WO2012002359A1 - Energy storage device and method of producing same - Google Patents

Energy storage device and method of producing same Download PDF

Info

Publication number
WO2012002359A1
WO2012002359A1 PCT/JP2011/064752 JP2011064752W WO2012002359A1 WO 2012002359 A1 WO2012002359 A1 WO 2012002359A1 JP 2011064752 W JP2011064752 W JP 2011064752W WO 2012002359 A1 WO2012002359 A1 WO 2012002359A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
positive electrode
electrode layer
negative electrode
separator
Prior art date
Application number
PCT/JP2011/064752
Other languages
French (fr)
Japanese (ja)
Inventor
幸夫 得原
昌治 板谷
景司 堀川
恭丈 福田
学 澤田
伊藤 英治
宣弘 吉川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012522631A priority Critical patent/JPWO2012002359A1/en
Publication of WO2012002359A1 publication Critical patent/WO2012002359A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electricity storage device and a manufacturing method thereof.
  • a sheet-shaped current collector foil (aluminum foil or copper foil) wound in a roll shape is used as a die coater or comma.
  • a sheet-like electrode is produced by passing through a coater or the like and coating an active material (activated carbon, lithium composite oxide, carbon, etc.) on the current collector foil.
  • the sheet-like separator wound by roll shape is interposed between electrodes, and these electrodes and a separator are wound or a sheet
  • the laminated body is formed into a laminated body, and an aluminum tab or a nickel tab is welded so as to be electrically connected to the electrode by ultrasonic welding to form an external terminal electrode.
  • the element which consists of these electrode groups produced in this way is put in exterior bodies, such as an aluminum can or an aluminum laminate film, and after injecting electrolyte solution, it seals, and the electrical storage device is produced.
  • Patent Document 1 proposes a technique in which positive and negative electrodes are fixed to a separator interposed between them using an adhesive layer to integrate the electrode and the separator.
  • the electrode and the separator are integrated as described above, the electrode and the separator are completely in close contact with each other and there is no gap at all, and the permeation rate of the electrolytic solution is reduced.
  • Patent Document 2 it is proposed to form a groove on the surface of at least one electrode facing the separator.
  • the separator is a method in accordance with JIS P 8117, using a digital type Oken type air permeability tester (“EG01-5-1MR” manufactured by Asahi Seiko Co., Ltd.) and measuring the cylinder pressure at 0.25 MPa. When measured at a pressure of 0.05 MPa and a measured internal diameter of 30 mm, it means a layer having an air permeability of less than 1000 sec / 100 cc.
  • Patent Document 2 when a groove is formed on the surface of the electrode facing the separator, there is a problem that the amount of the active material is reduced and the energy density is lowered. Further, as disclosed in Patent Document 2, if the electrode and the separator are fixed by the adhesive layer, the element cannot be thinned due to the presence of the adhesive layer, and further, a process of providing the adhesive layer is necessary and complicated. There was a problem that there was.
  • the present invention relates to a power storage device that can prevent a change in the distance between electrodes and separation and displacement between the electrode and the separator, can reduce the thickness of the element, and can be manufactured at a low cost with a small number of man-hours.
  • the purpose is to provide.
  • an electricity storage device includes: A laminate in which a negative electrode layer is disposed between at least two positive electrode layers, and a separator layer is provided between the positive electrode layer and the negative electrode layer, or a positive electrode layer is disposed between at least two negative electrode layers, An electricity storage device comprising a laminate in which a separator layer is provided between each positive electrode layer, an electrolyte, and a package containing the laminate and the electrolyte, In the laminated body, the positive electrode layer and the negative electrode layer adjacent to each other are each directly bonded to the separator layer.
  • laminate means that layers are sequentially stacked and “winding” is included.
  • the distance between the positive electrode layer and the negative electrode layer changes, or the positive electrode layer Or a shift
  • the positive electrode layer and the separator layer are not peeled off, and the negative electrode layer and the separator layer are not peeled off. Since the gas is not trapped in the space formed by separation, an increase in resistance value can be prevented.
  • the positive electrode layer and the negative electrode layer are directly bonded to the separator layer without forming an adhesive layer, it is possible to prevent a decrease in the permeation rate of the electrolytic solution, and further, since there is no adhesive layer, it can be thinned. Since the step of forming the adhesive layer can be omitted, the manufacturing cost can be reduced. Furthermore, in the electricity storage device according to the present invention, the negative electrode layer is disposed between the positive electrode layers, and the positive electrode layer is disposed between the laminate or the negative electrode layer in which the separator layer is provided between the positive electrode layer and the negative electrode layer. Since the laminated body which is arrange
  • the stacked body includes a first end surface including an end surface of the positive electrode layer and an end surface of the separator layer, a second end surface including the end surface of the negative electrode layer and the end surface of the separator layer. And an external terminal electrode on each of the first end surface and the second end surface.
  • a plurality of positive electrode layers can be connected to the external terminal electrode at once, and a plurality of negative electrode layers can be connected to the external terminal electrode at the same time. Since there is no need to pull out the lead terminals from the lead terminals and connect the lead terminals to the external terminal electrodes, the process is simplified, and the electrical resistance can be reduced by the absence of the lead terminals.
  • the laminated body in which the external terminal electrodes are provided on the first end surface and the second end surface, respectively can be connected to the package electrode without passing through the lead wire when housed in a package, for example. Space saving and miniaturization are possible.
  • the said 1st end surface and the said 2nd end surface are each smooth.
  • the first end face and the second end face are smooth, for example, when an external force is applied to the end face in the manufacturing process, the end of the separator layer is chipped or between the positive or negative electrode layer and the separator layer. Separation can be prevented, and contact between the positive electrode layer and the negative electrode layer and a short circuit can be prevented.
  • the external terminal electrodes can be easily formed.
  • the electrode resistance can be further reduced, and the bonding strength of the external terminal electrode can be increased.
  • the gas is trapped in the space between the recess of the non-smooth end face and the external terminal electrode, and this gas expands when used at a high temperature, and the external terminal The electrode may be peeled off, but when the first end surface and the second end surface are smooth, the external terminal electrode is hardly peeled off.
  • each of the external terminal electrodes is bonded to the separator layer.
  • the bonding strength of the external terminal electrode to the laminate is further strengthened.
  • the electrode layer, the separator layer, and the external terminal electrode are integrated, it is possible to further prevent the change in the distance between the electrodes and the separation and deviation between the electrode and the separator.
  • the laminated body has a first end face on the first end face side including the end face of the positive electrode layer and the end face of the separator layer, and the end face of the negative electrode layer is covered with the separator layer on the first end face.
  • the end face of the positive electrode layer is covered with the separator layer on the second end face side including the end face of the negative electrode layer and the end face of the separator layer, and is reliably insulated from the formed external terminal electrode. It is preferable that the terminal is reliably insulated from the external terminal electrode. Thereby, when the external terminal electrode is directly installed on the laminate, it is possible to easily prevent short-circuiting between the end surfaces of the positive electrode layer and the negative electrode layer and the end surfaces of the different electrode layers.
  • the distance between the upper and lower negative electrode layers and between the positive electrode layers can be kept at a predetermined interval by the separator layer covering each end face of the positive electrode layer and the negative electrode layer to be insulated from the external terminal electrode. For this reason, when the external terminal electrode is directly installed on the end face of the laminate, it is possible to prevent the position of the separator layer covering each end face of the positive electrode layer or the negative electrode layer to be insulated from the external terminal electrode from moving and shifting. . As a result, it is possible to prevent the electrical conductivity from being cut due to tearing of the external terminal electrode provided on the end face, and it becomes easy to ensure continuous electrical conductivity over the entire external terminal electrode.
  • the separator layer includes insulator particles.
  • the separator layer contains the insulator particles, shrinkage of the separator layer and reduction of the porosity can be suppressed even when each layer is pressurized in the lamination process of the manufacturing process.
  • the said separator layer contains a thermoplastic resin.
  • the said insulator particle is an inorganic filler.
  • the inorganic filler has higher heat resistance and higher strength than, for example, the organic filler, it can be an electric storage device having heat resistance that can withstand surface mounting, and at the time of thermocompression bonding in the manufacturing process, etc. It is possible to suppress the deterioration of the separator layer and the decrease in the porosity in the heating process.
  • a method for manufacturing an electricity storage device includes: A laminate in which a negative electrode layer is disposed between at least two positive electrode layers, and a separator layer is provided between the positive electrode layer and the negative electrode layer, or a positive electrode layer is disposed between at least two negative electrode layers, A manufacturing method for manufacturing an electricity storage device comprising a laminate in which separator layers are provided between positive electrode layers, an electrolyte, and a package containing the laminate and the electrolyte, The positive electrode layer and the negative electrode layer are disposed so as to face each other with the separator layer interposed therebetween, and are adjacent to each other by integrating the positive electrode layer, the negative electrode layer, and the separator layer by pressure bonding or pressure bonding while heating or heating.
  • the electrical storage device in which the positive electrode layer and the negative electrode layer are bonded directly to the separator layer is manufactured.
  • the positive electrode layer and the negative electrode layer are arranged by pressing the positive electrode layer and the negative electrode layer so as to face each other through the separator layer, and press-bonding while pressing or heating or heating. Since the method includes directly bonding a layer to the separator layer, the positive electrode layer and the negative electrode layer can be bonded to the separator layer without forming an adhesive layer.
  • the positive electrode layer and the negative electrode layer are bonded to the separator layer, for example, even when gas is generated during charging / discharging, the electrode does not open, and the outer shape of the stacked body, particularly the stacked body. Since the shape of the end face is maintained without being deformed, the external terminal electrode formed on the end face can be prevented from peeling off.
  • the positive electrode layer and the negative electrode layer provided so as to correspond to each of the plurality of laminates are arranged so as to face each other with a separator layer interposed therebetween, and the positive electrode layer and the positive electrode layer are bonded by pressure bonding or heating or heating.
  • a device and a manufacturing method thereof can be provided.
  • FIG. 1 It is a perspective view showing a part of layered product 1 in an electrical storage device of an embodiment concerning the present invention by making a sectional view.
  • FIG. 1 It is sectional drawing of the electrical storage device of embodiment. It is sectional drawing which shows a part process of the manufacturing process in the Example of this invention, (1) Punches one block of a positive electrode assembly sheet
  • (4) is a view of the negative electrode / negative electrode integrated sheet bonded with two negative electrode aggregate sheets so that the negative electrode current collector layer 31a faces each other.
  • a cross section is shown. It is sectional drawing which shows the one part process of the manufacturing process in the Example of this invention, (5) is a figure of the process of bonding the positive electrode / positive electrode integrated sheet 20 and the negative electrode / negative electrode integrated sheet 30 alternately. Yes, (6) shows a cross section of a laminated assembly in which the positive electrode / positive electrode integrated sheet 20 and the negative electrode / negative electrode integrated sheet 30 are alternately stacked between the positive electrode integrated sheet 20a and the negative electrode integrated sheet 30a. Show. It is a graph which shows the frequency characteristic of the equivalent series capacity
  • the electrical storage device of embodiment which concerns on this invention is equipped with the laminated body 1 shown in FIG.
  • the stacked body 1 is configured by alternately arranging positive electrode layers 21 and negative electrode layers 31, and providing separator layers 11 between the positive electrode layers 21 and the negative electrode layers 31.
  • the positive electrode layer 21 and the negative electrode layer 31 are directly bonded to the separator layer 11 as described in detail later.
  • the positive electrode layer 21 includes a positive electrode current collector layer 21a and a positive electrode active material layer 21b formed on both surfaces thereof.
  • the negative electrode layer 31 includes a negative electrode current collector layer 31a and negative electrode active material layers formed on both surfaces thereof. And the material layer 31b.
  • One end face of the positive electrode current collector layer 21a is exposed, and one end face of the negative electrode current collector layer 31a is exposed on the other second end face 3.
  • a positive external terminal electrode 21t is formed on the first end surface 2 of the multilayer body 1 so as to be connected to one end surface of the positive electrode current collector layer 21a, and a negative electrode current collector is formed on the second end surface 3 of the multilayer body 1.
  • a negative external terminal electrode 31t is formed so as to be connected to one end surface of the electric conductor layer 31a.
  • the first end surface 2 on which the positive external terminal electrode 21t is formed and the second end surface 3 on which the negative external terminal electrode 31t is formed are respectively the end surface of the separator layer 11 and one end surface of the positive electrode current collector layer 21a or the negative electrode current collector. It is preferable that the body layer 31a is smooth so that one end surface of the body layer 31a is located on substantially the same plane.
  • the edge part of the separator layer 11 will be shown, for example. Chipping can be prevented, and contact between the positive electrode layer 21 and the negative electrode layer 31 and a short circuit can be prevented.
  • the laminate 1 configured as described above is disposed inside a package 50 into which an electrolytic solution has been injected.
  • the package 50 includes, for example, a base portion 50b made of a liquid crystal polymer that is a heat-resistant resin and a lid 50a.
  • a positive electrode package electrode 41 and a negative electrode package electrode 42 are separately provided on the base portion 50b. .
  • the positive external terminal electrode 21t of the stacked body 1 is connected to the positive electrode package electrode 41 of the base portion 50b, and the negative external terminal electrode 31t is connected to the negative electrode package electrode 42.
  • the positive electrode current collector layer 21a and the negative electrode current collector layer 31a are all drawn to the same thickness
  • the positive electrode active material layer 21b and the negative electrode active material layer 31b are all drawn to the same thickness.
  • the thickness of the positive electrode current collector layer 21a and the negative electrode current collector layer 31a located in the uppermost layer and the lowermost layer is appropriately reduced, for example, by reducing the thickness compared to other current collector layers. It is also possible to change the length.
  • Examples of the electricity storage device according to the present invention include a lithium ion secondary battery, a lithium ion capacitor, and an electric double layer capacitor.
  • the following materials can be used depending on the type of the electricity storage device.
  • Lithium ion secondary battery for example, an aluminum foil is used as the positive electrode current collector layer 21a, and a mixture layer containing a lithium composite oxide such as LiCoO 2 is provided as the positive electrode active material layer 21b on the aluminum foil.
  • An electrode is used as the positive electrode layer 21.
  • the negative electrode current collector layer 31a for example, a copper foil is used, and an electrode in which a mixture layer containing graphite is provided as the negative electrode active material layer 31b on the copper foil is used as the negative electrode layer 31.
  • a lithium ion secondary battery can be manufactured by using, as an electrolytic solution, 1 mol / l LiPF 6 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate.
  • lithium ion capacitor for example, an aluminum foil is used as the positive electrode current collector layer 21 a, and an electrode in which a mixture layer containing activated carbon is provided on the aluminum foil as the positive electrode active material layer 21 b is used as the positive electrode layer 21.
  • the negative electrode current collector layer 31 a for example, a copper foil is used, and an electrode provided with a mixture layer containing graphite on the copper foil as the negative electrode active material layer 31 b is defined as the negative electrode layer 31.
  • Pre-dope with lithium ions by using those obtained by dissolving LiPF 6 in 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate as an electrolytic solution, it is possible to produce lithium ion capacitor.
  • an aluminum foil is used as the positive electrode current collector layer 21a, and an electrode in which a mixture layer containing a carbon material, for example, activated carbon, is provided on the aluminum foil as the positive electrode active material layer 21b.
  • an aluminum foil is used, and an electrode in which a mixture layer containing a carbon material, for example, activated carbon is provided on the aluminum foil is referred to as the negative electrode layer 31.
  • An electric double layer capacitor can be produced by using, as an electrolytic solution, 1 mol / l triethylmethylammonium tetrafluoroborate dissolved in propylene carbonate.
  • the positive electrode layer 21 and the negative electrode layer 31 are coated with an active material (activated carbon, lithium composite oxide, carbon, etc.) on the positive electrode current collector layer 21a and the negative electrode current collector layer 31a by a comma coater, a die coater, a gravure printing method, or the like. It is produced by processing. More preferably, it is produced by coating by a screen printing method. In screen printing, since the tension applied to the positive electrode current collector layer 21a and the negative electrode current collector layer 31a is low, a current collector with a thinner film thickness can be used.
