WO2012008274A1 - 粒子線照射装置およびこれを備えた粒子線治療装置 - Google Patents

粒子線照射装置およびこれを備えた粒子線治療装置 Download PDF

Info

Publication number
WO2012008274A1
WO2012008274A1 PCT/JP2011/064271 JP2011064271W WO2012008274A1 WO 2012008274 A1 WO2012008274 A1 WO 2012008274A1 JP 2011064271 W JP2011064271 W JP 2011064271W WO 2012008274 A1 WO2012008274 A1 WO 2012008274A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
signal
immediate
pattern
collimator
Prior art date
Application number
PCT/JP2011/064271
Other languages
English (en)
French (fr)
Inventor
越虎 蒲
原田 久
泰三 本田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN2011800236127A priority Critical patent/CN102905761B/zh
Priority to JP2012524507A priority patent/JP5095037B2/ja
Priority to US13/696,736 priority patent/US8586948B2/en
Publication of WO2012008274A1 publication Critical patent/WO2012008274A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/046Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers varying the contour of the field, e.g. multileaf collimators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1052Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using positron emission tomography [PET] single photon emission computer tomography [SPECT] imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1054Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using a portal imaging system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT

Definitions

  • the present invention relates to a particle beam irradiation apparatus for irradiating a particle beam according to a three-dimensional shape of an affected part, which is applied to particle beam therapy in which an affected part such as a tumor is irradiated with a particle beam (also called a particle beam).
  • a particle beam also called a particle beam
  • high-energy particle beams such as proton beams and carbon beams accelerated to about 70% of the speed of light are used.
  • These high energy particle beams have the following characteristics when irradiated into the body.
  • the characteristic deep dose distribution curve formed along the path passed is called the Bragg curve, and the position where the dose value is maximum is called the Bragg peak.
  • a particle beam is expanded in the horizontal direction to form a uniform irradiation field in the horizontal direction.
  • the irradiation field is shaped according to the shape of the affected area using a collimator such as a patient collimator or a multileaf collimator.
  • An energy compensation filter is created for each patient so that the maximum depth position, which is the position where the particle beam stops in the body (the position of the Bragg peak), coincides with the vicinity of the edge of the affected part regardless of the lateral position. Pass through (referred to as patient bolus or Bolus).
  • patient bolus Pass through
  • the width of the Bragg peak is expanded so as to cover the entire depth of the affected area. Thereby, a substantially uniform dose distribution can be formed in the affected part volume.
  • the wobbler method using a wobbler electromagnet includes a single-circle wobbler method in which a beam spot of less than 10 cm is rotated at about 50 Hz along a circular orbit to form a uniform dose distribution in the center, and a beam spot of about 0.5-2 cm
  • a method of forming a uniform dose distribution region in the center by scanning at a high speed according to a complicated scanning pattern. This method is also called uniform scanning because it scans a narrow beam spot with a constant periodic pattern to form a uniform lateral dose distribution.
  • a spiral pattern and a sawtooth pattern are known. When the scanning pattern is spiral, it is called a spiral wobbler method.
  • Non-Patent Document 1 and Patent Document 1 uses the spiral wobbler method, the beam spot is scanned with a more complicated scanning pattern than the single-circle wobbler method. This makes it more complicated to monitor whether the spiral wobbler system is operating normally during irradiation. It is an object of the present invention to check the operation of a scanning mechanism with a simple configuration in a particle beam irradiation apparatus that forms a horizontal irradiation field by scanning a particle beam with a wobbler system or other scanning mechanism, and is more reliable. It is to provide a high particle beam irradiation apparatus.
  • the particle beam irradiation apparatus includes a particle beam shield that shields a part of the scanned particle beam, and an immediate signal that is detected when the scanned particle beam hits the particle beam shield.
  • the detected signal time pattern which is the time pattern of the signal detected by the immediate signal detector when the particle beam is scanned according to the scanning pattern and the target is irradiated with the particle beam, is compared with the stored comparison signal time pattern. In this case, the particle beam scanning or the abnormality of the particle beam shield is detected.
  • the particle beam irradiation apparatus of the present invention can detect an abnormality such as a scanning mechanism with a simple configuration, and can provide a highly reliable apparatus.
  • FIG. 1 is a block diagram showing a schematic configuration of a particle beam irradiation apparatus according to Embodiment 1 of the present invention.
  • a particle beam 1 having a predetermined beam energy is obtained from a particle beam accelerator (not shown).
  • a particle beam such as a proton beam of about 200 MeV or a carbon beam of about 400 MeV / u is used.
  • a wobbler electromagnet 2 (usually composed of an X-direction scanning electromagnet 21 that scans in the X direction and a Y-direction scanning electromagnet 22 that scans in the Y direction) is excited by the scanning power source 3 and the incident particle beam 1 is converted into a predetermined pattern. Scan with.
  • the scanning power supply 3 is, for example, a pattern power supply that generates a spiral pattern or a pattern power supply that supplies a sawtooth waveform current to the wobbler electromagnet 2.
  • the incident particle beam 1 becomes a particle beam 4 scanned by the wobbler electromagnet 2, and the particle beam monitor 13 measures the irradiation amount of the particle beam 4 and the particle beam position.
  • the collimator 6 cuts off a flat portion of the lateral dose distribution formed by the wobbler electromagnet 2 to form an irradiation field that matches the shape of the affected part (the shape seen from the traveling direction of the particle beam).
  • the particle beam 5 indicates a particle beam which is scanned and hits the collimator 6 out of the scanned particle beam 4.
  • a patient bolus 7 is arranged downstream of the collimator 6 for adjusting the maximum range of the particle beam and matching the far stop position of the expanded Bragg peak of the particle beam with the boundary of the affected part 9.
  • a device called a ridge filter (not shown) is used to expand the width of the Bragg peak to the depth of the affected area.
  • the particle beam 4 that has passed through the patient bolus 7 passes through the patient body surface 8 to form a beam spot 20 on the affected part 9, and this beam spot 20 is scanned by the wobbler electromagnet 2.
  • an immediate radiation detector 11 for measuring immediate radiation ( ⁇ rays, neutron rays, etc.) generated when the particle beam 5 hits the collimator 6 is disposed.
  • the particle beam irradiation apparatus according to the first embodiment of the present invention provides beam information that supplies information on the particle beam output from the accelerator, such as the time change information of the particle beam current obtained from the accelerator and the on / off timing signal of the particle beam.
  • a supply unit 10 is provided.
  • a signal comparison device 12 storing a comparison signal time pattern which is a time pattern of an immediate radiation signal calculated in advance based on parameters including a wobbler periodic pattern and an aperture shape of the collimator device is provided.
  • the signal comparison device 12 compares the detection signal time pattern, which is the time pattern of the immediate radiation signal detected by the immediate radiation detector 11, with the comparison signal time pattern.
  • FIG. 2 is a plan view of the collimator 6 viewed from the incident direction of the particle beam, and shows the positional relationship between the collimator 6 and the scanned particle beam 4.
  • the collimator 6 is composed of four collimator leaves 61, and the position of each collimator leaf 61 is adjusted to determine the opening area of the collimator 6, that is, the area where the particle beam passes through the collimator 6.
  • the hatched area is the opening 65 of the collimator 6 and the particle beam 4 passes through the collimator 6.
  • X and Y indicate coordinate axes on a plane parallel to the collimator plane.
  • a 1, A 2, A 3, A 4, A 5, A 6 indicate portions where the scanned particle beam 4 is shielded by the collimator 6 and hits the collimator 6.
  • the collimator 6 is a particle beam shield.
  • a straight line pattern indicated by reference numeral 41 shows an example of a trajectory pattern on the surface of the collimator 6 of the scanned particle beam.
  • FIG. 2 shows an example in which the particle beam trajectory pattern 41 is a sawtooth trajectory pattern in the X and Y directions.
  • the opening shape of the collimator is determined for each patient so that the particle beam is irradiated only to the affected part volume.
  • the simplest collimator 6 is shown for the sake of simplicity. Actually, however, the collimator is manufactured by cutting a metal plate or the like, or when an automatically controlled multi-leaf collimator with a variable leaf position is used. There are many.
