WO2012002058A1 - 蓄電セル及び蓄電モジュール - Google Patents

蓄電セル及び蓄電モジュール Download PDF

Info

Publication number
WO2012002058A1
WO2012002058A1 PCT/JP2011/061523 JP2011061523W WO2012002058A1 WO 2012002058 A1 WO2012002058 A1 WO 2012002058A1 JP 2011061523 W JP2011061523 W JP 2011061523W WO 2012002058 A1 WO2012002058 A1 WO 2012002058A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
container
pair
frame
storage cell
Prior art date
Application number
PCT/JP2011/061523
Other languages
English (en)
French (fr)
Inventor
茂己 小林
Original Assignee
Udトラックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Udトラックス株式会社 filed Critical Udトラックス株式会社
Priority to EP11800527.1A priority Critical patent/EP2590189A1/en
Priority to CN201180030198.2A priority patent/CN102959654B/zh
Priority to US13/703,767 priority patent/US9053867B2/en
Publication of WO2012002058A1 publication Critical patent/WO2012002058A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/04Mountings specially adapted for mounting on a chassis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a power storage cell and a power storage module including a plurality of power storage cells.
  • JP2003-272972A, JP2006-108380A, JP2003-272966A, JP3869183B, JP2006-338934A, JP2008-204985A, JP2002-353078A, and JP2005-190885A are storage cells that have a long charge / discharge cycle life. Electric double layer capacitors and lithium ion batteries have been proposed.
  • the storage cell 100 is an electric double layer capacitor.
  • the power storage cell 100 includes a power storage unit that stores electric charges and a container 111 that houses the power storage unit.
  • the electricity storage unit is a laminate composed of a positive electrode body, a negative electrode body, and a separator interposed between the positive electrode body and the negative electrode body.
  • the positive electrode body and the negative electrode body are composed of an electrode layer for storing electric charge and a current collecting layer for taking in and out electric charge.
  • the electrode layer is a polarizable electrode containing an electrolytic solution.
  • a positive electrode terminal 112A having a polarity corresponding to the current collecting layer is joined to the positive electrode body.
  • a negative electrode terminal 112B having a polarity corresponding to the current collecting layer is joined to the negative electrode body.
  • the electrode terminal 112 is formed in a short shape with a material having good conductivity.
  • a collector electrode having a corresponding polarity is joined to a proximal end portion located inside the container 111.
  • the tip of the electrode terminal 112 is drawn out of the container 111.
  • the container 111 is formed of, for example, a laminate film that is a resin film having a laminated structure.
  • the container 111 is sealed by accommodating the power storage unit so that the tip of each electrode terminal 112 protrudes to the outside.
  • the container 111 includes a pair of container portions that are combined so that the concave portions face each other.
  • a chamber for storing a power storage unit is defined inside container 111 by a pair of recesses.
  • the power storage unit is sealed in a state in which the distal end side of each terminal 112 protrudes to the outside by thermally welding the flange portions surrounding the chamber 111.
  • the storage cell 100 includes a gas vent valve 115 for suppressing the internal pressure of the container 111 to a predetermined level or less.
  • the storage cell 100 as shown in FIG. 22 has a withstand voltage of about 3 to 5 V as a single unit. A predetermined number of storage cells 100 are connected in series and used in order to obtain a necessary power supply voltage.
  • FIG. 23 shows a power storage module M100 including a predetermined number of power storage cells 100.
  • the storage cells 100 are aligned in the thickness direction of the container 111 to form an overlapping assembly. Between adjacent power storage cells 100, electrode terminals 112 having different polarities are electrically connected.
  • the power storage module M100 constituted by the power storage cells 100 there are many restrictions on the arrangement and layout of the power storage cells 100 due to the connection structure that electrically connects the power storage cells 100 to each other, and the compatibility with the application is not good. . For example, depending on the installation location, it is not possible to flexibly cope with the arrangement and layout of the storage cells 100, and thus there is a possibility that a useless space may be generated.
  • the electrode terminal 112 is bent easily to be joined, but the protrusion length E of the electrode terminal 112, which is the length of the portion pulled out from the container of the storage cell 100, is increased accordingly. Therefore, a large space is required to electrically connect the storage cells 100 outside the container 111. Further, since the electrode terminal 112 protrudes outside the container 111, an insulating cover for preventing electric shock or the like is necessary. Therefore, there exists a possibility of enlarging the occupation volume of the electrical storage module M100.
  • An object of the present invention is to provide an effective means for solving the assumed problem as described above.
  • the present invention includes a power storage unit that stores electric charge, a container that houses the power storage unit, and a pair of electrode terminals that are connected to the power storage unit and exposed to the outside of the container.
  • the container has an outer shape formed into a thick polygonal shape, and linearly extends in a direction perpendicular to the thickness direction to each of a pair of side surfaces facing each other in the polygon.
  • Each electrode terminal has a base end connected to the corresponding polarity in the power storage unit and an exposed part exposed to the outside of the container. The exposed portion is formed along the inside of the groove portion.
  • FIG. 1A is a perspective view of a storage cell according to the first embodiment of the present invention.
  • FIG. 1B is a front view of the storage cell in a state where the front film body is removed.
  • FIG. 2 is a perspective view of the storage cell.
  • FIG. 3 is a sectional view of the electrode terminal.
  • FIG. 4 is a cross-sectional view showing a modification of the electrode terminal.
  • FIG. 5 is a diagram for explaining the arrangement of electrode terminals.
  • FIG. 6 is a perspective view of a storage cell according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the electrode terminal.
  • FIG. 8 is a diagram for explaining the arrangement of electrode terminals.
  • FIG. 9 is a perspective view of a storage cell according to the third embodiment of the present invention.
  • FIG. 10 is a perspective view of the power storage module according to the embodiment of the present invention.
  • FIG. 11 is an exploded perspective view of the power storage module.
  • FIG. 12 is a plan view of the power storage module.
  • FIG. 13 is a circuit diagram of the power storage module.
  • FIG. 14 is a perspective view showing a modification of the power storage module.
  • FIG. 15 is an exploded perspective view of the power storage module.
  • FIG. 16 is a plan view of the power storage module.
  • FIG. 17 is a circuit diagram of the power storage module.
  • FIG. 18 is a perspective view showing another modification of the power storage module.
  • FIG. 19 is an exploded perspective view of the power storage module.
  • FIG. 20 is an exploded perspective view of the power storage module.
  • FIG. 21 is a circuit diagram of the power storage module.
  • FIG. 22 is a perspective view showing an example of a conventional power storage cell.
  • FIG. 23 is a perspective view showing an example of a conventional power storage module.
  • the storage cell 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1A to 5.
  • the storage cell 10 is described as having a width W, a height H, and a thickness T.
  • the surface that bisects the width W of the storage cell 10 will be described as A surface
  • the surface that bisects the height H will be described as B surface.
  • the storage cell 10 is an electric double layer capacitor. As shown in FIG. 1B, the power storage cell 10 includes a power storage unit 13 that stores charges, a container 11 that houses the power storage unit 13, and a pair of electrode terminals 12 that puts and discharges charges to and from the power storage unit 13. .
  • the electricity storage unit 13 is a laminate in which a positive electrode body 13a, a negative electrode body 13b, and a separator 13c interposed between the positive electrode body 13a and the negative electrode body 13b are laminated.
  • the power storage unit 13 is accommodated in the container 11 together with the electrolytic solution.
  • the positive electrode body 13a and the negative electrode body 13b are formed by an electrode layer that stores electric charges, that is, a polarizable electrode, and a current collecting layer that inputs and outputs electric charges, that is, a collector electrode.
  • a polarizable electrode In the positive electrode body 13a and the negative electrode body 13b, leads of collector electrodes having the same polarity are bound to form a binding portion.
  • the electrode terminals 12 corresponding to the polarities are joined to the binding portions of the positive electrode body 13a and the negative electrode body 13b, respectively.
  • the container 11 is formed in a polygonal shape having a thick outer shape.
  • the container 11 has two congruent rectangular bottom surfaces formed in parallel to each other, and a rectangular side surface formed on each of four sides of the bottom surface.
  • the four corners on the bottom surface of the quadrangle are rounded into an arc shape.
  • the container 11 may have a shape having a polygonal bottom surface other than a quadrangle and side surfaces as many as the number of sides on the bottom surface.
  • the container 11 includes a frame body 11a formed in a frame shape surrounding the power storage unit 13, and a film body 11b attached to the frame body 11a.
  • the frame 11 a forms the side surface of the container 11, and the film body 11 b forms the bottom surface of the container 11.
  • a chamber 14 for accommodating the power storage unit 13 is formed by the frame body 11 a and the film body 11 b.
  • the frame 11a is a thick polygonal frame formed of a resin having heat-welding properties and electrical insulation properties.
  • the frame 11a is formed in a quadrangular shape from the four sides of the upper side, the lower side, the right side, and the left side.
  • the frame 11 a is formed in a shape that surrounds the power storage unit 13.
  • a space surrounded by four sides is formed in the frame 11a so as to open on both the front and rear surfaces.
  • the frame 11a is formed by, for example, injection molding.
  • a pair of electrode terminals 12 and a gas vent valve 17 that suppresses the internal pressure of the chamber 14 in the container 11 to a predetermined level or less are insert-molded in the frame 11a.
  • the frame 11a is formed by pre-loading a pair of electrode terminals 12 and a gas vent valve 17 in a mold and filling molten resin therein.
  • protrusions 18 are formed in a bowl shape that rises on the outer periphery of the end portions of the front and rear surfaces.
  • a groove 15 is formed in the frame 11a between the protrusions 18 facing in the front-rear direction.
  • Both front and rear surfaces of the frame 11a are extended outward by the protrusions 18. Thereby, the affixing area required for obtaining the strength and durability of the affixing portion between the frame body 11a and the film body 11b is ensured.
  • the groove 15 is recessed in a U-shape on the outer periphery of the frame 11a.
  • the groove portion 15 has a bottom surface 15a formed in an annular shape along the outer periphery of the container 11, and a pair of opposed surfaces 15b provided upright at both ends of the bottom surface 15a.
  • the groove portion 15 is formed on the entire circumference so as to go around all the side surfaces of the container 11.
  • the groove 15 may be formed linearly in a direction orthogonal to the direction of the thickness T on at least each of the pair of opposing side surfaces of the container 11 instead of the entire circumference of the container 11.
  • the film body 11b is formed in a sheet shape by a laminate film which is a laminated film of resin having an intermediate layer of metal foil.