  • active material activated carbon, lithium composite oxide, carbon, etc.
  • the separator layer 11 can be prepared by applying a slurry containing the components of the separator layer 11 on the positive electrode layer 21 and / or the negative electrode layer 31.
  • the separator layer slurry can be applied by a comma coater, a die coater, a gravure printing method, or the like, but is preferably prepared by a screen printing method.
  • the separator layer 11 is formed on the positive electrode layer 21 and / or the negative electrode layer 31 as described above, for example, the positive electrode layer 21 and the negative electrode layer 31 are opposed to each other via the separator layer 11, and the separator layer 11 is pressed.
  • the positive electrode layer 21 and the negative electrode layer 31 are joined. Moreover, it can crimp more firmly by heating at the time of crimping
  • the glass transition temperature of carboxymethyl cellulose is 45 ° C., and therefore it is preferable to heat at 45 ° C. or higher. If it does in this way, the positive electrode layer 21 and the negative electrode layer 31 can be more reliably joined to both surfaces of the separator layer 11 by plasticizing carboxymethylcellulose.
  • a thermoplastic resin, a thermosetting resin such as an epoxy resin, polyimide, polyamideimide, or polyamide can be used in addition to carboxymethylcellulose.
  • the polyamideimide include HR-11NN manufactured by Toyobo.
  • thermoplastic resin becomes soft when heated to the glass transition temperature or the melting point, so that the contact area with the electrode layer or separator layer to be joined increases by pressing while heating or heating, and strong bonding Is preferable.
  • polyvinylidene fluoride (hereinafter referred to as PVDF), which is a thermoplastic resin, has a stable slurry, excellent heat resistance and solvent resistance, and does not completely cover the active material due to point bonding. Reaction characteristics can be obtained.
  • thermosetting resin has high heat resistance, strong binding force, excellent chemical stability, and higher strength than the thermoplastic resin, the strength of the laminate is improved.
  • separator layer has a network structure of an organic compound, for example, compared to the case where the separator layer is formed by sintering inorganic particles, the laminate and the power storage device are resistant to bending and impact. High resistance.
  • a junction surface may be a main surface, an end surface or a side surface, or both.
  • the positive electrode layers 21 and the negative electrode layers 31 may be alternately laminated after the separator layers 11 are laminated, and in this way, the number of crimping steps can be reduced.
  • stacked the positive electrode layer 21 and the negative electrode layer 31 alternately via the separator layer 11 every time the positive electrode layer 21 and the negative electrode layer 31 are laminated
  • the main bonding may be performed by a laminated assembly in which a plurality of laminated bodies 1 are collectively formed, or may be performed for each laminated body after the laminated aggregate is separated into pieces.
  • the separator layer 11 preferably contains insulator particles.
  • the separator layer 11 includes the insulator particles, the shrinkage of the separator layer 11 or the burial of the pores can be suppressed even when each layer is pressed in the lamination process or the like, and the positive electrode layer 21 and the negative electrode layer can be more efficiently A good insulation state between 31 can be maintained.
  • the insulator particles to be contained in the separator layer 11 for example, organic particles such as polytetrafluoroethylene (PTFE), inorganic fillers such as silica and alumina, or a mixture thereof can be used. It is preferable to use an inorganic filler in order to obtain heat resistance that can withstand surface mounting and to hold holes more efficiently when the laminate 1 is thermocompression bonded. Furthermore, it is more preferable to use insulator particles that are irregular in the three-dimensional direction, such as crushed silica, because more voids are generated between the particles, an ion conduction path is secured, and the resistance of the electricity storage device can be reduced. .
  • PTFE polytetrafluoroethylene
  • the average particle diameter (D 50 ) of these insulator particles is not particularly limited, It is desirable that it is 2 ⁇ m or less. It is difficult to apply only one particle uniformly in a planar manner so that the particles do not overlap, and usually two to three or more particles are present in the thickness direction in the separator layer 11. For example, when three particles are present in the thickness direction in the separator layer 11, if the average particle diameter (D 50 ) is 2 ⁇ m or less, the thickness of the separator layer 11 can be 6 ⁇ m or less on average, and a smaller power storage device Can be supplied.
  • the separator layer 11 is produced by applying a slurry containing the components of the separator layer 11 on the positive electrode layer 21 and / or the negative electrode layer 31. What is the positive electrode layer 21 and the negative electrode layer 31? Separately, for example, it may be prepared and prepared by applying a slurry containing the component of the separator layer 11 on the base PET film.
  • a laminated assembly in which a plurality of laminated bodies 1 are integrated can be separated into pieces by cutting with a dicer cut or a guillotine cut. Accordingly, it is possible to manufacture a power storage device with high productivity more efficiently than manufacturing individual stacks one by one.
  • the end surface of the laminated body 1 after dividing into pieces is substantially smooth.
  • the end surface of the laminated body 1 is not smooth, for example, when the end surface of the separator layer 11 is recessed inside the end surfaces of the positive electrode layer 21 and the negative electrode layer 31, short-circuiting with the positive electrode layer 21 and the negative electrode layer 31 is performed. Further, delamination between the separator layer 11 and the separator layer 11 is likely to occur.
  • the separator layer 11 is easily cracked, and cracking occurs when stress is applied to the separator layer 11.
  • a short circuit between the positive electrode layer 21 and the negative electrode layer 31 tends to occur. That is, when the protruding separator layer 11 is cracked, the end of the positive electrode layer 21 or the negative electrode layer 31 becomes a fulcrum, and a crack that is recessed inward from the end surface of the positive electrode layer 21 or the negative electrode layer 31 may occur. Such a depressed crack tends to cause a short circuit between the positive electrode layer 21 and the negative electrode layer 31. In addition, delamination between the positive electrode layer 21 and the negative electrode layer 31 and the separator layer 11 easily occurs.
  • the end surface of the laminated body 1 is substantially smooth, it is difficult for a short circuit to occur even when stress is generated in the separator layer 11, the positive electrode layer 21, and the negative electrode layer 31. Further, delamination between the separator layer 11 and the positive electrode layer 21 and between the separator layer 11 and the negative electrode layer 31 are less likely to occur.
  • the end face is substantially smooth, it is easy to form the positive external terminal electrode 21t and the negative external terminal electrode 31t with good adhesion, and the electrical resistance can be reduced. Further, in addition to improving the bonding strength between the positive electrode external terminal electrode 21t and the negative electrode external terminal electrode 31t, in the laminate 1 in which the positive electrode layer 21 and the negative electrode layer 31 are bonded by the separator layer 11, When the gas is generated, the positive electrode layer 21 or the negative electrode layer 31 and the separator layer 11 are not opened, and the shape of the end face is maintained, so that the positive electrode external terminal electrode 21t and the negative electrode external terminal electrode 31t are prevented from being peeled off. it can.
  • the gas hardly remains between the positive electrode layer 21 or the negative electrode layer 31 and the separator layer 11, and the resistance value hardly increases.
  • gas is trapped in the space between the recess on the end face and the external terminal electrode, and this gas expands during high temperature use, and the external terminal electrode is likely to peel off from the end face.
  • the positive external terminal electrode 21t and the negative external terminal electrode 31t can be formed as follows.
  • the positive external terminal electrode 21t and the negative external terminal electrode 31t can be formed, for example, by depositing Al by sputtering.
  • the laminated body 1 is arrange
  • the terminal electrode 31t is electrically connected to the positive package electrode 41 and the negative package electrode 42, respectively.
  • the positive external terminal electrode 21t and the negative external terminal electrode 31t may be formed by applying a conductive adhesive directly to the side surface of the laminate 1 by dipping.
  • the positive electrode external terminal electrode 21t and the negative electrode external terminal electrode 31t may directly form a conductive film on the end surface of the laminate 1 by vapor deposition, sputtering, ion plating, thermal spraying, cold spraying, plating, or the like.
  • the conductive adhesive described above was applied onto the positive external terminal electrode 21t and the negative external terminal electrode 31t formed as the conductive film, and the positive external terminal electrode 21t and the negative external terminal electrode 31t were applied.
  • the laminated body 1 is disposed in the base portion 50b of the package so as to be connected to the positive electrode package electrode 41 and the negative electrode package electrode 42 by the conductive adhesive, and is heated and cured in the same manner as described above to be connected. That's fine.
  • an electrolytic solution is injected into the base portion 50b and sealed with the lid 50a, whereby the electricity storage device is completed.
  • an electrolytic solution when producing a lithium ion secondary battery as an electricity storage device, respectively, an electrolytic solution generally used in a lithium ion secondary battery can be used, and when producing a lithium ion capacitor, In general, an electrolytic solution used in a lithium ion capacitor can be used. When an electric double layer capacitor is manufactured, an electrolytic solution generally used in an electric double layer capacitor can be used.
  • an organic solvent generally selected from dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, propylene carbonate, acetonitrile, or a mixture thereof, commonly used in power storage devices, LiPF 6 , LiBF 4 , LiTFSI, or other Li
  • an electrolytic solution in which a salt is dissolved or in the organic solvent tetramethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis
  • Examples thereof include an electrolytic solution in which (trifluoromethanesulfonyl) imide is dissolved.
  • an ionic liquid such as 1-ethyl-3-methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide
  • Only ionic liquids substantially free of organic solvents can be used as the electrolyte.
  • an ionic liquid that does not substantially contain an organic solvent since the ionic liquid has a low vapor pressure up to a high temperature, expansion at a high temperature can be suppressed, and an electricity storage device with high heat resistance can be supplied.
  • 1-ethyl-3-methylimidazolium tetrafluoroborate has a smaller ionic radius of tetrafluoroborate, which is an anion, compared to 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide and the like. Therefore, an electricity storage device with lower resistance can be supplied.
  • an electric double layer capacitor was fabricated by the following process.
  • Step 1 (Preparation of current collector) An aluminum layer having a thickness of 0.5 ⁇ m was formed by vapor deposition on a base material PET film coated with wax as a release layer. On the surface of the aluminum layer formed by vapor deposition, an etching mask resist was applied by pattern printing and dried. The resist used was Ares SPR manufactured by Kansai Paint. Then, this film was immersed in 40 degreeC ferric chloride aqueous solution, and the aluminum layer was patterned.
  • this film was immersed in an organic solvent, the resist was peeled off, and then immersed in a mixed aqueous solution of sulfuric acid and hydrofluoric acid to remove the oxidized layer on the surface of the aluminum layer, thereby forming a positive electrode current collector layer 21a.
  • Process 2 (1) Preparation of slurry for active material layer 29.0 g of activated carbon (BET specific surface area 1668 m 2 / g, average pore diameter 1.83 nm, average particle diameter (D 50 ) 1.26 ⁇ m), carbon black (Tokai Carbon Co., Ltd.) 2.7 g of “Toka Black # 3855” manufactured by company, BET specific surface area 90 m 2 / g) is weighed and put into a 1000 ml pot, and further, PSZ grinding media with a diameter of 2.0 mm and 286 g of deionized water. Then, the mixture was dispersed by mixing at 150 rpm for 4 hours using a rolling ball mill.
  • activated carbon BET specific surface area 1668 m 2 / g, average pore diameter 1.83 nm, average particle diameter (D 50 ) 1.26 ⁇ m
  • carbon black Tokai Carbon Co., Ltd.
  • BET specific surface area 90 m 2 / g is weighed and put into a 1000
  • the positive electrode layer 21 composed of the positive electrode current collector layer 21a and the positive electrode active material layer 21b was formed.
  • the positive electrode active material layer 21 b is formed at a predetermined interval from the first end surface 2 so as not to be directly connected to the positive electrode external terminal electrode 21 t on the first end surface 2 of the multilayer body 1. . Since it comprises in this way, the slurry for active material layers is screen-printed so that when it cut
  • Process 3 (1) Preparation of slurry for separator layer Silica (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.7 ⁇ m in a 500 ml pot m) and 50 g of methyl ethyl ketone as a solvent were added. Further, PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill. Thereafter, a binder solution of PVDF (Kureha L # 1120, molecular weight 280,000, 12 wt% solution) was added and mixed for 4 hours at 150 rpm using a rolling ball mill to prepare a separator layer slurry.
  • PVDF Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.7 ⁇ m in a 500 ml pot m) and 50 g of methyl ethyl ketone as a solvent were added. Further, PS
  • separator layer slurry prepared by the above method was applied onto the positive electrode layer 21 and then heated at 120 ° C. for 30 minutes.
  • the separator layer 11 having a thickness of 3 ⁇ m was produced by drying.
  • a positive electrode assembly sheet in which a plurality of positive electrode layers 21 were formed on the separator layer 11 was formed on a base material PET film.
  • another positive electrode assembly sheet in which a plurality of positive electrode layers 21 were formed on the separator layer 11 was produced.
  • Process 4 Next, as shown in FIG. 3 (1), the block of the positive electrode assembly sheet was punched out and sucked and fixed to the suction plate 80, and the base PET film 100 was peeled off.
  • Process 5 Next, as shown in FIG. 3 (2), a punching block of the positive electrode assembly sheet sucked and fixed to the suction plate 80 to another punching block of the positive electrode assembly sheet from which the base PET film prepared in the same manner was peeled off. Were stacked so that the positive electrode current collector layers 21a face each other. The entire surface of the positive electrode assembly sheet arranged in an overlapping manner was pressed with a pressure plate (not shown) to join the positive electrode assembly sheets together. At this time, the temperature of the pressing plate was 150 ° C., the pressing pressure was 0.05 MPa, and the pressing time was 1 minute.
  • step 4 and step 5 the positive electrode / positive electrode integrated sheet 20 shown in FIG. 3 (3) in which the positive electrode layer 21 was embedded in the separator layer 11 was produced.
  • thermocompression bonding As shown in FIG. 4 (5), and a total of four sheets shown in FIG. 4 (6).
  • a laminated assembly formed by laminating the integrated sheets was prepared.
  • the temperature of the pressure plate was 150 ° C.
  • the pressure of the pressure was 0.05 MPa
  • the pressure time was 1 minute.
  • the positive electrode layer in which the positive electrode active material layer 21 b is formed only on one surface of the positive electrode current collector layer 21 a is embedded in the separator layer 11.
  • the negative electrode integrated sheet 30a formed by embedding the negative electrode layer in which the negative electrode active material layer 31b is formed only on one surface of the negative electrode current collector layer 31a in the separator layer 11 is provided as the uppermost layer. Provided in the lower layer. That is, in this example, when the laminated assembly is produced, the positive electrode / positive electrode integrated sheet 20 and the negative electrode / negative electrode integrated sheet 30 are alternately stacked on the negative electrode integrated sheet 30a, and finally the positive electrode is integrated.
  • the sheet 20a was bonded.
  • the positive electrode integrated sheet 20a is coated with a slurry containing a component of the separator layer on the base PET film and dried on the surface of the positive electrode aggregate sheet shown in FIG. 3 (1) where the positive electrode current collector 21a is formed. This was prepared by pasting together a 3 ⁇ m thick separator layer.
  • the negative electrode integrated sheet 30a was prepared by bonding a separator layer having a thickness of 3 ⁇ m to the surface of the negative electrode aggregate sheet on which the negative electrode current collector 31a was formed. As described above, in Example 1, a laminated assembly in which the positive electrode layer 21 and the negative electrode layer 31 were joined by the separator layer 11 was produced.
  • Step 6 The above laminated assembly is separated into pieces by a dicer along the cutting line D1 shown in FIG.
  • the laminated body 1 was produced.
  • the dimensions of the laminate 1 were a length of 4.7 mm and a width of 3.3 mm. 3 (1) to 3 (4) and FIGS. 4 (5) and 6 (6) referred to in the above description, the separator layer 11, the positive electrode layer 21, the negative electrode layer 31, and the like are drawn thick due to restrictions on drawing. However, the actual dimensions are not exactly enlarged or reduced. Also, in other drawings attached to the specification, the size or the positional relationship is appropriately modified or exaggerated so as to be easily constrained or understood.
  • Step 7 The positive external terminal electrode 21t and the negative external terminal electrode 31t were formed by Al sputtering.
  • Process 8 A conductive adhesive containing gold as conductive particles is applied to the first end surface 2 and the second end surface 2 by dipping, and the applied conductive adhesive is connected to the positive electrode package electrode 41 and the negative electrode package electrode 42, respectively.
  • the laminate 1 was placed on the base portion 50b of the package 50 and heated at 170 ° C. for 10 minutes to cure the conductive adhesive.
  • the positive external terminal electrode 21t and the negative external terminal electrode 31t are formed on the first end surface 2 and the second end surface 2, respectively, and the positive external terminal electrode 21t and the negative external terminal electrode 31t are respectively connected to the positive electrode package.
  • the electrode 41 and the negative electrode package electrode 42 were electrically connected.
  • Step 9 an electrolytic solution was injected into the package and sealed.
  • 1-ethyl-3-methylimidazolium tetrafluoroborate is injected as an electrolytic solution under reduced pressure, and a lid 50a made of a liquid crystal polymer is disposed on the upper surface of the base portion 50b of the package 50 in the same manner as the base portion 50b.
  • the base portion 50b and the lid 50a were welded by irradiating laser along the frame portion of the base portion 50b of the package 50.
  • FIG. 5 shows the frequency characteristics of the equivalent series capacitance of the electric double layer capacitor produced in this example.