  • scanning parameters of the particle beam necessary for irradiation of the affected area are determined.
  • the scan parameters include a scan pattern to be used, a maximum range of the scan pattern also called a scan radius, and the like.
  • the uniform irradiation range obtained by scanning the particle beam needs to be larger than the opening 65 of the collimator 6. Eventually, only the particle beam that has passed through the collimator reaches the affected area, and the irradiation field is formed so as to match the shape of the affected area.
  • the immediate radiation generated when the particle beam 5 strikes the collimator 6 is immediately detected by the radiation detector.
  • 11 calculates the time pattern of the immediate radiation signal that is considered to be detected and output.
  • the time pattern of the immediate radiation signal obtained by this calculation is a comparison signal time pattern. Specifically, during the period when the particle beam trajectory is completely passing through the collimator opening 65, the radiation signal is immediately zero. During the period when the particle beam trajectory is shielded by the collimator 6, the immediate radiation signal has a predetermined value.
  • the magnitude of the immediate radiation signal is proportional to the beam current intensity at that time, the particle beam current itself often varies with time. Therefore, in the calculation, the presence or absence of the immediate radiation signal is first used as a parameter.
  • An example in which the collimator is a simple four block collimator shown in FIG. 2 and the scanning pattern is a sawtooth wave shown in FIG.
  • FIG. 3 is an example of a time pattern of an immediate radiation signal obtained by calculation from information on the shape of the opening 65 of the collimator 6 and the scanning pattern of the particle beam, that is, a comparison signal time pattern.
  • the particle beam accelerator is a synchroton accelerator
  • the particle beam current is pulsed, so that no immediate radiation by the collimator 6 is observed in the beam off period indicated by T in FIG.
  • the width of the S1 signal shown in FIG. 3 is proportional to the length of the particle beam trajectory in the region A1 shown in FIG. Similarly, the time and time width when the immediate radiation generated by the particle beam 5 shielded by the collimator leaf 61 is measured can be predicted by calculation. Then, the comparison signal time pattern shown in FIG. 3 is stored in the signal comparison device 12 shown in FIG. Subsequently, the position of the collimator leaf 61 is set to have a shape determined by the treatment plan, and other irradiation devices and parameters are adjusted and set in advance. You are now ready to start treatment.
  • the wobbler electromagnet 2 is excited so as to follow the scan pattern by the scanning power supply 3 of the wobbler electromagnet 2 sending current to the wobbler electromagnet 2 in accordance with the planned scan pattern.
  • the particle beam is emitted from the accelerator and enters the wobbler electromagnet 2 through the beam transport system.
  • the particle beam 1 incident on the wobbler electromagnet 2 is scanned along the scanning pattern to become a particle beam 4.
  • the particle beam 4 passes through the opening 65 of the collimator 6, passes through the patient bolus 7 and the patient body surface 8, and then irradiates the affected part 9.
  • the particle beam 5 shielded by the collimator 6 hits the collimator 6 and reacts with the nuclei in the collimator to instantly generate immediate radiation such as gamma rays.
  • Immediate radiation is generated at the moment when the particle beam 5 hits the collimator 6, and the generation timing thereof is uniquely determined by the trajectory pattern 41 on the collimator surface of the particle beam 4 and the shape of the opening 65 of the collimator 6.
  • the immediate radiation detector 11 detects the immediate radiation generated from the collimator 6.
  • FIG. 4 shows an example of an immediate radiation signal obtained by detecting the immediate radiation by the immediate radiation detector 11, that is, a detection signal time pattern.
  • S1, S2, S3, S4, S5, and S6 are immediate radiation signals generated from portions corresponding to the areas A1, A2, A3, A4, A5, and A6 shown in FIG.
  • Immediate radiation is also generated in the affected part 9 when the affected part 9 is irradiated with a particle beam, for example, but the intensity is very weak compared to the intensity generated in the collimator 6.
  • a signal such as weak noise is a signal in which the immediate radiation detector 11 detects the immediate radiation generated in the affected part 9, and whether the detected immediate radiation is the immediate radiation generated in the collimator 6 is easily distinguished. can do.
  • the detected detection signal time pattern is transmitted to the signal comparison device 12.
  • the signal comparison device 12 collates the detection signal time pattern with the stored comparison signal time pattern, and monitors whether the scanning pattern is as planned. For example, when the scanning pattern is periodic, when the maximum time interval between adjacent signal pulses in the comparative signal time pattern is ⁇ T in the ON period of the particle beam (the period in which the particle beam is output from the accelerator) When the time interval between adjacent signal pulses in the detection signal time pattern is longer than ⁇ T, it can be determined that some abnormality has occurred in the particle beam scanning mechanism.
  • ⁇ T is basically determined by the maximum opening of the opening 65 of the collimator 6 and the detailed shape of the scanning pattern. Therefore, if the time interval between adjacent immediate radiation signal pulses is longer than ⁇ T, the particle beam This suggests that the range of the trajectory has changed to the inside of the opening 65 of the collimator. Further, when the opening 65 of the collimator 6 changes during irradiation, the detection signal time pattern (pulse time width and interval) of the immediate radiation detected by the immediate radiation detector 11 also changes, so that the signal comparison The apparatus 12 can detect an abnormality even when an abnormality occurs in the collimator during irradiation.
  • the signal pulse time interval ⁇ T is about 25 msec to 8.3 msec.
  • the response time of the immediate radiation detector 11 is about 10 ⁇ sec, which is sufficiently faster than ⁇ T, so that the timing at which the particle beam passes the collimator edge can be detected with sufficiently good accuracy.
  • FIG. 5 schematically shows a case where an abnormality is observed in the scanning pattern of the particle beam, the scanning amount in the Y direction becomes zero, and the particle beam trajectory 42 becomes a line along the X direction.
  • FIG. 6 shows a detection signal time pattern of immediate radiation detected by the immediate radiation detector 11 corresponding to FIG. Strong immediate radiation will be observed only during the period when the particle beam is shielded by the collimator 6 at both ends (for example, the particle beam position 50). The difference between the detection signal time pattern of FIG. 6 and the comparison signal time pattern shown in FIG. 3 is clear, and the signal comparison device 12 can easily determine an abnormality.
  • FIG. 7 shows an example of the positional relationship between the particle beam 51 and the collimator opening 65 when an abnormality occurs in the wobbler electromagnet 2 and the scanning of the particle beam is completely stopped.
  • FIG. 8 shows a detection signal time pattern of immediate radiation detected by the immediate radiation detector 11 corresponding to FIG.
  • the signal comparison device 12 can detect an abnormality in the scanning pattern by comparing the detection signal time pattern with the comparison signal time pattern.
  • the abnormality detection of the scanning pattern can be performed with a simple system configuration. Therefore, the reliability of the particle beam irradiation apparatus can be further improved.
  • the present invention there is an effect that an abnormality of the collimator 6 can be detected.
  • the collimator 6 is composed of four collimator leaves 61 has been described as an example.
  • the present invention is not limited to this, and a large number of collimator leaves 62 as shown in FIG. Needless to say, even in the case of the multi-leaf collimator forming 65, the effect of the present invention is exhibited.
  • the immediate radiation detector 11 is arranged on the upstream side of the collimator 6.
  • the immediate radiation detector 11 is arranged on the downstream side of the collimator 6, the effect is the same.
  • the immediate radiation detector 11 is arranged behind the patient and downstream from the treatment table, there is an effect that the immediate ⁇ -rays or the immediate neutron rays due to the nuclear reaction occurring in the collimator can be detected more efficiently.
  • the scanning pattern of the particle beam is a sawtooth pattern
  • the scanning pattern is not limited to this, and the scanning pattern is the spiral scanning pattern described in Patent Document 1 or Non-Patent Document 1. Even in this case, the same effect can be obtained.
  • the particle beam Bragg peak is expanded to the width in the depth direction of the affected area using a ridge filter
  • the affected area is divided into a plurality of layered regions along the depth direction.
