WO2012003563A1 - Composições farmacêuticas antineoplásicas contendo compostos nitroaromáticos substituídos - Google Patents

Composições farmacêuticas antineoplásicas contendo compostos nitroaromáticos substituídos Download PDF

Info

Publication number
WO2012003563A1
WO2012003563A1 PCT/BR2011/000221 BR2011000221W WO2012003563A1 WO 2012003563 A1 WO2012003563 A1 WO 2012003563A1 BR 2011000221 W BR2011000221 W BR 2011000221W WO 2012003563 A1 WO2012003563 A1 WO 2012003563A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic
heteroaromatic
aryl
alkyl
branching
Prior art date
Application number
PCT/BR2011/000221
Other languages
English (en)
French (fr)
Other versions
WO2012003563A4 (pt
Inventor
Renata Barbosa De Oliveira
Ricardo José Alves
Maria Betânia FREITAS MARQUES
Mônica CRISTINA DE OLIVEIRA
Cristina Duarte Vianna Soares
Lucas REIS FELÍCIO
Elaine Amaral Leite
Marcela Silva Lopes
Elaine De Souza Fagundes
Camila Frizzola De Andrade
Original Assignee
Universidade Federal De Minas Gerais - Ufmg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal De Minas Gerais - Ufmg filed Critical Universidade Federal De Minas Gerais - Ufmg
Priority to PCT/BR2011/000221 priority Critical patent/WO2012003563A1/pt
Publication of WO2012003563A1 publication Critical patent/WO2012003563A1/pt
Publication of WO2012003563A4 publication Critical patent/WO2012003563A4/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/77Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
    • C07C233/78Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/57Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C205/58Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton the carbon skeleton being further substituted by halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/67Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/68Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/69Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom of an acyclic saturated carbon skeleton

Definitions

  • the present invention describes antineoplastic pharmaceutical compositions comprising substituted nitroaromatic compounds.
  • the compositions may be used in the treatment of early stage neoplasms or in combination with other antitumor drugs in later stages of the disease.
  • Solid tumors such as lung, colon and breast carcinomas
  • hypoxic cells present in solid tumors may limit the effectiveness of radiotherapy.
  • These same cells may also be resistant to many of the commercially available chemotherapeutic agents.
  • this apparent obstacle can be explored for the design of agents with selective cytotoxicity for hypoxic cells (Cerecetto, H., Gonzalez, M., Lavaggi, ML Development of Hypoxia Selective Cytotoxins for Cancer Treatment: An Update. Med. Chem. 2, 315, 2006. Papadopoulou, MV, Bloomer, WD Exploiting hypoxia in solid tumors with DNA-targeted bioreductive drugs Drugs Fut 29, 807, 2004.
  • Wouters BG, Weppler, S.A, Koritzinsky, M., Landuyt, W., Nuyts, S., Theys, J., Chiu, RK, Lambin, P. Hypoxia as a target for combined modality treatments (Eur. J. Cancer. 38, 240, 2002).
  • hypoxic cell regions could have a greater reduction capacity than well-oxygenated cell regions.
  • hypoxic cells in solid tumors could exist in a microenvironment that would allow reductive processes to occur. Therefore, it was concluded that these characteristics of hypoxia cells could be explored in the development of chemotherapeutic agents, which would only become cytotoxic after metabolic activation.
  • nitroaromatics to act as bioreducible agents
  • these compounds can be used as hypoxia cell selectivity prodrugs (Abreu, F. C; Ferraz, PA L; Goulart, MOFJ Braz. Chem Soc. V. 13, pp. 19-35, 2002; Hay, MP et al., J. Med. Chem. V. 38, pp. 1928-1941, 1995).
  • the 4-bromomethyl-3-nitrobenzoic acid compound is widely used as a substrate in syntheses.
  • Zhang et al described the use of 4-bromomethyl-3-nitrobenzoic acid as a key precursor of benzodiazepine-2-3-dione through a four step sequence including nucleophilic displacement, acylation, simultaneous cyclization reduction and alkylation (Zhang Jinfang; Lou Boliang; Saneii Hossain Application of polymer-bound 4- (bromomethyl) -3-nitrobenzoic acid for synthesis of trisubstituted 1,4-benzodiazepine-2,3-diones Molecular Diversity (2003), 6, 13-17.
  • Oliveira et al evaluated the activity of aromatic nitrocompounds against Trypanossama cruzi, including the trypanocidal activity of 4-bromomethyl-3-nitrobenzoic acid (RB Oliveira, APF Passos, RO Alves, AJ Romanha, .AF Prado, J. Dias de Souza Filho and RJ Alves, Mem. Inst. Oswaldo Cruz (2003), 98, p. 141).
  • EP 866709 discloses a parenteral pharmaceutical composition containing tirapazamine for treating cancer, especially solid tumors, used alone or in combination with radiotherapy or other chemotherapeutic agents.
  • Patent application WO2008118150 discloses a method for treating, preventing or ameliorating hyperprollferative disorders by determining the level of nitric oxide synthase in body fluids and the subsequent administration of bioreducible substances, including banoxantrone.
  • Treatment of cancer patients using hypoxic cell-selective bioreducible substances is under investigation, but these substances are not yet commercially available.
  • New options for substances showing selectivity for hypoxia tumor cells are important in an attempt to overcome the disadvantages of currently investigated options, such as normal cell toxicity, inadequate physicochemical properties, and the need for association with classic antitumor drugs.
  • Figure 13 Comparison between tumor weights of Control Group (Group 1), AANC-treated Group (Group 2) and AANC-DHA-treated Group (Group 3).
  • Figure 14 Structural formulas of nitrocomposites used for activity assays against tumor cell lines and PBMC.
  • the present invention describes substituted nitroaromatic containing antineoplastic pharmaceutical compositions having the structural formula of Figure 1.
  • the substituent "X" of Figure 1 being selected from the group comprising COOH, SO 3 H, tetrazoyl, CHO, CH 3, CH 2 OH, CN, COOR, CONHR, SONHR, NHSO 2 R, NHCOOR, where R may be H, (C 2 to C 30 alkyl, with or without branching); aryl (aromatic or heteroaromatic); alkyl aryl (C-2 to C-30, with or without branching, aromatic or heteroaromatic).
  • substituent "Y" of Figure 1 is selected from the group comprising H, F, Cl, Br, I, OH, N 3 , OPO (OR) 2 , NHR, NR 2 , NR 3 , OSO 2 R, OSO 2 Ar, OAr, OCOR, OCON, SH, SR, SAr; where R may be H, (C-2 to C-30 alkyl, with or without branch); aryl (aromatic or heteroaromatic); alkyl aryl (C-2 to C-30, with or without branching, aromatic or heteroaromatic).
  • compositions of the present invention are characterized by the use of substituted nitroaromatic combined with pharmaceutically acceptable excipients.
  • Standard compositions may be liquid, solid or semi-solid.
  • the liquid preparations may be in solution, suspension, emulsion, parenteral or oral form.
  • excipients include methylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polymers derived from acrylic and methacrylic acid, polyethylene glycols, solid vaseline, solid paraffin, lanolin, vegetable oils, mineral oil, cetyl alcohol, sterile alcohol, cetostearyl alcohol, glyceryl monostearate, wax of cetyl esters, nonionic and anionic self-emulsifying wax and sodium lauryl sulfate, for semi-solid dosage forms.
  • Binders disintegrants, diluents, lubricants, surfactants such as cellulose, lactose, starch, mannitol, magnesium stearate, talc, colloidal silicon dioxide, magnesium oxide and kaolin for solid preparations.
  • solubilizers and surfactants such as glycerine, propylene glycol and sucrose may be used.
  • water for injections may be used.
  • Excipients may also contain minor amounts of additives such as isotonicity and chemical stability enhancing substances such as preservatives, chelators and stabilizers, examples of such substances include phosphate buffer, bicarbonate buffer and Tris buffer, thimerosal, m- or o-cresol, formalin, alcohol benzyl, parabens, EDTA, BHA, BHT; in addition to sweeteners, colorings and flavorings.
  • compositions may be administered intramuscularly, intravenously, topically, orally, by inhalation or as devices that may be implanted or injected.
  • the compositions may be used in the treatment of early-stage neoplasms or in combination with drugs with established antitumor activity at later stages of the disease.
  • Example 1 Preparation and characterization of ANB inclusion complexes: HP- ⁇ -CD
  • HP-CD inclusion complex was prepared by mixing HP- ⁇ -CD and ANB ( Figure 2) in water and acetone at a 1: 1 molar ratio. The mixture was stirred for 2 hours at room temperature. Subsequently, the acetone was evaporated and the resulting mixture was lyophilized. The lyophilized powder was kept in a desiccator under vacuum.
  • the pure ANB DSC curve ( Figure 3) shows an endothermic event at 134.6 ° C corresponding to the ANB fusion peak and the exothermic event at 183.07 ° C corresponding to its degradation product, indicating that The substance is unstable at temperatures above 150 ° C (temperature at which substance begins the degradation process).
  • the DSC curves of the complex ( Figure 4) and the physical mixture ( Figure 5) were very similar.
  • Figure 6 shows the C- ⁇ -CD DSC curve.
  • the endothermic event at ⁇ 42 ° C related to water loss, only exothermic events above 180 ° C are observed, corresponding to the formation of degradation products. The intensity of these peaks is lower in the DSC curve of the complex ( Figure 4), which may indicate greater protection of the substance within the DC cavity.
  • the ANB: HP-p-CD inclusion complex presented a type A solubility diagram, ie when the solubility of the substrate increases with increasing CD concentration ( Figure 7). A linear increase in soluble ANB concentration is observed with the increase in ⁇ - ⁇ -CD concentration. This type of diagram is characteristic of the formation of soluble inclusion complex.
  • Example 2 Evaluation of ANB's in vivo antitumor activity and its inclusion complex
  • ANB was administered in a group of 11 animals at a dose of 50 mg / kg, solubilized in saline containing PEG 400 (polyethylene glycol) (40%), 5 in tumors with volumes of 250 and 6 with volume of 400 mm 3 . The same number of animals was used in the control group.
  • the 50 mg / kg ANB: HP-CD complex was administered to 4 animals and the same number of animals were used as controls.
  • T x (L) 2/2 Tumor volumes (mm 3 ) were calculated from measurements of their size (T) and width (L). The tumor volume was then determined using the formula T x (L) 2/2 (Viale, M. Vannozzi, MO, Merlo, F., Cafaggi, S., Parodi, B. Esposito, M. Cisplatin Combined with the New Cisplatin-Procaine Complex DPR: In Vitro and In Vitro Studies (Eur. J. Cancer 32A, 2327, 1996). The animals had free access to water and feed and were kept in an environment with light cycle control.
  • Example 3 Preparation of inclusion complexes in cyclodextrins and solid lipid nanoparticles containing ANB
  • inclusion complexes in cyclodextrins and solid lipid nanoparticles (NLS) containing ANB were prepared. Because it is a carboxylic acid, ANB ionizes the pH used in the preparation of NLS, which made it difficult to incorporate it into the oil phase of the formulation. To work around this problem, methyl 4-bromomethyl-3-nitrobenzoate (ENB), the methyl ester of ANB ( Figure 12), which is easily incorporated into the oil phase and can be prepared can be prepared. considered as a prodrug, ie will release the ANB after ester hydrolysis in vivo.
  • ENB 4-bromomethyl-3-nitrobenzoate
  • Figure 12 the methyl ester of ANB
  • the NLS will be prepared by the hot homogenization technique.
  • the nitroaromatic to be incorporated (ENB) will be dispersed in the molten oil phase.
  • the oily (FO) and aqueous (FA) phases will be pre-weighed and heated separately to a temperature of 75 ° C.
  • the AF will be slowly poured into the FO using Ultra Turrax T-25 homogenizer (Ika Labortechnik, Germany) while stirring at 11000 rpm for 5 minutes.
  • the NLS will be sonicated at 21% amplitude (Ultra-cell, 750 W; Sonics Materials Inc., USA) for 5 minutes.
  • the pH of the formulation will be adjusted with 0.1 M HCl solution to obtain the final pH between 7-7.5.
  • the NLS will be packed in an amber bottle and kept in the refrigerator.
  • the synthesis of new ANB derivatives was performed. Improved bioavailability of a substance may result in a decrease in the effective dose and, consequently, a decrease in the possible toxic effects.
  • the activity of the new synthesized nitrocompounds was evaluated in vitro using 3 human tumor cell lines: HL60 (leukemia), Jurkat (lymphoma) and MCF-7 (breast tumor). The toxicity of the substances to normal cells was also assessed using peripheral blood mononuclear cells (PBMC).
  • PBMC peripheral blood mononuclear cells
  • PBMC Human peripheral blood mononuclear cells
  • AANC 4- (Chloromethyl) -3-nitro-N- (2-hydroxyethyl) benzamide
  • PBMC normal cells
  • DHA cis-4, 7, 10,13, 16,19-docosahexanoic acid
  • Figure 11 Some natural fatty acids, such as DHA, are eagerly consumed by tumor cells for use as biochemical precursors or energy sources.
  • certain essential fatty acids also exhibit synergism with antitumor drugs.
  • Example 5 Evaluation of antitumor activity of AANC and its DHA conjugate in vivo
  • AANC and its DHA conjugate were evaluated in vivo using Ehrlich solid tumor bearing mice.
  • AANC and AANC-DHA were administered to a group of 5 animals at a dose of 30 mg / kg. Both were solubilized in saline containing 35% PEG 400 and 5% Tween 80. The same number of animals was used in the control group. Doses were administered intratumorally twice a week for 14 days. Forty-eight hours after the end of treatment the animals were euthanized, the tumors were desiccated and weighed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

A presente invenção descreve composições farmacêuticas antineoplásicas compreendendo compostos nitroaromáticos substituídos. As composições podem ser utilizadas no tratamento de neoplasias em estágio inicial ou em associação com outros fármacos antitumorais em estágios mais avançados da doença.

Description

"COMPOSIÇÕES FARMACÊUTICAS ANTINEOPLÁSICAS CONTENDO COMPOSTOS NITROAROMÁTICOS SUBSTITUÍDOS"
CAMPO DA INVENÇÃO
A presente invenção descreve composições farmacêuticas antineoplásicas compreendendo compostos nitroaromáticos substituídos. As composições podem ser utilizadas no tratamento de neoplasias em estágio inicial ou em associação com outros fármacos antitumorais em estágios mais avançados da doença.
ESTADO DA TÉCNICA
Os tumores sólidos, tais como os carcinomas de pulmão, cólon e mama, constituem os principais tipos de câncer do homem. Existem consideráveis evidências de que a existência de células em condições de hipoxia, presentes nos tumores sólidos, possa limitar a eficácia da radioterapia. Estas mesmas células podem, também, ser resistentes a muitos dos agentes quimioterápicos disponíveis no mercado. Entretanto, este aparente obstáculo pode ser explorado para o planejamento de agentes com citotoxicidade seletiva para células em hipoxia (Cerecetto, H., Gonzalez, M., Lavaggi, M. L. Development of Hypoxia Selective Cytotoxins for Câncer Treatment: An Update. Med. Chem. 2, 315, 2006. Papadopoulou, M. V., Bloomer, W. D. Exploiting hypoxia in solid tumors with DNA-targeted bioreductive drugs. Drugs Fut 29, 807, 2004. Wouters, B. G., Weppler, S. A, Koritzinsky, M., Landuyt, W., Nuyts, S., Theys, J., Chiu, R. K., Lambin, P. Hypoxia as a target for combined modality treatments. Eur. J. Câncer. 38, 240, 2002).
Em 1972, Lin e colaboradores levantaram a hipótese de que as regiões de células em hipoxia poderiam apresentar uma maior capacidade de redução do que as regiões de células bem oxigenadas. Por analogia, células em condições de hipoxia nos tumores sólidos poderiam existir em um microambiente que propiciaria a ocorrência de processos redutivos. Concluiu- se, portanto, que estas características das células em hipoxia poderiam ser exploradas no desenvolvimento de agentes quimioterápicos, os quais só se tornariam citotóxicos após ativação metabólica. A partir daí, o conceito de ativação biorredutiva de substâncias em células em hipoxia tem sido extensivamente estudado (Dai, J., Liu, Y., Zhou, Y., Nagle, D. G. Hypoxia- selective antitumor agents: norsesterterpene peroxides from the marine sponge Diacarnus /ev//' preferentially suppress the growth of tumor cells under hypoxic conditions. J. Nat. Prod. 70, 130, 2007. Lalani, A. S., Alters, S. E., Wong, A., Albertella, M. R., Cleland, J. L, Henner, W. D. Selective tumor targeting by the hypoxia-activated prodrug AQ4N blocks tumor growth and metastasis in preclinical models of pancreatic câncer. Clin. Câncer Res. 13, 2216, 2007. Yamazakil, Y., Kunimoto, S., Ikeda, D. Rakicidin A: A Hypoxia-Selective Cytotoxin. Biol. Pharm. Buli. 30, 261 , 2007. Anderson, R. F., Shinde, S. S., Hay, M. P., Gamage, S. A., Denny, W. A. Radical properties governing the hypoxia- selective cytotoxicity of antitumor 3-amino-1 ,2,4-benzotriazine 1 ,4-dioxides. Org. Biomol. Chem. 3, 2167, 2005).
A capacidade dos nitroaromáticos de atuarem como agentes biorredutíveis já é bem estabelecida e, portanto, esses compostos podem ser utilizados, como pró-fármacos com seletividade para células em hipoxia (Abreu, F. C; Ferraz, P. A. L; Goulart, M. O. F. J. Braz. Chem. Soe. v. 13, p. 19-35, 2002.; Hay, M. P. et al. J. Med. Chem. v. 38, p. 1928-1941 , 1995).
O conceito de ativação biorredutiva de substâncias em células em hipoxia tem sido extensivamente estudado (Dai, J. et al. J. Nat. Prod. v. 70, p. 130-133, 2007.; Lalani, A. S. et al. Clin. Câncer Res. v. 13, p. 2216-2225, 2007.; Yamazaki, Y. et al. A Hypoxia-Selective Cytotoxin. Biol. Pharm. Buli. v.30, p. 261 -265, 2007.; Cerecetto, H.; Gonzalez, M.; Lavaggi, M. L. Med. Chem. v. 2, p. 315-327, 2006) e, vale ressaltar que, atualmente, duas substâncias, a tirapazamina e o banoxantrona (AQ4N) estão em fase final de estudos de triagem clínica (Novacea. About AQ4N. Disponível em: http://www.redorbit.com/news/health/1255929/novaceas_proofofprinciple_study _of_aq4n_in_solid_tumors_published_in/index.html Acesso em 28 de março de 2009, Marcu, L; Olver, I. Curr. Clin. Pharmacol. v. 1 , p. 71-79, 2006). A atividade antitumoral para células em hipoxia de mostardas nitrogenadas derivadas da 2,5-dinitrobenzamida também está em investigação, com resultados promissores (Atwell, G. J. et aí. J. Med. Chem. v.50, p. 1 197-1212, 2007).
O composto ácido 4-bromometil-3-nitrobenzóico é muito utilizado como substrato em sínteses. Zhang et al descreveram a utilização do ácido 4- bromometil-3-nitrobenzóico como precursor chave da benzodiazepina-2-3- diona, por meio de uma sequência de quatro etapas, incluindo deslocamento nucleofílico, acilação, simultânea redução de ciclização e alquilação (Zhang Jinfang; Lou Boliang; Saneii Hossain Application of polymer-bound 4- (bromomethyl)-3-nitrobenzoic acid for synthesis of trisubstituted 1 ,4- benzodiazepine-2,3-diones. Molecular Diversity (2003), 6, 13-17.
Sun et al relataram a síntese em fase sólida de 3,4-hidro-2(1 H)- quinazolinonas e 3,4-diidro-1 H-quinazolina-2-tionas a partir de resina Rink, acilação do ácido 4-bromometil-3-nitrobenzóico e aminação com aminas primárias, redução com cloreto de estanho e ciclização (Sun, Q.; Zhou, X.; Kyle, D. J. Solid-phase synthesis of 3,4-dihydro-2(1 H)-quinazolinones and 3,4- dihydro-1 H-quinazolin-2-thiones. Tetrahedron Lett. (2001), 42(25), 4119-4121).
Adicionalmente, Oliveira et al avaliaram a atividade de nitrocompostos aromáticos contra Trypanossama cruzi, incluindo a atividade tripanocida do ácido 4-bromometil-3-nitrobenzóico (R.B. Oliveira, A.P.F. Passos, R.O. Alves, A.J. Romanha, .A.F. Prado, J. Dias de Souza Filho and RJ. Alves, Mem. Inst. Oswaldo Cruz (2003), 98, p. 141).
Atualmente encontramos disponíveis algumas patentes relativas à invenção:
Na patente EP 866709 está descrita uma composição farmacêutica parenteral contendo a tirapazamina para tratamento de câncer, em especial tumores sólidos, utilizada isoladamente ou em combinação com radioterapia ou outros agentes quimioterápicos.
No pedido de patente WO2008118150 está relatado um método para tratamento, prevenção ou melhora de desordens hiperprollferativas por meio da determinação do nível de óxido nítrico sintase em fluidos corporais, e a posterior administração de substâncias biorredutíveis, incluindo a banoxantrona. O tratamento de pacientes com câncer utilizando substâncias biorredutíveis com seletividade para células em hipoxia está em investigação, mas essas substâncias ainda não estão disponíveis no mercado. Novas opções de substâncias apresentando seletividade para células tumorais em hipoxia são importantes na tentativa de superar as desvantagens das opções atualmente investigadas, tais como, toxicidade para células normais, propriedades físico-químicas inadequadas, e necessidade de associação com fármacos antitumorais clássicos.
BREVE DESCRIÇÃO DAS FIGURAS
Figura 1 : Fórmula estrutural de compostos nitroaromáticos substituídos
Figura 2: Estrutura do ácido 4-bromometil-3-nitrobenzóico (ANB)
Figura 3: Curva de DSC (Calorimetria exploratória diferencial) do ANB puro Figura 4: Curva de DSC (Calorimetria exploratória diferencial) do complexo ANB: β-CD.
Figura 5: Curva de DSC (Calorimetria exploratória diferencial) da mistura física ANB: ΗΡ-β-CD
Figura 6: Curva de DSC (Calorimetria exploratória diferencial) da ΗΡ-β-CD
Figura 7: Diagrama de solubilidade ABN:HP- -CD
Figura 8: Gráfico de comparação de crescimento do tumor entre grupo controle e ANB na dose de 50 mg/Kg (n = 5) e volume inicial do tumor ~250 mm3.
Figura 9: Gráfico de comparação de crescimento do tumor entre grupo controle e ANB na dose de 50 mg/Kg (n = 6) e volume inicial do tumor ~ 400 mm3.
Figura 10: Gráfico de comparação de crescimento do tumor entre grupo controle e complexo ANB: ΗΡ-β-CD na dose de 50 mg/Kg (n = 4) e volume inicial do tumor ~400 mm3.
Figura 11: Conjugado AANC-DHA
Figura 12: Esquema de síntese do ENB, pró-fármaco do ANB
Figura 13: Comparação entre os pesos do tumor do Grupo Controle (Grupo 1), Grupo tratatado com AANC (Grupo 2) e Grupo tratado com AANC-DHA (Grupo 3). Figura 14: Formulás estruturais dos nitrocompostos utilizados para ensaios de atividade frente a linhagens de células tumorais e PBMC.
DESCRIÇÃO DETALHADA DA TECNOLOGIA
A presente invenção descreve composições farmacêuticas antineoplásicas contendo nitroaromáticos substituídos apresentando fórmula estrutural da Figura 1.
Sendo o substituinte "X" da Figura 1 selecionado do grupo compreendendo COOH, S03H, tetrazoil, CHO, CH3, CH2OH, CN, COOR, CONHR, SONHR, NHS02R, NHCOOR, onde R pode ser H, alquila (C-2 a C- 30, com ou sem ramificação); arila (aromático ou hetero-aromático); alquil-arila (C-2 a C-30, com ou sem ramificação, aromático ou hetero-aromático).
E o substituinte "Y" da Figura 1 selecionado do grupo compreendendo H, F, Cl, Br, I , OH, N3, OPO(OR)2, NHR, NR2, NR3, OSO2R, OSO2Ar, OAr, OCOR, OCON, SH, SR, SAr; onde R pode ser H, alquila (C-2 a C-30,com ou sem ramificação); arila (aromático ou hetero-aromático); alquil-arila (C-2 a C- 30, com ou sem ramificação, aromático ou hetero-aromático).
As composições da presente invenção caracterizam-se pelo uso de nitroaromático substituído combinado com excipientes farmaceuticamente aceitáveis. As composições padrões podem ser líquidas, sólidas ou semi- sólidas. Sendo que as preparações líquidas podem se apresentar na forma de solução, suspensão, emulsão, parenteral ou oral. As semi-sólidas na forma de géis, pomadas, cremes ou pastas e as sólidas na forma de cápsulas, comprimidos, drágeas ou pastilhas.
Exemplos de excipientes incluem metilcelulose, hidroxipropilcelulose, hidroxietilcelulose, carboximetilcelulose, polímeros derivados do ácido acrílico e metacrílico, polietilenoglicóis, vaselina sólida, parafina sólida, lanolina, óleos vegetais, óleo mineral, álcool cetílico, álcool esterílico, álcool cetoestearilico, monoestearato de glicerila, cera de ésteres cetílicos, cera autoemulsificante não iônica e aniônica e laurilsulfato de sódio, para formas farmacêuticas semi- sólidas. Aglutinantes, desintegrantes, diluentes, lubrificantes, tensoativos, como celulose, lactose, amido, manitol, estearato de magnésio, talco, dióxido de silício coloidal, oxido de magnésio e caulim, para preparações sólidas.
Para formas farmacêuticas líquidas podem ser utilizados solubilizantes e tensoativos, tais como glicerina, propilenoglicol e sacarose. Para preparações injetáveis pode ser utilizada água para injetáveis. Os excipientes também podem conter quantidades menores de aditivos como substâncias que aumentam a isotonicidade e estabilidade química como conservantes, quelantes e estabilizantes, exemplos dessas substâncias incluem tampão fosfato, tampão bicarbonato e tampão Tris, timerosal, m- ou o-cresol, formalina, álcool benzílico, parabenos, EDTA, BHA, BHT; além de edulcorantes, corantes e aromatizantes.
Essas composições podem ser administradas via intramuscular, intravenosa, tópica, oral, inalatória ou como dispositivos que possam ser implantados ou injetados. As composições podem ser utilizadas no tratamento de neoplasias em estágio inicial ou em associação com fármacos com atividade antitumoral já estabelecida em estágios mais avançados da doença.
A presente invenção pode ser mais bem entendida por meio dos seguintes exemplos, não limitantes da tecnologia: Exemplo 1 : Preparação e caracterização dos complexos de inclusão ANB:HP- β-CD
A) Preparação dos complexos de inclusão
O complexo de inclusão ANB:HP- -CD foi preparado misturando-se HP- β-CD e ANB (Figura 2) em água e acetona, na razão molar 1 :1. A mistura foi mantida sob agitação durante 2 horas à temperatura ambiente. Posteriormente, a acetona foi evaporada e a mistura resultante foi liofilizada. O pó liofilizado foi mantido em dessecador sob vácuo.
B) Caracterização dos complexos de inclusão por calorimetria exploratória diferencial (DSC) O complexo de inclusão ΗΡ-β-Οϋ:ΑΝΒ 1 :1 , a mistura física e as substâncias puras foram caracterizados por calorimetria exploratória diferencial (DSC).
Na curva DSC do ANB puro (Figura 3) observa-se um evento endotérmico em 134,6°C correspondente ao pico de fusão do ANB e o evento exotérmico em 183,07°C corresponde ao seu produto de degradação, o que indica que a substância é instável a temperaturas maiores que 150°C (temperatura em que substância inicia o processo de degradação). As curvas DSC do complexo (Figura 4) e da mistura física (Figura 5) foram muito semelhantes. Na Figura 6 pode-se observar a curva de DSC da ΗΡ-β-CD. Além do evento endotérmico em ~ 42°C, referente a perda de água, observa-se apenas eventos exotérmicos acima de 180° C, correspondente a formação de produtos de degradação. A intensidade desses picos é menor na curva DSC do complexo (Figura 4), o que pode indicar uma maior proteção da substância dentro da cavidade da CD.
C) Medida da isoterma de solubilidade
A concentração de ANB solúvel a diferentes concentrações de ΗΡ-β-CD está ilustrada na Tabela 1.
Tabela 1 : Concentração de ANB solúvel a diferentes concentrações de ΗΡ-β- CD
[ΗΡ-β-CD] mol/L [ANB] mol/L [ANB]solúvel mol/L
0,0 0,02 0,00069
0,004 0,02 0,00096
0,008 0,02 0,00127
0,010 0,02 0,00136
0,015 0,02 0,00171
0,02 0,02 0,00192
0,04 0,02 0,00242
0,06 0,02 0,00250
0,08 0,02 0,00238
0,01 0,02 0,00246 O complexo de inclusão ANB:HP-p-CD apresentou diagrama de solubilidade do tipo A, ou seja, quando a solubilidade do substrato aumenta com o incremento da concentração de CD (Figura 7). Observa-se um aumento linear da concentração de ANB solúvel com o aumento da concentração de ΗΡ-β-CD. Esse tipo de diagrama é característico da formação de complexo de inclusão solúvel.
Exemplo 2: Avaliação da atividade antitumoral in vivo do ANB e seu complexo de inclusão
A) Indução de tumor ascítico de Ehrlich em camundongos
Para indução do tumor ascítico foram utilizados três camundongos Swiss fêmeas com peso entre 25 e 30 gramas, para cada experimento. Células de Ehrlich que estavam conservadas em nitrogénio líquido foram descongeladas em banho de água na temperatura de 37°C. As mesmas foram transferidas para um tubo tipo Falcon, previamente limpo, e a este foi adicionado de maneira lenta e gradual, solução salina 0,9% até que o volume total da suspensão de células fosse de aproximadamente 20 ml. A suspensão foi imediatamente submetida à centrifugação durante 5 minutos, na temperatura de 5°C e velocidade de 3000 RPM. O meio no qual as células estavam conservadas foi retirado como sobrenadante. Foi feita a ressuspensão das células com auxílio de uma pipeta de Pasteur em cerca de 1 ,5 ml de solução salina 0,9% e em seguida a concentração de células na suspensão foi determinada utilizando-se a câmara de Neubauer. A suspensão foi diluída adequadamente e foram injetados, via intraperitoneal, 1x106 células em cada camundongo, em um volume total de 0,5ml.
B) Indução de tumor sólido de Ehrlich em camundongos
Inicialmente, 2 x 106 células tumorais de Ehrlich foram retiradas de camundongos com tumor ascítico e implantadas em camundongos Swiss fêmeas, apresentando um peso entre 20 e 25 gramas, por via subcutânea, dorso-lateralmente. Após 10 dias, os tumores foram medidos e as amostras a serem testadas foram administradas via intratumoral. C) Avaliação da atividade antitumoral em camundongos
O ANB foi administrado em um grupo de 11 animais na dose de 50 mg/kg, solubilizado em solução salina contendo PEG 400(polietilenoglicol) (40%), sendo 5 em tumores com volumes de 250 e 6 com volume de 400 mm3. O mesmo número de animais foi utilizado no grupo controle. O complexo ANB:HP- -CD na dose de 50 mg/kg foi administrado em 4 animais, sendo utilizado o mesmo número de animais como controle.
As doses foram administradas por via intratumoral, 2 vezes por semana, durante 3 semanas. Os volumes dos tumores (mm3) foram calculados a partir das medidas de seu tamanho (T) e largura (L). O volume do tumor foi, então, determinado utilizando a fórmula T x (L)2/2 (Viale, M., Vannozzi, M. O., Merlo, F., Cafaggi, S., Parodi, B., Esposito, M. Cisplatin Combined with the New Cisplatin-Procaine Complex DPR: In Vitro and In Vito Studies. Eur. J. Câncer 32A, 2327, 1996). Os animais tiveram acesso livre à água e ração e foram mantidos em ambiente com controle de ciclo de luz.
O ANB puro demonstrou atividade antitumoral quando comparado ao grupo controle, conforme pode ser visualizado nos gráficos das figuras 8 e 9. Observou-se ainda o desaparecimento do tumor sólido em um animal tratado com ANB. O animais tratados com ANB:HP- -CD apresentaram redução significativa do volume do tumor (Figura 10).
Exemplo 3: Preparo de complexos de inclusão em ciclodextrinas e nanopartículas lipídicas sólicas contendo ANB
Visando aumentar a estabilidade e a solubilidade em água de forma a facilitar a administração in vivo e melhorar a biodisponibilidade, foram preparados complexos de inclusão em ciclodextrinas e nanopartículas lipídicas sólidas (NLS) contendo o ANB. Por se tratar de um ácido carboxílico, o ANB ioniza do pH utilizado na preparação das NLS, o que dificultou sua incorporação na fase oleosa da formulação. Para contornar esse problema, foi preparado o 4-bromometil-3-nitrobenzoato de metila (ENB), o éster metílico do ANB (Figura 12), o qual é facilmente incorporado na fase oleosa e pode ser considerado como um pró-fármaco, ou seja, irá liberar o ANB após hidrólise do éster in vivo.
As NLS serão preparadas pela técnica de homogeneização a quente. Neste método, a nitroaromático a ser incorporado (ENB) será disperso na fase oleosa fundida. As fases oleosa (FO) e aquosa (FA) serão previamente pesadas e aquecidas separadamente até a temperatura de 75 °C. A FA será vertida lentamente sobre a FO, utilizando homogeneizador Ultra Turrax T-25 (Ika Labortechnik, Alemanha), mantendo-se uma agitação de 11000 rpm por 5 minutos. Posteriormente, as NLS serão submetidas à ultra-sonicação, com uma potência de 21% de amplitude (Ultra-cell, 750 W; Sonics Materials Inc., USA) por 5 minutos. Após resfriamento a temperatura ambiente, o pH da formulação será ajustado com solução de HCI 0,1 M a fim de obter o pH final entre 7-7,5. As NLS serão acondicionadas em frasco-âmbar e mantidas na geladeira.
