WO2012004895A1 - バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法 - Google Patents

バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法 Download PDF

Info

Publication number
WO2012004895A1
WO2012004895A1 PCT/JP2010/061725 JP2010061725W WO2012004895A1 WO 2012004895 A1 WO2012004895 A1 WO 2012004895A1 JP 2010061725 W JP2010061725 W JP 2010061725W WO 2012004895 A1 WO2012004895 A1 WO 2012004895A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
water
tank
solids
processing system
Prior art date
Application number
PCT/JP2010/061725
Other languages
English (en)
French (fr)
Inventor
英夫 鈴木
吉雄 黒見
芳貴 木村
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2010/061725 priority Critical patent/WO2012004895A1/ja
Priority to US13/203,929 priority patent/US9850511B2/en
Priority to BRPI1009205-6A priority patent/BRPI1009205B1/pt
Priority to JP2010547767A priority patent/JP4764527B1/ja
Priority to CA2750753A priority patent/CA2750753C/en
Publication of WO2012004895A1 publication Critical patent/WO2012004895A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/04Phase separators; Separation of non fermentable material; Fractionation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/09Means for pre-treatment of biological substances by enzymatic treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/04Pretreatment of the finely-divided materials before digesting with acid reacting compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a biomass processing system capable of efficiently decomposing a biomass raw material, a method for producing a sugar solution using the biomass raw material, and a method for producing alcohol.
  • Patent Document 1 and Patent Document 2 Conventionally, after saccharification treatment of biomass such as wood with dilute sulfuric acid and concentrated sulfuric acid, solid-liquid separation, neutralization of the liquid phase, and production technology such as ethanol used as a raw material for ethanol fermentation have been put into practical use ( Patent Document 1 and Patent Document 2). Moreover, chemical industrial raw material production (for example, lactic acid fermentation etc.) is also considered using sugar as a starting material.
  • the biomass refers to the accumulation of organisms incorporated into the material circulation system of the earth biosphere or organic substances derived from the organisms (see JIS K 3600 1258).
  • sugarcane, corn, etc. which are currently used as alcohol raw materials, are originally provided for food.
  • it is effective food products to make these edible resources long-term and stable for industrial use. From the viewpoint of life cycle, it is not preferable.
  • Cellulose resources vary from 38 to 50% for cellulose, 23 to 32% for hemicellulose components, and 15 to 22% for lignin components that do not become fermentation raw materials.
  • the raw materials are assumed to be fixed, and there is no disclosure of production system technology considering the versatility of raw materials.
  • Patent Documents 1 to 3 a phenomenon occurs in which the side reaction product causes enzyme saccharification inhibition and the saccharide yield decreases. Therefore, the enzyme saccharification inhibitor is removed and enzyme saccharification mainly by cellulose is performed.
  • the proposal of the hydrothermal decomposition apparatus which improves property was made first (patent documents 4 and 5).
  • JP-T 9-507386 Japanese National Patent Publication No. 11-506934 JP 2005-168335 A JP 2009-183805 A JP 2009-183154 A
  • the internal temperature is in a high temperature state of 180 to 240 ° C., and further 0.1 to 0.4 MPa with respect to the saturated steam of water at each temperature. Since a high pressure is applied, there is a problem that, after the reaction, when the biomass solids are extracted as they are from the pressurized state to the normal pressure state, for example, nitrogen, which is a pressurized gas, flows out.
  • the hydrothermal decomposition product extracted from the gas-liquid interface between the pressurized hot water and the pressurized gas in the hydrothermal decomposition apparatus is in a high temperature / high pressure state, so the reaction proceeds and is accompanied by the biomass solids.
  • excessive decomposition occurs in a high temperature range (180 to 240 ° C.) of the hot water-solubilized hemicellulose or hot water-insoluble cellulose after being solubilized in hot water.
  • the same phenomenon occurs not only in hydrothermal decomposition treatment, but also in alkali treatment decomposition and acid treatment decomposition in which an alkali / acid is added and the decomposition treatment is performed in a high temperature / high pressure state.
  • the present invention can prevent the outflow of pressurized gas when extracting biomass solids after decomposing the biomass raw material in a high temperature and high pressure state, and can also prevent cellulose and hemicellulose in the biomass raw material.
  • the present invention provides a biomass processing system, a method for producing a sugar liquid using a biomass raw material, and a method for producing an alcohol, by which the excessive decomposition of the biomass is suppressed and a valuable material is efficiently obtained.
  • a first invention of the present invention for solving the above-mentioned problems is that a biomass raw material having cellulose, hemicellulose and lignin is decomposed under a high temperature and high pressure condition in a treatment tank having a gas-liquid interface, so that the lignin component and hemicellulose are decomposed.
  • a biomass processing unit that removes components, a biomass solid content extraction unit that extracts biomass solid content processed by the biomass processing unit, and a biomass solid content extraction unit that communicate with the biomass solid content extraction unit and inject water into the interior
  • a biomass processing system comprising: a slurrying tank for slurrying the extracted biomass solids.
  • the biomass treatment section is any one of a hydrothermal decomposition treatment section, an alkali decomposition treatment section, and an acid decomposition treatment section. is there.
  • a third invention is the biomass according to the first or second invention, comprising a first solid-liquid separation device that is provided on the downstream side of the slurrying tank and removes water from the slurry-like biomass solids. In the processing system.
  • the fourth invention is the biomass processing system according to the third invention, further comprising a first return line for returning the water separated from the first solid-liquid separator to the slurrying tank.
  • 5th invention has a biological treatment tank which carries out the biological treatment of the water isolate
  • a sixth aspect of the invention is the biomass according to any one of the third to fifth aspects, further comprising a first saccharification tank that saccharifies the biomass solids separated by the first solid-liquid separation device. In the processing system.
  • an enzyme liquefaction tank for adding an enzyme to the biomass solids separated by the first solid-liquid separation device to liquefy the enzyme, and the enzyme in the first saccharification tank It exists in the processing system of biomass characterized by saccharifying a liquefied material with an enzyme.
  • the eighth invention is the biomass processing system according to the first or second invention, further comprising a second saccharification tank that saccharifies the slurry-like biomass solids slurried in the slurrying tank.
  • a ninth invention comprises, in the eighth invention, a solid-liquid separation device that separates a solid component from a sugar solution after saccharification, and a water separation device that removes water from the sugar solution after solid separation. It is in the characteristic biomass processing system.
  • the tenth aspect of the invention is the biomass processing system according to the ninth aspect of the invention, further comprising a second return line for returning the water separated from the moisture separator to the slurrying tank.
  • the eleventh invention is the biomass processing system according to the tenth invention, wherein the second return line has a biological treatment device.
  • a biomass material having cellulose, hemicellulose, and lignin is supplied under normal pressure to increased pressure, the biomass material is decomposed under high temperature and high pressure conditions by a biomass processing unit, and then from the biomass processing unit.
  • the extracted biomass solids are poured into a slurrying tank in which water is injected and communicated with the biomass processing unit to obtain slurry biomass solids, and then water is removed from the slurry biomass solids,
  • a sugar liquid production method using a biomass raw material is characterized in that biomass solids from which water has been removed are enzymatically saccharified to produce a sugar liquid.
  • the sugar liquid production using the biomass raw material according to the twelfth aspect, wherein the biomass solid content is enzymatically liquefied on the upstream side of enzymatic saccharification of the biomass solid content from which water has been removed. Is in the way.
  • the 14th invention supplies the biomass raw material which has a cellulose, hemicellulose, and a lignin from under normal pressure to pressurization, the said biomass raw material is decomposed
  • a fifteenth aspect of the invention is an alcohol production method characterized in that alcohol fermentation is carried out using a sugar solution obtained by a sugar solution production method using any one of the twelfth to fourteenth biomass raw materials to produce an alcohol. It is in.
  • the processed biomass solid content is introduced into the liquid of the slurrying tank into which water has been injected, so that a liquid seal is made while being in a slurry state, and the outflow of pressurized gas is prevented. be able to. This prevents the pressurization gas (for example, pressurization nitrogen) from flowing out and can reduce the running cost.
  • pressurization gas for example, pressurization nitrogen
  • the reaction can be efficiently stopped by cooling the biomass solids by direct heat exchange with the liquid, and the acid and alkali are diluted.
  • the excessive decomposition of residual hemicellulose, residual lignin and main component cellulose accompanying the minute is suppressed. As a result, it is possible to suppress the generation of reaction-inhibiting components and improve the recovery rate of cellulose.
  • FIG. 1 is a schematic diagram of a biomass processing system according to the first embodiment.
  • FIG. 2 is a schematic diagram of a biomass processing system according to the second embodiment.
  • FIG. 3 is a schematic diagram of a biomass processing system according to the third embodiment.
  • FIG. 4 is a schematic diagram of a biomass processing system according to the fourth embodiment.
  • FIG. 5 is a schematic diagram of a biomass processing system according to the fifth embodiment.
  • FIG. 6 is a schematic diagram of a biomass processing system according to the sixth embodiment.
  • FIG. 7 is a schematic diagram of a biomass processing system according to the seventh embodiment.
  • FIG. 8 is a schematic diagram of a biomass processing system according to an eighth embodiment.
  • FIG. 9 is a schematic diagram of a biomass processing system according to the ninth embodiment.
  • FIG. 10 is a diagram showing a state of decomposition of biomass by hot water.
  • FIG. 1 is a schematic diagram of a biomass processing system according to the first embodiment.
  • the biomass processing system 10A according to the present embodiment is configured to remove cellulose, hemicellulose, and lignin from a biomass raw material 11 under high temperature and high pressure conditions in an apparatus body 13 that is a processing tank having a gas-liquid interface 13a.
  • a hydrothermal decomposition processing unit 17 that is a biomass processing unit that decomposes and removes the lignin component and the hemicellulose component, and a biomass solid content (hot water insoluble content) 20 processed by the hydrothermal decomposition processing unit 17 are extracted.
  • the biomass solid content extraction unit 18 to be communicated with the biomass solid content extraction unit 18, the water 19 is injected therein, the extracted biomass solid content 20 is charged, and the slurry biomass solid content 24 is obtained. It has a gasification tank 21 and a discharge part 23 for discharging the slurry-like biomass solids 24 from under pressure to normal pressure. That.