  • the effect of the present invention is the same even in the case of a treatment apparatus that performs irradiation using an extended Bragg peak with a narrow width, such as layered body irradiation in which the particle beam energy is changed for each layer.
  • the immediate radiation detector 11 is described as a detector that detects an immediate radiation signal.
  • the immediate radiation detector 11 collides with a collimator 6 made of brass, iron, or the like.
  • the effect described above is basically the same even if the detector is configured to detect all or a part of an immediate signal including a gamma ray or a neutron signal among the generated immediate signals (Prompt Signal). What is important is to detect a signal generated immediately after colliding with the collimator and compare the detected signal time pattern with a comparison signal time pattern obtained by calculation or the like.
  • the effect of the present invention can also be obtained by applying or adding a special material to the collimator 6 so that signals are easily generated when the particle beam 5 collides and the signals are detected. can get.
  • the signal may be a sound wave signal, a visible light signal, a non-visible light signal, or a secondary electron signal.
  • signals generated when the particle beam 5 collides with the collimator (particle beam shield) 6 such as radiation such as ⁇ rays and neutron rays, secondary electrons, sound waves, and light are defined as immediate signals. If the immediate radiation detector 11 is the immediate signal detector 11 that detects the intended immediate signal, the effects described above can be obtained in the same manner.
  • an immediate signal comparison time pattern is created based on the shape of the multi-leaf collimator whose opening shape is different for each patient. In addition to monitoring the operation, it can also be detected when the shape of the multileaf collimator changes during irradiation.
  • the immediate signal since the time pattern of the immediate signal generated immediately when the particle beam hits the collimator, such as the immediate ⁇ -ray signal emitted from the collimator, is monitored, the immediate signal can be detected almost simultaneously with the timing when the particle beam hits the collimator. For this reason, there is no worry of time delay, and the timing at which the particle beam strikes can be detected with high accuracy.
  • This has the effect of avoiding complication of the collimator used in the particle beam irradiation apparatus. That is, the effect of the present invention can be exhibited even if a collimator such as a multileaf collimator installed in the irradiation nozzle remains as it is.
  • the immediate signal is immediate radiation such as gamma rays
  • the radiation is generated from the collimator even if the immediate radiation detector 11 is provided at a position away from the collimator, for example, across the treatment table or on the opposite side of the irradiation nozzle. It is possible to detect an immediate radiation signal.
  • FIG. FIG. 10 is a block diagram showing a schematic configuration of the particle beam irradiation apparatus according to the second embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts as those in FIG.
  • the second embodiment is an embodiment in which the present invention is applied to a particle beam irradiation apparatus having a rotating gantry mechanism.
  • the particle beam irradiation apparatus shown in FIG. 10 uses a counterweight 31 for reducing the rotational torque of the rotating gantry, a treatment table 32, a treatment room floor 33, a rotating gantry rotating shaft 34, and a rotating gantry so as to constitute a rotating gantry.
  • a rotating gantry electromagnet group 35 for transportation is provided.
  • the radiation detector 11 is installed on a frame that rotates together with the counterweight 31.
  • the rest is the same as in the first embodiment. Therefore, the basic operation of the second embodiment is the same as that of the first embodiment.
  • the immediate radiation detector 11 since the immediate radiation detector 11 is installed on a frame that rotates together with the counterweight 31 of the rotating gantry, the immediate radiation signal ( ⁇ rays, neutrons) always generated from the collimator 6 regardless of the rotation angle of the rotating gantry. It is possible to capture the forward concentration component of the line). Therefore, it is possible to detect an immediate radiation signal with a good signal-to-noise ratio at any irradiation angle of the rotating gantry.
  • FIG. 11 is a block diagram showing a schematic configuration of a particle beam irradiation apparatus according to Embodiment 3 of the present invention. 11, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the immediate radiation signal is converted into a signal having a constant height through the comparator 14 which is a circuit that compares the immediate radiation signal detected by the immediate radiation detector 11 with a predetermined threshold Th. Immediately binarizes the radiation signal.
  • the pattern shown in FIG. 12A is the immediate radiation signal itself measured by the immediate radiation detector 11 shown in FIG. For this immediate radiation signal, a process of outputting an output is performed when a signal having a level equal to or higher than Th shown in FIG.
  • the immediate radiation of the detected immediate radiation signal at a level equal to or lower than the threshold Th is immediate radiation other than that generated by the collimator 6, for example, immediate radiation generated at an affected area that is an irradiation target. Processing to remove from the detection target can be performed.
  • whether or not the collimator 6 is hit by the particle beam can be determined based on the presence or absence of the processed immediate radiation signal. Therefore, the detection signal time pattern can be more easily grasped and compared with the comparison signal time pattern. It becomes easy to do. Therefore, the effect that the operation
  • FIG. 13 is a block diagram showing a schematic configuration of a particle beam irradiation apparatus according to Embodiment 4 of the present invention.
  • the same reference numerals as those in FIG. 11 denote the same or corresponding parts.
  • reference numeral 15 denotes a display device.
  • a detection signal time pattern and a comparison signal time pattern are displayed on the display device 15.
  • FIG. 14 is an image of a screen displayed on the display device 15.
  • the detection signal time pattern measured during the irradiation is displayed on the display device 15 provided in the treatment room, the operation room, or the like, so that the state of the operation of the particle beam irradiation apparatus during the irradiation is displayed.
  • a comparison signal time pattern obtained by calculation based on the collimator shape, rotation angle position, particle beam scanning pattern, particle beam current time information, etc. used for irradiation is displayed on the display device 15 together with the detection signal time pattern. By doing so, it is possible to more easily monitor the operation of the particle beam irradiation system during irradiation.
  • FIG. 14 shows an example in which the detection signal time pattern is displayed in the upper part and the comparison signal time pattern is displayed in the lower part.
  • the present invention is not limited to this. (Difference) may be displayed.
  • FIG. 15 is an image diagram showing a main part of the particle beam irradiation apparatus according to the fifth embodiment of the present invention.
  • FIG. 15 is a diagram showing the trajectory of the particle beam at the position corresponding to FIG. 2 in the first embodiment.
  • the irradiation method for forming the irradiation field in the horizontal direction by using the particle beam itself without using a collimator such as a step scanning irradiation method in which the irradiation field formation in the horizontal direction is performed only by a scanning electromagnet that scans the particle beam.
  • a scanning electromagnet that scans the particle beam.
  • a particle beam shielding body that generates an immediate signal by shielding a part of the particle beam so as not to affect irradiation field formation. At least one is installed downstream of the scanning electromagnet. That is, as shown in FIG. 15, the particle beam shield 63 is placed at the boundary of the scanning region 66 formed by the scanned particle beam trajectory 44, for example, as shown by the particle beam 51 in FIG. Install in the position where only the part hits.
  • the predicted immediate signal such as the immediate gamma ray generated by the particle beam shield 63 is stored in the signal comparison device 12 as a comparison signal time pattern.
  • the comparison signal time pattern is compared with the detection signal time pattern detected by the immediate signal detector 11 during irradiation, and the soundness of the irradiation system can be checked in a close manner.
  • the present invention is not limited to the wobbler system, and can be applied to all particle beam irradiation apparatuses that scan a particle beam with a predetermined scanning pattern.
  • Particle beam 2 Wobbler electromagnet 4: Scanned particle beam 5: Particle beam shielded by collimator 6: Collimator (particle beam shield) 11: Immediate radiation detector (immediate signal detector) 12: Signal comparison device 14: Comparator 15: Display device 21: X-direction scanning electromagnet 22: Y-direction scanning electromagnet 41: Orbital pattern 61, 62: Collimator leaf 63 on the surface of the collimator 6 of particle beam 63: Particle beam shield 65 : Collimator opening