Abstract

Provided is an energy storage device that enables elements to be made thinner, and that can be manufactured cheaply and with few man-hours. The energy storage device comprises: a laminated body comprising a negative electrode layer positioned between at least two positive electrode layers, and separator layers disposed between the positive electrode layers and the negative electrode layer, or a laminated body comprising a positive electrode layer positioned between at least two negative electrode layers, and separator layers disposed between the negative electrode layers and the positive electrode layer; an electrolyte; and a package that holds the laminated body and the electrolyte. In the laminated body, adjacent positive electrode and negative electrode layers are directly bonded to the respective separator layers.

Description

蓄電デバイスとその製造方法Electric storage device and manufacturing method thereof
 本発明は、蓄電デバイスとその製造方法に関する。 The present invention relates to an electricity storage device and a manufacturing method thereof.
 従来、電気二重層キャパシタ、リチウムイオン二次電池等に代表される高エネルギー密度の蓄電デバイスでは、ロール状に巻かれたシート状の集電箔(アルミニウム箔又は銅箔等)をダイコーター、コンマコーター等に通箔し、集電箔上に活物質(活性炭、リチウム複合酸化物、炭素等)を塗工して、シート状の電極を作製している。そして、シート状の電極を作製した後、電極間の接触による短絡を防ぐため、ロール状に巻かれたシート状のセパレータを電極間に介在させて、これら、電極及びセパレータを捲回もしくは枚葉積層して積層体とし、超音波溶着にてアルミタブもしくはニッケルタブを前記電極と導通接続するように溶着して外部端子電極としている。そして、このように作製したこれら電極群からなる素子をアルミニウム缶又はアルミラミネートフィルム等の外装体に入れ、電解液を注液した後、封止することにより、蓄電デバイスを作製している。 Conventionally, in a high energy density power storage device represented by an electric double layer capacitor, a lithium ion secondary battery or the like, a sheet-shaped current collector foil (aluminum foil or copper foil) wound in a roll shape is used as a die coater or comma. A sheet-like electrode is produced by passing through a coater or the like and coating an active material (activated carbon, lithium composite oxide, carbon, etc.) on the current collector foil. And after producing a sheet-like electrode, in order to prevent the short circuit by the contact between electrodes, the sheet-like separator wound by roll shape is interposed between electrodes, and these electrodes and a separator are wound or a sheet | seat The laminated body is formed into a laminated body, and an aluminum tab or a nickel tab is welded so as to be electrically connected to the electrode by ultrasonic welding to form an external terminal electrode. And the element which consists of these electrode groups produced in this way is put in exterior bodies, such as an aluminum can or an aluminum laminate film, and after injecting electrolyte solution, it seals, and the electrical storage device is produced.
 ところで、近年、蓄電デバイスの低抵抗化、小型化、エネルギー密度向上が要求されている。このような要求を達成するためには、例えば、特許文献1に開示されているように、セパレータ層を薄くすることが有効である。しかし、特許文献1に開示された技術では、電極間距離が変化したり、電極やセパレータの重なりがずれるおそれがある。そこで、正負極の電極をこれらの間に介在するセパレータに接着層を用いて固着して電極およびセパレータを一体化する技術が特許文献2に提案されている。しかし、このように電極およびセパレータを一体化すると、電極とセパレータとの間が完全に密着して全く隙間のない状態となり、電解液の浸透速度が低下する。そこで、特許文献2では、少なくとも一方の電極のセパレータとの対向面に溝を形成することが提案されている。
 なお、セパレータとは、JIS P 8117に準拠した方法で、デジタル型王研式透気度試験機(旭精工株式会社製「EG01-5-1MR」)を使用し、シリンダー圧0.25MPa、測定圧0.05MPa、測定内部径30mmで測定した場合、透気度が1000sec/100cc未満である層のことをいう。
Incidentally, in recent years, there has been a demand for lowering the resistance, reducing the size, and improving the energy density of power storage devices. In order to achieve such a requirement, for example, as disclosed in Patent Document 1, it is effective to make the separator layer thin. However, in the technique disclosed in Patent Document 1, there is a possibility that the distance between the electrodes changes or the electrodes and separators overlap. Therefore, Patent Document 2 proposes a technique in which positive and negative electrodes are fixed to a separator interposed between them using an adhesive layer to integrate the electrode and the separator. However, when the electrode and the separator are integrated as described above, the electrode and the separator are completely in close contact with each other and there is no gap at all, and the permeation rate of the electrolytic solution is reduced. Therefore, in Patent Document 2, it is proposed to form a groove on the surface of at least one electrode facing the separator.
The separator is a method in accordance with JIS P 8117, using a digital type Oken type air permeability tester (“EG01-5-1MR” manufactured by Asahi Seiko Co., Ltd.) and measuring the cylinder pressure at 0.25 MPa. When measured at a pressure of 0.05 MPa and a measured internal diameter of 30 mm, it means a layer having an air permeability of less than 1000 sec / 100 cc.
特開平10-334877号公報Japanese Patent Laid-Open No. 10-334877 WO98/48466号明細書WO98 / 48466 specification
 しかしながら、特許文献2に開示されているように、電極のセパレータとの対向面に溝を形成すると、活物質の量が減少してエネルギー密度が低下するという問題がある。
 また、特許文献2に開示されているように、接着層により電極とセパレータを固着すると、接着層がある分、素子を薄くすることができない上、さらに、接着層を設ける工程が必要で煩雑であるという問題があった。
However, as disclosed in Patent Document 2, when a groove is formed on the surface of the electrode facing the separator, there is a problem that the amount of the active material is reduced and the energy density is lowered.
Further, as disclosed in Patent Document 2, if the electrode and the separator are fixed by the adhesive layer, the element cannot be thinned due to the presence of the adhesive layer, and further, a process of providing the adhesive layer is necessary and complicated. There was a problem that there was.
 そこで、本発明は、電極間距離の変化及び電極とセパレータ間の剥離やずれが防止でき、かつ素子を薄くすることが可能でしかも少ない工数で安価に製造することができる蓄電デバイスとその製造方法を提供することを目的とする。 Therefore, the present invention relates to a power storage device that can prevent a change in the distance between electrodes and separation and displacement between the electrode and the separator, can reduce the thickness of the element, and can be manufactured at a low cost with a small number of man-hours. The purpose is to provide.
 以上の目的を達成するために、本発明に係る蓄電デバイスは、
 少なくとも2つの正極層間に負極層が配置され、前記正極層と負極層の間にそれぞれセパレータ層が設けられてなる積層体、または、少なくとも2つの負極層間に正極層が配置され、前記負極層と正極層の間にそれぞれセパレータ層が設けられてなる積層体と、電解液と、前記積層体と前記電解液を収納したパッケージと、を有してなる蓄電デバイスであって、
 前記積層体において、隣接する前記正極層及び前記負極層がそれぞれ前記セパレータ層に直接接合されたことを特徴とする。
 ここで、本明細書において、「積層」とは、層を順次積み重ねること及び「巻回」も含む意味である。
 以上のように構成された本発明に係る蓄電デバイスは、前記正極層及び前記負極層の両方が前記セパレータ層に直接接合されているので、正極層と負極層間の距離が変化したり、正極層若しくは負極層とセパレータ層間にずれが生じたりすることがなく、エネルギー密度の低下が防止できる。
 また、充放電時にガスが発生した場合であっても、正極層とセパレータ層間が剥離したり、負極層とセパレータ層間が剥離したりすることがないので、電極間が開くことがなく、また、剥離してできた空間に前記ガスがトラップされることがなくなるため、抵抗値の上昇を防止できる。
 また、接着層を形成することなく前記正極層及び前記負極層が前記セパレータ層に直接接合されているので、電解液の浸透速度の低下が防止でき、さらに、接着層がない分、薄くでき、接着層を形成する工程を省くことができることから製造コストを安くできる。
 さらに、本発明に係る蓄電デバイスは、正極層の間に、負極層が配置され、正極層と負極層の間にそれぞれセパレータ層が設けられてなる積層体又は負極層の間に、正極層が配置され、正極層と負極層の間にそれぞれセパレータ層が設けられてなる積層体を含むので、蓄電容量を大きくできる。
In order to achieve the above object, an electricity storage device according to the present invention includes:
A laminate in which a negative electrode layer is disposed between at least two positive electrode layers, and a separator layer is provided between the positive electrode layer and the negative electrode layer, or a positive electrode layer is disposed between at least two negative electrode layers, An electricity storage device comprising a laminate in which a separator layer is provided between each positive electrode layer, an electrolyte, and a package containing the laminate and the electrolyte,
In the laminated body, the positive electrode layer and the negative electrode layer adjacent to each other are each directly bonded to the separator layer.
Here, in this specification, “lamination” means that layers are sequentially stacked and “winding” is included.
In the electricity storage device according to the present invention configured as described above, since both the positive electrode layer and the negative electrode layer are directly bonded to the separator layer, the distance between the positive electrode layer and the negative electrode layer changes, or the positive electrode layer Or a shift | offset | difference does not arise between a negative electrode layer and a separator layer, and the fall of an energy density can be prevented.
In addition, even when gas is generated during charging and discharging, the positive electrode layer and the separator layer are not peeled off, and the negative electrode layer and the separator layer are not peeled off. Since the gas is not trapped in the space formed by separation, an increase in resistance value can be prevented.
Further, since the positive electrode layer and the negative electrode layer are directly bonded to the separator layer without forming an adhesive layer, it is possible to prevent a decrease in the permeation rate of the electrolytic solution, and further, since there is no adhesive layer, it can be thinned. Since the step of forming the adhesive layer can be omitted, the manufacturing cost can be reduced.
Furthermore, in the electricity storage device according to the present invention, the negative electrode layer is disposed between the positive electrode layers, and the positive electrode layer is disposed between the laminate or the negative electrode layer in which the separator layer is provided between the positive electrode layer and the negative electrode layer. Since the laminated body which is arrange | positioned and each provided with the separator layer between the positive electrode layer and the negative electrode layer is included, electrical storage capacity can be enlarged.
 また、本発明に係る蓄電デバイスでは、前記積層体が、前記正極層の端面と前記セパレータ層の端面とを含む第1端面と、前記負極層の端面と前記セパレータ層の端面とを含む第2端面とを有し、前記第1端面と前記第2端面にそれぞれ外部端子電極を設けるようにできる。
 このようにすると、複数の正極層を一括して外部端子電極に接続することや、複数の負極層を一括して外部端子電極に接続することが可能となるので、それぞれの正極層及び負極層からリード端子を引き出してそのリード端子をそれぞれ外部端子電極に接続する必要がないことから、工程が簡略化され、また、リード端子がない分、電気抵抗を低減できる。
 さらに、前記第1端面と前記第2端面にそれぞれ外部端子電極を設けるようにした積層体は、例えば、パッケージに収納する際、リード線を介することなくパッケージ電極に接続するリードレス構造とできるので、省スペース化及び小型化が可能になる。
In the electricity storage device according to the present invention, the stacked body includes a first end surface including an end surface of the positive electrode layer and an end surface of the separator layer, a second end surface including the end surface of the negative electrode layer and the end surface of the separator layer. And an external terminal electrode on each of the first end surface and the second end surface.
In this way, a plurality of positive electrode layers can be connected to the external terminal electrode at once, and a plurality of negative electrode layers can be connected to the external terminal electrode at the same time. Since there is no need to pull out the lead terminals from the lead terminals and connect the lead terminals to the external terminal electrodes, the process is simplified, and the electrical resistance can be reduced by the absence of the lead terminals.
Furthermore, since the laminated body in which the external terminal electrodes are provided on the first end surface and the second end surface, respectively, can be connected to the package electrode without passing through the lead wire when housed in a package, for example. Space saving and miniaturization are possible.
 また、本発明に係る蓄電デバイスでは、前記第1端面及び前記第2端面がそれぞれ平滑であることが好ましい。
 このように、前記第1端面及び前記第2端面が平滑であると、例えば、製造過程において前記端面に外力がかかった場合に、セパレータ層の端部の欠けや正若しくは負極層とセパレータ層間の剥離を防止でき、また、正極層と負極層の接触や短絡を防止できる。
 また、前記平滑な第1端面及び第2端面に外部端子電極を設けることにより、外部端子電極の形成が容易となる。さらに、前記平滑な第1端面及び第2端面に外部端子電極を密着させることが容易であり、より電極抵抗を低くでき、かつ外部端子電極の接合強度を高くすることができる。
 また、第1端面及び第2端面が平滑でない場合には、平滑でない端面の凹部と外部端子電極の間の空間に前記ガスがトラップされ、高温使用時などにこのガスが膨張して、外部端子電極の剥離が生じることがあるが、第1端面及び第2端面が平滑である場合にはかかる外部端子電極の剥離が生じにくい。
Moreover, in the electrical storage device which concerns on this invention, it is preferable that the said 1st end surface and the said 2nd end surface are each smooth.
Thus, when the first end face and the second end face are smooth, for example, when an external force is applied to the end face in the manufacturing process, the end of the separator layer is chipped or between the positive or negative electrode layer and the separator layer. Separation can be prevented, and contact between the positive electrode layer and the negative electrode layer and a short circuit can be prevented.
In addition, by providing external terminal electrodes on the smooth first end face and second end face, the external terminal electrodes can be easily formed. Furthermore, it is easy to make the external terminal electrode adhere to the smooth first end face and second end face, the electrode resistance can be further reduced, and the bonding strength of the external terminal electrode can be increased.
Further, when the first end face and the second end face are not smooth, the gas is trapped in the space between the recess of the non-smooth end face and the external terminal electrode, and this gas expands when used at a high temperature, and the external terminal The electrode may be peeled off, but when the first end surface and the second end surface are smooth, the external terminal electrode is hardly peeled off.
 また、本発明に係る蓄電デバイスでは、前記外部端子電極がそれぞれ前記セパレータ層と接合していることが好ましい。
 このように、外部端子電極とセパレータ層が接合していると、外部端子電極の積層体への接合強度がより強固となる。
 また、電極層,セパレータ層,外部端子電極が一体となるので、電極間距離の変化及び電極とセパレータ間の剥離やズレがより防止できる。
In the electricity storage device according to the present invention, it is preferable that each of the external terminal electrodes is bonded to the separator layer.
Thus, when the external terminal electrode and the separator layer are bonded, the bonding strength of the external terminal electrode to the laminate is further strengthened.
Moreover, since the electrode layer, the separator layer, and the external terminal electrode are integrated, it is possible to further prevent the change in the distance between the electrodes and the separation and deviation between the electrode and the separator.
 また、本発明に係る蓄電デバイスでは、前記積層体が、前記正極層の端面と前記セパレータ層の端面とを含む第1端面側において前記負極層の端面がセパレータ層に覆われて第1端面に形成された外部端子電極と確実に絶縁され、前記負極層の端面と前記セパレータ層の端面とを含む第2端面側において前記正極層の端面がセパレータ層に覆われて第2端面に形成された外部端子電極と確実に絶縁されていることが好ましい。
 これにより、積層体に直接外部端子電極が設置された場合に、正極層及び負極層の端面と異極層との端面のショートを容易に防止できる。
 さらに、この外部端子電極と絶縁されるべき正極層及び負極層の各端面を覆うセパレータ層によってその上下の負極層間の及び正極層間の距離を所定の間隔に保つことが可能になる。
 このため、積層体の端面に直接外部端子電極を設置した場合に、外部端子電極と絶縁されるべき正極層又は負極層の各端面を覆うセパレータ層の位置が動いたりしてズレることが防止できる。これにより、端面に設けられた外部端子電極が裂けるなどして電気導電性が切断されることが防止でき、外部端子電極の全体にわたって連続した電気導電性を確保することが容易となる。
Further, in the electricity storage device according to the present invention, the laminated body has a first end face on the first end face side including the end face of the positive electrode layer and the end face of the separator layer, and the end face of the negative electrode layer is covered with the separator layer on the first end face. The end face of the positive electrode layer is covered with the separator layer on the second end face side including the end face of the negative electrode layer and the end face of the separator layer, and is reliably insulated from the formed external terminal electrode. It is preferable that the terminal is reliably insulated from the external terminal electrode.
Thereby, when the external terminal electrode is directly installed on the laminate, it is possible to easily prevent short-circuiting between the end surfaces of the positive electrode layer and the negative electrode layer and the end surfaces of the different electrode layers.
Furthermore, the distance between the upper and lower negative electrode layers and between the positive electrode layers can be kept at a predetermined interval by the separator layer covering each end face of the positive electrode layer and the negative electrode layer to be insulated from the external terminal electrode.
For this reason, when the external terminal electrode is directly installed on the end face of the laminate, it is possible to prevent the position of the separator layer covering each end face of the positive electrode layer or the negative electrode layer to be insulated from the external terminal electrode from moving and shifting. . As a result, it is possible to prevent the electrical conductivity from being cut due to tearing of the external terminal electrode provided on the end face, and it becomes easy to ensure continuous electrical conductivity over the entire external terminal electrode.
 さらに、本発明に係る蓄電デバイスでは、前記セパレータ層が絶縁体粒子を含むことが好ましい。
 このように、前記セパレータ層が絶縁体粒子を含むことにより、製造過程の積層工程などにおいて、各層を加圧した場合などにもセパレータ層の収縮や空孔率の減少を抑えることができる。
 また、本発明に係る蓄電デバイスでは、前記セパレータ層が熱可塑性樹脂を含むことが好ましい。
Furthermore, in the electricity storage device according to the present invention, it is preferable that the separator layer includes insulator particles.
Thus, when the separator layer contains the insulator particles, shrinkage of the separator layer and reduction of the porosity can be suppressed even when each layer is pressurized in the lamination process of the manufacturing process.
Moreover, in the electrical storage device which concerns on this invention, it is preferable that the said separator layer contains a thermoplastic resin.
 また、本発明に係る蓄電デバイスでは、前記絶縁体粒子が無機フィラーであることが好ましい。
 このようにすると、無機フィラーは例えば有機フィラーに比べて高い耐熱性及び高い強度を有しているので、表面実装に耐えうる耐熱性を有する蓄電デバイスとでき、また、製造過程における熱圧着時等の加熱される工程でのセパレータ層の劣化や空孔率の減少を抑えることができる。
Moreover, in the electrical storage device which concerns on this invention, it is preferable that the said insulator particle is an inorganic filler.