  • the hydrothermal decomposition treatment unit 17 includes a biomass supply unit 12 that supplies a biomass raw material 11 having cellulose, hemicellulose, and lignin from normal pressure to pressure. And in the hydrothermal decomposition process part 17, while the supplied biomass raw material 11 is conveyed upward by the 1st screw means 14 which is a conveyance means from the inside inside the apparatus main body 13, while the said biomass raw material 11 Pressurized hot water (hereinafter also referred to as “hot water”) 15 is supplied to the inside of the apparatus main body 13 from an upper side different from the supply location, and the biomass raw material 11 and the pressurized hot water 15 are brought into contact with each other while facing the water.
  • hot water Pressurized hot water
  • the hot water-dissolved components (lignin component and hemicellulose component) are transferred into the hot water discharge liquid 16 that is the pressurized hot water that is thermally decomposed and discharged, and the lignin component and hemicellulose component are separated from the biomass raw material 11. .
  • the screw means is illustrated in a present Example, if a biomass solid content can be conveyed upwards from the downward direction, it will not be limited to a screw means.
  • the water 19 introduced into the slurry tank 21 may be liquid under pressure in the system in order to form a liquid seal for the purpose of preventing leakage of pressurized nitrogen 25 for pressurization.
  • the biomass solids 20 What is necessary is just to set suitably the temperature of the water 19 inject
  • FIG. As the water 19, for example, water usually used in the range of 0 ° C. to 60 ° C. (for example, cooling tower water or chiller water) can be used, and the water in the system can be circulated and reused as described later.
  • reference numeral 18 a is a passage that connects the biomass solids extraction unit 18 and the slurrying tank 21, 22 is a stirring means that stirs the inside of the slurrying tank 21, and 13 a is a gas in the hydrothermal decomposition apparatus 13.
  • liquid interface, 21a is gas-liquid interface, L 1 of the slurry Kaso 21 withdrawal line, M 1 is a motor for driving the first screw means 14, M 2 is respectively illustrated a motor for driving the stirring means 22.
  • the biomass (cellulosic material) raw material 10 contains hemicellulose and lignin in addition to cellulose.
  • cellulose has a structure in which hemicellulose is bundled and lignin is adhered.
  • Biomass is divided into a hot water insoluble part (solid part) and a hot water soluble part after hydrothermal decomposition.
  • the hot water-insoluble component is mainly cellulose (a raw material for C6 sugar), and the hot water-soluble component is mainly a hemicellulose (a raw material for C5 sugar), and sugars can be obtained by saccharification with enzymes.
  • the biomass raw material 11 is hydrothermally decomposed at a high temperature (180 to 240 ° C.) by the pressurized hot water 15 to dissolve the hemicellulose on the hot water side, and to decompose and dissolve the lignin. Hemicellulose and the like are dissolved on the water side. In the state of hot water-solubilized hemicellulose after being solubilized in hot water, excessive decomposition occurs at a high temperature (180 to 240 ° C.).
  • the biomass solid content extraction unit 18 is provided with second screw means (not shown), and the biomass solid content 20, which is hot water insoluble content conveyed from below to above by the first screw means 14, is obtained.
  • the slurry is extracted to the slurry tank 21 side.
  • the extracted biomass solids 20 are sequentially dropped from the passage 18a into the liquid 21b, and are slurried by stirring by the stirring means 22 provided in the slurrying tank 21.
  • the biomass solid content 20 dropped into the liquid 21b in the slurrying tank 21 is cooled by direct heat exchange with the liquid 21b.
  • residual hemicellulose, residual lignin and The excessive decomposition of the main component cellulose is suppressed.
  • reaction stop the excessive decomposition of residual hemicellulose, residual lignin and main component cellulose is suppressed, the excessive decomposition of cellulose is suppressed and the recovery rate is improved, and the reaction inhibiting component on the downstream side is reduced. Generation is suppressed.
  • the slurrying tank 21 is formed with a safety valve (not shown) and an inflow passage for pressurized nitrogen 25.
  • the discharge unit 23 provided on the discharge side An inexpensive material such as stainless steel or resin can be used.
  • a rotary feeder, a flow regulating valve, etc. can be used, for example.
  • the biomass solid content 20 has a large porosity and a small bulk density, the handleability as a solid is complicated, but the volume can be reduced by slurrying, and the handleability is also easy.
  • the biomass solids 20 was so-called cake-like, the ratio of pressurizing gas was large, the porosity was large, and the bulk density was as small as 0.5 g / cc or less. . When this is made into a slurry, air gaps are reduced, and the volume is reduced.
  • the biomass solid content 20 into a slurry, fluidization becomes possible, and handling in subsequent steps becomes easy.
  • saccharification treatment is an enzyme reaction
  • it is necessary to cool to a predetermined temperature or lower for example, 60 ° C. or lower.
  • a predetermined temperature or lower for example, 60 ° C. or lower.
  • the cooling in the state of the biomass solids 20 is not good in heat exchange efficiency, so a large heat exchange means is required.
  • the cooling efficiency becomes good and the large heat exchange means. Is no longer necessary.
  • An indirect cooling means for cooling the inside of the slurrying tank 21 can also be provided.
  • the slurrying tank 21 is provided with the stirring means 22, this invention is not limited to this, For example, you may make it stir with the circulation means etc. by a pump.
  • the biomass supplied to the hydrothermal decomposition treatment unit 17 is not particularly limited, and refers to the accumulation of organisms incorporated in the material circulation system of the earth biosphere or organic matter derived from organisms ( JIS K 3600 1258), however, in the present invention, it is particularly preferable to use woody resources such as hardwood, herbaceous cellulosic resources, agricultural waste, food waste, and the like.
  • the biomass raw material 11 is not particularly limited in particle size, but is preferably pulverized to 5 mm or less.
  • the pretreatment device may be pretreated using, for example, a pulverizer. Moreover, you may make it wash
  • rice husk or the like as the biomass raw material 11 it can be supplied to the biomass supply unit 12 as it is without being pulverized.
  • the reaction temperature in the hydrothermal decomposition treatment unit 17 is preferably in the range of 180 to 240 ° C. More preferably, the temperature is 200 to 230 ° C. This is because at a low temperature of less than 180 ° C., the hydrothermal decomposition rate is low, a long decomposition time is required, leading to an increase in the size of the apparatus, which is not preferable. On the other hand, when the temperature exceeds 240 ° C., the decomposition rate becomes excessive, the cellulose component increases the transition from the solid to the liquid side, and the excessive decomposition of the hemicellulose saccharide is promoted, which is not preferable.
  • the hemicellulose component dissolves from about 140 ° C., the cellulose from about 230 ° C., and the lignin component from about 140 ° C., but the cellulose remains on the solid side, and the hemicellulose component and the lignin component have a sufficient decomposition rate. It should be in the range of 180 ° C to 240 ° C.
  • the reaction pressure is preferably a pressure higher by 0.1 to 0.5 MPa than the saturated vapor pressure of water at each temperature of the reaction temperature (180 to 240 ° C.) of the apparatus body 13.
  • the reaction time is preferably 20 minutes or less and 3 to 10 minutes. This is because if the reaction is carried out too long, the proportion of the overdecomposed product increases, which is not preferable.
  • Examples of the biomass supply unit 12 that supplies from the normal pressure to the pressure may include means such as a screw, a piston pump, or a slurry pump.
  • the hydrothermal decomposition apparatus is a vertical apparatus, but the present invention is not limited to this, and may be an inclined hydrothermal decomposition apparatus having a gas-liquid interface 13a.
  • the reason why the hydrothermal decomposition apparatus is of the inclined type or vertical type is that gas generated in the hydrothermal decomposition reaction, gas introduced into the raw material, and the like can be quickly released from above, which is preferable. Moreover, since the decomposition product is extracted with the pressurized hot water 15, the concentration of the extract increases from the top to the bottom in terms of extraction efficiency, which is preferable.
  • the cellulose-based component and the hemicellulose component were decomposed from the biomass raw material in a solid-liquid contact state, and then the biomass solid content as the decomposition product was injected into the slurrying tank. By putting it in the liquid, it is made into a slurry and a liquid seal is made, so that the flow of pressurized gas can be prevented. This prevents the pressurization gas (for example, pressurized nitrogen) from flowing out, and can greatly reduce the running cost.
  • pressurization gas for example, pressurized nitrogen
  • the hydrothermal decomposition apparatus has been described as the biomass processing section that performs the biomass decomposition process.
  • an alkali decomposition treatment biomass processing section for example, water Sodium oxide, decomposition using slaked lime and ammonia, etc.
  • acid decomposition treatment biomass treatment part decomposition with dilute sulfuric acid, etc.
  • the slurrying tank 21 is installed, and the processed biomass solids are slurried and can be applied to a system that discharges from under pressure to normal pressure via a discharge mechanism.
  • FIG. 2 is a schematic diagram illustrating a biomass processing system according to the second embodiment.
  • the biomass processing system 10 ⁇ / b> B includes a first extraction line L 1 for the slurry-like biomass solids 24 extracted from the slurrying tank 21 in the biomass processing system 10 ⁇ / b> A of the first embodiment.
  • the solid-liquid separation device 32 is provided.
  • the first solid-liquid separation device 32 removes the water 34 containing the reaction-inhibiting substance to obtain a biomass solid content 33. By removing the water 34 with the first solid-liquid separator 32, the solid content can be set to an arbitrary concentration. Thereby, the substrate concentration of the saccharification reaction on the downstream side can be adjusted.
  • the reaction inhibitory substance in the first solid-liquid separator 32, the reaction inhibitory substance can be efficiently removed by separating the water 34 containing the reaction inhibitory substance from the biomass solids 33, The reaction on the wake side becomes good.
  • FIG. 3 is a schematic diagram illustrating a biomass processing system according to the third embodiment.
  • the biomass processing system 10 ⁇ / b> C is a first return line for returning the water 34 separated by the first solid-liquid separator 32 to the slurrying tank 21 in the biomass processing system 10 ⁇ / b> B of the second embodiment.
  • L 2 is provided.
  • the first return line L 2 is provided with a cooler 35, cooled to a predetermined temperature, and then returned to the slurrying tank 21.
  • the separated water 34 can be reused, and the amount of water 19 separately supplied to the slurrying tank 21 can be reduced.
  • FIG. 4 is a schematic diagram illustrating a biomass processing system according to a fourth embodiment.
  • biomass processing system 10D includes, in the processing system 10C of the biomass of Example 3, further wherein the first return line L 2, the water 34 separated from the first solid-liquid separator 32 A biological treatment tank 36 for biological treatment is provided, and the biologically treated water 34 is cooled by a cooler 35 and then returned to the slurrying tank 21.
  • the separated water 34 contains an organic acid (for example, formic acid, acetic acid, citric acid, etc.) that is a reaction inhibitor on the downstream side
  • the water 34 is decomposed and removed in the biological treatment tank 36 to ensure the treatment.
  • the inhibitory substance is removed, so that the inhibitory substance does not increase when the reaction in the slurrying tank 21 is stopped.
  • methane fermentation biological treatment apparatus as the biological treatment apparatus 61, methane can be recovered and used for fuel or the like.
  • FIG. 5 is a schematic diagram illustrating a biomass processing system according to the fifth embodiment.