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

 簡単な構成で走査機構などの動作をチェックでき、より信頼性の高い粒子線照射装置を提供することを目的とする。 走査された粒子ビーム(4)の一部を遮蔽する粒子ビーム遮蔽体(6)と、この粒子ビーム遮蔽体(6)に走査された粒子ビーム(4)が当たった時に発生する即信号を検出する即信号検出器(11)と、予め決められた走査パターンによって発生する即信号の発生パターンを予測して求めて比較用信号時間パターンとして格納する信号比較装置(12)とを備え、この信号比較装置(12)は、予め決められた走査パターンに従って粒子ビームを走査して標的に粒子ビームを照射した時に即信号検出器(11)で検出された信号の時間パターンである検出信号時間パターンと、格納された比較用信号時間パターンと、を比較して、粒子ビームの走査または粒子ビーム遮蔽体(6)の異常を検出するようにした。

Description

粒子線照射装置およびこれを備えた粒子線治療装置
 本発明は、粒子ビーム(粒子線とも呼ぶ)を腫瘍など患部に照射して治療を行う粒子線治療に適用する、粒子ビームを患部3次元形状に合わせて照射するための粒子線照射装置に関する。
 粒子線治療法では、光速の約70%まで加速された陽子ビームや炭素線など、高エネルギーの粒子ビームが用いられる。これらの高エネルギーの粒子ビームは体内に照射された際に、以下の特徴を有する。第一に、照射された粒子ビームの殆どが粒子エネルギーの約1.7乗に比例した深さ位置に停止する。第二に、照射された粒子ビームが体内で停止するまでに通過する経路に与えるエネルギー密度(線量と呼ばれる)は粒子ビームの停止位置で最大値を有する。通過した経路に沿って形成した特有の深部線量分布曲線はブラッグカーブと呼ばれ、線量値が最大の位置はブラッグピークと呼ばれる。
 よく用いられる2次元照射法と呼ばれる照射野形成法を利用する粒子線照射システムでは、まず、粒子ビームを横方向に拡大させ、横方向の均一照射野を形成する。そして、患者コリメータや多葉コリメータなどのコリメータを用いて照射野を患部の形状に合わせて整形する。また、粒子ビームの体内停止位置(ブラッグピークの位置)である最大深さ位置が横方向位置によらず患部のエッジ近傍に一致するように、粒子ビームを、患者ごとに作成されるエネルギー補償フィルタ(患者ボラス又はBolusと称す)を通過させる。更に、リッジフィルタと呼ばれる装置を用いて、患部深さ幅を全部カバーするように、ブラッグピークの幅を拡大させる。これによって、患部体積において、ほぼ均一な線量分布を形成できる。
 粒子ビームを横方向に拡大させる方法として、散乱体を用いる方法、ワブラ電磁石を用いる方法などがある。ワブラ電磁石を用いるワブラ法には、10センチ弱のビームスポットを円軌道にそって50Hz程度で回転させて中心部に均一な線量分布を形成させる単円ワブラ法と、0.5-2cm程度のビームスポットを複雑な走査パターンに従って高速に走査して、中心部に均一な線量分布領域を形成する方法がある。一定の周期パターンで細いビームスポットを走査して均一な横方向線量分布を形成するので、この方法はユニフォームスキャニングとも呼ばれる。走査パターンとして、螺旋パターンと鋸波パターンが知られている。走査パターンが螺旋状である場合は螺旋ワブラ法と呼ばれている。
特開2002-191709号公報
Masataka Komori, et al, "Optimization of spiral-Wobbler System for Heavy-Ion Radiotherapy","Japanese Journal of Applied Physics", 2004, Vol. 43, No.9A, pp.6463-6467
 非特許文献1や特許文献1に記載された粒子線照射装置では、螺旋ワブラ法を用いるため、単円ワブラ法に比べ、より複雑な走査パターンにてビームスポットを走査させることになる。そのため、照射中に螺旋ワブラシステムが正常に動作しているかどうかを監視することがより複雑になる。本発明の目的は、ワブラシステムやその他の走査機構により粒子ビームを走査して横方向照射野を形成する粒子線照射装置において、簡単な構成で走査機構などの動作をチェックでき、より信頼性の高い粒子線照射装置を提供することである。
 本発明に係る粒子線照射装置は、走査された粒子ビームの一部を遮蔽する粒子ビーム遮蔽体と、この粒子ビーム遮蔽体に走査された粒子ビームが当たった時に発生する即信号を検出する即信号検出器と、予め決められた走査パターンによって発生する即信号の発生パターンを予測して求めて比較用信号時間パターンとして格納する信号比較装置とを備え、この信号比較装置は、予め決められた走査パターンに従って粒子ビームを走査して標的に粒子ビームを照射した時に即信号検出器で検出された信号の時間パターンである検出信号時間パターンと、格納された比較用信号時間パターンとを比較して、粒子ビームの走査または粒子ビーム遮蔽体の異常を検出するようにしたものである。
 本発明の粒子線照射装置にあっては、簡単な構成で走査機構などの異常を検出でき、信頼性の高い装置を提供することができる。
本発明の実施の形態1による粒子線照射装置の概略構成を示すブロック図である。 本発明の実施の形態1による粒子線照射装置のコリメータを粒子ビームの入射方向から見た平面図である。 本発明の実施の形態1による粒子線照射装置の、計算によって得られる比較用信号時間パターンの例を示す線図である。 本発明の実施の形態1による粒子線照射装置の即放射線検出器によって検出される検出信号時間パターンの例を示す線図である。 本発明の実施の形態1による粒子線照射装置に異常が生じた場合のコリメータを粒子ビームの入射方向から見た平面図である。 本発明の実施の形態1による粒子線照射装置に図5の異常が生じた場合の、即放射線検出器によって検出される検出信号時間パターンの例を示す線図である。 本発明の実施の形態1による粒子線照射装置に別の異常が生じた場合のコリメータを粒子ビームの入射方向から見た平面図である。 本発明の実施の形態1による粒子線照射装置に図7の異常が生じた場合の、即放射線検出器によって検出される検出信号時間パターンの例を示す線図である。 本発明の実施の形態1による粒子線照射装置の他のコリメータを粒子ビームの入射方向から見た平面図である。 本発明の実施の形態2による粒子線照射装置の概略構成を示すブロック図である。 本発明の実施の形態3による粒子線照射装置の概略構成を示すブロック図である。 本発明の実施の形態3による粒子線照射装置の即放射線検出器によって得られる即放射線信号の例を示す線図である。 本発明の実施の形態4による粒子線照射装置の概略構成を示すブロック図である。 本発明の実施の形態4による粒子線照射装置の表示装置の画面の例を示すイメージ図である。 本発明の実施の形態5による粒子線照射装置の要部を示すイメージ図である。
実施の形態1.
 図1は、本発明の実施の形態1による粒子線照射装置の概略構成を示すブロック図である。図1の粒子線照射装置の構成および動作を以下に説明する。粒子ビーム加速器(図示せず)から所定ビームエネルギーを有する粒子ビーム1を得る。例えば粒子線治療では、200MeV程度の陽子ビームや400MeV/u程度の炭素線などの粒子ビームを用いる。ワブラ電磁石2(通常、X方向に走査するX方向走査電磁石21と、Y方向に走査するY方向走査電磁石22とからなる)が、走査電源3により励磁され、入射された粒子ビーム1を所定パターンで走査する。走査電源3は、例えば螺旋パターンを発生させるパターン電源、または鋸波形の電流をワブラ電磁石2に供給するパターン電源である。入射された粒子ビーム1は、ワブラ電磁石2により走査された粒子ビーム4となり、粒子ビームモニタ13が、粒子ビーム4の照射量と粒子ビーム位置を測定する。コリメータ6が、ワブラ電磁石2で形成した横方向線量分布の平坦部分を切り取って患部形状(粒子ビームの進行方向から見た形状)に合わせた照射野を形成する。粒子ビーム5は、走査された粒子ビーム4のうち、走査されてコリメータ6に当たって遮蔽される粒子ビームを示す。粒子ビームの最大レンジを調整し、粒子ビームの拡大ブラッグピークの遠方停止位置を患部9の境界に一致させるための患者ボラス7が、コリメータ6の下流に配置される。また、ブラッグピークの幅を患部の深さ幅に拡大させるためにはリッジフィルタ(図示せず)と呼ばれる装置が使われる。患者ボラス7を通過した粒子ビーム4が、患者体表面8を通って、患部9にビームスポット20を形成し、このビームスポット20がワブラ電磁石2により走査されることになる。また、粒子ビーム5がコリメータ6に当たって発生する即放射線(γ線、中性子線など)を測定する即放射線検出器11が配置される。一方、本発明の実施の形態1による粒子線照射装置は、加速器から得られる粒子ビーム電流の時間変化情報や粒子ビームのオンオフタイミング信号など、加速器から出力される粒子ビームの情報を供給するビーム情報供給部10を備える。さらに、ワブラ周期パターンとコリメータ装置の開口形状を含むパラメータに基づいて予め計算した即放射線信号の時間パターンである比較用信号時間パターンを格納した信号比較装置12を備える。信号比較装置12は、即放射線検出器11によって検出される即放射線信号の時間パターンである検出信号時間パターンと、比較用信号時間パターンとの比較を行う。
 図2はコリメータ6を粒子ビームの入射方向から見た平面図であり、コリメータ6と走査された粒子ビーム4の位置関係を示す。コリメータ6は4枚のコリメータリーフ61から構成され、各コリメータリーフ61の位置を調整することでコリメータ6の開口領域、すなわち粒子ビームがコリメータ6を通過する領域を決める。図2において斜線で示す領域が、コリメータ6の開口部65で、粒子ビーム4がコリメータ6を通過する領域である。図2において、X、Yはコリメータ面に平行な面における座標軸を示す。また、A1、A2、A3、A4、A5、A6は、走査された粒子ビーム4がコリメータ6に遮蔽されてコリメータ6に当たる部分を示す。このように、コリメータ6は粒子ビーム遮蔽体となっている。符号41で示す直線のパターンは、走査された粒子ビームのコリメータ6の面における軌道パターンの例を示す。図2では粒子ビームの軌道パターン41は、X方向とY方向において、鋸波形の軌道パターンである例を示している。
 次に、本発明の実施の形態1による粒子線照射装置の動作を説明する。まず、治療計画にて、患部体積にのみ粒子ビームが照射されるように、患者毎にコリメータの開口形状を決定する。図2では、簡単のため最も単純なコリメータ6を示したが、実際には、コリメータは金属などの板からくりぬいて製作する場合や、リーフ位置が可変の自動制御式の多葉コリメータを用いる場合が多い。また、治療計画では、患部の照射で必要な粒子ビームの走査パラメータが決定される。走査パラメータには、用いる走査パターン、走査半径とも呼ばれる走査パターンの最大範囲などが含まれる。粒子ビームの走査で得られる均一照射範囲はコリメータ6の開口部65よりも大きくする必要がある。最終的には、コリメータを通り抜けた粒子ビームのみが患部に到達し、患部形状に一致するように照射野が形成される。
 次に、決定されたコリメータ6の向きを含むコリメータの開口部形状と、粒子ビーム走査パターンと、走査範囲との情報を用いて、粒子ビーム5がコリメータ6に当たって発生する即放射線を即放射線検出器11が検出して出力すると考えられる即放射線信号の時間パターンを計算する。この計算によって求めた即放射線信号の時間パターンが、比較用信号時間パターンである。具体的には、粒子ビーム軌道がコリメータの開口部65を完全に通過している期間は、即放射線信号がゼロである。粒子ビーム軌道がコリメータ6で遮蔽される期間においては、即放射線信号は所定の値を有する。ここで、即放射線信号の大きさはその際のビーム電流強度に比例するが、粒子ビーム電流そのものが時間と共に変動する場合が多いので、計算ではまず即放射線信号の有無をパラメータにする。コリメータが図2に示す単純な4枚のブロックコリメータであり、走査パターンが図2に示す鋸波による場合を例に説明する。
 図3は、コリメータ6の開口部65の形状と粒子ビームの走査パターンとの情報から計算して得られる即放射線信号の時間パターン、すなわち比較用信号時間パターンの例である。粒子ビーム4がコリメータの開口部65を通過する期間では、コリメータ6による即放射線は観測されず、コリメータ6(コリメータリーフ61)に粒子ビーム5が遮蔽されている期間では、即放射線が検出され信号が出力されている様子を示している。また、粒子ビーム加速器がシンクロトン加速器である場合は、粒子ビーム電流がパルス状になるため、図3にTで示すビームオフ期間では、コリメータ6による即放射線は観測されない。
 図3に示すS1信号の幅は図2に示す領域A1における粒子ビーム軌道の長さに比例する。同じように、コリメータリーフ61によって遮蔽された粒子ビーム5によって発生する即放射線が測定される時刻と時間幅が計算で予測できる。そして、図3で示した比較用信号時間パターンを図1に示す信号比較装置12に格納する。続いて、コリメータリーフ61の位置を治療計画で決めた形状になるように設定し、他の照射機器とパラメータも事前に調整・設定される。これで、治療開始の準備が整う。
 次に、ワブラ電磁石2の走査電源3が計画された走査パターンに従ってワブラ電磁石2に電流を送ることにより、ワブラ電磁石2は走査パターンに沿うように励磁される。そして、粒子ビームが加速器から出射され、ビーム輸送系を経て、ワブラ電磁石2に入射される。ワブラ電磁石2に入射された粒子ビーム1は走査パターンに沿って走査され、粒子ビーム4になる。粒子ビーム4はコリメータ6の開口部65を通過し、患者ボラス7と患者体表面8を通り抜けた後、患部9に照射される。
 一方、コリメータ6で遮蔽された粒子ビーム5はコリメータ6に当たり、コリメータ中の原子核と反応し、即γ線などの即放射線を瞬時に発生する。即放射線は粒子ビーム5がコリメータ6に当たる瞬間に生じるため、その発生タイミングが粒子ビーム4のコリメータの面における軌道パターン41とコリメータ6の開口部65の形状で一義的に決まる。即放射線検出器11がコリメータ6から発生した即放射線を検出する。図4は即放射線を即放射線検出器11で検出した即放射線信号、すなわち検出信号時間パターンの例を示す。図4において、S1、S2、S3、S4、S5、S6はそれぞれ、図2に示した領域A1、A2、A3、A4、A5、A6に対応した部分から発生される即放射線信号である。なお、即放射線は、例えば患部9に粒子ビームが照射されている時に、患部9でも発生するが、その強度はコリメータ6で発生する強度に比較して非常に弱い。図4において弱いノイズのような信号が、患部9で発生する即放射線を即放射線検出器11が検出した信号であり、検出された即放射線がコリメータ6で発生した即放射線がどうかは簡単に区別することができる。
 この検出された検出信号時間パターンが信号比較装置12に伝送される。信号比較装置12は、検出信号時間パターンと格納されている比較用信号時間パターンとを照合し、走査パターンが計画した通りになっているかを監視する。例えば、走査パターンが周期的である場合、粒子ビームのオン期間(粒子ビームが加速器から出力されている期間)において、比較用信号時間パターンでの隣り合う信号パルスの最大時間間隔をΔTとした場合、検出信号時間パターンでの隣り合う信号パルスの時間間隔がΔTよりも長い場合、粒子ビームの走査機構に何らかの異常が生じたと判断できる。
 図2から容易に分かるようにΔTは基本的に、コリメータ6の開口部65の最大開きおよび走査パターンの詳細形状によって決まるから、隣り合う即放射線信号パルスの時間間隔がΔTより長ければ、粒子ビーム軌道の範囲がコリメータの開口部65の内側に変わってしまったことを示唆することになる。また、照射中に、コリメータ6の開口部65が変動してしまった場合、即放射線検出器11によって検出される即放射線の検出信号時間パターン(パルスの時間幅、間隔)も変わるので、信号比較装置12は照射中にコリメータに異常が起きた場合にも異常を検出できる。粒子線照射装置で用いる周期的走査パターンの走査周期が20Hzから60Hz程度の場合、信号パルスの時間間隔ΔTは25msecから8.3msec程度になる。即放射線検出器11の応答時間は10μsec程度であり、ΔTに比べて十分速いため、粒子ビームがコリメータエッジを通過するタイミングは十分よい精度で検出できる。
 図5は粒子ビームの走査パターンに異常が見られた場合で、Y方向における走査量がゼロになって、粒子ビーム軌道42がX方向に沿う線状になってしまった場合を模式的に示している。図6は図5に対応した即放射線検出器11で検出される即放射線の検出信号時間パターンを示す。粒子ビームが両端(例えば粒子ビーム位置50)において、コリメータ6に遮蔽される期間にのみ強い即放射線が観測されることになる。図6の検出信号時間パターンは、図3に示した比較用信号時間パターンとの違いが明瞭であり、信号比較装置12で容易に異常を判断できる。
 図7はワブラ電磁石2に異常が生じ、粒子ビームの走査が完全に停止した場合の粒子ビーム51とコリメータの開口部65の位置関係の一例を示す。図8は図7に対応した即放射線検出器11で検出される即放射線の検出信号時間パターンを示す。照射中に、粒子ビームの走査が停止して粒子ビーム43の位置が図7に示すような位置になった場合、図8に示すように、即放射線検出器11ではコリメータ6で発生する即放射線信号は観測されないため、信号比較装置12において、検出信号時間パターンを比較用信号時間パターンと比較することにより走査パターンの異常を検出できる。
 このように、本発明の実施の形態1による粒子線照射装置では、従来のワブラ走査電源の異常監視と、粒子ビームモニタによる異常監視機能に加えて、簡単なシステム構成で、走査パターンの異常検出を実現できるため、粒子線照射装置の更なる信頼性向上が得られる効果がある。
 また、本発明によれば、コリメータ6の異常を検出できる効果もある。また、上記ではコリメータ6は4枚のコリメータリーフ61から構成される場合を例にして説明したが、これに限ることがなく、図9に示すような、多数のコリメータリーフ62を用いて開口部65を形成する多葉コリメータの場合でも、本発明の効果を奏するのは言うまでもない。
 なお、図1において、即放射線検出器11はコリメータ6の上流側に配置する場合を示したが、コリメータ6の下流側に即放射線検出器11を配置しても、効果は同じである。即放射線検出器11を患者の背後、治療台より下流に配置した場合、コリメータ中で起きる原子核反応による即γ線または即中性子線をより効率よく検出できる効果がある。
 また、上記説明では、粒子ビームの走査パターンが鋸波のパターンの場合を例に説明したが、これに限ることなく、走査パターンは特許文献1または非特許文献1に記載の螺旋状走査パターンの場合でも、同じ効果が得られる。