In this way, since the inorganic filler has higher heat resistance and higher strength than, for example, the organic filler, it can be an electric storage device having heat resistance that can withstand surface mounting, and at the time of thermocompression bonding in the manufacturing process, etc. It is possible to suppress the deterioration of the separator layer and the decrease in the porosity in the heating process.
 本発明に係る蓄電デバイスの製造方法は、
 少なくとも2つの正極層間に負極層が配置され、前記正極層と負極層の間にそれぞれセパレータ層が設けられてなる積層体、または、少なくとも2つの負極層間に正極層が配置され、前記負極層と正極層の間にそれぞれセパレータ層が設けられてなる積層体と、電解液と、前記積層体と前記電解液を収納したパッケージとを有してなる蓄電デバイスを製造する製造方法であって、
 正極層と負極層とをセパレータ層を介して対向するように配置して、圧着若しくは加熱又は加熱しながら圧着することにより前記正極層及び前記負極層及び前記セパレータ層を一体化させることで、隣接する前記正極層及び前記負極層がそれぞれ前記セパレータ層に直接接合された蓄電デバイスを製造することを特徴とする。
 以上の本発明に係る蓄電デバイスの製造方法では、正極層と負極層とをセパレータ層を介して対向するように配置して、圧着若しくは加熱又は加熱しながら圧着することにより前記正極層及び前記負極層を前記セパレータ層に直接接合することを含むので、接着層を形成することなく前記正極層及び前記負極層を前記セパレータ層に接合することができる。
 このように、正極層及び負極層がセパレータ層に接合されていると、例えば、充放電時にガスが発生した場合であっても、電極間が開くことがなく、積層体の外形、特に積層体の端面の形状が変形することなく保持されるため、端面に形成される外部端子電極の剥がれを防止できる。
A method for manufacturing an electricity storage device according to the present invention includes:
A laminate in which a negative electrode layer is disposed between at least two positive electrode layers, and a separator layer is provided between the positive electrode layer and the negative electrode layer, or a positive electrode layer is disposed between at least two negative electrode layers, A manufacturing method for manufacturing an electricity storage device comprising a laminate in which separator layers are provided between positive electrode layers, an electrolyte, and a package containing the laminate and the electrolyte,
The positive electrode layer and the negative electrode layer are disposed so as to face each other with the separator layer interposed therebetween, and are adjacent to each other by integrating the positive electrode layer, the negative electrode layer, and the separator layer by pressure bonding or pressure bonding while heating or heating. The electrical storage device in which the positive electrode layer and the negative electrode layer are bonded directly to the separator layer is manufactured.
In the above method for producing an electricity storage device according to the present invention, the positive electrode layer and the negative electrode layer are arranged by pressing the positive electrode layer and the negative electrode layer so as to face each other through the separator layer, and press-bonding while pressing or heating or heating. Since the method includes directly bonding a layer to the separator layer, the positive electrode layer and the negative electrode layer can be bonded to the separator layer without forming an adhesive layer.
As described above, when the positive electrode layer and the negative electrode layer are bonded to the separator layer, for example, even when gas is generated during charging / discharging, the electrode does not open, and the outer shape of the stacked body, particularly the stacked body. Since the shape of the end face is maintained without being deformed, the external terminal electrode formed on the end face can be prevented from peeling off.
 本発明に係る蓄電デバイスの製造方法では、
 複数の積層体のそれぞれに対応するように設けられた正極層と負極層とをそれぞれセパレータ層を介して対向するように配置して、圧着若しくは加熱又は加熱しながら圧着することにより前記正極層及び前記負極層をそれぞれ前記セパレータ層に直接接合させる接合工程を含んで、前記積層体が複数一体化された積層集合体を作製するようにし、
 前記積層集合体を、それぞれ前記セパレータ層に接合された正極層と負極層とを含んでなる積層体毎に分割すること、をさらに含むことが好ましい。
 このようにすると、積層体を個別に作製するよりも効率よく蓄電デバイスを作製することができる。
In the method for manufacturing an electricity storage device according to the present invention,
The positive electrode layer and the negative electrode layer provided so as to correspond to each of the plurality of laminates are arranged so as to face each other with a separator layer interposed therebetween, and the positive electrode layer and the positive electrode layer are bonded by pressure bonding or heating or heating. Including a bonding step of directly bonding the negative electrode layer to the separator layer, respectively, so as to produce a laminated assembly in which a plurality of the laminated bodies are integrated,
It is preferable that the method further includes dividing the stacked assembly into stacks each including a positive electrode layer and a negative electrode layer bonded to the separator layer.
In this way, an electrical storage device can be manufactured more efficiently than manufacturing individual laminates.
 以上説明したように、本発明によれば、電極間距離の変化及び電極とセパレータ間の剥離やずれが防止でき、素子を薄くすることが可能でしかも少ない工数で安価に製造することができる蓄電デバイスとその製造方法を提供することができる。 As described above, according to the present invention, it is possible to prevent a change in the distance between electrodes and separation and displacement between the electrode and the separator, and it is possible to reduce the thickness of the element and to manufacture it at low cost with less man-hours. A device and a manufacturing method thereof can be provided.
本発明に係る実施形態の蓄電デバイスにおける積層体1の一部を断面図にして示す斜視図である。It is a perspective view showing a part of layered product 1 in an electrical storage device of an embodiment concerning the present invention by making a sectional view. 実施形態の蓄電デバイスの断面図である。It is sectional drawing of the electrical storage device of embodiment. 本発明の実施例における製造工程の一部の工程を示す断面図であり、 (1)は、正極集合シートの一ブロックを打ち抜いて吸着盤80に吸引・固定して基材PETフィルムから剥離する工程を示し (2)は、吸着盤80に吸引・固定した正極集合シートを別の正極集合シートと貼り合わせる工程を示し、 (3)は、2つの正極集合シートを正極集電体層21aが対向するように貼り合わせた正極・正極一体化シートの断面を示し、 (4)は、2つの負極集合シートを負極集電体層31aが対向するように貼り合わせた負極・負極一体化シートの断面を示す。It is sectional drawing which shows a part process of the manufacturing process in the Example of this invention, (1) Punches one block of a positive electrode assembly sheet | seat, it is suction-fixed to the suction disk 80, and peels from a base material PET film (2) shows the process of pasting the positive electrode assembly sheet sucked and fixed to the suction plate 80 with another positive electrode assembly sheet, and (3) shows the two positive electrode assembly sheets with the positive electrode current collector layer 21a. The cross section of the positive electrode / positive electrode integrated sheet bonded so as to face each other is shown. (4) is a view of the negative electrode / negative electrode integrated sheet bonded with two negative electrode aggregate sheets so that the negative electrode current collector layer 31a faces each other. A cross section is shown. 本発明の実施例における製造工程の一部の工程を示す断面図であり、 (5)は、正極・正極一体化シート20と負極・負極一体化シート30とを交互に貼り合わす工程の図であり、 (6)は、正極一体化シート20aと負極一体化シート30aの間に、正極・正極一体化シート20と負極・負極一体化シート30とが交互に積層された積層集合体の断面を示す。It is sectional drawing which shows the one part process of the manufacturing process in the Example of this invention, (5) is a figure of the process of bonding the positive electrode / positive electrode integrated sheet 20 and the negative electrode / negative electrode integrated sheet 30 alternately. Yes, (6) shows a cross section of a laminated assembly in which the positive electrode / positive electrode integrated sheet 20 and the negative electrode / negative electrode integrated sheet 30 are alternately stacked between the positive electrode integrated sheet 20a and the negative electrode integrated sheet 30a. Show. 本発明に係る実施例の電気二重層コンデンサの等価直列容量の周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the equivalent series capacity | capacitance of the electric double layer capacitor of the Example which concerns on this invention.
 以下、図面を参照しながら、本発明に係る蓄電デバイスについて説明する。
 本発明に係る実施形態の蓄電デバイスは、図1に示す積層体1を備えている。
 積層体1は、図1に示すように、正極層21と負極層31とが交互に配置され、正極層21と負極層31の間にはそれぞれセパレータ層11が設けられることにより構成される。ここで、実施形態の蓄電デバイスは、詳細後述するように、正極層21と負極層31とがそれぞれセパレータ層11に直接接合されている。
Hereinafter, an electricity storage device according to the present invention will be described with reference to the drawings.
The electrical storage device of embodiment which concerns on this invention is equipped with the laminated body 1 shown in FIG.
As illustrated in FIG. 1, the stacked body 1 is configured by alternately arranging positive electrode layers 21 and negative electrode layers 31, and providing separator layers 11 between the positive electrode layers 21 and the negative electrode layers 31. Here, in the electricity storage device of the embodiment, the positive electrode layer 21 and the negative electrode layer 31 are directly bonded to the separator layer 11 as described in detail later.
 また、正極層21は、正極集電体層21aとその両面に形成された正極活物質層21bとによって構成され、負極層31は、負極集電体層31aとその両面に形成された負極活物質層31bとによって構成される。
 また、実施形態の積層体1では、対向する2つの端面のうちの一方の第1端面2には、
正極集電体層21aの一端面が露出され、他方の第2端面3には、負極集電体層31aの一端面が露出されている。
The positive electrode layer 21 includes a positive electrode current collector layer 21a and a positive electrode active material layer 21b formed on both surfaces thereof. The negative electrode layer 31 includes a negative electrode current collector layer 31a and negative electrode active material layers formed on both surfaces thereof. And the material layer 31b.
Moreover, in the laminated body 1 of embodiment, in the 1st end surface 2 of the two opposing end surfaces,
One end face of the positive electrode current collector layer 21a is exposed, and one end face of the negative electrode current collector layer 31a is exposed on the other second end face 3.
 そして、積層体1の第1端面2には、正極集電体層21aの一端面に接続されるように正極外部端子電極21tが形成され、積層体1の第2端面3には、負極集電体層31aの一端面に接続されるように負極外部端子電極31tが形成されている。 A positive external terminal electrode 21t is formed on the first end surface 2 of the multilayer body 1 so as to be connected to one end surface of the positive electrode current collector layer 21a, and a negative electrode current collector is formed on the second end surface 3 of the multilayer body 1. A negative external terminal electrode 31t is formed so as to be connected to one end surface of the electric conductor layer 31a.
 この正極外部端子電極21tが形成される第1端面2と負極外部端子電極31tが形成される第2端面3はそれぞれ、セパレータ層11の端面と正極集電体層21aの一端面若しくは負極集電体層31aの一端面とが実質的に同一平面上に位置するように平滑であることが好ましい。
 このように、積層体1において、第1端面2及び第2端面3が平滑であると、後述するように、例えば、製造過程において積層体に外力がかかった場合に、セパレータ層11の端部の欠けを防止でき、また、正極層21と負極層31の接触や短絡を防止できる。
The first end surface 2 on which the positive external terminal electrode 21t is formed and the second end surface 3 on which the negative external terminal electrode 31t is formed are respectively the end surface of the separator layer 11 and one end surface of the positive electrode current collector layer 21a or the negative electrode current collector. It is preferable that the body layer 31a is smooth so that one end surface of the body layer 31a is located on substantially the same plane.
Thus, in the laminated body 1, when the 1st end surface 2 and the 2nd end surface 3 are smooth, when an external force is applied to a laminated body in a manufacture process so that it may mention later, the edge part of the separator layer 11 will be shown, for example. Chipping can be prevented, and contact between the positive electrode layer 21 and the negative electrode layer 31 and a short circuit can be prevented.
 以上のように構成された積層体1は、図2に示すように、電解液が注入されたパッケージ50の内部に配置される。このパッケージ50は、例えば、耐熱樹脂である液晶ポリマーによって構成されたベース部50bと蓋体50aからなり、ベース部50bには正極パッケージ電極41と負極パッケージ電極42とが分離して設けられている。
 ベース部50bにおいて、積層体1の正極外部端子電極21tは、ベース部50bの正極パッケージ電極41に接続され、負極外部端子電極31tは負極パッケージ電極42に接続される。
 尚、図1や2では、正極集電体層21a及び負極集電体層31aを全て同じ厚さに描いており、正極活物質層21b及び負極活物質層31bを全て同じ厚さに描いているが、本発明では、例えば、最上層と最下層に位置する正極集電体層21aや負極集電体層31aの厚さを他の集電体層に比較して薄くするなど、適宜厚さを変更することも可能である。
As shown in FIG. 2, the laminate 1 configured as described above is disposed inside a package 50 into which an electrolytic solution has been injected. The package 50 includes, for example, a base portion 50b made of a liquid crystal polymer that is a heat-resistant resin and a lid 50a. A positive electrode package electrode 41 and a negative electrode package electrode 42 are separately provided on the base portion 50b. .
In the base portion 50b, the positive external terminal electrode 21t of the stacked body 1 is connected to the positive electrode package electrode 41 of the base portion 50b, and the negative external terminal electrode 31t is connected to the negative electrode package electrode 42.
1 and 2, the positive electrode current collector layer 21a and the negative electrode current collector layer 31a are all drawn to the same thickness, and the positive electrode active material layer 21b and the negative electrode active material layer 31b are all drawn to the same thickness. However, in the present invention, for example, the thickness of the positive electrode current collector layer 21a and the negative electrode current collector layer 31a located in the uppermost layer and the lowermost layer is appropriately reduced, for example, by reducing the thickness compared to other current collector layers. It is also possible to change the length.
 以下、実施形態の各構成要素についてより詳細に説明する。
 本発明に係る蓄電デバイスとしては、リチウムイオン二次電池、リチウムイオンキャパシタ及び電気二重層キャパシタ等が挙げられるが、蓄電デバイスの種類によって、以下のような材料が使用できる。
Hereinafter, each component of the embodiment will be described in more detail.
Examples of the electricity storage device according to the present invention include a lithium ion secondary battery, a lithium ion capacitor, and an electric double layer capacitor. The following materials can be used depending on the type of the electricity storage device.
 <リチウムイオン二次電池>
 リチウムイオン二次電池では、正極集電体層21aとして、例えば、アルミニウム箔を用い、そのアルミニウム箔上にLiCoOのようなリチウム複合酸化物を含む合剤層を正極活物質層21bとして設けた電極を正極層21として用いる。
 また、負極集電体層31aとして、例えば、銅箔を用い、その銅箔上にグラファイトを含む合剤層を負極活物質層31bとして設けた電極を負極層31として用いる。
 そして、エチレンカーボネートとジエチルカーボネートの混合溶媒に1mol/lのLiPFを溶解させたものを電解液として使用することにより、リチウムイオン二次電池を作製することができる。
<Lithium ion secondary battery>
In the lithium ion secondary battery, for example, an aluminum foil is used as the positive electrode current collector layer 21a, and a mixture layer containing a lithium composite oxide such as LiCoO 2 is provided as the positive electrode active material layer 21b on the aluminum foil. An electrode is used as the positive electrode layer 21.
Further, as the negative electrode current collector layer 31a, for example, a copper foil is used, and an electrode in which a mixture layer containing graphite is provided as the negative electrode active material layer 31b on the copper foil is used as the negative electrode layer 31.
A lithium ion secondary battery can be manufactured by using, as an electrolytic solution, 1 mol / l LiPF 6 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate.
 <リチウムイオンキャパシタ>
 リチウムイオンキャパシタでは、正極集電体層21aとして、例えば、アルミニウム箔を用い、そのアルミニウム箔上に活性炭を含む合剤層を正極活物質層21bとして設けた電極を正極層21として用いる。
 また、負極集電体層31aとして、例えば、銅箔を用い、その銅箔上にグラファイトを含む合剤層を負極活物質層31bとして設けた電極を負極層31とし、その負極層31にさらにリチウムイオンをプレドープする。
 そして、エチレンカーボネートとジエチルカーボネートの混合溶媒に1mol/lのLiPFを溶解させたものを電解液として使用することにより、リチウムイオンキャパシタを作製することができる。
<Lithium ion capacitor>
In the lithium ion capacitor, for example, an aluminum foil is used as the positive electrode current collector layer 21 a, and an electrode in which a mixture layer containing activated carbon is provided on the aluminum foil as the positive electrode active material layer 21 b is used as the positive electrode layer 21.
Further, as the negative electrode current collector layer 31 a, for example, a copper foil is used, and an electrode provided with a mixture layer containing graphite on the copper foil as the negative electrode active material layer 31 b is defined as the negative electrode layer 31. Pre-dope with lithium ions.
Then, by using those obtained by dissolving LiPF 6 in 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate as an electrolytic solution, it is possible to produce lithium ion capacitor.
 <電気二重層キャパシタ>
 電気二重層キャパシタでは、正極集電体層21aとして、例えば、アルミニウム箔を用い、そのアルミニウム箔上に炭素材料、例えば活性炭を含む合剤層を正極活物質層21bとして設けた電極を正極層21として用いる。
 また、負極集電体層31aとして、例えば、アルミニウム箔を用い、そのアルミニウム箔上に炭素材料、例えば活性炭を含む合剤層を設けた電極を負極層31とする。
 そして、プロピレンカーボネートに1mol/lのトリエチルメチルアンモニウムテトラフルオロボレートを溶解させたものを電解液として使用することにより、電気二重層キャパシタを作製することができる。
<Electric double layer capacitor>
In the electric double layer capacitor, for example, an aluminum foil is used as the positive electrode current collector layer 21a, and an electrode in which a mixture layer containing a carbon material, for example, activated carbon, is provided on the aluminum foil as the positive electrode active material layer 21b. Used as
Further, as the negative electrode current collector layer 31 a, for example, an aluminum foil is used, and an electrode in which a mixture layer containing a carbon material, for example, activated carbon is provided on the aluminum foil is referred to as the negative electrode layer 31.
An electric double layer capacitor can be produced by using, as an electrolytic solution, 1 mol / l triethylmethylammonium tetrafluoroborate dissolved in propylene carbonate.
 (正極、及び負極層の作製)
 正極層21及び負極層31は、活物質(活性炭、リチウム複合酸化物、炭素等)を正極集電体層21a及び負極集電体層31a上に、コンマコーター、ダイコータ、グラビア印刷工法等で塗工することで作製される。より好ましくは、スクリーン印刷工法にて塗工することで作製される。スクリーン印刷では、正極集電体層21aや負極集電体層31aにかかる塗工時のテンションが低いため、より薄い膜厚の集電体を使用することができる。
(Preparation of positive electrode and negative electrode layer)
The positive electrode layer 21 and the negative electrode layer 31 are coated with an active material (activated carbon, lithium composite oxide, carbon, etc.) on the positive electrode current collector layer 21a and the negative electrode current collector layer 31a by a comma coater, a die coater, a gravure printing method, or the like. It is produced by processing. More preferably, it is produced by coating by a screen printing method. In screen printing, since the tension applied to the positive electrode current collector layer 21a and the negative electrode current collector layer 31a is low, a current collector with a thinner film thickness can be used.
 (セパレータ層11の作製及び圧着)
 また、セパレータ層11の作製においては、セパレータ層11の成分を含むスラリーを正極層21又は/及び負極層31上に、塗布することによって作製することができる。セパレータ層用スラリーの塗布は、コンマコーター、ダイコータ、グラビア印刷工法等でも塗布することができるが、スクリーン印刷工法にて塗工して作製することが好ましい。
(Preparation and pressure bonding of separator layer 11)
The separator layer 11 can be prepared by applying a slurry containing the components of the separator layer 11 on the positive electrode layer 21 and / or the negative electrode layer 31. The separator layer slurry can be applied by a comma coater, a die coater, a gravure printing method, or the like, but is preferably prepared by a screen printing method.
 以上のように正極層21又は/及び負極層31上にセパレータ層11を形成した後、例えば、セパレータ層11を介して正極層21及び負極層31を対向させて圧着することで、セパレータ層11と正極層21及び負極層31が接合される。また圧着時に加熱することにより、より強固に圧着することができる。このように正極層-セパレータ層-負極層が接合されて一体化されることで、製造時におけるセパレータ層11の剥離・脱落による正極層21と負極層31間の短絡を防ぐことができる。
 この圧着時においては、例えば、セパレータ層11として、カルボキシメチルセルロースを使用した場合、カルボキシメチルセルロースのガラス転移温度が45℃であるから、45℃以上で加熱することが好ましい。このようにすると、カルボキシメチルセルロースが可塑化することにより、セパレータ層11の両面に正極層21及び負極層31をより確実に接合できる。
 セパレータ層11としては、カルボキシメチルセルロース以外にも熱可塑性樹脂や、エポキシ樹脂やポリイミド、ポリアミドイミド、ポリアミドなどの熱硬化性樹脂を使用することができる。ポリアミドイミドとしては、東洋紡製のHR-11NNなどが挙げられる。
 この中で、熱可塑性樹脂はガラス転移温度または融点まで加熱することによって軟らかくなるため、加熱又は加熱しながら圧着することで接合対象である電極層やセパレータ層との接触面積が大きくなり、強い接合が得られるため好ましい。
 また、熱可塑性樹脂であるポリフッ化ビニリデン(以下、PVDF)はスラリーが安定し、かつ、耐熱性及び耐溶剤性に優れ、点結着することにより活物質を完全に覆わず、優れた充放電反応特性を得ることができる。
 また、熱硬化性樹脂は耐熱性が高く、結着力が強く、化学的安定性に優れ、熱可塑性樹脂と比較して高強度であるため、積層体の強度が向上する。
 さらに、セパレータ層が有機化合物の網目構造を有することにより、例えば無機粒子を焼結することでセパレータ層が形成されているような場合と比較して、積層体や蓄電デバイスに曲げや衝撃に対して高い耐性を持たすことができる。
After the separator layer 11 is formed on the positive electrode layer 21 and / or the negative electrode layer 31 as described above, for example, the positive electrode layer 21 and the negative electrode layer 31 are opposed to each other via the separator layer 11, and the separator layer 11 is pressed. The positive electrode layer 21 and the negative electrode layer 31 are joined. Moreover, it can crimp more firmly by heating at the time of crimping | compression-bonding. In this way, the positive electrode layer-separator layer-negative electrode layer are joined and integrated, thereby preventing a short circuit between the positive electrode layer 21 and the negative electrode layer 31 due to the separation / detachment of the separator layer 11 during manufacturing.
At the time of this pressure bonding, for example, when carboxymethyl cellulose is used as the separator layer 11, the glass transition temperature of carboxymethyl cellulose is 45 ° C., and therefore it is preferable to heat at 45 ° C. or higher. If it does in this way, the positive electrode layer 21 and the negative electrode layer 31 can be more reliably joined to both surfaces of the separator layer 11 by plasticizing carboxymethylcellulose.
As the separator layer 11, a thermoplastic resin, a thermosetting resin such as an epoxy resin, polyimide, polyamideimide, or polyamide can be used in addition to carboxymethylcellulose. Examples of the polyamideimide include HR-11NN manufactured by Toyobo.
Among these, the thermoplastic resin becomes soft when heated to the glass transition temperature or the melting point, so that the contact area with the electrode layer or separator layer to be joined increases by pressing while heating or heating, and strong bonding Is preferable.
In addition, polyvinylidene fluoride (hereinafter referred to as PVDF), which is a thermoplastic resin, has a stable slurry, excellent heat resistance and solvent resistance, and does not completely cover the active material due to point bonding. Reaction characteristics can be obtained.
In addition, since the thermosetting resin has high heat resistance, strong binding force, excellent chemical stability, and higher strength than the thermoplastic resin, the strength of the laminate is improved.
Furthermore, since the separator layer has a network structure of an organic compound, for example, compared to the case where the separator layer is formed by sintering inorganic particles, the laminate and the power storage device are resistant to bending and impact. High resistance.
 なお、接合部位は、主面でも良いし、端面又は側面でも良いし、あるいは、その両方であっても良い。
 また、本発明では、正極層21と負極層31とをセパレータ層11を介して交互に積層した後に、圧着するようにしてもよく、このようにすると圧着工程の回数を減らすことができる。
 このように正極層21と負極層31とをセパレータ層11を介して交互に積層した積層体においては、正極層21と負極層31を積層するごとに、圧着や加熱などにより仮接合を行って全て積層した後に、本接合を施すようにすることが好ましい。
 このようにすると、積層時に、正極層21と負極層31間の位置を精度よく逐次積層することが可能になる。また、本接合は、複数の積層体1が複数個まとめて形成された積層集合体で行ってもよいし、積層集合体を個片化した後に、積層体毎に行ってもよい。
In addition, a junction surface may be a main surface, an end surface or a side surface, or both.
Further, in the present invention, the positive electrode layers 21 and the negative electrode layers 31 may be alternately laminated after the separator layers 11 are laminated, and in this way, the number of crimping steps can be reduced.
Thus, in the laminated body which laminated | stacked the positive electrode layer 21 and the negative electrode layer 31 alternately via the separator layer 11, every time the positive electrode layer 21 and the negative electrode layer 31 are laminated | stacked, temporary joining is performed by pressure bonding, heating, etc. It is preferable to perform the main bonding after all the layers are laminated.
In this way, the positions between the positive electrode layer 21 and the negative electrode layer 31 can be sequentially and accurately laminated at the time of lamination. Further, the main bonding may be performed by a laminated assembly in which a plurality of laminated bodies 1 are collectively formed, or may be performed for each laminated body after the laminated aggregate is separated into pieces.
 セパレータ層11は、絶縁体粒子を含むことが好ましい。セパレータ層11が絶縁体粒子を含むことにより、積層工程などにおいて、各層を圧迫した場合にもセパレータ層11の収縮又は空孔の埋没を抑えることができ、より効率的に正極層21と負極層31間の良好な絶縁状態を維持できる。 The separator layer 11 preferably contains insulator particles. When the separator layer 11 includes the insulator particles, the shrinkage of the separator layer 11 or the burial of the pores can be suppressed even when each layer is pressed in the lamination process or the like, and the positive electrode layer 21 and the negative electrode layer can be more efficiently A good insulation state between 31 can be maintained.
 セパレータ層11に含有させる絶縁体粒子としては、例えば、ポリテトラフルオロエチレン(PTFE)のような有機物粒子や、シリカやアルミナのような無機フィラー、あるいはそれらを混合して使用することができる。表面実装に耐えうる耐熱性を得るため、及び、硬度が高く積層体1の熱圧着時に空孔をより効率的に保持することができるために、無機フィラーを使用することが好ましい。さらに、破砕シリカなどの三次元方向に不定形な絶縁体粒子を使用すると、粒子間でより空隙が生じ、イオンの導電パスが確保されて蓄電デバイスの低抵抗化が可能となるため、より好ましい。 As the insulator particles to be contained in the separator layer 11, for example, organic particles such as polytetrafluoroethylene (PTFE), inorganic fillers such as silica and alumina, or a mixture thereof can be used. It is preferable to use an inorganic filler in order to obtain heat resistance that can withstand surface mounting and to hold holes more efficiently when the laminate 1 is thermocompression bonded. Furthermore, it is more preferable to use insulator particles that are irregular in the three-dimensional direction, such as crushed silica, because more voids are generated between the particles, an ion conduction path is secured, and the resistance of the electricity storage device can be reduced. .
 また、これらの絶縁体粒子の平均粒子径(D50)は特に限定されるものではないが、
2μm以下であることが望ましい。粒子が重ならないように1粒子のみを平面的に均一に塗工することは困難であり、通常、セパレータ層11中には2つないし3つ以上の粒子が厚さ方向に存在する。例えば、3つの粒子がセパレータ層11中に厚さ方向に存在した場合、平均粒子径(D50)が2μm以下であれば、セパレータ層11の厚みを平均6μm以下とでき、より小型の蓄電デバイスを供給することができる。
 なお、本実施形態では、セパレータ層11は、セパレータ層11の成分を含むスラリーを正極層21又は/及び負極層31上に塗布することによって作製されたが、正極層21や負極層31とは別に、例えば、基材PETフィルム上にセパレータ層11の成分を含むスラリーを塗布することによって作製・準備されてもよい。
Further, the average particle diameter (D 50 ) of these insulator particles is not particularly limited,
It is desirable that it is 2 μm or less. It is difficult to apply only one particle uniformly in a planar manner so that the particles do not overlap, and usually two to three or more particles are present in the thickness direction in the separator layer 11. For example, when three particles are present in the thickness direction in the separator layer 11, if the average particle diameter (D 50 ) is 2 μm or less, the thickness of the separator layer 11 can be 6 μm or less on average, and a smaller power storage device Can be supplied.
In the present embodiment, the separator layer 11 is produced by applying a slurry containing the components of the separator layer 11 on the positive electrode layer 21 and / or the negative electrode layer 31. What is the positive electrode layer 21 and the negative electrode layer 31? Separately, for example, it may be prepared and prepared by applying a slurry containing the component of the separator layer 11 on the base PET film.
 複数個の積層体1が一体化された積層集合体は、ダイサーカットやギロチンカットで切断することにより個片化することができる。これにより、1個1個の積層体を個別に作製するよりも、より効率的に生産性の高い蓄電デバイスを作製することができる。 A laminated assembly in which a plurality of laminated bodies 1 are integrated can be separated into pieces by cutting with a dicer cut or a guillotine cut. Accordingly, it is possible to manufacture a power storage device with high productivity more efficiently than manufacturing individual stacks one by one.
 個片化した後の積層体1の端面は、実質的に平滑であることが好ましい。積層体1の端面が平滑でない場合、例えば、セパレータ層11の端面が正極層21及び負極層31の端面より内側に陥没しているように場合には、正極層21及び負極層31との短絡やセパレータ層11との間の層間剥離が生じやすくなる。また、正極層21及び負極層31の端面がセパレータ層11の端面より内側に陥没しているように場合には、セパレータ層11が割れやすくなり、セパレータ層11に応力がかかった際の割れに起因して正極層21及び負極層31との短絡が生じやすくなる。すなわち、突出したセパレータ層11が割れる際には、正極層21又は負極層31の端部が支点になって正極層21又は負極層31の端面より内側に陥没した割れが生じることもあり、そのような陥没した割れにより正極層21及び負極層31との短絡が生じやすくなる。また、正極層21及び負極層31とセパレータ層11との間の層間剥離も生じやすくなる。
 したがって、積層体1の端面が実質的に平滑であれば、セパレータ層11や正極層21、負極層31に応力が生じた際にもショートを生じにくくなる。さらに、セパレータ層11と正極層21間、セパレータ層11と負極層31間の層間剥離が生じにくくなる。
It is preferable that the end surface of the laminated body 1 after dividing into pieces is substantially smooth. When the end surface of the laminated body 1 is not smooth, for example, when the end surface of the separator layer 11 is recessed inside the end surfaces of the positive electrode layer 21 and the negative electrode layer 31, short-circuiting with the positive electrode layer 21 and the negative electrode layer 31 is performed. Further, delamination between the separator layer 11 and the separator layer 11 is likely to occur. In addition, when the end surfaces of the positive electrode layer 21 and the negative electrode layer 31 are recessed inward from the end surface of the separator layer 11, the separator layer 11 is easily cracked, and cracking occurs when stress is applied to the separator layer 11. As a result, a short circuit between the positive electrode layer 21 and the negative electrode layer 31 tends to occur. That is, when the protruding separator layer 11 is cracked, the end of the positive electrode layer 21 or the negative electrode layer 31 becomes a fulcrum, and a crack that is recessed inward from the end surface of the positive electrode layer 21 or the negative electrode layer 31 may occur. Such a depressed crack tends to cause a short circuit between the positive electrode layer 21 and the negative electrode layer 31. In addition, delamination between the positive electrode layer 21 and the negative electrode layer 31 and the separator layer 11 easily occurs.
Therefore, if the end surface of the laminated body 1 is substantially smooth, it is difficult for a short circuit to occur even when stress is generated in the separator layer 11, the positive electrode layer 21, and the negative electrode layer 31. Further, delamination between the separator layer 11 and the positive electrode layer 21 and between the separator layer 11 and the negative electrode layer 31 are less likely to occur.
 また、端面が実質的に平滑であれば、正極外部端子電極21t及び負極外部端子電極31tを密着性良く形成することが容易であり、電気抵抗を低減することが可能になる。また、正極外部端子電極21t及び負極外部端子電極31tの接合強度を向上させることができるのに加えて、セパレータ層11により正極層21及び負極層31が接合された積層体1において、充放電時にガスが発生した場合、正極層21若しくは負極層31とセパレータ層11の間が開くことがなく、前記端面の形状が保持されるため、正極外部端子電極21t及び負極外部端子電極31tの剥離を防止できる。さらに、ガスが正極層21若しくは負極層31とセパレータ層11の間に残存しにくく、抵抗値が上昇しにくい。
 また、端面が平滑でない場合、端面の凹部と外部端子電極の間の空間にガスがトラップされ、高温使用時などにこのガスが膨張して、端面からの外部端子電極の剥離が生じ易くなる。
Further, if the end face is substantially smooth, it is easy to form the positive external terminal electrode 21t and the negative external terminal electrode 31t with good adhesion, and the electrical resistance can be reduced. Further, in addition to improving the bonding strength between the positive electrode external terminal electrode 21t and the negative electrode external terminal electrode 31t, in the laminate 1 in which the positive electrode layer 21 and the negative electrode layer 31 are bonded by the separator layer 11, When the gas is generated, the positive electrode layer 21 or the negative electrode layer 31 and the separator layer 11 are not opened, and the shape of the end face is maintained, so that the positive electrode external terminal electrode 21t and the negative electrode external terminal electrode 31t are prevented from being peeled off. it can. Furthermore, the gas hardly remains between the positive electrode layer 21 or the negative electrode layer 31 and the separator layer 11, and the resistance value hardly increases.
In addition, when the end face is not smooth, gas is trapped in the space between the recess on the end face and the external terminal electrode, and this gas expands during high temperature use, and the external terminal electrode is likely to peel off from the end face.
(正極外部端子電極21t及び負極外部端子電極31t)
 正極外部端子電極21t及び負極外部端子電極31tは、以下のようにして形成することができる。
 ここで、正極外部端子電極21t及び負極外部端子電極31tは、例えば、スパッタリングによりAlを付着させることにより形成することができる。
 側面に正極外部端子電極21t及び負極外部端子電極31tが形成された積層体1は、
正極パッケージ電極41及び負極パッケージ電極42を備えたパッケージ内に電解液とともに収納され、蓄電デバイスが作製される。
 パッケージに積層体1を収納する際、例えば、正極外部端子電極21t及び負極外部端子電極31t上に、導電性粒子として金を含有する導電性接着剤をディッピングにより塗布して、その導電性接着剤が、それぞれ正極パッケージ電極及び負極パッケージ電極に接続されるように、積層体1を配置する。
 そして、積層体1が配置されたパッケージを例えば、170℃で10分加熱して、導電性接着剤を硬化させて、積層体1をパッケージ電極に固定するとともに、正極外部端子電極21t及び負極外部端子電極31tをそれぞれ正極パッケージ電極41及び負極パッケージ電極42に電気的に接続する。
 導電性粒子としては、金の他にカーボン、銀、銅、アルミニウムなどが用途によって用いられる。
 尚、正極外部端子電極21t及び負極外部端子電極31tは、積層体1の側面に直接導電性接着剤をディッピングにより塗布するようにして形成してもよい。
 正極外部端子電極21t及び負極外部端子電極31tは、蒸着、スパッタリング、イオンプレーティング、溶射、コールドスプレー、めっきなどにより積層体1の端面に直接導電皮膜を形成するようにしてもよい。この場合、導電皮膜として形成された正極外部端子電極21t及び負極外部端子電極31t上に、上述した導電性接着剤を塗布して、正極外部端子電極21tと負極外部端子電極31tとが、塗布した導電性接着剤によってそれぞれ正極パッケージ電極41及び負極パッケージ電極42に接続されるように、積層体1をパッケージのベース部50bの中に配置して、上述と同様に加熱して硬化させて接続すればよい。
(Positive external terminal electrode 21t and negative external terminal electrode 31t)
The positive external terminal electrode 21t and the negative external terminal electrode 31t can be formed as follows.
Here, the positive external terminal electrode 21t and the negative external terminal electrode 31t can be formed, for example, by depositing Al by sputtering.
The laminated body 1 in which the positive electrode external terminal electrode 21t and the negative electrode external terminal electrode 31t are formed on the side surface,
It is housed together with the electrolyte in a package including the positive electrode package electrode 41 and the negative electrode package electrode 42, and an electricity storage device is manufactured.
When the laminate 1 is stored in the package, for example, a conductive adhesive containing gold as conductive particles is applied to the positive external terminal electrode 21t and the negative external terminal electrode 31t by dipping, and the conductive adhesive is used. However, the laminated body 1 is arrange | positioned so that it may connect with a positive electrode package electrode and a negative electrode package electrode, respectively.
Then, for example, the package in which the multilayer body 1 is arranged is heated at 170 ° C. for 10 minutes to cure the conductive adhesive to fix the multilayer body 1 to the package electrode, and the positive external terminal electrode 21t and the negative external electrode The terminal electrode 31t is electrically connected to the positive package electrode 41 and the negative package electrode 42, respectively.
As the conductive particles, carbon, silver, copper, aluminum or the like is used in addition to gold.
The positive external terminal electrode 21t and the negative external terminal electrode 31t may be formed by applying a conductive adhesive directly to the side surface of the laminate 1 by dipping.
The positive electrode external terminal electrode 21t and the negative electrode external terminal electrode 31t may directly form a conductive film on the end surface of the laminate 1 by vapor deposition, sputtering, ion plating, thermal spraying, cold spraying, plating, or the like. In this case, the conductive adhesive described above was applied onto the positive external terminal electrode 21t and the negative external terminal electrode 31t formed as the conductive film, and the positive external terminal electrode 21t and the negative external terminal electrode 31t were applied. The laminated body 1 is disposed in the base portion 50b of the package so as to be connected to the positive electrode package electrode 41 and the negative electrode package electrode 42 by the conductive adhesive, and is heated and cured in the same manner as described above to be connected. That's fine.
 さらに、ベース部50b内に電解液を注液して、蓋体50aにより封止することにより、蓄電デバイスが完成する。
 この電解液としては、蓄電デバイスとしてそれぞれ、リチウムイオン二次電池を作製する場合は、一般にリチウムイオン二次電池において使用される電解液を使用することができ、リチウムイオンキャパシタを作製する場合は、一般にリチウムイオンキャパシタにおいて使用される電解液を使用することができ、電気二重層キャパシタを作製する場合は、一般に電気二重層キャパシタにおいて使用される電解液を使用することができる。