Exemplo 4: Síntese e caracterização de derivados de ANB
Na busca de novas substâncias bioativas, apresentando maior potência e melhores propriedades físico-químicas, realizou-se a síntese de novos derivados do ANB. A melhoria da biodisponibilidade de uma substância pode resultar em uma diminuição da dose efetiva e, consequentemente, diminuição dos possíveis efeitos tóxicos. Inicialmente, avaliou-se in vitro a atividade dos novos nitrocompostos sintetizados, utilizando-se 3 linhagens de células tumorais humanas: HL60 (leucemia), Jurkat (linfoma) e MCF-7 (tumor de mama). A toxicidade das substâncias para as células normais também foi avaliada, utilizando-se células mononucleares do sangue periférico (PBMC).
As células mononucleares do sangue periférico humano (CMSP) serão separadas conforme o método descrito por Souza-Fagundes e colaboradores (Souza-Fagundes et ai, Intern. Immunopharmacol. 3, 383-392, 2003). A análise do fenótipo das populações de leucócitos do sangue periférico (linfócitos-T, B, monócitos e células-NK, granulócitos), tratadas ou não com as nitrocompostos, foram realizadas por meio do estudo de marcadores de superfície celular, após marcação com anticorpos monoclonais conjugados à ficoeritrina (PE) ou isotiocianato de fluoresceína (FITC). Quinhentos microlitos do sangue periférico foi diluído com RPMI e cultivado em tubos de polipropileno na presença ou não de diferentes concentrações das amostras por 14 horas a 37° C em atmosfera de 5% de CO2. Após a incubação, as amostras foram submetidas à etapa de lise dos eritrócitos utilizando-se 2 ml de solução de lise comercial (Facs Lysing Solution - Becton Dickinson) diluída 10 vezes em água destilada. Após a lise, as amostras foram centrifugadas a 400 g por 10 minutos à 18°C. O sobrenadante foi desprezado e as células homogeneizadas em 400 μΙ_ de PBS 0,015 M contendo 0,01 % de azida de sódio. Esta suspensão foi dividida nos diferentes tubos contendo os anticorpos já diluídos ( 00μΙ por tubo) e incubada a temperatura ambiente por 30 minutos. Após o período de incubação, essas células foram lavadas com PBS 0,015 M contendo 0,01% de azida de sódio, ressuspendidas em 300 μΙ de uma solução contendo paraformaldeído, 1%, cacodilato de sódio 1% e NaCI 0,67%, em PBS, sendo fixadas por, no mínimo, 30 minutos e mantidas a 4o C até a análise por citometria de fluxo. Os dados foram adquiridos usando um citometro de fluxo FACscan (Becton-Dickinson Immunocytometry Systems, San Jose, CA, US) e a identificação das populações celulares de interesse, bem como a determinação do valor percentual de populações e subpopulações celulares foram realizadas utilizando-se o programa Cell-Quest. Os resultados obtidos estão ilustrados na Tabela 2.
Tabela 2 - Resultados dos ensaios de atividade frente a linhagens de células tumorais e PBMC utilizando os compostos derivados (figura 14)
Composto R1 R2 R3 IC50 (uM)
HL60 Jurkat MCF-7 PBMC
ABB OH H Br 36,30 >100 23,63 88,75
ANB OH N02 Br 72,71 68,95 44,09 >100
ANBEM OCH3 N02 Br 90, 13 > 80 - 44,06
ANOH OH N02 OH >100 >100 - > 100
EANB NH(CH2)2OH N02 Br 14,92 53,28 30,54 53,87
AANC NH(CH2)2OH N02 Cl 9,09 19,36 79,89 >100
AAMs NH(CH2)2CI N02 Cl 49,23 85 63 >100
AANEB NH(CH2)202C(CH2)2CH3 N02 Cl 15,96 >100 29,54 -
ASNCI NH(CH2)2OH H Cl >100 >100 >100 >100
DIAANC - - - 9,36 30,20 22,92 - etoposídeo - - - 8,419 2,471 > 100 > 100 Até o momento, foram sintetizadas e testadas 12 substâncias das quais 7 apresentaram atividade citotóxica significativa, sendo mais ativas do que o etoposídeo (controle positivo) contra a linhagem de células de tumor de mama (MCF-7). A síntese de uma nova série de moléculas está em andamento.
A 4-(clorometil)-3-nitro-N-(2-hidroxietil)benzamida (AANC) apresentou atividade significativa contra as 3 linhagens de células tumorais, sendo mais ativa contra as linhagens HL60 e Jurkat. Além disso, a AANC apresentou baixa toxidade para as células normais (PBMC), o que a torna um protótipo promissor para estudos adicionais in vivo. Além disso, a presença do grupo hidroxila na AANC favorece a sua conjugação com o ácido cis-4, 7, 10,13, 16,19- docosahexanóico (DHA) por meio de uma reação de esterificação (Figura 11). Alguns ácidos graxos naturais, tais como o DHA, são avidamente consumidos pelas células tumorais para utilização como precursores bioquímicos ou fonte de energia. Além disso, certos ácidos graxos essências também apresentam sinergismo com fármacos antitumorais. Portanto, a conjugação de fármacos antitumorais com o DHA é uma estratégia promissora que vem sendo estudada com resultados animadores (Wang et al., Bioorg. Med. Chem. v. 14, p. 7854- 7861 , 2006; Wang et al., Bioorg. Med. Chem. v. 13, p. 5592-5599, 2005; Harries et al., Brit. J. Câncer v. 91 , p. 1651-1655, 2004).
Exemplo 5: Avaliação da atividade antitumoral da AANC e de seu conjugado com DHA in vivo
A atividade antitumoral da AANC e de seu conjugado com DHA foi avaliada in vivo, utilizando-se camundongos portadores de tumor sólido de Ehrlich. O AANC e AANC-DHA foram administrados em um grupo de 5 animais na dose de 30 mg/kg. Ambos foram solubilizados em solução salina contendo 35% de PEG 400 e 5% de Tween 80. O mesmo número de animais foi utilizado no grupo controle. As doses foram administradas por via intratumoral, 2 vezes por semana, durante 14 dias. Quarenta e oito horas após o final do tratamento os animais foram eutanasiados, os tumores foram dessecados e pesados. A porcentagem de inibição do crescimento do tumor foi calculada utilizando a fórmula %inibição = [(A - B)/A] x 100, onde A representa a média de peso do tumor do grupo controle e B representa a média do peso do tumor nos grupos tratados. Com base nessa fórmula, o nitrocomposto AANC e seu conjugado com DHA apresentaram atividade antitumoral significativa, com % de inibição do crescimento do tumor de 62% e 44%, respectivamente (Figura 13). Esses compostos também podem ser administrados utilizando outras vias, como a via endovenosa e a via oral, não limitante.

Claims

REIVINDICAÇÕES
1- NITROAROMÁTICOS SUBSTITUÍDOS caracterizado por apresentar a seguinte fórmula estrutural:
Figure imgf000016_0001
a) Sendo X selecionado do grupo compreendendo COOH, SO3H, tetrazoil, CHO, CH3, CH2OH, CN, COOR, CONHR, SONHR, NHSO2R, NHCOOR, onde R pode ser H, alquila (C-2 a C-30, com ou sem ramificação); arila (aromático ou hetero-aromático); alquil-arila (C-2 a C-30, com ou sem ramificação, aromático ou hetero-aromático);
b) Sendo Y selecionado do grupo compreendendo H, F, Cl, Br,l , OH, N3, OPO(OR)2, NHR,NR2,NR3, OSO2R, OSO2Ar, OAr, OCOR, OCON, onde R pode ser H, alquila(C-2 a C-30, com ou sem ramificação); arila(aromático ou hetero- aromático); alquil-arila (C-2 a C-30, com ou sem ramificação, aromático ou hetero-aromático).
2- COMPOSIÇÃO FARMACÊUTICA ANTINEOPLASICA, caracterizada por compreender nitroaromáticos substituídos apresentando a seguinte fórmula estrutural:
Figure imgf000016_0002
- sendo X selecionado do grupo compreendendo COOH, SO3H, tetrazoil, CHO, CH3, CH2OH, CN, COOR, CONHR, SONHR, NHSO2R, NHCOOR, onde R pode ser H, alquila (C-2 a C-30, com ou sem ramificação); arila (aromático ou hetero- aromático); alquil-arila (C-2 a C-30, com ou sem ramificação, aromático ou hetero-aromático); - sendo Y selecionado do grupo compreendendo H, F, Cl, Br, I , OH, N3, OPO(OR)2, NHR,NR2,NR3, OSO2R, OSO2Ar, OAr, OCOR, OCON, onde R pode ser H, alquila(C-2 a C-30,com ou sem ramificação); arila(aromático ou hetero- aromático); alquil-arila (C-2 a C-30,com ou sem ramificação, aromático ou hetero-aromático); e
- no mínimo um excipiente ou adjuvante farmacêutica e fisiologicamente aceitável.
3- COMPOSIÇÃO FARMACÊUTICA ANTINEOPLASICA, de acordo com a reivindicação 2, caracterizada pelos compostos nitroaromáticos substituídos serem utilizados na sua forma livre, incluído ou associado em ciclodextrinas.
4- COMPOSIÇÃO FARMACÊUTICA ANTINEOPLASICA, de acordo com a reivindicação 3, caracterizada pelas ciclodextrinas serem selecionadas do grupo compreendendo a-ciclodextrina, β-ciclodextrina e γ-ciclodextrina e seus derivados.
5- COMPOSIÇÃO FARMACÊUTICA ANTINEOPLASICA, de acordo com a reivindicação 3, caracterizada pela ciclodextrina ser preferencialmente a hidroxipropil-p-ciclodextrina.
6- COMPOSIÇÃO FARMACÊUTICA ANTINEOPLASICA, de acordo com as reivindicações 1 a 5, caracterizada pelo compostos nitroaromáticos substituídos serem utilizados individualmente ou em combinação com outros agentes antineoplásicos.
7- COMPOSIÇÃO FARMACÊUTICA ANTINEOPLASICA, de acordo com as reivindicações 1 a 6, caracterizada por ser administrada pelas vias oral, subcutânea, intramuscular, intravenosa, intraperitoneal, intratumoral, transdérmica ou como dispositivos que possam ser implantados ou injetados.
8- USO DE COMPOSTOS NITROAROMÁTICOS SUBSTITUÍDOS, caracterizado por ser na preparação de medicamentos antitumorais.
PCT/BR2011/000221 2010-07-07 2011-07-07 Composições farmacêuticas antineoplásicas contendo compostos nitroaromáticos substituídos WO2012003563A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/BR2011/000221 WO2012003563A1 (pt) 2010-07-07 2011-07-07 Composições farmacêuticas antineoplásicas contendo compostos nitroaromáticos substituídos

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BR14100002301 2010-07-07
BR014110002138 2010-07-07
PCT/BR2011/000221 WO2012003563A1 (pt) 2010-07-07 2011-07-07 Composições farmacêuticas antineoplásicas contendo compostos nitroaromáticos substituídos

Publications (2)

Publication Number Publication Date
WO2012003563A1 true WO2012003563A1 (pt) 2012-01-12
WO2012003563A4 WO2012003563A4 (pt) 2012-03-29

Family

ID=45440722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2011/000221 WO2012003563A1 (pt) 2010-07-07 2011-07-07 Composições farmacêuticas antineoplásicas contendo compostos nitroaromáticos substituídos

Country Status (1)

Country Link
WO (1) WO2012003563A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085527B2 (en) 2008-07-08 2015-07-21 Catabasis Pharmaceuticals, Inc. Fatty acid acylated salicylates and their uses
US9139516B2 (en) 2008-07-08 2015-09-22 Catabasis Pharmaceuticals, Inc. Fatty acid acetylated salicylates and their uses

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464871A (en) * 1993-05-12 1995-11-07 Octamer, Inc. Aromatic nitro and nitroso compounds and their metabolites useful as anti-viral and anti-tumor agents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464871A (en) * 1993-05-12 1995-11-07 Octamer, Inc. Aromatic nitro and nitroso compounds and their metabolites useful as anti-viral and anti-tumor agents

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, M. ET AL.: "Study of inclusion complex of b- cyclo-dextrin and nitrobenzene.", CHEMOSPHERE, vol. 63, 2006, pages 522 - 529 *
HONE, N.D. ET AL.: "Solid phase synthesis of tetrahy- dro-1,4-benzodiazepin-2-ones.", TETRAHEDRON LETTERS, vol. 44, 2003, pages 8493 - 8495 *
PROSSER, G.A. ET AL.: "Discovery and evaluation of Escherichia coli nitroreductases that activate the anti- cancer prodrug CB1954.", BIOCHEMICAL PHARMACOLOGY, vol. 79, 21 October 2009 (2009-10-21), pages 678 - 687, XP026808701 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085527B2 (en) 2008-07-08 2015-07-21 Catabasis Pharmaceuticals, Inc. Fatty acid acylated salicylates and their uses
US9139516B2 (en) 2008-07-08 2015-09-22 Catabasis Pharmaceuticals, Inc. Fatty acid acetylated salicylates and their uses
US9272984B2 (en) 2008-07-08 2016-03-01 Catabasis Pharmaceuticals, Inc. Fatty acid acetylated salicylates and their uses
US9458094B2 (en) 2008-07-08 2016-10-04 Catabasis Pharmaceuticals, Inc. Fatty acid acetylated salicylates and their uses
US9708245B2 (en) 2008-07-08 2017-07-18 Catabasis Pharmaceuticals, Inc. Fatty acid acylated salicylates and their uses

Also Published As

Publication number Publication date
WO2012003563A4 (pt) 2012-03-29

Similar Documents

Publication Publication Date Title
JP6075903B2 (ja) Pfkfb2阻害剤および抗癌治療法としての使用方法
US20210206774A1 (en) Molecular containers and methods of making and using same
KR100370522B1 (ko) 2,4-디술포페닐부틸니트론,그의염및이들의제약스핀트랩으로서의용도
US11324714B2 (en) Organoarsenic compounds and methods for the treatment of cancer
JP2023109937A (ja) 3-置換1,2,4-オキサジアゾールの結晶形態
BR112013015174A2 (pt) compostos de tio-semicarbazona e aplicação no tratamento de cancer
WO2015063516A2 (en) Compounds
BR122021004504B1 (pt) Uso de um composto antimicrobiano
KR101975299B1 (ko) 인돌아세트산의 코어구조를 함유하는 화합물 및 그의 용도
WO2012003563A1 (pt) Composições farmacêuticas antineoplásicas contendo compostos nitroaromáticos substituídos
WO2013075199A1 (pt) "compostos acil-hidrazonas e oxadiazóis, composições farmacêuticas compreendendo os mesmos e seus usos
US9566351B2 (en) Molecular containers and methods of making and using same
EP4353680A1 (en) Surface-modified nanoparticle
EP0618901A1 (en) BIS-NAPHTALIMIDES HIGHLY SOLUBLE IN WATER USEFUL AS ANTI-CANCER AGENTS.
WO2005033279A2 (en) Discovery of novel soluble crystalline anesthetics
JP2019505571A (ja) インドール誘導体を含む医薬組成物、その調製方法及びその使用
BRPI1010493A2 (pt) composiÇÕes farmacÊuticas antineoplÁsicas contendo compostos nitroaromÁticos substituÍdos
CN111171041A (zh) 20位取代的喜树碱衍生物及其制备方法和应用
CN114887076B (zh) 一种具有化疗-免疫功能的混合三嵌段胶束及其制备方法和应用
WO2012003562A1 (pt) Composiqoes farmaceuticas antineoplastic's contendo nitroimidaz0is substituidos
ES2686103T3 (es) Derivados de fenotiazina y métodos para tratar tumores
JPS61197547A (ja) 新規2−ニトロソベンゾフエノン誘導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803034

Country of ref document: EP

Kind code of ref document: A1