WO2011162135A1 - 形状凍結性に優れた冷延薄鋼板およびその製造方法 - Google Patents

形状凍結性に優れた冷延薄鋼板およびその製造方法 Download PDF

Info

Publication number
WO2011162135A1
WO2011162135A1 PCT/JP2011/063626 JP2011063626W WO2011162135A1 WO 2011162135 A1 WO2011162135 A1 WO 2011162135A1 JP 2011063626 W JP2011063626 W JP 2011063626W WO 2011162135 A1 WO2011162135 A1 WO 2011162135A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
less
rolled
steel sheet
thin steel
Prior art date
Application number
PCT/JP2011/063626
Other languages
English (en)
French (fr)
Inventor
太郎 木津
英子 安原
藤田 耕一郎
重宏 ▲高▼城
花澤 和浩
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201180031182.3A priority Critical patent/CN102947476B/zh
Priority to KR1020127033254A priority patent/KR101479391B1/ko
Priority to MX2012013968A priority patent/MX336858B/es
Publication of WO2011162135A1 publication Critical patent/WO2011162135A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0442Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a cold-rolled thin steel sheet suitable for structural members such as electrical appliances, office equipment, and automobile members, and particularly suitable for members requiring high dimensional accuracy after press forming.
  • the present invention relates to a cold-rolled thin steel sheet having excellent freezing properties.
  • the “thin steel plate” is a steel plate having a thickness of 0.2 to 2.0 mm, and includes a steel plate and a steel strip.
  • Patent Document 1 discloses that the average value of the X-ray random intensity ratio of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation group is 3.0 or more and ⁇ 554 ⁇ ⁇ 225>, ⁇ 111 ⁇ ⁇ 112>, ⁇ 111 ⁇ ⁇ 110> Three crystal orientations of X-ray random intensity ratio of the average value of 3.5 or less to develop a texture with a specific orientation, further rolling direction A ferritic thin steel sheet having excellent shape freezing properties, mainly bending, in which at least one of the r value and the r value perpendicular to the rolling direction is 0.7 or less is described. The steel sheet described in Patent Document 1 is markedly improved in bend formability, has a small amount of springback, and is excellent in shape freezing, mainly bending.
  • Patent Document 2 has a structure in which an island-like structure including martensite is dispersed in a ferrite matrix, the surface average roughness Ha is 0.4 to 1.8 ⁇ m, and the PPI value is 80 or more at a 0.5 ⁇ m count level.
  • the object of the present invention is to solve the problems of the prior art and propose a cold-rolled thin steel sheet having excellent shape freezing property and a method for producing the same.
  • the present inventors have intensively studied various factors affecting the shape freezing property.
  • the present inventors consider that the defective shape of the product (member) at the time of press molding is caused by the elastic strain introduced at the time of press molding being released when the product (member) is taken out from the press mold, We focused on the proportional limit of the steel sheet.
  • the proportional limit is the limit of stress that can maintain a proportional relationship with strain when an external force is applied to the elastic body. While the stress is small, Hooke's law holds, so a proportional relationship is seen.
  • Steel plates having various proportional limits were prepared, parts of a predetermined shape were formed by press forming, and the shape freezing property after forming was investigated. As a result, it was found that the proportional limit of the steel plate needs to be reduced to 150 MPa or less in order to ensure the desired excellent shape freezing property.
  • the proportional limit of the steel plate is 150 MPa or less, the increase in the opening amount X is small and excellent shape freezing property can be maintained, but if the proportional limit of the steel plate exceeds 150 MPa and becomes large, the opening amount X Increases rapidly and the shape freezing property is remarkably lowered.
  • the present inventors diligently studied various factors affecting the proportional limit of the steel sheet in order to stably manufacture the steel sheet having the proportional limit described above. As a result, it was found that the proportional limit can be easily reduced by subjecting a steel sheet mainly composed of a ferrite phase having a relatively large crystal grain size to temper rolling using a roll having a small surface roughness. Next, experimental results that serve as a basis for the above-described knowledge will be described.
  • composition of 0.040% C-0.01% Si-0. 20% Mn-0.01% P-0.01% S-0.04% Al-0.003% N-balance Fe in mass% A cold-rolled annealed plate (thickness: 0.8 mm) having a structure composed of a ferrite single phase with an average crystal grain size of 10 ⁇ m was subjected to temper rolling with a rolling elongation of 1%. In temper rolling, various rolling rolls having a surface roughness Ra adjusted to 0.2 to 2.5 ⁇ m were used. A JIS No. 5 test piece was taken from each temper-rolled steel sheet so that the tensile direction was the rolling direction, and a tensile test was performed to determine the proportional limit of each steel sheet.
  • the proportional limit was obtained by performing a tensile test at a tensile speed of 1 mm / min using a tensile test piece in which a strain gauge having a length of 5 mm was attached to both sides of the parallel part.
  • the proportional limit is defined as a point at which the inclination starts to decrease as the stress increases due to the relationship between the inclination ( ⁇ / ⁇ ) of the stress-strain curve and the stress ( ⁇ ).
  • the obtained results are shown in FIG. 4 in relation to the proportional limit of the steel plate and the roll surface roughness Ra of the used roll.
  • roll surface roughness Ra was measured based on the prescription
  • FIG. 4 shows that the proportional limit of the steel sheet easily becomes 150 MPa or less when temper rolling is performed using a rolling roll having a roll surface roughness Ra of 2.0 ⁇ m or less.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. (1) By mass%, C: 0.10% or less, Si: 0.05% or less, Mn: 0.1 to 1.0%, P: 0.05% or less, S: 0.02% or less, A composition comprising Al: 0.02 to 0.10%, N: less than 0.005%, the balance consisting of Fe and inevitable impurities, and a structure mainly composed of a ferrite phase having an average crystal grain size d: 5 to 30 ⁇ m; A thin steel sheet obtained by subjecting a thin steel sheet having a surface roughness Ra to temper rolling using a rolling roll having a surface roughness Ra of 2.0 ⁇ m or less, and having a proportional limit of 150 MPa or less. Excellent cold rolled steel sheet.
  • the steel material is subjected to a hot-rolling step and a cold-rolling step in order to obtain a cold-rolled plate, and the cold-rolled plate is subjected to an annealing step to obtain a cold-rolled annealed plate.
  • the annealing step is performed on the cold-rolled sheet, annealing temperature: After heating for 30 s or more at a temperature in the range of 730 to 850 ° C., an annealing treatment is applied to cool to a temperature of 600 ° C.
  • a rolling roll having a surface roughness Ra of 2.0 ⁇ m or less is used, and the temper rolling elongation is d / 20 to d / 5 corresponding to the average crystal grain size d ( ⁇ m) of the cold-rolled annealed sheet.
  • % Cold rolled thin steel sheet excellent in shape freezing property characterized by being subjected to temper rolling to a range of% and producing a cold rolled thin steel sheet having a proportional limit of 150 MPa or less.
  • the cold-rolled sheet is annealed at a temperature in the range of 730 to 850 ° C. and 600 ° C. or less at an average cooling rate of 5 ° C./s or more.
  • the manufacturing method of the cold-rolled thin steel plate characterized by making it the annealing-hot-dip galvanization process process which cools to the temperature of this and performs hot-dip galvanization.
  • a cold-rolled thin steel sheet having a proportional limit of 150 MPa or less can be manufactured at low cost and stably, and the shape freezing property of the formed member can be remarkably improved, thereby producing a remarkable industrial effect.
  • C 0.10% or less
  • the content of C exceeding 0.10% makes ferrite grains finer, promotes the formation of cementite, makes it difficult to lower the proportional limit, increases hardenability, and lowers the temperature. Promotes the formation of the transformation phase, increases strength and decreases ductility. For this reason, C was limited to 0.10% or less. In addition, Preferably it is 0.05% or less. In the present invention, it is not necessary to limit the lower limit of the C content, but excessive reduction leads to an increase in production cost, so 0.0010% or more is preferable.