Furthermore, an electrolytic solution is injected into the base portion 50b and sealed with the lid 50a, whereby the electricity storage device is completed.
As this electrolytic solution, when producing a lithium ion secondary battery as an electricity storage device, respectively, an electrolytic solution generally used in a lithium ion secondary battery can be used, and when producing a lithium ion capacitor, In general, an electrolytic solution used in a lithium ion capacitor can be used. When an electric double layer capacitor is manufactured, an electrolytic solution generally used in an electric double layer capacitor can be used.
 例えば、一般的に蓄電デバイスで使用されているジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、アセトニトリルから選択される、又はこれらを混合した有機溶媒に、LiPF、LiBF、LiTFSI等のLi塩を溶解させた電解液や、前記有機溶媒に、テトラメチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート、1-エチル-3メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドを溶解させた電解液などが挙げられる。なお、電気二重層キャパシタにおいては、電解液として、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート、1-エチル-3メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドのようなイオン液体を用いる場合、有機溶媒を実質的に含まないイオン液体のみを電解液として使用することができる。有機溶媒を実質的に含まないイオン液体を用いた場合、イオン液体は高温まで蒸気圧が低いため、高温での膨張が抑制でき、耐熱性の高い蓄電デバイスを供給することができる。また、1-エチル-3-メチルイミダゾリウムテトラフルオロボレートは、1-エチル-3メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドなどと比較してアニオンであるテトラフルオロボレートのイオン半径が小さく、導電率が高いため、より低抵抗の蓄電デバイスを供給することができる。 For example, in an organic solvent generally selected from dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, propylene carbonate, acetonitrile, or a mixture thereof, commonly used in power storage devices, LiPF 6 , LiBF 4 , LiTFSI, or other Li In an electrolytic solution in which a salt is dissolved or in the organic solvent, tetramethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis Examples thereof include an electrolytic solution in which (trifluoromethanesulfonyl) imide is dissolved. In the electric double layer capacitor, when an ionic liquid such as 1-ethyl-3-methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide is used as the electrolyte, Only ionic liquids substantially free of organic solvents can be used as the electrolyte. When an ionic liquid that does not substantially contain an organic solvent is used, since the ionic liquid has a low vapor pressure up to a high temperature, expansion at a high temperature can be suppressed, and an electricity storage device with high heat resistance can be supplied. In addition, 1-ethyl-3-methylimidazolium tetrafluoroborate has a smaller ionic radius of tetrafluoroborate, which is an anion, compared to 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide and the like. Therefore, an electricity storage device with lower resistance can be supplied.
 実施例として、以下の工程で電気二重層コンデンサを作製した。 As an example, an electric double layer capacitor was fabricated by the following process.
 工程1(集電体の作製)
離形層としてワックスが塗布された基材PETフィルム上に、厚さ0.5μmのアルミニウム層を蒸着にて形成した。
 蒸着により形成したアルミニウム層の表面に、スクリーン印刷によりエッチングマスクレジストをパターン塗布、乾燥した。レジストは関西ペイント製アレスSPRを用いた。その後、このフィルムを40℃の塩化第二鉄水溶液に浸漬し、アルミニウム層をパターニングした。
 その後、このフィルムを有機溶剤中に浸漬し、レジストを剥離した後、硫酸とフッ酸の混合水溶液に浸漬して、アルミニウム層表面の酸化層を取り除き、正極集電体層21aとした。
Step 1 (Preparation of current collector)
An aluminum layer having a thickness of 0.5 μm was formed by vapor deposition on a base material PET film coated with wax as a release layer.
On the surface of the aluminum layer formed by vapor deposition, an etching mask resist was applied by pattern printing and dried. The resist used was Ares SPR manufactured by Kansai Paint. Then, this film was immersed in 40 degreeC ferric chloride aqueous solution, and the aluminum layer was patterned.
Then, this film was immersed in an organic solvent, the resist was peeled off, and then immersed in a mixed aqueous solution of sulfuric acid and hydrofluoric acid to remove the oxidized layer on the surface of the aluminum layer, thereby forming a positive electrode current collector layer 21a.
 工程2
 (1)活物質層用スラリーの作製
 活性炭(BET比表面積1668m/g、平均細孔直径1.83nm、平均粒子径(D50)1.26μm)を29.0g、カーボンブラック(東海カーボン株式会社製「ト
ーカブラック#3855」、BET比表面積90m/g)を2.7g、秤量して、1000mlのポットに入れ、さらに直径2.0mmのPSZ製粉砕メディア及び286gの脱イオン水を入れ、転動ボールミルを用いて150rpmで4時間混合して分散を行った。その後、3.0gのカルボキシメチルセルロース(ダイセル化学工業株式会社製「CMC2260」)と38.8wt%のポリアクリレート樹脂水溶液2.0gを、分散を行った後のポットに入れて、さらに2時間混合して活物質層用スラリーを作製した。
 (2)活物質層用スラリーの塗工
 版厚5μmの#500メッシュスクリーン印刷版を使用し、正極集電体層21a上の活物質層塗工部に上記の方法で作製した活物質層用スラリーをスクリーン印刷し、100℃にて30分間乾燥して、厚さ6μmの正極活物質層21bを形成した。
 これにより、正極集電体層21aと正極活物質層21bとからなる正極層21を形成した。
 尚、正極活物質層21bは、図1に示すように、積層体1の第1端面2において正極外部端子電極21tに直接接続されないように第1端面2から所定の間隔だけ隔てて形成される。このように構成するため、活物質層用スラリーは、後述の工程6において切断された際にその切断面から所定の幅の未塗工領域が形成されるようにスクリーン印刷される。
Process 2
(1) Preparation of slurry for active material layer 29.0 g of activated carbon (BET specific surface area 1668 m 2 / g, average pore diameter 1.83 nm, average particle diameter (D 50 ) 1.26 μm), carbon black (Tokai Carbon Co., Ltd.) 2.7 g of “Toka Black # 3855” manufactured by company, BET specific surface area 90 m 2 / g) is weighed and put into a 1000 ml pot, and further, PSZ grinding media with a diameter of 2.0 mm and 286 g of deionized water. Then, the mixture was dispersed by mixing at 150 rpm for 4 hours using a rolling ball mill. Then, 3.0 g of carboxymethyl cellulose (“CMC2260” manufactured by Daicel Chemical Industries, Ltd.) and 2.0 g of 38.8 wt% polyacrylate resin aqueous solution are placed in the pot after the dispersion, and further mixed for 2 hours. Thus, an active material layer slurry was prepared.
(2) Application of slurry for active material layer For active material layer prepared by the above method on the active material layer coating part on the positive electrode current collector layer 21a using a # 500 mesh screen printing plate having a plate thickness of 5 μm The slurry was screen-printed and dried at 100 ° C. for 30 minutes to form a positive electrode active material layer 21b having a thickness of 6 μm.
Thus, the positive electrode layer 21 composed of the positive electrode current collector layer 21a and the positive electrode active material layer 21b was formed.
As shown in FIG. 1, the positive electrode active material layer 21 b is formed at a predetermined interval from the first end surface 2 so as not to be directly connected to the positive electrode external terminal electrode 21 t on the first end surface 2 of the multilayer body 1. . Since it comprises in this way, the slurry for active material layers is screen-printed so that when it cut | disconnects in the below-mentioned process 6, the uncoated area | region of a predetermined width is formed from the cut surface.
 工程3
 (1)セパレータ層用スラリーの作製
 500mlのポットにシリカ(電気化学工業(株)製、平均粒子径(D50)0.7μ
m)を50gと、溶剤としてメチルエチルケトンを50g投入した。さらに直径5mmのPSZ製粉砕メディアを入れ、転動ボールミルを用いて150rpmで16時間混合し、分散を行った。その後、PVDFのバインダ溶液(クレハ製 L#1120、分子量28万、12wt%溶液)を入れて転動ボールミルを用いて150rpmで4時間混合し、セパレータ層用スラリーを作製した。
 (2)セパレータ層用スラリーの塗工
 版厚5μmの#500メッシュスクリーン印刷版を使用し、上記の方法で作製したセパレータ層用スラリーを正極層21上に塗工し、120℃にて30分間乾燥し、厚さ3μmのセパレータ層11を作製した。
Process 3
(1) Preparation of slurry for separator layer Silica (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.7 μm in a 500 ml pot
m) and 50 g of methyl ethyl ketone as a solvent were added. Further, PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill. Thereafter, a binder solution of PVDF (Kureha L # 1120, molecular weight 280,000, 12 wt% solution) was added and mixed for 4 hours at 150 rpm using a rolling ball mill to prepare a separator layer slurry.
(2) Application of separator layer slurry Using a # 500 mesh screen printing plate having a plate thickness of 5 μm, the separator layer slurry prepared by the above method was applied onto the positive electrode layer 21 and then heated at 120 ° C. for 30 minutes. The separator layer 11 having a thickness of 3 μm was produced by drying.
 以上のようにして、セパレータ層11に複数の正極層21が形成された正極集合シートを基材PETフィルム上に形成した。
 尚、同様にして、このセパレータ層11に複数の正極層21が形成された正極集合シートをもう一枚作製した。
As described above, a positive electrode assembly sheet in which a plurality of positive electrode layers 21 were formed on the separator layer 11 was formed on a base material PET film.
Similarly, another positive electrode assembly sheet in which a plurality of positive electrode layers 21 were formed on the separator layer 11 was produced.
 さらに、同様にして、セパレータ層11に複数の負極層31が形成された負極集合シートを基材PETフィルム上に形成したものを2枚作製した。 Furthermore, similarly, two sheets were prepared in which a negative electrode assembly sheet in which a plurality of negative electrode layers 31 were formed on the separator layer 11 was formed on a base PET film.
 工程4
 次に、図3(1)に示すように、正極集合シートのブロックを打ち抜いて吸着盤80に吸引・固定し、基材PETフィルム100を剥離した。
 工程5
 次に、図3(2)に示すように、同様にして準備した基材PETフィルムが剥離された別の正極集合シートの打ち抜きブロックに、吸着盤80に吸引・固定した正極集合シートの打ち抜きブロックを正極集電体層21a同士が対向するように重ねて配置した。この重ねて配置された正極集合シートの両側から、全面を均等に図示しない加圧板で加圧して、正極集合シート同士を接合した。このとき、加圧板の温度は150℃、加圧の圧力は0.05MPa、加圧時間は1分とした。
Process 4
Next, as shown in FIG. 3 (1), the block of the positive electrode assembly sheet was punched out and sucked and fixed to the suction plate 80, and the base PET film 100 was peeled off.
Process 5
Next, as shown in FIG. 3 (2), a punching block of the positive electrode assembly sheet sucked and fixed to the suction plate 80 to another punching block of the positive electrode assembly sheet from which the base PET film prepared in the same manner was peeled off. Were stacked so that the positive electrode current collector layers 21a face each other. The entire surface of the positive electrode assembly sheet arranged in an overlapping manner was pressed with a pressure plate (not shown) to join the positive electrode assembly sheets together. At this time, the temperature of the pressing plate was 150 ° C., the pressing pressure was 0.05 MPa, and the pressing time was 1 minute.
 この工程4と工程5により、図3(3)に示す、セパレータ層11の内部に正極層21が埋設された正極・正極一体化シート20を作製した。
 同様にして、図3(4)に示す、セパレータ層11の内部に負極層31が埋設された負極・負極一体化シート30を作製した。
By this step 4 and step 5, the positive electrode / positive electrode integrated sheet 20 shown in FIG. 3 (3) in which the positive electrode layer 21 was embedded in the separator layer 11 was produced.
Similarly, the negative electrode / negative electrode integrated sheet 30 shown in FIG. 3 (4) in which the negative electrode layer 31 was embedded in the separator layer 11 was produced.
 そして、正極・正極一体化シート20と負極・負極一体化シート30とを図4(5)に示すように交互に熱圧着して貼り合わせて、図4(6)に示す、合わせて4枚の一体化シートが積層されてなる積層集合体を作製した。熱圧着は、加圧板の温度を150℃、加圧の圧力を0.05MPaとし、加圧時間はそれぞれ1分とした。 Then, the positive electrode / positive electrode integrated sheet 20 and the negative electrode / negative electrode integrated sheet 30 are alternately bonded by thermocompression bonding as shown in FIG. 4 (5), and a total of four sheets shown in FIG. 4 (6). A laminated assembly formed by laminating the integrated sheets was prepared. In the thermocompression bonding, the temperature of the pressure plate was 150 ° C., the pressure of the pressure was 0.05 MPa, and the pressure time was 1 minute.
 ここで、本実施例の積層集合体では、図4(6)に示すように、正極集電体層21aの片面のみに正極活物質層21bが形成された正極層がセパレータ層11に埋設されてなる正極一体化シート20aを最上層に設け、負極集電体層31aの片面のみに負極活物質層31bが形成された負極層がセパレータ層11に埋設されてなる負極一体化シート30aを最下層に設けた。
 すなわち、本実施例では、積層集合体を作製する際、負極一体化シート30aの上に正極・正極一体化シート20と負極・負極一体化シート30とを交互に積層して最後に正極一体化シート20aを貼り合わせるようにした。
 また、正極一体化シート20aは、図3(1)に示す正極集合シートの正極集電体21aが形成されている面に、基材PETフィルム上にセパレータ層の成分を含むスラリーを塗布、乾燥することにより作製した3μm厚のセパレータ層を貼り合わせることにより作製した。負極一体化シート30aについても、同様にして負極集合シートの負極集電体31aが形成されている面に、3μm厚のセパレータ層を貼り合わせることにより作製した。
 以上のようにして、本実施例1では、正極層21と負極層31がセパレータ層11によって接合された積層集合体を作製した。
Here, in the laminated assembly of this example, as shown in FIG. 4 (6), the positive electrode layer in which the positive electrode active material layer 21 b is formed only on one surface of the positive electrode current collector layer 21 a is embedded in the separator layer 11. The negative electrode integrated sheet 30a formed by embedding the negative electrode layer in which the negative electrode active material layer 31b is formed only on one surface of the negative electrode current collector layer 31a in the separator layer 11 is provided as the uppermost layer. Provided in the lower layer.
That is, in this example, when the laminated assembly is produced, the positive electrode / positive electrode integrated sheet 20 and the negative electrode / negative electrode integrated sheet 30 are alternately stacked on the negative electrode integrated sheet 30a, and finally the positive electrode is integrated. The sheet 20a was bonded.
In addition, the positive electrode integrated sheet 20a is coated with a slurry containing a component of the separator layer on the base PET film and dried on the surface of the positive electrode aggregate sheet shown in FIG. 3 (1) where the positive electrode current collector 21a is formed. This was prepared by pasting together a 3 μm thick separator layer. Similarly, the negative electrode integrated sheet 30a was prepared by bonding a separator layer having a thickness of 3 μm to the surface of the negative electrode aggregate sheet on which the negative electrode current collector 31a was formed.
As described above, in Example 1, a laminated assembly in which the positive electrode layer 21 and the negative electrode layer 31 were joined by the separator layer 11 was produced.
 工程6
 以上の積層集合体を図4(6)に示す裁断線D1に沿ってダイサーにより個片化して、
積層体1を作製した。
 積層体1の寸法は、長さ4.7mm、幅3.3mm、とした。
 尚、以上の説明で参照した図3(1)~(4)及び図4(5)(6)では、作図上の制約により、セパレータ層11、正極層21及び負極層31等を厚く描いているが、実寸法を正確に拡大又は縮小したものではない。
 また、明細書に添付した他の図面についても、大きさ又は位置関係を作図上の制約又は理解し易いように適宜変形又は誇張して示している。
Step 6
The above laminated assembly is separated into pieces by a dicer along the cutting line D1 shown in FIG.
The laminated body 1 was produced.
The dimensions of the laminate 1 were a length of 4.7 mm and a width of 3.3 mm.
3 (1) to 3 (4) and FIGS. 4 (5) and 6 (6) referred to in the above description, the separator layer 11, the positive electrode layer 21, the negative electrode layer 31, and the like are drawn thick due to restrictions on drawing. However, the actual dimensions are not exactly enlarged or reduced.
Also, in other drawings attached to the specification, the size or the positional relationship is appropriately modified or exaggerated so as to be easily constrained or understood.
 工程7
 正極外部端子電極21tと負極外部端子電極31tをAlスパッタにより形成した。
Step 7
The positive external terminal electrode 21t and the negative external terminal electrode 31t were formed by Al sputtering.
 工程8
 第1端面2及び第2端面2に、導電性粒子として金を含有する導電性接着剤をディッピングにより塗布して、塗布した導電性接着剤がそれぞれ正極パッケージ電極41及び負極パッケージ電極42に接続されるように、積層体1をパッケージ50のベース部50bに配置して、170℃で10分加熱して、導電性接着剤を硬化させた。
Process 8
A conductive adhesive containing gold as conductive particles is applied to the first end surface 2 and the second end surface 2 by dipping, and the applied conductive adhesive is connected to the positive electrode package electrode 41 and the negative electrode package electrode 42, respectively. Thus, the laminate 1 was placed on the base portion 50b of the package 50 and heated at 170 ° C. for 10 minutes to cure the conductive adhesive.
 以上の工程7及び8により、第1端面2及び第2端面2にそれぞれ正極外部端子電極21t及び負極外部端子電極31tを形成するとともに、正極外部端子電極21t及び負極外部端子電極31tをそれぞれ正極パッケージ電極41及び負極パッケージ電極42に電気的に接続した。 Through the above steps 7 and 8, the positive external terminal electrode 21t and the negative external terminal electrode 31t are formed on the first end surface 2 and the second end surface 2, respectively, and the positive external terminal electrode 21t and the negative external terminal electrode 31t are respectively connected to the positive electrode package. The electrode 41 and the negative electrode package electrode 42 were electrically connected.
 工程9
 そして、パッケージ内部に電解液を注液して、封止した。
 ここでは、電解液として、1-エチル-3-メチルイミダゾリウムテトラフルオロボレートを減圧下で注液し、パッケージ50のベース部50b上面に、ベース部50bと同じく液晶ポリマー製の蓋体50aを配置し、パッケージ50のベース部50bの枠体部分に沿ってレーザー照射することにより、ベース部50bと蓋体50aを溶着した。
Step 9
Then, an electrolytic solution was injected into the package and sealed.
Here, 1-ethyl-3-methylimidazolium tetrafluoroborate is injected as an electrolytic solution under reduced pressure, and a lid 50a made of a liquid crystal polymer is disposed on the upper surface of the base portion 50b of the package 50 in the same manner as the base portion 50b. Then, the base portion 50b and the lid 50a were welded by irradiating laser along the frame portion of the base portion 50b of the package 50.
 以上のように作製した電気二重層コンデンサの電気化学特性は、直流容量が4.37mFであった。
 また、図5に、本実施例で作製した電気二重層コンデンサの等価直列容量の周波数特性を示す。
As for the electrochemical characteristics of the electric double layer capacitor produced as described above, the DC capacity was 4.37 mF.
FIG. 5 shows the frequency characteristics of the equivalent series capacitance of the electric double layer capacitor produced in this example.
1 積層体
11 セパレータ層
20 正極・正極一体化シート
20a 正極一体化シート
21 正極層
21a 正極集電体層
21b 正極活物質層
21t 正極外部端子電極
30 負極・負極一体化シート
30a 負極一体化シート
31 負極層
31a 負極集電体層
31b 負極活物質層
31t 負極外部端子電極
41 正極パッケージ電極
42 負極パッケージ電極
50 パッケージ
50a 蓋体
50b ベース部
DESCRIPTION OF SYMBOLS 1 Laminated body 11 Separator layer 20 Positive electrode / positive electrode integrated sheet 20a Positive electrode integrated sheet 21 Positive electrode layer 21a Positive electrode collector layer 21b Positive electrode active material layer 21t Positive electrode external terminal electrode 30 Negative electrode / negative electrode integrated sheet 30a Negative electrode integrated sheet 31 Negative electrode layer 31a Negative electrode current collector layer 31b Negative electrode active material layer 31t Negative electrode external terminal electrode 41 Positive electrode package electrode 42 Negative electrode package electrode 50 Package 50a Lid 50b Base portion

