복합 산화물
GB2536166A (en) * 2013-12-04 2016-09-07 Mitsui Mining & Smelting Co Spinel-type lithium cobalt manganese-containing complex oxide
JP5813277B1 (ja) * 2013-12-04 2015-11-17 三井金属鉱業株式会社 スピネル型リチウムコバルトマンガン含有複合酸化物
US9786914B2 (en) 2013-12-04 2017-10-10 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium cobalt manganese-containing complex oxide
WO2015083788A1 (ja) * 2013-12-04 2015-06-11 三井金属鉱業株式会社 スピネル型リチウムコバルトマンガン含有複合酸化物
GB2549666A (en) * 2013-12-04 2017-10-25 Mitsui Mining & Smelting Co Spinel-type lithium cobalt manganese-containing complex oxide
GB2536166B (en) * 2013-12-04 2018-03-07 Mitsui Mining & Smelting Co Spinel-type lithium cobalt manganese-containing complex oxide
CN112811537A (zh) * 2021-02-07 2021-05-18 河海大学 一种铁-氮掺杂碳纳米管电极的制备方法及应用
CN112811537B (zh) * 2021-02-07 2022-02-01 河海大学 一种铁-氮掺杂碳纳米管电极的制备方法及应用

Also Published As

Publication number Publication date
EP2594529A4 (en) 2014-01-08
EP2594529A1 (en) 2013-05-22
US20130122372A1 (en) 2013-05-16
EP2594529B1 (en) 2016-08-31
US8734998B2 (en) 2014-05-27
JPWO2012008480A1 (ja) 2013-09-09
JP4939670B2 (ja) 2012-05-30

Similar Documents

Publication Publication Date Title
KR101613862B1 (ko) 리튬 과잉형 층상 리튬 금속 복합 산화물의 제조 방법
JP4939670B2 (ja) スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料
JP4987063B2 (ja) スピネル型リチウム遷移金属酸化物
JP5308581B2 (ja) スピネル型リチウムマンガン系複合酸化物
KR102170482B1 (ko) 리튬 이온 전지용 양극 재료
JP6091461B2 (ja) スピネル型リチウムマンガン遷移金属酸化物
US10263244B2 (en) Lithium metal composite oxide having layered structure
JP5523637B2 (ja) マンガン系スピネル型リチウム遷移金属酸化物
JP6174145B2 (ja) スピネル型リチウム金属複合酸化物
US20190058191A1 (en) Lithium Metal Composite Oxide Having Layered Structure
WO2012090749A1 (ja) リチウム二次電池用正極活物質の製造方法
JP5813277B1 (ja) スピネル型リチウムコバルトマンガン含有複合酸化物
JP4673451B2 (ja) リチウム遷移金属酸化物の製造方法
JP6120493B2 (ja) リチウム・マンガン複合酸化物の製造方法、その製造方法によって得られるリチウム・マンガン複合酸化物を含む二次電池用正極の製造方法、およびそれを正極として用いるリチウムイオン二次電池の製造方法
JP6546582B2 (ja) 層状結晶構造を有するリチウム金属複合酸化物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011551366

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806810

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011806810

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011806810

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13810344

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE