WO2012001953A1 - 方向性電磁鋼板およびその製造方法 - Google Patents

方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2012001953A1
WO2012001953A1 PCT/JP2011/003685 JP2011003685W WO2012001953A1 WO 2012001953 A1 WO2012001953 A1 WO 2012001953A1 JP 2011003685 W JP2011003685 W JP 2011003685W WO 2012001953 A1 WO2012001953 A1 WO 2012001953A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
coating
annealing
oriented electrical
Prior art date
Application number
PCT/JP2011/003685
Other languages
English (en)
French (fr)
Inventor
山口 広
広朗 戸田
大村 健
岡部 誠司
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2012015006A priority Critical patent/MX343140B/es
Priority to US13/806,901 priority patent/US9396850B2/en
Publication of WO2012001953A1 publication Critical patent/WO2012001953A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet used for an iron core material such as a transformer and a manufacturing method thereof.
  • a grain-oriented electrical steel sheet is a material mainly used as an iron core of a transformer.
  • Low iron loss and low magnetostriction are demanded as material properties of grain-oriented electrical steel sheets from the viewpoint of high efficiency and low noise of the transformer.
  • Goth orientation it is important to highly align the secondary recrystallized grains in the steel sheet in the (110) [001] orientation (so-called Goth orientation).
  • Goth orientation it is known that if the orientation is too high, the iron loss increases. Therefore, in order to eliminate this defect, a technique of introducing a strain or a groove on the surface of the steel sheet to subdivide the magnetic domain width to reduce iron loss, that is, a magnetic domain subdivision technique has been developed.
  • Patent Document 1 proposes a technique for reducing the iron loss of a steel sheet by irradiating the final product plate with a laser, introducing a high dislocation density region into the steel sheet surface layer, and narrowing the magnetic domain width. Further, the magnetic domain fragmentation technology using laser irradiation has been improved thereafter (see Patent Document 2, Patent Document 3, and Patent Document 4), and grain oriented electrical steel sheets having good iron loss characteristics have been obtained. .
  • the present invention was developed in view of the above-described situation, and in a grain-oriented electrical steel sheet that reduces the iron loss by controlling the magnetic domain structure by laser irradiation, the grain-oriented electrical steel sheet having a greater iron loss reduction effect, It is intended to provide with an advantageous manufacturing method.
  • the gist configuration of the present invention is as follows. 1. Includes a forsterite film and the tension coating on both surfaces, with magnetic domain refining spent by laser irradiation, the magnetic flux density B 8 is a more oriented electrical steel sheet 1.91 T, (1) The Cr content mixed in the grain-oriented electrical steel sheet is suppressed to 0.1% by mass or less. (2) The coating amount of the forsterite coating is not less than 3.0 g / m 2 in terms of the basis weight of oxygen, and the thickness of the anchor portion that bites into the ground iron portion of the grain-oriented electrical steel sheet below the forsterite coating is 1.5 ⁇ m or less.
  • Length Deoxidizing annealing atmosphere oxidation, final finishing annealing atmosphere, final finishing annealing heat so that the amount of warpage of the steel sheet with the forsterite coating on only one side of a 280 mm test piece is 10 mm or more Adjust any of the patterns and additives to the annealing separator MgO, Applying and baking the tension coating so that the amount of warpage of the steel sheet in a state having the forsterite film and the tension coating only on one side is 20 mm or more, A method for producing grain-oriented electrical steel sheets.
  • the slab for grain-oriented electrical steel sheet is hot-rolled, and then subjected to hot-rolled sheet annealing as necessary, and then subjected to cold rolling twice or more sandwiching intermediate annealing or the final sheet thickness.
  • the surface layer (both sides) of a general grain-oriented electrical steel sheet is composed of a forsterite film and a tension coating.
  • Laser irradiation applied to reduce iron loss is applied to the surface of the tension coating. Is normal.
  • the mechanism of iron loss reduction by laser irradiation is that the magnetic domains of the steel sheet are subdivided and expressed by applying thermal strain to the steel sheet surface by laser irradiation.
  • both the forsterite film and the tension coating have the effect of imparting a tensile stress to the steel sheet. Therefore, both properties may contribute to the influence of thermal distortion, which is the main factor of the iron loss reduction effect by laser irradiation.
  • thermal distortion which is the main factor of the iron loss reduction effect by laser irradiation.
  • the examination of the iron loss reduction effect in steel sheets has been conducted mainly by changing the laser irradiation conditions, and the degree of influence of the forsterite film and tension coating on the iron loss reduction effect has not necessarily been clarified. It wasn't.
  • the strength of the coating tension can be evaluated from the amount of warpage of the steel sheet when the coating is removed from one side. Here, it is known that the greater the thickness of the coating, the greater the warpage of the steel sheet. From this, it can be seen that the thicker the coating, the higher the tension of the coating.
  • the forsterite coating is formed in a form that bites into the ground iron part (steel plate) and has a complicated form, and is generally called an anchor (hereinafter referred to as an anchor part).
  • an anchor part When laser energy is applied, when optical energy is introduced into the iron core, the smaller the laser scattering in the coating, the more efficient.
  • the tension coating and the forsterite film made of phosphate-colloidal silica are basically transparent, but the laser is easily scattered in an anchor portion having a complicated shape. Therefore, the thinner the anchor portion, the smaller the laser scattering.
  • the entire coating is thickened to increase the coating tension and that the anchor portion is thin. This is because, if the anchor portion is thick, the laser irradiation effect is reduced by scattering even if the entire coating is thick and the coating tension is strong. Moreover, even if the anchor portion is thin, if the entire coating is thin and the coating tension is weak, the efficiency of laser irradiation to the ground iron is too high, so that the amount of strain introduction becomes excessive. When the strain introduction amount is excessive, residual stress is generated around the irradiated portion, and the region where the magnetic domain structure is disturbed is widened. This is because such a region is a region where iron loss is deteriorated as described above, and therefore a sufficient effect of reducing iron loss cannot be obtained.
  • B 8 value is an index of the degree of integration is higher.
  • Cr 0.1% by mass or less Cr is an element useful for improving the hot workability, but in the present invention, as described above, the Cr amount is 0.1% by mass for improving the tension of the forsterite film. The following shall be suppressed. In consideration of the cost for preventing contamination from raw materials and the like, it is acceptable to allow the Cr content to be 0.01% by mass or more.
  • the thickness of the anchor portion that has digged into the base iron portion of the coating 1.5 ⁇ m or less
  • the average thickness at the anchor portion needs to be 1.5 ⁇ m or less.
  • the scattering of the laser at the anchor portion becomes remarkable, and the effect of reducing the iron loss by the laser irradiation becomes small. That is, since the magnetic domain refinement effect is reduced, eddy current loss is not sufficiently reduced.
  • 0.2 ⁇ m or more is desirable from the viewpoint of bending adhesion.
  • the thickness of the anchor portion of the forsterite biting into the base iron portion can be measured by cross-sectional SEM (scanning electron microscope) observation or the like.
  • SEM scanning electron microscope
  • the cross section of a steel plate is observed at a magnification of 20000 times by SEM, and in the anchor part observed discontinuously at the interface between the forsterite and the steel, the interface between the forsterite film and the anchor part ( The length to the base portion) is measured, and this is averaged at a plurality of anchor portions to determine the average thickness of the anchor portions.
  • measurement frequency 5 visual fields are arbitrarily extracted per measurement length: 10 cm, and the above SEM observation is performed.
  • the forsterite film and The film tension of the tension coating is defined by the amount of warpage of the steel sheet by removing one surface of the film. Specifically, for a specimen having a length of 280 mm and a width of 30 mm, the coating on one surface of the steel sheet was removed, and the amount of warpage of the specimen in a state having only forsterite on the other surface was measured. The measured value must be 10 mm or more.
  • the amount of warpage of the specimen is measured in a state where the coating on one surface of the steel sheet is removed and forsterite and insulating coating are provided on the other surface, and the measured value should be 20 mm or more. This is because, as described above, as the tension of the coating film and the insulating coating increases, the region affected by the residual stress of thermal strain is reduced. Therefore, in the case where each of the warping amounts is smaller than the specified value, the effect of reducing the iron loss is reduced, and a desired iron loss cannot be obtained.
  • the warpage amount of the steel sheet in the state may be equivalent to the warpage amount in the state having the forsterite film only on one side).
  • the warpage amount is 20 mm or more with a forsterite film only on one side, the manufacturing load is large, so the warpage amount is less than 20 mm, and the warpage amount of the steel sheet is adjusted with the tension combined with the tension coating. It is preferable to be 20 mm or more.
  • the component composition of the slab for grain-oriented electrical steel sheet is not particularly limited, except for the Cr content, and may be any component composition that causes secondary recrystallization.
  • the higher the degree of integration in the ⁇ 100> direction obtained by secondary recrystallization the greater the effect of reducing iron loss by laser irradiation as described above. Accordingly, it is a requirement that the target steel sheet has a magnetic flux density B 8 that is an index of the degree of integration of 1.91 T or more.
  • Al and N when using an AlN-based inhibitor, Al and N may be contained, and when using an MnS / MnSe-based inhibitor, an appropriate amount of Mn and Se and / or S may be contained.
  • Mn and Se when using an AlN-based inhibitor, Al and N may be contained, and when using an MnS / MnSe-based inhibitor, an appropriate amount of Mn and Se and / or S may be contained.
  • both inhibitors may be used in combination.
  • the preferred contents of Al, N, S and Se are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .
  • the present invention can also be applied to grain-oriented electrical steel sheets in which the contents of Al, N, S, and Se are limited and no inhibitor is used.
  • the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less, respectively.
  • Specific examples of the basic component and the optional additive component of the slab for grain-oriented electrical steel sheet according to the present invention are as follows.
  • C 0.08 mass% or less
  • the lower limit since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.
  • Si 2.0-8.0% by mass Si is an element effective for increasing the electrical resistance of steel and improving iron loss, and its content of 2.0% by mass or more is particularly effective for reducing iron loss. On the other hand, when it is 8.0% by mass or less, particularly excellent workability and magnetic flux density can be obtained. Accordingly, the Si content is preferably in the range of 2.0 to 8.0% by mass.
  • Mn 0.005 to 1.0 mass%
  • Mn is an element advantageous for improving the hot workability, but if the content is less than 0.005% by mass, the effect of addition is poor. On the other hand, if it is 1.0 mass% or less, the magnetic flux density of a product board will become especially favorable. Therefore, the Mn content is preferably in the range of 0.005 to 1.0% by mass.
  • Ni 0.03-1.50 mass%
  • Sn 0.01-1.50 mass%
  • Sb 0.005-1.50 mass%
  • Cu 0.03-3.0 mass%
  • P 0.03-0.50 mass%
  • Mo 0.005-0.10 mass%
  • At least one selected Ni is an element useful for further improving the hot rolled sheet structure and further improving the magnetic properties.
  • the content is less than 0.03% by mass, the effect of improving the magnetic properties is small.
  • the content is 1.5% by mass or less, the stability of secondary recrystallization is increased, and the magnetic properties are further improved. Therefore, the Ni content is preferably in the range of 0.03 to 1.5% by mass.
  • Sn, Sb, Cu, P and Mo are elements that are useful for further improving the magnetic properties, but if any of them is less than the lower limit of each component described above, the effect of improving the magnetic properties is small.
  • the amount is less than or equal to the upper limit amount of each component, the secondary recrystallized grains develop best. For this reason, it is preferable to make it contain in said range, respectively.
  • the balance other than the above components is preferably inevitable impurities and Fe mixed in the manufacturing process.
  • the slab having the above-described component composition is heated and subjected to hot rolling according to a conventional method, but may be immediately hot rolled after casting without being heated.
  • hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is.
  • hot-rolled sheet annealing is performed as necessary.
  • the main purpose of hot-rolled sheet annealing is to eliminate the band structure generated by hot rolling and to make the primary recrystallized structure sized, thereby further developing the goth structure and improving the magnetic properties in the secondary recrystallization annealing. That is.
  • the hot rolled sheet annealing temperature is preferably in the range of 800 to 1100 ° C.
  • the hot-rolled sheet annealing temperature is less than 800 ° C, the band structure in hot rolling remains, making it difficult to achieve a sized primary recrystallized structure and obtaining the desired secondary recrystallization improvement. I can't.
  • the hot-rolled sheet annealing temperature exceeds 1100 ° C.
  • the grain size after the hot-rolled sheet annealing becomes too coarse, and it becomes difficult to realize a sized primary recrystallized structure.
  • decarburization annealing also used for recrystallization annealing
  • an annealing separator is applied.
  • a final finish annealing is performed for the purpose of secondary recrystallization and forsterite film formation.
  • the undercoat mainly composed of firelite (Fe 2 SiO 4 ) formed by decarburization annealing thicker than usual.
  • the undercoating is preferably 1.0 g / m 2 or more in terms of the oxygen weight per side. Since the forsterite (Mg 2 SiO 4 ) film formed by the subsequent final annealing becomes thicker and the additional oxidation can be suppressed, the development of the anchor portion developed by the additional oxidation can be suppressed.
  • the undercoating film is preferably 2.0 g / m 2 or less in terms of oxygen basis weight from the viewpoint of obtaining a beautiful product appearance.
  • Atmosphere of final finish annealing In the present invention, additional oxidation can be suppressed by adding hydrogen in the temperature rising process from about 800 ° C. to about 1200 ° C., and the development of the anchor portion can be suppressed.
  • the concentration of addition is determined by the temperature range, the composition of the combined annealing separator, etc., but it is preferable to increase the partial pressure from the usual level.
  • Annealing separator MgO In the present invention, it is effective to add an alkali metal or alkaline earth metal compound to the MgO-based separating agent.
  • the compound is not particularly limited such as hydroxide and sulfide, but when MgO is 100 parts by mass, at least one or more kinds of alkali metal or alkaline earth metal compound should be added by 0.5 parts by mass or more. Is desirable.
  • the annealing separator is mainly composed of MgO.
  • the main component means that it may contain a known annealing separator component and property improving component other than MgO as long as the formation of the forsterite film which is the object of the present invention is not inhibited. .
  • the forsterite film is formed even if the amount of forsterite film formed on the steel sheet surface is not less than 3.0 g / m 2 per unit area of oxygen.
  • the thickness of the part that bites into the bottom part formed in the lower part is 1.5 ⁇ m or less, and the amount of warpage of the steel sheet with a forsterite film only on one side of the length: 280 mm test piece shall be 10 mm or more Can do.
  • This tension coating is generally a phosphate-colloidal silica glass coating, but any other amorphous oxide such as alumina borate is transparent and has no grain boundaries. Scattering and absorption are small, and the influence on the efficiency of laser irradiation is small.
  • the application conditions (such as increasing the application amount) so that the warpage amount of the steel sheet with a forsterite film and tension coating on only one side is 20 mm or more. It is important to adjust the baking conditions (temperature, time, heating pattern, etc.) and apply and bake a tension coating.
  • the magnetic domains are subdivided by irradiating the surface of the steel sheet with a laser at the time after application of the tension coating.
  • the laser light source used in the present invention may be either a continuous wave laser or a pulsed laser, and any type such as a YAG laser or a CO 2 laser may be used.
  • the irradiation marks may be linear or point-like, but the direction of these irradiation marks is preferably a direction that forms 90 ° to 45 ° with respect to the rolling direction of the steel sheet.
  • the green laser marker that has recently been used is particularly suitable in terms of irradiation accuracy.
  • Example 1 Concentration of C: 0.08%, Si: 3.3%, Mn: 0.07%, Se: 0.016%, Al: 0.016%, Cu: 0.12%, and Cr: 0.13%, with the balance being Fe and inevitable impurities
  • Ingredients Steel A and Cr are not added, and the other ingredients are the same steel B as Steel A.
  • the sheet was cold-rolled to 1.9 mm with a tandem rolling mill, subjected to intermediate annealing at 1100 ° C., and then finished to a final thickness of 0.23 mm with a Sendzimir rolling mill.
  • this cold-rolled sheet was decarburized and annealed at 800 ° C. in a wet hydrogen atmosphere. Thereafter, an annealing separator added with 10% by mass of TiO 2 was applied to 100 parts by mass of MgO, and finish annealing at 1150 ° C. was performed. In the above process, at least one of the following treatments (a) to (d) was taken.
  • Atmospheric oxidation of decarburization annealing Atmospheric oxidation PH 2 O / PH 2 0.20 to 0.55.
  • (b) Final finish annealing atmosphere The hydrogen concentration in the temperature rising process from 800 ° C to 1150 ° C was changed in the range of 0 to 75%.
  • an insulating coating composed mainly of colloidal silica and magnesium phosphate was applied in different thicknesses, baked at 800 ° C, and then 100W fiber laser was used in a direction perpendicular to the rolling direction in the direction of the plate width. Magnetic domain fragmentation was performed at a scanning speed of 10 m / s, an irradiation pitch in the rolling direction of 5 mm, an irradiation width of 150 ⁇ m, and an irradiation interval of 7.5 mm.
  • the obtained steel sheet was sheared into a test piece size of length: 280 mm and width: 30 mm, and a part of the steel sheet was subjected to magnetic property evaluation, and an iron loss W 17/50 value and a magnetic flux density B 8 value were measured.
  • a test piece was prepared by removing only one side of the insulation coating and surface oxide with hot hydrochloric acid, and the steel sheet with one side removed was pressed against a flat surface, and the film tension including the surface oxide and insulation coating was determined from the amount of warpage. evaluated.
  • Table 1 shows the basis weight of the surface oxide after the final annealing of the test piece, the thickness of the anchor portion, the amount of warpage of the steel sheet, and the magnetic properties.
  • Nos. 2, 6, and 7 satisfying the appropriate range of the present invention have good iron loss characteristics. That is, in these examples, appropriate adjustment is made in at least one of (a) to (d), and as a result, the surface oxide weight, anchor thickness, warpage due to surface oxide, and surface oxide + insulation coating All the warpage due to the above is optimized, and a good low iron loss is obtained in combination with an appropriate Cr amount and B 8 value. In addition, for example, comparing No. 3 and No. 6, the iron loss is remarkably improved (reduced) by setting the basis weight and warpage to appropriate values and setting the anchor thickness to 1.5 ⁇ m or less. It has been shown.
  • the warpage due to the surface oxide and the insulating coat should be 20 mm or more. It is shown that the iron loss is remarkably improved (reduced).
  • any one of the surface oxide weight, the anchor thickness, the warp due to the surface oxide, and the warp due to the surface oxide + insulating coat is No. 1, 3, 4, 8 which is outside the scope of the present invention. With respect to, satisfactory iron loss characteristics have not been obtained.
  • the amount of surface oxide and the like are all within a suitable range, but the Cr amount exceeds 0.1% by mass and / or B of the material. Nos. 5, 9, and 10 where 8 is less than 1.91 T have not obtained satisfactory iron loss characteristics.
  • Example 2 Steel C containing 0.04%, Si: 3.2%, Mn: 0.05%, Ni: 0.01%, and Cr: 0.12% by mass%, with the component composition consisting of the remaining Fe and inevitable impurities, and the Cr content only Changed to 0.02% by mass, melted the same steel D as other components C, heated to 1400 ° C, hot rolled to obtain a 2.0mm hot-rolled coil, and then hot-rolled sheet annealed at 1000 ° C Was given. After intermediate annealing at a thickness of 0.75 mm, the final thickness was 0.23 mm.
  • an insulating coating mainly composed of colloidal silica and aluminum phosphate was applied in different thicknesses, baked at 850 ° C., and then using a Q-switched pulse laser in the direction perpendicular to the rolling direction and in the plate width direction. Magnetic domain fragmentation was performed at a scanning speed of 15 m / s, an irradiation pitch in the rolling direction of 6 mm, an irradiation width of 150 ⁇ m, and an irradiation interval of 7.5 mm.
  • Table 2 shows the basis weight of the surface oxide after the final annealing of the test piece, the thickness of the anchor portion, the amount of warpage of the steel sheet, and the magnetic properties.
  • the amount of surface oxide and the like are all within a suitable range, but the Cr amount exceeds 0.1% by mass and / or B of the material. Nos. 12, 19, and 20 where 8 is less than 1.91 T have not obtained satisfactory iron loss characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

 本発明に従い、表面にフォルステライト被膜および張力コーティングをそなえる方向性電磁鋼板を製造するに際し、 (1) 該方向性電磁鋼板中に混入するCr量を0.1質量%以下に抑制する、 (2) 該フォルステライト被膜の被覆量が酸素目付量で3.0g/m2以上とし、かつ該フォルステライト被膜下部における該方向性電磁鋼板の地鉄部に食い込んだアンカー部の厚みを1.5μm以下とする、 (3) 長さ:280mmの試験片の片面にのみ該フォルステライト被膜を有する状態での鋼板の反り量が10mm以上で、かつ該片面にのみ該フォルステライト被膜と該張力コーティングとを有する状態での鋼板の反り量が20mm以上とすることによって、 レーザー照射により磁区構造を制御して鉄損を低減させる方向性電磁鋼板において、より大きな鉄損低減効果を有する方向性電磁鋼板を、その有利な製造方法と共に得ることができる。

Description

方向性電磁鋼板およびその製造方法
 本発明は、変圧器などの鉄心材料に用いる方向性電磁鋼板およびその製造方法に関するものである。
 方向性電磁鋼板は、主にトランスの鉄心として利用される材料である。トランスの高効率化、低騒音化の観点から、方向性電磁鋼板の材料特性としては低鉄損、低磁歪が求められている。
 そのためには、鋼板中の二次再結晶粒を、(110)[001]方位(いわゆる、ゴス方位)に高度に揃えることが重要である。しかし、配向性が高すぎると逆に鉄損が増加してしまうことが知られている。そこで、この欠点を解消するため、鋼板の表面に歪や溝を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
 例えば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に高転位密度領域を導入し、磁区幅を狭くすることで、鋼板の鉄損を低減する技術が提案されている。また、レーザー照射を用いる磁区細分化技術は、その後改良され(特許文献2、特許文献3および特許文献4などを参照)鉄損特性が良好な方向性電磁鋼板が得られるようになってきている。
特公昭57-2252号公報 特開2006-117964号公報 特開平10-204533号公報 特開平11-279645号公報
 しかしながら、近年の省エネルギーや環境保護に対する意識の高まりによって、更なる鉄損特性の改善が要求されているが、上掲した特許文献1~4に記載の方向性電磁鋼板では、必ずしも満足な鉄損特性が得られるわけではなかった。
 本発明は、上記した現状に鑑み開発されたもので、レーザー照射により磁区構造を制御して鉄損を低減させる方向性電磁鋼板において、より大きな鉄損低減効果を有する方向性電磁鋼板を、その有利な製造方法と共に提供することを目的とする。
 すなわち、本発明の要旨構成は次のとおりである。
 1.両表面にフォルステライト被膜および張力コーティングをそなえ、レーザー照射による磁区細分化済みで、磁束密度B8が1.91T以上の方向性電磁鋼板であって、
(1) 該方向性電磁鋼板中に混入するCr量を0.1質量%以下に抑制する、
(2) 該フォルステライト被膜の被覆量が酸素目付量で3.0g/m2以上とし、かつ該フォルステライト被膜下部における該方向性電磁鋼板の地鉄部に食い込んだアンカー部の厚みを1.5μm以下とする、
(3) 長さ:280mmの試験片の片面にのみ該フォルステライト被膜を有する状態での鋼板の反り量が10mm以上で、かつ該片面にのみ該フォルステライト被膜と該張力コーティングとを有する状態での鋼板の反り量が20mm以上である、
方向性電磁鋼板。
 2.Crの混入を0.1質量%以下に抑制した方向性電磁鋼板用スラブを圧延して最終板厚に仕上げたのち、脱炭焼鈍を施し、ついで鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行った後、張力コーティングを塗布し、レーザー照射による磁区細分化を施す一連の工程により方向性電磁鋼板を製造するに際し、
 鋼板表面に形成されるフォルステライト被膜の量が酸素目付量:3.0g/m2以上で、該フォルステライト被膜下部に形成される地鉄部に食い込んだアンカー部の厚みが1.5μm以下で、長さ:280mmの試験片の片面のみに該フォルステライト被膜を有する状態での鋼板の反り量が10mm以上となるように、脱炭焼鈍の雰囲気酸化性、最終仕上げ焼鈍の雰囲気、最終仕上げ焼鈍のヒートパターン、および、焼鈍分離剤MgOへの添加剤のいずれかを調整し、
 片面にのみ該フォルステライト被膜と張力コーティングとを有する状態での鋼板の反り量が20mm以上となるように該張力コーティングを塗布・焼付けする、
方向性電磁鋼板の製造方法。 
 3.前記方向性電磁鋼板用スラブを、熱間圧延し、ついで必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げる、上記2に記載の方向性電磁鋼板の製造方法。
 本発明によれば、レーザーを用いた磁区細分化による鉄損の低減効果を、より効果的に発現した方向性電磁鋼板を得ることができる。
 以下、本発明について具体的に説明する。
 一般的な方向性電磁鋼板の製品板の表層(両面)は、フォルステライト被膜と張力コーティングから成っており、鉄損低減のために施されるレーザー照射は、張力コーティングの表面に施されるのが通常である。
 レーザー照射による鉄損低減のメカニズムは、鋼板表面にレーザー照射による熱歪みが与えられることで、鋼板の磁区が細分化されて発現するものである。
 また、フォルステライト被膜と張力コーティングは共に、鋼板に引張応力を付与する効果がある。そのため、両者の性状は、レーザー照射による鉄損低減効果の主要因子である熱的歪みに影響を及ぼす一因となる可能性がある。ところが、従来より鋼板における鉄損低減効果の検討は、レーザー照射条件を変更することを主体に行われており、フォルステライト被膜と張力コーティングの鉄損低減効果への影響度は、必ずしも明確にされていなかった。
 レーザー照射によって、極めて強い熱歪みが局所的に導入され、照射部直下の磁区構造が破壊された場合、照射部直下のみならず、その近傍でも、熱歪みの残留応力により磁区構造の乱れる領域が観察され、このような領域では鉄損が増大することが分かっている。
 そのため、その応力の影響が広がる領域を小さく抑制することが、鉄損低減につながることになる。すなわち、被膜張力を大きくすることで、鋼板の表面応力が大きくなるために、熱歪みの残留応力に打ち勝ち、結果として、熱歪みの残留応力が影響を及ぼす領域を小さくすることができるのである。
 それ故、レーザー照射を施す材料におけるフォルステライト被膜および張力コーティングの被膜張力は、強ければ強いほど好ましいといえる。
 被膜張力の強さは、被膜を片面から除去した時の鋼板の反り量から評価できる。ここに、被膜の厚みを厚くすればするほど、鋼板の反り量が大きくなることが知られている。このことから、被膜が厚くなるほど被膜の張力は強くなることが分かる。
 フォルステライト被膜は地鉄部(鋼板)に食い込む形で形成されて複雑な形態をしており、一般にアンカーと呼称される(以下、アンカー部という)。レーザー照射を行う際、地鉄部に対して光学的エネルギーを導入する場合、被膜中でのレーザーの散乱が小さいほど効率的である。ここに、リン酸塩―コロイダルシリカからなる張力コーティングもフォルステライト被膜も基本的には透明であるが、複雑な形状を呈するアンカー部では、レーザーは散乱されやすくなる。そのため、アンカー部の厚みは薄いほどレーザーの散乱が小さくなる。
 従って、レーザー照射により磁区構造を制御して、より効果的に鉄損を低減させるためには、被膜全体を厚くして被膜張力を高めると共に、アンカー部が薄いことが重要である。というのは、アンカー部が厚ければ、いくら被膜全体が厚く被膜張力が強くても散乱によりレーザー照射効果が減じてしまうからである。また、アンカー部が薄くても、被膜全体が薄くて被膜張力が弱いと、地鉄へのレーザー照射の効率が高すぎるので、却って歪み導入量が過剰になってしまう。歪導入量が過剰になると、照射部周辺に残留応力が生じて、磁区構造の乱れる領域が広がる。このような領域は、前述したとおりに、鉄損劣化を生じる領域となるため、十分な鉄損低減効果が得られないこととなるからである。
 レーザー処理による磁区細分化効果は、二次再結晶後の結晶粒の方位が磁化容易軸である<100>方向に集積しているほど大きいことから、集積度の指標であるB8値は高いほどレーザー照射による鉄損低減効果は大きくなる。
 以下、本発明における成分組成などの限定理由、および好適範囲について述べる。
 一般に、鋼中にCr添加を行うとフォルステライト被膜の張力が減少することが知られている。この機構は明らかではないが、Crがフォルステライトの組織中に取り込まれてフォルステライトの結晶構造が変化するためと推定されている。従って、被膜張力の向上にはCrの添加量は少ないほど有利である。
Cr:0.1質量%以下
 Crは、熱間加工性を良好にする上で有用な元素であるが、本発明では、上述したように、フォルステライト被膜の張力向上のため、Cr量は0.1質量%以下に抑制するものとした。なお、原料等からの混入を防ぐコストを考慮して、Cr量は0.01質量%以上の含有を許容しても問題ない。
フォルステライト被膜の被覆量:酸素目付量で3.0g/m2以上
 本発明において、フォルステライト被膜の被覆量は両面の酸素目付量で3.0g/m2以上とする。
 というのは、前述したとおり、被膜が薄い、すなわち、酸素目付量で3.0g/m2に満たないと、被膜張力が弱くなると共に、地鉄へのレーザー照射効率が高くなりすぎ、却って鉄損が劣化してしまうからである。
被膜の地鉄部に食い込んだアンカー部の厚み:1.5μm以下
 本発明では、アンカー部での平均厚みが1.5μm以下であることが必要である。1.5μmより大きい場合には、アンカー部におけるレーザーの散乱が著しくなり、レーザー照射による鉄損低減効果が小さくなる。すなわち、磁区細分化効果が減少するため、渦電流損失の低減が不十分となる。なお、アンカー部の厚みの下限はとくにないが、曲げ密着性の観点から0.2μm以上が望ましい。
 地鉄部分に食い込んだフォルステライトのアンカー部の厚みについては断面SEM(走査型電子顕微鏡)観察等で測定することができる。例えば、SEMにより鋼板断面を20000倍の倍率で観察し、フォルステライトと地鉄の界面において不連続に観察されるアンカー部において、地鉄に最も突出した部分からフォルステライト被膜とアンカー部の界面(根元部)までの長さを測定し、これを複数のアンカー部で平均してアンカー部の平均厚みを求める。
 なお、測定頻度としては、測定長:10cm当たり任意に5視野を抽出し、上記のSEM観察をする。
片面にのみフォルステライト被膜を有する状態での鋼板の反り量:10mm以上かつ、片面にのみフォルステライト被膜と張力コーティングとを有する状態での鋼板の反り量:20mm以上
 本発明では、フォルステライト被膜および張力コーティング(絶縁コーティング)の被膜張力は、被膜片面除去による鋼板の反り量で規定している。具体的には、長さ:280mm、幅:30mmの試片について、鋼板の一方の面の被膜を除去し、他方の面にフォルステライトのみを有する状態での試片の反り量を測定し、その測定値が10mm以上となっていることが必要である。また、鋼板の一方の面の被膜が除去され、他方の面にフォルステライトと絶縁コーティングを有する状態での試片の反り量を測定し、その測定値が20mm以上あることが必要である。
 というのは、上述したように、被膜および絶縁コーティングの張力が大きいほど、熱歪みの残留応力が影響を及ぼす領域を縮小する効果があるからである。従って、前記した反り量がそれぞれ規定値より小さい場合には、いずれも鉄損低減効果が小さくなり、所望の鉄損が得られないこととなる。
 また、上記したいずれの反り量も、可能である限り大きくしても問題は無いので上限値は設けない。なお、片面にのみフォルステライト被膜を有する状態での鋼板の反り量が20mm以上である場合は、絶縁コーティングによる張力への寄与は必須ではない(すなわち片面にのみフォルステライト被膜と張力コーティングとを有する状態での鋼板の反り量が、片面にのみフォルステライト被膜を有する状態での反り量と同等程度であってもよい)。ただし、片面にのみフォルステライト被膜を有する状態での反り量を20mm以上とするのは製造上の負荷が大きいので、反り量は20mm未満とし、張力コーティングと合わせた張力で、鋼板の反り量を20mm以上とすることが好ましい。
 次に、本発明に従う方向性電磁鋼板の製造条件に関して具体的に説明する。
 本発明において、方向性電磁鋼板用スラブの成分組成は、Crの含有量を除いては、特に制限はなく、二次再結晶が生じる成分組成であればよい。ただし二次再結晶により得られる<100>方向への集積度が高いほど、前述のようにレーザー照射による鉄損低減効果は大きくなる。そこで、対象とする鋼板について、集積度の指標となる磁束密度B8が1.91T以上となることを要件とする。
 インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、Al:0.01~0.065質量%、N:0.005~0.012質量%、S:0.005~0.03質量%、Se:0.005~0.03質量%である。
 さらに、本発明は、Al、N、S、Seの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。
 この場合には、Al、N、SおよびSe量はそれぞれ、Al:100質量ppm以下、N:50質量ppm以下、S:50質量ppm以下、Se:50質量ppm以下に抑制することが好ましい。
 本発明の方向性電磁鋼板用スラブの基本成分および任意添加成分について、具体的に例を述べると次のとおりである。
C:0.08質量%以下
 Cは、熱延板組織の改善のために添加をするが、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減する負担が増大するため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
Si:2.0~8.0質量%
 Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であり、含有量が2.0質量%以上でとくに鉄損低減効果が良好である。一方、8.0質量%以下の場合、とくに優れた加工性や磁束密度を得ることができる。従って、Si量は2.0~8.0質量%の範囲とすることが好ましい。
Mn:0.005~1.0質量%