  • Si 0.05% or less
  • Si is an element that stabilizes ferrite, promotes the concentration of C in the ferrite, facilitates the formation of cementite, martensite, and the like, and contributes to the promotion of hardening. From the viewpoint of improving the property, it is preferable to reduce as much as possible. Moreover, Si forms Si oxide on the surface during annealing, and adversely affects surface properties, chemical conversion properties, plating properties, and the like. For these reasons, Si is limited to 0.05% or less. In addition, More preferably, it is 0.03% or less.
  • Mn 0.1 to 1.0%
  • Mn is an effective element that forms MnS and prevents hot cracking due to S, and is preferably contained according to the amount of S contained. In order to obtain such an effect, the content of 0.1% or more is required.
  • Mn is a solid solution that increases the strength of the steel and improves the hardenability and contributes to the refinement of crystal grains. A large amount of Mn causes the formation of low-temperature transformation phases such as martensite. It is difficult to promote or refine the ferrite grains to reduce the proportional limit, and to significantly reduce ductility and deteriorate workability. Such a tendency becomes prominent when the content exceeds 1.0%. For this reason, Mn was limited to the range of 0.1 to 1.0%. In applications where better workability is required, the content is desirably 0.5% or less.
  • P 0.05% or less
  • P is contained as an inevitable impurity in the steel, but has the effect of segregating at the grain boundaries and reducing the grain boundary strength. For this reason, although it is preferable to reduce as much as possible in this invention, 0.05% is accept
  • S 0.02% or less
  • S is an element that remarkably deteriorates the ductility of hot steel and induces hot cracking to significantly deteriorate the surface properties. Further, S forms coarse sulfides and lowers the ductility and toughness of steel. For this reason, it is preferable to reduce S as much as possible, but if it is up to about 0.02%, it is acceptable. Therefore, S is limited to 0.02% or less. In addition, Preferably it is 0.01% or less.
  • Al acts as a deoxidizer for steel, has the effect of improving the cleanliness of the steel, and has the effect of strongly fixing N and suppressing age hardening by N. In order to obtain such an effect, a content of 0.02% or more is required. On the other hand, inclusion exceeding 0.10% leads to deterioration of surface properties such as an increase in the amount of inclusions due to the formation of alumina. For this reason, Al was limited to the range of 0.02 to 0.10%. In addition, Preferably it is 0.05% or less.
  • N Less than 0.005% N is a solid solution that contributes to increasing the strength of the steel and has a tendency to increase the proportional limit. When it is contained in a large amount, it causes hot cracking of the slab, and the surface properties of the slab Although it is an element which has a tendency to deteriorate and it is desirable to reduce it as much as possible in the present invention, it is acceptable if it is less than 0.005%. For this reason, N was limited to less than 0.005%.
  • the above-mentioned components are basic components.
  • One or more selected from 0003 to 0.0030%, Cr: 0.1 to 1.0%, and Mo: 0.1 to 1.0% can be selected and contained.
  • Nb 0.010% or more
  • B 0.0003% or more
  • Cr 0.1% or more
  • Mo 0.1% or more
  • Ti 0.005 to 0.08%
  • Nb 0.010 to 0.030%
  • B 0.0003 to 0.0030%
  • Cr 0.1 to 1.%. It is preferable to limit to 0% and Mo: 0.1 to 1.0%, respectively.
  • the balance other than the components described above consists of Fe and inevitable impurities.
  • the thin steel sheet of the present invention has the above-described composition and further has a structure mainly composed of a ferrite phase having an average crystal grain size of 5 to 30 ⁇ m.
  • “mainly” refers to a case where the volume ratio with respect to the entire tissue is 95% or more, preferably 98% or more, more preferably 100%.
  • the second phase other than the main phase is cementite, pearlite, bainite, or the like.
  • the second phase has a volume ratio of 5% or less. When the amount of the second phase exceeds 5%, the steel plate becomes hard and formability (workability) decreases.
  • the average crystal grain size of the ferrite phase is less than 5 ⁇ m, the grain boundaries increase, so the strain during temper rolling is concentrated especially at the triple boundary of the grain boundaries, and the dislocations tend to become tandals. Tend to increase.
  • the average crystal grain size of the ferrite phase exceeds 30 ⁇ m and the crystal grains become coarse, unevenness called orange peel becomes prominent at the time of press molding, the surface property of the member is lowered, and the proportional limit is reduced. It becomes difficult to introduce necessary movable dislocations near the grain boundaries. For this reason, the average crystal grain size of the ferrite phase is limited to 5 to 30 ⁇ m.
  • the cold-rolled thin steel sheet of the present invention is a thin steel sheet obtained by subjecting a thin steel sheet having the above composition and the above structure to temper rolling using a rolling roll having a surface roughness Ra of 2.0 ⁇ m or less.
  • the surface roughness Ra of the rolling roll used for temper rolling is coarser than 2.0 ⁇ m, the strain introduced during temper rolling is concentrated on the surface layer of the steel sheet, and uniform strain can be introduced in the sheet thickness direction. In other words, the desired proportional limit cannot be reduced. For this reason, in this invention, it decided to perform the temper rolling which uses the rolling roll whose surface roughness Ra is 2.0 micrometers or less to the thin steel plate which has the above-mentioned composition and the above-mentioned structure.
  • a steel material is sequentially subjected to a hot rolling process, a cold rolling process, and an annealing process to obtain a cold rolled annealing sheet.
  • the steel material to be used is in mass%, C: 0.10% or less, Si: 0.05% or less, Mn: 0.1 to 1.0%, P: 0.0.
  • a steel material having a composition including more than seeds and the balance Fe and inevitable impurities is used.
  • the manufacturing method of the steel material is not particularly limited, but the molten steel having the above composition is melted by a conventional melting method such as a converter, and a steel material such as a slab by a conventional casting method such as a continuous casting method.
  • the steel material casting method is desirably an intermittent casting method in order to prevent macro segregation of components, but there is no problem with the ingot casting method or the thin slab casting method.
  • a hot rolling process and a cold rolling process are sequentially performed on the steel material having the above composition to obtain a cold rolled sheet.
  • the hot rolling process is not limited as long as the steel material is heated, subjected to hot rolling, and then subjected to a winding process to produce a hot-rolled sheet having a desired dimension and shape. Absent.
  • the obtained hot-rolled sheet is subjected to a cold-rolling step to obtain a cold-rolled sheet.
  • the hot rolled sheet is pickled and then cold rolled to obtain a cold rolled sheet.
  • any conventional pickling method can be applied.
  • the cold rolling should just be made into the cold-rolled board of a predetermined dimension shape, and all the normal cold rolling conditions can be applied.
  • the annealing process is a process in which the cold-rolled sheet is subjected to an annealing process of heating to a temperature of 600 ° C. or less at an average cooling rate of 5 ° C./s after heating the cold rolled sheet at a temperature in the range of 730 to 850 ° C. for 30 s or more.
  • a cold-rolled annealed plate having a structure mainly composed of a ferrite phase having an average crystal grain size d: 5 to 30 ⁇ m is obtained.
  • the annealing temperature is less than 730 ° C., it is difficult to complete recrystallization of ferrite processed by cold rolling, and coarse ferrite grains having an average crystal grain size of 5 ⁇ m or more cannot be secured.