  • the film body 11b has substantially the same shape and the same size as the front and rear surfaces of the frame body 11a.
  • the film body 11b is thermally welded to both front and rear surfaces of the frame body 11a.
  • the space opened on both front and rear surfaces of the frame body 11a is sealed.
  • a chamber 14 shown in FIG. 1B is defined inside the container 11.
  • the electrode terminal 12 includes a positive electrode terminal 12 ⁇ / b> A connected to the positive electrode body 13 a in the power storage unit 13 and a negative electrode terminal 12 ⁇ / b> B connected to the negative electrode body 13 b in the power storage unit 13.
  • the positive electrode terminal 12 ⁇ / b> A and the negative electrode terminal 12 ⁇ / b> B are provided on a pair of side surfaces facing each other in the container 11.
  • one electrode terminal 12 is disposed in the one groove portion 15 and the other electrode terminal 12 is disposed in the other groove portion 15. .
  • the electrode terminal 12 includes an exposed portion 12c exposed to the outside of the container 11, a base end portion 12e connected to a current collecting layer having a corresponding polarity inside the container 11, and an exposed portion 12c. And an intermediate portion 12d connecting the base end portion 12e.
  • the intermediate part 12d is embedded in the resin forming the frame 11a together with the intermediate part of the gas vent valve 17. Since the intermediate portion 12d is embedded in the frame 11a, the electrode terminal 12 is fixed to the frame 11a. The intermediate portion 12d may be omitted, and a part of the base end portion 12e may be fixed to the frame body 11a.
  • the base end portion 12 e is projected from the chamber 14 inside the container 11.
  • the lead of the positive electrode body 13a is bound and joined to the base end portion 12e of the positive electrode terminal 12A.
  • the lead of the negative electrode body 13b is bound and joined to the base end portion 12e of the negative electrode terminal 12B. That is, the base end portion 12e is joined with a binding portion in which leads having the corresponding polarities are bound.
  • the exposed portion 12c is formed in a U-shape from one side surface of the container 11 to the side surfaces of both ends thereof.
  • the exposed portion 12c is formed so as to continuously extend from a surface parallel to the A surface in the groove portion 15 to a surface orthogonal to the A surface. That is, the exposed portion 12c is formed so as to wrap around from the side surface along the height H direction in the container 11 to the side surface along the width W direction formed continuously from both ends of the side surface.
  • the exposed portions 12c of the respective electrode terminals 12 are arranged so as to be symmetric with respect to the A plane shown in FIG.
  • the exposed portion 12 c is formed in a U-shaped cross-sectional shape along the groove portion 15 as shown in FIG. 3. Therefore, in the electrical storage cell 10, the electrode terminal 12 does not protrude outside the container 11 as in the conventional electrical storage cell 100 shown in FIG. Therefore, in the electrical storage cell 10, the magnitude
  • each exposed portion 22c in a cross-sectional shape in which both side surfaces rise vertically from the bottom surface of the groove mold as shown in FIG. 3
  • both side surfaces are opened outward from the bottom surface of the groove mold as shown in FIG. You may form in the cross-sectional shape which stands
  • the exposed portion 12c is disposed on the inner periphery of the groove portion 15 as shown in FIG.
  • the outer peripheral side of the exposed portion 12 c is covered with a resin that forms the container 11.
  • the exposed portion 12c is covered with the resin of the portion of the protrusion 18 in the container 11 from the back surface 12f to the end surface 12g shown in FIGS.
  • security with respect to an electric shock etc. is improved, without using an insulating cover.
  • the pair of electrode terminals 12 do not protrude to the outside of the container 11, so that the side surfaces of the container 11 in which the groove portions 15 are formed face each other.
  • the storage cells 10 can be arranged. For example, according to the height, width, and depth of the installation location, the plurality of storage cells 10 can be arranged so that the bottom surfaces of the polygons overlap in the thickness direction of the container 11. It is also possible to arrange the plurality of power storage cells 10 in a direction orthogonal to the thickness direction of the container 11 so that the polygonal bottom surfaces of the containers are flush with each other. Moreover, it is also possible to arrange a plurality of power storage cells 10 by combining these arrangements. Therefore, since the electrical storage cells 10 can be arranged efficiently, the degree of freedom in arrangement and layout is increased.
  • FIGS. 8 a storage cell 20 according to a second embodiment of the present invention will be described with reference to FIGS.
  • symbol is attached
  • the surface which bisects the thickness T of the electrical storage cell 20 is demonstrated as a C surface.
  • the storage cell 20 is an electric double layer capacitor. As shown in FIG. 6, the power storage cell 20 includes a power storage unit 13 that stores charges, a container 11 that stores the power storage unit 13, and a pair of electrode terminals 22 that puts and discharges charges to and from the power storage unit 13. .
  • the electrode terminal 22 includes a positive electrode terminal 22A connected to the positive electrode body 13a in the power storage unit 13 and a negative electrode terminal 22B connected to the negative electrode body 13b in the power storage unit 13. As shown in FIG. 6, the positive terminal 22 ⁇ / b> A and the negative terminal 22 ⁇ / b> B are provided along the inside of a pair of bottom surfaces in the container 11.
  • the one electrode terminal 12 and the other electrode terminal 12 are both disposed in each of the pair of groove portions 15.
  • the electrode terminal 12 includes an exposed portion 22c exposed to the outside of the container 11, a base end portion 12e connected to a current collecting layer having a corresponding polarity inside the container 11, and an exposed portion 22c and a base end portion 12e. And an intermediate portion 12d to be joined.
  • the exposed portion 22 c is formed in an annular shape along the facing surface 15 b in the groove portion 15.
  • the exposed portion 22c of the one electrode terminal 22 is disposed along one of the pair of opposed surfaces 15b.
  • the exposed portion 22c of the other electrode terminal 22 is disposed along the other of the pair of opposing surfaces 15b. That is, the exposed portions 22c of the respective electrode terminals 22 are arranged so as to be symmetric with respect to the C plane shown in FIG.
  • the exposed portion 22c is formed in a rectangular cross-sectional shape along the facing surface 15b of the groove portion 15 as shown in FIG. Therefore, in the electricity storage cell 20, the electrode terminal 12 does not protrude outside the container 11. Therefore, in the electrical storage cell 20, the magnitude
  • the exposed portion 22c is disposed on the inner periphery of the groove portion 15 as shown in FIG.
  • the outer peripheral side of the exposed portion 22 c is covered with a resin that forms the container 11.
  • the exposed portion 22c is covered with the resin of the portion of the protrusion 18 in the container 11 from the back surface 22f to the end surface 22g shown in FIG. Thereby, in the electrical storage cell 20, the safety
  • the storage cell 30 is an electric double layer capacitor. As shown in FIG. 9, the power storage cell 30 includes a power storage unit 13 that stores electric charge, a container 11 that stores the power storage unit 13, and a pair of electrode terminals 32 that inputs and outputs electric charge to and from the power storage unit 13. .
  • the electrode terminal 32 includes a positive electrode terminal 32A connected to the positive electrode body 13a in the power storage unit 13 and a negative electrode terminal 32B connected to the negative electrode body 13b in the power storage unit 13.
  • the positive electrode terminal 32 ⁇ / b> A and the negative electrode terminal 32 ⁇ / b> B are provided on a pair of side surfaces facing each other in the container 11.
  • one electrode terminal 32 is disposed in the one groove portion 15, and the other electrode terminal 32 is disposed in the other groove portion 15. .
  • the electrode terminal 32 includes an exposed portion 32c exposed to the outside of the container 11, a base end portion 12e connected to a current collecting layer having a corresponding polarity inside the container 11, and an exposed portion 32c and a base end portion 12e. And an intermediate portion 12d to be joined.
  • the exposed portion 32c is formed in a U shape from one side surface of the container 11 to the side surfaces of both ends thereof.
  • the exposed portion 32c is formed so as to continuously extend from a surface parallel to the B surface in the groove portion 15 to a surface orthogonal to the B surface. That is, the exposed portion 32c is formed so as to go from the side surface along the width W direction of the container 11 to the side surface along the height H direction formed continuously from both ends of the side surface.
  • the exposed portions 32c of the respective electrode terminals 32 are arranged so as to be symmetric with respect to the B surface shown in FIG.
  • a hole through which the gas vent valve 17 is inserted is formed in the positive electrode terminal 32A.
  • a hole through which the gas vent valve 17 is inserted may be formed in the negative terminal 32B.
  • the exposed portion 32 c is formed in a U-shaped cross-sectional shape along the groove portion 15. Therefore, in the storage cell 30, the electrode terminal 32 does not protrude outside the container 11. Therefore, in the electrical storage cell 10, the magnitude
  • the exposed portion 32 c is disposed on the inner periphery of the groove portion 15 similarly to the exposed portion 11 c, and the outer peripheral side thereof is covered with the resin that forms the container 11. Thereby, also in the electrical storage cell 30, the safety
  • the power storage module M10 includes a plurality of power storage cells 10 and a grid-like module frame 55 to which the power storage cells 10 are attached.
  • the power storage module M10 is formed by arranging a plurality of power storage cells 10 in a predetermined arrangement direction and electrically connecting adjacent power storage cells 10.
  • the power storage module M10 constitutes a circuit in which six power storage cells 10 are connected in series.
  • the power storage module M10 has a voltage six times that of the voltage of the power storage cell 10 alone.
  • the module frame 55 includes a pair of first frame members 55 a arranged in the longitudinal direction, a pair of second frame members 55 b arranged in the short direction, and the adjacent storage cells 10. And a connection member 50 that electrically connects the two.
  • the module frame 55 is partitioned into a plurality of sections by the connection member 50.
  • the plurality of sections of the module frame 55 are arranged in a row in the longitudinal direction of the module frame 55.
  • Two storage cells 10 are stacked and housed in each section of the module frame 55.
  • the storage cells 10 are stacked and arranged so that the front and back surfaces of the container 11 overlap in the thickness T direction of the container 11.
  • the storage cells 10 are arranged so that the front and rear surfaces of the container 11 are flush with each other in the longitudinal direction of the module frame 55, that is, in the direction orthogonal to the thickness direction of the container 11.
  • the pair of first frame members 55 a and the pair of second frame members 55 b form a rectangular outer frame in the module frame 55.
  • the first frame member 55a and the second frame member 55b are formed of an electrically insulating material such as resin.
  • a pair of first frame members 55a are provided in parallel so as to face each other.
  • the first frame members 55a are respectively provided above and below the storage cell 10 disposed in the module frame 55.
  • the first frame member 55a sandwiches and fixes the storage cell 10 from above and below.
  • a protrusion 55c that fits into the groove 15 of the storage cell 10 is formed on the surface of the first frame member 55a that contacts the storage cell 10. Thereby, the electrical storage cell 10 is fixed to the 1st frame member 55a.
  • a pair of second frame members 55b are provided in parallel so as to face each other.
  • the 2nd frame member 55b is arrange
  • the second frame member 55b includes a positive electrode M10a and a negative electrode M10b. Both the positive electrode M10a and the negative electrode M10b are formed on one second frame member 55b.
  • connection member 50 fixes the position of the storage cells 10 and electrically connects the storage cells 10 to each other.
  • the connection member 50 includes a column portion 51 fixed between the pair of first frame members 55a, an engagement portion 52 that engages with the groove portion 15 on the side surface of the storage cell 10, and a plurality of engagement portions 52. And 10 connecting portions 53 connected in the arrangement direction.
  • the engaging part 52 and the coupling part 53 are formed of a conductive material such as metal.
  • the connecting member 50 is composed of three types: a connecting member 50A, a connecting member 50B, and a connecting member 50C.
  • the connecting member 50A connects the storage cell 10 attached to the module frame 55 to the positive electrode M10a and the negative electrode M10b, respectively.
  • a pair of connection members 50A are provided and abut against one second frame member 55b provided with both the positive electrode M10a and the negative electrode M10b.
  • the pair of connection members 50A are electrically insulated from each other.
  • connection members 50A are arranged in parallel in the thickness T direction in the storage cell 10.
  • the connecting member 50 ⁇ / b> A has a single engaging portion 52.
  • the engagement portion 52 and the positive electrode M ⁇ b> 10 a are electrically connected by the coupling portion 53.
  • the engagement portion 52 and the negative electrode M ⁇ b> 10 b are electrically connected by the coupling portion 53.
  • the electrical storage cell 10 is connected to the positive electrode M10a and the negative electrode M10b.
  • connection member 50B electrically connects the pair of storage cells 10 arranged in the width W direction in series.
  • the connection members 50B are arranged at two locations one by one along the first frame member 55a.
  • the connection members 50 ⁇ / b> B are arranged in pairs one by one while being spaced by the width W of the storage cell 10.
  • the pair of connection members 50B are electrically insulated from each other.
  • connection members 50 ⁇ / b> B are arranged in parallel in the thickness T direction in the storage cell 10.
  • the connecting member 50B has a pair of engaging portions 52 formed in both directions along the first frame member 55a.
  • the pair of engaging portions 52 are electrically connected by a coupling portion 53. Thereby, a pair of electrical storage cells 10 are electrically connected.
  • the connecting member 50C electrically connects the pair of storage cells 10 arranged in the thickness T direction in series.
  • a pair of connection members 50C are provided, and abut against the other second frame member 55b.
  • connection member 50 ⁇ / b> C are arranged in parallel in the thickness T direction in the storage cell 10.
  • the connection member 50 ⁇ / b> C has a single engagement portion 52.
  • the engagement portions 52 in the pair of connection members 50 ⁇ / b> C are electrically connected to each other by a coupling portion 53. Thereby, a pair of electrical storage cells 10 arranged in the thickness T direction are electrically connected.
  • the storage cell 10 is accommodated in each compartment so that the electrode terminals 12 between the storage cells 10 adjacent in the longitudinal direction of the module frame 55 are connected in series via the connection members 50. As shown in FIG. 11, the storage cell 10 is assembled in each section from the height H direction by removing one first frame member 55 a of the module frame 55. Thereby, the electrical storage module M10 which connects the 6 electrical storage cells 10 in series can be formed simply and efficiently.
  • connection member 50 having the engaging portion 52 and the coupling portion 53 is provided, so that the storage cells 10 arranged in a predetermined arrangement direction can be easily and easily connected to each other. can do.
  • the engaging portion 52 engages with the groove portion 15 of the electricity storage cell 10 and fits inside the groove portion 15. Therefore, the volume efficiency of the storage cell 10 is not reduced. Also, safety against electric shock can be ensured.
  • the module frame 55 when the electricity storage cell 10 generates heat along with charging / discharging, the amount of heat is transmitted from the electrode terminal 12 to the first frame member 55a and the second frame member 55b via the connection member 50. Therefore, if the 1st frame member 55a, the 2nd frame member 55b, and the connection member 50 are formed with a material with high heat conductivity, the thermal radiation performance of the electrical storage module M10 will be improved. Therefore, it becomes easy to manage the temperature of the electrical storage cell 10 accommodated in the module frame 55 appropriately.
  • the power storage module M20 includes a plurality of power storage cells 10 and a grid-like module frame 55 to which the power storage cells 10 are attached.
  • the power storage module M10 is formed by arranging a plurality of power storage cells 10 in a predetermined arrangement direction and electrically connecting adjacent power storage cells 10.
  • the power storage module M20 constitutes a circuit in which six power storage cells 10 are connected in three series and two in parallel.
  • the power storage module M20 has a voltage three times that of the voltage of the power storage cell 10 alone and has a double electric capacity.
  • the module frame 55 includes a pair of first frame members 55 a arranged in the longitudinal direction, a pair of second frame members 65 b arranged in the short direction, and the adjacent storage cells 10. And a connection member 50 that electrically connects the two.
  • a pair of second frame members 65b are provided in parallel so as to face each other.
  • the 2nd frame member 65b is arrange
  • the second frame member 65b includes a positive electrode M10a and a negative electrode M10b.
  • the positive electrode M10a is formed on one second frame member 65b, and the negative electrode M10b is formed on the other second frame member 55b.
  • the connecting member 50 is composed of two types, a connecting member 50D and a connecting member 50E.
  • connection member 50D connects the storage cell 10 attached to the module frame 55 to the positive electrode M20a and the negative electrode M20b, respectively.
  • the connection members 50D are provided in two places one by one.
  • the connection member 50D abuts against one second frame member 65b provided with the positive electrode M20a and the other second frame member 55b provided with the negative electrode M20b.
  • the pair of connection members 50D are electrically connected to each other.
  • connection member 50 ⁇ / b> D are arranged in parallel in the thickness T direction in the storage cell 10.
  • the connection member 50 ⁇ / b> D has a single engagement portion 52.
  • the engagement portions 52 in the pair of connection members 50 ⁇ / b> D are electrically connected to each other by a coupling portion 53. Thereby, the electrical storage cell 10 is connected to the positive electrode M20a and the negative electrode M20b.
  • connection member 50E electrically connects the pair of storage cells 10 arranged in the width W direction in series.
  • the connection members 50E are arranged at two locations in pairs along the first frame member 55a.
  • the connection members 50 ⁇ / b> E are arranged one by one while being spaced apart by the width W of the storage cell 10.
  • the pair of connection members 50E are electrically connected to each other.
  • connection members 50 ⁇ / b> E are arranged in parallel in the thickness T direction in the storage cell 10.
  • the connecting member 50E has a pair of engaging portions 52 formed in both directions along the first frame member 55a.
  • the pair of engaging portions 52 are electrically connected by a coupling portion 53. Thereby, a pair of electrical storage cells 10 are electrically connected.
  • the storage cells 10 are accommodated in the respective sections so that the electrode terminals 12 between the storage cells 10 adjacent to each other in the longitudinal direction of the module frame 55 are connected in three series and two in parallel via the connection members 50.
  • the storage cell 10 is assembled in each section from the height H direction by removing one first frame member 55 a of the module frame 55.
  • the electrical storage module M20 which connects the 6 electrical storage cells 10 in 3 series 2 parallel can be formed easily and efficiently.
  • the power storage module M30 includes a plurality of power storage cells 10 and a grid-like module frame 55 to which the power storage cells 10 are attached.
  • the storage module M30 is formed by arranging a plurality of storage cells 10 in a predetermined arrangement direction and electrically connecting adjacent storage cells 10.
  • the power storage module M30 constitutes a circuit in which twelve power storage cells 10 are connected in six series two parallels as shown in FIG.
  • the power storage module M30 has a voltage six times that of the voltage of the power storage cell 10 alone and has a double electric capacity.
  • the power storage module M30 is formed by two power storage modules M20 connected in series as shown in FIG.
  • the power storage module M30 is formed by stacking two power storage modules M20 in the height H direction of the power storage cell 10.
  • the module frames 55 are connected in a stacked manner in two stages.
  • connection member 50D provided along one second frame member 55b is electrically connected by a bus bar penetrating the first frame member 55a. Thereby, the two electrical storage modules M20 are connected in series.
  • the positive electrode M30a is formed on the second frame member 55b in the upper module frame 55.
  • the pole terminal M30b is formed on the second frame member 55b of the lower module frame 55.
  • the first frame member 55a between the module frames 55 stacked one above the other is shared. Therefore, the volume efficiency of the power storage module M30 is further improved.
  • the power storage module M10, the power storage module M20, and the power storage module M30 have been described as examples. However, even if the arrangement direction of the power storage cells 10 is changed, only the adjacent direction of the engaging portion 52 is changed. By changing the direction in which the coupling portion 53 is connected, it is possible to cope with it easily and easily. For example, by changing the connection member 50 to a different type, the six-series circuit shown in FIG. 13 can be changed to a three-series two-parallel circuit shown in FIG.
  • the arrangement of the storage cells 10 can be freely arranged in three directions, ie, the width W direction, the height H direction, and the thickness T direction of the storage cells 10. Therefore, the arrangement and layout of the storage cells 10 can be freely set according to the height, width, and depth at the place where the storage module is installed.
  • the number of storage cells aligned in the height H direction of the storage cell 10 is X
  • the number of storage cells aligned in the width W direction is Y
  • the number of storage cells aligned in the thickness T direction is Assuming Z, a power storage module having a power storage capacity of the product of X, Y, and Z can be configured easily and freely.
  • the power storage cell 10 is used as a plurality of power storage cells constituting the power storage modules M10, M20, M30 has been described above.
  • the power storage cell 20 or the power storage cell 30 may be used instead of the power storage cell 10.
  • each exposed portion 12c of the electrode terminal 12 is arranged so as to be symmetrical with respect to the C plane that bisects the thickness T. It is necessary that the exposed portion 12c be insulated from the inside of the connecting member 50 so as not to short-circuit each other.
  • connection member 50 When the storage cell 30 is used, it is necessary to form a recess corresponding to the shape of the gas vent valve 17 in the connection member 50 so that the connection member 50 and the gas vent valve 17 do not interfere with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

 蓄電セルは、電荷を蓄える蓄電部と、前記蓄電部を収容する容器と、前記蓄電部に接続されて前記容器の外部に露出する一対の電極端子と、を備える蓄電セルであって、前記容器は、その外形が厚みのある多角形形状に形成され、当該多角形における互いに対向する一対の側面の各々に、厚さ方向と直交する方向へ直線的に延設される溝部を備え、各々の前記電極端子は、前記容器の内部にて、前記蓄電部における対応する極性と接続される基端部と、前記容器の外部に露出する露出部と、を有し、前記露出部は、前記溝部の内側に沿って形成される。

Description

蓄電セル及び蓄電モジュール
 本発明は、蓄電セル、及び複数の蓄電セルによって構成される蓄電モジュールに関する。
 JP2003-272972A,JP2006-108380A,JP2003-272966A,JP3869183B,JP2006-338934A,JP2008-204985A,JP2002-353078A,及びJP2005-190885Aは、急速充電が可能であり、かつ、充放電サイクル寿命が長い蓄電セルとして、電気二重層キャパシタやリチウムイオン電池などを提案している。
 図22を参照して一例を説明する。蓄電セル100は、電気二重層キャパシタである。蓄電セル100は、電荷を蓄える蓄電部と、蓄電部を収容する容器111とを備える。
 蓄電部は、正極体と、負極体と、正極体と負極体との間に介在するセパレータと、から構成される積層体である。正極体と負極体とは、電荷を蓄える電極層と、電荷の出し入れを行う集電層と、からなる。電極層は、電解液を含む分極性電極である。正極体には、その集電層と極性が対応する正極端子112Aが接合される。負極体には、その集電層と極性が対応する負極端子112Bが接合される。
 電極端子112は、良好な導電性を有する材質によって短尺状に形成される。電極端子112において、容器111の内部に位置する基端部には、対応する極性の集電極が接合される。電極端子112の先端部は、容器111の外部へ引き出される。容器111は、例えば、積層構造の樹脂フィルムであるラミネートフィルムによって形成される。容器111は、各々の電極端子112の先端部が外部へ突き出るように蓄電部を収容して密封される。
 図22の蓄電セル100では、容器111は、互いの凹部が向かい合うように組み合わされる一対の容器部からなる。蓄電セル100では、蓄電部を収容する室が、一対の凹部によって容器111の内部に画成される。蓄電部は、室111を囲むフランジ部どうしを熱溶着することによって、各端子112の先端側が外部へ突き出た状態で密封される。蓄電セル100は、容器111の内圧を所定レベル以下に抑えるためのガス抜きバルブ115を備える。
 図22に示すような蓄電セル100は、単体での耐電圧が3~5V程度である。蓄電セル100は、必要な電源電圧を得るために、所定の数だけ直列に接続されて使用される。
 図23には、所定の数の蓄電セル100によって構成される蓄電モジュールM100が示される。蓄電セル100は、容器111の厚さ方向へ整列して、重なり合う集合体となる。隣り合う蓄電セル100の間では、極性の相違する電極端子112どうしが電気的に接続される。
 蓄電セル100によって構成される蓄電モジュールM100では、蓄電セル100の相互間を電気的に接続する接続構造との関係から、蓄電セル100の配列やレイアウトの制約が多く、用途に対する対応性が良くない。例えば、設置場所によっては、蓄電セル100の配列やレイアウトの柔軟な対応が図れないため、無駄な空間が生じるおそれがある。
 電極端子112は、接合しやすく折り曲げられるが、その分、蓄電セル100の容器から引き出される部分の長さである電極端子112の突出長Eが大きくなる。よって、容器111の外部において、蓄電セル100間を電気的に接続するために大きなスペースが必要となる。また、電極端子112が容器111の外部に突き出ているため、感電などの防止用の絶縁カバーが必要となる。よって、蓄電モジュールM100の占有体積を大型化させるおそれがある。
 本発明の目的は、上述したような想定される課題を解決するための有効な手段を提供することである。
 以上の目的を達成するために、本発明は、電荷を蓄える蓄電部と、前記蓄電部を収容する容器と、前記蓄電部に接続されて前記容器の外部に露出する一対の電極端子と、を備える蓄電セルであって、前記容器は、その外形が厚みのある多角形形状に形成され、当該多角形における互いに対向する一対の側面の各々に、厚さ方向と直交する方向へ直線的に延設される溝部を備え、各々の前記電極端子は、前記容器の内部にて、前記蓄電部における対応する極性と接続される基端部と、前記容器の外部に露出する露出部と、を有し、前記露出部は、前記溝部の内側に沿って形成される。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1Aは、本発明の第一の実施の形態に係る蓄電セルの斜視図である。 図1Bは、手前側の膜体を取り外した状態の蓄電セルの正面図である。 図2は、蓄電セルの斜視図である。 図3は、電極端子の断面図である。 図4は、電極端子の変形例を示す断面図である。 図5は、電極端子の配置について説明する図である。 図6は、本発明の第二の実施の形態に係る蓄電セルの斜視図である。 図7は、電極端子の断面図である。 図8は、電極端子の配置について説明する図である。 図9は、本発明の第三の実施の形態に係る蓄電セルの斜視図である。 図10は、本発明の実施形態に係る蓄電モジュールの斜視図である。 図11は、蓄電モジュールの分解斜視図である。 図12は、蓄電モジュールの平面図である。 図13は、蓄電モジュールの回路図である。 図14は、蓄電モジュールの変形例を示す斜視図である。 図15は、蓄電モジュールの分解斜視図である。 図16は、蓄電モジュールの平面図である。 図17は、蓄電モジュールの回路図である。 図18は、蓄電モジュールの他の変形例を示す斜視図である。 図19は、蓄電モジュールの分解斜視図である。 図20は、蓄電モジュールの分解斜視図である。 図21は、蓄電モジュールの回路図である。 図22は、従来の蓄電セルの例を示す斜視図である。 図23は、従来の蓄電モジュールの例を示す斜視図である。
 まず、図1Aから図5を参照して、本発明の第一の実施の形態に係る蓄電セル10について説明する。以下では、図1Aに示すように、蓄電セル10の幅をW、高さをH、厚さをTとして説明する。図5に示すように、蓄電セル10の幅Wを二等分する面をA面、高さHを二等分する面をB面として説明する。
 蓄電セル10は、電気二重層キャパシタである。蓄電セル10は、図1Bに示すように、電荷を蓄える蓄電部13と、蓄電部13を収容する容器11と、蓄電部13に対して電荷の出し入れを行う一対の電極端子12と、を備える。
 蓄電部13は、図1Bに示すように、正極体13aと、負極体13bと、正極体13aと負極体13bとの間に介在するセパレータ13cと、が積層された積層体である。蓄電部13は、電解液とともに容器11に収容される。
 正極体13a及び負極体13bは、電荷を蓄える電極層、即ち分極性電極と、電荷の出し入れを行う集電層、即ち集電極と、によって形成される。正極体13aと負極体13bには、同極の集電極どうしのリードが結束されて結束部が形成される。正極体13aと負極体13bとの結束部には、極性の対応する電極端子12が各々接合される。
 容器11は、図1Aに示すように、その外形が厚みのある多角形形状に形成される。容器11は、互いに平行に形成された二つの合同な四角形の底面と、底面における四辺に各々形成される四角形の側面と、を有する。容器11では、四角形の底面における四つの角部が円弧状に丸められている。容器11は、四角形以外の多角形形状の底面と、底面における辺の数だけの側面と、を有する形状であってもよい。
 容器11は、図1Bに示すように、蓄電部13を囲う枠状に形成される枠体11aと、枠体11aに貼り付けられる膜体11bと、から構成される。枠体11aは、容器11の側面を形成し、膜体11bは、容器11の底面を形成する。容器11の内部には、枠体11aと膜体11bとによって、蓄電部13を収容する室14が形成される。
 枠体11aは、熱溶着性および電気絶縁性を有する樹脂によって形成される厚みのある多角形形状の枠体である。枠体11aは、上辺部と下辺部と右辺部と左辺部との四辺部から四角形形状に形成される。枠体11aは、蓄電部13を囲う形状に形成される。枠体11aには、四辺部によって囲まれた空間が、前後両面に開口して形成される。
 枠体11aは、例えば、射出成形によって形成される。枠体11aには、一対の電極端子12と、容器11における室14の内圧を所定レベル以下に抑えるガス抜きバルブ17と、がインサート成形される。枠体11aは、金型の中に一対の電極端子12とガス抜きバルブ17とが予め装填され、そこに溶融した樹脂が充填されて形成される。
 枠体11aにおける四辺部の各々には、前後両面における端部の外周に立ちあがる突起18が鍔状に成形される。枠体11aには、前後方向へ対向する突起18の間に溝部15が形成される。
 枠体11aの前後両面は、突起18によって外側へ拡張される。これにより、枠体11aと膜体11bとの貼り付け部の強度や耐久性を得るために必要な貼り付け面積が確保される。
 溝部15は、図2に示すように、枠体11aの外周にU字状に凹設される。溝部15は、容器11の外周に沿って環状に形成される底面15aと、底面15aの両端に立設される一対の対向面15bと、を有する。
 溝部15は、容器11の全ての側面をめぐるように全周に形成される。溝部15は、容器11の全周ではなく、少なくとも、容器11における一対の対向する側面の各々に、厚さTの方向と直交する方向へ直線的に形成されればよい。
 膜体11bは、金属箔の中間層を持つ樹脂の積層フィルムであるラミネートフィルムによってシート状に形成される。膜体11bは、枠体11aの前後両面と略同一の形状に、かつ、略同一の大きさに形成される。
 膜体11bは、枠体11aの前後両面に各々熱溶着される。膜体11bが熱溶着されることによって、枠体11aにおける前後両面に開口する空間が封止される。これにより、容器11の内部には、図1Bに示す室14が画成される。
 電極端子12は、図1Bに示すように、一端が蓄電部13に接続されて、他端が容器11の外部に露出するものである。電極端子12は、一対設けられ、互いに極性が相違するものである。電極端子12は、蓄電部13における正極体13aに接続される正極端子12Aと、蓄電部13における負極体13bに接続される負極端子12Bと、からなる。正極端子12Aと負極端子12Bとは、容器11における互いに対向する一対の側面に各々設けられる。
 一対の溝部15が容器11における一対の対向する側面に各々形成される場合には、一方の電極端子12は一方の溝部15に配置され、他方の電極端子12は他方の溝部15に配置される。
 電極端子12は、図1Bに示すように、容器11の外部に露出する露出部12cと、容器11の内部にて対応する極性の集電層に接続される基端部12eと、露出部12cと基端部12eとを継ぐ中間部12dと、から構成される。
 中間部12dは、ガス抜きバルブ17の中間部とともに、枠体11aを形成する樹脂の中に埋設される。中間部12dが枠体11aに埋設されることによって、電極端子12が枠体11aに固定される。中間部12dを省略して、基端部12eの一部が枠体11aに固定されるようにしてもよい。
 基端部12eは、容器11の内部の室14に突設される。正極端子12Aの基端部12eには、正極体13aのリードが結束されて接合される。負極端子12Bの基端部12eには、負極体13bのリードが結束されて接合される。つまり、基端部12eには、対応する極性のリードが結束された結束部が接合される。
 露出部12cは、図2に示すように、容器11における一つの側面から、その両端の側面に渡ってU字状に形成される。露出部12cは、溝部15におけるA面と平行な面から、A面と直交する面にかけて連続して延びるように形成される。つまり、露出部12cは、容器11における高さH方向に沿った側面から、当該側面の両端から連続して形成される幅W方向に沿った側面に回り込むように形成される。各々の電極端子12における露出部12cは、図5に示すA面に対して、互いに対称となるように配置される。
 露出部12cは、図3に示すように、溝部15に沿ったU字状の断面形状に形成される。よって、蓄電セル10では、図22に示す従来の蓄電セル100のように電極端子12が容器11の外側へ突き出ない。そのため、蓄電セル10では、電極端子12を含んだ大きさを、小さくすることができる。即ち、蓄電セル10の占有体積を小さくできる。図22に示す従来の蓄電セル100と比較すると、電極端子の容器から引き出される突出長Eの分だけ、蓄電セル10の高さHが小さくなる。したがって、蓄電セル10の単位体積あたりの蓄電容量である体積効率が向上する。
 各露出部22cを、図3に示すように溝型の底面から両側面が垂直に立ちあがる断面形状に形成する代わりに、図4に示すように溝型の底面から両側面が外側へ向けて開く形に斜めに立ちあがる断面形状に形成してもよい。
 露出部12cは、図2に示すように、溝部15の内周に配置される。露出部12cの外周側は、容器11を形成する樹脂によって覆われる。具体的には、露出部12cは、図3及び図4に示す背面12fから端面12gにかけて、容器11における突起18の部分の樹脂で覆われる。これにより、蓄電セル10では、絶縁カバーを用いることなく、感電などに対する安全性が高められる。
 複数の蓄電セル10を接続して蓄電モジュールM10を構成する際には、一対の電極端子12が容器11の外側へ突き出ないため、溝部15が形成される容器11の側面どうしを突き合わせるように蓄電セル10を配列することができる。例えば、設置場所の高さ、幅、及び奥行きに合わせて、複数の蓄電セル10を、容器11の厚さ方向へ多角形の底面が重なるように配列することが可能である。また、複数の蓄電セル10を、容器11の厚さ方向と直交する方向へ容器の多角形の底面どうしが面一となるように配列することも可能である。また、これらの配列の組み合わせによって、複数の蓄電セル10を配列することも可能である。よって、蓄電セル10を、効率よく並べることが可能となるため、配列やレイアウトの自由度が高くなる。
 次に、図6から図8を参照して、本発明の第二の実施の形態に係る蓄電セル20について説明する。以下に示す各実施の形態では、前述した実施の形態と同様の構成には同一の符号を付し、重複する説明は適宜省略する。以下では、図8に示すように、蓄電セル20の厚さTを二等分する面をC面として説明する。
 蓄電セル20は、電気二重層キャパシタである。蓄電セル20は、図6に示すように、電荷を蓄える蓄電部13と、蓄電部13を収容する容器11と、蓄電部13に対して電荷の出し入れを行う一対の電極端子22と、を備える。
 電極端子22は、蓄電部13における正極体13aに接続される正極端子22Aと、蓄電部13における負極体13bに接続される負極端子22Bと、からなる。正極端子22Aと負極端子22Bとは、図6に示すように、容器11における一対の底面の内側に沿って各々設けられる。
 一対の溝部15が容器11における一対の対向する側面に各々形成される場合には、一方の電極端子12と他方の電極端子12とは、ともに一対の溝部15の各々に配置される。
 電極端子12は、容器11の外部に露出する露出部22cと、容器11の内部にて対応する極性の集電層に接続される基端部12eと、露出部22cと基端部12eとを継ぐ中間部12dと、から構成される。
 露出部22cは、図6に示すように、溝部15における対向面15bに沿って環状に形成される。一方の電極端子22における露出部22cは、一対の対向面15bのうち一方に沿って配置される。他方の電極端子22における露出部22cは、一対の対向面15bのうち他方に沿って配置される。つまり、各々の電極端子22における露出部22cは、図8に示すC面に対して互いに対称となるように配置される。
 露出部22cは、図7に示すように、溝部15の対向面15bに沿った矩形の断面形状に形成される。よって、蓄電セル20では、電極端子12が容器11の外側へ突き出ない。そのため、蓄電セル20では、電極端子22を含む大きさを小さくすることができる。即ち、蓄電セル20の占有体積を小さくできる。したがって、蓄電セル20の単位体積あたりの蓄電容量である体積効率が向上する。
 露出部22cは、図6に示すように、溝部15の内周に配置される。露出部22cの外周側は、容器11を形成する樹脂によって覆われる。具体的には、露出部22cは、図7に示す背面22fから端面22gにかけて、容器11における突起18の部分の樹脂で覆われる。これにより、蓄電セル20では、絶縁カバーを用いることなく、感電などに対する安全性が高められる。
 次に、図9を参照して、本発明の第三の実施の形態に係る蓄電セル30について説明する。
 蓄電セル30は、電気二重層キャパシタである。蓄電セル30は、図9に示すように、電荷を蓄える蓄電部13と、蓄電部13を収容する容器11と、蓄電部13に対して電荷の出し入れを行う一対の電極端子32と、を備える。
 電極端子32は、蓄電部13における正極体13aに接続される正極端子32Aと、蓄電部13における負極体13bに接続される負極端子32Bと、からなる。正極端子32Aと負極端子32Bとは、容器11における互いに対向する一対の側面に各々設けられる。
 一対の溝部15が容器11における一対の対向する側面に各々形成される場合には、一方の電極端子32は一方の溝部15に配置され、他方の電極端子32は他方の溝部15に配置される。
 電極端子32は、容器11の外部に露出する露出部32cと、容器11の内部にて対応する極性の集電層に接続される基端部12eと、露出部32cと基端部12eとを継ぐ中間部12dと、から構成される。
 露出部32cは、容器11における一つの側面から、その両端の側面に渡ってU字状に形成される。露出部32cは、溝部15におけるB面と平行な面から、B面と直交する面にかけて連続して延びるように形成される。つまり、露出部32cは、容器11における幅W方向に沿った側面から、当該側面の両端から連続して形成される高さH方向に沿った側面に回り込むように形成される。各々の電極端子32における露出部32cは、図5に示すB面に対して、互いに対称となるように配置される。
 一対の電極端子32のうち正極端子32Aには、ガス抜きバルブ17が挿通する孔が形成される。正極端子32Aではなく、負極端子32Bにガス抜きバルブ17が挿通する孔を形成してもよい。
 露出部32cは、溝部15に沿ったU字状の断面形状に形成される。よって、蓄電セル30では、電極端子32が容器11の外側へ突き出ない。そのため、蓄電セル10では、電極端子32を含む大きさを小さくすることができる。即ち、蓄電セル10の占有体積を小さくできる。したがって、蓄電セル30の単位体積あたりの蓄電容量である体積効率が向上する。
 露出部32cは、露出部11cと同様に、溝部15の内周に配置され、その外周側が、容器11を形成する樹脂によって覆われる。これにより、蓄電セル30でもまた、絶縁カバーを用いることなく、感電などに対する安全性が高められる。
 次に、図10から図13を参照して、複数の蓄電セル10によって構成される蓄電モジュールM10について説明する。
 蓄電モジュールM10は、図10に示すように、複数の蓄電セル10と、蓄電セル10が取り付けられる格子状のモジュールフレーム55と、を備える。蓄電モジュールM10は、蓄電セル10が所定の配列方向へ複数並べられ、隣り合う蓄電セル10間が電気的に接続されて形成される。
 蓄電モジュールM10は、図13に示すように、六個の蓄電セル10が六直列に接続される回路を構成するものである。蓄電モジュールM10は、蓄電セル10単体の電圧と比較して六倍の電圧を有する。
 モジュールフレーム55は、図11に示すように、長手方向に配置される一対の第一枠部材55aと、短手方向に配置される一対の第二枠部材55bと、隣り合う蓄電セル10の間を電気的に接続する接続部材50と、を備える格子状のフレームである。モジュールフレーム55は、接続部材50によって複数の区画に仕切られる。
 モジュールフレーム55の複数の区画は、モジュールフレーム55の長手方向へ一列に連設される。モジュールフレーム55の各々の区画には、蓄電セル10が二個ずつ積層して収装される。
 各々の区画において、蓄電セル10は、容器11の厚さT方向へ容器11の前後の面が重なるように積層して配列される。蓄電セル10は、モジュールフレーム55の長手方向へ、即ち、容器11の厚さ方向と直交する方向へ、容器11の前後の面が面一に連なるように配列される。
 一対の第一枠部材55aと一対の第二枠部材55bとは、モジュールフレーム55における矩形の外枠を形成する。第一枠部材55aと第二枠部材55bとは、樹脂など電気絶縁性を有する材料によって形成される。
 第一枠部材55aは、互いに対向するように平行に一対設けられる。第一枠部材55aは、モジュールフレーム55に配置される蓄電セル10の上下に各々設けられる。第一枠部材55aは、蓄電セル10を上下から挟みこんで固定する。
 第一枠部材55aにおける蓄電セル10と当接する面には、蓄電セル10における溝部15に嵌まる突起部55cが形成される。これにより、第一枠部材55aに蓄電セル10が固定される。
 第二枠部材55bは、互いに対向するように平行に一対設けられる。第二枠部材55bは、第一枠部材55aの両端に配置され、第一枠部材55aの両端を各々連結する。
 第二枠部材55bは、正極電極M10aと、負極電極M10bと、を備える。正極電極M10aと負極電極M10bとは、ともに一方の第二枠部材55bに形成される。