 Mnは、熱間加工性を良好にする上で有利な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しい。一方1.0質量%以下とすると製品板の磁束密度がとくに良好となる。このため、Mn量は0.005~1.0質量%の範囲とすることが好ましい。
 上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03~1.50質量%、Sn:0.01~1.50質量%、Sb:0.005~1.50質量%、Cu:0.03~3.0質量%、P:0.03~0.50質量%およびMo:0.005~0.10質量%のうちから選んだ少なくとも1種
 Niは、熱延板組織をさらに改善して磁気特性を一層向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.5質量%以下ではとくに二次再結晶の安定性が増し、磁気特性がさらに改善される。そのため、Ni量は0.03~1.5質量%の範囲とするのが好ましい。
 また、Sn、Sb、Cu、PおよびMoはそれぞれ磁気特性のさらなる向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量以下の場合、二次再結晶粒の発達が最も良好となる。このため、それぞれ上記の範囲で含有させることが好ましい。
 なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeであることが好ましい。
 次いで、上記した成分組成を有するスラブは、常法に従い加熱して熱間圧延に供するが、鋳造後、加熱せずに直ちに熱間圧延してもよい。薄鋳片の場合には熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進んでもよい。
 さらに、必要に応じて熱延板焼鈍を施す。熱延板焼鈍の主な目的は、熱間圧延で生じたバンド組織を解消して一次再結晶組織を整粒とし、もって二次再結晶焼鈍においてゴス組織をさらに発達させて磁気特性を改善することである。この時、ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度として800~1100℃の範囲が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難になり、所望の二次再結晶の改善が得られない。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるために、整粒した一次再結晶組織の実現が困難となる。
 熱延板焼鈍後は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施した後、脱炭焼鈍(再結晶焼鈍を兼用する)を行い、焼鈍分離剤を塗布する。焼鈍分離剤を塗布した後に、二次再結晶およびフォルステライト被膜の形成を目的として最終仕上げ焼鈍を施す。
 本発明において、鋼板にフォルステライト被膜を厚く付けつつ、地鉄鋼板のアンカー部を小さくするために、以下に示す条件を少なくとも一つ満足して、製造する。
(a) 脱炭焼鈍の雰囲気酸化性
 本発明では、脱炭焼鈍で形成されるファイアライト(Fe2SiO4)を主体とする下地被膜を通常より厚くすることが望ましい。下地被膜は両面当り酸素目付け量で1.0g/m2以上が望ましい。続く最終仕上げ焼鈍で形成されるフォルステライト(Mg2SiO4)被膜が厚くなり、かつ追加酸化を抑制することができるため、追加酸化により発達するアンカー部の発達を抑えることができる。なお、前記下地被膜は酸素目付け量で2.0g/m2以下とすることが、美麗な製品外観を得る観点からは好ましい。
(b) 最終仕上焼鈍の雰囲気
 本発明では、800℃付近から1200℃付近までの昇温過程において、水素を添加することで追加酸化を抑制し、アンカー部の発達を抑制できる。添加濃度については、温度域、組み合わせる焼鈍分離剤の組成などによって決められるが、通常より分圧を高めることが好ましい。
(c) 最終仕上焼鈍のヒートパターン
 本発明では、最終到達温度の1200℃付近までの昇温速度を早めることが、脱炭焼鈍時に形成された下地被膜の形態を維持し、かつアンカー部を発達させないという点で望ましい。なお、上記の昇温速度は15℃/時間以上が望ましい。また、上記の昇温速度に上限はとくに設けないが、通常は50℃/時間程度が設備上の上限となる。
(d) 焼鈍分離剤MgO
 本発明では、アルカリ金属あるいはアルカリ土類金属の化合物をMgO主体の分離剤に添加することが有効である。化合物としては水酸化物、硫化物など特に限定されないが、MgOを100質量部としたときに、少なくとも1種または2種類以上のアルカリ金属あるいはアルカリ土類金属の化合物を0.5質量部以上添加することが望ましい。
 なお、焼鈍分離剤はMgOを主成分とする。ここで、主成分であるとは、本発明の目的とするフォルステライト被膜の形成を阻害しない範囲で、MgO以外の公知の焼鈍分離剤成分や特性改善成分を含有してもよいことを意味する。
 以上、(a)~(d)の条件を少なくとも一つ調整することで、鋼板表面に形成されるフォルステライト被膜の量が酸素目付量:3.0g/m2以上であっても、フォルステライト被膜下部に形成される地鉄部に食い込んだ部分の厚みが1.5μm以下で、しかも長さ:280mmの試験片の片面のみにフォルステライト被膜を有する状態での鋼板の反り量を10mm以上とすることができる。
 最終仕上げ焼鈍後、平坦化焼鈍を行って鋼板の形状を矯正することが有効である。なお、鋼板を積層して使用する場合には、鉄損を改善する目的で、平坦化焼鈍前または後に、鋼板表面に張力コーティングを施すことが有効である。この張力コーティングは、リン酸塩―コロイダルシリカ系のガラスコーティングが一般的であるが、他にホウ酸アルミナ系など、非晶質の酸化物であればいずれも透明で粒界もないので張力コーティング内での散乱や吸収は小さく、レーザー照射の効率への影響は小さい。
 なお、張力コーティングを施す際には、前述したとおり、片面にのみフォルステライト被膜と張力コーティングとを有する状態における鋼板の反り量が20mm以上となるように、塗布条件(塗布量を増やすなど)・焼付条件(温度、時間、加熱パターンなど)を調整し、張力コーティングを塗布・焼付けすることが肝要である。
 本発明では、張力コーティング付与後の時点で、鋼板表面にレーザーを照射することにより、磁区を細分化する。
 本発明で照射するレーザーの光源としては、連続波レーザー、パルスレーザーのいずれでもよく、YAGレーザーやCOレーザー等の種類を選ばない。また、照射痕は線状でも点状でも構わないが、これら照射痕の方向は、鋼板の圧延方向に対して、90°から45°をなす方向であることが好ましい。
 なお、最近使用されるようになってきたグリーンレーザーマーカーは、照***度の面で特に好適である。
 本発明で用いるグリーンレーザーマーカーにおけるレーザーの出力は、単位長さ当たりの熱量として、5~100J/m程度の範囲が好ましい。また、レーザービームのスポット径は0.1~0.5mm程度の範囲とし、圧延方向の繰返し間隔は1~20mm程度の範囲とすることが好ましい。
 なお、鋼板に付与される塑性歪の深さは、3~60μm程度とするのが好適である。
 本発明において、上述した工程や製造条件以外については、従来公知の方向性電磁鋼板の製造方法を適用し、B8が1.91T以上となるようにすればよい。