  • the biomass processing system 10 ⁇ / b> E is a first biomass saccharification of the biomass solids 33 separated by the first solid-liquid separation device 32 in the biomass processing system 10 ⁇ / b> C according to the third embodiment.
  • the saccharification tank 40 is provided to saccharify the biomass solids 33 to obtain a sugar solution (C6 sugar) 42.
  • reference numeral 40a is stirring section, M 3 illustrates a motor for driving the agitation means 40a.
  • unnecessary water 34 is removed by the first solid-liquid separation device 32, and the biomass solids 33 is concentrated to a desired concentration. Therefore, saccharification can be performed at a higher substrate concentration. The sugar concentration can be improved.
  • the moisture included in the solid content accompanying the hydrothermal decomposition treatment unit 17 includes substances that inhibit fermentation, but by removing the water 34 with the first solid-liquid separator 32, These can be removed to perform saccharification, resulting in improved sugar quality.
  • the substrate concentration can be adjusted to any desired concentration via the first solid-liquid separation device 32.
  • the first concentration as described above is used. It is only necessary to increase the water removal rate in the solid-liquid separation device 32 and perform saccharification at a higher substrate concentration.
  • saccharification or stirring / transfer after saccharification is performed with good operability, or saccharification speed is desired
  • saccharification may be carried out at a lower substrate concentration by reducing the water removal rate.
  • FIG. 6 is a schematic diagram illustrating a biomass processing system according to the sixth embodiment.
  • the biomass processing system 10 ⁇ / b> F is the same as the biomass processing system 10 ⁇ / b> E of Example 5 except that an enzyme 41 is added to the biomass solids 33 separated by the first solid-liquid separator 32.
  • An enzyme liquefaction tank 44 for liquefaction is provided.
  • oligosaccharides are generated by hydrolysis of the biomass solids 33 by an enzyme 41 such as cellulase, and then the saccharide is liquefied by further hydrolyzing the oligosaccharides of the enzyme liquefaction 45.
  • Monosaccharification mainly C6 sugar production).
  • the biomass raw material is supplied and hydrothermally decomposed to continuously obtain the biomass solids 24, then slurried in the slurrying tank 21, and then the biomass solids in the first solid-liquid separator 32. 33 is separated, enzyme 41 is added, and enzyme liquefied product 45 is obtained in enzyme liquefaction tank 44. Thereafter, the enzyme liquefied product 45 is introduced into a large first saccharification tank 40 provided separately, and batch saccharification treatment is performed over a predetermined aging time to obtain a sugar solution (C6 sugar) 42. When the large first saccharification tank 40 reaches a predetermined amount, batch processing may be performed using another large first saccharification tank 40 (not shown).
  • the amount of the enzyme 41 added to the enzyme liquefaction tank 44 is sufficient if the biomass solid content is liquefied with good operability in the enzyme liquefaction tank 44.
  • sufficient saccharification is possible in the first saccharification tank 40 in the downstream.
  • the enzyme liquefaction tank 44 may be added to the enzyme liquefaction tank 44.
  • the enzyme liquefaction tank 44 emphasizes only the operability, and the enzyme 41 sufficient to liquefy is added, and the downstream first saccharification tank 40 is added. Enzyme 41 sufficient for sufficient saccharification may be added.
  • reference numeral 44a is stirring means
  • M 4 illustrates a motor for driving the agitation means 44a.
  • the biomass solids 33 is once liquefied in the enzyme liquefaction tank 44, so that, for example, the pump can be transported and the workability such as handling is improved. Further, since the stirring is facilitated by liquefaction, the stirring power of the stirring means M 3 of the first saccharification tank 40 can be reduced. Furthermore, since the enzyme reaction is performed in the liquid, the reaction rate is increased, which contributes to downsizing and labor saving of the large first saccharification tank 40 and can reduce the amount of enzyme used.
  • the biomass solids 33 separated by the first solid-liquid separation device 32 is continuously and gradually added to the enzyme liquefied product in a state liquefied in the enzyme liquefaction tank 44, and the enzyme liquefaction tank 44 has fluidity. Adjust so that low biomass solids do not exist as much as possible. By doing so, the agitation in the enzyme liquefaction tank 44 and the transportability to the downstream enzyme saccharification tank are improved, and equipment operation with good operability becomes possible.
  • the steps up to the enzymatic saccharification tank 44 can be continuously processed, and sufficient saccharification is performed. What is necessary is just to design the capacity
  • the method for producing a sugar solution using the biomass raw material of the present invention supplies the biomass raw material 11 having cellulose, hemicellulose and lignin from normal pressure to pressurized pressure as shown in FIG. Is hydrothermally decomposed by the hydrothermal decomposition treatment section 17 with the pressurized hot water 15, the lignin component and the hemicellulose component are dissolved in the pressurized hot water 15, and then the biomass solid extracted from the hydrothermal decomposition treatment section 17.
  • the water 20 is injected into the slurry 20 into the slurrying tank 21 that communicates with the hydrothermal decomposition treatment unit 17 to make the slurry biomass solids 24, and then the slurry biomass solids 24 to the water 34. Is removed by the first solid-liquid separation device 32, and then the biomass solids 33 from which water has been removed is enzymatically saccharified to make the sugar solution 42 efficient. It is possible to Ku production.
  • FIG. 7 is a schematic diagram illustrating a biomass processing system according to the seventh embodiment.
  • the biomass processing system 10G enzymatically saccharifies the biomass solids mainly containing cellulose components into hexose (C6 sugar) and the like. It has a C6 saccharification / sugar concentration device 50 for concentration.
  • the C6 saccharification / sugar concentration apparatus 50 is configured to separate the solid content from the second saccharification tank 52 for enzymatic saccharification of the slurry-like biomass solid content 24 by the enzyme 51 and the saccharified sugar solution 53 after the saccharification.
  • the second solid-liquid separation device 54 for example, a screw decanter, a sand filtration device, an MF membrane or the like can be used alone or in combination, thereby removing solids and protecting the RO membrane 56a. Yes.
  • the moisture separator 56 may be a loose RO membrane, a nanofiltration membrane (NF membrane), or the like.
  • the sugar liquid 53 is stored in the first sugar liquid tank 61, and then the solid residual liquid 62 such as lignin is separated by the second solid-liquid separation device 54, and then the sugar liquid 53 is the second sugar liquid. It is stored in the tank 63.
  • saccharification is performed using the slurry-like biomass solids 24, saccharification is performed at a low substrate concentration, and high-speed saccharification is possible. Moreover, since it is a slurry form, stirring and transfer can be performed with good operability. In addition, since the saccharification is performed at a low substrate concentration, the amount of enzyme used can be reduced. In addition, sugar can be efficiently concentrated by membrane treatment using various membranes. Moreover, since the separated solid liquid such as lignin is highly caloric, it can be used for fuel. The solid residue 62 such as lignin can be used for organic fertilizer use or chemical raw material use (use of lignin as an adhesive, etc.).
  • the method for producing a sugar solution using the biomass raw material of the present invention supplies the biomass raw material 11 having cellulose, hemicellulose and lignin from normal pressure to pressurized pressure.
  • Hydrothermal decomposition by the hydrothermal decomposition treatment unit 17 with the pressurized hot water 15, the lignin component and the hemicellulose component are dissolved in the pressurized hot water 15, and then the biomass solid content extracted from the hydrothermal decomposition treatment unit 17 20 is poured into a slurrying tank 21 into which water 19 is injected and communicated with the hydrothermal decomposition treatment unit 17 to form a slurry-like biomass solids 24.
  • the slurry-like biomass solids 24 is enzymatically saccharified to produce sugar.
  • a solid content is isolate
  • FIG. 8 is a schematic diagram illustrating a biomass processing system according to an eighth embodiment.
  • the biomass treatment system 10H is a second return line L 3 for returning the water 57 separated from the moisture separator 56 to the slurrying tank 21 in the biomass treatment system 10G of Example 7. It is what has.
  • a cooler 60 is interposed in the second return line L 3 so that the second return line L 3 is cooled to a predetermined temperature and then returned to the slurrying tank 21.
  • the cooler 60 may be interposed in the extraction line L 1 of the slurry-like biomass solids 24 and may be cooled to a desired temperature in the second saccharification tank 52. In such a case, the line L 3 The cooler 60 can be omitted.
  • the separated water 57 can be reused, and the amount of water 19 separately supplied to the slurrying tank 21 can be reduced.
  • FIG. 9 is a schematic diagram illustrating a biomass processing system according to the ninth embodiment.
  • the processing system 10I of biomass in the processing system 10H biomass of Example 8, furthermore, after the second return line L 3 provided the biological treatment apparatus 61, the water 57 is biologically treated, The slurry is returned to the slurry tank 21.
  • the water 57 separated by the RO membrane 56a contains a reaction inhibitor (low molecular organic compound), it can be easily treated by the biological treatment device 61.
  • a reaction inhibitor low molecular organic compound
  • methane can be recovered and used for fuel or the like.
  • the cellulose-based component and the hemicellulose component are decomposed from the biomass raw material under high temperature and high pressure conditions, and then the biomass solid content that is the decomposition product is slurried.
  • the pressurized gas for example, pressurization nitrogen
  • biomass solids are made into a slurry, which facilitates the handling thereof, and is suitable for the subsequent saccharification step, whereby an efficient sugar liquid (C6 sugar) can be produced.
  • sugar liquid C6 sugar
  • various organic raw materials for example, alcohols, petroleum substitutes, amino acids, etc.
  • sugar solution for example, LPG, fuel for aircraft, jet fuel for aircraft, kerosene, diesel oil, various heavy oils, fuel gas, naphtha, naphtha decomposition product ethylene glycol, lactic acid, alcohol (ethanol etc.), Various organic raw materials such as amine, alcohol ethoxylate, vinyl chloride polymer, alkylaluminum, PVA, vinyl acetate emulsion, polystyrene, polyethylene, polypropylene, polycarbonate, MMA resin, nylon, polyester, etc. (eg alcohols, petroleum substitutes, amino acids, etc.) ) Can be produced efficiently. Therefore, the sugar solution derived from biomass can be efficiently used as a substitute for a chemical product derived from crude oil, which is a depleted fuel, and as a raw material for producing the substitute.
  • the reaction can be efficiently stopped by cooling the biomass solids by direct heat exchange with the liquid, and the acid and alkali are diluted.
  • the excessive decomposition of residual hemicellulose, residual lignin and main component cellulose accompanying the minute is suppressed. As a result, it is possible to suppress the generation of reaction-inhibiting components and improve the recovery rate of cellulose.
  • a biomass-based processing system when a biomass-based processing system separates a cellulose-based component from a biomass raw material, it can be slurried and efficiently extracted. While producing, various organic substances (for example, alcohols, petroleum substitutes, amino acids, etc.) can be efficiently produced from the sugar solution as a starting point.
  • various organic substances for example, alcohols, petroleum substitutes, amino acids, etc.
  • Biomass processing system 11 Biomass raw material 12 Biomass supply unit 13 Main unit 14 First screw means 15 Pressurized hot water 16 Hot water discharge liquid 17 Hydrothermal decomposition processing unit 18 Biomass solid content extraction unit 19 Water 20 Biomass Solid content 21 Slurry tank 22 Stirring means 23 Discharge unit 24 Slurry biomass solid content 25 Pressurized nitrogen