 また、上記説明では、粒子ビームブラッグピークを、リッジフィルタを用いて患部の深さ方向の幅まで拡大させる場合を例に説明したが、患部を深さ方向に沿って複数の層状領域に分割して、粒子ビームのエネルギーを層ごとに変えて照射する積層原体照射のように、幅の狭い拡大ブラッグピークを用いて照射を行う治療装置の場合でも、本発明の効果は同じである。
 また、上記説明では、粒子ビームがシンクロトン加速器から得られた場合を例にしたが、サイクロトロン加速器を用いた粒子線照射装置の場合でも、効果は同じである。
 なお、上記説明では、即放射線検出器11は即放射線信号を検出する検出器として説明したが、即放射線検出器11は、粒子ビームが、真鍮、鉄などで構成されるコリメータ6に衝突して発生した即信号(Prompt Signal)の内、ガンマー線または中性子信号を含む即信号の全部またはその一部を検出する検出器により構成しても、上記で説明した効果は基本的に同じである。重要なのは、コリメータと衝突してすぐに発生する信号を検出して、その検出信号時間パターンを計算などで求めた比較用信号時間パターンと比較することである。なぜなら、このような即信号の時間パターンはコリメータ6の開口形状及びそのビーム照射方向に対する回転角度位置、と粒子ビーム4、5の走査軌道、粒子ビーム1の強度の時間情報によって決まるからである。
 また、コリメータ6に特別な材料を塗布または添加して、粒子ビーム5が衝突した際に、信号が発生しやすくなるようにして、それらの信号を検出するようにしても、本発明の効果が得られる。例えば、信号が音波信号でも、可視光信号でも、非可視光信号でも、2次電子信号であってもよいのである。本発明では、これら、γ線、中性子線などの放射線、2次電子、音波、光など、粒子ビーム5がコリメータ(粒子ビーム遮蔽体)6に衝突して発生する信号を即信号と定義する。即放射線検出器11を、それら目的とする即信号を検出する即信号検出器11とすれば、上記説明の効果が同様に得られる。
 また、本発明では、コリメータが多葉コリメータの場合、患者ごとにその開口形状が異なる多葉コリメータの形状をベースに即信号の比較用時間パターンを作成するため、照射中の螺旋ワブラシステムの動作の監視に加え、照射中に多葉コリメータの形状が変化した場合も検出できる。
 また、本発明では、コリメータから発した即γ線信号など、粒子ビームがコリメータに当たって直ちに発生する即信号の時間パターンを監視するので、粒子ビームがコリメータに当たるタイミングとほぼ同時に即信号を検出できる。このため、時間遅れの心配がなく、精度よく粒子ビームの当たるタイミングを検出できる。
 また、本発明は粒子ビームが当たってコリメータから飛び出すγ線や光などの即信号を検出して、粒子ビームの当たるタイミングを検出するので、粒子線治療で使う数ナノアンペア(nA= 1.0E-9A)のビーム電流の場合でも、例えばコリメータ本体を絶縁して浮かすなどの特別な改造を必要とせず、精度よく粒子ビームのコリメータに当たるタイミングを検出できる。このことは、粒子線照射装置に用いるコリメータの複雑化を避ける効果がある。つまり、照射ノズルに設置した多葉コリメータなどのコリメータは従来のままでも、本発明の効果を発揮できる。また、即信号を即γ線などの即放射線とした場合、例えば治療台を挟んで、あるいは照射ノズルの反対側、といったコリメータから離れた位置に即放射線検出器11を設けても、コリメータから発生する即放射線信号を検出することが可能である。
実施の形態2.
 図10は、本発明の実施の形態2による粒子線照射装置の概略構成を示すブロック図である。図10において、図1と同じ符号は図1と同じまたは相当する部分を示す。本実施の形態2は、本発明を、回転ガントリー機構を備えた粒子線照射装置に適用した実施の形態である。図10に示す粒子線照射装置は、回転ガントリーの回転トルクを軽減するためのカウンタウエイト31、治療台32、治療室床33、回転ガントリー回転軸34、および回転ガントリーを構成するように粒子ビームを輸送する回転ガントリー電磁石群35を備えている。
 この実施の形態2では、即放射線検出器11をカウンタウエイト31と共に回転するフレームに設置した。それ以外は、実施の形態1と同じである。したがって、本実施の形態2の基本動作は実施の形態1と同じである。本実施の形態2では、即放射線検出器11を回転ガントリーのカウンタウエイト31と共に回転するフレームに設置したため、回転ガントリーの回転角度によらず、常にコリメータ6から発生した即放射線信号(γ線、中性子線など)の前方集中成分を捕えることが可能である。そのため、回転ガントリーのどの照射角度においても、信号ノイズ比のよい即放射線信号を検出することが可能である。
実施の形態3.
 図11は、本発明の実施の形態3による粒子線照射装置の概略構成を示すブロック図である。図11において図1と同一の符号は同一または相当する部分を示す。本実施の形態3では、即放射線検出器11にて検出した即放射線信号を、所定閾値Thと比較する回路である比較器14を通して、即放射線信号を高さが一定の信号に変換する、すなわち即放射線信号を2値化する。図12(A)に示すパターンは、図3に示した、即放射線検出器11で測定された即放射線信号そのものである。この即放射線信号に対して、図12(A)のThで示すレベル以上の信号が測定された場合に出力を出す処理を行う。例えば、比較器14として一般的な比較器(コンパレータ)の入力に、図12(A)の信号を入力し、比較器14の比較レベルとしてThに相当するレベルを設定すれば、比較器の出力として図12(B)のような2値化された出力が得られる。閾値Th以下のレベルの検出即放射線信号の即放射線は、コリメータ6で発生した以外の即放射線、例えば照射対象物である患部で発生した即放射線であるため、そのような信号レベルの即放射線を検出対象から除く処理を行うことができる。
 本実施の形態3によれば、コリメータ6に粒子ビームが当たっているかどうかは処理された即放射線信号の有無で判断できるため、一層検出信号時間パターンを把握しやすく、比較用信号時間パターンと比較しやすくなる。よって、照射中に照射システムの動作をより容易に監視できる効果が得られる。
 実施の形態4.
 図13は本発明の実施の形態4による粒子線照射装置の概略構成を示すブロック図である。図13において、図11と同一符号は同一または相当する部分を示す。図13において、15は表示装置であり、例えば、検出信号時間パターンと比較用信号時間パターンとを表示装置15に表示する。図14は、表示装置15に表示される画面のイメージである。本実施の形態4では、照射中に測定した検出信号時間パターンを、治療室や、操作室などに設けた表示装置15に表示することによって、照射中において、粒子線照射装置の動作の様子を直感的に監視できる。尚、照射に用いたコリメータ形状、回転角度位置、粒子ビームの走査パターン、粒子ビーム電流時間情報などに基づいて計算して得られる比較用信号時間パターンを、検出信号時間パターンと共に表示装置15に表示することによって、照射中に、より容易に粒子線照射システムの動作を監視することが可能である。図14では、上段に検出信号時間パターンを、下段に比較用信号時間パターンを表示する場合の例を示したが、これに限るものではなく、両者を重ね合わせて表示する、または、その差(違い)を表示するようにしてもよい。
 実施の形態5.
 図15は、本発明の実施の形態5による粒子線照射装置の要部を示すイメージ図である。図15は実施の形態1における図2に相当する位置での粒子ビームの軌道などを示す図である。粒子線照射装置では、横方向の照射野形成を、粒子ビームを走査する走査電磁石のみで行う、ステップスキャン照射方法など、コリメータを用いずに粒子ビーム自体で横方向の照射野形成を行う照射方法がある。この場合、コリメータがないため、粒子ビームが当たって即信号を発生するものがないため、実施の形態1~4のような即信号を得ることができない。そこで、本実施の形態5における粒子線照射装置では、コリメータを用いない構成において、照射野形成に影響しない程度に粒子ビームの極一部を遮蔽して即信号を発生する、粒子ビーム遮蔽体を、走査電磁石の下流に少なくとも一つ設置する。すなわち、図15に示すように、粒子ビーム遮蔽体63を、走査された粒子ビーム軌道44によって形成される走査領域66の境界で、例えば図15において粒子ビーム51で示すように、粒子ビームの一部のみ当たる位置に設置する。走査パターンと、走査開始時間などのタイミング情報から、どの時刻に、粒子ビーム遮蔽体63にビームが当たるかが事前に予測し計算できる。予測した、粒子ビーム遮蔽体63で発生される即γ線などの即信号を比較用信号時間パターンとして、信号比較装置12に格納する。この比較用信号時間パターンを照射中に即信号検出器11で検出した検出信号時間パターンと比較し、照射システムの健全性をクロースチェックできる。
 以上のように、本発明は、ワブラシステムに限らず、予め決められた走査パターンによって粒子ビームを走査する粒子線照射装置全般に適用できる。
 1:粒子ビーム            2:ワブラ電磁石
 4:走査された粒子ビーム
 5:コリメータに遮蔽された粒子ビーム
 6:コリメータ(粒子ビーム遮蔽体)
11:即放射線検出器(即信号検出器)
12:信号比較装置           14:比較器
15:表示装置             21:X方向走査電磁石
22:Y方向走査電磁石
41:粒子ビームのコリメータ6の面における軌道パターン
61、62:コリメータリーフ      63:粒子ビーム遮蔽体
65:コリメータの開口部