 〔実施例1〕
 質量%で、C:0.08%、Si:3.3%、Mn:0.07%、Se:0.016%、Al:0.016%、Cu:0.12%、およびCr:0.13%を含有し、残部Fe及び不可避不純物からなる成分組成の鋼Aと、Crを添加せずに、その他の成分は鋼Aと同じ鋼Bとを溶製し、厚み:70mmの鋼スラブに連続鋳造で鋳込んだ後、それぞれ1400℃に加熱後、熱間圧延により2.6mm熱延コイルを得た。タンデム圧延機により1.9mmまで冷間圧延し、1100℃で中間焼鈍を行った後、ゼンジミア圧延機により0.23mmの最終板厚に仕上げた。
 ついで、この冷延板に湿水素雰囲気中、800℃で脱炭焼鈍を行った。その後、MgO:100質量部に対して、TiO2を質量部で10%添加した焼鈍分離剤を塗布し、1150℃の仕上げ焼鈍を行った。
 上記工程において、以下に述べる(a)~(d)のうち少なくともいずれかの処置を講じた。
(a) 脱炭焼鈍の雰囲気酸化性
 雰囲気酸化性PH2O/PH2=0.20~0.55の範囲で変更。
(b) 最終仕上焼鈍の雰囲気
 800℃から1150℃の昇温過程における水素濃度を0~75%の範囲で変更。
(c) 最終仕上焼鈍のヒートパターン
 500℃から1150℃までの平均昇温速度を5~30℃/時の範囲で変更。
(d) 焼鈍分離剤MgO
 硫酸ストロンチウムを、MgO:100質量部に対して0~10質量部の範囲で添加。
 この段階で鋼板に生成した表面酸化物の目付量の測定と、二次電子顕微鏡を用いて表面酸化物の断面観察を20000倍の倍率で行い、表面酸化物が地鉄に食い込んだ部分、いわゆるアンカー部の厚みを測定した。また、熱塩酸により表面酸化物(フォルステライト被膜)を片面のみ除去した試片を作製し、平坦面に片面除去した鋼板を押し当ててその反り量から表面酸化物による被膜張力を評価した。
 さらにコロイダルシリカとリン酸マグネシウムを主成分とする絶縁コーティングを、厚みを変更して塗布し、800℃で焼成した後、100Wのファイバーレーザーを用いて、圧延方向と直角方向に、板幅方向の走査速度:10m/s、圧延方向の照射ピッチ:5mm、照射幅:150μm、照射間隔:7.5mmで磁区細分化処理を行った。得られた鋼板を、長さ:280mm、幅:30mmの試験片サイズに剪断後、一部は磁気特性評価を行い、鉄損W17/50値および磁束密度B8値を測定した。また熱塩酸により絶縁コーティングと表面酸化物をあわせて片面のみ除去した試片を作製し、平坦面に片面除去した鋼板を押し当ててその反り量から表面酸化物および絶縁コーティングを含めた被膜張力を評価した。
 上記試験片の最終焼鈍後の表面酸化物の目付量とアンカー部の厚み、鋼板の反り量および磁気特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示したとおり、本発明の適正範囲を満たすNo.2、6、7では、良好な鉄損特性が得られている。すなわちこれらの実施例では(a)~(d)の少なくともいずれかにおいて適正な調整が行われ、その結果表面酸化物の目付量、アンカー厚み、表面酸化物による反り、および表面酸化物+絶縁コートによる反りが全て適正化されており、適正なCr量およびB8値と相まって良好な低鉄損が得られている。
 また、例えばNo.3とNo.6との比較より、本発明において目付け量、反りを適正値とした上でアンカー厚みを1.5μm以下とするにより、格段に鉄損が改善(低減)されることが示されている。
 さらに、例えばNo.2とNo.4との比較より、本発明において目付け量、アンカー厚みおよび表面酸化物反りを適正値とした上で表面酸化物と絶縁コートとによる反りを20mm以上とすることにより、格段に鉄損が改善(低減)されることが示されている。
 これに対し、表面酸化物の目付量、アンカー厚み、表面酸化物による反り、および表面酸化物+絶縁コートによる反りのうち一つでも本発明の範囲を外れたNo.1、3、4、8については、満足する鉄損特性が得られていない。
 また、製造条件が本発明の範囲を満たしているために上記表面酸化物の目付量などは全て好適な範囲に収まっていても、Cr量が0.1質量%を超えているおよび/または素材のB8が1.91T未満であるNo.5、9、10は、満足する鉄損特性が得られていない。
 〔実施例2〕
 質量%で、C:0.04%、Si:3.2%、Mn:0.05%、Ni:0.01%、およびCr:0.12%を含有し、残部Fe及び不可避不純物からなる成分組成の鋼Cと、Cr量のみ0.02質量%に変更し、その他の成分は鋼Cと同じ鋼Dとを溶製し、1400℃に加熱後、熱間圧延により2.0mm熱延コイルを得た後、1000℃で熱延板焼鈍を施した。0.75mm厚みでの中間焼鈍を行った後、0.23mmの最終板厚に仕上げた。
 湿水素雰囲気中、850℃で脱炭焼鈍を行った。その後、MgO:100質量部に対して、SnO2を質量部で2%、TiO2を質量部で5%添加した焼鈍分離剤を塗布し、1200℃の仕上げ焼鈍を行った。
 上記工程において、以下に述べる(a)~(d)のうち少なくともいずれかの処置を講じた。
(a) 脱炭焼鈍の雰囲気酸化性
 雰囲気酸化性PH2O/PH2=0.30~0.60の範囲で変更。
(b) 最終仕上焼鈍の雰囲気
 900℃から1100℃の昇温過程における水素濃度を25~100%の範囲で変更。
(c) 最終仕上焼鈍のヒートパターン
 500℃から1200℃までの平均昇温速度を5~30℃/時の範囲で変更。
(d) 焼鈍分離剤MgO
 水酸化リチウムを、MgO:100質量部に対して0~10質量部の範囲で添加。
 得られた仕上げ焼鈍板について実施例1と同様の調査を行った。
 さらにコロイダルシリカとリン酸アルミニウムを主成分とする絶縁コーティングを、厚みを変更して塗布し、850℃で焼成した後、Qスイッチパルスレーザーを用いて、圧延方向と直角方向に、板幅方向の走査速度:15m/s、圧延方向の照射ピッチ:6mm、照射幅:150μm、照射間隔:7.5mmで磁区細分化処理を行った。
 上記試験片の最終焼鈍後の表面酸化物の目付量とアンカー部の厚み、鋼板の反り量および磁気特性を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示したとおり、本発明の適正範囲を満たすNo.11、15、17で良好な鉄損特性が得られている。すなわちこれらの実施例では(a)~(d)の少なくともいずれかにおいて適正な調整が行われ、その結果表面酸化物の目付量、アンカー厚み、表面酸化物による反り、および表面酸化物+絶縁コートによる反りが全て適正化されており、適正なCr量およびB8値と相まって良好な低鉄損が得られている。
 これに対し、表面酸化物の目付量、アンカー厚み、表面酸化物による反り、および表面酸化物+絶縁コートによる反りのうち一つでも本発明の範囲を外れたNo.13、14、16、18については、満足する鉄損特性が得られていない。また、製造条件が本発明の範囲を満たしているために上記表面酸化物の目付量などは全て好適な範囲に収まっていても、Cr量が0.1質量%を超えているおよび/または素材のB8が1.91T未満であるNo.12、19、20は、満足する鉄損特性が得られていない。
産業上の利用の可能性
 本発明によれば、レーザーを用いた磁区細分化による鉄損の低減効果を、より効果的に発現した方向性電磁鋼板を得ることができる。