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 気液界面13aを有する処理槽である装置本体13において、バイオマス原料11からセルロース、ヘミセルロース及びリグニンを高温・高圧条件下で分解処理してリグニン成分及びヘミセルロース成分を除去するバイオマス処理装置である水熱分解装置17と、前記水熱分解装置17で処理されたバイオマス固形分(熱水不可溶分)20を抜出するバイオマス固形分抜出部18と、前記バイオマス固形分抜出部18と連通すると共に、内部に水19を注入し、抜出したバイオマス固形分20をスラリー化するスラリー化槽21とを有する。

Description

バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
 本発明は、バイオマス原料を効率よく分解することができるバイオマスの処理システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法に関する。
 従来、希硫酸、濃硫酸による木材等のバイオマスの糖化処理後、固液分離し、液相を中和処理し、エタノール発酵等の原料として利用するエタノール等の製造技術が実用化されている(特許文献1、特許文献2)。
 また、糖を出発原料として、化学工業原料生産(例えば乳酸発酵等)も考えられる。
 ここで、バイオマスとは、地球生物圏の物質循環系に組み込まれた生物体又は生物体から派生する有機物の集積をいう(JIS K 3600 1258参照)。
 ここで、現在アルコール原料として用いられているサトウキビ、トウモロコシ等は本来食用に供されるものであるが、これらの食用資源を長期的、安定的に工業用利用資源とすることは、有効食料品のライフサイクルの観点から、好ましくない。
 このため、将来的に有用な資源と考えられる草本系バイオマスや木質系バイオマスのようなセルロース系資源を有効活用するのは、重要な課題である。
 また、セルロース系資源では、セルロースは38~50%、ヘミセルロース成分が23~32%と様々で、発酵原料にならないリグニン成分も15~22%とそれぞれ異なっている。多くの課題を抱えたままの工業化研究のため、原料は固定的に想定されており、原料の汎用性を考慮した生産システムの技術の開示は未だないのが現状である。
 さらに、元来、澱粉原料に較べて発酵原料に不利な方法で、ごみ問題、地球温暖化防止対応などを目標に考えるのであるから、原料を固定的に考えた生産システムでは意味が薄れる。広く一般の廃棄物に適用できなければならない。酵素糖化法そのものも、効率が悪すぎて、将来課題とされているのが現状である。酸処理による糖化率も、過剰反応による糖の過分解などで、およそ75%(糖化可能成分基準)前後とかなり小さい値となっている。従って、セルロース系資源に対して、エタノール生産収率はおよそ25%に止まっている(非特許文献1、特許文献3)。
 なお、特許文献1乃至3の従来の技術では、副反応生成物が酵素糖化阻害を引起し糖収率が減少する現象が起きていたので、酵素糖化阻害物質を除去し、セルロース主体による酵素糖化性を高める水熱分解装置の提案を先にした(特許文献4及び5)。
特表平9-507386号公報 特表平11-506934号公報 特開2005-168335号公報 特開2009-183805号公報 特開2009-183154号公報
日経バイオビジネス、p.52、2002年9月
 前述した特許文献4及び5における水熱分解装置の提案では、内部温度が180~240℃の高温状態であると共に、その各温度における水の飽和蒸気に対して、更に0.1から0.4MPa高い圧力を加えているので、その反応後に、加圧状態から常圧状態にバイオマス固形物をそのまま抜き出す際に、加圧気体である例えば窒素の流出が発生するという、問題がある。
 また、水熱分解装置における加圧熱水と、加圧気体との気液界面から抜き出される水熱分解物は、高温・高圧状態であるので、反応が進行し、バイオマス固形物に同伴される熱水に可溶化された後の熱水可溶化ヘミセルロースや熱水不溶分のセルロースの高温(180~240℃)の温度域で過分解が生じる、という問題がある。また、水熱分解処理に限らず、アルカリ・酸を添加して、高温・高圧化状態で分解処理を行うアルカリ処理分解、酸処理分解も同様な現象が生じる。
 このような、ヘミセルロースやセルロースの過分解は、糖液の原料割合が低下するので、これらの過分解を抑制して、プラント運転効率の向上を図ることが切望されている。
 本発明は、前記課題に鑑み、バイオマス原料を高温・高圧状態で分解処理した後に、バイオマス固形物を抜き出す際に、加圧気体の流出を防止することができるとともに、バイオマス原料中のセルロースやヘミセルロースの過分解を抑制して、効率よく有価物を得るバイオマスの処理システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法を提供する。
 上述した課題を解決するための本発明の第1の発明は、気液界面を有する処理槽により、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料を高温・高圧条件下で分解処理してリグニン成分及びヘミセルロース成分を除去するバイオマス処理部と、前記バイオマス処理部で処理されたバイオマス固形分を抜出するバイオマス固形分抜出部と、前記バイオマス固形分抜出部と連通すると共に、内部に水を注入し、抜き出したバイオマス固形分をスラリー化するスラリー化槽とを有することを特徴とするバイオマスの処理システムにある。
 第2の発明は、第1の発明において、前記バイオマス処理部が、水熱分解処理部、アルカリ分解処理部、酸分解処理部のいずれか一つであることを特徴とするバイオマスの処理システムにある。
 第3の発明は、第1又は2の発明において、前記スラリー化槽の後流側に設けられ、スラリー状バイオマス固形分から水を除去する第1の固液分離装置を有することを特徴とするバイオマスの処理システムにある。
 第4の発明は、第3の発明において、前記第1の固液分離装置から分離した水をスラリー化槽に戻す第1の戻しラインを有することを特徴とするバイオマスの処理システムにある。
 第5の発明は、第4の発明において、前記第1の戻しラインに、第1の固液分離装置から分離した水を生物処理する生物処理槽を有し、生物処理した水を、スラリー化槽に戻すことを特徴とするバイオマスの処理システムにある。
 第6の発明は、第3乃至5のいずれか一つの発明において、前記第1の固液分離装置で分離されたバイオマス固形分を糖化する第1の糖化槽を有することを特徴とするバイオマスの処理システムにある。
 第7の発明は、第6の発明において、前記第1の固液分離装置で分離されたバイオマス固形分に酵素を添加して酵素液化する酵素液化槽を設け、前記第1の糖化槽で酵素液化物を酵素により糖化することを特徴とするバイオマスの処理システムにある。
 第8の発明は、第1又は2の発明において、前記スラリー化槽でスラリー化したスラリー状バイオマス固形分を糖化する第2の糖化槽を有することを特徴とするバイオマスの処理システムにある。
 第9の発明は、第8の発明において、糖化後の糖液から、固体分を分離する固液分離装置と、固体分離後の糖液から、水を除去する水分分離装置とを有することを特徴とするバイオマスの処理システムにある。
 第10の発明は、第9の発明において、前記水分分離装置から分離した水をスラリー化槽に戻す第2の戻しラインを有することを特徴とするバイオマスの処理システムにある。
 第11の発明は、第10の発明において、前記第2の戻しラインに生物処理装置を有することを特徴とするバイオマスの処理システムにある。
 第12の発明は、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料を常圧下から加圧下に供給し、前記バイオマス原料をバイオマス処理部により高温・高圧条件下で分解処理し、その後、前記バイオマス処理部から抜出したバイオマス固形分を、内部に水が注入され、前記バイオマス処理部と連通するスラリー化槽に投入し、スラリー状バイオマス固形分とし、次いで、前記スラリー状バイオマス固形分から水を除去し、その後、水が除去されたバイオマス固形分を酵素糖化し、糖液を生産することを特徴とするバイオマス原料を用いた糖液生産方法にある。
 第13の発明は、第12の発明において、水が除去されたバイオマス固形分を酵素糖化する前流側で、前記バイオマス固形分を酵素液化することを特徴とするバイオマス原料を用いた糖液生産方法にある。
 第14の発明は、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料を常圧下から加圧下に供給し、前記バイオマス原料をバイオマス処理部により高温・高圧条件下で分解処理し、その後、前記バイオマス処理部から抜出したバイオマス固形分を、内部に水が注入され、前記バイオマス処理部と連通するスラリー化槽に投入し、スラリー状バイオマス固形分とし、前記スラリー状バイオマス固形分を酵素糖化して糖液を得た後、固形分を分離し、次いで水を除去することを特徴とするバイオマス原料を用いた糖液生産方法にある。
 第15の発明は、第12乃至14のいずれか一つのバイオマス原料を用いた糖液生産方法により得られた糖液を用いてアルコール発酵を行い、アルコールを製造することを特徴とするアルコール製造方法にある。
 本発明によれば、内部に水が注入されたスラリー化槽の液体中に、処理したバイオマス固形分を投入させることで、スラリー化状態にしつつ液体シールがなされ、加圧気体の流出を防止することができる。これにより加圧用気体(例えば加圧窒素等)の流出が防止され、ランニングコスト削減を図ることができる。
 また、液体中にバイオマス固形分を投入するので、液体による直接熱交換によりバイオマス固形分を冷却することで反応停止を効率良く行うことができ、また、酸やアルカリが希釈されるため、バイオマス固形分に同伴する残留ヘミセルロース、残留リグニン及び主成分セルロースの過分解が抑制される。この結果、反応阻害成分の生成抑制を図ると共に、セルロース分の回収率の向上を図ることができる。
図1は、実施例1に係るバイオマスの処理システムの概略図である。 図2は、実施例2に係るバイオマスの処理システムの概略図である。 図3は、実施例3に係るバイオマスの処理システムの概略図である。 図4は、実施例4に係るバイオマスの処理システムの概略図である。 図5は、実施例5に係るバイオマスの処理システムの概略図である。 図6は、実施例6に係るバイオマスの処理システムの概略図である。 図7は、実施例7に係るバイオマスの処理システムの概略図である。 図8は、実施例8に係るバイオマスの処理システムの概略図である。 図9は、実施例9に係るバイオマスの処理システムの概略図である。 図10は、バイオマスの熱水による分解の様子を示す図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。なお、実施例では、バイオマス原料を処理するバイオマス処理部として水熱分解装置を用いて説明するが、本発明はこの装置に限定されるものではなく、酸やアルカリを添加してバイオマス原料を分解処理するシステムにおいても同様の操作を適用し得る。
 本発明に係るバイオマスの処理システムについて、図面を参照して説明する。
 図1は、実施例1に係るバイオマスの処理システムの概略図である。
 図1に示すように、本実施例に係るバイオマスの処理システム10Aは、気液界面13aを有する処理槽である装置本体13において、バイオマス原料11からセルロース、ヘミセルロース及びリグニンを高温・高圧条件下で分解処理してリグニン成分及びヘミセルロース成分を除去するバイオマス処理部である水熱分解処理部17と、前記水熱分解処理部17で処理されたバイオマス固形分(熱水不可溶分)20を抜出するバイオマス固形分抜出部18と、前記バイオマス固形分抜出部18と連通すると共に、内部に水19を注入し、抜き出したバイオマス固形分20を投入してスラリー状バイオマス固形分24とするスラリー化槽21と、前記スラリー状バイオマス固形分24を加圧下から常圧下へ排出する排出部23とを有するものである。
 前記水熱分解処理部17には、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料11を常圧下から加圧下に供給するバイオマス供給部12を有している。
 そして、水熱分解処理部17では、供給されたバイオマス原料11は、下方から装置本体13の内部にて、搬送手段である第1のスクリュー手段14により上方へ搬送すると共に、前記バイオマス原料11の供給箇所と異なる上方の側から加圧熱水(以下、「熱水」ともいう)15を装置本体13の内部に供給し、前記バイオマス原料11と加圧熱水15とを対向接触させつつ水熱分解し、排出する加圧熱水である熱水排出液16中に熱水溶解成分(リグニン成分及びヘミセルロース成分)を移行し、前記バイオマス原料11中からリグニン成分及びヘミセルロース成分を分離している。
 ここで、搬送手段としては、本実施例ではスクリュー手段を例示しているが、バイオマス固形分を下方から上方に搬送することができるものであれば、スクリュー手段に限定されるものではない。
 前記スラリー化槽21に投入される水19は、加圧用の加圧窒素25のリークを防止する目的で液体シールをなすためには系内の圧力下において液体状であればよく、バイオマス固形分が含有する水分中に含まれるヘミセルロースの過分解(分解開始温度約140℃~180℃)を抑制するためにはスラリー化槽21の液温を140℃以下に冷却するよう、バイオマス固形分20の温度やスラリー化槽21の容量に応じて注入する水19の温度を適宜設定すればよい。水19は、例えば0℃~60℃の範囲内で通常用いられる水(例えばクーリングタワー水やチラー水)などを用いることができ、後述するように系内の水を循環して再利用することもできる。