Claims (9)

  1.  少なくとも2つの正極層間に負極層が配置され、前記正極層と負極層の間にそれぞれセパレータ層が設けられてなる積層体、または、少なくとも2つの負極層間に正極層が配置され、前記負極層と正極層の間にそれぞれセパレータ層が設けられてなる積層体と、電解液と、前記積層体と前記電解液を収納したパッケージと、を有してなる蓄電デバイスであって、
     前記積層体において、隣接する前記正極層及び前記負極層がそれぞれ前記セパレータ層に直接接合されたことを特徴とする蓄電デバイス。
    A laminate in which a negative electrode layer is disposed between at least two positive electrode layers, and a separator layer is provided between the positive electrode layer and the negative electrode layer, or a positive electrode layer is disposed between at least two negative electrode layers, An electricity storage device comprising a laminate in which a separator layer is provided between each positive electrode layer, an electrolyte, and a package containing the laminate and the electrolyte,
    In the laminated body, the positive electrode layer and the negative electrode layer adjacent to each other are each directly bonded to the separator layer.
  2.  前記積層体は、前記正極層の端面と前記セパレータ層の端面とを含む第1端面と、前記負極層の端面と前記セパレータ層の端面とを含む第2端面とを有し、前記第1端面と前記第2端面にそれぞれ外部端子電極が設けられた請求項1に記載の蓄電デバイス。 The laminate includes a first end face including an end face of the positive electrode layer and an end face of the separator layer, and a second end face including an end face of the negative electrode layer and an end face of the separator layer, and the first end face. The electrical storage device according to claim 1, wherein external terminal electrodes are provided on the second end face.
  3.  前記第1端面及び前記第2端面がそれぞれ平滑である請求項2に記載の蓄電デバイス。 The power storage device according to claim 2, wherein the first end face and the second end face are smooth.
  4.  前記外部端子電極がそれぞれ前記セパレータ層と接合している請求項2又は3記載の蓄電デバイス。 The electric storage device according to claim 2 or 3, wherein each of the external terminal electrodes is bonded to the separator layer.
  5.  前記セパレータ層が絶縁体粒子を含む請求項1~4のうちのいずれか1つに記載の蓄電デバイス。 The electricity storage device according to any one of claims 1 to 4, wherein the separator layer includes insulator particles.
  6.  前記セパレータ層が熱可塑性樹脂を含む請求項1~5のうちのいずれか1つに記載の蓄電デバイス。 The electricity storage device according to any one of claims 1 to 5, wherein the separator layer includes a thermoplastic resin.
  7.  前記絶縁体粒子が無機フィラーである請求項5又は6に記載の蓄電デバイス。 The electricity storage device according to claim 5 or 6, wherein the insulator particles are inorganic fillers.
  8.  少なくとも2つの正極層間に負極層が配置され、前記正極層と負極層の間にそれぞれセパレータ層が設けられてなる積層体、または、少なくとも2つの負極層間に正極層が配置され、前記負極層と正極層の間にそれぞれセパレータ層が設けられてなる積層体と、電解液と、前記積層体と前記電解液を収納したパッケージとを有してなる蓄電デバイスを製造する製造方法であって、
     正極層と負極層とをセパレータ層を介して対向するように配置して、圧着若しくは加熱又は加熱しながら圧着することにより前記正極層及び前記負極層及び前記セパレータ層を一体化させることで、隣接する前記正極層及び前記負極層がそれぞれ前記セパレータ層に直接接合された蓄電デバイスを製造することを特徴とする蓄電デバイスの製造方法。
    A laminate in which a negative electrode layer is disposed between at least two positive electrode layers, and a separator layer is provided between the positive electrode layer and the negative electrode layer, or a positive electrode layer is disposed between at least two negative electrode layers, A manufacturing method for manufacturing an electricity storage device comprising a laminate in which separator layers are provided between positive electrode layers, an electrolyte, and a package containing the laminate and the electrolyte,
    The positive electrode layer and the negative electrode layer are disposed so as to face each other with the separator layer interposed therebetween, and are adjacent to each other by integrating the positive electrode layer, the negative electrode layer, and the separator layer by pressure bonding or pressure bonding while heating or heating. A method of manufacturing an electricity storage device, comprising: manufacturing an electricity storage device in which the positive electrode layer and the negative electrode layer are directly bonded to the separator layer.
  9.  複数の積層体のそれぞれに対応するように設けられた正極層と負極層とをそれぞれセパレータ層を介して対向するように配置して、圧着若しくは加熱又は加熱しながら圧着することにより前記正極層及び前記負極層をそれぞれ前記セパレータ層に直接接合させる接合工程を含んで、前記積層体が複数一体化された積層集合体が作製され、
     前記積層集合体を、それぞれ前記セパレータ層に接合された正極層と負極層とを含んでなる積層体毎に分割すること、をさらに含む請求項8記載の蓄電デバイスの製造方法。
    The positive electrode layer and the negative electrode layer provided so as to correspond to each of the plurality of laminates are arranged so as to face each other with a separator layer interposed therebetween, and the positive electrode layer and the positive electrode layer are bonded by pressure bonding or heating or heating. Including a joining step of directly joining the negative electrode layers to the separator layers, respectively, to produce a laminated assembly in which a plurality of the laminated bodies are integrated,
    The method for manufacturing an electricity storage device according to claim 8, further comprising dividing the laminated assembly into laminated bodies each including a positive electrode layer and a negative electrode layer bonded to the separator layer.
PCT/JP2011/064752 2010-06-28 2011-06-28 Energy storage device and method of producing same WO2012002359A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012522631A JPWO2012002359A1 (en) 2010-06-28 2011-06-28 Electric storage device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-146546 2010-06-28
JP2010146546 2010-06-28