Claims (3)

  1.  両表面にフォルステライト被膜および張力コーティングをそなえ、レーザー照射による磁区細分化済みで、磁束密度B8が1.91T以上の方向性電磁鋼板であって、
    (1) 該方向性電磁鋼板中に混入するCr量を0.1質量%以下に抑制する、
    (2) 該フォルステライト被膜の被覆量が酸素目付量で3.0g/m2以上とし、かつ該フォルステライト被膜下部における該方向性電磁鋼板の地鉄部に食い込んだアンカー部の厚みを1.5μm以下とする、
    (3) 長さ:280mmの試験片の片面にのみ該フォルステライト被膜を有する状態での鋼板の反り量が10mm以上で、かつ該片面にのみ該フォルステライト被膜と該張力コーティングとを有する状態での鋼板の反り量が20mm以上である、方向性電磁鋼板。
  2.  Crの混入を0.1質量%以下に抑制した方向性電磁鋼板用スラブを圧延して最終板厚に仕上げたのち、脱炭焼鈍を施し、ついで鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行った後、張力コーティングを塗布し、レーザー照射による磁区細分化を施す一連の工程により方向性電磁鋼板を製造するに際し、
     鋼板表面に形成されるフォルステライト被膜の量が酸素目付量:3.0g/m2以上で、該フォルステライト被膜下部に形成される地鉄部に食い込んだアンカー部の厚みが1.5μm以下で、長さ:280mmの試験片の片面のみに該フォルステライト被膜を有する状態での鋼板の反り量が10mm以上となるように、脱炭焼鈍の雰囲気酸化性、最終仕上焼鈍の雰囲気、最終仕上焼鈍のヒートパターン、および、焼鈍分離剤MgOへの添加剤の少なくともいずれかを調整し、
     片面にのみ該フォルステライト被膜と張力コーティングとを有する状態での鋼板の反り量が20mm以上となるように該張力コーティングを塗布・焼付けする、方向性電磁鋼板の製造方法。
  3.  前記方向性電磁鋼板用スラブを、熱間圧延し、ついで必要に応じて熱延板焼鈍を施したのち、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げる、請求項2に記載の方向性電磁鋼板の製造方法。
     
PCT/JP2011/003685 2010-06-30 2011-06-28 方向性電磁鋼板およびその製造方法 WO2012001953A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MX2012015006A MX343140B (es) 2010-06-30 2011-06-28 Chapa de acero electrica orientada por grano y metodo de fabricacion de la misma.
US13/806,901 US9396850B2 (en) 2010-06-30 2011-06-28 Grain oriented electrical steel sheet and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010150404A JP6084351B2 (ja) 2010-06-30 2010-06-30 方向性電磁鋼板およびその製造方法
JP2010-150404 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012001953A1 true WO2012001953A1 (ja) 2012-01-05

Family

ID=45401695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003685 WO2012001953A1 (ja) 2010-06-30 2011-06-28 方向性電磁鋼板およびその製造方法

Country Status (4)

Country Link
US (1) US9396850B2 (ja)
JP (1) JP6084351B2 (ja)
MX (1) MX343140B (ja)
WO (1) WO2012001953A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047077A1 (ja) * 2014-09-26 2016-03-31 Jfeスチール株式会社 方向性電磁鋼板、方向性電磁鋼板の製造方法、方向性電磁鋼板の評価方法及び鉄心
CN114480792A (zh) * 2021-12-15 2022-05-13 中南大学 一种调控金属材料晶面取向的方法及其获得的金属材料和应用
US11942247B2 (en) * 2013-08-27 2024-03-26 Cleveland-Cliffs Steel Properties Inc. Grain oriented electrical steel with improved forsterite coating characteristics