 ここで、図1中、符号18aはバイオマス固形分抜出部18とスラリー化槽21とを連通する通路、22はスラリー化槽21内部を攪拌する撹拌手段、13aは水熱分解装置13の気液界面、21aはスラリー化槽21の気液界面、L1は抜出しライン、M1は第1のスクリュー手段14を駆動するモータ、M2は撹拌手段22を駆動するモータを各々図示する。
 図10に示すように、バイオマス(セルロース系原料)原料10には、セルロース以外にヘミセルロースやリグニンが含まれており、具体的にはセルロースをヘミセルロースが束ね、リグニンが接着している構造を有している。
 バイオマスは水熱分解後には、熱水不溶分(固形分)と熱水可溶分とに分けられることとなる。熱水不溶分は主にセルロース(C6糖の原料)であり、熱水可溶分は主にヘミセルロース(C5糖の原料)であり、各々酵素により糖化することで糖を得ることができる。
 よって、バイオマス原料11が加圧熱水15により高温(180~240℃)の温度域で水熱分解され、熱水側にヘミセルロースを溶解させると共に、リグニンも分解・溶解させており、その結果熱水側にはヘミセルロース等が溶解されることとなる。
 熱水に可溶化された後の熱水可溶化ヘミセルロースの状態では、高温(180~240℃)の温度域では過分解が生じる。
 このヘミセルロースの過分解は、C5糖の原料となるヘミセルロースの収率が低下するので、熱水可溶化分のヘミセルロースの過分解を抑制する必要がある。
 また、熱水中への過分解物の混入は、後流側設備における酵素による糖化工程及びアルコール発酵等の発酵工程での反応阻害要因となるので、この阻害物の発生を阻止することも必要となる。
 図1において、バイオマス固形分抜出部18には、図示しない第2のスクリュー手段が設けられ、第1のスクリュー手段14により下方から上方に搬送された熱水不溶分であるバイオマス固形分20をスラリー化槽21側へ抜出している。そして、抜出されたバイオマス固形分20は通路18aから液体21b中に順次落下し、スラリー化槽21内に設けた攪拌手段22の攪拌により、スラリー化される。
 また、スラリー化槽21内の液体21b中に落下されたバイオマス固形分20が液体21bとの直接熱交換により冷却され、この結果、バイオマス固形分20に同伴した熱水による残留ヘミセルロース、残留リグニン及び主成分セルロースの過分解が抑制される。
 これは、水熱分解処理部17の気液界面13aの上方側のガス雰囲気内では、第1のスクリュー手段14によりバイオマス固形分20が熱水液面(気液界面13a)より上に露出される。しかしながら、バイオマス固形分20に同伴する加圧熱水15の存在により、高温・高圧状態で未だ反応が進行しているので、バイオマス固形分20をスラリー化槽21内の液体21b中に投入することで、反応停止させることができる。
 よって、この反応停止によって、残留ヘミセルロース、残留リグニン及び主成分セルロースの過分解が抑制されることとなり、セルロース分の過分解が抑制されその回収率が向上すると共に、後流側における反応阻害成分の生成が抑制される。
 また、スラリー化槽21内に水19を注入し、液体21bが存在するため、水熱分解処理部17の気液界面13aと、スラリー化槽21の気液界面21aとにおいて、液封止がなされることとなり、これにより加圧用気体である加圧窒素25のリークが防止される。これにより、ガスリークに伴うロスがなくなり、加圧用気体にかかるランニングコストの大幅な削減を図ることができる。なお、スラリー化槽21には図示しない安全弁や加圧窒素25の流入通路が形成されている。
 また、バイオマス固形分20をスラリー化させることにより、流動化が可能となり、スラリー化槽21から外部へ排出する際の排出機構が簡易となる。すなわち、バイオマス固形分20が高温状態のままであると、排出機構の材質も例えば高価な材料を使用する必要があるが、スラリー化槽21で冷却するので、その排出側に設ける排出部23の材質を安価なステンレスや樹脂等を使用することができる。この排出部23としては、例えばロータリーフィーダ、流量調整弁等を用いることができる。
 また、バイオマス固形分20は空隙率が大きく、かさ密度が小さいので、固体のままでの取扱い性が煩雑であったが、スラリー化により減容化を図ることができることとなり、取り扱い性も容易となる。
 すなわち、液体21bに添加する前では、バイオマス固形分20は、いわゆるケーキ状であり、加圧用気体のしめる割合が多く空隙率が大きく、かさ密度が0.5g/cc以下と小さいものであった。これがスラリー化することで、空隙間が減少し、込み、減容化を図ることとなる。
 さらに、バイオマス固形分20をスラリー化させることにより、流動化が可能となり、その後の工程での取り扱いが容易となる。
 特に、糖化処理等においては、酵素反応であるので、所定の温度以下(例えば60℃以下)に冷却する必要がある。この際、バイオマス固形分20の状態での冷却はその熱交換効率は良好でないので、大がかりな熱交換手段を必要とするが、スラリー化させることにより、冷却効率が良好となり、大がかりな熱交換手段が不要となる。
 また、スラリー化槽21内を冷却するための間接冷却手段を設けるようにすることもできる。
 また、スラリー化槽21は攪拌手段22を設けているが、本発明はこれに限定されず、例えばポンプによる循環手段等で攪拌させるようにしてもよい。
 ここで、前記水熱分解処理部17に供給するバイオマスとしては、特に限定されるものではなく、地球生物圏の物質循環系に組み込まれた生物体又は生物体から派生する有機物の集積をいう(JIS K 3600 1258参照)が、本発明では特に木質系の例えば広葉樹、草本系等のセルロース系資源や農業系廃棄物、食品廃棄物等を用いるのが好ましい。
 また、前記バイオマス原料11としては、粒径は特に限定されるものではないが、5mm以下に粉砕することが好ましい。
 本実施例では、バイオマスの供給前において、前処理装置として、例えば粉砕装置を用いて前処理するようにしてもよい。また、洗浄装置により洗浄するようにしてもよい。
 なお、バイオマス原料11として、例えば籾殻等の場合には、粉砕処理することなく、そのままバイオマス供給部12に供給することができるものとなる。
 また、水熱分解処理部17における、反応温度は180~240℃の範囲とするのが好ましい。さらに好ましくは200~230℃とするのがよい。
 これは、180℃未満の低温では、水熱分解速度が小さく、長い分解時間が必要となり、装置の大型化につながり、好ましくないからである。一方240℃を超える温度では、分解速度が過大となり、セルロース成分が固体から液体側への移行を増大すると共に、ヘミセルロース系糖類の過分解が促進され、好ましくないからである。
 また、ヘミセルロース成分は約140℃付近から、セルロースは約230℃付近から、リグニン成分は140℃付近から溶解するが、セルロースを固形分側に残し、且つヘミセルロース成分及びリグニン成分が十分な分解速度を持つ180℃~240℃の範囲とするのがよい。
 反応圧力は、装置本体13の反応温度(180~240℃)の各温度の水の飽和蒸気圧に、更に0.1~0.5MPaだけ高い圧力を加えることとするのが好ましい。
 また、反応時間は20分以下、3分~10分とするのが好ましい。これはあまり長く反応を行うと過分解物の割合が増大し、好ましくないからである。
 前記常圧下から加圧下に供給するバイオマス供給部12としては、例えば、スクリュー、ピストンポンプ又はスラリーポンプ等の手段を挙げることができる。
 また、水熱分解装置は、本実施例では、垂直型の装置としているが、本発明はこれに限定されるものではなく、気液界面13aを有する傾斜型の水熱分解装置としてもよい。
 ここで、水熱分解装置を傾斜型又は垂直型とするのは、水熱分解反応において発生したガスや原料中に持ち込まれたガス等が上方から速やかに抜けることができ好ましいからである。また、加圧熱水15で分解生成物を抽出するので、抽出効率の点において上方から下方に向かって抽出物の濃度が高まることとなり、好ましいものとなる。
 以上のように、本実施例によれば、バイオマス原料からセルロース主体の成分とヘミセルロース成分を固液接触状態で分解処理した後、その分解物であるバイオマス固形分をスラリー化槽の内部に注入した液体中に、投入することで、スラリー化させると共に、液体シールがなされ、加圧気体の流出を防止することができる。これにより加圧用気体(例えば加圧窒素等)の流出が防止され、ランニングコストの大幅な削減を図ることができる。
 本実施例では、バイオマスの分解処理を行うバイオマス処理部として、水熱分解装置を用いて説明したが、本発明は、これに限定されるものではなく、例えばアルカリ分解処理バイオマス処理部(例えば水酸化ナトリウム、消石灰やアンモニアの利用による分解等)、酸分解処理バイオマス処理部(希硫酸による分解等)であっても、気液界面を有し、その処理の後のバイオマス固形分20を固体状態でバイオマス処理部より抜き出す際に、スラリー化槽21を設置して、その処理したバイオマス固形分をスラリー化させ、排出機構を介して加圧下から常圧へ排出するシステムに適用できる。
 次に、本発明に係るバイオマスの処理システムの他の実施例について、図面を参照して説明する。なお、実施例1のバイオマスの処理システムと同一部材については同一符号を付してその説明は省略する。
 図2は、実施例2に係るバイオマスの処理システムを示す概略図である。
 図2に示すように、バイオマスの処理システム10Bは、実施例1のバイオマスの処理システム10Aにおいて、さらにスラリー化槽21から抜き出されたスラリー状バイオマス固形分24の抜出しラインL1に、第1の固液分離装置32を設けている。この第1の固液分離装置32により、反応阻害物質を含む水34を除去してバイオマス固形分33としている。この第1の固液分離装置32で水34を除去することで、任意の固形分濃度とすることができる。これにより、後流側での糖化反応の基質濃度の調整が可能となる。
 すなわち、本実施例によれば、第1の固液分離装置32において、反応阻害物質を含む水34をバイオマス固形分33から分離することで、反応阻害物質を効率的に除去することができ、後流側での反応が良好となる。
 次に、本発明に係るバイオマスの処理システムの他の実施例について、図面を参照して説明する。なお、実施例1及び2のバイオマスの処理システムと同一部材については同一符号を付してその説明は省略する。
 図3は、実施例3に係るバイオマスの処理システムを示す概略図である。
 図3に示すように、バイオマスの処理システム10Cは、実施例2のバイオマスの処理システム10Bにおいて、第1の固液分離装置32で分離した水34をスラリー化槽21に戻す第1の戻しラインL2を設けている。
 また、第1の戻しラインL2には冷却器35を介装し、所定温度まで冷却した後、スラリー化槽21に戻すようにしている。
 これにより、分離した水34を再利用することができ、スラリー化槽21に別途供給する水19の使用量の低減を図ることができる。
 次に、本発明に係るバイオマスの処理システムの他の実施例について、図面を参照して説明する。なお、実施例1乃至3のバイオマスの処理システムと同一部材については同一符号を付してその説明は省略する。
 図4は、実施例4に係るバイオマスの処理システムを示す概略図である。
 図4に示すように、バイオマスの処理システム10Dは、実施例3のバイオマスの処理システム10Cにおいて、さらに前記第1の戻しラインL2に、第1の固液分離装置32から分離した水34を生物処理する生物処理槽36を設け、生物処理した水34を冷却器35で冷却した後、スラリー化槽21に戻すようにしている。
 前記分離した水34は、後流側での反応阻害物質である有機酸(例えばギ酸、酢酸、クエン酸等)を含むので、生物処理槽36で分解除去され、処理が確実になされ、水19として再利用の際に、阻害物質が除去されることとなるので、スラリー化槽21における反応停止の際に、阻害物質の増加がないものとなる。
 また、生物処理装置61として、例えばメタン発酵生物処理装置を用いることにより、メタンを回収し、燃料等に利用が可能となる。
 次に、本発明に係るバイオマスの処理システムの他の実施例について、図面を参照して説明する。なお、実施例1乃至4のバイオマスの処理システムと同一部材については同一符号を付してその説明は省略する。
 図5は、実施例5に係るバイオマスの処理システムを示す概略図である。
 図5に示すように、バイオマスの処理システム10Eは、実施例3のバイオマスの処理システム10Cにおいて、前記第1の固液分離装置32で分離されたバイオマス固形分33を酵素41により糖化する第1の糖化槽40を有し、バイオマス固形分33を糖化させて糖液(C6糖)42を得るようにしている。図5中、符号40aは撹拌手段、M3は撹拌手段40aを駆動するモータを図示する。
 本実施例では、第1の固液分離装置32により、不要な水34を除去し、バイオマス固形分33を所望の濃度に濃縮しているので、より高基質濃度で糖化することができ、C6糖濃度の向上を図ることができる。また、水熱分解処理部17より同伴され固形分に含まれた水分中には、発酵を阻害する物質等が含まれるが、第1の固液分離装置32で水34を除去することで、これらを除去して糖化を行うことができ、結果として糖の品質が向上する。