  • the annealing temperature is higher than 850 ° C., the transformation to austenite proceeds and transforms to fine ferrite during cooling, or transforms to a low temperature transformation phase, and the ferrite fraction decreases. Therefore, the annealing temperature is preferably limited to a temperature in the range of 730 to 850 ° C.
  • the holding (heating) time at the annealing temperature is preferably 30 s or more.
  • the upper limit of the heating time is not particularly limited, but is preferably about 200 s or less from the viewpoint of productivity.
  • the cooling after annealing in the annealing step is preferably performed from the annealing temperature to 600 ° C. or less at an average cooling rate of 5 ° C./s or more.
  • the cooling rate after annealing is less than 5 ° C./s on average, the growth of ferrite grains is promoted, and a ferrite structure having a desired grain size range cannot be obtained.
  • it is not necessary to limit the upper limit of the cold rolling rate after annealing but special cooling equipment is required for rapid cooling with rapid cooling exceeding 30 ° C./s, so cooling at 30 ° C./s or less. It is preferable to cool at a rate. If the cooling stop temperature exceeds 600 ° C.
  • a low temperature transformation phase may be formed by subsequent cooling. For this reason, cooling after annealing was decided to cool to 600 ° C. or lower at an average cooling rate of 5 ° C./s or higher. In addition, it is not necessary to prescribe
  • the cold-rolled sheet is annealed at a temperature in the range of 730 to 850 ° C., and the average cooling rate of 5 ° C./s or more is 600 ° C. or less. It is good also as an annealing-hot galvanization process process which cools to temperature and performs hot dip galvanization.
  • a hot dip galvanizing treatment may be performed by continuously dipping in a normal hot dip galvanizing bath near 480 ° C. using a continuous hot dip galvanizing line.
  • a plating layer alloying treatment step may be performed in which the hot dip galvanized layer is an alloyed hot dip galvanized layer.
  • the alloying treatment may be a reheating treatment in a temperature range of 500 ° C. or higher and lower than 600 ° C. according to a conventional method.
  • a cold-rolled annealed plate (plated plate) that has undergone such a hot-rolling step, a cold-rolling step, an annealing step, or an annealing-hot-dip galvanizing treatment step is mainly composed of a ferrite phase having an average crystal grain size of 5 ⁇ m to 30 ⁇ m. It becomes a cold-rolled annealed plate (plated plate) having a texture to be formed. In addition, you may form a chemical conversion treatment film in the obtained cold-rolled annealing board (plating board) further.
  • the cold-rolled annealed plate (plated plate) is then subjected to temper rolling using a rolling roll having a surface roughness Ra of 2.0 ⁇ m or less.
  • the surface roughness Ra of the rolling roll to be used exceeds 2.0 ⁇ m, the proportional limit of 150 MPa or less cannot be stably secured as shown in FIG.
  • the lower limit of the surface roughness Ra of the rolling roll to be used is not particularly limited. However, when the surface roughness Ra of the rolling roll to be used is reduced, the surface roughness of the obtained steel sheet is also reduced, and the frictional resistance of the steel sheet is reduced. Thus, when the coil is wound up, the coil is easily wound and crushed easily. For this reason, it is preferable that surface roughness Ra of the rolling roll to be used shall be 0.2 micrometer or more. In addition, the surface roughness Ra shall use the value measured based on prescription
  • the elongation ratio (temper rolling elongation ratio) R (%) in temper rolling is (0.05 to 0. 0), where d ( ⁇ m) is the average crystal grain size of the cold-rolled annealed sheet as the material to be rolled. 20) It is good to set it as d.
  • the reason is as follows. By applying temper rolling, movable dislocations are introduced and the proportional limit is reduced. However, movable dislocations introduced by temper rolling are likely to be introduced in the vicinity of grain boundaries. Therefore, in order to effectively introduce movable dislocations necessary for reducing the desired proportional limit to the vicinity of grain boundaries, the larger the ferrite grain size, It is necessary to increase the temper rolling elongation.
  • FIG. 5 shows the relationship between the proportional limit (MPa) of the temper-rolled steel sheet and R / d.
  • FIG. 5 shows the result of temper rolling using a steel sheet having an average ferrite grain size d of 5 to 20 ⁇ m and a rolling roll having a surface roughness Ra of 0.2 to 1.8 ⁇ m.
  • FIG. 5 shows that the proportional limit of the steel sheet is 150 MPa or less when R / d is between 0.05 and 0.20.
  • the temper rolling elongation rate R (%) is less than 0.05 d, the rolling amount of the temper rolling is insufficient, the desired movable dislocation cannot be introduced, and the desired low proportional limit cannot be ensured.
  • the amount of reduction exceeds 0.20d, the introduced dislocations are tangled, and the movable dislocation that effectively contributes to the reduction of the proportional limit is insufficient, and a desired low proportional limit cannot be secured.
  • the temper rolling elongation rate R (%) was limited to the range of (0.05-0.20) d corresponding to the ferrite average crystal grain size d.
  • a steel material having the composition shown in Table 1 is heated to 1200 ° C., subjected to hot rolling at a final pass exit temperature of 900 ° C., wound at 550 ° C., and a sheet thickness of 2.6 mm.
  • a hot rolling process was applied.
  • the obtained thin hot-rolled sheet was pickled and then cold-rolled to give a cold-rolled step of forming a cold-rolled sheet having a thickness of 0.8 mm.
  • the obtained cold-rolled sheet was subjected to an annealing process in which annealing treatment was performed under the conditions of annealing temperature, holding time, and cooling rate shown in Table 2 to obtain a thin cold-rolled annealed sheet.
  • the cooling rate was an average from the annealing temperature to 600 ° C.
  • Some steel sheets were subjected to an annealing-hot dip galvanizing process under the conditions shown in Table 2 instead of the annealing process.
  • a hot dip galvanizing treatment in which the plating bath was continuously immersed in a hot dip galvanizing bath at a temperature of 480 ° C. was performed following the annealing treatment.
  • Some steel sheets were subjected to alloying treatment at the temperatures shown in Table 2 after the hot dip galvanizing treatment.
  • the particle size and the texture fraction were determined.
  • the average crystal grain size of the ferrite phase was determined by a cutting method for an area of 200 ⁇ 200 ⁇ m using an optical microscope (magnification: 100 times).
  • the structure fraction of the ferrite phase was calculated using an image analysis apparatus by capturing two images of a 200 ⁇ 200 ⁇ m region using an optical microscope (magnification: 100 times). The second phase other than ferrite was also observed.
  • Table 2 The structure observation results are also shown in Table 2.
  • the obtained cold-rolled annealed plate (plated plate) was tempered with a temper rolling elongation R (%) shown in Table 2 using a rolling roll having a surface roughness Ra ( ⁇ m) shown in Table 2.
  • the surface roughness Ra of the rolling roll was measured in accordance with the provisions of JIS B 0601-2001.
  • electrogalvanizing treatment was performed after temper rolling.
  • a JIS No. 5 test piece (GL: 50 mm) is sampled from a temper-rolled thin steel sheet (thin-plated steel sheet) so that the test direction is the rolling direction, and a tensile test is performed in accordance with the provisions of JIS Z 2241.
  • Tensile properties (yield strength YS, tensile strength TS, elongation El) were determined. Further, from the obtained thin steel sheet, a JIS No. 5 test piece was sampled so that the test direction was the rolling direction, and a tensile test was performed to obtain a proportional limit. The proportional limit is determined by performing a tensile test at a tensile speed of 1 mm / min using a tensile test piece affixed to strain gauges (gauge length: 5 mm) on both sides of the parallel portion, and the slope of the stress-strain curve ( ⁇ / ⁇ ). It calculated
  • All of the examples of the present invention are thin steel sheets having a structure mainly composed of a ferrite phase having an average crystal grain size of 5 to 30 ⁇ m and a low proportional limit of 150 MPa or less.
  • the proportional limit exceeds 150 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