Publications (1)

Publication Number Publication Date
WO2012002359A1 true WO2012002359A1 (en) 2012-01-05

Family

ID=45402066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064752 WO2012002359A1 (en) 2010-06-28 2011-06-28 Energy storage device and method of producing same

Country Status (2)

Country Link
JP (1) JPWO2012002359A1 (en)
WO (1) WO2012002359A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230901A1 (en) * 2021-04-26 2022-11-03 株式会社村田製作所 Solid battery package
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231796A (en) * 1993-02-05 1994-08-19 Tdk Corp Layered type cell and manufacture thereof
JP2006338918A (en) * 2005-05-31 2006-12-14 Tomoegawa Paper Co Ltd Electronic component and separator therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197295A (en) * 1997-09-18 1999-04-09 Isuzu Advanced Engineering Center Ltd Electric double layer capacitor, its manufacture, electrode, and separator
EP0973223A1 (en) * 1998-02-05 2000-01-19 Mitsubishi Denki Kabushiki Kaisha Lithium battery and method for manufacturing the same
JP4422968B2 (en) * 2002-12-27 2010-03-03 パナソニック株式会社 Electrochemical element
EP1780820A4 (en) * 2005-03-02 2009-09-09 Panasonic Corp Lithium ion secondary cell and manufacturing method thereof
JP2006294735A (en) * 2005-04-07 2006-10-26 Nec Tokin Corp Electric double-layer capacitor
JP5530353B2 (en) * 2008-06-09 2014-06-25 日立マクセル株式会社 Porous membrane for separator, battery separator, battery electrode and manufacturing method thereof, and lithium secondary battery
JP2010040765A (en) * 2008-08-05 2010-02-18 Mitsubishi Electric Corp Electric double-layer capacitor and method of producing same
WO2011118418A1 (en) * 2010-03-23 2011-09-29 太陽誘電株式会社 Storage element for an electrochemical device, electrochemical device using said storage element, method for manufacturing storage element for electrochemical device, and method for manufacturing electrochemical device
KR101108855B1 (en) * 2010-06-23 2012-01-31 삼성전기주식회사 Electrochemical capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231796A (en) * 1993-02-05 1994-08-19 Tdk Corp Layered type cell and manufacture thereof
JP2006338918A (en) * 2005-05-31 2006-12-14 Tomoegawa Paper Co Ltd Electronic component and separator therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process
WO2022230901A1 (en) * 2021-04-26 2022-11-03 株式会社村田製作所 Solid battery package

Also Published As

Publication number Publication date
JPWO2012002359A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5782634B2 (en) Lithium battery using nanoporous separator layer
EP2892101B1 (en) Method for manufacturing electrode assembly
JP5435131B2 (en) Electric storage device and manufacturing method thereof
JP5768881B2 (en) Electric storage device element and electric storage device
WO2017163846A1 (en) Lithium ion secondary battery, electrode and method for producing same
JP5578282B2 (en) Electric storage device and manufacturing method thereof
JP5610076B2 (en) Electric storage device and manufacturing method thereof
WO2017057762A1 (en) Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
WO2019065870A1 (en) Electrolytic capacitor and method for manufacturing same
JP2018181528A (en) All-solid battery and manufacturing method thereof
JP5742512B2 (en) Method for manufacturing power storage device
WO2020017467A1 (en) Positive electrode for solid-state battery, manufacturing method for positive electrode for solid-state battery, and solid-state battery
JP5880555B2 (en) Power storage device separator, power storage device element, power storage device, and method for manufacturing the same
WO2013002119A1 (en) Power storage device and method of manufacturing thereof
WO2013001961A1 (en) Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor
WO2012002359A1 (en) Energy storage device and method of producing same
CN112514106A (en) Positive electrode for solid-state battery, method for producing positive electrode for solid-state battery, and solid-state battery
WO2013001962A1 (en) Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor
JP2012039068A (en) Electrochemical capacitor and its manufacturing method
JP2013131675A (en) Separator of power storage device, insulating adhesive layer, composition for use therein, element for power storage device, power storage device, and manufacturing method of element for power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522631

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800823

Country of ref document: EP

Kind code of ref document: A1