 また、第1の固液分離装置32を介することにより基質濃度を所望とする任意の濃度に調整することができ、例えば、糖化後の糖濃度を高くしたい場合には、上述の通り第1の固液分離装置32での水分の除去率を上げてより高い基質濃度で糖化を行えばよく、また、糖化や糖化後の撹拌・移送などを操作性よく行いたい場合や糖化速度を向上させたい場合には、水分の除去率を下げてより低い基質濃度で糖化を行えばよい。
 次に、本発明に係るバイオマスの処理システムの他の実施例について、図面を参照して説明する。なお、実施例5のバイオマスの処理システムと同一部材については同一符号を付してその説明は省略する。
 図6は、実施例6に係るバイオマスの処理システムを示す概略図である。
 図6に示すように、バイオマスの処理システム10Fは、実施例5のバイオマスの処理システム10Eにおいて、前記第1の固液分離装置32で分離されたバイオマス固形分33に酵素41を添加して酵素液化する酵素液化槽44を設けている。
 酵素液化槽44では、例えばセルラーゼ等の酵素41によりバイオマス固形分33の加水分解により、例えばオリゴ糖が生じること等で液化させ、その後酵素液化物45のオリゴ糖を更に加水分解させることで糖化(単糖化:主にC6糖生成)させている。
 本実施例では、バイオマス原料を供給して水熱分解処理し、連続的にバイオマス固形分24を得た後、スラリー化槽21でスラリー化し、その後第1の固液分離装置32でバイオマス固形分33を分離し、酵素41を添加して、酵素液化槽44で酵素液化物45を得ている。その後、酵素液化物45を別途設けた大型の第1の糖化槽40に導入して、所定の熟成時間かけてバッチ糖化処理を行い、糖液(C6糖)42を得るようにしている。なお、大型の第1の糖化槽40が所定量になったら、図示しない別の大型の第1の糖化槽40を用いてバッチ処理を行うようにすればよい。
 また、酵素液化槽44に添加する酵素41の量は、酵素液化槽44で操作性よくバイオマス固形分が液化する量であれば足りるが、例えば後流の第1の糖化槽40で十分な糖化が行える酵素を酵素液化槽44に添加してもよく、あるいは酵素液化槽44ではその操作性のみを重視し、液化するに足りるだけの酵素41を添加し、後流の第1の糖化槽40で十分な糖化を行うに足りる酵素41を添加するようにしてもよい。
 図中、符号44aは撹拌手段、M4は撹拌手段44aを駆動するモータを図示する。
 本実施例では、バイオマス固形分33を一度酵素液化槽44で液化処理をしているので、例えばポンプの搬送が可能となり、ハンドリング等の作業性が向上する。また、液化により攪拌が容易となるので、第1の糖化槽40の攪拌手段M3の攪拌動力も小さくすることができる。さらに、液中での酵素反応となるので、反応速度が大きくなり、大型の第1の糖化槽40の小型化、省力化に寄与すると共に、酵素使用量の低減を図ることができる。
 本実施例では、酵素液化槽44において得られる酵素液化物45に対して分離したバイオマス固形分33を連続的かつ徐々に添加するのが好ましい。すなわち、第1の固液分離装置32で分離したバイオマス固形分33は、酵素液化槽44で液化した状態の酵素液化物中に連続的かつ徐々に添加され、酵素液化槽44には流動性の低いバイオマス固形分が極力存在しないように調整する。こうすることで酵素液化槽44での撹拌性や後流の酵素糖化槽への移送性が向上し、操作性のよい設備運転が可能となる。
 これに対して、酵素液化槽44内でバイオマス固形分が多く存在するような酵素液化操作、すなわち多量のバイオマス固形分33に酵素41を添加して一部分から徐々に液化を進行させるようにすると、連続運転における生産能力の低下や操作性の低下を誘発することとなる。
 このように、本発明によれば、バイオマス原料11を水熱分解処理部17に連続して投入した後、酵素糖化槽44までの工程は、連続して処理することができ、十分な糖化を行うための第1の糖化槽40の容量や個数を、その上流である酵素液化の生産能力に応じて設計すればよく、設備効率や作業性の大幅な向上を図ることができることとなる。
 このように、本発明のバイオマス原料を用いた糖液生産方法は、例えば図5に示すように、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料11を常圧下から加圧下に供給し、前記バイオマス原料11を加圧熱水15により水熱分解処理部17により水熱分解し、前記加圧熱水15中にリグニン成分及びヘミセルロース成分を溶解させ、その後、前記水熱分解処理部17から抜出したバイオマス固形分20を、内部に水19が注入され、前記水熱分解処理部17と連通するスラリー化槽21に投入し、スラリー状バイオマス固形分24とし、次いで、前記スラリー状バイオマス固形分24から水34を第1の固液分離装置32により除去し、その後、水が除去されたバイオマス固形分33を酵素糖化して、糖液42を効率よく生産することができる。
 また、前記バイオマス原料を用いた糖液生産方法において、例えば図6に示すように、酵素糖化する前流側で、先ず酵素液化し、その後酵素液化物45を用いて酵素糖化させ、糖液42の生産性を向上させるようにしている。
 次に、本発明に係るバイオマスの処理システムの他の実施例について、図面を参照して説明する。なお、実施例1のバイオマスの処理システムと同一部材については同一符号を付してその説明は省略する。
 図7は、実施例7に係るバイオマスの処理システムを示す概略図である。
 図7に示すように、バイオマスの処理システム10Gは、実施例1のバイオマスの処理システム10Aにおいて、主にセルロース成分を含むバイオマス固形分を六炭糖(C6糖)等に酵素糖化し、糖を濃縮するC6糖化・糖濃縮装置50を有している。
 このC6糖化・糖濃縮装置50は、前記スラリー状バイオマス固形分24を酵素51により酵素糖化する第2の糖化槽52、糖化後の糖液53から、固体分を分離する第2の固液分離装置54と、第2の固液分離装置54で分離した糖液53から水57を除去して、濃縮糖液55を得る逆浸透(Reverse Osmosis:RO)膜56aを備えた水分分離装置56とを有するものである。
 前記第2の固液分離装置54は、例えばスクリューデカンタ、砂濾過装置、MF膜等を単独又は組合せて用いることができ、これにより固形物を除去してRO膜56aの保護を図るようにしている。さらに、RO膜56aの前段側において、限外濾過膜(Ultrafiltration Membrane:UF膜)を用いることで、RO膜の保護を図ると共に酵素の回収が可能となり、酵素を再利用することができる。
 また、水分分離装置56には、ルーズRO膜、ナノ濾過膜(Nanofiltration Membrane:NF膜)等を用いてもよい。
 次に、このC6糖化・糖濃縮装置50の処理工程の手順について説明する。
<酵素糖化工程>
 先ず、前記糖化槽52において、スラリー状バイオマス固形分24が抜出しラインL1を介して導入され、酵素51が添加され、酵素糖化工程における酵素反応による糖化がなされる。
<固液分離工程>
 次に、糖液53は第1の糖液タンク61に貯留され、その後、第2の固液分離装置54によりリグニン等の固形残液62が分離され、その後糖液53は第2の糖液タンク63に貯留される。
<糖濃縮工程>
 次に、糖液53は、RO膜56aを備えた水分分離装置56により水57が除去され、濃縮糖液55を得る。
 この濃縮糖液55は図示しない後工程の発酵処理において、各種有機原料となる。
 本実施例では、スラリー状バイオマス固形分24を用いて糖化しているので、低基質濃度での糖化となり、高速糖化が可能となる。
 また、スラリー状であるため、撹拌・移送などを操作性よく行うことができる。
 また、低基質濃度での糖化となるので、酵素使用量の削減を図ることができる。
 また、各種膜を用いた膜処理により、糖の濃縮を効率よく行うことができる。
 また、分離したリグニン等固形残液は、高カロリであるので、燃料用に用いることができる。また、リグニン等固形残液62は、有機肥料利用や化学原料利用(リグニンの接着剤としての利用等)に用いることができる。
 このように、本発明のバイオマス原料を用いた糖液生産方法は、図7に示すように、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料11を常圧下から加圧下に供給し、前記バイオマス原料11を加圧熱水15により水熱分解処理部17により水熱分解し、前記加圧熱水15中にリグニン成分及びヘミセルロース成分を溶解させ、その後、前記水熱分解処理部17から抜出したバイオマス固形分20を、内部に水19が注入され、前記水熱分解処理部17と連通するスラリー化槽21に投入し、スラリー状バイオマス固形分24とし、前記スラリー状バイオマス固形分24を酵素糖化して糖液53を得た後、固形分を分離し、次いで水を除去することによりバイオマス原料から糖液を効率よく生産することができる。
 次に、本発明に係るバイオマスの処理システムの他の実施例について、図面を参照して説明する。なお、実施例7のバイオマスの処理システムと同一部材については同一符号を付してその説明は省略する。
 図8は、実施例8に係るバイオマスの処理システムを示す概略図である。
 図8に示すように、バイオマスの処理システム10Hは、実施例7のバイオマスの処理システム10Gにおいて、さらに前記水分分離装置56から分離した水57をスラリー化槽21に戻す第2の戻しラインL3を有するものである。
 また、第2の戻しラインL3には冷却器60を介装し、所定温度まで冷却した後、スラリー化槽21に戻すようにしている。なお、冷却器60をスラリー状バイオマス固形分24の抜出しラインL1に介装し、第2の糖化槽52で所望とされる温度まで冷却してもよく、このような場合にはラインL3の冷却器60を省略することもできる。
 これにより、分離した水57を再利用することができ、スラリー化槽21に別途供給する水19の使用量の低減を図ることができる。
 次に、本発明に係るバイオマスの処理システムの他の実施例について、図面を参照して説明する。なお、実施例7のバイオマスの処理システムと同一部材については同一符号を付してその説明は省略する。
 図9は、実施例9に係るバイオマスの処理システムを示す概略図である。
 図9に示すように、バイオマスの処理システム10Iは、実施例8のバイオマスの処理システム10Hにおいて、さらに、第2の戻しラインL3に生物処理装置61を設け、水57を生物処理した後、スラリー化槽21に戻すようにしている。
 RO膜56aで分離した水57には、反応阻害物質(低分子有機化合物)を含むので、生物処理装置61により容易に処理が可能となる。そして、生物処理装置として、例えばメタン発酵生物処理装置を用いることにより、メタンを回収し、燃料等に利用が可能となる。
 以上述べたように、本発明に係るバイオマスの処理システムによれば、バイオマス原料からセルロース主体の成分とヘミセルロース成分を高温・高圧条件下で分解処理した後、その分解物であるバイオマス固形分をスラリー化槽の内部に設けた液体中に、投入することで、スラリー化させると共に、液体シールがなされ、加圧気体の流出を防止することができる。これにより加圧用気体(例えば加圧窒素等)の流出が防止され、ランニングコスト削減を図ることができる。
 また、バイオマス固形物をスラリー状とすることでその取り扱いを容易とし、その後の糖化工程に適したものとなり、効率的な糖液(C6糖)の製造を行うことができる。また、この糖液を基点として、各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができる。また、この糖液を基点として、例えばLPG、自動用燃料、航空機用ジェット燃料、灯油、ディーゼル油、各種重油、燃料ガス、ナフサ、ナフサ分解物であるエチレングリコール、乳酸、アルコール(エタノール等)、アミン、アルコールエトキシレート、塩ビポリマー、アルキルアルミニウム、PVA、酢酸ビニルエマルジョン、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、MMA樹脂、ナイロン、ポリエステル等の各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができる。よって、枯渇燃料である原油由来の化成品の代替品及びその代替品製造原料としてバイオマス由来の糖液を効率的に利用することができる。
 さらに、液体中にバイオマス固形分を投入するので、液体による直接熱交換によりバイオマス固形分を冷却することで反応停止を効率良く行うことができ、また、酸やアルカリが希釈されるため、バイオマス固形分に同伴する残留ヘミセルロース、残留リグニン及び主成分セルロースの過分解が抑制される。この結果、反応阻害成分の生成抑制を図ると共に、セルロース分の回収率の向上を図ることができる。
 以上のように、本発明によれば、バイオマスの処理システムにより、バイオマス原料からセルロース主体の成分を分離する際にスラリー化させて効率的な抜出しが可能となり、このスラリー化物を用いて糖液の製造を行うと共に、該糖液を基点として、各種有機物(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができる。
 10A~10I バイオマスの処理システム
 11 バイオマス原料
 12 バイオマス供給部
 13 装置本体
 14 第1のスクリュー手段
 15 加圧熱水
 16 熱水排出液
 17 水熱分解処理部
 18 バイオマス固形分抜出部
 19 水
 20 バイオマス固形分
 21 スラリー化槽
 22 撹拌手段
 23 排出部
 24 スラリー状バイオマス固形分
 25 加圧窒素

Claims (15)

  1.  気液界面を有する処理槽により、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料を高温・高圧条件下で分解処理してリグニン成分及びヘミセルロース成分を除去するバイオマス処理部と、
     前記バイオマス処理部で処理されたバイオマス固形分を抜出するバイオマス固形分抜出部と、
     前記バイオマス固形分抜出部と連通すると共に、内部に水を注入し、抜き出したバイオマス固形分をスラリー化するスラリー化槽とを有することを特徴とするバイオマスの処理システム。
  2.  請求項1において、
     前記バイオマス処理部が、水熱分解処理部、アルカリ分解処理部、酸分解処理部のいずれか一つであることを特徴とするバイオマスの処理システム。
  3.  請求項1又は2において、
     前記スラリー化槽の後流側に設けられ、スラリー状バイオマス固形分から水を除去する第1の固液分離装置を有することを特徴とするバイオマスの処理システム。
  4.  請求項3において、
     前記第1の固液分離装置から分離した水をスラリー化槽に戻す第1の戻しラインを有することを特徴とするバイオマスの処理システム。
  5.  請求項4において、
     前記第1の戻しラインに、第1の固液分離装置から分離した水を生物処理する生物処理槽を有し、生物処理した水を、スラリー化槽に戻すことを特徴とするバイオマスの処理システム。
  6.  請求項3乃至5のいずれか一つにおいて、
     前記第1の固液分離装置で分離されたバイオマス固形分を糖化する第1の糖化槽を有することを特徴とするバイオマスの処理システム。
  7.  請求項6において、
     前記第1の固液分離装置で分離されたバイオマス固形分に酵素を添加して酵素液化する酵素液化槽を設け、
     前記第1の糖化槽で酵素液化物を酵素により糖化することを特徴とするバイオマスの処理システム。
  8.  請求項1又は2において、
     前記スラリー化槽でスラリー化したスラリー状バイオマス固形分を糖化する第2の糖化槽を有することを特徴とするバイオマスの処理システム。
  9.  請求項8において、
     糖化後の糖液から、固体分を分離する固液分離装置と、
     固体分離後の糖液から、水を除去する水分分離装置とを有することを特徴とするバイオマスの処理システム。
  10.  請求項9において、
     前記水分分離装置から分離した水をスラリー化槽に戻す第2の戻しラインを有することを特徴とするバイオマスの処理システム。
  11.  請求項10において、
     前記第2の戻しラインに生物処理装置を有することを特徴とするバイオマスの処理システム。
  12.  セルロース、ヘミセルロース及びリグニンを有するバイオマス原料を常圧下から加圧下に供給し、前記バイオマス原料をバイオマス処理部により高温・高圧条件下で分解処理し、
     その後、前記バイオマス処理部から抜出したバイオマス固形分を、内部に水が注入され、前記バイオマス処理部と連通するスラリー化槽に投入し、スラリー状バイオマス固形分とし、
     次いで、前記スラリー状バイオマス固形分から水を除去し、
     その後、水が除去されたバイオマス固形分を酵素糖化し、糖液を生産することを特徴とするバイオマス原料を用いた糖液生産方法。
  13.  請求項12において、
     水が除去されたバイオマス固形分を酵素糖化する前流側で、前記バイオマス固形分を酵素液化することを特徴とするバイオマス原料を用いた糖液生産方法。
  14.  セルロース、ヘミセルロース及びリグニンを有するバイオマス原料を常圧下から加圧下に供給し、前記バイオマス原料をバイオマス処理部により熱分解処理し、
     その後、前記バイオマス処理部から抜出したバイオマス固形分を、内部に水が注入され、前記バイオマス処理部と連通するスラリー化槽に投入し、スラリー状バイオマス固形分とし、
     前記スラリー状バイオマス固形分を酵素糖化して糖液を得た後、固形分を分離し、次いで水を除去することを特徴とするバイオマス原料を用いた糖液生産方法。
  15.  請求項12乃至14のいずれか一つのバイオマス原料を用いた糖液生産方法により得られた糖液を用いてアルコール発酵を行い、アルコールを製造することを特徴とするアルコール製造方法。
PCT/JP2010/061725 2010-07-09 2010-07-09 バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法 WO2012004895A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/061725 WO2012004895A1 (ja) 2010-07-09 2010-07-09 バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
US13/203,929 US9850511B2 (en) 2010-07-09 2010-07-09 Biomass processing system and saccharide-solution production method using biomass material
BRPI1009205-6A BRPI1009205B1 (pt) 2010-07-09 2010-07-09 sistema de processamento de biomassa e método de produção de solução sacarídea usando material de biomassa
JP2010547767A JP4764527B1 (ja) 2010-07-09 2010-07-09 バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
CA2750753A CA2750753C (en) 2010-07-09 2010-07-09 Biomass processing system and saccharide-solution production method using biomass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061725 WO2012004895A1 (ja) 2010-07-09 2010-07-09 バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法

Publications (1)

Publication Number Publication Date
WO2012004895A1 true WO2012004895A1 (ja) 2012-01-12

Family

ID=44693549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061725 WO2012004895A1 (ja) 2010-07-09 2010-07-09 バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法

Country Status (5)

Country Link
US (1) US9850511B2 (ja)
JP (1) JP4764527B1 (ja)
BR (1) BRPI1009205B1 (ja)
CA (1) CA2750753C (ja)
WO (1) WO2012004895A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184107A (ja) * 2012-03-07 2013-09-19 Osaka Gas Co Ltd 茶滓含有排水の可溶化方法
WO2014010048A1 (ja) * 2012-07-11 2014-01-16 三菱重工メカトロシステムズ株式会社 バイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法
JPWO2013172446A1 (ja) * 2012-05-18 2016-01-12 東レ株式会社 糖液の製造方法
KR101605483B1 (ko) 2014-02-24 2016-03-22 주식회사 창해에탄올 고농도 발효성당의 제조장치, 이를 이용한 고농도 발효성당의 제조방법, 그리고 이를 이용하여 제조된 바이오화학물질
JP2017505633A (ja) * 2014-01-16 2017-02-23 デパートメント オブ バイオテクノロジー バイオマスからの可溶性糖の製造プロセス
US10174281B2 (en) 2013-02-28 2019-01-08 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass treatment system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427583B2 (ja) 2008-02-01 2010-03-10 三菱重工業株式会社 バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP4524351B2 (ja) 2008-02-01 2010-08-18 三菱重工業株式会社 バイオマス原料を用いた有機原料の製造システム及び方法
US9102956B2 (en) 2010-03-10 2015-08-11 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
CA2741602C (en) 2010-03-10 2013-04-30 Mitsubishi Heavy Industries, Ltd. Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
JP5854586B2 (ja) 2010-07-06 2016-02-09 三菱重工メカトロシステムズ株式会社 糖液を用いた発酵システム及び方法
US9422519B2 (en) 2010-07-09 2016-08-23 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass hydrothermal decomposition system and saccharide-solution production method using biomass material
WO2012004895A1 (ja) 2010-07-09 2012-01-12 三菱重工業株式会社 バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
CA2744522C (en) 2010-09-03 2014-07-29 Mitsubishi Heavy Industries, Ltd. Biomass decomposition apparatus and method thereof, and sugar-solution production system using biomass material
WO2012095976A1 (ja) 2011-01-13 2012-07-19 三菱重工メカトロシステムズ株式会社 糖液製造装置、発酵システム、糖液製造方法及び発酵方法
CN103827286B (zh) * 2011-09-14 2016-02-17 东丽株式会社 糖液的制造装置及糖液的制造***
JPWO2013076789A1 (ja) * 2011-11-21 2015-04-27 三菱重工メカトロシステムズ株式会社 糖液製造装置、発酵システム、糖液製造方法及び発酵方法
WO2013076789A1 (ja) * 2011-11-21 2013-05-30 三菱重工メカトロシステムズ株式会社 糖液製造装置、発酵システム、糖液製造方法及び発酵方法
CA2868572C (en) 2012-03-29 2015-04-28 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass processing system, saccharide solution production method using biomass feedstock, alcohol production method
JP6307789B2 (ja) 2013-01-07 2018-04-11 東レ株式会社 糖液の製造装置及び糖液の製造方法
WO2016198651A2 (en) * 2015-06-12 2016-12-15 Lantmännen Ek För Enzymatic-assisted hydrothermal extraction of hemicelluloses
KR101695702B1 (ko) * 2015-07-09 2017-01-23 한국에너지기술연구원 2세대 바이오 매스의 6탄당을 이용한 저등급 석탄의 고품위화 방법
JP6246876B2 (ja) * 2016-08-24 2017-12-13 三菱日立パワーシステムズ環境ソリューション株式会社 バイオマス原料の処理方法、バイオマス原料を用いた糖液生産方法、アルコールの製造方法及び有機原料の製造方法
CN107828629B (zh) * 2017-12-08 2021-04-09 中国环境科学研究院 高固含率有机物水解产酸***和方法
CN108455754B (zh) * 2018-02-24 2022-01-07 北京林业大学 一种水热酸解用于处理植物原料预水解液的方法
CN111410352A (zh) * 2020-04-02 2020-07-14 四川深蓝环保科技有限公司 一种资源型城市生物质水热滤液制备碳源***及工艺方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168335A (ja) * 2003-12-09 2005-06-30 National Institute Of Advanced Industrial & Technology 各種リグノセルロース資源からのエタノール生産システム
JP2006136263A (ja) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology リグノセルロース系バイオマス処理方法
JP2008104452A (ja) * 2006-09-29 2008-05-08 Kumamoto Univ アルコール生産システムおよびアルコール生産方法
JP2009183154A (ja) * 2008-02-01 2009-08-20 Mitsubishi Heavy Ind Ltd バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP2009183805A (ja) * 2008-02-01 2009-08-20 Mitsubishi Heavy Ind Ltd バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP2009183153A (ja) * 2008-02-01 2009-08-20 Mitsubishi Heavy Ind Ltd バイオマス原料を用いた有機原料の製造システム及び方法