低比例限度を有する薄鋼板およびその製造方法を提供する。質量%で、C:0.10%以下、Si:0.05%以下、Mn:0.1~1.0%、P:0.05%以下、S:0.02%以下、Al:0.02~0.10%、N:0.005%未満、残部Feおよび不可避的不純物からなる組成を有する冷延板に、焼鈍温度:730~850℃の範囲の温度で30s以上加熱したのち、平均冷却速度:5℃/s以上の冷却速度で600℃以下の温度まで冷却する焼鈍処理を施し、平均結晶粒径d:5~30μmのフェライト相を主体とする組織とを有する冷延焼鈍板とし、該冷延焼鈍板に、表面粗さRaが2.0μm以下の圧延ロールを使用して、調質圧延伸び率R(%)を、該薄冷延焼鈍板の平均結晶粒径d(μm)に対して、R=(0.05~0.20)dの範囲とする調質圧延を施す。これにより、比例限度が150MPa以下の冷延薄鋼板となる。なお、表面に溶融亜鉛めっき層、合金化溶融亜鉛めっき層または電気亜鉛めっき層を形成してもよい。

Description

形状凍結性に優れた冷延薄鋼板およびその製造方法
 本発明は、電化製品、事務用機器、自動車用部材等の構造部材用として好適な、冷延薄鋼板に係り、とくに、プレス成形後の高寸法精度が要求される部材用として好適な、形状凍結性に優れた冷延薄鋼板に関する。なお、ここでいう「薄鋼板」は、板厚:0.2~2.0mmの鋼板で、鋼板および鋼帯を含むものとする。
 近年、電機分野等の分野では、原料価格の高騰に伴い、コスト低減のために、安価な素材が強く要求され、素材として使用する鋼板の薄肉化が加速している。また、自動車分野では、コスト低減に加えて、地球環境の保全という観点から、自動車の燃費向上が強く要求され、自動車車体の軽量化のために、素材である鋼板の薄肉化が進められている。
 しかし、素材の薄肉化により素材板厚を減少すると、製品(部材)の剛性が低下するという問題がある。このような問題に対し、部材にビードを付与したり、部材形状を見直したりして、断面二次モーメントが大きくなるように工夫し、所望の剛性を確保する場合が多くなっている。その結果、部材形状が複雑となり、プレス成形時に成形される部位が増加し、製品(部材)形状にゆがみが生じやすくなるという問題がある。製品(部品)形状にゆがみが生じた場合には、形状を矯正するため再プレス成形する必要がある。しかし、再プレス成形を行うことは、製造コストの増加を招くため、プレス成形後の形状凍結性に優れた鋼板が強く要望されるようになっている。
 このような要望に対し、例えば、特許文献1には、{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値が3.0以上で、かつ{554}<225>、{111}<112>、{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が3.5以下である特定方位の集合組織を発達させ、さらに圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも一つが0.7以下である、曲げ加工を主とする、形状凍結性に優れたフェライト系薄鋼板が記載されている。特許文献1に記載された鋼板は、曲げ成形性が著しく向上し、スプリングバック量が少なく、曲げ加工を主とする、形状凍結性に優れるとしている。
 また、特許文献2には、フェライト基地中にマルテンサイトを含む島状組織が分散した組織を有し、表面平均あらさHa0.4~1.8μmで、PPI値が0.5μmカウントレベルで80以上の表面粗度を有し、かつ比例限界応力が20kg/mm以下、即ち200MPa以下である、形状凍結性に優れた高張力鋼板が記載されている。これにより、プレス成形時のポンチ面と鋼板とのなじみ性が向上し、プレス成形後の形状凍結性に優れた部材(製品)が得られるとしている。
特開2001−303175公報 特開昭58−25456号公報
 しかし、特許文献1に記載された技術により製造された鋼板では、主として曲げ加工を受ける製品(部材)においては、所望の形状凍結性を確保できるが、例えば張出し加工のような、曲げ加工以外の加工を受ける製品(部材)においては、必ずしも満足できる形状凍結性を確保できていないという問題があった。また、特許文献2に記載された技術により製造された鋼板では、フェライト基地中にマルテンサイトを含む島状組織を分散させた組織とするため、硬質化した鋼板となりやすく、張出し高さの高い成形の場合には、割れが発生する場合が多いという問題があった。
 本発明は、かかる従来技術の問題を解決し、形状凍結性に優れた冷延薄鋼板およびその製造方法を提案することを目的とする。
 上記した目的を達成するために、本発明者らは、形状凍結性に及ぼす各種要因について、鋭意研究した。本発明者らは、プレス成形時の製品(部材)の形状不良は、プレス成形時に導入された弾性歪が、プレス金型から製品(部材)を取り出すときに開放されることにより生じると考え、鋼板の比例限度に着目した。
 比例限度とは、弾性体に外力を加えたときに、ひずみと比例関係を保つことができる応力の限度をいう。応力が小さい間は、フックの法則が成り立つので、比例関係がみられる。各種比例限度を有する鋼板を用意し、プレス成形により所定形状の部品を成形し、成形後の形状凍結性について調査した。その結果、所望の優れた形状凍結性を確保するためには、鋼板の比例限度を150MPa以下に低減する必要のあることを知見した。
 本発明の基礎となった実験結果について説明する。
 各種比例限度を有する板厚:0.8mmの薄鋼板(試験材)をプレス成形し、図1に示す寸法のハット形状の部品とした。なお、しわ押さえ圧は20tonとした。成形後、金型から部品を取り出し、ハット形状の開き量Xを測定した。図2に、鋼板の比例限度と開き量Xとの関係を示す。図2から、鋼板の比例限度が150MPa以下であれば、開き量Xの増加は少なく、優れた形状凍結性を保持できているが、鋼板の比例限度が150MPaを上回り、大きくなると、開き量Xは急激に増大し、形状凍結性が著しく低下することがわかる。
 つぎに、本発明者らは、上記した比例限度を有する鋼板を安定して製造するために、鋼板の比例限度に及ぼす各種要因について鋭意研究した。その結果、比較的大きな結晶粒径を有するフェライト相を主体とする鋼板に、表面粗さの小さいロールを用いた調質圧延を施すことにより、容易に比例限度を低減できることを見出した。
 つぎに、上記した知見の基礎となった実験結果について説明する。
 質量%で、0.040%C−0.01%Si−0.20%Mn−0.01%P−0.01%S−0.04%Al‐0.003%N‐残部Feの組成を有し、平均結晶粒径:10μmのフェライト単相からなる組織を有する冷延焼鈍板(板厚:0.8mm)に、圧延伸び率1%の調質圧延を施した。調質圧延に際しては、表面粗さRaを0.2~2.5μmに調整した各種圧延ロールを使用した。調質圧延済み各鋼板からそれぞれ、引張方向が圧延方向となるようにJIS 5号試験片を採取し、引張試験を実施し、各鋼板の比例限度を求めた。
 比例限度は、平行部両面に長さ5mmの歪ゲージを貼付した引張試験片を用いて、引張速度:1mm/minで引張試験を行って求めた。比例限度は、図3に示すように、応力−歪曲線の傾き(Δσ/Δε)と応力(σ)との関係から、応力増加により傾きが小さくなり始める点とした。
 得られた結果を、鋼板の比例限度と使用した圧延ロールのロール表面粗さRaとの関係で、図4に示す。なお、ロール表面粗さRaは、JIS B 0601−2001の規定に準拠して測定した。図4から、ロール表面粗さRaが2.0μm以下の圧延ロールを使用して調質圧延を施せば、容易に鋼板の比例限度が150MPa以下となることがわかる。
 上記した表面粗さの小さいロールを使用した調質圧延による比例限度減少の機構については、現在までに十分にその詳細を解明できていないが、本発明者らはつぎのように推定している。
 結晶粒径5~30μmの粗大なフェライトを主体とする鋼板に、Raが2.0μm以下の小さな表面粗さの圧延ロールを用いて調質圧延を施せば、板厚方向に均一な歪を導入することができ、さらにフェライト結晶粒内への可動転位の導入が促進でき、比例限度を顕著に低減できるものと考えている。一方、表面粗さRaが2.0μmを超えて大きな表面粗さの圧延ロールを用いて調質圧延を行った場合には、導入される歪が鋼板表層に集中するため、転位がタングル化して可動転位が減少し、比例限度の低減が得られなくなったものと考えられる。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
 (1)質量%で、C:0.10%以下、Si:0.05%以下、Mn:0.1~1.0%、P:0.05%以下、S:0.02%以下、Al:0.02~0.10%、N:0.005%未満を含み、残部Feおよび不可避的不純物からなる組成と、平均結晶粒径d:5~30μmのフェライト相を主体とする組織とを有する薄鋼板に、表面粗さRaが2.0μm以下の圧延ロールを使用した調質圧延を施してなる薄鋼板であって、150MPa以下の比例限度を有することを特徴とする形状凍結性に優れた冷延薄鋼板。
 (2)(1)において、前記組成に加えてさらに、質量%で、Ti:0.005~0.08%、Nb:0.010~0.030%、B:0.0003~0.0030%、Cr:0.1~1.0%、Mo:0.1~1.0%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする冷延薄鋼板。
 (3)(1)または(2)に記載の冷延薄鋼板の少なくとも一方の表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または電気亜鉛めっき層を形成してなることを特徴とする形状凍結性に優れた冷延薄鋼板。