Claims (8)

  1.  入射される粒子ビームを走査して標的に上記粒子ビームを照射する粒子線照射装置において、
    走査された粒子ビームの一部を遮蔽する粒子ビーム遮蔽体と、この粒子ビーム遮蔽体に上記走査された粒子ビームが当たった時に発生する即信号を検出する即信号検出器と、予め決められた走査パターンによって発生する上記即信号の発生パターンを予測して求めて比較用信号時間パターンとして格納する信号比較装置とを備え、
    この信号比較装置は、上記予め決められた走査パターンに従って上記粒子ビームを走査して上記標的に上記粒子ビームを照射した時に上記即信号検出器で検出された信号の時間パターンである検出信号時間パターンと、上記格納された比較用信号時間パターンとを比較して、上記粒子ビームの走査または上記粒子ビーム遮蔽体の異常を検出することを特徴とする粒子線照射装置。
  2.  上記粒子ビーム遮蔽体が、上記標的に上記粒子ビームの横方向照射野を形成するためのコリメータであることを特徴とする請求項1に記載の粒子線照射装置。
  3.  上記粒子ビームを走査して、当該粒子ビーム自体で上記標的に横方向の照射野を形成する粒子線照射装置であって、上記粒子ビームの走査領域の境界の少なくとも1か所に上記粒子ビーム遮蔽体を設置したことを特徴とする請求項1に記載の粒子線照射装置。
  4.  上記即信号は、上記粒子ビーム遮蔽体が発生する即放射線信号であることを特徴とする請求項1乃至3のいずれか1項に記載の粒子線照射装置。
  5.  上記即信号検出器を上記粒子ビーム遮蔽体よりも、上記粒子ビームの下流側に設置したことを特徴とする請求項4に記載の粒子線照射装置。
  6.  カウンタウエイトを有する回転ガントリー機構を備え、上記即信号検出器を上記カウンタウエイトと一体的に移動するように設置したことを特徴とする請求項5に記載の粒子線照射装置。
  7.  上記検出信号時間パターンと上記比較用信号時間パターンとの両方、あるいは上記検出信号時間パターンと上記比較用信号時間パターンの差、のいずれかを表示する表示装置を備えたことを特徴とする請求項1に記載の粒子線照射装置。
  8.  請求項1乃至7のいずれか1項に記載の粒子線照射装置を備えたことを特徴とする粒子線治療装置。
PCT/JP2011/064271 2010-07-15 2011-06-22 粒子線照射装置およびこれを備えた粒子線治療装置 WO2012008274A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800236127A CN102905761B (zh) 2010-07-15 2011-06-22 粒子射线照射装置及具备该装置的粒子射线治疗装置
JP2012524507A JP5095037B2 (ja) 2010-07-15 2011-06-22 粒子線照射装置およびこれを備えた粒子線治療装置
US13/696,736 US8586948B2 (en) 2010-07-15 2011-06-22 Particle beam irradiation apparatus and particle beam therapy system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-160538 2010-07-15
JP2010160538 2010-07-15

Publications (1)

Publication Number Publication Date
WO2012008274A1 true WO2012008274A1 (ja) 2012-01-19

Family

ID=45469284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064271 WO2012008274A1 (ja) 2010-07-15 2011-06-22 粒子線照射装置およびこれを備えた粒子線治療装置

Country Status (4)