 接続部材50は、蓄電セル10の位置を固定するとともに、蓄電セル10どうしを電気的に接続する。接続部材50は、一対の第一枠部材55aの間に固定される柱部51と、蓄電セル10の側面の溝部15に係合する係合部52と、複数の係合部52を蓄電セル10の配列方向に接続する結合部53と、を有する。係合部52と結合部53とは、金属など導電性を有する材料によって形成される。
 接続部材50は、図11に示すように、接続部材50Aと、接続部材50Bと、接続部材50Cと、の三つのタイプからなる。
 接続部材50Aは、モジュールフレーム55に取り付けられた蓄電セル10を、正極電極M10aと負極電極M10bとに各々接続する。接続部材50Aは、一対設けられ、正極電極M10aと負極電極M10bとがともに設けられる一方の第二枠部材55bに当接する。一対の接続部材50Aの相互間は、電気的に絶縁される。
 一対の接続部材50Aは、蓄電セル10における厚さT方向に並べて平行に配置される。接続部材50Aは、単一の係合部52を有する。一方の接続部材50Aでは、結合部53によって、係合部52と正極電極M10aとが電気的に接続される。他方の接続部材50Aでは、結合部53によって、係合部52と負極電極M10bとが電気的に接続される。これにより、蓄電セル10が正極電極M10aと負極電極M10bとに接続される。
 接続部材50Bは、幅W方向に並べられた一対の蓄電セル10を、直列に電気的に接続する。接続部材50Bは、第一枠部材55aに沿って一対ずつ二箇所に配置される。接続部材50Bは、蓄電セル10の幅Wだけ間隔をあけながら一対ずつ配置される。一対の接続部材50Bの相互間は、電気的に絶縁される。
 一対の接続部材50Bは、蓄電セル10における厚さT方向に並べて平行に配置される。接続部材50Bは、第一枠部材55aに沿って両方向に形成される一対の係合部52を有する。一対の係合部52は、結合部53によって電気的に接続される。これにより、一対の蓄電セル10が電気的に接続される。
 接続部材50Cは、厚さT方向に並べられた一対の蓄電セル10を、直列に電気的に接続する。接続部材50Cは、一対設けられ、他方の第二枠部材55bに当接する。
 一対の接続部材50Cは、蓄電セル10における厚さT方向に並べて平行に配置される。接続部材50Cは、単一の係合部52を有する。一対の接続部材50Cにおける係合部52の相互間は、結合部53によって電気的に接続される。これにより、厚さT方向に並べられた一対の蓄電セル10が電気的に接続される。
 蓄電セル10は、モジュールフレーム55の長手方向へ隣り合う蓄電セル10間の電極端子12が、各々の接続部材50を介して直列接続となるように、各々の区画に収装される。蓄電セル10は、図11に示すように、モジュールフレーム55の一方の第一枠部材55aが取り外され、高さH方向から各々の区画に組み付けられる。これにより、六個の蓄電セル10を直列接続する蓄電モジュールM10を、簡単に効率よく形成することができる。
 このように、蓄電モジュールM10では、係合部52と結合部53とを有する接続部材50が設けられることによって、所定の配列方向へ並べられた蓄電セル10の相互間を、簡単かつ容易に接続することができる。
 このとき、係合部52は、蓄電セル10の溝部15に係合して、溝部15の内側に収まる。そのため、蓄電セル10の体積効率を低下させることがない。また、感電などに対する安全性も確保することができる。
 モジュールフレーム55において、蓄電セル10が充放電に伴って発熱すると、その熱量は、電極端子12から接続部材50を経由して、第一枠部材55aおよび第二枠部材55bへと伝達される。よって、第一枠部材55aと、第二枠部材55bと、接続部材50と、を、熱伝導率の高い材料で形成すれば、蓄電モジュールM10の放熱性能が高められる。したがって、モジュールフレーム55に収装される蓄電セル10の温度が、適正に管理しやすくなる。
 次に、図14から図17を参照して、変形例に係る蓄電モジュールM20について説明する。
 蓄電モジュールM20は、図14に示すように、複数の蓄電セル10と、蓄電セル10が取り付けられる格子状のモジュールフレーム55と、を備える。蓄電モジュールM10は、蓄電セル10が所定の配列方向へ複数並べられ、隣り合う蓄電セル10間が電気的に接続されて形成される。
 蓄電モジュールM20は、図17に示すように、六個の蓄電セル10が三直列二並列に接続される回路を構成するものである。蓄電モジュールM20は、蓄電セル10単体の電圧と比較して三倍の電圧を有し、二倍の電気容量を有する。
 モジュールフレーム55は、図15に示すように、長手方向に配置される一対の第一枠部材55aと、短手方向に配置される一対の第二枠部材65bと、隣り合う蓄電セル10の間を電気的に接続する接続部材50と、を備える格子状のフレームである。
 第二枠部材65bは、互いに対向するように平行に一対設けられる。第二枠部材65bは、第一枠部材55aの両端に配置され、第一枠部材55aの両端を各々連結する。
 第二枠部材65bは、正極電極M10aと負極電極M10bと、を備える。正極電極M10aは、一方の第二枠部材65bに形成され、負極電極M10bは、他方の第二枠部材55bに形成される。
 接続部材50は、図15に示すように、接続部材50Dと、接続部材50Eと、の二つのタイプからなる。
 接続部材50Dは、モジュールフレーム55に取り付けられた蓄電セル10を、正極電極M20aと負極電極M20bとに各々接続する。接続部材50Dは、一対ずつ二箇所に設けられる。接続部材50Dは、正極電極M20aが設けられる一方の第二枠部材65bと、負極電極M20bが設けられる他方の第二枠部材55bと、に各々当接する。一対の接続部材50Dの相互間は、電気的に接続される。
 一対の接続部材50Dは、蓄電セル10における厚さT方向に並べて平行に配置される。接続部材50Dは、単一の係合部52を有する。一対の接続部材50Dにおける係合部52の相互間は、結合部53によって電気的に接続される。これにより、蓄電セル10が、正極電極M20aと負極電極M20bとに接続される。
 接続部材50Eは、幅W方向に並べられた一対の蓄電セル10を、直列に電気的に接続する。接続部材50Eは、第一枠部材55aに沿って一対ずつ二箇所に配置される。接続部材50Eは、蓄電セル10の幅Wだけ間隔をあけながら一対ずつ配置される。一対の接続部材50Eの相互間は、電気的に接続される。
 一対の接続部材50Eは、蓄電セル10における厚さT方向に並べて平行に配置される。接続部材50Eは、第一枠部材55aに沿って両方向に形成される一対の係合部52を有する。一対の係合部52は、結合部53によって電気的に接続される。これにより、一対の蓄電セル10が電気的に接続される。
 蓄電セル10は、モジュールフレーム55の長手方向へ隣り合う蓄電セル10間の電極端子12が、各々の接続部材50を介して三直列二並列に接続されるように、各々の区画に収装される。蓄電セル10は、図15に示すように、モジュールフレーム55の一方の第一枠部材55aが取り外され、高さH方向から各々の区画に組み付けられる。これにより、六個の蓄電セル10を三直列二並列に接続する蓄電モジュールM20を、簡単に効率よく形成することができる。
 次に、図18から図21を参照して、他の変形例に係る蓄電モジュールM30について説明する。
 蓄電モジュールM30は、図18に示すように、複数の蓄電セル10と、蓄電セル10が取り付けられる格子状のモジュールフレーム55と、を備える。蓄電モジュールM30は、蓄電セル10が所定の配列方向へ複数並べられ、隣り合う蓄電セル10間が電気的に接続されて形成される。
 蓄電モジュールM30は、図21に示すように、十二個の蓄電セル10が六直列二並列に接続される回路を構成するものである。蓄電モジュールM30は、蓄電セル10単体の電圧と比較して六倍の電圧を有し、二倍の電気容量を有する。
 蓄電モジュールM30は、図18に示すように、直列に接続される二つの蓄電モジュールM20によって形成される。蓄電モジュールM30は、蓄電セル10の高さH方向に二つの蓄電モジュールM20が重ねられて形成される。蓄電モジュールM30では、モジュールフレーム55が二段に積み重なる形に連設される。
 各々の蓄電モジュールM20の間は、一方の第二枠部材55bに沿って設けられる接続部材50Dが、第一枠部材55aを貫通するバスバーによって電気的に接続される。これにより、二つの蓄電モジュールM20は、直列に接続される。
 蓄電モジュールM30では、正極電極M30aは、上段のモジュールフレーム55における第二枠部材55bに形成される。一方、極端子M30bは、下段のモジュールフレーム55における第二枠部材55bに形成される。
 蓄電モジュールM30では、上下に重ねられるモジュールフレーム55の間の第一枠部材55aが共有される。そのため、蓄電モジュールM30の体積効率は、更に向上する。
 以上、蓄電モジュールM10と、蓄電モジュールM20と、蓄電モジュールM30と、を例として説明したが、蓄電セル10の配列方向が変わっても、係合部52の隣り合う方向が変わるのみであるため、結合部53が接続する方向を変更することで、簡単かつ容易に対応することができる。例えば、接続部材50を異なるタイプのものに変更することによって、図13に示す六直列の回路を、図17に示す三直列二並列の回路に変更することも可能である。
 蓄電セル10の配置は、蓄電セル10の幅W方向と、高さH方向と、厚さT方向と、の三方向に自由に配列できる。よって、蓄電モジュールが設置される場所における高さ,幅,奥行き,に合わせて、蓄電セル10の配置やレイアウトを自由に設定できる。
 蓄電モジュールの蓄電容量については、蓄電セル10の高さH方向に並ぶ蓄電セルの数をXとし、幅W方向へ並ぶ蓄電セルの数をYとし、厚さT方向へ並ぶ蓄電セルの数をZ、とすると、XとYとZとの積の蓄電容量を持つ蓄電モジュールが、簡単かつ自由に構成できることになる。
 以上、蓄電モジュールM10,M20,M30を構成する複数の蓄電セルとして蓄電セル10が用いられる場合について説明した。しかしながら、蓄電セル10ではなく、蓄電セル20や蓄電セル30を用いてもよい。
 蓄電セル20を用いる場合においては、電極端子12の各々の露出部12cが、厚さTを二等分するC面に対して対称となるように配置されるので、一方の露出部12cと他方の露出部12cとが互いに短絡しないように、接続部材50の内部で絶縁される構成とする必要がある。
 蓄電セル30を用いる場合には、接続部材50とガス抜きバルブ17とが干渉しないように、ガス抜きバルブ17の形状に対応した凹部を接続部材50に形成する必要がある。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は、2010年7月1日に日本国特許庁に出願された特願2010-151152に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
 この発明の実施例が包含する排他的性質又は特徴は、以下のようにクレームされる。