 (4)鋼素材に熱延工程と、冷延工程とを順次施し冷延板とし、該冷延板に焼鈍工程を施し冷延焼鈍板とする冷延薄鋼板の製造方法において、前記鋼素材が、質量%で、C:0.10%以下、Si:0.05%以下、Mn:0.1~1.0%、P:0.05%以下、S:0.02%以下、Al:0.02~0.10%、N:0.005%未満を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材であり、前記焼鈍工程が、前記冷延板に、焼鈍温度:730~850℃の範囲の温度で30s以上加熱したのち、5℃/s以上の平均冷却速度で600℃以下の温度まで冷却する焼鈍処理を施し、平均結晶粒径d:5~30μmのフェライト相を主体とする組織を有する冷延焼鈍板とする工程であり、前記焼鈍工程後に、前記冷延焼鈍板に、表面粗さRaが2.0μm以下の圧延ロールを使用し、調質圧延伸び率を、該冷延焼鈍板の平均結晶粒径d(μm)に対応して、d/20~d/5%の範囲とする調質圧延を施し、比例限度が150MPa以下である冷延薄鋼板とすることを特徴とする、形状凍結性に優れた冷延薄鋼板の製造方法。
 (5)(4)において、前記焼鈍工程に代えて、前記冷延板に、焼鈍温度:730~850℃の範囲の温度で焼鈍して、5℃/s以上の平均冷却速度で600℃以下の温度まで冷却し、溶融亜鉛めっきを施す焼鈍−溶融亜鉛めっき処理工程とすることを特徴とする冷延薄鋼板の製造方法。
 (6)(5)において前記焼鈍−溶融亜鉛めっき処理工程を経たのち、さらに溶融亜鉛めっきを合金化処理する合金化処理工程を施すことを特徴とする冷延薄鋼板の製造方法。
 (7)(4)ないし(6)のいずれかにおいて、前記鋼素材の組成に加えてさらに、質量%で、Ti:0.005~0.08%、Nb:0.010~0.030%、B:0.0003~0.0030%、Cr:0.1~1.0%、Mo:0.1~1.0%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする冷延薄鋼板の製造方法。
 本発明によれば、比例限度が150MPa以下の冷延薄鋼板を安価にしかも安定して製造でき、成形後の部材の形状凍結性が格段に向上し、産業上格段の効果を奏する。
ハット状部品の形状寸法を模式的に示す説明図である。 ハット状部品の開き量Xに及ぼす鋼板の比例限度の影響を示すグラフである。 応力−歪曲線の傾き(Δσ/Δε)と応力(σ)との関係から、比例限度の決定の一例を示すグラフである。 比例限度に及ぼすロール表面粗さRaの影響を示すグラフである。 調質圧延済み鋼板の比例限度(MPa)とR/dとの関係を示す。
 まず、本発明薄鋼板の組成限定理由について説明する。以下、とくに断わらないかぎり質量%は、単に%で記す。
 C:0.10%以下
 0.10%を超えるCの含有は、フェライト粒を微細化し、セメンタイトの形成を促進して、比例限度を低下させることを困難にするとともに、焼入れ性を高め、低温変態相の生成を促進して、強度を増加させ延性を低下させる。このため、Cは0.10%以下に限定した。なお、好ましくは0.05%以下である。本発明ではC含有量の下限を限定する必要はないが、過剰な低減は製造コストの高騰を招くため、0.0010%以上とすることが好ましい。
 Si:0.05%以下
 Siは、フェライト安定化元素であり、フェライト中のCの濃化を促進し、セメンタイト、マルテンサイト等を生成しやすくして硬質化促進に寄与する元素であり、加工性の向上の観点からはできるだけ低減することが好ましい。また、Siは、焼鈍時に表面にSi酸化物を形成し、表面性状、化成処理性、めっき性等に悪影響を与える。このようなことから、Siは0.05%以下に限定した。なお、より好ましくは0.03%以下である。
 Mn:0.1~1.0%
 Mnは、MnSを形成し、Sによる熱間割れを防止する有効な元素であり、含有するS量に応じて含有させることが好ましい。このような効果を得るためには、0.1%以上の含有を必要とする。また、Mnは、固溶して鋼の強度を増加させるとともに、焼入れ性を向上させ、結晶粒の微細化に寄与する元素であり、多量の含有は、マルテンサイト等の低温変態相の生成を促進させたり、フェライト粒を微細化し、比例限度を低下させることを困難とするとともに、著しく延性を低下させて加工性を劣化させる。このような傾向は、1.0%を超えて含有する場合に顕著になる。このため、Mnは0.1~1.0%の範囲に限定した。なお、より良好な加工性が要求される用途では、0.5%以下とすることが望ましい。
 P:0.05%以下
 Pは、鋼中に不可避的不純物として含有されるが、粒界に偏析して粒界強度を低下させる作用を有する。このため、本発明ではできるだけ低減することが好ましいが、0.05%までは許容できる。このため、Pは0.05%以下に限定した。なお、好ましくは0.03%以下である。
 S:0.02%以下
 Sは、熱間での鋼の延性を著しく低下させ、熱間割れを誘発して表面性状を著しく劣化させる元素である。また、Sは粗大な硫化物を形成し、鋼の延性、靭性を低下させる。このため、Sはできるだけ低減することが好ましいが、0.02%程度までであれば、許容できる。このようなことから、Sは0.02%以下に限定した。なお、好ましくは0.01%以下である。
 Al:0.02~0.10%
 Alは、鋼の脱酸剤として作用し、鋼の清浄度を向上させる作用を有するとともに、強力にNを固定し、Nによる時効硬化を抑制する作用を有する。このような効果を得るためには0.02%以上の含有を必要とする。一方、0.10%を超える含有は、アルミナの生成による介在物量の増加など、表面性状の悪化に繋がる。このため、Alは0.02~0.10%の範囲に限定した。なお、好ましくは0.05%以下である。
 N:0.005%未満
 Nは、固溶して鋼の強度増加に寄与し、比例限度を増加させる傾向を有するとともに、多量に含有するとスラブの熱間割れを発生させ、スラブの表面性状を悪化させる傾向を有する元素であり、本発明ではできるだけ低減することが望ましいが、0.005%未満であれば許容できる。このため、Nは0.005%未満に限定した。
 上記した成分が基本の成分であるが、基本の組成に加えてさらに、必要に応じて、Ti:0.005~0.08%、Nb:0.010~0.030%、B:0.0003~0.0030%、Cr:0.1~1.0%、Mo:0.1~1.0%のうちから選ばれた1種または2種以上を選択して含有できる。
 Ti:0.005~0.08%、Nb:0.010~0.030%、B:0.0003~0.0030%、Cr:0.1~1.0%、Mo:0.1~1.0%のうちから選ばれた1種または2種以上
 Ti、Nb、B、Cr、Moはいずれも、窒化物および/または炭化物を形成し、耐時効性を劣化させる固溶C,Nの減少に寄与する元素であり、必要に応じて選択して1種または2種以上含有できる。このような効果を得るためには、Ti:0.005%以上、Nb:0.010%以上、B:0.0003%以上、Cr:0.1%以上、Mo:0.1%以上、をそれぞれ含有することが望ましいが、Ti:0.08%、Nb:0.030%、B:0.0030%、Cr:1.0%、Mo:1.0%を、それぞれ超える含有は、析出物の増加や、焼入れ性の向上を介して低温変態相の増加等を促進し、鋼を硬質化させ延性を低下させる。このため、含有する場合には、Ti:0.005~0.08%、Nb:0.010~0.030%、B:0.0003~0.0030%、Cr:0.1~1.0%、Mo:0.1~1.0%の範囲にそれぞれ限定することが好ましい。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。
 また、本発明薄鋼板は、上記した組成を有し、さらに、平均結晶粒径:5~30μmのフェライト相を主体とする組織を有する。ここでいう「主体とする」とは、組織全体に対する体積率で95%以上、好ましくは98%以上、より好ましくは100%である場合をいう。主体とする相以外の第二相は、セメンタイトやパーライト、ベイナイト等である。第二相は、体積率で5%以下とする。第二相が5%を超えて多くなると、鋼板が硬質化し、成形性(加工性)が低下する。
 また、フェライト相の平均結晶粒径が5μm未満では、結晶粒界が多くなることから、調質圧延時の歪が、とくに粒界三重点に集中し、転位がタンダル化しやすくなるため、比例限度が増加する傾向となる。一方、フェライト相の平均結晶粒径が30μmを超えて結晶粒が粗大化すると、プレス成形時に、オレンジピールと称される凹凸が顕著となり、部材の表面性状が低下するとともに、比例限度の低減に必要な可動転位を、粒界近傍に導入することが困難となる。このようなことから、フェライト相の平均結晶粒径は5~30μmに限定した。
 さらに、本発明冷延薄鋼板は、上記した組成と上記した組織を有する薄鋼板に、表面粗さRaが2.0μm以下の圧延ロールを使用した調質圧延を施してなる薄鋼板である。調質圧延に使用する圧延ロールの表面粗さRaが2.0μmを超えて粗い場合には、調質圧延時に導入される歪が鋼板表層に集中し、板厚方向に均一な歪を導入できず、所望の比例限度の低減が得られない。このため、本発明では、上記した組成と上記した組織を有する薄鋼板に、表面粗さRaが2.0μm以下の圧延ロールを使用した調質圧延を施すことにした。
 つぎに、本発明薄鋼板の好ましい製造方法について説明する。
 本発明薄鋼板の製造方法では、まず、鋼素材に熱延工程、冷延工程、さらに焼鈍工程を順次施して、冷延焼鈍板とする。