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170755A1 (ja) * 2014-05-09 2015-11-12 新日鐵住金株式会社 低鉄損で低磁歪の方向性電磁鋼板
KR101693516B1 (ko) * 2014-12-24 2017-01-06 주식회사 포스코 방향성 전기강판 및 그 제조방법
WO2016129291A1 (ja) * 2015-02-13 2016-08-18 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR101762339B1 (ko) 2015-12-22 2017-07-27 주식회사 포스코 방향성 전기강판 및 방향성 전기강판의 제조방법
KR101751525B1 (ko) * 2015-12-24 2017-07-11 주식회사 포스코 방향성 전기강판 및 그의 제조 방법
JP6572956B2 (ja) * 2016-10-19 2019-09-11 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2018110676A1 (ja) * 2016-12-14 2018-06-21 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP7299464B2 (ja) * 2018-10-03 2023-06-28 日本製鉄株式会社 方向性電磁鋼板、巻鉄心変圧器用方向性電磁鋼板、巻鉄心の製造方法及び巻鉄心変圧器の製造方法
JP7393623B2 (ja) * 2019-09-19 2023-12-07 日本製鉄株式会社 方向性電磁鋼板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184017A (ja) * 1996-01-08 1997-07-15 Kawasaki Steel Corp 高磁束密度一方向性けい素鋼板のフォルステライト被膜とその形成方法
JP2001107145A (ja) * 1999-10-05 2001-04-17 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板の製造方法
JP2002302718A (ja) * 2001-04-06 2002-10-18 Kawasaki Steel Corp 方向性電磁鋼板の製造方法及び方向性電磁鋼板用焼鈍分離剤
JP2006152383A (ja) * 2004-11-30 2006-06-15 Jfe Steel Kk フォルステライト被膜のない方向性電磁鋼板の製造方法
JP2009041074A (ja) * 2007-08-09 2009-02-26 Jfe Steel Kk 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518566A (en) 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet
US5509976A (en) * 1995-07-17 1996-04-23 Nippon Steel Corporation Method for producing a grain-oriented electrical steel sheet having a mirror surface and improved core loss
JP3361709B2 (ja) 1997-01-24 2003-01-07 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板の製造方法
EP0892072B1 (en) * 1997-07-17 2003-01-22 Kawasaki Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic characteristics and production process for same
JP3482340B2 (ja) 1998-03-26 2003-12-22 新日本製鐵株式会社 一方向性電磁鋼板とその製造方法
JP2006117964A (ja) 2004-10-19 2006-05-11 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板とその製造方法
TWI270578B (en) * 2004-11-10 2007-01-11 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184017A (ja) * 1996-01-08 1997-07-15 Kawasaki Steel Corp 高磁束密度一方向性けい素鋼板のフォルステライト被膜とその形成方法
JP2001107145A (ja) * 1999-10-05 2001-04-17 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板の製造方法
JP2002302718A (ja) * 2001-04-06 2002-10-18 Kawasaki Steel Corp 方向性電磁鋼板の製造方法及び方向性電磁鋼板用焼鈍分離剤
JP2006152383A (ja) * 2004-11-30 2006-06-15 Jfe Steel Kk フォルステライト被膜のない方向性電磁鋼板の製造方法
JP2009041074A (ja) * 2007-08-09 2009-02-26 Jfe Steel Kk 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11942247B2 (en) * 2013-08-27 2024-03-26 Cleveland-Cliffs Steel Properties Inc. Grain oriented electrical steel with improved forsterite coating characteristics
WO2016047077A1 (ja) * 2014-09-26 2016-03-31 Jfeスチール株式会社 方向性電磁鋼板、方向性電磁鋼板の製造方法、方向性電磁鋼板の評価方法及び鉄心
KR20170044723A (ko) * 2014-09-26 2017-04-25 제이에프이 스틸 가부시키가이샤 방향성 전자 강판, 방향성 전자 강판의 제조 방법, 방향성 전자 강판의 평가 방법 및 철심
JPWO2016047077A1 (ja) * 2014-09-26 2017-04-27 Jfeスチール株式会社 方向性電磁鋼板、方向性電磁鋼板の製造方法、方向性電磁鋼板の評価方法及び鉄心
CN107075602A (zh) * 2014-09-26 2017-08-18 杰富意钢铁株式会社 方向性电磁钢板、方向性电磁钢板的制造方法、方向性电磁钢板的评价方法及铁心
KR20180119703A (ko) * 2014-09-26 2018-11-02 제이에프이 스틸 가부시키가이샤 방향성 전자 강판, 방향성 전자 강판의 제조 방법, 방향성 전자 강판의 평가 방법 및 철심
KR101941068B1 (ko) 2014-09-26 2019-01-22 제이에프이 스틸 가부시키가이샤 방향성 전자 강판, 방향성 전자 강판의 제조 방법, 방향성 전자 강판의 평가 방법 및 철심
KR101998723B1 (ko) * 2014-09-26 2019-07-10 제이에프이 스틸 가부시키가이샤 방향성 전자 강판, 방향성 전자 강판의 제조 방법 및 철심
US10697038B2 (en) 2014-09-26 2020-06-30 Jfe Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
US10889875B2 (en) 2014-09-26 2021-01-12 Jfe Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
CN114480792A (zh) * 2021-12-15 2022-05-13 中南大学 一种调控金属材料晶面取向的方法及其获得的金属材料和应用

Also Published As

Publication number Publication date
US9396850B2 (en) 2016-07-19
MX2012015006A (es) 2013-03-20
JP6084351B2 (ja) 2017-02-22
JP2012012666A (ja) 2012-01-19
MX343140B (es) 2016-10-26
US20130098508A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP6084351B2 (ja) 方向性電磁鋼板およびその製造方法
JP5077470B2 (ja) 方向性電磁鋼板
JP6157360B2 (ja) 方向性電磁鋼板およびその製造方法
KR101421388B1 (ko) 방향성 전기 강판 및 그 제조 방법
JP5593942B2 (ja) 方向性電磁鋼板およびその製造方法
WO2012017689A1 (ja) 方向性電磁鋼板およびその製造方法
US10020103B2 (en) Grain oriented electrical steel sheet
WO2012017670A1 (ja) 方向性電磁鋼板およびその製造方法
WO2012001952A1 (ja) 方向性電磁鋼板およびその製造方法
JP5742294B2 (ja) 方向性電磁鋼板の製造方法
WO2012042854A1 (ja) 方向性電磁鋼板
JP5842410B2 (ja) 方向性電磁鋼板の製造方法
JP5906654B2 (ja) 方向性電磁鋼板の製造方法
JP5923881B2 (ja) 方向性電磁鋼板およびその製造方法
JP5729014B2 (ja) 方向性電磁鋼板の製造方法
JP5434524B2 (ja) 方向性電磁鋼板の製造方法
JP6003197B2 (ja) 磁区細分化処理方法
JP5527094B2 (ja) 方向性電磁鋼板の製造方法
WO2024111628A1 (ja) 鉄損特性に優れた方向性電磁鋼板
EP4223891A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2786/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/015006

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13806901

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11800423

Country of ref document: EP

Kind code of ref document: A1