Country Link
US (1) US8586948B2 (ja)
JP (1) JP5095037B2 (ja)
CN (1) CN102905761B (ja)
WO (1) WO2012008274A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223259A (ja) * 2011-04-18 2012-11-15 Hitachi Ltd 粒子線治療計画装置および粒子線治療装置
JP2018536522A (ja) * 2015-11-10 2018-12-13 メビオン・メディカル・システムズ・インコーポレーテッド 適応開口
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917322B2 (ja) * 2012-07-12 2016-05-11 住友重機械工業株式会社 荷電粒子線照射装置
EP3014629B1 (en) * 2013-07-05 2018-03-28 University of Iowa Research Foundation System for dynamically-trimmed spot scanning for ion therapy
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) * 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
JP6243293B2 (ja) * 2014-05-20 2017-12-06 住友重機械工業株式会社 中性子捕捉療法装置及び核変換装置
CN106552321A (zh) * 2015-09-28 2017-04-05 南京中硼联康医疗科技有限公司 用于中子捕获治疗***的辐射线检测***及辐射线检测方法
JP6659171B2 (ja) * 2015-11-11 2020-03-04 三菱電機株式会社 粒子線照射装置
CN105251138B (zh) * 2015-11-13 2018-03-13 上海艾普强粒子设备有限公司 一种粒子照射装置以及包括该装置的粒子治疗***
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
CN110650777B (zh) * 2017-05-16 2021-07-20 住友重机械工业株式会社 中子捕捉疗法***
JP6940676B2 (ja) 2017-06-30 2021-09-29 メビオン・メディカル・システムズ・インコーポレーテッド リニアモーターを使用して制御される構成可能コリメータ
US11506801B2 (en) 2018-10-10 2022-11-22 Ebamed Sa Prompt gamma monitor for hadron therapy
JP7356370B2 (ja) * 2020-02-14 2023-10-04 株式会社日立製作所 ビーム監視システム、粒子線治療システム、およびビーム監視方法
JP6830290B1 (ja) * 2020-09-03 2021-02-17 株式会社ビードットメディカル 荷電粒子ビーム照射装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244401A (ja) * 1998-02-26 1999-09-14 Hitachi Medical Corp 放射線治療装置
JP2007319439A (ja) * 2006-06-01 2007-12-13 Mitsubishi Heavy Ind Ltd 放射線治療装置制御装置および放射線照射方法
JP2009148494A (ja) * 2007-12-21 2009-07-09 Toshiba Corp 放射線治療用線量分布測定装置及び放射線治療用線量分布測定プログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033697A (ja) 1996-07-24 1998-02-10 Hitachi Ltd 荷電粒子線照射装置及び治療装置
JPH11244410A (ja) * 1998-03-05 1999-09-14 Nohmi Bosai Ltd 給油所の消火システム
JP4322419B2 (ja) 2000-12-26 2009-09-02 株式会社東芝 3次元粒子線照射装置とその作動方法
JP2003117010A (ja) * 2001-08-09 2003-04-22 Mitsubishi Electric Corp 放射線治療装置、並びにプログラム及び該プログラムを記録したコンピュータ読み取り可能な記録媒体
ATE384552T1 (de) * 2001-08-24 2008-02-15 Mitsubishi Heavy Ind Ltd Radiotherapie-gerät
JP2003310590A (ja) 2002-04-23 2003-11-05 Mitsubishi Electric Corp 線量分布測定装置
WO2006082651A1 (ja) * 2005-02-04 2006-08-10 Mitsubishi Denki Kabushiki Kaisha 粒子線照射方法およびそれに使用される粒子線照射装置
JP4158931B2 (ja) 2005-04-13 2008-10-01 三菱電機株式会社 粒子線治療装置
US8107589B2 (en) 2007-12-21 2012-01-31 Kabushiki Kaisha Toshiba Radiotherapeutic system and radiotherapeutic dose distribution measuring method
JP2009261634A (ja) 2008-04-25 2009-11-12 Hitachi Ltd 荷電粒子ビーム照射システム
WO2010073318A1 (ja) 2008-12-24 2010-07-01 三菱電機株式会社 粒子線治療装置
US8658991B2 (en) 2009-06-03 2014-02-25 Mitsubishi Electric Corporation Particle beam irradiation apparatus utilized in medical field

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244401A (ja) * 1998-02-26 1999-09-14 Hitachi Medical Corp 放射線治療装置
JP2007319439A (ja) * 2006-06-01 2007-12-13 Mitsubishi Heavy Ind Ltd 放射線治療装置制御装置および放射線照射方法
JP2009148494A (ja) * 2007-12-21 2009-07-09 Toshiba Corp 放射線治療用線量分布測定装置及び放射線治療用線量分布測定プログラム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223259A (ja) * 2011-04-18 2012-11-15 Hitachi Ltd 粒子線治療計画装置および粒子線治療装置
JP2018536522A (ja) * 2015-11-10 2018-12-13 メビオン・メディカル・システムズ・インコーポレーテッド 適応開口
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US11213697B2 (en) 2015-11-10 2022-01-04 Mevion Medical Systems, Inc. Adaptive aperture
US20220118284A1 (en) * 2015-11-10 2022-04-21 Mevion Medical Systems, Inc. Adaptive aperture
JP7091247B2 (ja) 2015-11-10 2022-06-27 メビオン・メディカル・システムズ・インコーポレーテッド 適応開口
JP2022118114A (ja) * 2015-11-10 2022-08-12 メビオン・メディカル・システムズ・インコーポレーテッド 適応開口
US11786754B2 (en) 2015-11-10 2023-10-17 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning

Also Published As

Publication number Publication date
JPWO2012008274A1 (ja) 2013-09-09
US8586948B2 (en) 2013-11-19
CN102905761B (zh) 2013-12-18
JP5095037B2 (ja) 2012-12-12
US20130053617A1 (en) 2013-02-28
CN102905761A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5095037B2 (ja) 粒子線照射装置およびこれを備えた粒子線治療装置
JP6565113B2 (ja) 中性子捕捉療法装置
JP5996470B2 (ja) 中性子捕捉療法装置
JP6578282B2 (ja) 放射線治療に関する放射線装置の粒子放射の飛程制御のための方法及び装置
EP2313156B1 (en) Device and method for particle therapy verification
JP5643807B2 (ja) 検出器デバイス、放射線デバイス、及び物体内への粒子線の貫通深さを判定する方法
EP2654895B1 (en) Monitoring of a therapeutic x-ray beam using an active pixel sensor detector
JP6052933B2 (ja) 中性子線検出装置及び中性子捕捉療法装置
EP2977083A1 (en) An apparatus for particle therapy verification
JP6829837B2 (ja) 中性子捕捉療法システム及び中性子捕捉療法用ガンマ線検出器
JP6699004B2 (ja) 中性子捕捉療法システム及び中性子捕捉療法システムの制御方法
JP6742259B2 (ja) 中性子線検出システム、及び中性子線検出システムの設定方法
US8471228B2 (en) Fast scanning of a target region
JP2017080161A (ja) 中性子捕捉療法システム
JP2007319439A (ja) 放射線治療装置制御装置および放射線照射方法
JP5906179B2 (ja) 線量分布測定装置
JP2010012056A (ja) 荷電粒子ビーム照射システム
JP7021989B2 (ja) 中性子捕捉療法システム、及び中性子線検出装置
JP7084758B2 (ja) 中性子線検出装置、及び中性子線検出装置の異常検知方法
JP2021043081A (ja) ガンマ線測定器、粒子線照射システム、及び測定方法
JP7480004B2 (ja) 核物質測定システム及び核物質の測定方法
Martins et al. Prompt Gamma Detection for Proton Range Verification
JP2022189530A (ja) 粒子線到達位置モニタ、粒子線治療システムおよび粒子線到達位置モニタ方法
Goitein Proton Therapy in Water
Wilson 10. PROTON THERAPY IN WATER

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023612.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524507

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13696736

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806605

Country of ref document: EP

Kind code of ref document: A1