 使用する鋼素材は、上記した鋼板の組成と同様に、質量%で、C:0.10%以下、Si:0.05%以下、Mn:0.1~1.0%、P:0.05%以下、S:0.02%以下、Al:0.02~0.10%、N:0.005%未満を含み、あるいはさらに、Ti:0.005~0.08%、Nb:0.010~0.030%、B:0.0003~0.0030%、Cr:0.1~1.0%、Mo:0.1~1.0%のうちから選ばれた1種または2種以上を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とする。
 鋼素材の製造方法は、とくに限定する必要はないが、上記した組成の溶鋼を転炉等の常用の溶製方法で溶製し、連続鋳造法などの常用の鋳造方法でスラブ等の鋼素材とすることが好ましい。鋼素材の鋳造方法は、成分のマクロな偏析を防止すべく違続鋳造法とすることが望ましいが、造塊法、薄スラブ鋳造法によってもなんら問題はない。
 まず、上記した組成の鋼素材に常法に従い、熱延工程と、冷延工程とを順次施し冷延板とする。
 本発明では、熱延工程は、鋼素材を加熱して、熱間圧延を施し、その後巻き取る工程を施し、所望の寸法形状の熱延板を製造できればよく、とくにその条件を限定する必要はない。
 ついで、得られた熱延板に冷延工程を施し、冷延板とする。冷延工程では、熱延板に酸洗を施し、ついで冷間圧延を施し冷延板とする。酸洗は、常用の酸洗方法がいずれも適用できる。また、冷間圧延は、所定の寸法形状の冷延板とすることができればよく、常用の冷間圧延条件がいずれも適用できる。
 ついで、得られた冷延板に焼鈍工程を施し、冷延焼鈍板とする。
 焼鈍工程は、冷延板に、焼鈍温度:730~850℃の範囲の温度で30s以上加熱したのち、5℃/s以上の平均冷却速度で600℃以下の温度まで冷却する焼鈍処理を施す工程とする。これにより、平均結晶粒径d:5~30μmのフェライト相を主体とする組織を有する冷延焼鈍板とする。
 焼鈍温度が、730℃未満では、冷間圧延で加工されたフェライトの再結晶の完了が困難となるうえ、平均結晶粒径:5μm以上の粗大フェライト粒を確保できない。一方、焼鈍温度が、850℃を超えて高温となると、オーステナイトへの変態が進行し、冷却時に微細なフェライトに変態するか、あるいは低温変態相へ変態し、フェライト分率が小さくなる。このため、焼鈍温度は:730~850℃の範囲の温度に限定することが好ましい。なお、焼鈍温度での保持(加熱)時間は30s以上とすることが好ましい。保持(加熱)時間が30s未満では、再結晶が完了しないか、完了しても粒成長が抑制され、所望の粗大フェライト粒を確保できなくなる。なお、加熱時間の上限はとくに限定しないが、生産性の観点から概ね200s以下とすることが望ましい。
 また、焼鈍工程での焼鈍後の冷却は、焼鈍温度から、5℃/s以上の平均冷却速度で600℃以下まで冷却することが好ましい。焼鈍後の冷却速度が、平均で5℃/s未満では、フェライト粒の成長が促進され、所望の粒径範囲のフェライト組織とすることができなくなる。一方、焼鈍後冷延速度の上限はとくに限定する必要はないが、30℃/sを超える急速な冷却で急冷する場合には特別な冷却設備を必要とするため、30℃/s以下の冷却速度で冷却することが好ましい。なお、冷却停止温度が600℃を超えて高温となると、その後の冷却で低温変態相が形成される恐れがある。このため、焼鈍後の冷却は5℃/s以上の平均冷却速度で600℃以下まで冷却することとした。なお、600℃以下の冷却速度は特に規定する必要はない。
 なお、得られた薄冷延焼鈍板に、電気亜鉛めっき、化成処理膜を形成してもよい。
 また、本発明では、上記した焼鈍工程に代えて、前記冷延板に、焼鈍温度:730~850℃の範囲の温度で焼鈍して、5℃/s以上の平均冷却速度で600℃以下の温度まで冷却し、溶融亜鉛めっきを施す焼鈍−溶融亜鉛めっき処理工程としてもよい。焼鈍−溶融亜鉛めっき処理工程は、連続溶融亜鉛めっきラインを利用し、焼鈍後、通常の480℃近傍の溶融亜鉛めっき浴に、連続浸漬する溶融亜鉛めっき処理を行ってもよい。なお、さらに、溶融亜鉛めっき層を合金化溶融亜鉛めっき層とする、めっき層の合金化処理工程を施してもよい。合金化処理は常法に従い500℃以上600℃未満の温度域に再加熱する処理とすればよい。
 このような熱延工程、冷延工程、焼鈍工程あるいは焼鈍−溶融亜鉛めっき処理工程、を経た冷延焼鈍板(めっき板)は、平均結晶粒径が5μm以上30μm以下であるフェライト相を主体とする組織を有する冷延焼鈍板(めっき板)となる。なお、得られた冷延焼鈍板(めっき板)に、さらに、化成処理膜を形成してもよい。
 本発明では、冷延焼鈍板(めっき板)に、ついで、表面粗さRaが2.0μm以下の圧延ロールを使用して調質圧延を施す。
 使用する圧延ロールの表面粗さRaが2.0μmを超えて粗くなると、図4に示すように、150MPa以下の比例限度を安定して確保できなくなる。使用する圧延ロールの表面粗さRaの下限はとくに限定する必要はないが、使用する圧延ロールの表面粗さRaが小さくなると、得られる鋼板の表面粗さも小さくなり、鋼板の摩擦抵抗が小さくなりすぎて、コイル状に巻き取った際に、コイルに巻きずれが生じて潰れやすくなる。このため、使用する圧延ロールの表面粗さRaは0.2μm以上とすることが好ましい。なお、表面粗さRaは、JIS B 0601−2001の規定に準拠して測定した値を用いるものとする。
 さらに、調質圧延における伸び率(調質圧延伸び率)R(%)は、被圧延材である冷延焼鈍板の平均結晶粒径をd(μm)とすると、(0.05~0.20)dとするのが良い。その理由は次の通りである。調質圧延を施すことにより、可動転位が導入され、比例限度が低減する。しかし、調質圧延により導入される可動転位は粒界近傍に導入されやすいため、所望の比例限度の低減に必要な可動転位を有効に粒界近傍に導入するには、フェライト粒径が大きいほど、調質圧延伸び率を大きくする必要がある。すなわち、フェライト平均粒径d(μm)に応じて、調質圧延伸び率R(%)を調整することが肝要となる。調質圧延済み鋼板の比例限度(MPa)とR/dとの関係を図5に示す。なお、図5は、フェライト平均結晶粒径dが5~20μmの鋼板を用い、表面粗さRaが0.2~1.8μmの圧延ロールを使用して調質圧延した結果である。図5から、R/dが0.05~0.20の間で鋼板の比例限度が150MPa以下となることがわかる。
 調質圧延伸び率R(%)が、0.05d未満では、調質圧延の圧下量が不足し、所望の可動転位を導入できず、所望の低い比例限度を確保できない。一方、0.20dを超えて圧下量が多くなると、導入された転位がタングル化し、比例限度低減に有効に寄与する可動転位が不足し、所望の低い比例限度を確保できなくなる。このようなことから、調質圧延伸び率R(%)は、フェライト平均結晶粒径dに対応して、(0.05~0.20)dの範囲に限定した。
 以下、実施例に基づいて、さらに本発明について説明する。
 表1に示す組成の鋼素材に、1200℃に加熱し、最終パスの出側温度を900℃とする熱間圧延を施し、550℃で巻取り、板厚:2.6mmの薄熱延板とする熱延工程を施した。得られた薄熱延板に、酸洗を施したのち、冷間圧延を施し、板厚0.8mmの冷延板とする冷延工程を施した。ついで、得られた冷延板に、表2に示す焼鈍温度、保持時間、および冷却速度の条件で焼鈍処理を行う焼鈍工程を施し、薄冷延焼鈍板とした。なお、冷却速度は焼鈍温度から600℃までの平均とした。
 一部の鋼板では、焼鈍処理に代えて、表2に示す条件で、焼鈍−溶融亜鉛めっき処理工程を施した。焼鈍−溶融亜鉛めっき処理工程では焼鈍処理に引続いて、めっき浴の温度:480℃の溶融亜鉛めっき浴に連続的に浸漬する溶融亜鉛めっき処理を施した。なお、一部の鋼板には、溶融亜鉛めっき処理後、表2に示す温度で合金化処理を施した。
 得られた薄冷延焼鈍板(薄めっき板)から、圧延方向に平行な断面が観察面となるように組織観察用試験片を採取し、研磨し、ナイタール腐食して、フェライト相の平均結晶粒径、組織分率を求めた。フェライト相の平均結晶粒径は、光学顕微鏡(倍率:100倍)を用いて、200×200μmの領域について、切断法により、求めた。また、フェライト相の組織分率は、光学顕微鏡(倍率:100倍)を用いて、200×200μmの領域について2枚撮像し、画像解析装置を用いて算出した。なお、フェライト以外の第二相についても観察した。組織観察結果を表2に併記して示す。
 ついで、得られた冷延焼鈍板(めっき板)に、表2に示す表面粗さRa(μm)の圧延ロールを使用して、表2に示す調質圧延伸び率R(%)で調質圧延を施した。圧延ロールの表面粗さRaは、JIS B 0601−2001の規定に準拠して測定した。なお、溶融亜鉛めっき処理を施さない一部の鋼板では、調質圧延後に電気亜鉛めっき処理を施した。
 調質圧延済み薄鋼板(薄めっき鋼板)から、試験方向が圧延方向となるように、JIS5号試験片(GL:50mm)を採取し、JIS Z 2241の規定に準拠して引張試験を行い、引張特性(降伏強さYS、引張強さTS、伸びEl)を求めた。また、得られた薄鋼板から、試験方向が圧延方向となるように、JIS5号試験片を採取し、引張試験を実施して、比例限度を求めた。
比例限度は、平行部両面に歪ゲージ(ゲージ長さ:5mm)に貼付した引張試験片を用いて、引張速度:1mm/minで引張試験し、応力−歪曲線の傾き(Δσ/Δε)と応力(σ)との関係から、図3に示す要領で、求めた。
 なお、調質圧延済み薄鋼板についても、組織観察をしたが、冷延焼鈍板(めっき板)と変わらない組織を有していることを確認した。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、平均結晶粒径:5~30μmのフェライト相を主体とする組織を有し、150MPa以下の低い比例限度を有する薄鋼板となっている。一方、本発明の範囲を外れる比較例は、比例限度が150MPaを超えている。