Claims (10)

  1.  電荷を蓄える蓄電部と、
     前記蓄電部を収容する容器と、
     前記蓄電部に接続されて前記容器の外部に露出する一対の電極端子と、を備える蓄電セルであって、
     前記容器は、その外形が厚みのある多角形形状に形成され、当該多角形における互いに対向する一対の側面の各々に、厚さ方向と直交する方向へ直線的に延設される溝部を備え、
     各々の前記電極端子は、
     前記容器の内部にて、前記蓄電部における対応する極性と接続される基端部と、
     前記容器の外部に露出する露出部と、を有し、
     前記露出部は、前記溝部の内側に沿って形成される蓄電セル。
  2.  請求項1に記載の蓄電セルであって、
     前記一対の電極端子のうち一方は、一方の前記溝部に配置され、他方は、他方の前記溝部に配置される蓄電セル。
  3.  請求項2に記載の蓄電セルであって、
     前記電極端子における前記露出部は、前記溝部に沿ったU字状の断面形状に形成される蓄電セル。
  4.  請求項1に記載の蓄電セルであって、
     前記溝部は、互いに対向する一対の対向面を有し、
     前記一対の電極端子のうち一方は、前記一対の対向面のうち一方に配置され、他方は、前記一対の対向面のうち他方に配置される蓄電セル。
  5.  請求項1に記載の蓄電セルであって、
     前記容器は、
     前記蓄電部を囲う枠状に形成される枠体と、
     前記枠体に貼り付けられて当該枠体とともに前記蓄電部を収容する室を画成する膜体と、からなり、
     前記溝部は、前記枠体の側面に形成される蓄電セル。
  6.  請求項5に記載の蓄電セルであって、
     前記一対の電極端子は、前記枠体にインサート成形される蓄電セル。
  7.  請求項1に記載の蓄電セルを所定の配列方向へ複数並べ、隣り合う前記蓄電セル間が電気的に接続される蓄電モジュールであって、
     格子状のモジュールフレームを備え、
     複数の前記蓄電セルは、前記モジュールフレームにおける格子状の各々の区画に取り付けられる蓄電モジュール。
  8.  請求項7に記載の蓄電モジュールであって、
     前記モジュールフレームは、
     導電材によって形成され、前記蓄電セルの前記溝部に係合する係合部と、
     導電材によって形成され、複数の前記係合部を前記蓄電セルの配列方向に接続する結合部と、を備える蓄電モジュール。
  9.  請求項7に記載の蓄電モジュールであって、
     前記蓄電セルは、前記容器の厚さ方向と直交する方向に配列される蓄電モジュール。
  10.  請求項7に記載の蓄電モジュールであって、
     前記蓄電セルは、前記容器の厚さ方向に配列される蓄電モジュール。
PCT/JP2011/061523 2010-07-01 2011-05-19 蓄電セル及び蓄電モジュール WO2012002058A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11800527.1A EP2590189A1 (en) 2010-07-01 2011-05-19 Power storage cell and power storage module
CN201180030198.2A CN102959654B (zh) 2010-07-01 2011-05-19 蓄电单元及蓄电组件
US13/703,767 US9053867B2 (en) 2010-07-01 2011-05-19 Energy storage cell and energy storage module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010151152A JP5364650B2 (ja) 2010-07-01 2010-07-01 蓄電デバイス、蓄電デバイス間の接続構造、蓄電モジュール
JP2010-151152 2010-07-01