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985728A (en) 1974-01-02 1976-10-12 Westvaco Corporation Carboxymethylated materials derived from wood molasses and process for making same
US4152197A (en) 1974-09-23 1979-05-01 Mo Och Domsjo Ab Process for preparing high-yield cellulose pulps by vapor phase pulping an unpulped portion of lignocellulosic material and a partially chemically pulped portion
CH585794A5 (ja) 1974-12-03 1977-03-15 Sulzer Ag
US4384897A (en) 1981-11-23 1983-05-24 The Regents Of The University Of California Method of treating biomass material
EP0098490B1 (de) 1982-07-05 1989-01-25 Erne-Fittings Gesellschaft M.B.H. & Co. Verfahren und Vorrichtung zur Gewinnung von Cellulose, einfachen Zuckern und löslichen Ligninen aus pflanzlicher Biomasse
HU197774B (en) 1983-02-16 1989-05-29 Laszlo Paszner Organic solvent process for the hydrolytic saccharification of vegetable materials of starch type
US4746401A (en) 1983-09-29 1988-05-24 Georgia Tech Research Corp. Process for extracting lignin from lignocellulosic material using an aqueous organic solvent and an acid neutralizing agent
JPS60186292A (ja) 1983-10-21 1985-09-21 Res Assoc Petroleum Alternat Dev<Rapad> エタノ−ルの醗酵生産方法
US4650689A (en) 1985-03-25 1987-03-17 Urban Fuels, Inc. Process for ethanol production from cellulosic materials
DE3716434C1 (de) 1987-05-16 1988-12-08 Hans-Georg Huber Vorrichtung zum Entfernen von Rechen- und/oder Siebgut aus in einem Gerinne stroemender Fluessigkeit
US5411594A (en) 1991-07-08 1995-05-02 Brelsford; Donald L. Bei hydrolysis process system an improved process for the continuous hydrolysis saccharification of ligno-cellulosics in a two-stage plug-flow-reactor system
SE469536B (sv) 1991-12-05 1993-07-19 Vattenfall Energisyst Ab Saett och anordning foer inmatning av fragmenterat material till behaallare under tryck
US5348871A (en) * 1992-05-15 1994-09-20 Martin Marietta Energy Systems, Inc. Process for converting cellulosic materials into fuels and chemicals
US5424417A (en) 1993-09-24 1995-06-13 Midwest Research Institute Prehydrolysis of lignocellulose
PT741794E (pt) 1993-12-23 2004-10-29 Controlled Environment Syst Processo de producao de etanol comercial
EP0832276B1 (en) 1995-06-07 2005-03-02 Arkenol, Inc. Method of strong acid hydrolysis
US6022419A (en) 1996-09-30 2000-02-08 Midwest Research Institute Hydrolysis and fractionation of lignocellulosic biomass
JP2001170601A (ja) 1999-12-17 2001-06-26 Noritsu Koki Co Ltd バイオマス系廃棄物処理方法
US6419788B1 (en) 2000-08-16 2002-07-16 Purevision Technology, Inc. Method of treating lignocellulosic biomass to produce cellulose
JP3802325B2 (ja) 2000-08-23 2006-07-26 信行 林 植物系バイオマスの加圧熱水分解方法とそのシステム
JP4348898B2 (ja) 2002-04-24 2009-10-21 株式会社Ihi 有機物の処理方法及び処理装置
JP2004105855A (ja) 2002-09-18 2004-04-08 Kurita Water Ind Ltd 食品廃棄物の処理方法および装置
JP2005027541A (ja) 2003-07-09 2005-02-03 Toshiba Corp 単糖類及び/又はオリゴ糖類の製造方法及び木質成分の分離方法
US7504245B2 (en) 2003-10-03 2009-03-17 Fcstone Carbon, Llc Biomass conversion to alcohol using ultrasonic energy
EP1709184A1 (en) 2003-12-01 2006-10-11 Swetree Technologies Ab Fermentation process, starter culture and growth medium
JP2005205252A (ja) 2004-01-20 2005-08-04 Kobe Steel Ltd バイオマスを含む高濃度スラリー、および高濃度スラリーの製造方法、並びにバイオマス燃料の製造方法
JP2005229821A (ja) 2004-02-17 2005-09-02 Jgc Corp バイオマスから単糖を製造する方法及び単糖製造装置
JP2006036977A (ja) 2004-07-28 2006-02-09 Jgc Corp バイオマスの改質方法および改質装置
JP2006223152A (ja) 2005-02-16 2006-08-31 Hitachi Zosen Corp セルロース溶剤による溶解と加水分解の組合せによるバイオマス処理方法
JP2006289164A (ja) 2005-04-06 2006-10-26 Agri Future Joetsu Co Ltd バイオマス由来成分が分散した液状組成物、その製造方法及びこの液状組成物から製造される製品
MX343301B (es) 2005-07-19 2016-11-01 Inbicon As Metodo y aparato para conversion de material celulosico a etanol.
JP2007112880A (ja) 2005-10-19 2007-05-10 National Univ Corp Shizuoka Univ 燃料化装置及び燃料の製造方法
EP2479341A1 (en) 2006-05-08 2012-07-25 Vertichem Corporation Process for the production of biofuel from plant material
JP2007301472A (ja) 2006-05-11 2007-11-22 Oji Paper Co Ltd バイオマス連続的加圧熱水処理方法
US20080026431A1 (en) 2006-07-19 2008-01-31 Taisei Corporation Method for saccharification of woody biomass
CN101522760A (zh) 2006-08-07 2009-09-02 艾米塞莱克斯能源公司 从生物质中回收全纤维素和近天然木质素的方法
JP4565164B2 (ja) 2006-08-31 2010-10-20 独立行政法人産業技術総合研究所 糖製造方法、エタノール製造方法及び乳酸製造方法
JP2008278825A (ja) 2007-05-11 2008-11-20 Chuo Kakoki Kk バイオエタノールの製造方法
CA2691524A1 (en) 2007-06-20 2008-12-24 Nagarjuna Energy Private Limited A process for separating biomass components
CA2654306C (en) 2008-02-01 2013-10-15 Mitsubishi Heavy Industries, Ltd. Biomass hydrothermal decomposition apparatus and method
CA2660990C (en) 2008-02-01 2014-01-14 Mitsubishi Heavy Industries, Ltd. Biomass hydrothermal decomposition apparatus, method thereof, and organic material production system using biomass material
WO2009102609A1 (en) 2008-02-12 2009-08-20 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Thermochemical treatment of lignocellulosics for the production of ethanol
RU2525140C2 (ru) 2008-04-03 2014-08-10 Сельюлоуз Сайенсиз Интернэшнл, Инк. Способ дезагрегирования и декристаллизации целлюлозного материала и продукт, полученный указанным способом
US7931784B2 (en) 2008-04-30 2011-04-26 Xyleco, Inc. Processing biomass and petroleum containing materials
JP5233452B2 (ja) 2008-07-08 2013-07-10 王子ホールディングス株式会社 糖化発酵システム
BRPI0822998B8 (pt) 2008-10-02 2022-10-18 Mitsubishi Heavy Ind Ltd Sistema e método para produção de material orgânico utilizando material de biomassa
WO2010060052A2 (en) 2008-11-21 2010-05-27 North Carolina State University Production of ethanol from lignocellulosic biomass using green liquor pretreatment
PT2421911E (pt) 2009-04-23 2014-09-17 Greenfield Ethanol Inc Separação de celulose reactiva a partir de biomassa lenhinocelulósica com elevado teor de lenhina
WO2011028554A1 (en) 2009-08-24 2011-03-10 Abengoa Bioenergy New Technologies, Inc. Method for producing ethanol and co-products from cellulosic biomass
US8597431B2 (en) 2009-10-05 2013-12-03 Andritz (Usa) Inc. Biomass pretreatment
BR112012008513B1 (pt) 2009-10-13 2019-03-19 Purdue Research Foundation Processo para a conversão de biomassa em etanol, processo para a separação de material contendo energia das correntes de processo do processo de conversão de biomassa em etanol e processo para a recuperação de um material combustível queimável
US9102956B2 (en) 2010-03-10 2015-08-11 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
WO2012004895A1 (ja) 2010-07-09 2012-01-12 三菱重工業株式会社 バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
US9422519B2 (en) 2010-07-09 2016-08-23 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass hydrothermal decomposition system and saccharide-solution production method using biomass material
CN103189521B (zh) 2010-08-31 2015-11-25 王子控股株式会社 含木质纤维素的生物质的酶解糖化处理方法以及由含木质纤维素的生物质制造乙醇的方法
BR112014013236A2 (pt) 2011-12-02 2017-06-13 Bp Corp North America Inc composições e métodos para liquefação de biomassa
EP2601990A1 (en) 2011-12-08 2013-06-12 Sanofi-Aventis Deutschland GmbH Syringe carrier
US9523104B2 (en) 2013-03-12 2016-12-20 Butamax Advanced Biofuels Llc Processes and systems for the production of alcohols

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168335A (ja) * 2003-12-09 2005-06-30 National Institute Of Advanced Industrial & Technology 各種リグノセルロース資源からのエタノール生産システム
JP2006136263A (ja) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology リグノセルロース系バイオマス処理方法
JP2008104452A (ja) * 2006-09-29 2008-05-08 Kumamoto Univ アルコール生産システムおよびアルコール生産方法
JP2009183154A (ja) * 2008-02-01 2009-08-20 Mitsubishi Heavy Ind Ltd バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP2009183805A (ja) * 2008-02-01 2009-08-20 Mitsubishi Heavy Ind Ltd バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP2009183153A (ja) * 2008-02-01 2009-08-20 Mitsubishi Heavy Ind Ltd バイオマス原料を用いた有機原料の製造システム及び方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184107A (ja) * 2012-03-07 2013-09-19 Osaka Gas Co Ltd 茶滓含有排水の可溶化方法
JPWO2013172446A1 (ja) * 2012-05-18 2016-01-12 東レ株式会社 糖液の製造方法
WO2014010048A1 (ja) * 2012-07-11 2014-01-16 三菱重工メカトロシステムズ株式会社 バイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法
JP5911154B2 (ja) * 2012-07-11 2016-04-27 三菱重工メカトロシステムズ株式会社 バイオマス原料を用いた糖液生産システム及びバイオマス原料を用いた糖液生産方法
US9982283B2 (en) 2012-07-11 2018-05-29 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Saccharide solution production system, saccharide solution production method using biomass raw material, and alcohol production method using biomass raw material
US10174281B2 (en) 2013-02-28 2019-01-08 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass treatment system
JP2017505633A (ja) * 2014-01-16 2017-02-23 デパートメント オブ バイオテクノロジー バイオマスからの可溶性糖の製造プロセス
KR101605483B1 (ko) 2014-02-24 2016-03-22 주식회사 창해에탄올 고농도 발효성당의 제조장치, 이를 이용한 고농도 발효성당의 제조방법, 그리고 이를 이용하여 제조된 바이오화학물질

Also Published As

Publication number Publication date
JP4764527B1 (ja) 2011-09-07
CA2750753C (en) 2018-06-12
US9850511B2 (en) 2017-12-26
CA2750753A1 (en) 2012-01-09
BRPI1009205B1 (pt) 2021-04-20
US20120009626A1 (en) 2012-01-12
JPWO2012004895A1 (ja) 2013-09-02
BRPI1009205A2 (pt) 2016-04-26

Similar Documents

Publication Publication Date Title
JP4764527B1 (ja) バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
JP4764528B1 (ja) バイオマスの水熱分解システム及びバイオマス原料を用いた糖液生産方法
US9238827B2 (en) Biomass hydrothermal decomposition apparatus and method
WO2011111190A1 (ja) バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム
JP6203815B2 (ja) バイオマスの処理システム
JP5425348B1 (ja) バイオマスの処理システム、バイオマス原料を用いた糖液生産方法、アルコール製造方法
JP6246876B2 (ja) バイオマス原料の処理方法、バイオマス原料を用いた糖液生産方法、アルコールの製造方法及び有機原料の製造方法
JP5911154B2 (ja) バイオマス原料を用いた糖液生産システム及びバイオマス原料を用いた糖液生産方法
JP5517560B2 (ja) バイオマス原料を用いた有機原料の製造システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010547767

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2750753

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13203929

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854449

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1009205

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI1009205

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110921