Claims (7)

  1.  質量%で、
    C :0.10%以下、       Si:0.05%以下、
    Mn:0.1~1.0%、      P :0.05%以下、
    S :0.02%以下、       Al:0.02~0.10%、
    N :0.005%未満
    を含み、残部Feおよび不可避的不純物からなる組成と、平均結晶粒径d:5~30μmのフェライト相を主体とする組織とを有する薄鋼板に、表面粗さRaが2.0μm以下の圧延ロールを使用した調質圧延を施してなる薄鋼板であって、150MPa以下の比例限度を有することを特徴とする形状凍結性に優れた冷延薄鋼板。
  2.  前記組成に加えてさらに、質量%で、Ti:0.005~0.08%、Nb:0.010~0.030%、B:0.0003~0.0030%、Cr:0.1~1.0%、Mo:0.1~1.0%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載の冷延薄鋼板。
  3.  請求項1または2に記載の冷延薄鋼板の少なくとも一方の表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または電気亜鉛めっき層を形成してなることを特徴とする形状凍結性に優れた冷延薄鋼板。
  4.  鋼素材に熱延工程と、冷延工程とを順次施し冷延板とし、該冷延板に焼鈍工程を施し冷延焼鈍板とする冷延薄鋼板の製造方法において、前記鋼素材が、質量%で、
    C :0.10%以下、           Si:0.05%以下、
    Mn:0.1~1.0%、          P :0.05%以下、
    S :0.02%以下、           Al:0.02~0.10%、
    N :0.005%未満
    を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材であり、
    前記焼鈍工程が、前記冷延板に、焼鈍温度:730~850℃の範囲の温度で30s以上加熱したのち、平均冷却速度:5℃/s以上の冷却速度で600℃以下の温度まで冷却する焼鈍処理を施し、平均結晶粒径d:5~30μmのフェライト相を主体とする組織を有する冷延焼鈍板とする工程であり、
    前記焼鈍工程後に、前記冷延焼鈍板に、表面粗さRaが2.0μm以下の圧延ロールを使用し、調質圧延伸び率(%)を、該冷延焼鈍板の平均結晶粒径d(μm)に対応して、(0.05~0.20)d(%)の範囲とする調質圧延を施し、比例限度が150MPa以下である冷延薄鋼板とすることを特徴とする、形状凍結性に優れた冷延薄鋼板の製造方法。
  5.  前記焼鈍工程に代えて、前記冷延板に、焼鈍温度:730~850℃の範囲の温度で焼鈍して、5℃/s以上の平均冷却速度で600℃以下の温度まで冷却し、溶融亜鉛めっきを施す焼鈍−溶融亜鉛めっき処理工程とすることを特徴とする請求項4に記載の冷延薄鋼板の製造方法。
  6.  前記焼鈍−溶融亜鉛めっき処理工程を経たのち、さらに溶融亜鉛めっきを合金化処理する合金化処理工程を施すことを特徴とする請求項5に記載の冷延薄鋼板の製造方法。
  7.  前記鋼素材の組成に加えてさらに、質量%で、Ti:0.005~0.08%、Nb:0.010~0.030%、B:0.0003~0.0030%、Cr:0.1~1.0%、Mo:0.1~1.0%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項4ないし6のいずれかに記載の冷延薄鋼板の製造方法。
PCT/JP2011/063626 2010-06-23 2011-06-08 形状凍結性に優れた冷延薄鋼板およびその製造方法 WO2011162135A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180031182.3A CN102947476B (zh) 2010-06-23 2011-06-08 形状冻结性优良的冷轧薄钢板及其制造方法
KR1020127033254A KR101479391B1 (ko) 2010-06-23 2011-06-08 형상 동결성이 우수한 냉연 박강판 및 그 제조 방법
MX2012013968A MX336858B (es) 2010-06-23 2011-06-08 Hoja de acero rolada en frio que tiene excelente capacidad de fijacion de la forma, y proceso para su produccion.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010142249A JP5549414B2 (ja) 2010-06-23 2010-06-23 形状凍結性に優れた冷延薄鋼板およびその製造方法
JP2010-142249 2010-06-23