Publications (1)

Publication Number Publication Date
WO2012002058A1 true WO2012002058A1 (ja) 2012-01-05

Family

ID=45401792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061523 WO2012002058A1 (ja) 2010-07-01 2011-05-19 蓄電セル及び蓄電モジュール

Country Status (5)

Country Link
US (1) US9053867B2 (ja)
EP (1) EP2590189A1 (ja)
JP (1) JP5364650B2 (ja)
CN (1) CN102959654B (ja)
WO (1) WO2012002058A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520922A (ja) * 2012-06-07 2015-07-23 エルジー・ケム・リミテッド 安定性が向上した構造及び高い冷却効率性を有する電池モジュール
JP2016506608A (ja) * 2013-11-27 2016-03-03 エルジー ケム. エルティーディ. 二次電池用パウチ及びこれを含む二次電池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578622B2 (ja) * 2011-02-17 2014-08-27 シャープ株式会社 電池保持用フレーム、電源装置および電池モジュール
KR101501431B1 (ko) 2012-07-23 2015-03-12 주식회사 엘지화학 파우치형 전지셀이 내장되어 있는 각형화된 전지셀
JP6288721B2 (ja) * 2013-03-15 2018-03-07 Necエナジーデバイス株式会社 組電池
USD743399S1 (en) * 2014-05-30 2015-11-17 Emc Corporation Flash module
USD760162S1 (en) * 2014-12-31 2016-06-28 Lg Electronics Inc. Portable supplementary battery
DE102015210671A1 (de) * 2015-06-11 2016-12-15 Robert Bosch Gmbh Batteriezelle mit einem innerhalb eines zweiten Terminals angeordneten ersten Terminal
EP3179495B1 (en) * 2015-12-09 2018-05-02 ABB Schweiz AG Power capacitor unit for high pressure applications
USD814403S1 (en) * 2016-01-22 2018-04-03 Lg Electronics Inc. Secondary battery for cellular phone
KR102465864B1 (ko) * 2019-06-12 2022-11-09 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
CN111599946A (zh) * 2020-06-18 2020-08-28 武汉兰钧新能源科技有限公司 电动汽车、锂离子电池及其制造方法
CN218602565U (zh) * 2022-10-17 2023-03-10 宁德时代新能源科技股份有限公司 外壳、电池单体、电池及用电设备
USD1018460S1 (en) * 2023-07-06 2024-03-19 Jinyu Zheng Wireless charger
USD1024954S1 (en) * 2023-07-31 2024-04-30 Yinqin Gu Wireless charger

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353078A (ja) 2001-05-29 2002-12-06 Asahi Glass Co Ltd 積層型電気二重層キャパシタモジュール
JP2003272974A (ja) * 2002-03-19 2003-09-26 Nissan Diesel Motor Co Ltd 電気二重層キャパシタ
JP2003272972A (ja) 2002-03-19 2003-09-26 Nissan Diesel Motor Co Ltd 電気二重層キャパシタ
JP2003272966A (ja) 2002-03-15 2003-09-26 Nissan Diesel Motor Co Ltd 電気二重層キャパシタ
JP2005190885A (ja) 2003-12-26 2005-07-14 Toyota Motor Corp ラミネート電池モジュールとその製造方法
JP2006108380A (ja) 2004-10-05 2006-04-20 Nissan Diesel Motor Co Ltd キャパシタモジュールの製造方法
JP2006338934A (ja) 2005-05-31 2006-12-14 Fuji Heavy Ind Ltd 蓄電体セルのパッケージ構造
JP3869183B2 (ja) 2000-05-01 2007-01-17 日産ディーゼル工業株式会社 蓄電装置の電極構造
JP2008204985A (ja) 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd キャパシタユニット
JP2008277042A (ja) * 2007-04-26 2008-11-13 Toyota Motor Corp 蓄電装置
JP2008300593A (ja) * 2007-05-31 2008-12-11 Fdk Corp 非水系蓄電デバイス及びその製造方法、組電池
JP2010151152A (ja) 2008-12-24 2010-07-08 Antex Corp 旋回座軸受

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341514B1 (en) 2002-03-19 2015-06-17 Nissan Diesel Motor Co., Ltd. Electric double-layer capacitor device
JP3899423B2 (ja) * 2002-07-24 2007-03-28 日産自動車株式会社 薄型電池モジュール
JP4811246B2 (ja) * 2006-09-07 2011-11-09 パナソニック株式会社 コンデンサ
EP2110824A4 (en) * 2007-02-16 2015-02-25 Panasonic Corp CONDENSATE UNIT AND MANUFACTURING METHOD THEREFOR
CN201112425Y (zh) 2007-08-17 2008-09-10 飞毛腿(福建)电池有限公司 通用电池装置
CN201601153U (zh) 2009-09-24 2010-10-06 康迪投资集团有限公司 一种蓄电池电池盒

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869183B2 (ja) 2000-05-01 2007-01-17 日産ディーゼル工業株式会社 蓄電装置の電極構造
JP2002353078A (ja) 2001-05-29 2002-12-06 Asahi Glass Co Ltd 積層型電気二重層キャパシタモジュール
JP2003272966A (ja) 2002-03-15 2003-09-26 Nissan Diesel Motor Co Ltd 電気二重層キャパシタ
JP2003272974A (ja) * 2002-03-19 2003-09-26 Nissan Diesel Motor Co Ltd 電気二重層キャパシタ
JP2003272972A (ja) 2002-03-19 2003-09-26 Nissan Diesel Motor Co Ltd 電気二重層キャパシタ
JP2005190885A (ja) 2003-12-26 2005-07-14 Toyota Motor Corp ラミネート電池モジュールとその製造方法
JP2006108380A (ja) 2004-10-05 2006-04-20 Nissan Diesel Motor Co Ltd キャパシタモジュールの製造方法
JP2006338934A (ja) 2005-05-31 2006-12-14 Fuji Heavy Ind Ltd 蓄電体セルのパッケージ構造
JP2008204985A (ja) 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd キャパシタユニット
JP2008277042A (ja) * 2007-04-26 2008-11-13 Toyota Motor Corp 蓄電装置
JP2008300593A (ja) * 2007-05-31 2008-12-11 Fdk Corp 非水系蓄電デバイス及びその製造方法、組電池
JP2010151152A (ja) 2008-12-24 2010-07-08 Antex Corp 旋回座軸受

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520922A (ja) * 2012-06-07 2015-07-23 エルジー・ケム・リミテッド 安定性が向上した構造及び高い冷却効率性を有する電池モジュール
JP2016506608A (ja) * 2013-11-27 2016-03-03 エルジー ケム. エルティーディ. 二次電池用パウチ及びこれを含む二次電池
US9502694B2 (en) 2013-11-27 2016-11-22 Lg Chem, Ltd. Pouch for secondary battery and secondary battery including the same

Also Published As

Publication number Publication date
JP2012015365A (ja) 2012-01-19
CN102959654B (zh) 2016-02-17
JP5364650B2 (ja) 2013-12-11
EP2590189A1 (en) 2013-05-08
US20130083453A1 (en) 2013-04-04
CN102959654A (zh) 2013-03-06
US9053867B2 (en) 2015-06-09

Similar Documents

Publication Publication Date Title
WO2012002058A1 (ja) 蓄電セル及び蓄電モジュール
JP5889418B2 (ja) 信頼性が向上した電池モジュールアセンブリ及びこれを含む中大型電池パック
JP5166486B2 (ja) バッテリーパック
US11594776B2 (en) Battery module including heat shrinkable tube
JP6112579B2 (ja) 非定型構造の電池セル及びそれを含む電池モジュール
JP6025319B2 (ja) バッテリモジュール
JP6743359B2 (ja) 蓄電装置
CN107431163A (zh) 电池组及其制造方法
KR20170030954A (ko) 배터리 모듈
JP2022523847A (ja) 電池モジュール
CN108140779A (zh) 电池模组以及包含该电池模组的电池包和车辆
JP7295096B2 (ja) 電池パック
JP7047204B2 (ja) 絶縁チューブを含むバッテリーパック
JP2022524589A (ja) 短絡防止及び衝撃保護構造が強化されたバッテリーパック
JP7046208B2 (ja) モジュールケースを備えたバッテリーモジュール
JP7031284B2 (ja) 蓄電装置
KR20160026509A (ko) 이차 전지 모듈
JP7101794B2 (ja) 内部プレートを含むバッテリーモジュール
JP2019079599A (ja) 蓄電装置
KR20210137910A (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩, 및 자동차
KR20160054268A (ko) 이차전지셀 및 이를 포함하는 배터리 모듈
JP2016054112A (ja) 蓄電装置
JP6245105B2 (ja) 電源モジュール
CN218602591U (zh) 电池模组及电芯
WO2023276865A1 (ja) 電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030198.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800527

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13703767

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011800527

Country of ref document: EP