Publications (1)

Publication Number Publication Date
WO2011162135A1 true WO2011162135A1 (ja) 2011-12-29

Family

ID=45371329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063626 WO2011162135A1 (ja) 2010-06-23 2011-06-08 形状凍結性に優れた冷延薄鋼板およびその製造方法

Country Status (7)

Country Link
JP (1) JP5549414B2 (ja)
KR (1) KR101479391B1 (ja)
CN (1) CN102947476B (ja)
MX (1) MX336858B (ja)
MY (1) MY162617A (ja)
TW (1) TW201211268A (ja)
WO (1) WO2011162135A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732778A (zh) * 2012-06-19 2012-10-17 马钢(集团)控股有限公司 一种340MPa级深冲用高强度冷轧钢板及其生产方法
CN104870678A (zh) * 2012-10-11 2015-08-26 杰富意钢铁株式会社 形状冻结性优异的冷轧钢板及其制造方法
US10683560B2 (en) 2014-10-09 2020-06-16 Thyssenkrupp Steel Europe Ag Cold-rolled and recrystallization annealed flat steel product, and method for the production thereof
CN114959491A (zh) * 2022-06-20 2022-08-30 武汉钢铁有限公司 一种采用短流程生产的350MPa级高耐蚀涂镀薄钢板及方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541243B2 (ja) * 2011-07-15 2014-07-09 Jfeスチール株式会社 形状凍結性に優れた冷延鋼板およびその製造方法
JP5486634B2 (ja) 2012-04-24 2014-05-07 株式会社神戸製鋼所 冷間加工用機械構造用鋼及びその製造方法
TWI502083B (zh) * 2012-09-28 2015-10-01 Jfe Steel Corp 形狀凍結性優良的冷軋鋼板及其製造方法
JP6052145B2 (ja) 2013-11-28 2016-12-27 Jfeスチール株式会社 焼付け硬化型溶融亜鉛めっき鋼板
KR20150075014A (ko) * 2013-12-24 2015-07-02 주식회사 포스코 압연강판 및 그의 제조방법
KR20150075351A (ko) * 2013-12-24 2015-07-03 주식회사 포스코 압연강판 및 그의 제조방법
MX2016009884A (es) * 2014-01-30 2016-10-31 Arcelormittal Metodo para fabricacion de partes con ondulacion baja de una hoja metalica electrogalvanizada, parte y vehiculo correspondiente.
JP6086078B2 (ja) * 2014-02-05 2017-03-01 Jfeスチール株式会社 伸びフランジ性に優れた高強度冷延鋼板およびその製造方法
JP6119628B2 (ja) * 2014-02-05 2017-04-26 Jfeスチール株式会社 比例限が高く、曲げ加工性に優れた高強度冷延薄鋼板およびその製造方法
JP6086077B2 (ja) * 2014-02-05 2017-03-01 Jfeスチール株式会社 加工性に優れた高強度冷延鋼板およびその製造方法
CN105441795B (zh) * 2014-08-22 2017-10-27 上海梅山钢铁股份有限公司 一种led引线框架用低碳冷轧钢板及其生产方法
US11174529B2 (en) * 2015-05-07 2021-11-16 Nippon Steel Corporation High-strength steel sheet and method of manufacturing the same
MX2021007922A (es) 2019-03-29 2021-08-11 Nippon Steel Corp Miembro de acero revestido, lamina de acero revestida, y metodos para producir los mismos.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293083A (ja) * 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd 熱延鋼板並びに熱延鋼板及び冷延鋼板の製造方法
JP2010077513A (ja) * 2008-09-29 2010-04-08 Sumitomo Metal Ind Ltd 冷延鋼板およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100526493C (zh) * 2004-07-27 2009-08-12 新日本制铁株式会社 高杨氏模量钢板、使用了它的热浸镀锌钢板、合金化热浸镀锌钢板、和高杨氏模量钢管以及它们的制造方法
EP2098309B1 (en) * 2006-12-18 2014-04-16 JFE Steel Corporation Method of temper rolling of steel strip and process for manufacturing high tensile cold rolled steel sheet
CN101595235B (zh) * 2007-01-29 2011-02-09 杰富意钢铁株式会社 高张力冷轧钢板及其制造方法
WO2008108044A1 (ja) * 2007-03-01 2008-09-12 Jfe Steel Corporation 高張力冷延鋼板およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293083A (ja) * 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd 熱延鋼板並びに熱延鋼板及び冷延鋼板の製造方法
JP2010077513A (ja) * 2008-09-29 2010-04-08 Sumitomo Metal Ind Ltd 冷延鋼板およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732778A (zh) * 2012-06-19 2012-10-17 马钢(集团)控股有限公司 一种340MPa级深冲用高强度冷轧钢板及其生产方法
CN104870678A (zh) * 2012-10-11 2015-08-26 杰富意钢铁株式会社 形状冻结性优异的冷轧钢板及其制造方法
EP2907887A4 (en) * 2012-10-11 2015-12-02 Jfe Steel Corp COLD LAMINATED STEEL SHEET WITH HIGHER SHAPE FASTENING CAPACITY AND METHOD FOR MANUFACTURING THE SAME
US10683560B2 (en) 2014-10-09 2020-06-16 Thyssenkrupp Steel Europe Ag Cold-rolled and recrystallization annealed flat steel product, and method for the production thereof
CN114959491A (zh) * 2022-06-20 2022-08-30 武汉钢铁有限公司 一种采用短流程生产的350MPa级高耐蚀涂镀薄钢板及方法

Also Published As

Publication number Publication date
KR101479391B1 (ko) 2015-01-05
JP2012007196A (ja) 2012-01-12
MX336858B (es) 2016-02-04
MY162617A (en) 2017-06-30
CN102947476A (zh) 2013-02-27
TW201211268A (en) 2012-03-16
KR20130023274A (ko) 2013-03-07
CN102947476B (zh) 2015-08-26
MX2012013968A (es) 2012-12-17
JP5549414B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5549414B2 (ja) 形状凍結性に優れた冷延薄鋼板およびその製造方法
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5884714B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP5003785B2 (ja) 延性に優れた高張力鋼板およびその製造方法
JP5971434B2 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
WO2011055844A1 (ja) 加工性及び塗装焼付硬化性に優れた高強度鋼板及びその製造方法
KR20120008033A (ko) 시효성 및 베이킹 경화성이 우수한 냉연 강판 및 그 제조 방법
WO2013088692A1 (ja) 耐時効性に優れた鋼板およびその製造方法
JP5958669B1 (ja) 高強度鋼板およびその製造方法
JP2011246767A (ja) 焼付硬化性冷延鋼板およびその製造方法
JP2008106351A (ja) 加工性に優れた高強度冷延鋼板及びその製造方法
JP6841383B2 (ja) 鋼板及びその製造方法
JP4696870B2 (ja) 高強度鋼板及びその製造方法
KR102485637B1 (ko) 강판 및 그 제조 방법
JP6007571B2 (ja) 高強度冷延鋼板及び高強度亜鉛めっき鋼板
JP5686028B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP5434375B2 (ja) 加工性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP6628018B1 (ja) 熱延鋼板
JPH1060542A (ja) 缶用鋼板の製造方法
JP5582284B2 (ja) 高い比例限を有する薄鋼板およびその製造方法
JP5987999B1 (ja) 高強度鋼板およびその製造方法
JP2012177175A (ja) 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031182.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798021

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3576/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/013968

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20127033254

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798021

Country of ref document: EP

Kind code of ref document: A1